Merge master.kernel.org:/home/rmk/linux-2.6-arm
[pandora-kernel.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
44
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50
51 /*
52  * Central wireless core regulatory domains, we only need two,
53  * the current one and a world regulatory domain in case we have no
54  * information to give us an alpha2
55  */
56 const struct ieee80211_regdomain *cfg80211_regdomain;
57
58 /*
59  * We use this as a place for the rd structure built from the
60  * last parsed country IE to rest until CRDA gets back to us with
61  * what it thinks should apply for the same country
62  */
63 static const struct ieee80211_regdomain *country_ie_regdomain;
64
65 /* Used to queue up regulatory hints */
66 static LIST_HEAD(reg_requests_list);
67 static spinlock_t reg_requests_lock;
68
69 /* Used to queue up beacon hints for review */
70 static LIST_HEAD(reg_pending_beacons);
71 static spinlock_t reg_pending_beacons_lock;
72
73 /* Used to keep track of processed beacon hints */
74 static LIST_HEAD(reg_beacon_list);
75
76 struct reg_beacon {
77         struct list_head list;
78         struct ieee80211_channel chan;
79 };
80
81 /* We keep a static world regulatory domain in case of the absence of CRDA */
82 static const struct ieee80211_regdomain world_regdom = {
83         .n_reg_rules = 5,
84         .alpha2 =  "00",
85         .reg_rules = {
86                 /* IEEE 802.11b/g, channels 1..11 */
87                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
88                 /* IEEE 802.11b/g, channels 12..13. No HT40
89                  * channel fits here. */
90                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
91                         NL80211_RRF_PASSIVE_SCAN |
92                         NL80211_RRF_NO_IBSS),
93                 /* IEEE 802.11 channel 14 - Only JP enables
94                  * this and for 802.11b only */
95                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
96                         NL80211_RRF_PASSIVE_SCAN |
97                         NL80211_RRF_NO_IBSS |
98                         NL80211_RRF_NO_OFDM),
99                 /* IEEE 802.11a, channel 36..48 */
100                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
101                         NL80211_RRF_PASSIVE_SCAN |
102                         NL80211_RRF_NO_IBSS),
103
104                 /* NB: 5260 MHz - 5700 MHz requies DFS */
105
106                 /* IEEE 802.11a, channel 149..165 */
107                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
108                         NL80211_RRF_PASSIVE_SCAN |
109                         NL80211_RRF_NO_IBSS),
110         }
111 };
112
113 static const struct ieee80211_regdomain *cfg80211_world_regdom =
114         &world_regdom;
115
116 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
117 static char *ieee80211_regdom = "US";
118 #else
119 static char *ieee80211_regdom = "00";
120 #endif
121
122 module_param(ieee80211_regdom, charp, 0444);
123 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
124
125 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
126 /*
127  * We assume 40 MHz bandwidth for the old regulatory work.
128  * We make emphasis we are using the exact same frequencies
129  * as before
130  */
131
132 static const struct ieee80211_regdomain us_regdom = {
133         .n_reg_rules = 6,
134         .alpha2 =  "US",
135         .reg_rules = {
136                 /* IEEE 802.11b/g, channels 1..11 */
137                 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
138                 /* IEEE 802.11a, channel 36 */
139                 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
140                 /* IEEE 802.11a, channel 40 */
141                 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
142                 /* IEEE 802.11a, channel 44 */
143                 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
144                 /* IEEE 802.11a, channels 48..64 */
145                 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
146                 /* IEEE 802.11a, channels 149..165, outdoor */
147                 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
148         }
149 };
150
151 static const struct ieee80211_regdomain jp_regdom = {
152         .n_reg_rules = 3,
153         .alpha2 =  "JP",
154         .reg_rules = {
155                 /* IEEE 802.11b/g, channels 1..14 */
156                 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
157                 /* IEEE 802.11a, channels 34..48 */
158                 REG_RULE(5170-10, 5240+10, 40, 6, 20,
159                         NL80211_RRF_PASSIVE_SCAN),
160                 /* IEEE 802.11a, channels 52..64 */
161                 REG_RULE(5260-10, 5320+10, 40, 6, 20,
162                         NL80211_RRF_NO_IBSS |
163                         NL80211_RRF_DFS),
164         }
165 };
166
167 static const struct ieee80211_regdomain eu_regdom = {
168         .n_reg_rules = 6,
169         /*
170          * This alpha2 is bogus, we leave it here just for stupid
171          * backward compatibility
172          */
173         .alpha2 =  "EU",
174         .reg_rules = {
175                 /* IEEE 802.11b/g, channels 1..13 */
176                 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
177                 /* IEEE 802.11a, channel 36 */
178                 REG_RULE(5180-10, 5180+10, 40, 6, 23,
179                         NL80211_RRF_PASSIVE_SCAN),
180                 /* IEEE 802.11a, channel 40 */
181                 REG_RULE(5200-10, 5200+10, 40, 6, 23,
182                         NL80211_RRF_PASSIVE_SCAN),
183                 /* IEEE 802.11a, channel 44 */
184                 REG_RULE(5220-10, 5220+10, 40, 6, 23,
185                         NL80211_RRF_PASSIVE_SCAN),
186                 /* IEEE 802.11a, channels 48..64 */
187                 REG_RULE(5240-10, 5320+10, 40, 6, 20,
188                         NL80211_RRF_NO_IBSS |
189                         NL80211_RRF_DFS),
190                 /* IEEE 802.11a, channels 100..140 */
191                 REG_RULE(5500-10, 5700+10, 40, 6, 30,
192                         NL80211_RRF_NO_IBSS |
193                         NL80211_RRF_DFS),
194         }
195 };
196
197 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
198 {
199         if (alpha2[0] == 'U' && alpha2[1] == 'S')
200                 return &us_regdom;
201         if (alpha2[0] == 'J' && alpha2[1] == 'P')
202                 return &jp_regdom;
203         if (alpha2[0] == 'E' && alpha2[1] == 'U')
204                 return &eu_regdom;
205         /* Default, as per the old rules */
206         return &us_regdom;
207 }
208
209 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
210 {
211         if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
212                 return true;
213         return false;
214 }
215 #else
216 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
217 {
218         return false;
219 }
220 #endif
221
222 static void reset_regdomains(void)
223 {
224         /* avoid freeing static information or freeing something twice */
225         if (cfg80211_regdomain == cfg80211_world_regdom)
226                 cfg80211_regdomain = NULL;
227         if (cfg80211_world_regdom == &world_regdom)
228                 cfg80211_world_regdom = NULL;
229         if (cfg80211_regdomain == &world_regdom)
230                 cfg80211_regdomain = NULL;
231         if (is_old_static_regdom(cfg80211_regdomain))
232                 cfg80211_regdomain = NULL;
233
234         kfree(cfg80211_regdomain);
235         kfree(cfg80211_world_regdom);
236
237         cfg80211_world_regdom = &world_regdom;
238         cfg80211_regdomain = NULL;
239 }
240
241 /*
242  * Dynamic world regulatory domain requested by the wireless
243  * core upon initialization
244  */
245 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
246 {
247         BUG_ON(!last_request);
248
249         reset_regdomains();
250
251         cfg80211_world_regdom = rd;
252         cfg80211_regdomain = rd;
253 }
254
255 bool is_world_regdom(const char *alpha2)
256 {
257         if (!alpha2)
258                 return false;
259         if (alpha2[0] == '0' && alpha2[1] == '0')
260                 return true;
261         return false;
262 }
263
264 static bool is_alpha2_set(const char *alpha2)
265 {
266         if (!alpha2)
267                 return false;
268         if (alpha2[0] != 0 && alpha2[1] != 0)
269                 return true;
270         return false;
271 }
272
273 static bool is_alpha_upper(char letter)
274 {
275         /* ASCII A - Z */
276         if (letter >= 65 && letter <= 90)
277                 return true;
278         return false;
279 }
280
281 static bool is_unknown_alpha2(const char *alpha2)
282 {
283         if (!alpha2)
284                 return false;
285         /*
286          * Special case where regulatory domain was built by driver
287          * but a specific alpha2 cannot be determined
288          */
289         if (alpha2[0] == '9' && alpha2[1] == '9')
290                 return true;
291         return false;
292 }
293
294 static bool is_intersected_alpha2(const char *alpha2)
295 {
296         if (!alpha2)
297                 return false;
298         /*
299          * Special case where regulatory domain is the
300          * result of an intersection between two regulatory domain
301          * structures
302          */
303         if (alpha2[0] == '9' && alpha2[1] == '8')
304                 return true;
305         return false;
306 }
307
308 static bool is_an_alpha2(const char *alpha2)
309 {
310         if (!alpha2)
311                 return false;
312         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
313                 return true;
314         return false;
315 }
316
317 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
318 {
319         if (!alpha2_x || !alpha2_y)
320                 return false;
321         if (alpha2_x[0] == alpha2_y[0] &&
322                 alpha2_x[1] == alpha2_y[1])
323                 return true;
324         return false;
325 }
326
327 static bool regdom_changes(const char *alpha2)
328 {
329         assert_cfg80211_lock();
330
331         if (!cfg80211_regdomain)
332                 return true;
333         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
334                 return false;
335         return true;
336 }
337
338 /**
339  * country_ie_integrity_changes - tells us if the country IE has changed
340  * @checksum: checksum of country IE of fields we are interested in
341  *
342  * If the country IE has not changed you can ignore it safely. This is
343  * useful to determine if two devices are seeing two different country IEs
344  * even on the same alpha2. Note that this will return false if no IE has
345  * been set on the wireless core yet.
346  */
347 static bool country_ie_integrity_changes(u32 checksum)
348 {
349         /* If no IE has been set then the checksum doesn't change */
350         if (unlikely(!last_request->country_ie_checksum))
351                 return false;
352         if (unlikely(last_request->country_ie_checksum != checksum))
353                 return true;
354         return false;
355 }
356
357 /*
358  * This lets us keep regulatory code which is updated on a regulatory
359  * basis in userspace.
360  */
361 static int call_crda(const char *alpha2)
362 {
363         char country_env[9 + 2] = "COUNTRY=";
364         char *envp[] = {
365                 country_env,
366                 NULL
367         };
368
369         if (!is_world_regdom((char *) alpha2))
370                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
371                         alpha2[0], alpha2[1]);
372         else
373                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
374                         "regulatory domain\n");
375
376         country_env[8] = alpha2[0];
377         country_env[9] = alpha2[1];
378
379         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
380 }
381
382 /* Used by nl80211 before kmalloc'ing our regulatory domain */
383 bool reg_is_valid_request(const char *alpha2)
384 {
385         assert_cfg80211_lock();
386
387         if (!last_request)
388                 return false;
389
390         return alpha2_equal(last_request->alpha2, alpha2);
391 }
392
393 /* Sanity check on a regulatory rule */
394 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
395 {
396         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
397         u32 freq_diff;
398
399         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
400                 return false;
401
402         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
403                 return false;
404
405         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
406
407         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
408                         freq_range->max_bandwidth_khz > freq_diff)
409                 return false;
410
411         return true;
412 }
413
414 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
415 {
416         const struct ieee80211_reg_rule *reg_rule = NULL;
417         unsigned int i;
418
419         if (!rd->n_reg_rules)
420                 return false;
421
422         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
423                 return false;
424
425         for (i = 0; i < rd->n_reg_rules; i++) {
426                 reg_rule = &rd->reg_rules[i];
427                 if (!is_valid_reg_rule(reg_rule))
428                         return false;
429         }
430
431         return true;
432 }
433
434 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
435                             u32 center_freq_khz,
436                             u32 bw_khz)
437 {
438         u32 start_freq_khz, end_freq_khz;
439
440         start_freq_khz = center_freq_khz - (bw_khz/2);
441         end_freq_khz = center_freq_khz + (bw_khz/2);
442
443         if (start_freq_khz >= freq_range->start_freq_khz &&
444             end_freq_khz <= freq_range->end_freq_khz)
445                 return true;
446
447         return false;
448 }
449
450 /**
451  * freq_in_rule_band - tells us if a frequency is in a frequency band
452  * @freq_range: frequency rule we want to query
453  * @freq_khz: frequency we are inquiring about
454  *
455  * This lets us know if a specific frequency rule is or is not relevant to
456  * a specific frequency's band. Bands are device specific and artificial
457  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
458  * safe for now to assume that a frequency rule should not be part of a
459  * frequency's band if the start freq or end freq are off by more than 2 GHz.
460  * This resolution can be lowered and should be considered as we add
461  * regulatory rule support for other "bands".
462  **/
463 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
464         u32 freq_khz)
465 {
466 #define ONE_GHZ_IN_KHZ  1000000
467         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
468                 return true;
469         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
470                 return true;
471         return false;
472 #undef ONE_GHZ_IN_KHZ
473 }
474
475 /*
476  * Converts a country IE to a regulatory domain. A regulatory domain
477  * structure has a lot of information which the IE doesn't yet have,
478  * so for the other values we use upper max values as we will intersect
479  * with our userspace regulatory agent to get lower bounds.
480  */
481 static struct ieee80211_regdomain *country_ie_2_rd(
482                                 u8 *country_ie,
483                                 u8 country_ie_len,
484                                 u32 *checksum)
485 {
486         struct ieee80211_regdomain *rd = NULL;
487         unsigned int i = 0;
488         char alpha2[2];
489         u32 flags = 0;
490         u32 num_rules = 0, size_of_regd = 0;
491         u8 *triplets_start = NULL;
492         u8 len_at_triplet = 0;
493         /* the last channel we have registered in a subband (triplet) */
494         int last_sub_max_channel = 0;
495
496         *checksum = 0xDEADBEEF;
497
498         /* Country IE requirements */
499         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
500                 country_ie_len & 0x01);
501
502         alpha2[0] = country_ie[0];
503         alpha2[1] = country_ie[1];
504
505         /*
506          * Third octet can be:
507          *    'I' - Indoor
508          *    'O' - Outdoor
509          *
510          *  anything else we assume is no restrictions
511          */
512         if (country_ie[2] == 'I')
513                 flags = NL80211_RRF_NO_OUTDOOR;
514         else if (country_ie[2] == 'O')
515                 flags = NL80211_RRF_NO_INDOOR;
516
517         country_ie += 3;
518         country_ie_len -= 3;
519
520         triplets_start = country_ie;
521         len_at_triplet = country_ie_len;
522
523         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
524
525         /*
526          * We need to build a reg rule for each triplet, but first we must
527          * calculate the number of reg rules we will need. We will need one
528          * for each channel subband
529          */
530         while (country_ie_len >= 3) {
531                 int end_channel = 0;
532                 struct ieee80211_country_ie_triplet *triplet =
533                         (struct ieee80211_country_ie_triplet *) country_ie;
534                 int cur_sub_max_channel = 0, cur_channel = 0;
535
536                 if (triplet->ext.reg_extension_id >=
537                                 IEEE80211_COUNTRY_EXTENSION_ID) {
538                         country_ie += 3;
539                         country_ie_len -= 3;
540                         continue;
541                 }
542
543                 /* 2 GHz */
544                 if (triplet->chans.first_channel <= 14)
545                         end_channel = triplet->chans.first_channel +
546                                 triplet->chans.num_channels;
547                 else
548                         /*
549                          * 5 GHz -- For example in country IEs if the first
550                          * channel given is 36 and the number of channels is 4
551                          * then the individual channel numbers defined for the
552                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
553                          * and not 36, 37, 38, 39.
554                          *
555                          * See: http://tinyurl.com/11d-clarification
556                          */
557                         end_channel =  triplet->chans.first_channel +
558                                 (4 * (triplet->chans.num_channels - 1));
559
560                 cur_channel = triplet->chans.first_channel;
561                 cur_sub_max_channel = end_channel;
562
563                 /* Basic sanity check */
564                 if (cur_sub_max_channel < cur_channel)
565                         return NULL;
566
567                 /*
568                  * Do not allow overlapping channels. Also channels
569                  * passed in each subband must be monotonically
570                  * increasing
571                  */
572                 if (last_sub_max_channel) {
573                         if (cur_channel <= last_sub_max_channel)
574                                 return NULL;
575                         if (cur_sub_max_channel <= last_sub_max_channel)
576                                 return NULL;
577                 }
578
579                 /*
580                  * When dot11RegulatoryClassesRequired is supported
581                  * we can throw ext triplets as part of this soup,
582                  * for now we don't care when those change as we
583                  * don't support them
584                  */
585                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
586                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
587                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
588
589                 last_sub_max_channel = cur_sub_max_channel;
590
591                 country_ie += 3;
592                 country_ie_len -= 3;
593                 num_rules++;
594
595                 /*
596                  * Note: this is not a IEEE requirement but
597                  * simply a memory requirement
598                  */
599                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
600                         return NULL;
601         }
602
603         country_ie = triplets_start;
604         country_ie_len = len_at_triplet;
605
606         size_of_regd = sizeof(struct ieee80211_regdomain) +
607                 (num_rules * sizeof(struct ieee80211_reg_rule));
608
609         rd = kzalloc(size_of_regd, GFP_KERNEL);
610         if (!rd)
611                 return NULL;
612
613         rd->n_reg_rules = num_rules;
614         rd->alpha2[0] = alpha2[0];
615         rd->alpha2[1] = alpha2[1];
616
617         /* This time around we fill in the rd */
618         while (country_ie_len >= 3) {
619                 int end_channel = 0;
620                 struct ieee80211_country_ie_triplet *triplet =
621                         (struct ieee80211_country_ie_triplet *) country_ie;
622                 struct ieee80211_reg_rule *reg_rule = NULL;
623                 struct ieee80211_freq_range *freq_range = NULL;
624                 struct ieee80211_power_rule *power_rule = NULL;
625
626                 /*
627                  * Must parse if dot11RegulatoryClassesRequired is true,
628                  * we don't support this yet
629                  */
630                 if (triplet->ext.reg_extension_id >=
631                                 IEEE80211_COUNTRY_EXTENSION_ID) {
632                         country_ie += 3;
633                         country_ie_len -= 3;
634                         continue;
635                 }
636
637                 reg_rule = &rd->reg_rules[i];
638                 freq_range = &reg_rule->freq_range;
639                 power_rule = &reg_rule->power_rule;
640
641                 reg_rule->flags = flags;
642
643                 /* 2 GHz */
644                 if (triplet->chans.first_channel <= 14)
645                         end_channel = triplet->chans.first_channel +
646                                 triplet->chans.num_channels;
647                 else
648                         end_channel =  triplet->chans.first_channel +
649                                 (4 * (triplet->chans.num_channels - 1));
650
651                 /*
652                  * The +10 is since the regulatory domain expects
653                  * the actual band edge, not the center of freq for
654                  * its start and end freqs, assuming 20 MHz bandwidth on
655                  * the channels passed
656                  */
657                 freq_range->start_freq_khz =
658                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
659                                 triplet->chans.first_channel) - 10);
660                 freq_range->end_freq_khz =
661                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
662                                 end_channel) + 10);
663
664                 /*
665                  * These are large arbitrary values we use to intersect later.
666                  * Increment this if we ever support >= 40 MHz channels
667                  * in IEEE 802.11
668                  */
669                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
670                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
671                 power_rule->max_eirp = DBM_TO_MBM(100);
672
673                 country_ie += 3;
674                 country_ie_len -= 3;
675                 i++;
676
677                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
678         }
679
680         return rd;
681 }
682
683
684 /*
685  * Helper for regdom_intersect(), this does the real
686  * mathematical intersection fun
687  */
688 static int reg_rules_intersect(
689         const struct ieee80211_reg_rule *rule1,
690         const struct ieee80211_reg_rule *rule2,
691         struct ieee80211_reg_rule *intersected_rule)
692 {
693         const struct ieee80211_freq_range *freq_range1, *freq_range2;
694         struct ieee80211_freq_range *freq_range;
695         const struct ieee80211_power_rule *power_rule1, *power_rule2;
696         struct ieee80211_power_rule *power_rule;
697         u32 freq_diff;
698
699         freq_range1 = &rule1->freq_range;
700         freq_range2 = &rule2->freq_range;
701         freq_range = &intersected_rule->freq_range;
702
703         power_rule1 = &rule1->power_rule;
704         power_rule2 = &rule2->power_rule;
705         power_rule = &intersected_rule->power_rule;
706
707         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
708                 freq_range2->start_freq_khz);
709         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
710                 freq_range2->end_freq_khz);
711         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
712                 freq_range2->max_bandwidth_khz);
713
714         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
715         if (freq_range->max_bandwidth_khz > freq_diff)
716                 freq_range->max_bandwidth_khz = freq_diff;
717
718         power_rule->max_eirp = min(power_rule1->max_eirp,
719                 power_rule2->max_eirp);
720         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
721                 power_rule2->max_antenna_gain);
722
723         intersected_rule->flags = (rule1->flags | rule2->flags);
724
725         if (!is_valid_reg_rule(intersected_rule))
726                 return -EINVAL;
727
728         return 0;
729 }
730
731 /**
732  * regdom_intersect - do the intersection between two regulatory domains
733  * @rd1: first regulatory domain
734  * @rd2: second regulatory domain
735  *
736  * Use this function to get the intersection between two regulatory domains.
737  * Once completed we will mark the alpha2 for the rd as intersected, "98",
738  * as no one single alpha2 can represent this regulatory domain.
739  *
740  * Returns a pointer to the regulatory domain structure which will hold the
741  * resulting intersection of rules between rd1 and rd2. We will
742  * kzalloc() this structure for you.
743  */
744 static struct ieee80211_regdomain *regdom_intersect(
745         const struct ieee80211_regdomain *rd1,
746         const struct ieee80211_regdomain *rd2)
747 {
748         int r, size_of_regd;
749         unsigned int x, y;
750         unsigned int num_rules = 0, rule_idx = 0;
751         const struct ieee80211_reg_rule *rule1, *rule2;
752         struct ieee80211_reg_rule *intersected_rule;
753         struct ieee80211_regdomain *rd;
754         /* This is just a dummy holder to help us count */
755         struct ieee80211_reg_rule irule;
756
757         /* Uses the stack temporarily for counter arithmetic */
758         intersected_rule = &irule;
759
760         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
761
762         if (!rd1 || !rd2)
763                 return NULL;
764
765         /*
766          * First we get a count of the rules we'll need, then we actually
767          * build them. This is to so we can malloc() and free() a
768          * regdomain once. The reason we use reg_rules_intersect() here
769          * is it will return -EINVAL if the rule computed makes no sense.
770          * All rules that do check out OK are valid.
771          */
772
773         for (x = 0; x < rd1->n_reg_rules; x++) {
774                 rule1 = &rd1->reg_rules[x];
775                 for (y = 0; y < rd2->n_reg_rules; y++) {
776                         rule2 = &rd2->reg_rules[y];
777                         if (!reg_rules_intersect(rule1, rule2,
778                                         intersected_rule))
779                                 num_rules++;
780                         memset(intersected_rule, 0,
781                                         sizeof(struct ieee80211_reg_rule));
782                 }
783         }
784
785         if (!num_rules)
786                 return NULL;
787
788         size_of_regd = sizeof(struct ieee80211_regdomain) +
789                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
790
791         rd = kzalloc(size_of_regd, GFP_KERNEL);
792         if (!rd)
793                 return NULL;
794
795         for (x = 0; x < rd1->n_reg_rules; x++) {
796                 rule1 = &rd1->reg_rules[x];
797                 for (y = 0; y < rd2->n_reg_rules; y++) {
798                         rule2 = &rd2->reg_rules[y];
799                         /*
800                          * This time around instead of using the stack lets
801                          * write to the target rule directly saving ourselves
802                          * a memcpy()
803                          */
804                         intersected_rule = &rd->reg_rules[rule_idx];
805                         r = reg_rules_intersect(rule1, rule2,
806                                 intersected_rule);
807                         /*
808                          * No need to memset here the intersected rule here as
809                          * we're not using the stack anymore
810                          */
811                         if (r)
812                                 continue;
813                         rule_idx++;
814                 }
815         }
816
817         if (rule_idx != num_rules) {
818                 kfree(rd);
819                 return NULL;
820         }
821
822         rd->n_reg_rules = num_rules;
823         rd->alpha2[0] = '9';
824         rd->alpha2[1] = '8';
825
826         return rd;
827 }
828
829 /*
830  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
831  * want to just have the channel structure use these
832  */
833 static u32 map_regdom_flags(u32 rd_flags)
834 {
835         u32 channel_flags = 0;
836         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
837                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
838         if (rd_flags & NL80211_RRF_NO_IBSS)
839                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
840         if (rd_flags & NL80211_RRF_DFS)
841                 channel_flags |= IEEE80211_CHAN_RADAR;
842         return channel_flags;
843 }
844
845 static int freq_reg_info_regd(struct wiphy *wiphy,
846                               u32 center_freq,
847                               u32 desired_bw_khz,
848                               const struct ieee80211_reg_rule **reg_rule,
849                               const struct ieee80211_regdomain *custom_regd)
850 {
851         int i;
852         bool band_rule_found = false;
853         const struct ieee80211_regdomain *regd;
854         bool bw_fits = false;
855
856         if (!desired_bw_khz)
857                 desired_bw_khz = MHZ_TO_KHZ(20);
858
859         regd = custom_regd ? custom_regd : cfg80211_regdomain;
860
861         /*
862          * Follow the driver's regulatory domain, if present, unless a country
863          * IE has been processed or a user wants to help complaince further
864          */
865         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
866             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
867             wiphy->regd)
868                 regd = wiphy->regd;
869
870         if (!regd)
871                 return -EINVAL;
872
873         for (i = 0; i < regd->n_reg_rules; i++) {
874                 const struct ieee80211_reg_rule *rr;
875                 const struct ieee80211_freq_range *fr = NULL;
876                 const struct ieee80211_power_rule *pr = NULL;
877
878                 rr = &regd->reg_rules[i];
879                 fr = &rr->freq_range;
880                 pr = &rr->power_rule;
881
882                 /*
883                  * We only need to know if one frequency rule was
884                  * was in center_freq's band, that's enough, so lets
885                  * not overwrite it once found
886                  */
887                 if (!band_rule_found)
888                         band_rule_found = freq_in_rule_band(fr, center_freq);
889
890                 bw_fits = reg_does_bw_fit(fr,
891                                           center_freq,
892                                           desired_bw_khz);
893
894                 if (band_rule_found && bw_fits) {
895                         *reg_rule = rr;
896                         return 0;
897                 }
898         }
899
900         if (!band_rule_found)
901                 return -ERANGE;
902
903         return -EINVAL;
904 }
905 EXPORT_SYMBOL(freq_reg_info);
906
907 int freq_reg_info(struct wiphy *wiphy,
908                   u32 center_freq,
909                   u32 desired_bw_khz,
910                   const struct ieee80211_reg_rule **reg_rule)
911 {
912         assert_cfg80211_lock();
913         return freq_reg_info_regd(wiphy,
914                                   center_freq,
915                                   desired_bw_khz,
916                                   reg_rule,
917                                   NULL);
918 }
919
920 /*
921  * Note that right now we assume the desired channel bandwidth
922  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
923  * per channel, the primary and the extension channel). To support
924  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
925  * new ieee80211_channel.target_bw and re run the regulatory check
926  * on the wiphy with the target_bw specified. Then we can simply use
927  * that below for the desired_bw_khz below.
928  */
929 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
930                            unsigned int chan_idx)
931 {
932         int r;
933         u32 flags, bw_flags = 0;
934         u32 desired_bw_khz = MHZ_TO_KHZ(20);
935         const struct ieee80211_reg_rule *reg_rule = NULL;
936         const struct ieee80211_power_rule *power_rule = NULL;
937         const struct ieee80211_freq_range *freq_range = NULL;
938         struct ieee80211_supported_band *sband;
939         struct ieee80211_channel *chan;
940         struct wiphy *request_wiphy = NULL;
941
942         assert_cfg80211_lock();
943
944         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
945
946         sband = wiphy->bands[band];
947         BUG_ON(chan_idx >= sband->n_channels);
948         chan = &sband->channels[chan_idx];
949
950         flags = chan->orig_flags;
951
952         r = freq_reg_info(wiphy,
953                           MHZ_TO_KHZ(chan->center_freq),
954                           desired_bw_khz,
955                           &reg_rule);
956
957         if (r) {
958                 /*
959                  * This means no regulatory rule was found in the country IE
960                  * with a frequency range on the center_freq's band, since
961                  * IEEE-802.11 allows for a country IE to have a subset of the
962                  * regulatory information provided in a country we ignore
963                  * disabling the channel unless at least one reg rule was
964                  * found on the center_freq's band. For details see this
965                  * clarification:
966                  *
967                  * http://tinyurl.com/11d-clarification
968                  */
969                 if (r == -ERANGE &&
970                     last_request->initiator ==
971                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
972 #ifdef CONFIG_CFG80211_REG_DEBUG
973                         printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
974                                 "intact on %s - no rule found in band on "
975                                 "Country IE\n",
976                                 chan->center_freq, wiphy_name(wiphy));
977 #endif
978                 } else {
979                 /*
980                  * In this case we know the country IE has at least one reg rule
981                  * for the band so we respect its band definitions
982                  */
983 #ifdef CONFIG_CFG80211_REG_DEBUG
984                         if (last_request->initiator ==
985                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
986                                 printk(KERN_DEBUG "cfg80211: Disabling "
987                                         "channel %d MHz on %s due to "
988                                         "Country IE\n",
989                                         chan->center_freq, wiphy_name(wiphy));
990 #endif
991                         flags |= IEEE80211_CHAN_DISABLED;
992                         chan->flags = flags;
993                 }
994                 return;
995         }
996
997         power_rule = &reg_rule->power_rule;
998         freq_range = &reg_rule->freq_range;
999
1000         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1001                 bw_flags = IEEE80211_CHAN_NO_HT40;
1002
1003         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1004             request_wiphy && request_wiphy == wiphy &&
1005             request_wiphy->strict_regulatory) {
1006                 /*
1007                  * This gaurantees the driver's requested regulatory domain
1008                  * will always be used as a base for further regulatory
1009                  * settings
1010                  */
1011                 chan->flags = chan->orig_flags =
1012                         map_regdom_flags(reg_rule->flags) | bw_flags;
1013                 chan->max_antenna_gain = chan->orig_mag =
1014                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1015                 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1016                 chan->max_power = chan->orig_mpwr =
1017                         (int) MBM_TO_DBM(power_rule->max_eirp);
1018                 return;
1019         }
1020
1021         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1022         chan->max_antenna_gain = min(chan->orig_mag,
1023                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1024         chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1025         if (chan->orig_mpwr)
1026                 chan->max_power = min(chan->orig_mpwr,
1027                         (int) MBM_TO_DBM(power_rule->max_eirp));
1028         else
1029                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1030 }
1031
1032 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1033 {
1034         unsigned int i;
1035         struct ieee80211_supported_band *sband;
1036
1037         BUG_ON(!wiphy->bands[band]);
1038         sband = wiphy->bands[band];
1039
1040         for (i = 0; i < sband->n_channels; i++)
1041                 handle_channel(wiphy, band, i);
1042 }
1043
1044 static bool ignore_reg_update(struct wiphy *wiphy,
1045                               enum nl80211_reg_initiator initiator)
1046 {
1047         if (!last_request)
1048                 return true;
1049         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1050                   wiphy->custom_regulatory)
1051                 return true;
1052         /*
1053          * wiphy->regd will be set once the device has its own
1054          * desired regulatory domain set
1055          */
1056         if (wiphy->strict_regulatory && !wiphy->regd &&
1057             !is_world_regdom(last_request->alpha2))
1058                 return true;
1059         return false;
1060 }
1061
1062 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1063 {
1064         struct cfg80211_registered_device *drv;
1065
1066         list_for_each_entry(drv, &cfg80211_drv_list, list)
1067                 wiphy_update_regulatory(&drv->wiphy, initiator);
1068 }
1069
1070 static void handle_reg_beacon(struct wiphy *wiphy,
1071                               unsigned int chan_idx,
1072                               struct reg_beacon *reg_beacon)
1073 {
1074         struct ieee80211_supported_band *sband;
1075         struct ieee80211_channel *chan;
1076         bool channel_changed = false;
1077         struct ieee80211_channel chan_before;
1078
1079         assert_cfg80211_lock();
1080
1081         sband = wiphy->bands[reg_beacon->chan.band];
1082         chan = &sband->channels[chan_idx];
1083
1084         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1085                 return;
1086
1087         if (chan->beacon_found)
1088                 return;
1089
1090         chan->beacon_found = true;
1091
1092         if (wiphy->disable_beacon_hints)
1093                 return;
1094
1095         chan_before.center_freq = chan->center_freq;
1096         chan_before.flags = chan->flags;
1097
1098         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1099                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1100                 channel_changed = true;
1101         }
1102
1103         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1104                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1105                 channel_changed = true;
1106         }
1107
1108         if (channel_changed)
1109                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1110 }
1111
1112 /*
1113  * Called when a scan on a wiphy finds a beacon on
1114  * new channel
1115  */
1116 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1117                                     struct reg_beacon *reg_beacon)
1118 {
1119         unsigned int i;
1120         struct ieee80211_supported_band *sband;
1121
1122         assert_cfg80211_lock();
1123
1124         if (!wiphy->bands[reg_beacon->chan.band])
1125                 return;
1126
1127         sband = wiphy->bands[reg_beacon->chan.band];
1128
1129         for (i = 0; i < sband->n_channels; i++)
1130                 handle_reg_beacon(wiphy, i, reg_beacon);
1131 }
1132
1133 /*
1134  * Called upon reg changes or a new wiphy is added
1135  */
1136 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1137 {
1138         unsigned int i;
1139         struct ieee80211_supported_band *sband;
1140         struct reg_beacon *reg_beacon;
1141
1142         assert_cfg80211_lock();
1143
1144         if (list_empty(&reg_beacon_list))
1145                 return;
1146
1147         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1148                 if (!wiphy->bands[reg_beacon->chan.band])
1149                         continue;
1150                 sband = wiphy->bands[reg_beacon->chan.band];
1151                 for (i = 0; i < sband->n_channels; i++)
1152                         handle_reg_beacon(wiphy, i, reg_beacon);
1153         }
1154 }
1155
1156 static bool reg_is_world_roaming(struct wiphy *wiphy)
1157 {
1158         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1159             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1160                 return true;
1161         if (last_request &&
1162             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1163             wiphy->custom_regulatory)
1164                 return true;
1165         return false;
1166 }
1167
1168 /* Reap the advantages of previously found beacons */
1169 static void reg_process_beacons(struct wiphy *wiphy)
1170 {
1171         /*
1172          * Means we are just firing up cfg80211, so no beacons would
1173          * have been processed yet.
1174          */
1175         if (!last_request)
1176                 return;
1177         if (!reg_is_world_roaming(wiphy))
1178                 return;
1179         wiphy_update_beacon_reg(wiphy);
1180 }
1181
1182 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1183 {
1184         if (!chan)
1185                 return true;
1186         if (chan->flags & IEEE80211_CHAN_DISABLED)
1187                 return true;
1188         /* This would happen when regulatory rules disallow HT40 completely */
1189         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1190                 return true;
1191         return false;
1192 }
1193
1194 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1195                                          enum ieee80211_band band,
1196                                          unsigned int chan_idx)
1197 {
1198         struct ieee80211_supported_band *sband;
1199         struct ieee80211_channel *channel;
1200         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1201         unsigned int i;
1202
1203         assert_cfg80211_lock();
1204
1205         sband = wiphy->bands[band];
1206         BUG_ON(chan_idx >= sband->n_channels);
1207         channel = &sband->channels[chan_idx];
1208
1209         if (is_ht40_not_allowed(channel)) {
1210                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1211                 return;
1212         }
1213
1214         /*
1215          * We need to ensure the extension channels exist to
1216          * be able to use HT40- or HT40+, this finds them (or not)
1217          */
1218         for (i = 0; i < sband->n_channels; i++) {
1219                 struct ieee80211_channel *c = &sband->channels[i];
1220                 if (c->center_freq == (channel->center_freq - 20))
1221                         channel_before = c;
1222                 if (c->center_freq == (channel->center_freq + 20))
1223                         channel_after = c;
1224         }
1225
1226         /*
1227          * Please note that this assumes target bandwidth is 20 MHz,
1228          * if that ever changes we also need to change the below logic
1229          * to include that as well.
1230          */
1231         if (is_ht40_not_allowed(channel_before))
1232                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1233         else
1234                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1235
1236         if (is_ht40_not_allowed(channel_after))
1237                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1238         else
1239                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1240 }
1241
1242 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1243                                       enum ieee80211_band band)
1244 {
1245         unsigned int i;
1246         struct ieee80211_supported_band *sband;
1247
1248         BUG_ON(!wiphy->bands[band]);
1249         sband = wiphy->bands[band];
1250
1251         for (i = 0; i < sband->n_channels; i++)
1252                 reg_process_ht_flags_channel(wiphy, band, i);
1253 }
1254
1255 static void reg_process_ht_flags(struct wiphy *wiphy)
1256 {
1257         enum ieee80211_band band;
1258
1259         if (!wiphy)
1260                 return;
1261
1262         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1263                 if (wiphy->bands[band])
1264                         reg_process_ht_flags_band(wiphy, band);
1265         }
1266
1267 }
1268
1269 void wiphy_update_regulatory(struct wiphy *wiphy,
1270                              enum nl80211_reg_initiator initiator)
1271 {
1272         enum ieee80211_band band;
1273
1274         if (ignore_reg_update(wiphy, initiator))
1275                 goto out;
1276         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1277                 if (wiphy->bands[band])
1278                         handle_band(wiphy, band);
1279         }
1280 out:
1281         reg_process_beacons(wiphy);
1282         reg_process_ht_flags(wiphy);
1283         if (wiphy->reg_notifier)
1284                 wiphy->reg_notifier(wiphy, last_request);
1285 }
1286
1287 static void handle_channel_custom(struct wiphy *wiphy,
1288                                   enum ieee80211_band band,
1289                                   unsigned int chan_idx,
1290                                   const struct ieee80211_regdomain *regd)
1291 {
1292         int r;
1293         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1294         u32 bw_flags = 0;
1295         const struct ieee80211_reg_rule *reg_rule = NULL;
1296         const struct ieee80211_power_rule *power_rule = NULL;
1297         const struct ieee80211_freq_range *freq_range = NULL;
1298         struct ieee80211_supported_band *sband;
1299         struct ieee80211_channel *chan;
1300
1301         assert_cfg80211_lock();
1302
1303         sband = wiphy->bands[band];
1304         BUG_ON(chan_idx >= sband->n_channels);
1305         chan = &sband->channels[chan_idx];
1306
1307         r = freq_reg_info_regd(wiphy,
1308                                MHZ_TO_KHZ(chan->center_freq),
1309                                desired_bw_khz,
1310                                &reg_rule,
1311                                regd);
1312
1313         if (r) {
1314                 chan->flags = IEEE80211_CHAN_DISABLED;
1315                 return;
1316         }
1317
1318         power_rule = &reg_rule->power_rule;
1319         freq_range = &reg_rule->freq_range;
1320
1321         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1322                 bw_flags = IEEE80211_CHAN_NO_HT40;
1323
1324         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1325         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1326         chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1327         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1328 }
1329
1330 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1331                                const struct ieee80211_regdomain *regd)
1332 {
1333         unsigned int i;
1334         struct ieee80211_supported_band *sband;
1335
1336         BUG_ON(!wiphy->bands[band]);
1337         sband = wiphy->bands[band];
1338
1339         for (i = 0; i < sband->n_channels; i++)
1340                 handle_channel_custom(wiphy, band, i, regd);
1341 }
1342
1343 /* Used by drivers prior to wiphy registration */
1344 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1345                                    const struct ieee80211_regdomain *regd)
1346 {
1347         enum ieee80211_band band;
1348         unsigned int bands_set = 0;
1349
1350         mutex_lock(&cfg80211_mutex);
1351         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1352                 if (!wiphy->bands[band])
1353                         continue;
1354                 handle_band_custom(wiphy, band, regd);
1355                 bands_set++;
1356         }
1357         mutex_unlock(&cfg80211_mutex);
1358
1359         /*
1360          * no point in calling this if it won't have any effect
1361          * on your device's supportd bands.
1362          */
1363         WARN_ON(!bands_set);
1364 }
1365 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1366
1367 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1368                          const struct ieee80211_regdomain *src_regd)
1369 {
1370         struct ieee80211_regdomain *regd;
1371         int size_of_regd = 0;
1372         unsigned int i;
1373
1374         size_of_regd = sizeof(struct ieee80211_regdomain) +
1375           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1376
1377         regd = kzalloc(size_of_regd, GFP_KERNEL);
1378         if (!regd)
1379                 return -ENOMEM;
1380
1381         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1382
1383         for (i = 0; i < src_regd->n_reg_rules; i++)
1384                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1385                         sizeof(struct ieee80211_reg_rule));
1386
1387         *dst_regd = regd;
1388         return 0;
1389 }
1390
1391 /*
1392  * Return value which can be used by ignore_request() to indicate
1393  * it has been determined we should intersect two regulatory domains
1394  */
1395 #define REG_INTERSECT   1
1396
1397 /* This has the logic which determines when a new request
1398  * should be ignored. */
1399 static int ignore_request(struct wiphy *wiphy,
1400                           struct regulatory_request *pending_request)
1401 {
1402         struct wiphy *last_wiphy = NULL;
1403
1404         assert_cfg80211_lock();
1405
1406         /* All initial requests are respected */
1407         if (!last_request)
1408                 return 0;
1409
1410         switch (pending_request->initiator) {
1411         case NL80211_REGDOM_SET_BY_CORE:
1412                 return -EINVAL;
1413         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1414
1415                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1416
1417                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1418                         return -EINVAL;
1419                 if (last_request->initiator ==
1420                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1421                         if (last_wiphy != wiphy) {
1422                                 /*
1423                                  * Two cards with two APs claiming different
1424                                  * different Country IE alpha2s. We could
1425                                  * intersect them, but that seems unlikely
1426                                  * to be correct. Reject second one for now.
1427                                  */
1428                                 if (regdom_changes(pending_request->alpha2))
1429                                         return -EOPNOTSUPP;
1430                                 return -EALREADY;
1431                         }
1432                         /*
1433                          * Two consecutive Country IE hints on the same wiphy.
1434                          * This should be picked up early by the driver/stack
1435                          */
1436                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1437                                 return 0;
1438                         return -EALREADY;
1439                 }
1440                 return REG_INTERSECT;
1441         case NL80211_REGDOM_SET_BY_DRIVER:
1442                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1443                         if (is_old_static_regdom(cfg80211_regdomain))
1444                                 return 0;
1445                         if (regdom_changes(pending_request->alpha2))
1446                                 return 0;
1447                         return -EALREADY;
1448                 }
1449
1450                 /*
1451                  * This would happen if you unplug and plug your card
1452                  * back in or if you add a new device for which the previously
1453                  * loaded card also agrees on the regulatory domain.
1454                  */
1455                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1456                     !regdom_changes(pending_request->alpha2))
1457                         return -EALREADY;
1458
1459                 return REG_INTERSECT;
1460         case NL80211_REGDOM_SET_BY_USER:
1461                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1462                         return REG_INTERSECT;
1463                 /*
1464                  * If the user knows better the user should set the regdom
1465                  * to their country before the IE is picked up
1466                  */
1467                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1468                           last_request->intersect)
1469                         return -EOPNOTSUPP;
1470                 /*
1471                  * Process user requests only after previous user/driver/core
1472                  * requests have been processed
1473                  */
1474                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1475                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1476                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1477                         if (regdom_changes(last_request->alpha2))
1478                                 return -EAGAIN;
1479                 }
1480
1481                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1482                     !regdom_changes(pending_request->alpha2))
1483                         return -EALREADY;
1484
1485                 return 0;
1486         }
1487
1488         return -EINVAL;
1489 }
1490
1491 /**
1492  * __regulatory_hint - hint to the wireless core a regulatory domain
1493  * @wiphy: if the hint comes from country information from an AP, this
1494  *      is required to be set to the wiphy that received the information
1495  * @pending_request: the regulatory request currently being processed
1496  *
1497  * The Wireless subsystem can use this function to hint to the wireless core
1498  * what it believes should be the current regulatory domain.
1499  *
1500  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1501  * already been set or other standard error codes.
1502  *
1503  * Caller must hold &cfg80211_mutex
1504  */
1505 static int __regulatory_hint(struct wiphy *wiphy,
1506                              struct regulatory_request *pending_request)
1507 {
1508         bool intersect = false;
1509         int r = 0;
1510
1511         assert_cfg80211_lock();
1512
1513         r = ignore_request(wiphy, pending_request);
1514
1515         if (r == REG_INTERSECT) {
1516                 if (pending_request->initiator ==
1517                     NL80211_REGDOM_SET_BY_DRIVER) {
1518                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1519                         if (r) {
1520                                 kfree(pending_request);
1521                                 return r;
1522                         }
1523                 }
1524                 intersect = true;
1525         } else if (r) {
1526                 /*
1527                  * If the regulatory domain being requested by the
1528                  * driver has already been set just copy it to the
1529                  * wiphy
1530                  */
1531                 if (r == -EALREADY &&
1532                     pending_request->initiator ==
1533                     NL80211_REGDOM_SET_BY_DRIVER) {
1534                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1535                         if (r) {
1536                                 kfree(pending_request);
1537                                 return r;
1538                         }
1539                         r = -EALREADY;
1540                         goto new_request;
1541                 }
1542                 kfree(pending_request);
1543                 return r;
1544         }
1545
1546 new_request:
1547         kfree(last_request);
1548
1549         last_request = pending_request;
1550         last_request->intersect = intersect;
1551
1552         pending_request = NULL;
1553
1554         /* When r == REG_INTERSECT we do need to call CRDA */
1555         if (r < 0) {
1556                 /*
1557                  * Since CRDA will not be called in this case as we already
1558                  * have applied the requested regulatory domain before we just
1559                  * inform userspace we have processed the request
1560                  */
1561                 if (r == -EALREADY)
1562                         nl80211_send_reg_change_event(last_request);
1563                 return r;
1564         }
1565
1566         return call_crda(last_request->alpha2);
1567 }
1568
1569 /* This processes *all* regulatory hints */
1570 static void reg_process_hint(struct regulatory_request *reg_request)
1571 {
1572         int r = 0;
1573         struct wiphy *wiphy = NULL;
1574
1575         BUG_ON(!reg_request->alpha2);
1576
1577         mutex_lock(&cfg80211_mutex);
1578
1579         if (wiphy_idx_valid(reg_request->wiphy_idx))
1580                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1581
1582         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1583             !wiphy) {
1584                 kfree(reg_request);
1585                 goto out;
1586         }
1587
1588         r = __regulatory_hint(wiphy, reg_request);
1589         /* This is required so that the orig_* parameters are saved */
1590         if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1591                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1592 out:
1593         mutex_unlock(&cfg80211_mutex);
1594 }
1595
1596 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1597 static void reg_process_pending_hints(void)
1598         {
1599         struct regulatory_request *reg_request;
1600
1601         spin_lock(&reg_requests_lock);
1602         while (!list_empty(&reg_requests_list)) {
1603                 reg_request = list_first_entry(&reg_requests_list,
1604                                                struct regulatory_request,
1605                                                list);
1606                 list_del_init(&reg_request->list);
1607
1608                 spin_unlock(&reg_requests_lock);
1609                 reg_process_hint(reg_request);
1610                 spin_lock(&reg_requests_lock);
1611         }
1612         spin_unlock(&reg_requests_lock);
1613 }
1614
1615 /* Processes beacon hints -- this has nothing to do with country IEs */
1616 static void reg_process_pending_beacon_hints(void)
1617 {
1618         struct cfg80211_registered_device *drv;
1619         struct reg_beacon *pending_beacon, *tmp;
1620
1621         mutex_lock(&cfg80211_mutex);
1622
1623         /* This goes through the _pending_ beacon list */
1624         spin_lock_bh(&reg_pending_beacons_lock);
1625
1626         if (list_empty(&reg_pending_beacons)) {
1627                 spin_unlock_bh(&reg_pending_beacons_lock);
1628                 goto out;
1629         }
1630
1631         list_for_each_entry_safe(pending_beacon, tmp,
1632                                  &reg_pending_beacons, list) {
1633
1634                 list_del_init(&pending_beacon->list);
1635
1636                 /* Applies the beacon hint to current wiphys */
1637                 list_for_each_entry(drv, &cfg80211_drv_list, list)
1638                         wiphy_update_new_beacon(&drv->wiphy, pending_beacon);
1639
1640                 /* Remembers the beacon hint for new wiphys or reg changes */
1641                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1642         }
1643
1644         spin_unlock_bh(&reg_pending_beacons_lock);
1645 out:
1646         mutex_unlock(&cfg80211_mutex);
1647 }
1648
1649 static void reg_todo(struct work_struct *work)
1650 {
1651         reg_process_pending_hints();
1652         reg_process_pending_beacon_hints();
1653 }
1654
1655 static DECLARE_WORK(reg_work, reg_todo);
1656
1657 static void queue_regulatory_request(struct regulatory_request *request)
1658 {
1659         spin_lock(&reg_requests_lock);
1660         list_add_tail(&request->list, &reg_requests_list);
1661         spin_unlock(&reg_requests_lock);
1662
1663         schedule_work(&reg_work);
1664 }
1665
1666 /* Core regulatory hint -- happens once during cfg80211_init() */
1667 static int regulatory_hint_core(const char *alpha2)
1668 {
1669         struct regulatory_request *request;
1670
1671         BUG_ON(last_request);
1672
1673         request = kzalloc(sizeof(struct regulatory_request),
1674                           GFP_KERNEL);
1675         if (!request)
1676                 return -ENOMEM;
1677
1678         request->alpha2[0] = alpha2[0];
1679         request->alpha2[1] = alpha2[1];
1680         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1681
1682         queue_regulatory_request(request);
1683
1684         /*
1685          * This ensures last_request is populated once modules
1686          * come swinging in and calling regulatory hints and
1687          * wiphy_apply_custom_regulatory().
1688          */
1689         flush_scheduled_work();
1690
1691         return 0;
1692 }
1693
1694 /* User hints */
1695 int regulatory_hint_user(const char *alpha2)
1696 {
1697         struct regulatory_request *request;
1698
1699         BUG_ON(!alpha2);
1700
1701         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1702         if (!request)
1703                 return -ENOMEM;
1704
1705         request->wiphy_idx = WIPHY_IDX_STALE;
1706         request->alpha2[0] = alpha2[0];
1707         request->alpha2[1] = alpha2[1];
1708         request->initiator = NL80211_REGDOM_SET_BY_USER,
1709
1710         queue_regulatory_request(request);
1711
1712         return 0;
1713 }
1714
1715 /* Driver hints */
1716 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1717 {
1718         struct regulatory_request *request;
1719
1720         BUG_ON(!alpha2);
1721         BUG_ON(!wiphy);
1722
1723         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1724         if (!request)
1725                 return -ENOMEM;
1726
1727         request->wiphy_idx = get_wiphy_idx(wiphy);
1728
1729         /* Must have registered wiphy first */
1730         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1731
1732         request->alpha2[0] = alpha2[0];
1733         request->alpha2[1] = alpha2[1];
1734         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1735
1736         queue_regulatory_request(request);
1737
1738         return 0;
1739 }
1740 EXPORT_SYMBOL(regulatory_hint);
1741
1742 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1743                         u32 country_ie_checksum)
1744 {
1745         struct wiphy *request_wiphy;
1746
1747         assert_cfg80211_lock();
1748
1749         if (unlikely(last_request->initiator !=
1750             NL80211_REGDOM_SET_BY_COUNTRY_IE))
1751                 return false;
1752
1753         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1754
1755         if (!request_wiphy)
1756                 return false;
1757
1758         if (likely(request_wiphy != wiphy))
1759                 return !country_ie_integrity_changes(country_ie_checksum);
1760         /*
1761          * We should not have let these through at this point, they
1762          * should have been picked up earlier by the first alpha2 check
1763          * on the device
1764          */
1765         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1766                 return true;
1767         return false;
1768 }
1769
1770 void regulatory_hint_11d(struct wiphy *wiphy,
1771                         u8 *country_ie,
1772                         u8 country_ie_len)
1773 {
1774         struct ieee80211_regdomain *rd = NULL;
1775         char alpha2[2];
1776         u32 checksum = 0;
1777         enum environment_cap env = ENVIRON_ANY;
1778         struct regulatory_request *request;
1779
1780         mutex_lock(&cfg80211_mutex);
1781
1782         if (unlikely(!last_request)) {
1783                 mutex_unlock(&cfg80211_mutex);
1784                 return;
1785         }
1786
1787         /* IE len must be evenly divisible by 2 */
1788         if (country_ie_len & 0x01)
1789                 goto out;
1790
1791         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1792                 goto out;
1793
1794         /*
1795          * Pending country IE processing, this can happen after we
1796          * call CRDA and wait for a response if a beacon was received before
1797          * we were able to process the last regulatory_hint_11d() call
1798          */
1799         if (country_ie_regdomain)
1800                 goto out;
1801
1802         alpha2[0] = country_ie[0];
1803         alpha2[1] = country_ie[1];
1804
1805         if (country_ie[2] == 'I')
1806                 env = ENVIRON_INDOOR;
1807         else if (country_ie[2] == 'O')
1808                 env = ENVIRON_OUTDOOR;
1809
1810         /*
1811          * We will run this for *every* beacon processed for the BSSID, so
1812          * we optimize an early check to exit out early if we don't have to
1813          * do anything
1814          */
1815         if (likely(last_request->initiator ==
1816             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1817             wiphy_idx_valid(last_request->wiphy_idx))) {
1818                 struct cfg80211_registered_device *drv_last_ie;
1819
1820                 drv_last_ie =
1821                         cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1822
1823                 /*
1824                  * Lets keep this simple -- we trust the first AP
1825                  * after we intersect with CRDA
1826                  */
1827                 if (likely(&drv_last_ie->wiphy == wiphy)) {
1828                         /*
1829                          * Ignore IEs coming in on this wiphy with
1830                          * the same alpha2 and environment cap
1831                          */
1832                         if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1833                                   alpha2) &&
1834                                   env == drv_last_ie->env)) {
1835                                 goto out;
1836                         }
1837                         /*
1838                          * the wiphy moved on to another BSSID or the AP
1839                          * was reconfigured. XXX: We need to deal with the
1840                          * case where the user suspends and goes to goes
1841                          * to another country, and then gets IEs from an
1842                          * AP with different settings
1843                          */
1844                         goto out;
1845                 } else {
1846                         /*
1847                          * Ignore IEs coming in on two separate wiphys with
1848                          * the same alpha2 and environment cap
1849                          */
1850                         if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1851                                   alpha2) &&
1852                                   env == drv_last_ie->env)) {
1853                                 goto out;
1854                         }
1855                         /* We could potentially intersect though */
1856                         goto out;
1857                 }
1858         }
1859
1860         rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1861         if (!rd)
1862                 goto out;
1863
1864         /*
1865          * This will not happen right now but we leave it here for the
1866          * the future when we want to add suspend/resume support and having
1867          * the user move to another country after doing so, or having the user
1868          * move to another AP. Right now we just trust the first AP.
1869          *
1870          * If we hit this before we add this support we want to be informed of
1871          * it as it would indicate a mistake in the current design
1872          */
1873         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1874                 goto free_rd_out;
1875
1876         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1877         if (!request)
1878                 goto free_rd_out;
1879
1880         /*
1881          * We keep this around for when CRDA comes back with a response so
1882          * we can intersect with that
1883          */
1884         country_ie_regdomain = rd;
1885
1886         request->wiphy_idx = get_wiphy_idx(wiphy);
1887         request->alpha2[0] = rd->alpha2[0];
1888         request->alpha2[1] = rd->alpha2[1];
1889         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1890         request->country_ie_checksum = checksum;
1891         request->country_ie_env = env;
1892
1893         mutex_unlock(&cfg80211_mutex);
1894
1895         queue_regulatory_request(request);
1896
1897         return;
1898
1899 free_rd_out:
1900         kfree(rd);
1901 out:
1902         mutex_unlock(&cfg80211_mutex);
1903 }
1904 EXPORT_SYMBOL(regulatory_hint_11d);
1905
1906 static bool freq_is_chan_12_13_14(u16 freq)
1907 {
1908         if (freq == ieee80211_channel_to_frequency(12) ||
1909             freq == ieee80211_channel_to_frequency(13) ||
1910             freq == ieee80211_channel_to_frequency(14))
1911                 return true;
1912         return false;
1913 }
1914
1915 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1916                                  struct ieee80211_channel *beacon_chan,
1917                                  gfp_t gfp)
1918 {
1919         struct reg_beacon *reg_beacon;
1920
1921         if (likely((beacon_chan->beacon_found ||
1922             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1923             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1924              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1925                 return 0;
1926
1927         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1928         if (!reg_beacon)
1929                 return -ENOMEM;
1930
1931 #ifdef CONFIG_CFG80211_REG_DEBUG
1932         printk(KERN_DEBUG "cfg80211: Found new beacon on "
1933                 "frequency: %d MHz (Ch %d) on %s\n",
1934                 beacon_chan->center_freq,
1935                 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1936                 wiphy_name(wiphy));
1937 #endif
1938         memcpy(&reg_beacon->chan, beacon_chan,
1939                 sizeof(struct ieee80211_channel));
1940
1941
1942         /*
1943          * Since we can be called from BH or and non-BH context
1944          * we must use spin_lock_bh()
1945          */
1946         spin_lock_bh(&reg_pending_beacons_lock);
1947         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1948         spin_unlock_bh(&reg_pending_beacons_lock);
1949
1950         schedule_work(&reg_work);
1951
1952         return 0;
1953 }
1954
1955 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1956 {
1957         unsigned int i;
1958         const struct ieee80211_reg_rule *reg_rule = NULL;
1959         const struct ieee80211_freq_range *freq_range = NULL;
1960         const struct ieee80211_power_rule *power_rule = NULL;
1961
1962         printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1963                 "(max_antenna_gain, max_eirp)\n");
1964
1965         for (i = 0; i < rd->n_reg_rules; i++) {
1966                 reg_rule = &rd->reg_rules[i];
1967                 freq_range = &reg_rule->freq_range;
1968                 power_rule = &reg_rule->power_rule;
1969
1970                 /*
1971                  * There may not be documentation for max antenna gain
1972                  * in certain regions
1973                  */
1974                 if (power_rule->max_antenna_gain)
1975                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1976                                 "(%d mBi, %d mBm)\n",
1977                                 freq_range->start_freq_khz,
1978                                 freq_range->end_freq_khz,
1979                                 freq_range->max_bandwidth_khz,
1980                                 power_rule->max_antenna_gain,
1981                                 power_rule->max_eirp);
1982                 else
1983                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1984                                 "(N/A, %d mBm)\n",
1985                                 freq_range->start_freq_khz,
1986                                 freq_range->end_freq_khz,
1987                                 freq_range->max_bandwidth_khz,
1988                                 power_rule->max_eirp);
1989         }
1990 }
1991
1992 static void print_regdomain(const struct ieee80211_regdomain *rd)
1993 {
1994
1995         if (is_intersected_alpha2(rd->alpha2)) {
1996
1997                 if (last_request->initiator ==
1998                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1999                         struct cfg80211_registered_device *drv;
2000                         drv = cfg80211_drv_by_wiphy_idx(
2001                                 last_request->wiphy_idx);
2002                         if (drv) {
2003                                 printk(KERN_INFO "cfg80211: Current regulatory "
2004                                         "domain updated by AP to: %c%c\n",
2005                                         drv->country_ie_alpha2[0],
2006                                         drv->country_ie_alpha2[1]);
2007                         } else
2008                                 printk(KERN_INFO "cfg80211: Current regulatory "
2009                                         "domain intersected: \n");
2010                 } else
2011                                 printk(KERN_INFO "cfg80211: Current regulatory "
2012                                         "domain intersected: \n");
2013         } else if (is_world_regdom(rd->alpha2))
2014                 printk(KERN_INFO "cfg80211: World regulatory "
2015                         "domain updated:\n");
2016         else {
2017                 if (is_unknown_alpha2(rd->alpha2))
2018                         printk(KERN_INFO "cfg80211: Regulatory domain "
2019                                 "changed to driver built-in settings "
2020                                 "(unknown country)\n");
2021                 else
2022                         printk(KERN_INFO "cfg80211: Regulatory domain "
2023                                 "changed to country: %c%c\n",
2024                                 rd->alpha2[0], rd->alpha2[1]);
2025         }
2026         print_rd_rules(rd);
2027 }
2028
2029 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2030 {
2031         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2032                 rd->alpha2[0], rd->alpha2[1]);
2033         print_rd_rules(rd);
2034 }
2035
2036 #ifdef CONFIG_CFG80211_REG_DEBUG
2037 static void reg_country_ie_process_debug(
2038         const struct ieee80211_regdomain *rd,
2039         const struct ieee80211_regdomain *country_ie_regdomain,
2040         const struct ieee80211_regdomain *intersected_rd)
2041 {
2042         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2043         print_regdomain_info(country_ie_regdomain);
2044         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2045         print_regdomain_info(rd);
2046         if (intersected_rd) {
2047                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2048                         "and get:\n");
2049                 print_regdomain_info(intersected_rd);
2050                 return;
2051         }
2052         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2053 }
2054 #else
2055 static inline void reg_country_ie_process_debug(
2056         const struct ieee80211_regdomain *rd,
2057         const struct ieee80211_regdomain *country_ie_regdomain,
2058         const struct ieee80211_regdomain *intersected_rd)
2059 {
2060 }
2061 #endif
2062
2063 /* Takes ownership of rd only if it doesn't fail */
2064 static int __set_regdom(const struct ieee80211_regdomain *rd)
2065 {
2066         const struct ieee80211_regdomain *intersected_rd = NULL;
2067         struct cfg80211_registered_device *drv = NULL;
2068         struct wiphy *request_wiphy;
2069         /* Some basic sanity checks first */
2070
2071         if (is_world_regdom(rd->alpha2)) {
2072                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2073                         return -EINVAL;
2074                 update_world_regdomain(rd);
2075                 return 0;
2076         }
2077
2078         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2079                         !is_unknown_alpha2(rd->alpha2))
2080                 return -EINVAL;
2081
2082         if (!last_request)
2083                 return -EINVAL;
2084
2085         /*
2086          * Lets only bother proceeding on the same alpha2 if the current
2087          * rd is non static (it means CRDA was present and was used last)
2088          * and the pending request came in from a country IE
2089          */
2090         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2091                 /*
2092                  * If someone else asked us to change the rd lets only bother
2093                  * checking if the alpha2 changes if CRDA was already called
2094                  */
2095                 if (!is_old_static_regdom(cfg80211_regdomain) &&
2096                     !regdom_changes(rd->alpha2))
2097                         return -EINVAL;
2098         }
2099
2100         /*
2101          * Now lets set the regulatory domain, update all driver channels
2102          * and finally inform them of what we have done, in case they want
2103          * to review or adjust their own settings based on their own
2104          * internal EEPROM data
2105          */
2106
2107         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2108                 return -EINVAL;
2109
2110         if (!is_valid_rd(rd)) {
2111                 printk(KERN_ERR "cfg80211: Invalid "
2112                         "regulatory domain detected:\n");
2113                 print_regdomain_info(rd);
2114                 return -EINVAL;
2115         }
2116
2117         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2118
2119         if (!last_request->intersect) {
2120                 int r;
2121
2122                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2123                         reset_regdomains();
2124                         cfg80211_regdomain = rd;
2125                         return 0;
2126                 }
2127
2128                 /*
2129                  * For a driver hint, lets copy the regulatory domain the
2130                  * driver wanted to the wiphy to deal with conflicts
2131                  */
2132
2133                 /*
2134                  * Userspace could have sent two replies with only
2135                  * one kernel request.
2136                  */
2137                 if (request_wiphy->regd)
2138                         return -EALREADY;
2139
2140                 r = reg_copy_regd(&request_wiphy->regd, rd);
2141                 if (r)
2142                         return r;
2143
2144                 reset_regdomains();
2145                 cfg80211_regdomain = rd;
2146                 return 0;
2147         }
2148
2149         /* Intersection requires a bit more work */
2150
2151         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2152
2153                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2154                 if (!intersected_rd)
2155                         return -EINVAL;
2156
2157                 /*
2158                  * We can trash what CRDA provided now.
2159                  * However if a driver requested this specific regulatory
2160                  * domain we keep it for its private use
2161                  */
2162                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2163                         request_wiphy->regd = rd;
2164                 else
2165                         kfree(rd);
2166
2167                 rd = NULL;
2168
2169                 reset_regdomains();
2170                 cfg80211_regdomain = intersected_rd;
2171
2172                 return 0;
2173         }
2174
2175         /*
2176          * Country IE requests are handled a bit differently, we intersect
2177          * the country IE rd with what CRDA believes that country should have
2178          */
2179
2180         /*
2181          * Userspace could have sent two replies with only
2182          * one kernel request. By the second reply we would have
2183          * already processed and consumed the country_ie_regdomain.
2184          */
2185         if (!country_ie_regdomain)
2186                 return -EALREADY;
2187         BUG_ON(rd == country_ie_regdomain);
2188
2189         /*
2190          * Intersect what CRDA returned and our what we
2191          * had built from the Country IE received
2192          */
2193
2194         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2195
2196         reg_country_ie_process_debug(rd,
2197                                      country_ie_regdomain,
2198                                      intersected_rd);
2199
2200         kfree(country_ie_regdomain);
2201         country_ie_regdomain = NULL;
2202
2203         if (!intersected_rd)
2204                 return -EINVAL;
2205
2206         drv = wiphy_to_dev(request_wiphy);
2207
2208         drv->country_ie_alpha2[0] = rd->alpha2[0];
2209         drv->country_ie_alpha2[1] = rd->alpha2[1];
2210         drv->env = last_request->country_ie_env;
2211
2212         BUG_ON(intersected_rd == rd);
2213
2214         kfree(rd);
2215         rd = NULL;
2216
2217         reset_regdomains();
2218         cfg80211_regdomain = intersected_rd;
2219
2220         return 0;
2221 }
2222
2223
2224 /*
2225  * Use this call to set the current regulatory domain. Conflicts with
2226  * multiple drivers can be ironed out later. Caller must've already
2227  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2228  */
2229 int set_regdom(const struct ieee80211_regdomain *rd)
2230 {
2231         int r;
2232
2233         assert_cfg80211_lock();
2234
2235         /* Note that this doesn't update the wiphys, this is done below */
2236         r = __set_regdom(rd);
2237         if (r) {
2238                 kfree(rd);
2239                 return r;
2240         }
2241
2242         /* This would make this whole thing pointless */
2243         if (!last_request->intersect)
2244                 BUG_ON(rd != cfg80211_regdomain);
2245
2246         /* update all wiphys now with the new established regulatory domain */
2247         update_all_wiphy_regulatory(last_request->initiator);
2248
2249         print_regdomain(cfg80211_regdomain);
2250
2251         nl80211_send_reg_change_event(last_request);
2252
2253         return r;
2254 }
2255
2256 /* Caller must hold cfg80211_mutex */
2257 void reg_device_remove(struct wiphy *wiphy)
2258 {
2259         struct wiphy *request_wiphy = NULL;
2260
2261         assert_cfg80211_lock();
2262
2263         kfree(wiphy->regd);
2264
2265         if (last_request)
2266                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2267
2268         if (!request_wiphy || request_wiphy != wiphy)
2269                 return;
2270
2271         last_request->wiphy_idx = WIPHY_IDX_STALE;
2272         last_request->country_ie_env = ENVIRON_ANY;
2273 }
2274
2275 int regulatory_init(void)
2276 {
2277         int err = 0;
2278
2279         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2280         if (IS_ERR(reg_pdev))
2281                 return PTR_ERR(reg_pdev);
2282
2283         spin_lock_init(&reg_requests_lock);
2284         spin_lock_init(&reg_pending_beacons_lock);
2285
2286 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2287         cfg80211_regdomain = static_regdom(ieee80211_regdom);
2288
2289         printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2290         print_regdomain_info(cfg80211_regdomain);
2291         /*
2292          * The old code still requests for a new regdomain and if
2293          * you have CRDA you get it updated, otherwise you get
2294          * stuck with the static values. Since "EU" is not a valid
2295          * ISO / IEC 3166 alpha2 code we can't expect userpace to
2296          * give us a regulatory domain for it. We need last_request
2297          * iniitalized though so lets just send a request which we
2298          * know will be ignored... this crap will be removed once
2299          * OLD_REG dies.
2300          */
2301         err = regulatory_hint_core(ieee80211_regdom);
2302 #else
2303         cfg80211_regdomain = cfg80211_world_regdom;
2304
2305         err = regulatory_hint_core(ieee80211_regdom);
2306 #endif
2307         if (err) {
2308                 if (err == -ENOMEM)
2309                         return err;
2310                 /*
2311                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2312                  * memory which is handled and propagated appropriately above
2313                  * but it can also fail during a netlink_broadcast() or during
2314                  * early boot for call_usermodehelper(). For now treat these
2315                  * errors as non-fatal.
2316                  */
2317                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2318                         "to call CRDA during init");
2319 #ifdef CONFIG_CFG80211_REG_DEBUG
2320                 /* We want to find out exactly why when debugging */
2321                 WARN_ON(err);
2322 #endif
2323         }
2324
2325         return 0;
2326 }
2327
2328 void regulatory_exit(void)
2329 {
2330         struct regulatory_request *reg_request, *tmp;
2331         struct reg_beacon *reg_beacon, *btmp;
2332
2333         cancel_work_sync(&reg_work);
2334
2335         mutex_lock(&cfg80211_mutex);
2336
2337         reset_regdomains();
2338
2339         kfree(country_ie_regdomain);
2340         country_ie_regdomain = NULL;
2341
2342         kfree(last_request);
2343
2344         platform_device_unregister(reg_pdev);
2345
2346         spin_lock_bh(&reg_pending_beacons_lock);
2347         if (!list_empty(&reg_pending_beacons)) {
2348                 list_for_each_entry_safe(reg_beacon, btmp,
2349                                          &reg_pending_beacons, list) {
2350                         list_del(&reg_beacon->list);
2351                         kfree(reg_beacon);
2352                 }
2353         }
2354         spin_unlock_bh(&reg_pending_beacons_lock);
2355
2356         if (!list_empty(&reg_beacon_list)) {
2357                 list_for_each_entry_safe(reg_beacon, btmp,
2358                                          &reg_beacon_list, list) {
2359                         list_del(&reg_beacon->list);
2360                         kfree(reg_beacon);
2361                 }
2362         }
2363
2364         spin_lock(&reg_requests_lock);
2365         if (!list_empty(&reg_requests_list)) {
2366                 list_for_each_entry_safe(reg_request, tmp,
2367                                          &reg_requests_list, list) {
2368                         list_del(&reg_request->list);
2369                         kfree(reg_request);
2370                 }
2371         }
2372         spin_unlock(&reg_requests_lock);
2373
2374         mutex_unlock(&cfg80211_mutex);
2375 }