Merge branches 'perf-urgent-for-linus' and 'sched-urgent-for-linus' of git://git...
[pandora-kernel.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/list.h>
42 #include <linux/random.h>
43 #include <linux/ctype.h>
44 #include <linux/nl80211.h>
45 #include <linux/platform_device.h>
46 #include <linux/moduleparam.h>
47 #include <net/cfg80211.h>
48 #include "core.h"
49 #include "reg.h"
50 #include "regdb.h"
51 #include "nl80211.h"
52
53 #ifdef CONFIG_CFG80211_REG_DEBUG
54 #define REG_DBG_PRINT(format, args...)                  \
55         printk(KERN_DEBUG pr_fmt(format), ##args)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59
60 static struct regulatory_request core_request_world = {
61         .initiator = NL80211_REGDOM_SET_BY_CORE,
62         .alpha2[0] = '0',
63         .alpha2[1] = '0',
64         .intersect = false,
65         .processed = true,
66         .country_ie_env = ENVIRON_ANY,
67 };
68
69 /* Receipt of information from last regulatory request */
70 static struct regulatory_request *last_request = &core_request_world;
71
72 /* To trigger userspace events */
73 static struct platform_device *reg_pdev;
74
75 static struct device_type reg_device_type = {
76         .uevent = reg_device_uevent,
77 };
78
79 /*
80  * Central wireless core regulatory domains, we only need two,
81  * the current one and a world regulatory domain in case we have no
82  * information to give us an alpha2
83  */
84 const struct ieee80211_regdomain *cfg80211_regdomain;
85
86 /*
87  * Protects static reg.c components:
88  *     - cfg80211_world_regdom
89  *     - cfg80211_regdom
90  *     - last_request
91  */
92 static DEFINE_MUTEX(reg_mutex);
93
94 static inline void assert_reg_lock(void)
95 {
96         lockdep_assert_held(&reg_mutex);
97 }
98
99 /* Used to queue up regulatory hints */
100 static LIST_HEAD(reg_requests_list);
101 static spinlock_t reg_requests_lock;
102
103 /* Used to queue up beacon hints for review */
104 static LIST_HEAD(reg_pending_beacons);
105 static spinlock_t reg_pending_beacons_lock;
106
107 /* Used to keep track of processed beacon hints */
108 static LIST_HEAD(reg_beacon_list);
109
110 struct reg_beacon {
111         struct list_head list;
112         struct ieee80211_channel chan;
113 };
114
115 static void reg_todo(struct work_struct *work);
116 static DECLARE_WORK(reg_work, reg_todo);
117
118 static void reg_timeout_work(struct work_struct *work);
119 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
120
121 /* We keep a static world regulatory domain in case of the absence of CRDA */
122 static const struct ieee80211_regdomain world_regdom = {
123         .n_reg_rules = 5,
124         .alpha2 =  "00",
125         .reg_rules = {
126                 /* IEEE 802.11b/g, channels 1..11 */
127                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
128                 /* IEEE 802.11b/g, channels 12..13. No HT40
129                  * channel fits here. */
130                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
131                         NL80211_RRF_PASSIVE_SCAN |
132                         NL80211_RRF_NO_IBSS),
133                 /* IEEE 802.11 channel 14 - Only JP enables
134                  * this and for 802.11b only */
135                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
136                         NL80211_RRF_PASSIVE_SCAN |
137                         NL80211_RRF_NO_IBSS |
138                         NL80211_RRF_NO_OFDM),
139                 /* IEEE 802.11a, channel 36..48 */
140                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
141                         NL80211_RRF_PASSIVE_SCAN |
142                         NL80211_RRF_NO_IBSS),
143
144                 /* NB: 5260 MHz - 5700 MHz requies DFS */
145
146                 /* IEEE 802.11a, channel 149..165 */
147                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
148                         NL80211_RRF_PASSIVE_SCAN |
149                         NL80211_RRF_NO_IBSS),
150         }
151 };
152
153 static const struct ieee80211_regdomain *cfg80211_world_regdom =
154         &world_regdom;
155
156 static char *ieee80211_regdom = "00";
157 static char user_alpha2[2];
158
159 module_param(ieee80211_regdom, charp, 0444);
160 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
161
162 static void reset_regdomains(bool full_reset)
163 {
164         /* avoid freeing static information or freeing something twice */
165         if (cfg80211_regdomain == cfg80211_world_regdom)
166                 cfg80211_regdomain = NULL;
167         if (cfg80211_world_regdom == &world_regdom)
168                 cfg80211_world_regdom = NULL;
169         if (cfg80211_regdomain == &world_regdom)
170                 cfg80211_regdomain = NULL;
171
172         kfree(cfg80211_regdomain);
173         kfree(cfg80211_world_regdom);
174
175         cfg80211_world_regdom = &world_regdom;
176         cfg80211_regdomain = NULL;
177
178         if (!full_reset)
179                 return;
180
181         if (last_request != &core_request_world)
182                 kfree(last_request);
183         last_request = &core_request_world;
184 }
185
186 /*
187  * Dynamic world regulatory domain requested by the wireless
188  * core upon initialization
189  */
190 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
191 {
192         BUG_ON(!last_request);
193
194         reset_regdomains(false);
195
196         cfg80211_world_regdom = rd;
197         cfg80211_regdomain = rd;
198 }
199
200 bool is_world_regdom(const char *alpha2)
201 {
202         if (!alpha2)
203                 return false;
204         if (alpha2[0] == '0' && alpha2[1] == '0')
205                 return true;
206         return false;
207 }
208
209 static bool is_alpha2_set(const char *alpha2)
210 {
211         if (!alpha2)
212                 return false;
213         if (alpha2[0] != 0 && alpha2[1] != 0)
214                 return true;
215         return false;
216 }
217
218 static bool is_unknown_alpha2(const char *alpha2)
219 {
220         if (!alpha2)
221                 return false;
222         /*
223          * Special case where regulatory domain was built by driver
224          * but a specific alpha2 cannot be determined
225          */
226         if (alpha2[0] == '9' && alpha2[1] == '9')
227                 return true;
228         return false;
229 }
230
231 static bool is_intersected_alpha2(const char *alpha2)
232 {
233         if (!alpha2)
234                 return false;
235         /*
236          * Special case where regulatory domain is the
237          * result of an intersection between two regulatory domain
238          * structures
239          */
240         if (alpha2[0] == '9' && alpha2[1] == '8')
241                 return true;
242         return false;
243 }
244
245 static bool is_an_alpha2(const char *alpha2)
246 {
247         if (!alpha2)
248                 return false;
249         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
250                 return true;
251         return false;
252 }
253
254 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
255 {
256         if (!alpha2_x || !alpha2_y)
257                 return false;
258         if (alpha2_x[0] == alpha2_y[0] &&
259                 alpha2_x[1] == alpha2_y[1])
260                 return true;
261         return false;
262 }
263
264 static bool regdom_changes(const char *alpha2)
265 {
266         assert_cfg80211_lock();
267
268         if (!cfg80211_regdomain)
269                 return true;
270         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
271                 return false;
272         return true;
273 }
274
275 /*
276  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
277  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
278  * has ever been issued.
279  */
280 static bool is_user_regdom_saved(void)
281 {
282         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
283                 return false;
284
285         /* This would indicate a mistake on the design */
286         if (WARN((!is_world_regdom(user_alpha2) &&
287                   !is_an_alpha2(user_alpha2)),
288                  "Unexpected user alpha2: %c%c\n",
289                  user_alpha2[0],
290                  user_alpha2[1]))
291                 return false;
292
293         return true;
294 }
295
296 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
297                          const struct ieee80211_regdomain *src_regd)
298 {
299         struct ieee80211_regdomain *regd;
300         int size_of_regd = 0;
301         unsigned int i;
302
303         size_of_regd = sizeof(struct ieee80211_regdomain) +
304           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
305
306         regd = kzalloc(size_of_regd, GFP_KERNEL);
307         if (!regd)
308                 return -ENOMEM;
309
310         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
311
312         for (i = 0; i < src_regd->n_reg_rules; i++)
313                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
314                         sizeof(struct ieee80211_reg_rule));
315
316         *dst_regd = regd;
317         return 0;
318 }
319
320 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
321 struct reg_regdb_search_request {
322         char alpha2[2];
323         struct list_head list;
324 };
325
326 static LIST_HEAD(reg_regdb_search_list);
327 static DEFINE_MUTEX(reg_regdb_search_mutex);
328
329 static void reg_regdb_search(struct work_struct *work)
330 {
331         struct reg_regdb_search_request *request;
332         const struct ieee80211_regdomain *curdom, *regdom;
333         int i, r;
334
335         mutex_lock(&reg_regdb_search_mutex);
336         while (!list_empty(&reg_regdb_search_list)) {
337                 request = list_first_entry(&reg_regdb_search_list,
338                                            struct reg_regdb_search_request,
339                                            list);
340                 list_del(&request->list);
341
342                 for (i=0; i<reg_regdb_size; i++) {
343                         curdom = reg_regdb[i];
344
345                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
346                                 r = reg_copy_regd(&regdom, curdom);
347                                 if (r)
348                                         break;
349                                 mutex_lock(&cfg80211_mutex);
350                                 set_regdom(regdom);
351                                 mutex_unlock(&cfg80211_mutex);
352                                 break;
353                         }
354                 }
355
356                 kfree(request);
357         }
358         mutex_unlock(&reg_regdb_search_mutex);
359 }
360
361 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
362
363 static void reg_regdb_query(const char *alpha2)
364 {
365         struct reg_regdb_search_request *request;
366
367         if (!alpha2)
368                 return;
369
370         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
371         if (!request)
372                 return;
373
374         memcpy(request->alpha2, alpha2, 2);
375
376         mutex_lock(&reg_regdb_search_mutex);
377         list_add_tail(&request->list, &reg_regdb_search_list);
378         mutex_unlock(&reg_regdb_search_mutex);
379
380         schedule_work(&reg_regdb_work);
381 }
382 #else
383 static inline void reg_regdb_query(const char *alpha2) {}
384 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
385
386 /*
387  * This lets us keep regulatory code which is updated on a regulatory
388  * basis in userspace. Country information is filled in by
389  * reg_device_uevent
390  */
391 static int call_crda(const char *alpha2)
392 {
393         if (!is_world_regdom((char *) alpha2))
394                 pr_info("Calling CRDA for country: %c%c\n",
395                         alpha2[0], alpha2[1]);
396         else
397                 pr_info("Calling CRDA to update world regulatory domain\n");
398
399         /* query internal regulatory database (if it exists) */
400         reg_regdb_query(alpha2);
401
402         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
403 }
404
405 /* Used by nl80211 before kmalloc'ing our regulatory domain */
406 bool reg_is_valid_request(const char *alpha2)
407 {
408         assert_cfg80211_lock();
409
410         if (!last_request)
411                 return false;
412
413         return alpha2_equal(last_request->alpha2, alpha2);
414 }
415
416 /* Sanity check on a regulatory rule */
417 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
418 {
419         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
420         u32 freq_diff;
421
422         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
423                 return false;
424
425         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
426                 return false;
427
428         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
429
430         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
431                         freq_range->max_bandwidth_khz > freq_diff)
432                 return false;
433
434         return true;
435 }
436
437 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
438 {
439         const struct ieee80211_reg_rule *reg_rule = NULL;
440         unsigned int i;
441
442         if (!rd->n_reg_rules)
443                 return false;
444
445         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
446                 return false;
447
448         for (i = 0; i < rd->n_reg_rules; i++) {
449                 reg_rule = &rd->reg_rules[i];
450                 if (!is_valid_reg_rule(reg_rule))
451                         return false;
452         }
453
454         return true;
455 }
456
457 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
458                             u32 center_freq_khz,
459                             u32 bw_khz)
460 {
461         u32 start_freq_khz, end_freq_khz;
462
463         start_freq_khz = center_freq_khz - (bw_khz/2);
464         end_freq_khz = center_freq_khz + (bw_khz/2);
465
466         if (start_freq_khz >= freq_range->start_freq_khz &&
467             end_freq_khz <= freq_range->end_freq_khz)
468                 return true;
469
470         return false;
471 }
472
473 /**
474  * freq_in_rule_band - tells us if a frequency is in a frequency band
475  * @freq_range: frequency rule we want to query
476  * @freq_khz: frequency we are inquiring about
477  *
478  * This lets us know if a specific frequency rule is or is not relevant to
479  * a specific frequency's band. Bands are device specific and artificial
480  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
481  * safe for now to assume that a frequency rule should not be part of a
482  * frequency's band if the start freq or end freq are off by more than 2 GHz.
483  * This resolution can be lowered and should be considered as we add
484  * regulatory rule support for other "bands".
485  **/
486 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
487         u32 freq_khz)
488 {
489 #define ONE_GHZ_IN_KHZ  1000000
490         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
491                 return true;
492         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
493                 return true;
494         return false;
495 #undef ONE_GHZ_IN_KHZ
496 }
497
498 /*
499  * Helper for regdom_intersect(), this does the real
500  * mathematical intersection fun
501  */
502 static int reg_rules_intersect(
503         const struct ieee80211_reg_rule *rule1,
504         const struct ieee80211_reg_rule *rule2,
505         struct ieee80211_reg_rule *intersected_rule)
506 {
507         const struct ieee80211_freq_range *freq_range1, *freq_range2;
508         struct ieee80211_freq_range *freq_range;
509         const struct ieee80211_power_rule *power_rule1, *power_rule2;
510         struct ieee80211_power_rule *power_rule;
511         u32 freq_diff;
512
513         freq_range1 = &rule1->freq_range;
514         freq_range2 = &rule2->freq_range;
515         freq_range = &intersected_rule->freq_range;
516
517         power_rule1 = &rule1->power_rule;
518         power_rule2 = &rule2->power_rule;
519         power_rule = &intersected_rule->power_rule;
520
521         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
522                 freq_range2->start_freq_khz);
523         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
524                 freq_range2->end_freq_khz);
525         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
526                 freq_range2->max_bandwidth_khz);
527
528         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
529         if (freq_range->max_bandwidth_khz > freq_diff)
530                 freq_range->max_bandwidth_khz = freq_diff;
531
532         power_rule->max_eirp = min(power_rule1->max_eirp,
533                 power_rule2->max_eirp);
534         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
535                 power_rule2->max_antenna_gain);
536
537         intersected_rule->flags = (rule1->flags | rule2->flags);
538
539         if (!is_valid_reg_rule(intersected_rule))
540                 return -EINVAL;
541
542         return 0;
543 }
544
545 /**
546  * regdom_intersect - do the intersection between two regulatory domains
547  * @rd1: first regulatory domain
548  * @rd2: second regulatory domain
549  *
550  * Use this function to get the intersection between two regulatory domains.
551  * Once completed we will mark the alpha2 for the rd as intersected, "98",
552  * as no one single alpha2 can represent this regulatory domain.
553  *
554  * Returns a pointer to the regulatory domain structure which will hold the
555  * resulting intersection of rules between rd1 and rd2. We will
556  * kzalloc() this structure for you.
557  */
558 static struct ieee80211_regdomain *regdom_intersect(
559         const struct ieee80211_regdomain *rd1,
560         const struct ieee80211_regdomain *rd2)
561 {
562         int r, size_of_regd;
563         unsigned int x, y;
564         unsigned int num_rules = 0, rule_idx = 0;
565         const struct ieee80211_reg_rule *rule1, *rule2;
566         struct ieee80211_reg_rule *intersected_rule;
567         struct ieee80211_regdomain *rd;
568         /* This is just a dummy holder to help us count */
569         struct ieee80211_reg_rule irule;
570
571         /* Uses the stack temporarily for counter arithmetic */
572         intersected_rule = &irule;
573
574         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
575
576         if (!rd1 || !rd2)
577                 return NULL;
578
579         /*
580          * First we get a count of the rules we'll need, then we actually
581          * build them. This is to so we can malloc() and free() a
582          * regdomain once. The reason we use reg_rules_intersect() here
583          * is it will return -EINVAL if the rule computed makes no sense.
584          * All rules that do check out OK are valid.
585          */
586
587         for (x = 0; x < rd1->n_reg_rules; x++) {
588                 rule1 = &rd1->reg_rules[x];
589                 for (y = 0; y < rd2->n_reg_rules; y++) {
590                         rule2 = &rd2->reg_rules[y];
591                         if (!reg_rules_intersect(rule1, rule2,
592                                         intersected_rule))
593                                 num_rules++;
594                         memset(intersected_rule, 0,
595                                         sizeof(struct ieee80211_reg_rule));
596                 }
597         }
598
599         if (!num_rules)
600                 return NULL;
601
602         size_of_regd = sizeof(struct ieee80211_regdomain) +
603                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
604
605         rd = kzalloc(size_of_regd, GFP_KERNEL);
606         if (!rd)
607                 return NULL;
608
609         for (x = 0; x < rd1->n_reg_rules; x++) {
610                 rule1 = &rd1->reg_rules[x];
611                 for (y = 0; y < rd2->n_reg_rules; y++) {
612                         rule2 = &rd2->reg_rules[y];
613                         /*
614                          * This time around instead of using the stack lets
615                          * write to the target rule directly saving ourselves
616                          * a memcpy()
617                          */
618                         intersected_rule = &rd->reg_rules[rule_idx];
619                         r = reg_rules_intersect(rule1, rule2,
620                                 intersected_rule);
621                         /*
622                          * No need to memset here the intersected rule here as
623                          * we're not using the stack anymore
624                          */
625                         if (r)
626                                 continue;
627                         rule_idx++;
628                 }
629         }
630
631         if (rule_idx != num_rules) {
632                 kfree(rd);
633                 return NULL;
634         }
635
636         rd->n_reg_rules = num_rules;
637         rd->alpha2[0] = '9';
638         rd->alpha2[1] = '8';
639
640         return rd;
641 }
642
643 /*
644  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
645  * want to just have the channel structure use these
646  */
647 static u32 map_regdom_flags(u32 rd_flags)
648 {
649         u32 channel_flags = 0;
650         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
651                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
652         if (rd_flags & NL80211_RRF_NO_IBSS)
653                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
654         if (rd_flags & NL80211_RRF_DFS)
655                 channel_flags |= IEEE80211_CHAN_RADAR;
656         return channel_flags;
657 }
658
659 static int freq_reg_info_regd(struct wiphy *wiphy,
660                               u32 center_freq,
661                               u32 desired_bw_khz,
662                               const struct ieee80211_reg_rule **reg_rule,
663                               const struct ieee80211_regdomain *custom_regd)
664 {
665         int i;
666         bool band_rule_found = false;
667         const struct ieee80211_regdomain *regd;
668         bool bw_fits = false;
669
670         if (!desired_bw_khz)
671                 desired_bw_khz = MHZ_TO_KHZ(20);
672
673         regd = custom_regd ? custom_regd : cfg80211_regdomain;
674
675         /*
676          * Follow the driver's regulatory domain, if present, unless a country
677          * IE has been processed or a user wants to help complaince further
678          */
679         if (!custom_regd &&
680             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
681             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
682             wiphy->regd)
683                 regd = wiphy->regd;
684
685         if (!regd)
686                 return -EINVAL;
687
688         for (i = 0; i < regd->n_reg_rules; i++) {
689                 const struct ieee80211_reg_rule *rr;
690                 const struct ieee80211_freq_range *fr = NULL;
691
692                 rr = &regd->reg_rules[i];
693                 fr = &rr->freq_range;
694
695                 /*
696                  * We only need to know if one frequency rule was
697                  * was in center_freq's band, that's enough, so lets
698                  * not overwrite it once found
699                  */
700                 if (!band_rule_found)
701                         band_rule_found = freq_in_rule_band(fr, center_freq);
702
703                 bw_fits = reg_does_bw_fit(fr,
704                                           center_freq,
705                                           desired_bw_khz);
706
707                 if (band_rule_found && bw_fits) {
708                         *reg_rule = rr;
709                         return 0;
710                 }
711         }
712
713         if (!band_rule_found)
714                 return -ERANGE;
715
716         return -EINVAL;
717 }
718
719 int freq_reg_info(struct wiphy *wiphy,
720                   u32 center_freq,
721                   u32 desired_bw_khz,
722                   const struct ieee80211_reg_rule **reg_rule)
723 {
724         assert_cfg80211_lock();
725         return freq_reg_info_regd(wiphy,
726                                   center_freq,
727                                   desired_bw_khz,
728                                   reg_rule,
729                                   NULL);
730 }
731 EXPORT_SYMBOL(freq_reg_info);
732
733 #ifdef CONFIG_CFG80211_REG_DEBUG
734 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
735 {
736         switch (initiator) {
737         case NL80211_REGDOM_SET_BY_CORE:
738                 return "Set by core";
739         case NL80211_REGDOM_SET_BY_USER:
740                 return "Set by user";
741         case NL80211_REGDOM_SET_BY_DRIVER:
742                 return "Set by driver";
743         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
744                 return "Set by country IE";
745         default:
746                 WARN_ON(1);
747                 return "Set by bug";
748         }
749 }
750
751 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
752                                     u32 desired_bw_khz,
753                                     const struct ieee80211_reg_rule *reg_rule)
754 {
755         const struct ieee80211_power_rule *power_rule;
756         const struct ieee80211_freq_range *freq_range;
757         char max_antenna_gain[32];
758
759         power_rule = &reg_rule->power_rule;
760         freq_range = &reg_rule->freq_range;
761
762         if (!power_rule->max_antenna_gain)
763                 snprintf(max_antenna_gain, 32, "N/A");
764         else
765                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
766
767         REG_DBG_PRINT("Updating information on frequency %d MHz "
768                       "for a %d MHz width channel with regulatory rule:\n",
769                       chan->center_freq,
770                       KHZ_TO_MHZ(desired_bw_khz));
771
772         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
773                       freq_range->start_freq_khz,
774                       freq_range->end_freq_khz,
775                       freq_range->max_bandwidth_khz,
776                       max_antenna_gain,
777                       power_rule->max_eirp);
778 }
779 #else
780 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
781                                     u32 desired_bw_khz,
782                                     const struct ieee80211_reg_rule *reg_rule)
783 {
784         return;
785 }
786 #endif
787
788 /*
789  * Note that right now we assume the desired channel bandwidth
790  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
791  * per channel, the primary and the extension channel). To support
792  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
793  * new ieee80211_channel.target_bw and re run the regulatory check
794  * on the wiphy with the target_bw specified. Then we can simply use
795  * that below for the desired_bw_khz below.
796  */
797 static void handle_channel(struct wiphy *wiphy,
798                            enum nl80211_reg_initiator initiator,
799                            enum ieee80211_band band,
800                            unsigned int chan_idx)
801 {
802         int r;
803         u32 flags, bw_flags = 0;
804         u32 desired_bw_khz = MHZ_TO_KHZ(20);
805         const struct ieee80211_reg_rule *reg_rule = NULL;
806         const struct ieee80211_power_rule *power_rule = NULL;
807         const struct ieee80211_freq_range *freq_range = NULL;
808         struct ieee80211_supported_band *sband;
809         struct ieee80211_channel *chan;
810         struct wiphy *request_wiphy = NULL;
811
812         assert_cfg80211_lock();
813
814         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
815
816         sband = wiphy->bands[band];
817         BUG_ON(chan_idx >= sband->n_channels);
818         chan = &sband->channels[chan_idx];
819
820         flags = chan->orig_flags;
821
822         r = freq_reg_info(wiphy,
823                           MHZ_TO_KHZ(chan->center_freq),
824                           desired_bw_khz,
825                           &reg_rule);
826
827         if (r) {
828                 /*
829                  * We will disable all channels that do not match our
830                  * received regulatory rule unless the hint is coming
831                  * from a Country IE and the Country IE had no information
832                  * about a band. The IEEE 802.11 spec allows for an AP
833                  * to send only a subset of the regulatory rules allowed,
834                  * so an AP in the US that only supports 2.4 GHz may only send
835                  * a country IE with information for the 2.4 GHz band
836                  * while 5 GHz is still supported.
837                  */
838                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
839                     r == -ERANGE)
840                         return;
841
842                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
843                 chan->flags = IEEE80211_CHAN_DISABLED;
844                 return;
845         }
846
847         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
848
849         power_rule = &reg_rule->power_rule;
850         freq_range = &reg_rule->freq_range;
851
852         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
853                 bw_flags = IEEE80211_CHAN_NO_HT40;
854
855         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
856             request_wiphy && request_wiphy == wiphy &&
857             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
858                 /*
859                  * This guarantees the driver's requested regulatory domain
860                  * will always be used as a base for further regulatory
861                  * settings
862                  */
863                 chan->flags = chan->orig_flags =
864                         map_regdom_flags(reg_rule->flags) | bw_flags;
865                 chan->max_antenna_gain = chan->orig_mag =
866                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
867                 chan->max_power = chan->orig_mpwr =
868                         (int) MBM_TO_DBM(power_rule->max_eirp);
869                 return;
870         }
871
872         chan->beacon_found = false;
873         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
874         chan->max_antenna_gain = min(chan->orig_mag,
875                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
876         if (chan->orig_mpwr)
877                 chan->max_power = min(chan->orig_mpwr,
878                         (int) MBM_TO_DBM(power_rule->max_eirp));
879         else
880                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
881 }
882
883 static void handle_band(struct wiphy *wiphy,
884                         enum ieee80211_band band,
885                         enum nl80211_reg_initiator initiator)
886 {
887         unsigned int i;
888         struct ieee80211_supported_band *sband;
889
890         BUG_ON(!wiphy->bands[band]);
891         sband = wiphy->bands[band];
892
893         for (i = 0; i < sband->n_channels; i++)
894                 handle_channel(wiphy, initiator, band, i);
895 }
896
897 static bool ignore_reg_update(struct wiphy *wiphy,
898                               enum nl80211_reg_initiator initiator)
899 {
900         if (!last_request) {
901                 REG_DBG_PRINT("Ignoring regulatory request %s since "
902                               "last_request is not set\n",
903                               reg_initiator_name(initiator));
904                 return true;
905         }
906
907         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
908             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
909                 REG_DBG_PRINT("Ignoring regulatory request %s "
910                               "since the driver uses its own custom "
911                               "regulatory domain\n",
912                               reg_initiator_name(initiator));
913                 return true;
914         }
915
916         /*
917          * wiphy->regd will be set once the device has its own
918          * desired regulatory domain set
919          */
920         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
921             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
922             !is_world_regdom(last_request->alpha2)) {
923                 REG_DBG_PRINT("Ignoring regulatory request %s "
924                               "since the driver requires its own regulatory "
925                               "domain to be set first\n",
926                               reg_initiator_name(initiator));
927                 return true;
928         }
929
930         return false;
931 }
932
933 static void handle_reg_beacon(struct wiphy *wiphy,
934                               unsigned int chan_idx,
935                               struct reg_beacon *reg_beacon)
936 {
937         struct ieee80211_supported_band *sband;
938         struct ieee80211_channel *chan;
939         bool channel_changed = false;
940         struct ieee80211_channel chan_before;
941
942         assert_cfg80211_lock();
943
944         sband = wiphy->bands[reg_beacon->chan.band];
945         chan = &sband->channels[chan_idx];
946
947         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
948                 return;
949
950         if (chan->beacon_found)
951                 return;
952
953         chan->beacon_found = true;
954
955         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
956                 return;
957
958         chan_before.center_freq = chan->center_freq;
959         chan_before.flags = chan->flags;
960
961         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
962                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
963                 channel_changed = true;
964         }
965
966         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
967                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
968                 channel_changed = true;
969         }
970
971         if (channel_changed)
972                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
973 }
974
975 /*
976  * Called when a scan on a wiphy finds a beacon on
977  * new channel
978  */
979 static void wiphy_update_new_beacon(struct wiphy *wiphy,
980                                     struct reg_beacon *reg_beacon)
981 {
982         unsigned int i;
983         struct ieee80211_supported_band *sband;
984
985         assert_cfg80211_lock();
986
987         if (!wiphy->bands[reg_beacon->chan.band])
988                 return;
989
990         sband = wiphy->bands[reg_beacon->chan.band];
991
992         for (i = 0; i < sband->n_channels; i++)
993                 handle_reg_beacon(wiphy, i, reg_beacon);
994 }
995
996 /*
997  * Called upon reg changes or a new wiphy is added
998  */
999 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1000 {
1001         unsigned int i;
1002         struct ieee80211_supported_band *sband;
1003         struct reg_beacon *reg_beacon;
1004
1005         assert_cfg80211_lock();
1006
1007         if (list_empty(&reg_beacon_list))
1008                 return;
1009
1010         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1011                 if (!wiphy->bands[reg_beacon->chan.band])
1012                         continue;
1013                 sband = wiphy->bands[reg_beacon->chan.band];
1014                 for (i = 0; i < sband->n_channels; i++)
1015                         handle_reg_beacon(wiphy, i, reg_beacon);
1016         }
1017 }
1018
1019 static bool reg_is_world_roaming(struct wiphy *wiphy)
1020 {
1021         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1022             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1023                 return true;
1024         if (last_request &&
1025             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1026             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1027                 return true;
1028         return false;
1029 }
1030
1031 /* Reap the advantages of previously found beacons */
1032 static void reg_process_beacons(struct wiphy *wiphy)
1033 {
1034         /*
1035          * Means we are just firing up cfg80211, so no beacons would
1036          * have been processed yet.
1037          */
1038         if (!last_request)
1039                 return;
1040         if (!reg_is_world_roaming(wiphy))
1041                 return;
1042         wiphy_update_beacon_reg(wiphy);
1043 }
1044
1045 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1046 {
1047         if (!chan)
1048                 return true;
1049         if (chan->flags & IEEE80211_CHAN_DISABLED)
1050                 return true;
1051         /* This would happen when regulatory rules disallow HT40 completely */
1052         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1053                 return true;
1054         return false;
1055 }
1056
1057 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1058                                          enum ieee80211_band band,
1059                                          unsigned int chan_idx)
1060 {
1061         struct ieee80211_supported_band *sband;
1062         struct ieee80211_channel *channel;
1063         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1064         unsigned int i;
1065
1066         assert_cfg80211_lock();
1067
1068         sband = wiphy->bands[band];
1069         BUG_ON(chan_idx >= sband->n_channels);
1070         channel = &sband->channels[chan_idx];
1071
1072         if (is_ht40_not_allowed(channel)) {
1073                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1074                 return;
1075         }
1076
1077         /*
1078          * We need to ensure the extension channels exist to
1079          * be able to use HT40- or HT40+, this finds them (or not)
1080          */
1081         for (i = 0; i < sband->n_channels; i++) {
1082                 struct ieee80211_channel *c = &sband->channels[i];
1083                 if (c->center_freq == (channel->center_freq - 20))
1084                         channel_before = c;
1085                 if (c->center_freq == (channel->center_freq + 20))
1086                         channel_after = c;
1087         }
1088
1089         /*
1090          * Please note that this assumes target bandwidth is 20 MHz,
1091          * if that ever changes we also need to change the below logic
1092          * to include that as well.
1093          */
1094         if (is_ht40_not_allowed(channel_before))
1095                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1096         else
1097                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1098
1099         if (is_ht40_not_allowed(channel_after))
1100                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1101         else
1102                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1103 }
1104
1105 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1106                                       enum ieee80211_band band)
1107 {
1108         unsigned int i;
1109         struct ieee80211_supported_band *sband;
1110
1111         BUG_ON(!wiphy->bands[band]);
1112         sband = wiphy->bands[band];
1113
1114         for (i = 0; i < sband->n_channels; i++)
1115                 reg_process_ht_flags_channel(wiphy, band, i);
1116 }
1117
1118 static void reg_process_ht_flags(struct wiphy *wiphy)
1119 {
1120         enum ieee80211_band band;
1121
1122         if (!wiphy)
1123                 return;
1124
1125         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1126                 if (wiphy->bands[band])
1127                         reg_process_ht_flags_band(wiphy, band);
1128         }
1129
1130 }
1131
1132 static void wiphy_update_regulatory(struct wiphy *wiphy,
1133                                     enum nl80211_reg_initiator initiator)
1134 {
1135         enum ieee80211_band band;
1136
1137         assert_reg_lock();
1138
1139         if (ignore_reg_update(wiphy, initiator))
1140                 return;
1141
1142         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1143                 if (wiphy->bands[band])
1144                         handle_band(wiphy, band, initiator);
1145         }
1146
1147         reg_process_beacons(wiphy);
1148         reg_process_ht_flags(wiphy);
1149         if (wiphy->reg_notifier)
1150                 wiphy->reg_notifier(wiphy, last_request);
1151 }
1152
1153 void regulatory_update(struct wiphy *wiphy,
1154                        enum nl80211_reg_initiator setby)
1155 {
1156         mutex_lock(&reg_mutex);
1157         wiphy_update_regulatory(wiphy, setby);
1158         mutex_unlock(&reg_mutex);
1159 }
1160
1161 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1162 {
1163         struct cfg80211_registered_device *rdev;
1164
1165         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1166                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1167 }
1168
1169 static void handle_channel_custom(struct wiphy *wiphy,
1170                                   enum ieee80211_band band,
1171                                   unsigned int chan_idx,
1172                                   const struct ieee80211_regdomain *regd)
1173 {
1174         int r;
1175         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1176         u32 bw_flags = 0;
1177         const struct ieee80211_reg_rule *reg_rule = NULL;
1178         const struct ieee80211_power_rule *power_rule = NULL;
1179         const struct ieee80211_freq_range *freq_range = NULL;
1180         struct ieee80211_supported_band *sband;
1181         struct ieee80211_channel *chan;
1182
1183         assert_reg_lock();
1184
1185         sband = wiphy->bands[band];
1186         BUG_ON(chan_idx >= sband->n_channels);
1187         chan = &sband->channels[chan_idx];
1188
1189         r = freq_reg_info_regd(wiphy,
1190                                MHZ_TO_KHZ(chan->center_freq),
1191                                desired_bw_khz,
1192                                &reg_rule,
1193                                regd);
1194
1195         if (r) {
1196                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1197                               "regd has no rule that fits a %d MHz "
1198                               "wide channel\n",
1199                               chan->center_freq,
1200                               KHZ_TO_MHZ(desired_bw_khz));
1201                 chan->flags = IEEE80211_CHAN_DISABLED;
1202                 return;
1203         }
1204
1205         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1206
1207         power_rule = &reg_rule->power_rule;
1208         freq_range = &reg_rule->freq_range;
1209
1210         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1211                 bw_flags = IEEE80211_CHAN_NO_HT40;
1212
1213         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1214         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1215         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1216 }
1217
1218 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1219                                const struct ieee80211_regdomain *regd)
1220 {
1221         unsigned int i;
1222         struct ieee80211_supported_band *sband;
1223
1224         BUG_ON(!wiphy->bands[band]);
1225         sband = wiphy->bands[band];
1226
1227         for (i = 0; i < sband->n_channels; i++)
1228                 handle_channel_custom(wiphy, band, i, regd);
1229 }
1230
1231 /* Used by drivers prior to wiphy registration */
1232 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1233                                    const struct ieee80211_regdomain *regd)
1234 {
1235         enum ieee80211_band band;
1236         unsigned int bands_set = 0;
1237
1238         mutex_lock(&reg_mutex);
1239         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1240                 if (!wiphy->bands[band])
1241                         continue;
1242                 handle_band_custom(wiphy, band, regd);
1243                 bands_set++;
1244         }
1245         mutex_unlock(&reg_mutex);
1246
1247         /*
1248          * no point in calling this if it won't have any effect
1249          * on your device's supportd bands.
1250          */
1251         WARN_ON(!bands_set);
1252 }
1253 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1254
1255 /*
1256  * Return value which can be used by ignore_request() to indicate
1257  * it has been determined we should intersect two regulatory domains
1258  */
1259 #define REG_INTERSECT   1
1260
1261 /* This has the logic which determines when a new request
1262  * should be ignored. */
1263 static int ignore_request(struct wiphy *wiphy,
1264                           struct regulatory_request *pending_request)
1265 {
1266         struct wiphy *last_wiphy = NULL;
1267
1268         assert_cfg80211_lock();
1269
1270         /* All initial requests are respected */
1271         if (!last_request)
1272                 return 0;
1273
1274         switch (pending_request->initiator) {
1275         case NL80211_REGDOM_SET_BY_CORE:
1276                 return 0;
1277         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1278
1279                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1280
1281                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1282                         return -EINVAL;
1283                 if (last_request->initiator ==
1284                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1285                         if (last_wiphy != wiphy) {
1286                                 /*
1287                                  * Two cards with two APs claiming different
1288                                  * Country IE alpha2s. We could
1289                                  * intersect them, but that seems unlikely
1290                                  * to be correct. Reject second one for now.
1291                                  */
1292                                 if (regdom_changes(pending_request->alpha2))
1293                                         return -EOPNOTSUPP;
1294                                 return -EALREADY;
1295                         }
1296                         /*
1297                          * Two consecutive Country IE hints on the same wiphy.
1298                          * This should be picked up early by the driver/stack
1299                          */
1300                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1301                                 return 0;
1302                         return -EALREADY;
1303                 }
1304                 return 0;
1305         case NL80211_REGDOM_SET_BY_DRIVER:
1306                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1307                         if (regdom_changes(pending_request->alpha2))
1308                                 return 0;
1309                         return -EALREADY;
1310                 }
1311
1312                 /*
1313                  * This would happen if you unplug and plug your card
1314                  * back in or if you add a new device for which the previously
1315                  * loaded card also agrees on the regulatory domain.
1316                  */
1317                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1318                     !regdom_changes(pending_request->alpha2))
1319                         return -EALREADY;
1320
1321                 return REG_INTERSECT;
1322         case NL80211_REGDOM_SET_BY_USER:
1323                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1324                         return REG_INTERSECT;
1325                 /*
1326                  * If the user knows better the user should set the regdom
1327                  * to their country before the IE is picked up
1328                  */
1329                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1330                           last_request->intersect)
1331                         return -EOPNOTSUPP;
1332                 /*
1333                  * Process user requests only after previous user/driver/core
1334                  * requests have been processed
1335                  */
1336                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1337                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1338                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1339                         if (regdom_changes(last_request->alpha2))
1340                                 return -EAGAIN;
1341                 }
1342
1343                 if (!regdom_changes(pending_request->alpha2))
1344                         return -EALREADY;
1345
1346                 return 0;
1347         }
1348
1349         return -EINVAL;
1350 }
1351
1352 static void reg_set_request_processed(void)
1353 {
1354         bool need_more_processing = false;
1355
1356         last_request->processed = true;
1357
1358         spin_lock(&reg_requests_lock);
1359         if (!list_empty(&reg_requests_list))
1360                 need_more_processing = true;
1361         spin_unlock(&reg_requests_lock);
1362
1363         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1364                 cancel_delayed_work_sync(&reg_timeout);
1365
1366         if (need_more_processing)
1367                 schedule_work(&reg_work);
1368 }
1369
1370 /**
1371  * __regulatory_hint - hint to the wireless core a regulatory domain
1372  * @wiphy: if the hint comes from country information from an AP, this
1373  *      is required to be set to the wiphy that received the information
1374  * @pending_request: the regulatory request currently being processed
1375  *
1376  * The Wireless subsystem can use this function to hint to the wireless core
1377  * what it believes should be the current regulatory domain.
1378  *
1379  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1380  * already been set or other standard error codes.
1381  *
1382  * Caller must hold &cfg80211_mutex and &reg_mutex
1383  */
1384 static int __regulatory_hint(struct wiphy *wiphy,
1385                              struct regulatory_request *pending_request)
1386 {
1387         bool intersect = false;
1388         int r = 0;
1389
1390         assert_cfg80211_lock();
1391
1392         r = ignore_request(wiphy, pending_request);
1393
1394         if (r == REG_INTERSECT) {
1395                 if (pending_request->initiator ==
1396                     NL80211_REGDOM_SET_BY_DRIVER) {
1397                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1398                         if (r) {
1399                                 kfree(pending_request);
1400                                 return r;
1401                         }
1402                 }
1403                 intersect = true;
1404         } else if (r) {
1405                 /*
1406                  * If the regulatory domain being requested by the
1407                  * driver has already been set just copy it to the
1408                  * wiphy
1409                  */
1410                 if (r == -EALREADY &&
1411                     pending_request->initiator ==
1412                     NL80211_REGDOM_SET_BY_DRIVER) {
1413                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1414                         if (r) {
1415                                 kfree(pending_request);
1416                                 return r;
1417                         }
1418                         r = -EALREADY;
1419                         goto new_request;
1420                 }
1421                 kfree(pending_request);
1422                 return r;
1423         }
1424
1425 new_request:
1426         if (last_request != &core_request_world)
1427                 kfree(last_request);
1428
1429         last_request = pending_request;
1430         last_request->intersect = intersect;
1431
1432         pending_request = NULL;
1433
1434         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1435                 user_alpha2[0] = last_request->alpha2[0];
1436                 user_alpha2[1] = last_request->alpha2[1];
1437         }
1438
1439         /* When r == REG_INTERSECT we do need to call CRDA */
1440         if (r < 0) {
1441                 /*
1442                  * Since CRDA will not be called in this case as we already
1443                  * have applied the requested regulatory domain before we just
1444                  * inform userspace we have processed the request
1445                  */
1446                 if (r == -EALREADY) {
1447                         nl80211_send_reg_change_event(last_request);
1448                         reg_set_request_processed();
1449                 }
1450                 return r;
1451         }
1452
1453         return call_crda(last_request->alpha2);
1454 }
1455
1456 /* This processes *all* regulatory hints */
1457 static void reg_process_hint(struct regulatory_request *reg_request)
1458 {
1459         int r = 0;
1460         struct wiphy *wiphy = NULL;
1461         enum nl80211_reg_initiator initiator = reg_request->initiator;
1462
1463         BUG_ON(!reg_request->alpha2);
1464
1465         if (wiphy_idx_valid(reg_request->wiphy_idx))
1466                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1467
1468         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1469             !wiphy) {
1470                 kfree(reg_request);
1471                 return;
1472         }
1473
1474         r = __regulatory_hint(wiphy, reg_request);
1475         /* This is required so that the orig_* parameters are saved */
1476         if (r == -EALREADY && wiphy &&
1477             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1478                 wiphy_update_regulatory(wiphy, initiator);
1479                 return;
1480         }
1481
1482         /*
1483          * We only time out user hints, given that they should be the only
1484          * source of bogus requests.
1485          */
1486         if (r != -EALREADY &&
1487             reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1488                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1489 }
1490
1491 /*
1492  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1493  * Regulatory hints come on a first come first serve basis and we
1494  * must process each one atomically.
1495  */
1496 static void reg_process_pending_hints(void)
1497 {
1498         struct regulatory_request *reg_request;
1499
1500         mutex_lock(&cfg80211_mutex);
1501         mutex_lock(&reg_mutex);
1502
1503         /* When last_request->processed becomes true this will be rescheduled */
1504         if (last_request && !last_request->processed) {
1505                 REG_DBG_PRINT("Pending regulatory request, waiting "
1506                               "for it to be processed...\n");
1507                 goto out;
1508         }
1509
1510         spin_lock(&reg_requests_lock);
1511
1512         if (list_empty(&reg_requests_list)) {
1513                 spin_unlock(&reg_requests_lock);
1514                 goto out;
1515         }
1516
1517         reg_request = list_first_entry(&reg_requests_list,
1518                                        struct regulatory_request,
1519                                        list);
1520         list_del_init(&reg_request->list);
1521
1522         spin_unlock(&reg_requests_lock);
1523
1524         reg_process_hint(reg_request);
1525
1526 out:
1527         mutex_unlock(&reg_mutex);
1528         mutex_unlock(&cfg80211_mutex);
1529 }
1530
1531 /* Processes beacon hints -- this has nothing to do with country IEs */
1532 static void reg_process_pending_beacon_hints(void)
1533 {
1534         struct cfg80211_registered_device *rdev;
1535         struct reg_beacon *pending_beacon, *tmp;
1536
1537         /*
1538          * No need to hold the reg_mutex here as we just touch wiphys
1539          * and do not read or access regulatory variables.
1540          */
1541         mutex_lock(&cfg80211_mutex);
1542
1543         /* This goes through the _pending_ beacon list */
1544         spin_lock_bh(&reg_pending_beacons_lock);
1545
1546         if (list_empty(&reg_pending_beacons)) {
1547                 spin_unlock_bh(&reg_pending_beacons_lock);
1548                 goto out;
1549         }
1550
1551         list_for_each_entry_safe(pending_beacon, tmp,
1552                                  &reg_pending_beacons, list) {
1553
1554                 list_del_init(&pending_beacon->list);
1555
1556                 /* Applies the beacon hint to current wiphys */
1557                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1558                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1559
1560                 /* Remembers the beacon hint for new wiphys or reg changes */
1561                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1562         }
1563
1564         spin_unlock_bh(&reg_pending_beacons_lock);
1565 out:
1566         mutex_unlock(&cfg80211_mutex);
1567 }
1568
1569 static void reg_todo(struct work_struct *work)
1570 {
1571         reg_process_pending_hints();
1572         reg_process_pending_beacon_hints();
1573 }
1574
1575 static void queue_regulatory_request(struct regulatory_request *request)
1576 {
1577         if (isalpha(request->alpha2[0]))
1578                 request->alpha2[0] = toupper(request->alpha2[0]);
1579         if (isalpha(request->alpha2[1]))
1580                 request->alpha2[1] = toupper(request->alpha2[1]);
1581
1582         spin_lock(&reg_requests_lock);
1583         list_add_tail(&request->list, &reg_requests_list);
1584         spin_unlock(&reg_requests_lock);
1585
1586         schedule_work(&reg_work);
1587 }
1588
1589 /*
1590  * Core regulatory hint -- happens during cfg80211_init()
1591  * and when we restore regulatory settings.
1592  */
1593 static int regulatory_hint_core(const char *alpha2)
1594 {
1595         struct regulatory_request *request;
1596
1597         request = kzalloc(sizeof(struct regulatory_request),
1598                           GFP_KERNEL);
1599         if (!request)
1600                 return -ENOMEM;
1601
1602         request->alpha2[0] = alpha2[0];
1603         request->alpha2[1] = alpha2[1];
1604         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1605
1606         queue_regulatory_request(request);
1607
1608         return 0;
1609 }
1610
1611 /* User hints */
1612 int regulatory_hint_user(const char *alpha2)
1613 {
1614         struct regulatory_request *request;
1615
1616         BUG_ON(!alpha2);
1617
1618         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1619         if (!request)
1620                 return -ENOMEM;
1621
1622         request->wiphy_idx = WIPHY_IDX_STALE;
1623         request->alpha2[0] = alpha2[0];
1624         request->alpha2[1] = alpha2[1];
1625         request->initiator = NL80211_REGDOM_SET_BY_USER;
1626
1627         queue_regulatory_request(request);
1628
1629         return 0;
1630 }
1631
1632 /* Driver hints */
1633 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1634 {
1635         struct regulatory_request *request;
1636
1637         BUG_ON(!alpha2);
1638         BUG_ON(!wiphy);
1639
1640         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1641         if (!request)
1642                 return -ENOMEM;
1643
1644         request->wiphy_idx = get_wiphy_idx(wiphy);
1645
1646         /* Must have registered wiphy first */
1647         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1648
1649         request->alpha2[0] = alpha2[0];
1650         request->alpha2[1] = alpha2[1];
1651         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1652
1653         queue_regulatory_request(request);
1654
1655         return 0;
1656 }
1657 EXPORT_SYMBOL(regulatory_hint);
1658
1659 /*
1660  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1661  * therefore cannot iterate over the rdev list here.
1662  */
1663 void regulatory_hint_11d(struct wiphy *wiphy,
1664                          enum ieee80211_band band,
1665                          u8 *country_ie,
1666                          u8 country_ie_len)
1667 {
1668         char alpha2[2];
1669         enum environment_cap env = ENVIRON_ANY;
1670         struct regulatory_request *request;
1671
1672         mutex_lock(&reg_mutex);
1673
1674         if (unlikely(!last_request))
1675                 goto out;
1676
1677         /* IE len must be evenly divisible by 2 */
1678         if (country_ie_len & 0x01)
1679                 goto out;
1680
1681         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1682                 goto out;
1683
1684         alpha2[0] = country_ie[0];
1685         alpha2[1] = country_ie[1];
1686
1687         if (country_ie[2] == 'I')
1688                 env = ENVIRON_INDOOR;
1689         else if (country_ie[2] == 'O')
1690                 env = ENVIRON_OUTDOOR;
1691
1692         /*
1693          * We will run this only upon a successful connection on cfg80211.
1694          * We leave conflict resolution to the workqueue, where can hold
1695          * cfg80211_mutex.
1696          */
1697         if (likely(last_request->initiator ==
1698             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1699             wiphy_idx_valid(last_request->wiphy_idx)))
1700                 goto out;
1701
1702         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1703         if (!request)
1704                 goto out;
1705
1706         request->wiphy_idx = get_wiphy_idx(wiphy);
1707         request->alpha2[0] = alpha2[0];
1708         request->alpha2[1] = alpha2[1];
1709         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1710         request->country_ie_env = env;
1711
1712         mutex_unlock(&reg_mutex);
1713
1714         queue_regulatory_request(request);
1715
1716         return;
1717
1718 out:
1719         mutex_unlock(&reg_mutex);
1720 }
1721
1722 static void restore_alpha2(char *alpha2, bool reset_user)
1723 {
1724         /* indicates there is no alpha2 to consider for restoration */
1725         alpha2[0] = '9';
1726         alpha2[1] = '7';
1727
1728         /* The user setting has precedence over the module parameter */
1729         if (is_user_regdom_saved()) {
1730                 /* Unless we're asked to ignore it and reset it */
1731                 if (reset_user) {
1732                         REG_DBG_PRINT("Restoring regulatory settings "
1733                                "including user preference\n");
1734                         user_alpha2[0] = '9';
1735                         user_alpha2[1] = '7';
1736
1737                         /*
1738                          * If we're ignoring user settings, we still need to
1739                          * check the module parameter to ensure we put things
1740                          * back as they were for a full restore.
1741                          */
1742                         if (!is_world_regdom(ieee80211_regdom)) {
1743                                 REG_DBG_PRINT("Keeping preference on "
1744                                        "module parameter ieee80211_regdom: %c%c\n",
1745                                        ieee80211_regdom[0],
1746                                        ieee80211_regdom[1]);
1747                                 alpha2[0] = ieee80211_regdom[0];
1748                                 alpha2[1] = ieee80211_regdom[1];
1749                         }
1750                 } else {
1751                         REG_DBG_PRINT("Restoring regulatory settings "
1752                                "while preserving user preference for: %c%c\n",
1753                                user_alpha2[0],
1754                                user_alpha2[1]);
1755                         alpha2[0] = user_alpha2[0];
1756                         alpha2[1] = user_alpha2[1];
1757                 }
1758         } else if (!is_world_regdom(ieee80211_regdom)) {
1759                 REG_DBG_PRINT("Keeping preference on "
1760                        "module parameter ieee80211_regdom: %c%c\n",
1761                        ieee80211_regdom[0],
1762                        ieee80211_regdom[1]);
1763                 alpha2[0] = ieee80211_regdom[0];
1764                 alpha2[1] = ieee80211_regdom[1];
1765         } else
1766                 REG_DBG_PRINT("Restoring regulatory settings\n");
1767 }
1768
1769 /*
1770  * Restoring regulatory settings involves ingoring any
1771  * possibly stale country IE information and user regulatory
1772  * settings if so desired, this includes any beacon hints
1773  * learned as we could have traveled outside to another country
1774  * after disconnection. To restore regulatory settings we do
1775  * exactly what we did at bootup:
1776  *
1777  *   - send a core regulatory hint
1778  *   - send a user regulatory hint if applicable
1779  *
1780  * Device drivers that send a regulatory hint for a specific country
1781  * keep their own regulatory domain on wiphy->regd so that does does
1782  * not need to be remembered.
1783  */
1784 static void restore_regulatory_settings(bool reset_user)
1785 {
1786         char alpha2[2];
1787         struct reg_beacon *reg_beacon, *btmp;
1788         struct regulatory_request *reg_request, *tmp;
1789         LIST_HEAD(tmp_reg_req_list);
1790
1791         mutex_lock(&cfg80211_mutex);
1792         mutex_lock(&reg_mutex);
1793
1794         reset_regdomains(true);
1795         restore_alpha2(alpha2, reset_user);
1796
1797         /*
1798          * If there's any pending requests we simply
1799          * stash them to a temporary pending queue and
1800          * add then after we've restored regulatory
1801          * settings.
1802          */
1803         spin_lock(&reg_requests_lock);
1804         if (!list_empty(&reg_requests_list)) {
1805                 list_for_each_entry_safe(reg_request, tmp,
1806                                          &reg_requests_list, list) {
1807                         if (reg_request->initiator !=
1808                             NL80211_REGDOM_SET_BY_USER)
1809                                 continue;
1810                         list_del(&reg_request->list);
1811                         list_add_tail(&reg_request->list, &tmp_reg_req_list);
1812                 }
1813         }
1814         spin_unlock(&reg_requests_lock);
1815
1816         /* Clear beacon hints */
1817         spin_lock_bh(&reg_pending_beacons_lock);
1818         if (!list_empty(&reg_pending_beacons)) {
1819                 list_for_each_entry_safe(reg_beacon, btmp,
1820                                          &reg_pending_beacons, list) {
1821                         list_del(&reg_beacon->list);
1822                         kfree(reg_beacon);
1823                 }
1824         }
1825         spin_unlock_bh(&reg_pending_beacons_lock);
1826
1827         if (!list_empty(&reg_beacon_list)) {
1828                 list_for_each_entry_safe(reg_beacon, btmp,
1829                                          &reg_beacon_list, list) {
1830                         list_del(&reg_beacon->list);
1831                         kfree(reg_beacon);
1832                 }
1833         }
1834
1835         /* First restore to the basic regulatory settings */
1836         cfg80211_regdomain = cfg80211_world_regdom;
1837
1838         mutex_unlock(&reg_mutex);
1839         mutex_unlock(&cfg80211_mutex);
1840
1841         regulatory_hint_core(cfg80211_regdomain->alpha2);
1842
1843         /*
1844          * This restores the ieee80211_regdom module parameter
1845          * preference or the last user requested regulatory
1846          * settings, user regulatory settings takes precedence.
1847          */
1848         if (is_an_alpha2(alpha2))
1849                 regulatory_hint_user(user_alpha2);
1850
1851         if (list_empty(&tmp_reg_req_list))
1852                 return;
1853
1854         mutex_lock(&cfg80211_mutex);
1855         mutex_lock(&reg_mutex);
1856
1857         spin_lock(&reg_requests_lock);
1858         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1859                 REG_DBG_PRINT("Adding request for country %c%c back "
1860                               "into the queue\n",
1861                               reg_request->alpha2[0],
1862                               reg_request->alpha2[1]);
1863                 list_del(&reg_request->list);
1864                 list_add_tail(&reg_request->list, &reg_requests_list);
1865         }
1866         spin_unlock(&reg_requests_lock);
1867
1868         mutex_unlock(&reg_mutex);
1869         mutex_unlock(&cfg80211_mutex);
1870
1871         REG_DBG_PRINT("Kicking the queue\n");
1872
1873         schedule_work(&reg_work);
1874 }
1875
1876 void regulatory_hint_disconnect(void)
1877 {
1878         REG_DBG_PRINT("All devices are disconnected, going to "
1879                       "restore regulatory settings\n");
1880         restore_regulatory_settings(false);
1881 }
1882
1883 static bool freq_is_chan_12_13_14(u16 freq)
1884 {
1885         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1886             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1887             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1888                 return true;
1889         return false;
1890 }
1891
1892 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1893                                  struct ieee80211_channel *beacon_chan,
1894                                  gfp_t gfp)
1895 {
1896         struct reg_beacon *reg_beacon;
1897
1898         if (likely((beacon_chan->beacon_found ||
1899             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1900             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1901              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1902                 return 0;
1903
1904         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1905         if (!reg_beacon)
1906                 return -ENOMEM;
1907
1908         REG_DBG_PRINT("Found new beacon on "
1909                       "frequency: %d MHz (Ch %d) on %s\n",
1910                       beacon_chan->center_freq,
1911                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1912                       wiphy_name(wiphy));
1913
1914         memcpy(&reg_beacon->chan, beacon_chan,
1915                 sizeof(struct ieee80211_channel));
1916
1917
1918         /*
1919          * Since we can be called from BH or and non-BH context
1920          * we must use spin_lock_bh()
1921          */
1922         spin_lock_bh(&reg_pending_beacons_lock);
1923         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1924         spin_unlock_bh(&reg_pending_beacons_lock);
1925
1926         schedule_work(&reg_work);
1927
1928         return 0;
1929 }
1930
1931 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1932 {
1933         unsigned int i;
1934         const struct ieee80211_reg_rule *reg_rule = NULL;
1935         const struct ieee80211_freq_range *freq_range = NULL;
1936         const struct ieee80211_power_rule *power_rule = NULL;
1937
1938         pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1939
1940         for (i = 0; i < rd->n_reg_rules; i++) {
1941                 reg_rule = &rd->reg_rules[i];
1942                 freq_range = &reg_rule->freq_range;
1943                 power_rule = &reg_rule->power_rule;
1944
1945                 /*
1946                  * There may not be documentation for max antenna gain
1947                  * in certain regions
1948                  */
1949                 if (power_rule->max_antenna_gain)
1950                         pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1951                                 freq_range->start_freq_khz,
1952                                 freq_range->end_freq_khz,
1953                                 freq_range->max_bandwidth_khz,
1954                                 power_rule->max_antenna_gain,
1955                                 power_rule->max_eirp);
1956                 else
1957                         pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1958                                 freq_range->start_freq_khz,
1959                                 freq_range->end_freq_khz,
1960                                 freq_range->max_bandwidth_khz,
1961                                 power_rule->max_eirp);
1962         }
1963 }
1964
1965 static void print_regdomain(const struct ieee80211_regdomain *rd)
1966 {
1967
1968         if (is_intersected_alpha2(rd->alpha2)) {
1969
1970                 if (last_request->initiator ==
1971                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1972                         struct cfg80211_registered_device *rdev;
1973                         rdev = cfg80211_rdev_by_wiphy_idx(
1974                                 last_request->wiphy_idx);
1975                         if (rdev) {
1976                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1977                                         rdev->country_ie_alpha2[0],
1978                                         rdev->country_ie_alpha2[1]);
1979                         } else
1980                                 pr_info("Current regulatory domain intersected:\n");
1981                 } else
1982                         pr_info("Current regulatory domain intersected:\n");
1983         } else if (is_world_regdom(rd->alpha2))
1984                 pr_info("World regulatory domain updated:\n");
1985         else {
1986                 if (is_unknown_alpha2(rd->alpha2))
1987                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1988                 else
1989                         pr_info("Regulatory domain changed to country: %c%c\n",
1990                                 rd->alpha2[0], rd->alpha2[1]);
1991         }
1992         print_rd_rules(rd);
1993 }
1994
1995 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1996 {
1997         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1998         print_rd_rules(rd);
1999 }
2000
2001 /* Takes ownership of rd only if it doesn't fail */
2002 static int __set_regdom(const struct ieee80211_regdomain *rd)
2003 {
2004         const struct ieee80211_regdomain *intersected_rd = NULL;
2005         struct cfg80211_registered_device *rdev = NULL;
2006         struct wiphy *request_wiphy;
2007         /* Some basic sanity checks first */
2008
2009         if (is_world_regdom(rd->alpha2)) {
2010                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2011                         return -EINVAL;
2012                 update_world_regdomain(rd);
2013                 return 0;
2014         }
2015
2016         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2017                         !is_unknown_alpha2(rd->alpha2))
2018                 return -EINVAL;
2019
2020         if (!last_request)
2021                 return -EINVAL;
2022
2023         /*
2024          * Lets only bother proceeding on the same alpha2 if the current
2025          * rd is non static (it means CRDA was present and was used last)
2026          * and the pending request came in from a country IE
2027          */
2028         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2029                 /*
2030                  * If someone else asked us to change the rd lets only bother
2031                  * checking if the alpha2 changes if CRDA was already called
2032                  */
2033                 if (!regdom_changes(rd->alpha2))
2034                         return -EINVAL;
2035         }
2036
2037         /*
2038          * Now lets set the regulatory domain, update all driver channels
2039          * and finally inform them of what we have done, in case they want
2040          * to review or adjust their own settings based on their own
2041          * internal EEPROM data
2042          */
2043
2044         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2045                 return -EINVAL;
2046
2047         if (!is_valid_rd(rd)) {
2048                 pr_err("Invalid regulatory domain detected:\n");
2049                 print_regdomain_info(rd);
2050                 return -EINVAL;
2051         }
2052
2053         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2054         if (!request_wiphy &&
2055             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2056              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2057                 schedule_delayed_work(&reg_timeout, 0);
2058                 return -ENODEV;
2059         }
2060
2061         if (!last_request->intersect) {
2062                 int r;
2063
2064                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2065                         reset_regdomains(false);
2066                         cfg80211_regdomain = rd;
2067                         return 0;
2068                 }
2069
2070                 /*
2071                  * For a driver hint, lets copy the regulatory domain the
2072                  * driver wanted to the wiphy to deal with conflicts
2073                  */
2074
2075                 /*
2076                  * Userspace could have sent two replies with only
2077                  * one kernel request.
2078                  */
2079                 if (request_wiphy->regd)
2080                         return -EALREADY;
2081
2082                 r = reg_copy_regd(&request_wiphy->regd, rd);
2083                 if (r)
2084                         return r;
2085
2086                 reset_regdomains(false);
2087                 cfg80211_regdomain = rd;
2088                 return 0;
2089         }
2090
2091         /* Intersection requires a bit more work */
2092
2093         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2094
2095                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2096                 if (!intersected_rd)
2097                         return -EINVAL;
2098
2099                 /*
2100                  * We can trash what CRDA provided now.
2101                  * However if a driver requested this specific regulatory
2102                  * domain we keep it for its private use
2103                  */
2104                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2105                         request_wiphy->regd = rd;
2106                 else
2107                         kfree(rd);
2108
2109                 rd = NULL;
2110
2111                 reset_regdomains(false);
2112                 cfg80211_regdomain = intersected_rd;
2113
2114                 return 0;
2115         }
2116
2117         if (!intersected_rd)
2118                 return -EINVAL;
2119
2120         rdev = wiphy_to_dev(request_wiphy);
2121
2122         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2123         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2124         rdev->env = last_request->country_ie_env;
2125
2126         BUG_ON(intersected_rd == rd);
2127
2128         kfree(rd);
2129         rd = NULL;
2130
2131         reset_regdomains(false);
2132         cfg80211_regdomain = intersected_rd;
2133
2134         return 0;
2135 }
2136
2137
2138 /*
2139  * Use this call to set the current regulatory domain. Conflicts with
2140  * multiple drivers can be ironed out later. Caller must've already
2141  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2142  */
2143 int set_regdom(const struct ieee80211_regdomain *rd)
2144 {
2145         int r;
2146
2147         assert_cfg80211_lock();
2148
2149         mutex_lock(&reg_mutex);
2150
2151         /* Note that this doesn't update the wiphys, this is done below */
2152         r = __set_regdom(rd);
2153         if (r) {
2154                 kfree(rd);
2155                 mutex_unlock(&reg_mutex);
2156                 return r;
2157         }
2158
2159         /* This would make this whole thing pointless */
2160         if (!last_request->intersect)
2161                 BUG_ON(rd != cfg80211_regdomain);
2162
2163         /* update all wiphys now with the new established regulatory domain */
2164         update_all_wiphy_regulatory(last_request->initiator);
2165
2166         print_regdomain(cfg80211_regdomain);
2167
2168         nl80211_send_reg_change_event(last_request);
2169
2170         reg_set_request_processed();
2171
2172         mutex_unlock(&reg_mutex);
2173
2174         return r;
2175 }
2176
2177 #ifdef CONFIG_HOTPLUG
2178 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2179 {
2180         if (last_request && !last_request->processed) {
2181                 if (add_uevent_var(env, "COUNTRY=%c%c",
2182                                    last_request->alpha2[0],
2183                                    last_request->alpha2[1]))
2184                         return -ENOMEM;
2185         }
2186
2187         return 0;
2188 }
2189 #else
2190 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2191 {
2192         return -ENODEV;
2193 }
2194 #endif /* CONFIG_HOTPLUG */
2195
2196 /* Caller must hold cfg80211_mutex */
2197 void reg_device_remove(struct wiphy *wiphy)
2198 {
2199         struct wiphy *request_wiphy = NULL;
2200
2201         assert_cfg80211_lock();
2202
2203         mutex_lock(&reg_mutex);
2204
2205         kfree(wiphy->regd);
2206
2207         if (last_request)
2208                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2209
2210         if (!request_wiphy || request_wiphy != wiphy)
2211                 goto out;
2212
2213         last_request->wiphy_idx = WIPHY_IDX_STALE;
2214         last_request->country_ie_env = ENVIRON_ANY;
2215 out:
2216         mutex_unlock(&reg_mutex);
2217 }
2218
2219 static void reg_timeout_work(struct work_struct *work)
2220 {
2221         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2222                       "restoring regulatory settings\n");
2223         restore_regulatory_settings(true);
2224 }
2225
2226 int __init regulatory_init(void)
2227 {
2228         int err = 0;
2229
2230         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2231         if (IS_ERR(reg_pdev))
2232                 return PTR_ERR(reg_pdev);
2233
2234         reg_pdev->dev.type = &reg_device_type;
2235
2236         spin_lock_init(&reg_requests_lock);
2237         spin_lock_init(&reg_pending_beacons_lock);
2238
2239         cfg80211_regdomain = cfg80211_world_regdom;
2240
2241         user_alpha2[0] = '9';
2242         user_alpha2[1] = '7';
2243
2244         /* We always try to get an update for the static regdomain */
2245         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2246         if (err) {
2247                 if (err == -ENOMEM)
2248                         return err;
2249                 /*
2250                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2251                  * memory which is handled and propagated appropriately above
2252                  * but it can also fail during a netlink_broadcast() or during
2253                  * early boot for call_usermodehelper(). For now treat these
2254                  * errors as non-fatal.
2255                  */
2256                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2257 #ifdef CONFIG_CFG80211_REG_DEBUG
2258                 /* We want to find out exactly why when debugging */
2259                 WARN_ON(err);
2260 #endif
2261         }
2262
2263         /*
2264          * Finally, if the user set the module parameter treat it
2265          * as a user hint.
2266          */
2267         if (!is_world_regdom(ieee80211_regdom))
2268                 regulatory_hint_user(ieee80211_regdom);
2269
2270         return 0;
2271 }
2272
2273 void /* __init_or_exit */ regulatory_exit(void)
2274 {
2275         struct regulatory_request *reg_request, *tmp;
2276         struct reg_beacon *reg_beacon, *btmp;
2277
2278         cancel_work_sync(&reg_work);
2279         cancel_delayed_work_sync(&reg_timeout);
2280
2281         mutex_lock(&cfg80211_mutex);
2282         mutex_lock(&reg_mutex);
2283
2284         reset_regdomains(true);
2285
2286         dev_set_uevent_suppress(&reg_pdev->dev, true);
2287
2288         platform_device_unregister(reg_pdev);
2289
2290         spin_lock_bh(&reg_pending_beacons_lock);
2291         if (!list_empty(&reg_pending_beacons)) {
2292                 list_for_each_entry_safe(reg_beacon, btmp,
2293                                          &reg_pending_beacons, list) {
2294                         list_del(&reg_beacon->list);
2295                         kfree(reg_beacon);
2296                 }
2297         }
2298         spin_unlock_bh(&reg_pending_beacons_lock);
2299
2300         if (!list_empty(&reg_beacon_list)) {
2301                 list_for_each_entry_safe(reg_beacon, btmp,
2302                                          &reg_beacon_list, list) {
2303                         list_del(&reg_beacon->list);
2304                         kfree(reg_beacon);
2305                 }
2306         }
2307
2308         spin_lock(&reg_requests_lock);
2309         if (!list_empty(&reg_requests_list)) {
2310                 list_for_each_entry_safe(reg_request, tmp,
2311                                          &reg_requests_list, list) {
2312                         list_del(&reg_request->list);
2313                         kfree(reg_request);
2314                 }
2315         }
2316         spin_unlock(&reg_requests_lock);
2317
2318         mutex_unlock(&reg_mutex);
2319         mutex_unlock(&cfg80211_mutex);
2320 }