rt2x00: FIF_PSPOLL filter flag support
[pandora-kernel.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
44
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50
51 /*
52  * Central wireless core regulatory domains, we only need two,
53  * the current one and a world regulatory domain in case we have no
54  * information to give us an alpha2
55  */
56 const struct ieee80211_regdomain *cfg80211_regdomain;
57
58 /*
59  * We use this as a place for the rd structure built from the
60  * last parsed country IE to rest until CRDA gets back to us with
61  * what it thinks should apply for the same country
62  */
63 static const struct ieee80211_regdomain *country_ie_regdomain;
64
65 /*
66  * Protects static reg.c components:
67  *     - cfg80211_world_regdom
68  *     - cfg80211_regdom
69  *     - country_ie_regdomain
70  *     - last_request
71  */
72 DEFINE_MUTEX(reg_mutex);
73 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
74
75 /* Used to queue up regulatory hints */
76 static LIST_HEAD(reg_requests_list);
77 static spinlock_t reg_requests_lock;
78
79 /* Used to queue up beacon hints for review */
80 static LIST_HEAD(reg_pending_beacons);
81 static spinlock_t reg_pending_beacons_lock;
82
83 /* Used to keep track of processed beacon hints */
84 static LIST_HEAD(reg_beacon_list);
85
86 struct reg_beacon {
87         struct list_head list;
88         struct ieee80211_channel chan;
89 };
90
91 /* We keep a static world regulatory domain in case of the absence of CRDA */
92 static const struct ieee80211_regdomain world_regdom = {
93         .n_reg_rules = 5,
94         .alpha2 =  "00",
95         .reg_rules = {
96                 /* IEEE 802.11b/g, channels 1..11 */
97                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
98                 /* IEEE 802.11b/g, channels 12..13. No HT40
99                  * channel fits here. */
100                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
101                         NL80211_RRF_PASSIVE_SCAN |
102                         NL80211_RRF_NO_IBSS),
103                 /* IEEE 802.11 channel 14 - Only JP enables
104                  * this and for 802.11b only */
105                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
106                         NL80211_RRF_PASSIVE_SCAN |
107                         NL80211_RRF_NO_IBSS |
108                         NL80211_RRF_NO_OFDM),
109                 /* IEEE 802.11a, channel 36..48 */
110                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
111                         NL80211_RRF_PASSIVE_SCAN |
112                         NL80211_RRF_NO_IBSS),
113
114                 /* NB: 5260 MHz - 5700 MHz requies DFS */
115
116                 /* IEEE 802.11a, channel 149..165 */
117                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
118                         NL80211_RRF_PASSIVE_SCAN |
119                         NL80211_RRF_NO_IBSS),
120         }
121 };
122
123 static const struct ieee80211_regdomain *cfg80211_world_regdom =
124         &world_regdom;
125
126 static char *ieee80211_regdom = "00";
127
128 module_param(ieee80211_regdom, charp, 0444);
129 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
130
131 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
132 /*
133  * We assume 40 MHz bandwidth for the old regulatory work.
134  * We make emphasis we are using the exact same frequencies
135  * as before
136  */
137
138 static const struct ieee80211_regdomain us_regdom = {
139         .n_reg_rules = 6,
140         .alpha2 =  "US",
141         .reg_rules = {
142                 /* IEEE 802.11b/g, channels 1..11 */
143                 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
144                 /* IEEE 802.11a, channel 36 */
145                 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
146                 /* IEEE 802.11a, channel 40 */
147                 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
148                 /* IEEE 802.11a, channel 44 */
149                 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
150                 /* IEEE 802.11a, channels 48..64 */
151                 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
152                 /* IEEE 802.11a, channels 149..165, outdoor */
153                 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
154         }
155 };
156
157 static const struct ieee80211_regdomain jp_regdom = {
158         .n_reg_rules = 3,
159         .alpha2 =  "JP",
160         .reg_rules = {
161                 /* IEEE 802.11b/g, channels 1..14 */
162                 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
163                 /* IEEE 802.11a, channels 34..48 */
164                 REG_RULE(5170-10, 5240+10, 40, 6, 20,
165                         NL80211_RRF_PASSIVE_SCAN),
166                 /* IEEE 802.11a, channels 52..64 */
167                 REG_RULE(5260-10, 5320+10, 40, 6, 20,
168                         NL80211_RRF_NO_IBSS |
169                         NL80211_RRF_DFS),
170         }
171 };
172
173 static const struct ieee80211_regdomain eu_regdom = {
174         .n_reg_rules = 6,
175         /*
176          * This alpha2 is bogus, we leave it here just for stupid
177          * backward compatibility
178          */
179         .alpha2 =  "EU",
180         .reg_rules = {
181                 /* IEEE 802.11b/g, channels 1..13 */
182                 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
183                 /* IEEE 802.11a, channel 36 */
184                 REG_RULE(5180-10, 5180+10, 40, 6, 23,
185                         NL80211_RRF_PASSIVE_SCAN),
186                 /* IEEE 802.11a, channel 40 */
187                 REG_RULE(5200-10, 5200+10, 40, 6, 23,
188                         NL80211_RRF_PASSIVE_SCAN),
189                 /* IEEE 802.11a, channel 44 */
190                 REG_RULE(5220-10, 5220+10, 40, 6, 23,
191                         NL80211_RRF_PASSIVE_SCAN),
192                 /* IEEE 802.11a, channels 48..64 */
193                 REG_RULE(5240-10, 5320+10, 40, 6, 20,
194                         NL80211_RRF_NO_IBSS |
195                         NL80211_RRF_DFS),
196                 /* IEEE 802.11a, channels 100..140 */
197                 REG_RULE(5500-10, 5700+10, 40, 6, 30,
198                         NL80211_RRF_NO_IBSS |
199                         NL80211_RRF_DFS),
200         }
201 };
202
203 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
204 {
205         if (alpha2[0] == 'U' && alpha2[1] == 'S')
206                 return &us_regdom;
207         if (alpha2[0] == 'J' && alpha2[1] == 'P')
208                 return &jp_regdom;
209         if (alpha2[0] == 'E' && alpha2[1] == 'U')
210                 return &eu_regdom;
211         /* Default, as per the old rules */
212         return &us_regdom;
213 }
214
215 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
216 {
217         if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
218                 return true;
219         return false;
220 }
221 #else
222 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
223 {
224         return false;
225 }
226 #endif
227
228 static void reset_regdomains(void)
229 {
230         /* avoid freeing static information or freeing something twice */
231         if (cfg80211_regdomain == cfg80211_world_regdom)
232                 cfg80211_regdomain = NULL;
233         if (cfg80211_world_regdom == &world_regdom)
234                 cfg80211_world_regdom = NULL;
235         if (cfg80211_regdomain == &world_regdom)
236                 cfg80211_regdomain = NULL;
237         if (is_old_static_regdom(cfg80211_regdomain))
238                 cfg80211_regdomain = NULL;
239
240         kfree(cfg80211_regdomain);
241         kfree(cfg80211_world_regdom);
242
243         cfg80211_world_regdom = &world_regdom;
244         cfg80211_regdomain = NULL;
245 }
246
247 /*
248  * Dynamic world regulatory domain requested by the wireless
249  * core upon initialization
250  */
251 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
252 {
253         BUG_ON(!last_request);
254
255         reset_regdomains();
256
257         cfg80211_world_regdom = rd;
258         cfg80211_regdomain = rd;
259 }
260
261 bool is_world_regdom(const char *alpha2)
262 {
263         if (!alpha2)
264                 return false;
265         if (alpha2[0] == '0' && alpha2[1] == '0')
266                 return true;
267         return false;
268 }
269
270 static bool is_alpha2_set(const char *alpha2)
271 {
272         if (!alpha2)
273                 return false;
274         if (alpha2[0] != 0 && alpha2[1] != 0)
275                 return true;
276         return false;
277 }
278
279 static bool is_alpha_upper(char letter)
280 {
281         /* ASCII A - Z */
282         if (letter >= 65 && letter <= 90)
283                 return true;
284         return false;
285 }
286
287 static bool is_unknown_alpha2(const char *alpha2)
288 {
289         if (!alpha2)
290                 return false;
291         /*
292          * Special case where regulatory domain was built by driver
293          * but a specific alpha2 cannot be determined
294          */
295         if (alpha2[0] == '9' && alpha2[1] == '9')
296                 return true;
297         return false;
298 }
299
300 static bool is_intersected_alpha2(const char *alpha2)
301 {
302         if (!alpha2)
303                 return false;
304         /*
305          * Special case where regulatory domain is the
306          * result of an intersection between two regulatory domain
307          * structures
308          */
309         if (alpha2[0] == '9' && alpha2[1] == '8')
310                 return true;
311         return false;
312 }
313
314 static bool is_an_alpha2(const char *alpha2)
315 {
316         if (!alpha2)
317                 return false;
318         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
319                 return true;
320         return false;
321 }
322
323 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
324 {
325         if (!alpha2_x || !alpha2_y)
326                 return false;
327         if (alpha2_x[0] == alpha2_y[0] &&
328                 alpha2_x[1] == alpha2_y[1])
329                 return true;
330         return false;
331 }
332
333 static bool regdom_changes(const char *alpha2)
334 {
335         assert_cfg80211_lock();
336
337         if (!cfg80211_regdomain)
338                 return true;
339         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
340                 return false;
341         return true;
342 }
343
344 /**
345  * country_ie_integrity_changes - tells us if the country IE has changed
346  * @checksum: checksum of country IE of fields we are interested in
347  *
348  * If the country IE has not changed you can ignore it safely. This is
349  * useful to determine if two devices are seeing two different country IEs
350  * even on the same alpha2. Note that this will return false if no IE has
351  * been set on the wireless core yet.
352  */
353 static bool country_ie_integrity_changes(u32 checksum)
354 {
355         /* If no IE has been set then the checksum doesn't change */
356         if (unlikely(!last_request->country_ie_checksum))
357                 return false;
358         if (unlikely(last_request->country_ie_checksum != checksum))
359                 return true;
360         return false;
361 }
362
363 /*
364  * This lets us keep regulatory code which is updated on a regulatory
365  * basis in userspace.
366  */
367 static int call_crda(const char *alpha2)
368 {
369         char country_env[9 + 2] = "COUNTRY=";
370         char *envp[] = {
371                 country_env,
372                 NULL
373         };
374
375         if (!is_world_regdom((char *) alpha2))
376                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
377                         alpha2[0], alpha2[1]);
378         else
379                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
380                         "regulatory domain\n");
381
382         country_env[8] = alpha2[0];
383         country_env[9] = alpha2[1];
384
385         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386 }
387
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
390 {
391         assert_cfg80211_lock();
392
393         if (!last_request)
394                 return false;
395
396         return alpha2_equal(last_request->alpha2, alpha2);
397 }
398
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401 {
402         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403         u32 freq_diff;
404
405         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406                 return false;
407
408         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409                 return false;
410
411         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412
413         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414                         freq_range->max_bandwidth_khz > freq_diff)
415                 return false;
416
417         return true;
418 }
419
420 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421 {
422         const struct ieee80211_reg_rule *reg_rule = NULL;
423         unsigned int i;
424
425         if (!rd->n_reg_rules)
426                 return false;
427
428         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429                 return false;
430
431         for (i = 0; i < rd->n_reg_rules; i++) {
432                 reg_rule = &rd->reg_rules[i];
433                 if (!is_valid_reg_rule(reg_rule))
434                         return false;
435         }
436
437         return true;
438 }
439
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441                             u32 center_freq_khz,
442                             u32 bw_khz)
443 {
444         u32 start_freq_khz, end_freq_khz;
445
446         start_freq_khz = center_freq_khz - (bw_khz/2);
447         end_freq_khz = center_freq_khz + (bw_khz/2);
448
449         if (start_freq_khz >= freq_range->start_freq_khz &&
450             end_freq_khz <= freq_range->end_freq_khz)
451                 return true;
452
453         return false;
454 }
455
456 /**
457  * freq_in_rule_band - tells us if a frequency is in a frequency band
458  * @freq_range: frequency rule we want to query
459  * @freq_khz: frequency we are inquiring about
460  *
461  * This lets us know if a specific frequency rule is or is not relevant to
462  * a specific frequency's band. Bands are device specific and artificial
463  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464  * safe for now to assume that a frequency rule should not be part of a
465  * frequency's band if the start freq or end freq are off by more than 2 GHz.
466  * This resolution can be lowered and should be considered as we add
467  * regulatory rule support for other "bands".
468  **/
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470         u32 freq_khz)
471 {
472 #define ONE_GHZ_IN_KHZ  1000000
473         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474                 return true;
475         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476                 return true;
477         return false;
478 #undef ONE_GHZ_IN_KHZ
479 }
480
481 /*
482  * Converts a country IE to a regulatory domain. A regulatory domain
483  * structure has a lot of information which the IE doesn't yet have,
484  * so for the other values we use upper max values as we will intersect
485  * with our userspace regulatory agent to get lower bounds.
486  */
487 static struct ieee80211_regdomain *country_ie_2_rd(
488                                 u8 *country_ie,
489                                 u8 country_ie_len,
490                                 u32 *checksum)
491 {
492         struct ieee80211_regdomain *rd = NULL;
493         unsigned int i = 0;
494         char alpha2[2];
495         u32 flags = 0;
496         u32 num_rules = 0, size_of_regd = 0;
497         u8 *triplets_start = NULL;
498         u8 len_at_triplet = 0;
499         /* the last channel we have registered in a subband (triplet) */
500         int last_sub_max_channel = 0;
501
502         *checksum = 0xDEADBEEF;
503
504         /* Country IE requirements */
505         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
506                 country_ie_len & 0x01);
507
508         alpha2[0] = country_ie[0];
509         alpha2[1] = country_ie[1];
510
511         /*
512          * Third octet can be:
513          *    'I' - Indoor
514          *    'O' - Outdoor
515          *
516          *  anything else we assume is no restrictions
517          */
518         if (country_ie[2] == 'I')
519                 flags = NL80211_RRF_NO_OUTDOOR;
520         else if (country_ie[2] == 'O')
521                 flags = NL80211_RRF_NO_INDOOR;
522
523         country_ie += 3;
524         country_ie_len -= 3;
525
526         triplets_start = country_ie;
527         len_at_triplet = country_ie_len;
528
529         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
530
531         /*
532          * We need to build a reg rule for each triplet, but first we must
533          * calculate the number of reg rules we will need. We will need one
534          * for each channel subband
535          */
536         while (country_ie_len >= 3) {
537                 int end_channel = 0;
538                 struct ieee80211_country_ie_triplet *triplet =
539                         (struct ieee80211_country_ie_triplet *) country_ie;
540                 int cur_sub_max_channel = 0, cur_channel = 0;
541
542                 if (triplet->ext.reg_extension_id >=
543                                 IEEE80211_COUNTRY_EXTENSION_ID) {
544                         country_ie += 3;
545                         country_ie_len -= 3;
546                         continue;
547                 }
548
549                 /* 2 GHz */
550                 if (triplet->chans.first_channel <= 14)
551                         end_channel = triplet->chans.first_channel +
552                                 triplet->chans.num_channels;
553                 else
554                         /*
555                          * 5 GHz -- For example in country IEs if the first
556                          * channel given is 36 and the number of channels is 4
557                          * then the individual channel numbers defined for the
558                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
559                          * and not 36, 37, 38, 39.
560                          *
561                          * See: http://tinyurl.com/11d-clarification
562                          */
563                         end_channel =  triplet->chans.first_channel +
564                                 (4 * (triplet->chans.num_channels - 1));
565
566                 cur_channel = triplet->chans.first_channel;
567                 cur_sub_max_channel = end_channel;
568
569                 /* Basic sanity check */
570                 if (cur_sub_max_channel < cur_channel)
571                         return NULL;
572
573                 /*
574                  * Do not allow overlapping channels. Also channels
575                  * passed in each subband must be monotonically
576                  * increasing
577                  */
578                 if (last_sub_max_channel) {
579                         if (cur_channel <= last_sub_max_channel)
580                                 return NULL;
581                         if (cur_sub_max_channel <= last_sub_max_channel)
582                                 return NULL;
583                 }
584
585                 /*
586                  * When dot11RegulatoryClassesRequired is supported
587                  * we can throw ext triplets as part of this soup,
588                  * for now we don't care when those change as we
589                  * don't support them
590                  */
591                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
592                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
593                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
594
595                 last_sub_max_channel = cur_sub_max_channel;
596
597                 country_ie += 3;
598                 country_ie_len -= 3;
599                 num_rules++;
600
601                 /*
602                  * Note: this is not a IEEE requirement but
603                  * simply a memory requirement
604                  */
605                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
606                         return NULL;
607         }
608
609         country_ie = triplets_start;
610         country_ie_len = len_at_triplet;
611
612         size_of_regd = sizeof(struct ieee80211_regdomain) +
613                 (num_rules * sizeof(struct ieee80211_reg_rule));
614
615         rd = kzalloc(size_of_regd, GFP_KERNEL);
616         if (!rd)
617                 return NULL;
618
619         rd->n_reg_rules = num_rules;
620         rd->alpha2[0] = alpha2[0];
621         rd->alpha2[1] = alpha2[1];
622
623         /* This time around we fill in the rd */
624         while (country_ie_len >= 3) {
625                 int end_channel = 0;
626                 struct ieee80211_country_ie_triplet *triplet =
627                         (struct ieee80211_country_ie_triplet *) country_ie;
628                 struct ieee80211_reg_rule *reg_rule = NULL;
629                 struct ieee80211_freq_range *freq_range = NULL;
630                 struct ieee80211_power_rule *power_rule = NULL;
631
632                 /*
633                  * Must parse if dot11RegulatoryClassesRequired is true,
634                  * we don't support this yet
635                  */
636                 if (triplet->ext.reg_extension_id >=
637                                 IEEE80211_COUNTRY_EXTENSION_ID) {
638                         country_ie += 3;
639                         country_ie_len -= 3;
640                         continue;
641                 }
642
643                 reg_rule = &rd->reg_rules[i];
644                 freq_range = &reg_rule->freq_range;
645                 power_rule = &reg_rule->power_rule;
646
647                 reg_rule->flags = flags;
648
649                 /* 2 GHz */
650                 if (triplet->chans.first_channel <= 14)
651                         end_channel = triplet->chans.first_channel +
652                                 triplet->chans.num_channels;
653                 else
654                         end_channel =  triplet->chans.first_channel +
655                                 (4 * (triplet->chans.num_channels - 1));
656
657                 /*
658                  * The +10 is since the regulatory domain expects
659                  * the actual band edge, not the center of freq for
660                  * its start and end freqs, assuming 20 MHz bandwidth on
661                  * the channels passed
662                  */
663                 freq_range->start_freq_khz =
664                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665                                 triplet->chans.first_channel) - 10);
666                 freq_range->end_freq_khz =
667                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
668                                 end_channel) + 10);
669
670                 /*
671                  * These are large arbitrary values we use to intersect later.
672                  * Increment this if we ever support >= 40 MHz channels
673                  * in IEEE 802.11
674                  */
675                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
676                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
677                 power_rule->max_eirp = DBM_TO_MBM(100);
678
679                 country_ie += 3;
680                 country_ie_len -= 3;
681                 i++;
682
683                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
684         }
685
686         return rd;
687 }
688
689
690 /*
691  * Helper for regdom_intersect(), this does the real
692  * mathematical intersection fun
693  */
694 static int reg_rules_intersect(
695         const struct ieee80211_reg_rule *rule1,
696         const struct ieee80211_reg_rule *rule2,
697         struct ieee80211_reg_rule *intersected_rule)
698 {
699         const struct ieee80211_freq_range *freq_range1, *freq_range2;
700         struct ieee80211_freq_range *freq_range;
701         const struct ieee80211_power_rule *power_rule1, *power_rule2;
702         struct ieee80211_power_rule *power_rule;
703         u32 freq_diff;
704
705         freq_range1 = &rule1->freq_range;
706         freq_range2 = &rule2->freq_range;
707         freq_range = &intersected_rule->freq_range;
708
709         power_rule1 = &rule1->power_rule;
710         power_rule2 = &rule2->power_rule;
711         power_rule = &intersected_rule->power_rule;
712
713         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
714                 freq_range2->start_freq_khz);
715         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
716                 freq_range2->end_freq_khz);
717         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
718                 freq_range2->max_bandwidth_khz);
719
720         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
721         if (freq_range->max_bandwidth_khz > freq_diff)
722                 freq_range->max_bandwidth_khz = freq_diff;
723
724         power_rule->max_eirp = min(power_rule1->max_eirp,
725                 power_rule2->max_eirp);
726         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
727                 power_rule2->max_antenna_gain);
728
729         intersected_rule->flags = (rule1->flags | rule2->flags);
730
731         if (!is_valid_reg_rule(intersected_rule))
732                 return -EINVAL;
733
734         return 0;
735 }
736
737 /**
738  * regdom_intersect - do the intersection between two regulatory domains
739  * @rd1: first regulatory domain
740  * @rd2: second regulatory domain
741  *
742  * Use this function to get the intersection between two regulatory domains.
743  * Once completed we will mark the alpha2 for the rd as intersected, "98",
744  * as no one single alpha2 can represent this regulatory domain.
745  *
746  * Returns a pointer to the regulatory domain structure which will hold the
747  * resulting intersection of rules between rd1 and rd2. We will
748  * kzalloc() this structure for you.
749  */
750 static struct ieee80211_regdomain *regdom_intersect(
751         const struct ieee80211_regdomain *rd1,
752         const struct ieee80211_regdomain *rd2)
753 {
754         int r, size_of_regd;
755         unsigned int x, y;
756         unsigned int num_rules = 0, rule_idx = 0;
757         const struct ieee80211_reg_rule *rule1, *rule2;
758         struct ieee80211_reg_rule *intersected_rule;
759         struct ieee80211_regdomain *rd;
760         /* This is just a dummy holder to help us count */
761         struct ieee80211_reg_rule irule;
762
763         /* Uses the stack temporarily for counter arithmetic */
764         intersected_rule = &irule;
765
766         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
767
768         if (!rd1 || !rd2)
769                 return NULL;
770
771         /*
772          * First we get a count of the rules we'll need, then we actually
773          * build them. This is to so we can malloc() and free() a
774          * regdomain once. The reason we use reg_rules_intersect() here
775          * is it will return -EINVAL if the rule computed makes no sense.
776          * All rules that do check out OK are valid.
777          */
778
779         for (x = 0; x < rd1->n_reg_rules; x++) {
780                 rule1 = &rd1->reg_rules[x];
781                 for (y = 0; y < rd2->n_reg_rules; y++) {
782                         rule2 = &rd2->reg_rules[y];
783                         if (!reg_rules_intersect(rule1, rule2,
784                                         intersected_rule))
785                                 num_rules++;
786                         memset(intersected_rule, 0,
787                                         sizeof(struct ieee80211_reg_rule));
788                 }
789         }
790
791         if (!num_rules)
792                 return NULL;
793
794         size_of_regd = sizeof(struct ieee80211_regdomain) +
795                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
796
797         rd = kzalloc(size_of_regd, GFP_KERNEL);
798         if (!rd)
799                 return NULL;
800
801         for (x = 0; x < rd1->n_reg_rules; x++) {
802                 rule1 = &rd1->reg_rules[x];
803                 for (y = 0; y < rd2->n_reg_rules; y++) {
804                         rule2 = &rd2->reg_rules[y];
805                         /*
806                          * This time around instead of using the stack lets
807                          * write to the target rule directly saving ourselves
808                          * a memcpy()
809                          */
810                         intersected_rule = &rd->reg_rules[rule_idx];
811                         r = reg_rules_intersect(rule1, rule2,
812                                 intersected_rule);
813                         /*
814                          * No need to memset here the intersected rule here as
815                          * we're not using the stack anymore
816                          */
817                         if (r)
818                                 continue;
819                         rule_idx++;
820                 }
821         }
822
823         if (rule_idx != num_rules) {
824                 kfree(rd);
825                 return NULL;
826         }
827
828         rd->n_reg_rules = num_rules;
829         rd->alpha2[0] = '9';
830         rd->alpha2[1] = '8';
831
832         return rd;
833 }
834
835 /*
836  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
837  * want to just have the channel structure use these
838  */
839 static u32 map_regdom_flags(u32 rd_flags)
840 {
841         u32 channel_flags = 0;
842         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
843                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
844         if (rd_flags & NL80211_RRF_NO_IBSS)
845                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
846         if (rd_flags & NL80211_RRF_DFS)
847                 channel_flags |= IEEE80211_CHAN_RADAR;
848         return channel_flags;
849 }
850
851 static int freq_reg_info_regd(struct wiphy *wiphy,
852                               u32 center_freq,
853                               u32 desired_bw_khz,
854                               const struct ieee80211_reg_rule **reg_rule,
855                               const struct ieee80211_regdomain *custom_regd)
856 {
857         int i;
858         bool band_rule_found = false;
859         const struct ieee80211_regdomain *regd;
860         bool bw_fits = false;
861
862         if (!desired_bw_khz)
863                 desired_bw_khz = MHZ_TO_KHZ(20);
864
865         regd = custom_regd ? custom_regd : cfg80211_regdomain;
866
867         /*
868          * Follow the driver's regulatory domain, if present, unless a country
869          * IE has been processed or a user wants to help complaince further
870          */
871         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
872             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
873             wiphy->regd)
874                 regd = wiphy->regd;
875
876         if (!regd)
877                 return -EINVAL;
878
879         for (i = 0; i < regd->n_reg_rules; i++) {
880                 const struct ieee80211_reg_rule *rr;
881                 const struct ieee80211_freq_range *fr = NULL;
882                 const struct ieee80211_power_rule *pr = NULL;
883
884                 rr = &regd->reg_rules[i];
885                 fr = &rr->freq_range;
886                 pr = &rr->power_rule;
887
888                 /*
889                  * We only need to know if one frequency rule was
890                  * was in center_freq's band, that's enough, so lets
891                  * not overwrite it once found
892                  */
893                 if (!band_rule_found)
894                         band_rule_found = freq_in_rule_band(fr, center_freq);
895
896                 bw_fits = reg_does_bw_fit(fr,
897                                           center_freq,
898                                           desired_bw_khz);
899
900                 if (band_rule_found && bw_fits) {
901                         *reg_rule = rr;
902                         return 0;
903                 }
904         }
905
906         if (!band_rule_found)
907                 return -ERANGE;
908
909         return -EINVAL;
910 }
911 EXPORT_SYMBOL(freq_reg_info);
912
913 int freq_reg_info(struct wiphy *wiphy,
914                   u32 center_freq,
915                   u32 desired_bw_khz,
916                   const struct ieee80211_reg_rule **reg_rule)
917 {
918         assert_cfg80211_lock();
919         return freq_reg_info_regd(wiphy,
920                                   center_freq,
921                                   desired_bw_khz,
922                                   reg_rule,
923                                   NULL);
924 }
925
926 /*
927  * Note that right now we assume the desired channel bandwidth
928  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
929  * per channel, the primary and the extension channel). To support
930  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
931  * new ieee80211_channel.target_bw and re run the regulatory check
932  * on the wiphy with the target_bw specified. Then we can simply use
933  * that below for the desired_bw_khz below.
934  */
935 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
936                            unsigned int chan_idx)
937 {
938         int r;
939         u32 flags, bw_flags = 0;
940         u32 desired_bw_khz = MHZ_TO_KHZ(20);
941         const struct ieee80211_reg_rule *reg_rule = NULL;
942         const struct ieee80211_power_rule *power_rule = NULL;
943         const struct ieee80211_freq_range *freq_range = NULL;
944         struct ieee80211_supported_band *sband;
945         struct ieee80211_channel *chan;
946         struct wiphy *request_wiphy = NULL;
947
948         assert_cfg80211_lock();
949
950         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
951
952         sband = wiphy->bands[band];
953         BUG_ON(chan_idx >= sband->n_channels);
954         chan = &sband->channels[chan_idx];
955
956         flags = chan->orig_flags;
957
958         r = freq_reg_info(wiphy,
959                           MHZ_TO_KHZ(chan->center_freq),
960                           desired_bw_khz,
961                           &reg_rule);
962
963         if (r) {
964                 /*
965                  * This means no regulatory rule was found in the country IE
966                  * with a frequency range on the center_freq's band, since
967                  * IEEE-802.11 allows for a country IE to have a subset of the
968                  * regulatory information provided in a country we ignore
969                  * disabling the channel unless at least one reg rule was
970                  * found on the center_freq's band. For details see this
971                  * clarification:
972                  *
973                  * http://tinyurl.com/11d-clarification
974                  */
975                 if (r == -ERANGE &&
976                     last_request->initiator ==
977                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
978 #ifdef CONFIG_CFG80211_REG_DEBUG
979                         printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
980                                 "intact on %s - no rule found in band on "
981                                 "Country IE\n",
982                                 chan->center_freq, wiphy_name(wiphy));
983 #endif
984                 } else {
985                 /*
986                  * In this case we know the country IE has at least one reg rule
987                  * for the band so we respect its band definitions
988                  */
989 #ifdef CONFIG_CFG80211_REG_DEBUG
990                         if (last_request->initiator ==
991                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
992                                 printk(KERN_DEBUG "cfg80211: Disabling "
993                                         "channel %d MHz on %s due to "
994                                         "Country IE\n",
995                                         chan->center_freq, wiphy_name(wiphy));
996 #endif
997                         flags |= IEEE80211_CHAN_DISABLED;
998                         chan->flags = flags;
999                 }
1000                 return;
1001         }
1002
1003         power_rule = &reg_rule->power_rule;
1004         freq_range = &reg_rule->freq_range;
1005
1006         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1007                 bw_flags = IEEE80211_CHAN_NO_HT40;
1008
1009         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1010             request_wiphy && request_wiphy == wiphy &&
1011             request_wiphy->strict_regulatory) {
1012                 /*
1013                  * This gaurantees the driver's requested regulatory domain
1014                  * will always be used as a base for further regulatory
1015                  * settings
1016                  */
1017                 chan->flags = chan->orig_flags =
1018                         map_regdom_flags(reg_rule->flags) | bw_flags;
1019                 chan->max_antenna_gain = chan->orig_mag =
1020                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1021                 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1022                 chan->max_power = chan->orig_mpwr =
1023                         (int) MBM_TO_DBM(power_rule->max_eirp);
1024                 return;
1025         }
1026
1027         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1028         chan->max_antenna_gain = min(chan->orig_mag,
1029                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1030         chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1031         if (chan->orig_mpwr)
1032                 chan->max_power = min(chan->orig_mpwr,
1033                         (int) MBM_TO_DBM(power_rule->max_eirp));
1034         else
1035                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1036 }
1037
1038 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1039 {
1040         unsigned int i;
1041         struct ieee80211_supported_band *sband;
1042
1043         BUG_ON(!wiphy->bands[band]);
1044         sband = wiphy->bands[band];
1045
1046         for (i = 0; i < sband->n_channels; i++)
1047                 handle_channel(wiphy, band, i);
1048 }
1049
1050 static bool ignore_reg_update(struct wiphy *wiphy,
1051                               enum nl80211_reg_initiator initiator)
1052 {
1053         if (!last_request)
1054                 return true;
1055         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1056                   wiphy->custom_regulatory)
1057                 return true;
1058         /*
1059          * wiphy->regd will be set once the device has its own
1060          * desired regulatory domain set
1061          */
1062         if (wiphy->strict_regulatory && !wiphy->regd &&
1063             !is_world_regdom(last_request->alpha2))
1064                 return true;
1065         return false;
1066 }
1067
1068 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1069 {
1070         struct cfg80211_registered_device *rdev;
1071
1072         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1073                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1074 }
1075
1076 static void handle_reg_beacon(struct wiphy *wiphy,
1077                               unsigned int chan_idx,
1078                               struct reg_beacon *reg_beacon)
1079 {
1080         struct ieee80211_supported_band *sband;
1081         struct ieee80211_channel *chan;
1082         bool channel_changed = false;
1083         struct ieee80211_channel chan_before;
1084
1085         assert_cfg80211_lock();
1086
1087         sband = wiphy->bands[reg_beacon->chan.band];
1088         chan = &sband->channels[chan_idx];
1089
1090         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1091                 return;
1092
1093         if (chan->beacon_found)
1094                 return;
1095
1096         chan->beacon_found = true;
1097
1098         if (wiphy->disable_beacon_hints)
1099                 return;
1100
1101         chan_before.center_freq = chan->center_freq;
1102         chan_before.flags = chan->flags;
1103
1104         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1105                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1106                 channel_changed = true;
1107         }
1108
1109         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1110                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1111                 channel_changed = true;
1112         }
1113
1114         if (channel_changed)
1115                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1116 }
1117
1118 /*
1119  * Called when a scan on a wiphy finds a beacon on
1120  * new channel
1121  */
1122 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1123                                     struct reg_beacon *reg_beacon)
1124 {
1125         unsigned int i;
1126         struct ieee80211_supported_band *sband;
1127
1128         assert_cfg80211_lock();
1129
1130         if (!wiphy->bands[reg_beacon->chan.band])
1131                 return;
1132
1133         sband = wiphy->bands[reg_beacon->chan.band];
1134
1135         for (i = 0; i < sband->n_channels; i++)
1136                 handle_reg_beacon(wiphy, i, reg_beacon);
1137 }
1138
1139 /*
1140  * Called upon reg changes or a new wiphy is added
1141  */
1142 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1143 {
1144         unsigned int i;
1145         struct ieee80211_supported_band *sband;
1146         struct reg_beacon *reg_beacon;
1147
1148         assert_cfg80211_lock();
1149
1150         if (list_empty(&reg_beacon_list))
1151                 return;
1152
1153         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1154                 if (!wiphy->bands[reg_beacon->chan.band])
1155                         continue;
1156                 sband = wiphy->bands[reg_beacon->chan.band];
1157                 for (i = 0; i < sband->n_channels; i++)
1158                         handle_reg_beacon(wiphy, i, reg_beacon);
1159         }
1160 }
1161
1162 static bool reg_is_world_roaming(struct wiphy *wiphy)
1163 {
1164         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1165             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1166                 return true;
1167         if (last_request &&
1168             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1169             wiphy->custom_regulatory)
1170                 return true;
1171         return false;
1172 }
1173
1174 /* Reap the advantages of previously found beacons */
1175 static void reg_process_beacons(struct wiphy *wiphy)
1176 {
1177         /*
1178          * Means we are just firing up cfg80211, so no beacons would
1179          * have been processed yet.
1180          */
1181         if (!last_request)
1182                 return;
1183         if (!reg_is_world_roaming(wiphy))
1184                 return;
1185         wiphy_update_beacon_reg(wiphy);
1186 }
1187
1188 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1189 {
1190         if (!chan)
1191                 return true;
1192         if (chan->flags & IEEE80211_CHAN_DISABLED)
1193                 return true;
1194         /* This would happen when regulatory rules disallow HT40 completely */
1195         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1196                 return true;
1197         return false;
1198 }
1199
1200 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1201                                          enum ieee80211_band band,
1202                                          unsigned int chan_idx)
1203 {
1204         struct ieee80211_supported_band *sband;
1205         struct ieee80211_channel *channel;
1206         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1207         unsigned int i;
1208
1209         assert_cfg80211_lock();
1210
1211         sband = wiphy->bands[band];
1212         BUG_ON(chan_idx >= sband->n_channels);
1213         channel = &sband->channels[chan_idx];
1214
1215         if (is_ht40_not_allowed(channel)) {
1216                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1217                 return;
1218         }
1219
1220         /*
1221          * We need to ensure the extension channels exist to
1222          * be able to use HT40- or HT40+, this finds them (or not)
1223          */
1224         for (i = 0; i < sband->n_channels; i++) {
1225                 struct ieee80211_channel *c = &sband->channels[i];
1226                 if (c->center_freq == (channel->center_freq - 20))
1227                         channel_before = c;
1228                 if (c->center_freq == (channel->center_freq + 20))
1229                         channel_after = c;
1230         }
1231
1232         /*
1233          * Please note that this assumes target bandwidth is 20 MHz,
1234          * if that ever changes we also need to change the below logic
1235          * to include that as well.
1236          */
1237         if (is_ht40_not_allowed(channel_before))
1238                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1239         else
1240                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1241
1242         if (is_ht40_not_allowed(channel_after))
1243                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1244         else
1245                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1246 }
1247
1248 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1249                                       enum ieee80211_band band)
1250 {
1251         unsigned int i;
1252         struct ieee80211_supported_band *sband;
1253
1254         BUG_ON(!wiphy->bands[band]);
1255         sband = wiphy->bands[band];
1256
1257         for (i = 0; i < sband->n_channels; i++)
1258                 reg_process_ht_flags_channel(wiphy, band, i);
1259 }
1260
1261 static void reg_process_ht_flags(struct wiphy *wiphy)
1262 {
1263         enum ieee80211_band band;
1264
1265         if (!wiphy)
1266                 return;
1267
1268         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1269                 if (wiphy->bands[band])
1270                         reg_process_ht_flags_band(wiphy, band);
1271         }
1272
1273 }
1274
1275 void wiphy_update_regulatory(struct wiphy *wiphy,
1276                              enum nl80211_reg_initiator initiator)
1277 {
1278         enum ieee80211_band band;
1279
1280         if (ignore_reg_update(wiphy, initiator))
1281                 goto out;
1282         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1283                 if (wiphy->bands[band])
1284                         handle_band(wiphy, band);
1285         }
1286 out:
1287         reg_process_beacons(wiphy);
1288         reg_process_ht_flags(wiphy);
1289         if (wiphy->reg_notifier)
1290                 wiphy->reg_notifier(wiphy, last_request);
1291 }
1292
1293 static void handle_channel_custom(struct wiphy *wiphy,
1294                                   enum ieee80211_band band,
1295                                   unsigned int chan_idx,
1296                                   const struct ieee80211_regdomain *regd)
1297 {
1298         int r;
1299         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1300         u32 bw_flags = 0;
1301         const struct ieee80211_reg_rule *reg_rule = NULL;
1302         const struct ieee80211_power_rule *power_rule = NULL;
1303         const struct ieee80211_freq_range *freq_range = NULL;
1304         struct ieee80211_supported_band *sband;
1305         struct ieee80211_channel *chan;
1306
1307         assert_reg_lock();
1308
1309         sband = wiphy->bands[band];
1310         BUG_ON(chan_idx >= sband->n_channels);
1311         chan = &sband->channels[chan_idx];
1312
1313         r = freq_reg_info_regd(wiphy,
1314                                MHZ_TO_KHZ(chan->center_freq),
1315                                desired_bw_khz,
1316                                &reg_rule,
1317                                regd);
1318
1319         if (r) {
1320                 chan->flags = IEEE80211_CHAN_DISABLED;
1321                 return;
1322         }
1323
1324         power_rule = &reg_rule->power_rule;
1325         freq_range = &reg_rule->freq_range;
1326
1327         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1328                 bw_flags = IEEE80211_CHAN_NO_HT40;
1329
1330         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1331         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1332         chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1333         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1334 }
1335
1336 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1337                                const struct ieee80211_regdomain *regd)
1338 {
1339         unsigned int i;
1340         struct ieee80211_supported_band *sband;
1341
1342         BUG_ON(!wiphy->bands[band]);
1343         sband = wiphy->bands[band];
1344
1345         for (i = 0; i < sband->n_channels; i++)
1346                 handle_channel_custom(wiphy, band, i, regd);
1347 }
1348
1349 /* Used by drivers prior to wiphy registration */
1350 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1351                                    const struct ieee80211_regdomain *regd)
1352 {
1353         enum ieee80211_band band;
1354         unsigned int bands_set = 0;
1355
1356         mutex_lock(&reg_mutex);
1357         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1358                 if (!wiphy->bands[band])
1359                         continue;
1360                 handle_band_custom(wiphy, band, regd);
1361                 bands_set++;
1362         }
1363         mutex_unlock(&reg_mutex);
1364
1365         /*
1366          * no point in calling this if it won't have any effect
1367          * on your device's supportd bands.
1368          */
1369         WARN_ON(!bands_set);
1370 }
1371 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1372
1373 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1374                          const struct ieee80211_regdomain *src_regd)
1375 {
1376         struct ieee80211_regdomain *regd;
1377         int size_of_regd = 0;
1378         unsigned int i;
1379
1380         size_of_regd = sizeof(struct ieee80211_regdomain) +
1381           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1382
1383         regd = kzalloc(size_of_regd, GFP_KERNEL);
1384         if (!regd)
1385                 return -ENOMEM;
1386
1387         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1388
1389         for (i = 0; i < src_regd->n_reg_rules; i++)
1390                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1391                         sizeof(struct ieee80211_reg_rule));
1392
1393         *dst_regd = regd;
1394         return 0;
1395 }
1396
1397 /*
1398  * Return value which can be used by ignore_request() to indicate
1399  * it has been determined we should intersect two regulatory domains
1400  */
1401 #define REG_INTERSECT   1
1402
1403 /* This has the logic which determines when a new request
1404  * should be ignored. */
1405 static int ignore_request(struct wiphy *wiphy,
1406                           struct regulatory_request *pending_request)
1407 {
1408         struct wiphy *last_wiphy = NULL;
1409
1410         assert_cfg80211_lock();
1411
1412         /* All initial requests are respected */
1413         if (!last_request)
1414                 return 0;
1415
1416         switch (pending_request->initiator) {
1417         case NL80211_REGDOM_SET_BY_CORE:
1418                 return -EINVAL;
1419         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1420
1421                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1422
1423                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1424                         return -EINVAL;
1425                 if (last_request->initiator ==
1426                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1427                         if (last_wiphy != wiphy) {
1428                                 /*
1429                                  * Two cards with two APs claiming different
1430                                  * different Country IE alpha2s. We could
1431                                  * intersect them, but that seems unlikely
1432                                  * to be correct. Reject second one for now.
1433                                  */
1434                                 if (regdom_changes(pending_request->alpha2))
1435                                         return -EOPNOTSUPP;
1436                                 return -EALREADY;
1437                         }
1438                         /*
1439                          * Two consecutive Country IE hints on the same wiphy.
1440                          * This should be picked up early by the driver/stack
1441                          */
1442                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1443                                 return 0;
1444                         return -EALREADY;
1445                 }
1446                 return REG_INTERSECT;
1447         case NL80211_REGDOM_SET_BY_DRIVER:
1448                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1449                         if (is_old_static_regdom(cfg80211_regdomain))
1450                                 return 0;
1451                         if (regdom_changes(pending_request->alpha2))
1452                                 return 0;
1453                         return -EALREADY;
1454                 }
1455
1456                 /*
1457                  * This would happen if you unplug and plug your card
1458                  * back in or if you add a new device for which the previously
1459                  * loaded card also agrees on the regulatory domain.
1460                  */
1461                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1462                     !regdom_changes(pending_request->alpha2))
1463                         return -EALREADY;
1464
1465                 return REG_INTERSECT;
1466         case NL80211_REGDOM_SET_BY_USER:
1467                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1468                         return REG_INTERSECT;
1469                 /*
1470                  * If the user knows better the user should set the regdom
1471                  * to their country before the IE is picked up
1472                  */
1473                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1474                           last_request->intersect)
1475                         return -EOPNOTSUPP;
1476                 /*
1477                  * Process user requests only after previous user/driver/core
1478                  * requests have been processed
1479                  */
1480                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1481                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1482                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1483                         if (regdom_changes(last_request->alpha2))
1484                                 return -EAGAIN;
1485                 }
1486
1487                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1488                     !regdom_changes(pending_request->alpha2))
1489                         return -EALREADY;
1490
1491                 return 0;
1492         }
1493
1494         return -EINVAL;
1495 }
1496
1497 /**
1498  * __regulatory_hint - hint to the wireless core a regulatory domain
1499  * @wiphy: if the hint comes from country information from an AP, this
1500  *      is required to be set to the wiphy that received the information
1501  * @pending_request: the regulatory request currently being processed
1502  *
1503  * The Wireless subsystem can use this function to hint to the wireless core
1504  * what it believes should be the current regulatory domain.
1505  *
1506  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1507  * already been set or other standard error codes.
1508  *
1509  * Caller must hold &cfg80211_mutex and &reg_mutex
1510  */
1511 static int __regulatory_hint(struct wiphy *wiphy,
1512                              struct regulatory_request *pending_request)
1513 {
1514         bool intersect = false;
1515         int r = 0;
1516
1517         assert_cfg80211_lock();
1518
1519         r = ignore_request(wiphy, pending_request);
1520
1521         if (r == REG_INTERSECT) {
1522                 if (pending_request->initiator ==
1523                     NL80211_REGDOM_SET_BY_DRIVER) {
1524                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1525                         if (r) {
1526                                 kfree(pending_request);
1527                                 return r;
1528                         }
1529                 }
1530                 intersect = true;
1531         } else if (r) {
1532                 /*
1533                  * If the regulatory domain being requested by the
1534                  * driver has already been set just copy it to the
1535                  * wiphy
1536                  */
1537                 if (r == -EALREADY &&
1538                     pending_request->initiator ==
1539                     NL80211_REGDOM_SET_BY_DRIVER) {
1540                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1541                         if (r) {
1542                                 kfree(pending_request);
1543                                 return r;
1544                         }
1545                         r = -EALREADY;
1546                         goto new_request;
1547                 }
1548                 kfree(pending_request);
1549                 return r;
1550         }
1551
1552 new_request:
1553         kfree(last_request);
1554
1555         last_request = pending_request;
1556         last_request->intersect = intersect;
1557
1558         pending_request = NULL;
1559
1560         /* When r == REG_INTERSECT we do need to call CRDA */
1561         if (r < 0) {
1562                 /*
1563                  * Since CRDA will not be called in this case as we already
1564                  * have applied the requested regulatory domain before we just
1565                  * inform userspace we have processed the request
1566                  */
1567                 if (r == -EALREADY)
1568                         nl80211_send_reg_change_event(last_request);
1569                 return r;
1570         }
1571
1572         return call_crda(last_request->alpha2);
1573 }
1574
1575 /* This processes *all* regulatory hints */
1576 static void reg_process_hint(struct regulatory_request *reg_request)
1577 {
1578         int r = 0;
1579         struct wiphy *wiphy = NULL;
1580
1581         BUG_ON(!reg_request->alpha2);
1582
1583         mutex_lock(&cfg80211_mutex);
1584         mutex_lock(&reg_mutex);
1585
1586         if (wiphy_idx_valid(reg_request->wiphy_idx))
1587                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1588
1589         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1590             !wiphy) {
1591                 kfree(reg_request);
1592                 goto out;
1593         }
1594
1595         r = __regulatory_hint(wiphy, reg_request);
1596         /* This is required so that the orig_* parameters are saved */
1597         if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1598                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1599 out:
1600         mutex_unlock(&reg_mutex);
1601         mutex_unlock(&cfg80211_mutex);
1602 }
1603
1604 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1605 static void reg_process_pending_hints(void)
1606         {
1607         struct regulatory_request *reg_request;
1608
1609         spin_lock(&reg_requests_lock);
1610         while (!list_empty(&reg_requests_list)) {
1611                 reg_request = list_first_entry(&reg_requests_list,
1612                                                struct regulatory_request,
1613                                                list);
1614                 list_del_init(&reg_request->list);
1615
1616                 spin_unlock(&reg_requests_lock);
1617                 reg_process_hint(reg_request);
1618                 spin_lock(&reg_requests_lock);
1619         }
1620         spin_unlock(&reg_requests_lock);
1621 }
1622
1623 /* Processes beacon hints -- this has nothing to do with country IEs */
1624 static void reg_process_pending_beacon_hints(void)
1625 {
1626         struct cfg80211_registered_device *rdev;
1627         struct reg_beacon *pending_beacon, *tmp;
1628
1629         /*
1630          * No need to hold the reg_mutex here as we just touch wiphys
1631          * and do not read or access regulatory variables.
1632          */
1633         mutex_lock(&cfg80211_mutex);
1634
1635         /* This goes through the _pending_ beacon list */
1636         spin_lock_bh(&reg_pending_beacons_lock);
1637
1638         if (list_empty(&reg_pending_beacons)) {
1639                 spin_unlock_bh(&reg_pending_beacons_lock);
1640                 goto out;
1641         }
1642
1643         list_for_each_entry_safe(pending_beacon, tmp,
1644                                  &reg_pending_beacons, list) {
1645
1646                 list_del_init(&pending_beacon->list);
1647
1648                 /* Applies the beacon hint to current wiphys */
1649                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1650                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1651
1652                 /* Remembers the beacon hint for new wiphys or reg changes */
1653                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1654         }
1655
1656         spin_unlock_bh(&reg_pending_beacons_lock);
1657 out:
1658         mutex_unlock(&cfg80211_mutex);
1659 }
1660
1661 static void reg_todo(struct work_struct *work)
1662 {
1663         reg_process_pending_hints();
1664         reg_process_pending_beacon_hints();
1665 }
1666
1667 static DECLARE_WORK(reg_work, reg_todo);
1668
1669 static void queue_regulatory_request(struct regulatory_request *request)
1670 {
1671         spin_lock(&reg_requests_lock);
1672         list_add_tail(&request->list, &reg_requests_list);
1673         spin_unlock(&reg_requests_lock);
1674
1675         schedule_work(&reg_work);
1676 }
1677
1678 /* Core regulatory hint -- happens once during cfg80211_init() */
1679 static int regulatory_hint_core(const char *alpha2)
1680 {
1681         struct regulatory_request *request;
1682
1683         BUG_ON(last_request);
1684
1685         request = kzalloc(sizeof(struct regulatory_request),
1686                           GFP_KERNEL);
1687         if (!request)
1688                 return -ENOMEM;
1689
1690         request->alpha2[0] = alpha2[0];
1691         request->alpha2[1] = alpha2[1];
1692         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1693
1694         queue_regulatory_request(request);
1695
1696         /*
1697          * This ensures last_request is populated once modules
1698          * come swinging in and calling regulatory hints and
1699          * wiphy_apply_custom_regulatory().
1700          */
1701         flush_scheduled_work();
1702
1703         return 0;
1704 }
1705
1706 /* User hints */
1707 int regulatory_hint_user(const char *alpha2)
1708 {
1709         struct regulatory_request *request;
1710
1711         BUG_ON(!alpha2);
1712
1713         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1714         if (!request)
1715                 return -ENOMEM;
1716
1717         request->wiphy_idx = WIPHY_IDX_STALE;
1718         request->alpha2[0] = alpha2[0];
1719         request->alpha2[1] = alpha2[1];
1720         request->initiator = NL80211_REGDOM_SET_BY_USER,
1721
1722         queue_regulatory_request(request);
1723
1724         return 0;
1725 }
1726
1727 /* Driver hints */
1728 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1729 {
1730         struct regulatory_request *request;
1731
1732         BUG_ON(!alpha2);
1733         BUG_ON(!wiphy);
1734
1735         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1736         if (!request)
1737                 return -ENOMEM;
1738
1739         request->wiphy_idx = get_wiphy_idx(wiphy);
1740
1741         /* Must have registered wiphy first */
1742         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1743
1744         request->alpha2[0] = alpha2[0];
1745         request->alpha2[1] = alpha2[1];
1746         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1747
1748         queue_regulatory_request(request);
1749
1750         return 0;
1751 }
1752 EXPORT_SYMBOL(regulatory_hint);
1753
1754 /* Caller must hold reg_mutex */
1755 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1756                         u32 country_ie_checksum)
1757 {
1758         struct wiphy *request_wiphy;
1759
1760         assert_reg_lock();
1761
1762         if (unlikely(last_request->initiator !=
1763             NL80211_REGDOM_SET_BY_COUNTRY_IE))
1764                 return false;
1765
1766         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1767
1768         if (!request_wiphy)
1769                 return false;
1770
1771         if (likely(request_wiphy != wiphy))
1772                 return !country_ie_integrity_changes(country_ie_checksum);
1773         /*
1774          * We should not have let these through at this point, they
1775          * should have been picked up earlier by the first alpha2 check
1776          * on the device
1777          */
1778         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1779                 return true;
1780         return false;
1781 }
1782
1783 /*
1784  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1785  * therefore cannot iterate over the rdev list here.
1786  */
1787 void regulatory_hint_11d(struct wiphy *wiphy,
1788                         u8 *country_ie,
1789                         u8 country_ie_len)
1790 {
1791         struct ieee80211_regdomain *rd = NULL;
1792         char alpha2[2];
1793         u32 checksum = 0;
1794         enum environment_cap env = ENVIRON_ANY;
1795         struct regulatory_request *request;
1796
1797         mutex_lock(&reg_mutex);
1798
1799         if (unlikely(!last_request))
1800                 goto out;
1801
1802         /* IE len must be evenly divisible by 2 */
1803         if (country_ie_len & 0x01)
1804                 goto out;
1805
1806         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1807                 goto out;
1808
1809         /*
1810          * Pending country IE processing, this can happen after we
1811          * call CRDA and wait for a response if a beacon was received before
1812          * we were able to process the last regulatory_hint_11d() call
1813          */
1814         if (country_ie_regdomain)
1815                 goto out;
1816
1817         alpha2[0] = country_ie[0];
1818         alpha2[1] = country_ie[1];
1819
1820         if (country_ie[2] == 'I')
1821                 env = ENVIRON_INDOOR;
1822         else if (country_ie[2] == 'O')
1823                 env = ENVIRON_OUTDOOR;
1824
1825         /*
1826          * We will run this only upon a successful connection on cfg80211.
1827          * We leave conflict resolution to the workqueue, where can hold
1828          * cfg80211_mutex.
1829          */
1830         if (likely(last_request->initiator ==
1831             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1832             wiphy_idx_valid(last_request->wiphy_idx)))
1833                 goto out;
1834
1835         rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1836         if (!rd)
1837                 goto out;
1838
1839         /*
1840          * This will not happen right now but we leave it here for the
1841          * the future when we want to add suspend/resume support and having
1842          * the user move to another country after doing so, or having the user
1843          * move to another AP. Right now we just trust the first AP.
1844          *
1845          * If we hit this before we add this support we want to be informed of
1846          * it as it would indicate a mistake in the current design
1847          */
1848         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1849                 goto free_rd_out;
1850
1851         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1852         if (!request)
1853                 goto free_rd_out;
1854
1855         /*
1856          * We keep this around for when CRDA comes back with a response so
1857          * we can intersect with that
1858          */
1859         country_ie_regdomain = rd;
1860
1861         request->wiphy_idx = get_wiphy_idx(wiphy);
1862         request->alpha2[0] = rd->alpha2[0];
1863         request->alpha2[1] = rd->alpha2[1];
1864         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1865         request->country_ie_checksum = checksum;
1866         request->country_ie_env = env;
1867
1868         mutex_unlock(&reg_mutex);
1869
1870         queue_regulatory_request(request);
1871
1872         return;
1873
1874 free_rd_out:
1875         kfree(rd);
1876 out:
1877         mutex_unlock(&reg_mutex);
1878 }
1879
1880 static bool freq_is_chan_12_13_14(u16 freq)
1881 {
1882         if (freq == ieee80211_channel_to_frequency(12) ||
1883             freq == ieee80211_channel_to_frequency(13) ||
1884             freq == ieee80211_channel_to_frequency(14))
1885                 return true;
1886         return false;
1887 }
1888
1889 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1890                                  struct ieee80211_channel *beacon_chan,
1891                                  gfp_t gfp)
1892 {
1893         struct reg_beacon *reg_beacon;
1894
1895         if (likely((beacon_chan->beacon_found ||
1896             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1897             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1898              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1899                 return 0;
1900
1901         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1902         if (!reg_beacon)
1903                 return -ENOMEM;
1904
1905 #ifdef CONFIG_CFG80211_REG_DEBUG
1906         printk(KERN_DEBUG "cfg80211: Found new beacon on "
1907                 "frequency: %d MHz (Ch %d) on %s\n",
1908                 beacon_chan->center_freq,
1909                 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1910                 wiphy_name(wiphy));
1911 #endif
1912         memcpy(&reg_beacon->chan, beacon_chan,
1913                 sizeof(struct ieee80211_channel));
1914
1915
1916         /*
1917          * Since we can be called from BH or and non-BH context
1918          * we must use spin_lock_bh()
1919          */
1920         spin_lock_bh(&reg_pending_beacons_lock);
1921         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1922         spin_unlock_bh(&reg_pending_beacons_lock);
1923
1924         schedule_work(&reg_work);
1925
1926         return 0;
1927 }
1928
1929 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1930 {
1931         unsigned int i;
1932         const struct ieee80211_reg_rule *reg_rule = NULL;
1933         const struct ieee80211_freq_range *freq_range = NULL;
1934         const struct ieee80211_power_rule *power_rule = NULL;
1935
1936         printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1937                 "(max_antenna_gain, max_eirp)\n");
1938
1939         for (i = 0; i < rd->n_reg_rules; i++) {
1940                 reg_rule = &rd->reg_rules[i];
1941                 freq_range = &reg_rule->freq_range;
1942                 power_rule = &reg_rule->power_rule;
1943
1944                 /*
1945                  * There may not be documentation for max antenna gain
1946                  * in certain regions
1947                  */
1948                 if (power_rule->max_antenna_gain)
1949                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1950                                 "(%d mBi, %d mBm)\n",
1951                                 freq_range->start_freq_khz,
1952                                 freq_range->end_freq_khz,
1953                                 freq_range->max_bandwidth_khz,
1954                                 power_rule->max_antenna_gain,
1955                                 power_rule->max_eirp);
1956                 else
1957                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1958                                 "(N/A, %d mBm)\n",
1959                                 freq_range->start_freq_khz,
1960                                 freq_range->end_freq_khz,
1961                                 freq_range->max_bandwidth_khz,
1962                                 power_rule->max_eirp);
1963         }
1964 }
1965
1966 static void print_regdomain(const struct ieee80211_regdomain *rd)
1967 {
1968
1969         if (is_intersected_alpha2(rd->alpha2)) {
1970
1971                 if (last_request->initiator ==
1972                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1973                         struct cfg80211_registered_device *rdev;
1974                         rdev = cfg80211_rdev_by_wiphy_idx(
1975                                 last_request->wiphy_idx);
1976                         if (rdev) {
1977                                 printk(KERN_INFO "cfg80211: Current regulatory "
1978                                         "domain updated by AP to: %c%c\n",
1979                                         rdev->country_ie_alpha2[0],
1980                                         rdev->country_ie_alpha2[1]);
1981                         } else
1982                                 printk(KERN_INFO "cfg80211: Current regulatory "
1983                                         "domain intersected: \n");
1984                 } else
1985                                 printk(KERN_INFO "cfg80211: Current regulatory "
1986                                         "domain intersected: \n");
1987         } else if (is_world_regdom(rd->alpha2))
1988                 printk(KERN_INFO "cfg80211: World regulatory "
1989                         "domain updated:\n");
1990         else {
1991                 if (is_unknown_alpha2(rd->alpha2))
1992                         printk(KERN_INFO "cfg80211: Regulatory domain "
1993                                 "changed to driver built-in settings "
1994                                 "(unknown country)\n");
1995                 else
1996                         printk(KERN_INFO "cfg80211: Regulatory domain "
1997                                 "changed to country: %c%c\n",
1998                                 rd->alpha2[0], rd->alpha2[1]);
1999         }
2000         print_rd_rules(rd);
2001 }
2002
2003 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2004 {
2005         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2006                 rd->alpha2[0], rd->alpha2[1]);
2007         print_rd_rules(rd);
2008 }
2009
2010 #ifdef CONFIG_CFG80211_REG_DEBUG
2011 static void reg_country_ie_process_debug(
2012         const struct ieee80211_regdomain *rd,
2013         const struct ieee80211_regdomain *country_ie_regdomain,
2014         const struct ieee80211_regdomain *intersected_rd)
2015 {
2016         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2017         print_regdomain_info(country_ie_regdomain);
2018         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2019         print_regdomain_info(rd);
2020         if (intersected_rd) {
2021                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2022                         "and get:\n");
2023                 print_regdomain_info(intersected_rd);
2024                 return;
2025         }
2026         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2027 }
2028 #else
2029 static inline void reg_country_ie_process_debug(
2030         const struct ieee80211_regdomain *rd,
2031         const struct ieee80211_regdomain *country_ie_regdomain,
2032         const struct ieee80211_regdomain *intersected_rd)
2033 {
2034 }
2035 #endif
2036
2037 /* Takes ownership of rd only if it doesn't fail */
2038 static int __set_regdom(const struct ieee80211_regdomain *rd)
2039 {
2040         const struct ieee80211_regdomain *intersected_rd = NULL;
2041         struct cfg80211_registered_device *rdev = NULL;
2042         struct wiphy *request_wiphy;
2043         /* Some basic sanity checks first */
2044
2045         if (is_world_regdom(rd->alpha2)) {
2046                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2047                         return -EINVAL;
2048                 update_world_regdomain(rd);
2049                 return 0;
2050         }
2051
2052         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2053                         !is_unknown_alpha2(rd->alpha2))
2054                 return -EINVAL;
2055
2056         if (!last_request)
2057                 return -EINVAL;
2058
2059         /*
2060          * Lets only bother proceeding on the same alpha2 if the current
2061          * rd is non static (it means CRDA was present and was used last)
2062          * and the pending request came in from a country IE
2063          */
2064         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2065                 /*
2066                  * If someone else asked us to change the rd lets only bother
2067                  * checking if the alpha2 changes if CRDA was already called
2068                  */
2069                 if (!is_old_static_regdom(cfg80211_regdomain) &&
2070                     !regdom_changes(rd->alpha2))
2071                         return -EINVAL;
2072         }
2073
2074         /*
2075          * Now lets set the regulatory domain, update all driver channels
2076          * and finally inform them of what we have done, in case they want
2077          * to review or adjust their own settings based on their own
2078          * internal EEPROM data
2079          */
2080
2081         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2082                 return -EINVAL;
2083
2084         if (!is_valid_rd(rd)) {
2085                 printk(KERN_ERR "cfg80211: Invalid "
2086                         "regulatory domain detected:\n");
2087                 print_regdomain_info(rd);
2088                 return -EINVAL;
2089         }
2090
2091         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2092
2093         if (!last_request->intersect) {
2094                 int r;
2095
2096                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2097                         reset_regdomains();
2098                         cfg80211_regdomain = rd;
2099                         return 0;
2100                 }
2101
2102                 /*
2103                  * For a driver hint, lets copy the regulatory domain the
2104                  * driver wanted to the wiphy to deal with conflicts
2105                  */
2106
2107                 /*
2108                  * Userspace could have sent two replies with only
2109                  * one kernel request.
2110                  */
2111                 if (request_wiphy->regd)
2112                         return -EALREADY;
2113
2114                 r = reg_copy_regd(&request_wiphy->regd, rd);
2115                 if (r)
2116                         return r;
2117
2118                 reset_regdomains();
2119                 cfg80211_regdomain = rd;
2120                 return 0;
2121         }
2122
2123         /* Intersection requires a bit more work */
2124
2125         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2126
2127                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2128                 if (!intersected_rd)
2129                         return -EINVAL;
2130
2131                 /*
2132                  * We can trash what CRDA provided now.
2133                  * However if a driver requested this specific regulatory
2134                  * domain we keep it for its private use
2135                  */
2136                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2137                         request_wiphy->regd = rd;
2138                 else
2139                         kfree(rd);
2140
2141                 rd = NULL;
2142
2143                 reset_regdomains();
2144                 cfg80211_regdomain = intersected_rd;
2145
2146                 return 0;
2147         }
2148
2149         /*
2150          * Country IE requests are handled a bit differently, we intersect
2151          * the country IE rd with what CRDA believes that country should have
2152          */
2153
2154         /*
2155          * Userspace could have sent two replies with only
2156          * one kernel request. By the second reply we would have
2157          * already processed and consumed the country_ie_regdomain.
2158          */
2159         if (!country_ie_regdomain)
2160                 return -EALREADY;
2161         BUG_ON(rd == country_ie_regdomain);
2162
2163         /*
2164          * Intersect what CRDA returned and our what we
2165          * had built from the Country IE received
2166          */
2167
2168         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2169
2170         reg_country_ie_process_debug(rd,
2171                                      country_ie_regdomain,
2172                                      intersected_rd);
2173
2174         kfree(country_ie_regdomain);
2175         country_ie_regdomain = NULL;
2176
2177         if (!intersected_rd)
2178                 return -EINVAL;
2179
2180         rdev = wiphy_to_dev(request_wiphy);
2181
2182         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2183         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2184         rdev->env = last_request->country_ie_env;
2185
2186         BUG_ON(intersected_rd == rd);
2187
2188         kfree(rd);
2189         rd = NULL;
2190
2191         reset_regdomains();
2192         cfg80211_regdomain = intersected_rd;
2193
2194         return 0;
2195 }
2196
2197
2198 /*
2199  * Use this call to set the current regulatory domain. Conflicts with
2200  * multiple drivers can be ironed out later. Caller must've already
2201  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2202  */
2203 int set_regdom(const struct ieee80211_regdomain *rd)
2204 {
2205         int r;
2206
2207         assert_cfg80211_lock();
2208
2209         mutex_lock(&reg_mutex);
2210
2211         /* Note that this doesn't update the wiphys, this is done below */
2212         r = __set_regdom(rd);
2213         if (r) {
2214                 kfree(rd);
2215                 mutex_unlock(&reg_mutex);
2216                 return r;
2217         }
2218
2219         /* This would make this whole thing pointless */
2220         if (!last_request->intersect)
2221                 BUG_ON(rd != cfg80211_regdomain);
2222
2223         /* update all wiphys now with the new established regulatory domain */
2224         update_all_wiphy_regulatory(last_request->initiator);
2225
2226         print_regdomain(cfg80211_regdomain);
2227
2228         nl80211_send_reg_change_event(last_request);
2229
2230         mutex_unlock(&reg_mutex);
2231
2232         return r;
2233 }
2234
2235 /* Caller must hold cfg80211_mutex */
2236 void reg_device_remove(struct wiphy *wiphy)
2237 {
2238         struct wiphy *request_wiphy = NULL;
2239
2240         assert_cfg80211_lock();
2241
2242         mutex_lock(&reg_mutex);
2243
2244         kfree(wiphy->regd);
2245
2246         if (last_request)
2247                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2248
2249         if (!request_wiphy || request_wiphy != wiphy)
2250                 goto out;
2251
2252         last_request->wiphy_idx = WIPHY_IDX_STALE;
2253         last_request->country_ie_env = ENVIRON_ANY;
2254 out:
2255         mutex_unlock(&reg_mutex);
2256 }
2257
2258 int regulatory_init(void)
2259 {
2260         int err = 0;
2261
2262         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2263         if (IS_ERR(reg_pdev))
2264                 return PTR_ERR(reg_pdev);
2265
2266         spin_lock_init(&reg_requests_lock);
2267         spin_lock_init(&reg_pending_beacons_lock);
2268
2269 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2270         cfg80211_regdomain = static_regdom(ieee80211_regdom);
2271
2272         printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2273         print_regdomain_info(cfg80211_regdomain);
2274 #else
2275         cfg80211_regdomain = cfg80211_world_regdom;
2276
2277 #endif
2278         /* We always try to get an update for the static regdomain */
2279         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2280         if (err) {
2281                 if (err == -ENOMEM)
2282                         return err;
2283                 /*
2284                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2285                  * memory which is handled and propagated appropriately above
2286                  * but it can also fail during a netlink_broadcast() or during
2287                  * early boot for call_usermodehelper(). For now treat these
2288                  * errors as non-fatal.
2289                  */
2290                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2291                         "to call CRDA during init");
2292 #ifdef CONFIG_CFG80211_REG_DEBUG
2293                 /* We want to find out exactly why when debugging */
2294                 WARN_ON(err);
2295 #endif
2296         }
2297
2298         /*
2299          * Finally, if the user set the module parameter treat it
2300          * as a user hint.
2301          */
2302         if (!is_world_regdom(ieee80211_regdom))
2303                 regulatory_hint_user(ieee80211_regdom);
2304
2305         return 0;
2306 }
2307
2308 void regulatory_exit(void)
2309 {
2310         struct regulatory_request *reg_request, *tmp;
2311         struct reg_beacon *reg_beacon, *btmp;
2312
2313         cancel_work_sync(&reg_work);
2314
2315         mutex_lock(&cfg80211_mutex);
2316         mutex_lock(&reg_mutex);
2317
2318         reset_regdomains();
2319
2320         kfree(country_ie_regdomain);
2321         country_ie_regdomain = NULL;
2322
2323         kfree(last_request);
2324
2325         platform_device_unregister(reg_pdev);
2326
2327         spin_lock_bh(&reg_pending_beacons_lock);
2328         if (!list_empty(&reg_pending_beacons)) {
2329                 list_for_each_entry_safe(reg_beacon, btmp,
2330                                          &reg_pending_beacons, list) {
2331                         list_del(&reg_beacon->list);
2332                         kfree(reg_beacon);
2333                 }
2334         }
2335         spin_unlock_bh(&reg_pending_beacons_lock);
2336
2337         if (!list_empty(&reg_beacon_list)) {
2338                 list_for_each_entry_safe(reg_beacon, btmp,
2339                                          &reg_beacon_list, list) {
2340                         list_del(&reg_beacon->list);
2341                         kfree(reg_beacon);
2342                 }
2343         }
2344
2345         spin_lock(&reg_requests_lock);
2346         if (!list_empty(&reg_requests_list)) {
2347                 list_for_each_entry_safe(reg_request, tmp,
2348                                          &reg_requests_list, list) {
2349                         list_del(&reg_request->list);
2350                         kfree(reg_request);
2351                 }
2352         }
2353         spin_unlock(&reg_requests_lock);
2354
2355         mutex_unlock(&reg_mutex);
2356         mutex_unlock(&cfg80211_mutex);
2357 }