Merge branch 'nfs-for-2.6.35' of git://git.linux-nfs.org/projects/trondmy/nfs-2.6
[pandora-kernel.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21
22 #include <linux/sunrpc/clnt.h>
23
24 #include "sunrpc.h"
25
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY         RPCDBG_SCHED
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44
45 /*
46  * RPC tasks sit here while waiting for conditions to improve.
47  */
48 static struct rpc_wait_queue delay_queue;
49
50 /*
51  * rpciod-related stuff
52  */
53 struct workqueue_struct *rpciod_workqueue;
54
55 /*
56  * Disable the timer for a given RPC task. Should be called with
57  * queue->lock and bh_disabled in order to avoid races within
58  * rpc_run_timer().
59  */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63         if (task->tk_timeout == 0)
64                 return;
65         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66         task->tk_timeout = 0;
67         list_del(&task->u.tk_wait.timer_list);
68         if (list_empty(&queue->timer_list.list))
69                 del_timer(&queue->timer_list.timer);
70 }
71
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75         queue->timer_list.expires = expires;
76         mod_timer(&queue->timer_list.timer, expires);
77 }
78
79 /*
80  * Set up a timer for the current task.
81  */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85         if (!task->tk_timeout)
86                 return;
87
88         dprintk("RPC: %5u setting alarm for %lu ms\n",
89                         task->tk_pid, task->tk_timeout * 1000 / HZ);
90
91         task->u.tk_wait.expires = jiffies + task->tk_timeout;
92         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
101 {
102         struct list_head *q;
103         struct rpc_task *t;
104
105         INIT_LIST_HEAD(&task->u.tk_wait.links);
106         q = &queue->tasks[task->tk_priority];
107         if (unlikely(task->tk_priority > queue->maxpriority))
108                 q = &queue->tasks[queue->maxpriority];
109         list_for_each_entry(t, q, u.tk_wait.list) {
110                 if (t->tk_owner == task->tk_owner) {
111                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112                         return;
113                 }
114         }
115         list_add_tail(&task->u.tk_wait.list, q);
116 }
117
118 /*
119  * Add new request to wait queue.
120  *
121  * Swapper tasks always get inserted at the head of the queue.
122  * This should avoid many nasty memory deadlocks and hopefully
123  * improve overall performance.
124  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
125  */
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
127 {
128         BUG_ON (RPC_IS_QUEUED(task));
129
130         if (RPC_IS_PRIORITY(queue))
131                 __rpc_add_wait_queue_priority(queue, task);
132         else if (RPC_IS_SWAPPER(task))
133                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134         else
135                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136         task->tk_waitqueue = queue;
137         queue->qlen++;
138         rpc_set_queued(task);
139
140         dprintk("RPC: %5u added to queue %p \"%s\"\n",
141                         task->tk_pid, queue, rpc_qname(queue));
142 }
143
144 /*
145  * Remove request from a priority queue.
146  */
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
148 {
149         struct rpc_task *t;
150
151         if (!list_empty(&task->u.tk_wait.links)) {
152                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
155         }
156 }
157
158 /*
159  * Remove request from queue.
160  * Note: must be called with spin lock held.
161  */
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
163 {
164         __rpc_disable_timer(queue, task);
165         if (RPC_IS_PRIORITY(queue))
166                 __rpc_remove_wait_queue_priority(task);
167         list_del(&task->u.tk_wait.list);
168         queue->qlen--;
169         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170                         task->tk_pid, queue, rpc_qname(queue));
171 }
172
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
174 {
175         queue->priority = priority;
176         queue->count = 1 << (priority * 2);
177 }
178
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
180 {
181         queue->owner = pid;
182         queue->nr = RPC_BATCH_COUNT;
183 }
184
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
186 {
187         rpc_set_waitqueue_priority(queue, queue->maxpriority);
188         rpc_set_waitqueue_owner(queue, 0);
189 }
190
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
192 {
193         int i;
194
195         spin_lock_init(&queue->lock);
196         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
197                 INIT_LIST_HEAD(&queue->tasks[i]);
198         queue->maxpriority = nr_queues - 1;
199         rpc_reset_waitqueue_priority(queue);
200         queue->qlen = 0;
201         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
202         INIT_LIST_HEAD(&queue->timer_list.list);
203 #ifdef RPC_DEBUG
204         queue->name = qname;
205 #endif
206 }
207
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
209 {
210         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
211 }
212 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
213
214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216         __rpc_init_priority_wait_queue(queue, qname, 1);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
219
220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
221 {
222         del_timer_sync(&queue->timer_list.timer);
223 }
224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
225
226 static int rpc_wait_bit_killable(void *word)
227 {
228         if (fatal_signal_pending(current))
229                 return -ERESTARTSYS;
230         schedule();
231         return 0;
232 }
233
234 #ifdef RPC_DEBUG
235 static void rpc_task_set_debuginfo(struct rpc_task *task)
236 {
237         static atomic_t rpc_pid;
238
239         task->tk_pid = atomic_inc_return(&rpc_pid);
240 }
241 #else
242 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
243 {
244 }
245 #endif
246
247 static void rpc_set_active(struct rpc_task *task)
248 {
249         struct rpc_clnt *clnt;
250         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
251                 return;
252         rpc_task_set_debuginfo(task);
253         /* Add to global list of all tasks */
254         clnt = task->tk_client;
255         if (clnt != NULL) {
256                 spin_lock(&clnt->cl_lock);
257                 list_add_tail(&task->tk_task, &clnt->cl_tasks);
258                 spin_unlock(&clnt->cl_lock);
259         }
260 }
261
262 /*
263  * Mark an RPC call as having completed by clearing the 'active' bit
264  */
265 static void rpc_mark_complete_task(struct rpc_task *task)
266 {
267         smp_mb__before_clear_bit();
268         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
269         smp_mb__after_clear_bit();
270         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
271 }
272
273 /*
274  * Allow callers to wait for completion of an RPC call
275  */
276 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
277 {
278         if (action == NULL)
279                 action = rpc_wait_bit_killable;
280         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
281                         action, TASK_KILLABLE);
282 }
283 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
284
285 /*
286  * Make an RPC task runnable.
287  *
288  * Note: If the task is ASYNC, this must be called with
289  * the spinlock held to protect the wait queue operation.
290  */
291 static void rpc_make_runnable(struct rpc_task *task)
292 {
293         rpc_clear_queued(task);
294         if (rpc_test_and_set_running(task))
295                 return;
296         if (RPC_IS_ASYNC(task)) {
297                 int status;
298
299                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
300                 status = queue_work(rpciod_workqueue, &task->u.tk_work);
301                 if (status < 0) {
302                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
303                         task->tk_status = status;
304                         return;
305                 }
306         } else
307                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
308 }
309
310 /*
311  * Prepare for sleeping on a wait queue.
312  * By always appending tasks to the list we ensure FIFO behavior.
313  * NB: An RPC task will only receive interrupt-driven events as long
314  * as it's on a wait queue.
315  */
316 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
317                         rpc_action action)
318 {
319         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
320                         task->tk_pid, rpc_qname(q), jiffies);
321
322         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
323                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
324                 return;
325         }
326
327         __rpc_add_wait_queue(q, task);
328
329         BUG_ON(task->tk_callback != NULL);
330         task->tk_callback = action;
331         __rpc_add_timer(q, task);
332 }
333
334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
335                                 rpc_action action)
336 {
337         /* Mark the task as being activated if so needed */
338         rpc_set_active(task);
339
340         /*
341          * Protect the queue operations.
342          */
343         spin_lock_bh(&q->lock);
344         __rpc_sleep_on(q, task, action);
345         spin_unlock_bh(&q->lock);
346 }
347 EXPORT_SYMBOL_GPL(rpc_sleep_on);
348
349 /**
350  * __rpc_do_wake_up_task - wake up a single rpc_task
351  * @queue: wait queue
352  * @task: task to be woken up
353  *
354  * Caller must hold queue->lock, and have cleared the task queued flag.
355  */
356 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
357 {
358         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
359                         task->tk_pid, jiffies);
360
361         /* Has the task been executed yet? If not, we cannot wake it up! */
362         if (!RPC_IS_ACTIVATED(task)) {
363                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
364                 return;
365         }
366
367         __rpc_remove_wait_queue(queue, task);
368
369         rpc_make_runnable(task);
370
371         dprintk("RPC:       __rpc_wake_up_task done\n");
372 }
373
374 /*
375  * Wake up a queued task while the queue lock is being held
376  */
377 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
378 {
379         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
380                 __rpc_do_wake_up_task(queue, task);
381 }
382
383 /*
384  * Tests whether rpc queue is empty
385  */
386 int rpc_queue_empty(struct rpc_wait_queue *queue)
387 {
388         int res;
389
390         spin_lock_bh(&queue->lock);
391         res = queue->qlen;
392         spin_unlock_bh(&queue->lock);
393         return (res == 0);
394 }
395 EXPORT_SYMBOL_GPL(rpc_queue_empty);
396
397 /*
398  * Wake up a task on a specific queue
399  */
400 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
401 {
402         spin_lock_bh(&queue->lock);
403         rpc_wake_up_task_queue_locked(queue, task);
404         spin_unlock_bh(&queue->lock);
405 }
406 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
407
408 /*
409  * Wake up the specified task
410  */
411 static void rpc_wake_up_task(struct rpc_task *task)
412 {
413         rpc_wake_up_queued_task(task->tk_waitqueue, task);
414 }
415
416 /*
417  * Wake up the next task on a priority queue.
418  */
419 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
420 {
421         struct list_head *q;
422         struct rpc_task *task;
423
424         /*
425          * Service a batch of tasks from a single owner.
426          */
427         q = &queue->tasks[queue->priority];
428         if (!list_empty(q)) {
429                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
430                 if (queue->owner == task->tk_owner) {
431                         if (--queue->nr)
432                                 goto out;
433                         list_move_tail(&task->u.tk_wait.list, q);
434                 }
435                 /*
436                  * Check if we need to switch queues.
437                  */
438                 if (--queue->count)
439                         goto new_owner;
440         }
441
442         /*
443          * Service the next queue.
444          */
445         do {
446                 if (q == &queue->tasks[0])
447                         q = &queue->tasks[queue->maxpriority];
448                 else
449                         q = q - 1;
450                 if (!list_empty(q)) {
451                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
452                         goto new_queue;
453                 }
454         } while (q != &queue->tasks[queue->priority]);
455
456         rpc_reset_waitqueue_priority(queue);
457         return NULL;
458
459 new_queue:
460         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
461 new_owner:
462         rpc_set_waitqueue_owner(queue, task->tk_owner);
463 out:
464         rpc_wake_up_task_queue_locked(queue, task);
465         return task;
466 }
467
468 /*
469  * Wake up the next task on the wait queue.
470  */
471 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
472 {
473         struct rpc_task *task = NULL;
474
475         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
476                         queue, rpc_qname(queue));
477         spin_lock_bh(&queue->lock);
478         if (RPC_IS_PRIORITY(queue))
479                 task = __rpc_wake_up_next_priority(queue);
480         else {
481                 task_for_first(task, &queue->tasks[0])
482                         rpc_wake_up_task_queue_locked(queue, task);
483         }
484         spin_unlock_bh(&queue->lock);
485
486         return task;
487 }
488 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
489
490 /**
491  * rpc_wake_up - wake up all rpc_tasks
492  * @queue: rpc_wait_queue on which the tasks are sleeping
493  *
494  * Grabs queue->lock
495  */
496 void rpc_wake_up(struct rpc_wait_queue *queue)
497 {
498         struct rpc_task *task, *next;
499         struct list_head *head;
500
501         spin_lock_bh(&queue->lock);
502         head = &queue->tasks[queue->maxpriority];
503         for (;;) {
504                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
505                         rpc_wake_up_task_queue_locked(queue, task);
506                 if (head == &queue->tasks[0])
507                         break;
508                 head--;
509         }
510         spin_unlock_bh(&queue->lock);
511 }
512 EXPORT_SYMBOL_GPL(rpc_wake_up);
513
514 /**
515  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
516  * @queue: rpc_wait_queue on which the tasks are sleeping
517  * @status: status value to set
518  *
519  * Grabs queue->lock
520  */
521 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
522 {
523         struct rpc_task *task, *next;
524         struct list_head *head;
525
526         spin_lock_bh(&queue->lock);
527         head = &queue->tasks[queue->maxpriority];
528         for (;;) {
529                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
530                         task->tk_status = status;
531                         rpc_wake_up_task_queue_locked(queue, task);
532                 }
533                 if (head == &queue->tasks[0])
534                         break;
535                 head--;
536         }
537         spin_unlock_bh(&queue->lock);
538 }
539 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
540
541 static void __rpc_queue_timer_fn(unsigned long ptr)
542 {
543         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
544         struct rpc_task *task, *n;
545         unsigned long expires, now, timeo;
546
547         spin_lock(&queue->lock);
548         expires = now = jiffies;
549         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
550                 timeo = task->u.tk_wait.expires;
551                 if (time_after_eq(now, timeo)) {
552                         dprintk("RPC: %5u timeout\n", task->tk_pid);
553                         task->tk_status = -ETIMEDOUT;
554                         rpc_wake_up_task_queue_locked(queue, task);
555                         continue;
556                 }
557                 if (expires == now || time_after(expires, timeo))
558                         expires = timeo;
559         }
560         if (!list_empty(&queue->timer_list.list))
561                 rpc_set_queue_timer(queue, expires);
562         spin_unlock(&queue->lock);
563 }
564
565 static void __rpc_atrun(struct rpc_task *task)
566 {
567         task->tk_status = 0;
568 }
569
570 /*
571  * Run a task at a later time
572  */
573 void rpc_delay(struct rpc_task *task, unsigned long delay)
574 {
575         task->tk_timeout = delay;
576         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
577 }
578 EXPORT_SYMBOL_GPL(rpc_delay);
579
580 /*
581  * Helper to call task->tk_ops->rpc_call_prepare
582  */
583 void rpc_prepare_task(struct rpc_task *task)
584 {
585         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
586 }
587
588 /*
589  * Helper that calls task->tk_ops->rpc_call_done if it exists
590  */
591 void rpc_exit_task(struct rpc_task *task)
592 {
593         task->tk_action = NULL;
594         if (task->tk_ops->rpc_call_done != NULL) {
595                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
596                 if (task->tk_action != NULL) {
597                         WARN_ON(RPC_ASSASSINATED(task));
598                         /* Always release the RPC slot and buffer memory */
599                         xprt_release(task);
600                 }
601         }
602 }
603 EXPORT_SYMBOL_GPL(rpc_exit_task);
604
605 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
606 {
607         if (ops->rpc_release != NULL)
608                 ops->rpc_release(calldata);
609 }
610
611 /*
612  * This is the RPC `scheduler' (or rather, the finite state machine).
613  */
614 static void __rpc_execute(struct rpc_task *task)
615 {
616         struct rpc_wait_queue *queue;
617         int task_is_async = RPC_IS_ASYNC(task);
618         int status = 0;
619
620         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
621                         task->tk_pid, task->tk_flags);
622
623         BUG_ON(RPC_IS_QUEUED(task));
624
625         for (;;) {
626
627                 /*
628                  * Execute any pending callback.
629                  */
630                 if (task->tk_callback) {
631                         void (*save_callback)(struct rpc_task *);
632
633                         /*
634                          * We set tk_callback to NULL before calling it,
635                          * in case it sets the tk_callback field itself:
636                          */
637                         save_callback = task->tk_callback;
638                         task->tk_callback = NULL;
639                         save_callback(task);
640                 }
641
642                 /*
643                  * Perform the next FSM step.
644                  * tk_action may be NULL when the task has been killed
645                  * by someone else.
646                  */
647                 if (!RPC_IS_QUEUED(task)) {
648                         if (task->tk_action == NULL)
649                                 break;
650                         task->tk_action(task);
651                 }
652
653                 /*
654                  * Lockless check for whether task is sleeping or not.
655                  */
656                 if (!RPC_IS_QUEUED(task))
657                         continue;
658                 /*
659                  * The queue->lock protects against races with
660                  * rpc_make_runnable().
661                  *
662                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
663                  * rpc_task, rpc_make_runnable() can assign it to a
664                  * different workqueue. We therefore cannot assume that the
665                  * rpc_task pointer may still be dereferenced.
666                  */
667                 queue = task->tk_waitqueue;
668                 spin_lock_bh(&queue->lock);
669                 if (!RPC_IS_QUEUED(task)) {
670                         spin_unlock_bh(&queue->lock);
671                         continue;
672                 }
673                 rpc_clear_running(task);
674                 spin_unlock_bh(&queue->lock);
675                 if (task_is_async)
676                         return;
677
678                 /* sync task: sleep here */
679                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
680                 status = out_of_line_wait_on_bit(&task->tk_runstate,
681                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
682                                 TASK_KILLABLE);
683                 if (status == -ERESTARTSYS) {
684                         /*
685                          * When a sync task receives a signal, it exits with
686                          * -ERESTARTSYS. In order to catch any callbacks that
687                          * clean up after sleeping on some queue, we don't
688                          * break the loop here, but go around once more.
689                          */
690                         dprintk("RPC: %5u got signal\n", task->tk_pid);
691                         task->tk_flags |= RPC_TASK_KILLED;
692                         rpc_exit(task, -ERESTARTSYS);
693                         rpc_wake_up_task(task);
694                 }
695                 rpc_set_running(task);
696                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
697         }
698
699         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
700                         task->tk_status);
701         /* Release all resources associated with the task */
702         rpc_release_task(task);
703 }
704
705 /*
706  * User-visible entry point to the scheduler.
707  *
708  * This may be called recursively if e.g. an async NFS task updates
709  * the attributes and finds that dirty pages must be flushed.
710  * NOTE: Upon exit of this function the task is guaranteed to be
711  *       released. In particular note that tk_release() will have
712  *       been called, so your task memory may have been freed.
713  */
714 void rpc_execute(struct rpc_task *task)
715 {
716         rpc_set_active(task);
717         rpc_set_running(task);
718         __rpc_execute(task);
719 }
720
721 static void rpc_async_schedule(struct work_struct *work)
722 {
723         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
724 }
725
726 /**
727  * rpc_malloc - allocate an RPC buffer
728  * @task: RPC task that will use this buffer
729  * @size: requested byte size
730  *
731  * To prevent rpciod from hanging, this allocator never sleeps,
732  * returning NULL if the request cannot be serviced immediately.
733  * The caller can arrange to sleep in a way that is safe for rpciod.
734  *
735  * Most requests are 'small' (under 2KiB) and can be serviced from a
736  * mempool, ensuring that NFS reads and writes can always proceed,
737  * and that there is good locality of reference for these buffers.
738  *
739  * In order to avoid memory starvation triggering more writebacks of
740  * NFS requests, we avoid using GFP_KERNEL.
741  */
742 void *rpc_malloc(struct rpc_task *task, size_t size)
743 {
744         struct rpc_buffer *buf;
745         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
746
747         size += sizeof(struct rpc_buffer);
748         if (size <= RPC_BUFFER_MAXSIZE)
749                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
750         else
751                 buf = kmalloc(size, gfp);
752
753         if (!buf)
754                 return NULL;
755
756         buf->len = size;
757         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
758                         task->tk_pid, size, buf);
759         return &buf->data;
760 }
761 EXPORT_SYMBOL_GPL(rpc_malloc);
762
763 /**
764  * rpc_free - free buffer allocated via rpc_malloc
765  * @buffer: buffer to free
766  *
767  */
768 void rpc_free(void *buffer)
769 {
770         size_t size;
771         struct rpc_buffer *buf;
772
773         if (!buffer)
774                 return;
775
776         buf = container_of(buffer, struct rpc_buffer, data);
777         size = buf->len;
778
779         dprintk("RPC:       freeing buffer of size %zu at %p\n",
780                         size, buf);
781
782         if (size <= RPC_BUFFER_MAXSIZE)
783                 mempool_free(buf, rpc_buffer_mempool);
784         else
785                 kfree(buf);
786 }
787 EXPORT_SYMBOL_GPL(rpc_free);
788
789 /*
790  * Creation and deletion of RPC task structures
791  */
792 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
793 {
794         memset(task, 0, sizeof(*task));
795         atomic_set(&task->tk_count, 1);
796         task->tk_flags  = task_setup_data->flags;
797         task->tk_ops = task_setup_data->callback_ops;
798         task->tk_calldata = task_setup_data->callback_data;
799         INIT_LIST_HEAD(&task->tk_task);
800
801         /* Initialize retry counters */
802         task->tk_garb_retry = 2;
803         task->tk_cred_retry = 2;
804
805         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
806         task->tk_owner = current->tgid;
807
808         /* Initialize workqueue for async tasks */
809         task->tk_workqueue = task_setup_data->workqueue;
810
811         task->tk_client = task_setup_data->rpc_client;
812         if (task->tk_client != NULL) {
813                 kref_get(&task->tk_client->cl_kref);
814                 if (task->tk_client->cl_softrtry)
815                         task->tk_flags |= RPC_TASK_SOFT;
816         }
817
818         if (task->tk_ops->rpc_call_prepare != NULL)
819                 task->tk_action = rpc_prepare_task;
820
821         if (task_setup_data->rpc_message != NULL) {
822                 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
823                 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
824                 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
825                 /* Bind the user cred */
826                 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
827                 if (task->tk_action == NULL)
828                         rpc_call_start(task);
829         }
830
831         /* starting timestamp */
832         task->tk_start = ktime_get();
833
834         dprintk("RPC:       new task initialized, procpid %u\n",
835                                 task_pid_nr(current));
836 }
837
838 static struct rpc_task *
839 rpc_alloc_task(void)
840 {
841         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
842 }
843
844 /*
845  * Create a new task for the specified client.
846  */
847 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
848 {
849         struct rpc_task *task = setup_data->task;
850         unsigned short flags = 0;
851
852         if (task == NULL) {
853                 task = rpc_alloc_task();
854                 if (task == NULL) {
855                         rpc_release_calldata(setup_data->callback_ops,
856                                         setup_data->callback_data);
857                         return ERR_PTR(-ENOMEM);
858                 }
859                 flags = RPC_TASK_DYNAMIC;
860         }
861
862         rpc_init_task(task, setup_data);
863         if (task->tk_status < 0) {
864                 int err = task->tk_status;
865                 rpc_put_task(task);
866                 return ERR_PTR(err);
867         }
868
869         task->tk_flags |= flags;
870         dprintk("RPC:       allocated task %p\n", task);
871         return task;
872 }
873
874 static void rpc_free_task(struct rpc_task *task)
875 {
876         const struct rpc_call_ops *tk_ops = task->tk_ops;
877         void *calldata = task->tk_calldata;
878
879         if (task->tk_flags & RPC_TASK_DYNAMIC) {
880                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
881                 mempool_free(task, rpc_task_mempool);
882         }
883         rpc_release_calldata(tk_ops, calldata);
884 }
885
886 static void rpc_async_release(struct work_struct *work)
887 {
888         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
889 }
890
891 void rpc_put_task(struct rpc_task *task)
892 {
893         if (!atomic_dec_and_test(&task->tk_count))
894                 return;
895         /* Release resources */
896         if (task->tk_rqstp)
897                 xprt_release(task);
898         if (task->tk_msg.rpc_cred)
899                 rpcauth_unbindcred(task);
900         if (task->tk_client) {
901                 rpc_release_client(task->tk_client);
902                 task->tk_client = NULL;
903         }
904         if (task->tk_workqueue != NULL) {
905                 INIT_WORK(&task->u.tk_work, rpc_async_release);
906                 queue_work(task->tk_workqueue, &task->u.tk_work);
907         } else
908                 rpc_free_task(task);
909 }
910 EXPORT_SYMBOL_GPL(rpc_put_task);
911
912 static void rpc_release_task(struct rpc_task *task)
913 {
914         dprintk("RPC: %5u release task\n", task->tk_pid);
915
916         if (!list_empty(&task->tk_task)) {
917                 struct rpc_clnt *clnt = task->tk_client;
918                 /* Remove from client task list */
919                 spin_lock(&clnt->cl_lock);
920                 list_del(&task->tk_task);
921                 spin_unlock(&clnt->cl_lock);
922         }
923         BUG_ON (RPC_IS_QUEUED(task));
924
925         /* Wake up anyone who is waiting for task completion */
926         rpc_mark_complete_task(task);
927
928         rpc_put_task(task);
929 }
930
931 /*
932  * Kill all tasks for the given client.
933  * XXX: kill their descendants as well?
934  */
935 void rpc_killall_tasks(struct rpc_clnt *clnt)
936 {
937         struct rpc_task *rovr;
938
939
940         if (list_empty(&clnt->cl_tasks))
941                 return;
942         dprintk("RPC:       killing all tasks for client %p\n", clnt);
943         /*
944          * Spin lock all_tasks to prevent changes...
945          */
946         spin_lock(&clnt->cl_lock);
947         list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
948                 if (! RPC_IS_ACTIVATED(rovr))
949                         continue;
950                 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
951                         rovr->tk_flags |= RPC_TASK_KILLED;
952                         rpc_exit(rovr, -EIO);
953                         rpc_wake_up_task(rovr);
954                 }
955         }
956         spin_unlock(&clnt->cl_lock);
957 }
958 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
959
960 int rpciod_up(void)
961 {
962         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
963 }
964
965 void rpciod_down(void)
966 {
967         module_put(THIS_MODULE);
968 }
969
970 /*
971  * Start up the rpciod workqueue.
972  */
973 static int rpciod_start(void)
974 {
975         struct workqueue_struct *wq;
976
977         /*
978          * Create the rpciod thread and wait for it to start.
979          */
980         dprintk("RPC:       creating workqueue rpciod\n");
981         wq = create_workqueue("rpciod");
982         rpciod_workqueue = wq;
983         return rpciod_workqueue != NULL;
984 }
985
986 static void rpciod_stop(void)
987 {
988         struct workqueue_struct *wq = NULL;
989
990         if (rpciod_workqueue == NULL)
991                 return;
992         dprintk("RPC:       destroying workqueue rpciod\n");
993
994         wq = rpciod_workqueue;
995         rpciod_workqueue = NULL;
996         destroy_workqueue(wq);
997 }
998
999 void
1000 rpc_destroy_mempool(void)
1001 {
1002         rpciod_stop();
1003         if (rpc_buffer_mempool)
1004                 mempool_destroy(rpc_buffer_mempool);
1005         if (rpc_task_mempool)
1006                 mempool_destroy(rpc_task_mempool);
1007         if (rpc_task_slabp)
1008                 kmem_cache_destroy(rpc_task_slabp);
1009         if (rpc_buffer_slabp)
1010                 kmem_cache_destroy(rpc_buffer_slabp);
1011         rpc_destroy_wait_queue(&delay_queue);
1012 }
1013
1014 int
1015 rpc_init_mempool(void)
1016 {
1017         /*
1018          * The following is not strictly a mempool initialisation,
1019          * but there is no harm in doing it here
1020          */
1021         rpc_init_wait_queue(&delay_queue, "delayq");
1022         if (!rpciod_start())
1023                 goto err_nomem;
1024
1025         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1026                                              sizeof(struct rpc_task),
1027                                              0, SLAB_HWCACHE_ALIGN,
1028                                              NULL);
1029         if (!rpc_task_slabp)
1030                 goto err_nomem;
1031         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1032                                              RPC_BUFFER_MAXSIZE,
1033                                              0, SLAB_HWCACHE_ALIGN,
1034                                              NULL);
1035         if (!rpc_buffer_slabp)
1036                 goto err_nomem;
1037         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1038                                                     rpc_task_slabp);
1039         if (!rpc_task_mempool)
1040                 goto err_nomem;
1041         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1042                                                       rpc_buffer_slabp);
1043         if (!rpc_buffer_mempool)
1044                 goto err_nomem;
1045         return 0;
1046 err_nomem:
1047         rpc_destroy_mempool();
1048         return -ENOMEM;
1049 }