Merge branch 'upstream-linus' of git://github.com/jgarzik/libata-dev
[pandora-kernel.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21
22 #include <linux/sunrpc/clnt.h>
23
24 #include "sunrpc.h"
25
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY         RPCDBG_SCHED
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44
45 /*
46  * RPC tasks sit here while waiting for conditions to improve.
47  */
48 static struct rpc_wait_queue delay_queue;
49
50 /*
51  * rpciod-related stuff
52  */
53 struct workqueue_struct *rpciod_workqueue;
54
55 /*
56  * Disable the timer for a given RPC task. Should be called with
57  * queue->lock and bh_disabled in order to avoid races within
58  * rpc_run_timer().
59  */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63         if (task->tk_timeout == 0)
64                 return;
65         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66         task->tk_timeout = 0;
67         list_del(&task->u.tk_wait.timer_list);
68         if (list_empty(&queue->timer_list.list))
69                 del_timer(&queue->timer_list.timer);
70 }
71
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75         queue->timer_list.expires = expires;
76         mod_timer(&queue->timer_list.timer, expires);
77 }
78
79 /*
80  * Set up a timer for the current task.
81  */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85         if (!task->tk_timeout)
86                 return;
87
88         dprintk("RPC: %5u setting alarm for %lu ms\n",
89                         task->tk_pid, task->tk_timeout * 1000 / HZ);
90
91         task->u.tk_wait.expires = jiffies + task->tk_timeout;
92         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
101                 struct rpc_task *task,
102                 unsigned char queue_priority)
103 {
104         struct list_head *q;
105         struct rpc_task *t;
106
107         INIT_LIST_HEAD(&task->u.tk_wait.links);
108         q = &queue->tasks[queue_priority];
109         if (unlikely(queue_priority > queue->maxpriority))
110                 q = &queue->tasks[queue->maxpriority];
111         list_for_each_entry(t, q, u.tk_wait.list) {
112                 if (t->tk_owner == task->tk_owner) {
113                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
114                         return;
115                 }
116         }
117         list_add_tail(&task->u.tk_wait.list, q);
118 }
119
120 /*
121  * Add new request to wait queue.
122  *
123  * Swapper tasks always get inserted at the head of the queue.
124  * This should avoid many nasty memory deadlocks and hopefully
125  * improve overall performance.
126  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
127  */
128 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
129                 struct rpc_task *task,
130                 unsigned char queue_priority)
131 {
132         BUG_ON (RPC_IS_QUEUED(task));
133
134         if (RPC_IS_PRIORITY(queue))
135                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
136         else if (RPC_IS_SWAPPER(task))
137                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
138         else
139                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
140         task->tk_waitqueue = queue;
141         queue->qlen++;
142         rpc_set_queued(task);
143
144         dprintk("RPC: %5u added to queue %p \"%s\"\n",
145                         task->tk_pid, queue, rpc_qname(queue));
146 }
147
148 /*
149  * Remove request from a priority queue.
150  */
151 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
152 {
153         struct rpc_task *t;
154
155         if (!list_empty(&task->u.tk_wait.links)) {
156                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
157                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
158                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
159         }
160 }
161
162 /*
163  * Remove request from queue.
164  * Note: must be called with spin lock held.
165  */
166 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
167 {
168         __rpc_disable_timer(queue, task);
169         if (RPC_IS_PRIORITY(queue))
170                 __rpc_remove_wait_queue_priority(task);
171         list_del(&task->u.tk_wait.list);
172         queue->qlen--;
173         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
174                         task->tk_pid, queue, rpc_qname(queue));
175 }
176
177 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
178 {
179         queue->priority = priority;
180         queue->count = 1 << (priority * 2);
181 }
182
183 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
184 {
185         queue->owner = pid;
186         queue->nr = RPC_BATCH_COUNT;
187 }
188
189 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
190 {
191         rpc_set_waitqueue_priority(queue, queue->maxpriority);
192         rpc_set_waitqueue_owner(queue, 0);
193 }
194
195 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
196 {
197         int i;
198
199         spin_lock_init(&queue->lock);
200         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
201                 INIT_LIST_HEAD(&queue->tasks[i]);
202         queue->maxpriority = nr_queues - 1;
203         rpc_reset_waitqueue_priority(queue);
204         queue->qlen = 0;
205         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
206         INIT_LIST_HEAD(&queue->timer_list.list);
207 #ifdef RPC_DEBUG
208         queue->name = qname;
209 #endif
210 }
211
212 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
213 {
214         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
215 }
216 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
217
218 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
219 {
220         __rpc_init_priority_wait_queue(queue, qname, 1);
221 }
222 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
223
224 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
225 {
226         del_timer_sync(&queue->timer_list.timer);
227 }
228 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
229
230 static int rpc_wait_bit_killable(void *word)
231 {
232         if (fatal_signal_pending(current))
233                 return -ERESTARTSYS;
234         schedule();
235         return 0;
236 }
237
238 #ifdef RPC_DEBUG
239 static void rpc_task_set_debuginfo(struct rpc_task *task)
240 {
241         static atomic_t rpc_pid;
242
243         task->tk_pid = atomic_inc_return(&rpc_pid);
244 }
245 #else
246 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
247 {
248 }
249 #endif
250
251 static void rpc_set_active(struct rpc_task *task)
252 {
253         rpc_task_set_debuginfo(task);
254         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
255 }
256
257 /*
258  * Mark an RPC call as having completed by clearing the 'active' bit
259  * and then waking up all tasks that were sleeping.
260  */
261 static int rpc_complete_task(struct rpc_task *task)
262 {
263         void *m = &task->tk_runstate;
264         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
265         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
266         unsigned long flags;
267         int ret;
268
269         spin_lock_irqsave(&wq->lock, flags);
270         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
271         ret = atomic_dec_and_test(&task->tk_count);
272         if (waitqueue_active(wq))
273                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
274         spin_unlock_irqrestore(&wq->lock, flags);
275         return ret;
276 }
277
278 /*
279  * Allow callers to wait for completion of an RPC call
280  *
281  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
282  * to enforce taking of the wq->lock and hence avoid races with
283  * rpc_complete_task().
284  */
285 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
286 {
287         if (action == NULL)
288                 action = rpc_wait_bit_killable;
289         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
290                         action, TASK_KILLABLE);
291 }
292 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
293
294 /*
295  * Make an RPC task runnable.
296  *
297  * Note: If the task is ASYNC, this must be called with
298  * the spinlock held to protect the wait queue operation.
299  */
300 static void rpc_make_runnable(struct rpc_task *task)
301 {
302         rpc_clear_queued(task);
303         if (rpc_test_and_set_running(task))
304                 return;
305         if (RPC_IS_ASYNC(task)) {
306                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
307                 queue_work(rpciod_workqueue, &task->u.tk_work);
308         } else
309                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
310 }
311
312 /*
313  * Prepare for sleeping on a wait queue.
314  * By always appending tasks to the list we ensure FIFO behavior.
315  * NB: An RPC task will only receive interrupt-driven events as long
316  * as it's on a wait queue.
317  */
318 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
319                 struct rpc_task *task,
320                 rpc_action action,
321                 unsigned char queue_priority)
322 {
323         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
324                         task->tk_pid, rpc_qname(q), jiffies);
325
326         __rpc_add_wait_queue(q, task, queue_priority);
327
328         BUG_ON(task->tk_callback != NULL);
329         task->tk_callback = action;
330         __rpc_add_timer(q, task);
331 }
332
333 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
334                                 rpc_action action)
335 {
336         /* We shouldn't ever put an inactive task to sleep */
337         BUG_ON(!RPC_IS_ACTIVATED(task));
338
339         /*
340          * Protect the queue operations.
341          */
342         spin_lock_bh(&q->lock);
343         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
344         spin_unlock_bh(&q->lock);
345 }
346 EXPORT_SYMBOL_GPL(rpc_sleep_on);
347
348 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
349                 rpc_action action, int priority)
350 {
351         /* We shouldn't ever put an inactive task to sleep */
352         BUG_ON(!RPC_IS_ACTIVATED(task));
353
354         /*
355          * Protect the queue operations.
356          */
357         spin_lock_bh(&q->lock);
358         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
359         spin_unlock_bh(&q->lock);
360 }
361
362 /**
363  * __rpc_do_wake_up_task - wake up a single rpc_task
364  * @queue: wait queue
365  * @task: task to be woken up
366  *
367  * Caller must hold queue->lock, and have cleared the task queued flag.
368  */
369 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
370 {
371         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
372                         task->tk_pid, jiffies);
373
374         /* Has the task been executed yet? If not, we cannot wake it up! */
375         if (!RPC_IS_ACTIVATED(task)) {
376                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
377                 return;
378         }
379
380         __rpc_remove_wait_queue(queue, task);
381
382         rpc_make_runnable(task);
383
384         dprintk("RPC:       __rpc_wake_up_task done\n");
385 }
386
387 /*
388  * Wake up a queued task while the queue lock is being held
389  */
390 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
391 {
392         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
393                 __rpc_do_wake_up_task(queue, task);
394 }
395
396 /*
397  * Tests whether rpc queue is empty
398  */
399 int rpc_queue_empty(struct rpc_wait_queue *queue)
400 {
401         int res;
402
403         spin_lock_bh(&queue->lock);
404         res = queue->qlen;
405         spin_unlock_bh(&queue->lock);
406         return res == 0;
407 }
408 EXPORT_SYMBOL_GPL(rpc_queue_empty);
409
410 /*
411  * Wake up a task on a specific queue
412  */
413 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
414 {
415         spin_lock_bh(&queue->lock);
416         rpc_wake_up_task_queue_locked(queue, task);
417         spin_unlock_bh(&queue->lock);
418 }
419 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
420
421 /*
422  * Wake up the next task on a priority queue.
423  */
424 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
425 {
426         struct list_head *q;
427         struct rpc_task *task;
428
429         /*
430          * Service a batch of tasks from a single owner.
431          */
432         q = &queue->tasks[queue->priority];
433         if (!list_empty(q)) {
434                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
435                 if (queue->owner == task->tk_owner) {
436                         if (--queue->nr)
437                                 goto out;
438                         list_move_tail(&task->u.tk_wait.list, q);
439                 }
440                 /*
441                  * Check if we need to switch queues.
442                  */
443                 if (--queue->count)
444                         goto new_owner;
445         }
446
447         /*
448          * Service the next queue.
449          */
450         do {
451                 if (q == &queue->tasks[0])
452                         q = &queue->tasks[queue->maxpriority];
453                 else
454                         q = q - 1;
455                 if (!list_empty(q)) {
456                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
457                         goto new_queue;
458                 }
459         } while (q != &queue->tasks[queue->priority]);
460
461         rpc_reset_waitqueue_priority(queue);
462         return NULL;
463
464 new_queue:
465         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
466 new_owner:
467         rpc_set_waitqueue_owner(queue, task->tk_owner);
468 out:
469         rpc_wake_up_task_queue_locked(queue, task);
470         return task;
471 }
472
473 /*
474  * Wake up the next task on the wait queue.
475  */
476 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
477 {
478         struct rpc_task *task = NULL;
479
480         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
481                         queue, rpc_qname(queue));
482         spin_lock_bh(&queue->lock);
483         if (RPC_IS_PRIORITY(queue))
484                 task = __rpc_wake_up_next_priority(queue);
485         else {
486                 task_for_first(task, &queue->tasks[0])
487                         rpc_wake_up_task_queue_locked(queue, task);
488         }
489         spin_unlock_bh(&queue->lock);
490
491         return task;
492 }
493 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
494
495 /**
496  * rpc_wake_up - wake up all rpc_tasks
497  * @queue: rpc_wait_queue on which the tasks are sleeping
498  *
499  * Grabs queue->lock
500  */
501 void rpc_wake_up(struct rpc_wait_queue *queue)
502 {
503         struct rpc_task *task, *next;
504         struct list_head *head;
505
506         spin_lock_bh(&queue->lock);
507         head = &queue->tasks[queue->maxpriority];
508         for (;;) {
509                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
510                         rpc_wake_up_task_queue_locked(queue, task);
511                 if (head == &queue->tasks[0])
512                         break;
513                 head--;
514         }
515         spin_unlock_bh(&queue->lock);
516 }
517 EXPORT_SYMBOL_GPL(rpc_wake_up);
518
519 /**
520  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
521  * @queue: rpc_wait_queue on which the tasks are sleeping
522  * @status: status value to set
523  *
524  * Grabs queue->lock
525  */
526 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
527 {
528         struct rpc_task *task, *next;
529         struct list_head *head;
530
531         spin_lock_bh(&queue->lock);
532         head = &queue->tasks[queue->maxpriority];
533         for (;;) {
534                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
535                         task->tk_status = status;
536                         rpc_wake_up_task_queue_locked(queue, task);
537                 }
538                 if (head == &queue->tasks[0])
539                         break;
540                 head--;
541         }
542         spin_unlock_bh(&queue->lock);
543 }
544 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
545
546 static void __rpc_queue_timer_fn(unsigned long ptr)
547 {
548         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
549         struct rpc_task *task, *n;
550         unsigned long expires, now, timeo;
551
552         spin_lock(&queue->lock);
553         expires = now = jiffies;
554         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
555                 timeo = task->u.tk_wait.expires;
556                 if (time_after_eq(now, timeo)) {
557                         dprintk("RPC: %5u timeout\n", task->tk_pid);
558                         task->tk_status = -ETIMEDOUT;
559                         rpc_wake_up_task_queue_locked(queue, task);
560                         continue;
561                 }
562                 if (expires == now || time_after(expires, timeo))
563                         expires = timeo;
564         }
565         if (!list_empty(&queue->timer_list.list))
566                 rpc_set_queue_timer(queue, expires);
567         spin_unlock(&queue->lock);
568 }
569
570 static void __rpc_atrun(struct rpc_task *task)
571 {
572         task->tk_status = 0;
573 }
574
575 /*
576  * Run a task at a later time
577  */
578 void rpc_delay(struct rpc_task *task, unsigned long delay)
579 {
580         task->tk_timeout = delay;
581         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
582 }
583 EXPORT_SYMBOL_GPL(rpc_delay);
584
585 /*
586  * Helper to call task->tk_ops->rpc_call_prepare
587  */
588 void rpc_prepare_task(struct rpc_task *task)
589 {
590         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
591 }
592
593 static void
594 rpc_init_task_statistics(struct rpc_task *task)
595 {
596         /* Initialize retry counters */
597         task->tk_garb_retry = 2;
598         task->tk_cred_retry = 2;
599         task->tk_rebind_retry = 2;
600
601         /* starting timestamp */
602         task->tk_start = ktime_get();
603 }
604
605 static void
606 rpc_reset_task_statistics(struct rpc_task *task)
607 {
608         task->tk_timeouts = 0;
609         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
610
611         rpc_init_task_statistics(task);
612 }
613
614 /*
615  * Helper that calls task->tk_ops->rpc_call_done if it exists
616  */
617 void rpc_exit_task(struct rpc_task *task)
618 {
619         task->tk_action = NULL;
620         if (task->tk_ops->rpc_call_done != NULL) {
621                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
622                 if (task->tk_action != NULL) {
623                         WARN_ON(RPC_ASSASSINATED(task));
624                         /* Always release the RPC slot and buffer memory */
625                         xprt_release(task);
626                         rpc_reset_task_statistics(task);
627                 }
628         }
629 }
630
631 void rpc_exit(struct rpc_task *task, int status)
632 {
633         task->tk_status = status;
634         task->tk_action = rpc_exit_task;
635         if (RPC_IS_QUEUED(task))
636                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
637 }
638 EXPORT_SYMBOL_GPL(rpc_exit);
639
640 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
641 {
642         if (ops->rpc_release != NULL)
643                 ops->rpc_release(calldata);
644 }
645
646 /*
647  * This is the RPC `scheduler' (or rather, the finite state machine).
648  */
649 static void __rpc_execute(struct rpc_task *task)
650 {
651         struct rpc_wait_queue *queue;
652         int task_is_async = RPC_IS_ASYNC(task);
653         int status = 0;
654
655         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
656                         task->tk_pid, task->tk_flags);
657
658         BUG_ON(RPC_IS_QUEUED(task));
659
660         for (;;) {
661                 void (*do_action)(struct rpc_task *);
662
663                 /*
664                  * Execute any pending callback first.
665                  */
666                 do_action = task->tk_callback;
667                 task->tk_callback = NULL;
668                 if (do_action == NULL) {
669                         /*
670                          * Perform the next FSM step.
671                          * tk_action may be NULL if the task has been killed.
672                          * In particular, note that rpc_killall_tasks may
673                          * do this at any time, so beware when dereferencing.
674                          */
675                         do_action = task->tk_action;
676                         if (do_action == NULL)
677                                 break;
678                 }
679                 do_action(task);
680
681                 /*
682                  * Lockless check for whether task is sleeping or not.
683                  */
684                 if (!RPC_IS_QUEUED(task))
685                         continue;
686                 /*
687                  * The queue->lock protects against races with
688                  * rpc_make_runnable().
689                  *
690                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
691                  * rpc_task, rpc_make_runnable() can assign it to a
692                  * different workqueue. We therefore cannot assume that the
693                  * rpc_task pointer may still be dereferenced.
694                  */
695                 queue = task->tk_waitqueue;
696                 spin_lock_bh(&queue->lock);
697                 if (!RPC_IS_QUEUED(task)) {
698                         spin_unlock_bh(&queue->lock);
699                         continue;
700                 }
701                 rpc_clear_running(task);
702                 spin_unlock_bh(&queue->lock);
703                 if (task_is_async)
704                         return;
705
706                 /* sync task: sleep here */
707                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
708                 status = out_of_line_wait_on_bit(&task->tk_runstate,
709                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
710                                 TASK_KILLABLE);
711                 if (status == -ERESTARTSYS) {
712                         /*
713                          * When a sync task receives a signal, it exits with
714                          * -ERESTARTSYS. In order to catch any callbacks that
715                          * clean up after sleeping on some queue, we don't
716                          * break the loop here, but go around once more.
717                          */
718                         dprintk("RPC: %5u got signal\n", task->tk_pid);
719                         task->tk_flags |= RPC_TASK_KILLED;
720                         rpc_exit(task, -ERESTARTSYS);
721                 }
722                 rpc_set_running(task);
723                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
724         }
725
726         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
727                         task->tk_status);
728         /* Release all resources associated with the task */
729         rpc_release_task(task);
730 }
731
732 /*
733  * User-visible entry point to the scheduler.
734  *
735  * This may be called recursively if e.g. an async NFS task updates
736  * the attributes and finds that dirty pages must be flushed.
737  * NOTE: Upon exit of this function the task is guaranteed to be
738  *       released. In particular note that tk_release() will have
739  *       been called, so your task memory may have been freed.
740  */
741 void rpc_execute(struct rpc_task *task)
742 {
743         rpc_set_active(task);
744         rpc_make_runnable(task);
745         if (!RPC_IS_ASYNC(task))
746                 __rpc_execute(task);
747 }
748
749 static void rpc_async_schedule(struct work_struct *work)
750 {
751         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
752 }
753
754 /**
755  * rpc_malloc - allocate an RPC buffer
756  * @task: RPC task that will use this buffer
757  * @size: requested byte size
758  *
759  * To prevent rpciod from hanging, this allocator never sleeps,
760  * returning NULL if the request cannot be serviced immediately.
761  * The caller can arrange to sleep in a way that is safe for rpciod.
762  *
763  * Most requests are 'small' (under 2KiB) and can be serviced from a
764  * mempool, ensuring that NFS reads and writes can always proceed,
765  * and that there is good locality of reference for these buffers.
766  *
767  * In order to avoid memory starvation triggering more writebacks of
768  * NFS requests, we avoid using GFP_KERNEL.
769  */
770 void *rpc_malloc(struct rpc_task *task, size_t size)
771 {
772         struct rpc_buffer *buf;
773         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
774
775         size += sizeof(struct rpc_buffer);
776         if (size <= RPC_BUFFER_MAXSIZE)
777                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
778         else
779                 buf = kmalloc(size, gfp);
780
781         if (!buf)
782                 return NULL;
783
784         buf->len = size;
785         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
786                         task->tk_pid, size, buf);
787         return &buf->data;
788 }
789 EXPORT_SYMBOL_GPL(rpc_malloc);
790
791 /**
792  * rpc_free - free buffer allocated via rpc_malloc
793  * @buffer: buffer to free
794  *
795  */
796 void rpc_free(void *buffer)
797 {
798         size_t size;
799         struct rpc_buffer *buf;
800
801         if (!buffer)
802                 return;
803
804         buf = container_of(buffer, struct rpc_buffer, data);
805         size = buf->len;
806
807         dprintk("RPC:       freeing buffer of size %zu at %p\n",
808                         size, buf);
809
810         if (size <= RPC_BUFFER_MAXSIZE)
811                 mempool_free(buf, rpc_buffer_mempool);
812         else
813                 kfree(buf);
814 }
815 EXPORT_SYMBOL_GPL(rpc_free);
816
817 /*
818  * Creation and deletion of RPC task structures
819  */
820 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
821 {
822         memset(task, 0, sizeof(*task));
823         atomic_set(&task->tk_count, 1);
824         task->tk_flags  = task_setup_data->flags;
825         task->tk_ops = task_setup_data->callback_ops;
826         task->tk_calldata = task_setup_data->callback_data;
827         INIT_LIST_HEAD(&task->tk_task);
828
829         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
830         task->tk_owner = current->tgid;
831
832         /* Initialize workqueue for async tasks */
833         task->tk_workqueue = task_setup_data->workqueue;
834
835         if (task->tk_ops->rpc_call_prepare != NULL)
836                 task->tk_action = rpc_prepare_task;
837
838         rpc_init_task_statistics(task);
839
840         dprintk("RPC:       new task initialized, procpid %u\n",
841                                 task_pid_nr(current));
842 }
843
844 static struct rpc_task *
845 rpc_alloc_task(void)
846 {
847         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
848 }
849
850 /*
851  * Create a new task for the specified client.
852  */
853 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
854 {
855         struct rpc_task *task = setup_data->task;
856         unsigned short flags = 0;
857
858         if (task == NULL) {
859                 task = rpc_alloc_task();
860                 if (task == NULL) {
861                         rpc_release_calldata(setup_data->callback_ops,
862                                         setup_data->callback_data);
863                         return ERR_PTR(-ENOMEM);
864                 }
865                 flags = RPC_TASK_DYNAMIC;
866         }
867
868         rpc_init_task(task, setup_data);
869         task->tk_flags |= flags;
870         dprintk("RPC:       allocated task %p\n", task);
871         return task;
872 }
873
874 static void rpc_free_task(struct rpc_task *task)
875 {
876         const struct rpc_call_ops *tk_ops = task->tk_ops;
877         void *calldata = task->tk_calldata;
878
879         if (task->tk_flags & RPC_TASK_DYNAMIC) {
880                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
881                 mempool_free(task, rpc_task_mempool);
882         }
883         rpc_release_calldata(tk_ops, calldata);
884 }
885
886 static void rpc_async_release(struct work_struct *work)
887 {
888         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
889 }
890
891 static void rpc_release_resources_task(struct rpc_task *task)
892 {
893         if (task->tk_rqstp)
894                 xprt_release(task);
895         if (task->tk_msg.rpc_cred) {
896                 put_rpccred(task->tk_msg.rpc_cred);
897                 task->tk_msg.rpc_cred = NULL;
898         }
899         rpc_task_release_client(task);
900 }
901
902 static void rpc_final_put_task(struct rpc_task *task,
903                 struct workqueue_struct *q)
904 {
905         if (q != NULL) {
906                 INIT_WORK(&task->u.tk_work, rpc_async_release);
907                 queue_work(q, &task->u.tk_work);
908         } else
909                 rpc_free_task(task);
910 }
911
912 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
913 {
914         if (atomic_dec_and_test(&task->tk_count)) {
915                 rpc_release_resources_task(task);
916                 rpc_final_put_task(task, q);
917         }
918 }
919
920 void rpc_put_task(struct rpc_task *task)
921 {
922         rpc_do_put_task(task, NULL);
923 }
924 EXPORT_SYMBOL_GPL(rpc_put_task);
925
926 void rpc_put_task_async(struct rpc_task *task)
927 {
928         rpc_do_put_task(task, task->tk_workqueue);
929 }
930 EXPORT_SYMBOL_GPL(rpc_put_task_async);
931
932 static void rpc_release_task(struct rpc_task *task)
933 {
934         dprintk("RPC: %5u release task\n", task->tk_pid);
935
936         BUG_ON (RPC_IS_QUEUED(task));
937
938         rpc_release_resources_task(task);
939
940         /*
941          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
942          * so it should be safe to use task->tk_count as a test for whether
943          * or not any other processes still hold references to our rpc_task.
944          */
945         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
946                 /* Wake up anyone who may be waiting for task completion */
947                 if (!rpc_complete_task(task))
948                         return;
949         } else {
950                 if (!atomic_dec_and_test(&task->tk_count))
951                         return;
952         }
953         rpc_final_put_task(task, task->tk_workqueue);
954 }
955
956 int rpciod_up(void)
957 {
958         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
959 }
960
961 void rpciod_down(void)
962 {
963         module_put(THIS_MODULE);
964 }
965
966 /*
967  * Start up the rpciod workqueue.
968  */
969 static int rpciod_start(void)
970 {
971         struct workqueue_struct *wq;
972
973         /*
974          * Create the rpciod thread and wait for it to start.
975          */
976         dprintk("RPC:       creating workqueue rpciod\n");
977         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
978         rpciod_workqueue = wq;
979         return rpciod_workqueue != NULL;
980 }
981
982 static void rpciod_stop(void)
983 {
984         struct workqueue_struct *wq = NULL;
985
986         if (rpciod_workqueue == NULL)
987                 return;
988         dprintk("RPC:       destroying workqueue rpciod\n");
989
990         wq = rpciod_workqueue;
991         rpciod_workqueue = NULL;
992         destroy_workqueue(wq);
993 }
994
995 void
996 rpc_destroy_mempool(void)
997 {
998         rpciod_stop();
999         if (rpc_buffer_mempool)
1000                 mempool_destroy(rpc_buffer_mempool);
1001         if (rpc_task_mempool)
1002                 mempool_destroy(rpc_task_mempool);
1003         if (rpc_task_slabp)
1004                 kmem_cache_destroy(rpc_task_slabp);
1005         if (rpc_buffer_slabp)
1006                 kmem_cache_destroy(rpc_buffer_slabp);
1007         rpc_destroy_wait_queue(&delay_queue);
1008 }
1009
1010 int
1011 rpc_init_mempool(void)
1012 {
1013         /*
1014          * The following is not strictly a mempool initialisation,
1015          * but there is no harm in doing it here
1016          */
1017         rpc_init_wait_queue(&delay_queue, "delayq");
1018         if (!rpciod_start())
1019                 goto err_nomem;
1020
1021         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1022                                              sizeof(struct rpc_task),
1023                                              0, SLAB_HWCACHE_ALIGN,
1024                                              NULL);
1025         if (!rpc_task_slabp)
1026                 goto err_nomem;
1027         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1028                                              RPC_BUFFER_MAXSIZE,
1029                                              0, SLAB_HWCACHE_ALIGN,
1030                                              NULL);
1031         if (!rpc_buffer_slabp)
1032                 goto err_nomem;
1033         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1034                                                     rpc_task_slabp);
1035         if (!rpc_task_mempool)
1036                 goto err_nomem;
1037         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1038                                                       rpc_buffer_slabp);
1039         if (!rpc_buffer_mempool)
1040                 goto err_nomem;
1041         return 0;
1042 err_nomem:
1043         rpc_destroy_mempool();
1044         return -ENOMEM;
1045 }