Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / net / rfkill / core.c
1 /*
2  * Copyright (C) 2006 - 2007 Ivo van Doorn
3  * Copyright (C) 2007 Dmitry Torokhov
4  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the
18  * Free Software Foundation, Inc.,
19  * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/workqueue.h>
26 #include <linux/capability.h>
27 #include <linux/list.h>
28 #include <linux/mutex.h>
29 #include <linux/rfkill.h>
30 #include <linux/spinlock.h>
31 #include <linux/miscdevice.h>
32 #include <linux/wait.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35
36 #include "rfkill.h"
37
38 #define POLL_INTERVAL           (5 * HZ)
39
40 #define RFKILL_BLOCK_HW         BIT(0)
41 #define RFKILL_BLOCK_SW         BIT(1)
42 #define RFKILL_BLOCK_SW_PREV    BIT(2)
43 #define RFKILL_BLOCK_ANY        (RFKILL_BLOCK_HW |\
44                                  RFKILL_BLOCK_SW |\
45                                  RFKILL_BLOCK_SW_PREV)
46 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
47
48 struct rfkill {
49         spinlock_t              lock;
50
51         const char              *name;
52         enum rfkill_type        type;
53
54         unsigned long           state;
55
56         u32                     idx;
57
58         bool                    registered;
59         bool                    persistent;
60
61         const struct rfkill_ops *ops;
62         void                    *data;
63
64 #ifdef CONFIG_RFKILL_LEDS
65         struct led_trigger      led_trigger;
66         const char              *ledtrigname;
67 #endif
68
69         struct device           dev;
70         struct list_head        node;
71
72         struct delayed_work     poll_work;
73         struct work_struct      uevent_work;
74         struct work_struct      sync_work;
75 };
76 #define to_rfkill(d)    container_of(d, struct rfkill, dev)
77
78 struct rfkill_int_event {
79         struct list_head        list;
80         struct rfkill_event     ev;
81 };
82
83 struct rfkill_data {
84         struct list_head        list;
85         struct list_head        events;
86         struct mutex            mtx;
87         wait_queue_head_t       read_wait;
88         bool                    input_handler;
89 };
90
91
92 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
93 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
94 MODULE_DESCRIPTION("RF switch support");
95 MODULE_LICENSE("GPL");
96
97
98 /*
99  * The locking here should be made much smarter, we currently have
100  * a bit of a stupid situation because drivers might want to register
101  * the rfkill struct under their own lock, and take this lock during
102  * rfkill method calls -- which will cause an AB-BA deadlock situation.
103  *
104  * To fix that, we need to rework this code here to be mostly lock-free
105  * and only use the mutex for list manipulations, not to protect the
106  * various other global variables. Then we can avoid holding the mutex
107  * around driver operations, and all is happy.
108  */
109 static LIST_HEAD(rfkill_list);  /* list of registered rf switches */
110 static DEFINE_MUTEX(rfkill_global_mutex);
111 static LIST_HEAD(rfkill_fds);   /* list of open fds of /dev/rfkill */
112
113 static unsigned int rfkill_default_state = 1;
114 module_param_named(default_state, rfkill_default_state, uint, 0444);
115 MODULE_PARM_DESC(default_state,
116                  "Default initial state for all radio types, 0 = radio off");
117
118 static struct {
119         bool cur, sav;
120 } rfkill_global_states[NUM_RFKILL_TYPES];
121
122 static bool rfkill_epo_lock_active;
123
124
125 #ifdef CONFIG_RFKILL_LEDS
126 static void rfkill_led_trigger_event(struct rfkill *rfkill)
127 {
128         struct led_trigger *trigger;
129
130         if (!rfkill->registered)
131                 return;
132
133         trigger = &rfkill->led_trigger;
134
135         if (rfkill->state & RFKILL_BLOCK_ANY)
136                 led_trigger_event(trigger, LED_OFF);
137         else
138                 led_trigger_event(trigger, LED_FULL);
139 }
140
141 static void rfkill_led_trigger_activate(struct led_classdev *led)
142 {
143         struct rfkill *rfkill;
144
145         rfkill = container_of(led->trigger, struct rfkill, led_trigger);
146
147         rfkill_led_trigger_event(rfkill);
148 }
149
150 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
151 {
152         return rfkill->led_trigger.name;
153 }
154 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
155
156 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
157 {
158         BUG_ON(!rfkill);
159
160         rfkill->ledtrigname = name;
161 }
162 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
163
164 static int rfkill_led_trigger_register(struct rfkill *rfkill)
165 {
166         rfkill->led_trigger.name = rfkill->ledtrigname
167                                         ? : dev_name(&rfkill->dev);
168         rfkill->led_trigger.activate = rfkill_led_trigger_activate;
169         return led_trigger_register(&rfkill->led_trigger);
170 }
171
172 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
173 {
174         led_trigger_unregister(&rfkill->led_trigger);
175 }
176 #else
177 static void rfkill_led_trigger_event(struct rfkill *rfkill)
178 {
179 }
180
181 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
182 {
183         return 0;
184 }
185
186 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
187 {
188 }
189 #endif /* CONFIG_RFKILL_LEDS */
190
191 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
192                               enum rfkill_operation op)
193 {
194         unsigned long flags;
195
196         ev->idx = rfkill->idx;
197         ev->type = rfkill->type;
198         ev->op = op;
199
200         spin_lock_irqsave(&rfkill->lock, flags);
201         ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
202         ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
203                                         RFKILL_BLOCK_SW_PREV));
204         spin_unlock_irqrestore(&rfkill->lock, flags);
205 }
206
207 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
208 {
209         struct rfkill_data *data;
210         struct rfkill_int_event *ev;
211
212         list_for_each_entry(data, &rfkill_fds, list) {
213                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
214                 if (!ev)
215                         continue;
216                 rfkill_fill_event(&ev->ev, rfkill, op);
217                 mutex_lock(&data->mtx);
218                 list_add_tail(&ev->list, &data->events);
219                 mutex_unlock(&data->mtx);
220                 wake_up_interruptible(&data->read_wait);
221         }
222 }
223
224 static void rfkill_event(struct rfkill *rfkill)
225 {
226         if (!rfkill->registered)
227                 return;
228
229         kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
230
231         /* also send event to /dev/rfkill */
232         rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
233 }
234
235 static bool __rfkill_set_hw_state(struct rfkill *rfkill,
236                                   bool blocked, bool *change)
237 {
238         unsigned long flags;
239         bool prev, any;
240
241         BUG_ON(!rfkill);
242
243         spin_lock_irqsave(&rfkill->lock, flags);
244         prev = !!(rfkill->state & RFKILL_BLOCK_HW);
245         if (blocked)
246                 rfkill->state |= RFKILL_BLOCK_HW;
247         else
248                 rfkill->state &= ~RFKILL_BLOCK_HW;
249         *change = prev != blocked;
250         any = rfkill->state & RFKILL_BLOCK_ANY;
251         spin_unlock_irqrestore(&rfkill->lock, flags);
252
253         rfkill_led_trigger_event(rfkill);
254
255         return any;
256 }
257
258 /**
259  * rfkill_set_block - wrapper for set_block method
260  *
261  * @rfkill: the rfkill struct to use
262  * @blocked: the new software state
263  *
264  * Calls the set_block method (when applicable) and handles notifications
265  * etc. as well.
266  */
267 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
268 {
269         unsigned long flags;
270         int err;
271
272         if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
273                 return;
274
275         /*
276          * Some platforms (...!) generate input events which affect the
277          * _hard_ kill state -- whenever something tries to change the
278          * current software state query the hardware state too.
279          */
280         if (rfkill->ops->query)
281                 rfkill->ops->query(rfkill, rfkill->data);
282
283         spin_lock_irqsave(&rfkill->lock, flags);
284         if (rfkill->state & RFKILL_BLOCK_SW)
285                 rfkill->state |= RFKILL_BLOCK_SW_PREV;
286         else
287                 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
288
289         if (blocked)
290                 rfkill->state |= RFKILL_BLOCK_SW;
291         else
292                 rfkill->state &= ~RFKILL_BLOCK_SW;
293
294         rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
295         spin_unlock_irqrestore(&rfkill->lock, flags);
296
297         err = rfkill->ops->set_block(rfkill->data, blocked);
298
299         spin_lock_irqsave(&rfkill->lock, flags);
300         if (err) {
301                 /*
302                  * Failed -- reset status to _prev, this may be different
303                  * from what set set _PREV to earlier in this function
304                  * if rfkill_set_sw_state was invoked.
305                  */
306                 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
307                         rfkill->state |= RFKILL_BLOCK_SW;
308                 else
309                         rfkill->state &= ~RFKILL_BLOCK_SW;
310         }
311         rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
312         rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
313         spin_unlock_irqrestore(&rfkill->lock, flags);
314
315         rfkill_led_trigger_event(rfkill);
316         rfkill_event(rfkill);
317 }
318
319 #ifdef CONFIG_RFKILL_INPUT
320 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
321
322 /**
323  * __rfkill_switch_all - Toggle state of all switches of given type
324  * @type: type of interfaces to be affected
325  * @state: the new state
326  *
327  * This function sets the state of all switches of given type,
328  * unless a specific switch is claimed by userspace (in which case,
329  * that switch is left alone) or suspended.
330  *
331  * Caller must have acquired rfkill_global_mutex.
332  */
333 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
334 {
335         struct rfkill *rfkill;
336
337         rfkill_global_states[type].cur = blocked;
338         list_for_each_entry(rfkill, &rfkill_list, node) {
339                 if (rfkill->type != type)
340                         continue;
341
342                 rfkill_set_block(rfkill, blocked);
343         }
344 }
345
346 /**
347  * rfkill_switch_all - Toggle state of all switches of given type
348  * @type: type of interfaces to be affected
349  * @state: the new state
350  *
351  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
352  * Please refer to __rfkill_switch_all() for details.
353  *
354  * Does nothing if the EPO lock is active.
355  */
356 void rfkill_switch_all(enum rfkill_type type, bool blocked)
357 {
358         if (atomic_read(&rfkill_input_disabled))
359                 return;
360
361         mutex_lock(&rfkill_global_mutex);
362
363         if (!rfkill_epo_lock_active)
364                 __rfkill_switch_all(type, blocked);
365
366         mutex_unlock(&rfkill_global_mutex);
367 }
368
369 /**
370  * rfkill_epo - emergency power off all transmitters
371  *
372  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
373  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
374  *
375  * The global state before the EPO is saved and can be restored later
376  * using rfkill_restore_states().
377  */
378 void rfkill_epo(void)
379 {
380         struct rfkill *rfkill;
381         int i;
382
383         if (atomic_read(&rfkill_input_disabled))
384                 return;
385
386         mutex_lock(&rfkill_global_mutex);
387
388         rfkill_epo_lock_active = true;
389         list_for_each_entry(rfkill, &rfkill_list, node)
390                 rfkill_set_block(rfkill, true);
391
392         for (i = 0; i < NUM_RFKILL_TYPES; i++) {
393                 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
394                 rfkill_global_states[i].cur = true;
395         }
396
397         mutex_unlock(&rfkill_global_mutex);
398 }
399
400 /**
401  * rfkill_restore_states - restore global states
402  *
403  * Restore (and sync switches to) the global state from the
404  * states in rfkill_default_states.  This can undo the effects of
405  * a call to rfkill_epo().
406  */
407 void rfkill_restore_states(void)
408 {
409         int i;
410
411         if (atomic_read(&rfkill_input_disabled))
412                 return;
413
414         mutex_lock(&rfkill_global_mutex);
415
416         rfkill_epo_lock_active = false;
417         for (i = 0; i < NUM_RFKILL_TYPES; i++)
418                 __rfkill_switch_all(i, rfkill_global_states[i].sav);
419         mutex_unlock(&rfkill_global_mutex);
420 }
421
422 /**
423  * rfkill_remove_epo_lock - unlock state changes
424  *
425  * Used by rfkill-input manually unlock state changes, when
426  * the EPO switch is deactivated.
427  */
428 void rfkill_remove_epo_lock(void)
429 {
430         if (atomic_read(&rfkill_input_disabled))
431                 return;
432
433         mutex_lock(&rfkill_global_mutex);
434         rfkill_epo_lock_active = false;
435         mutex_unlock(&rfkill_global_mutex);
436 }
437
438 /**
439  * rfkill_is_epo_lock_active - returns true EPO is active
440  *
441  * Returns 0 (false) if there is NOT an active EPO contidion,
442  * and 1 (true) if there is an active EPO contition, which
443  * locks all radios in one of the BLOCKED states.
444  *
445  * Can be called in atomic context.
446  */
447 bool rfkill_is_epo_lock_active(void)
448 {
449         return rfkill_epo_lock_active;
450 }
451
452 /**
453  * rfkill_get_global_sw_state - returns global state for a type
454  * @type: the type to get the global state of
455  *
456  * Returns the current global state for a given wireless
457  * device type.
458  */
459 bool rfkill_get_global_sw_state(const enum rfkill_type type)
460 {
461         return rfkill_global_states[type].cur;
462 }
463 #endif
464
465
466 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
467 {
468         bool ret, change;
469
470         ret = __rfkill_set_hw_state(rfkill, blocked, &change);
471
472         if (!rfkill->registered)
473                 return ret;
474
475         if (change)
476                 schedule_work(&rfkill->uevent_work);
477
478         return ret;
479 }
480 EXPORT_SYMBOL(rfkill_set_hw_state);
481
482 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
483 {
484         u32 bit = RFKILL_BLOCK_SW;
485
486         /* if in a ops->set_block right now, use other bit */
487         if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
488                 bit = RFKILL_BLOCK_SW_PREV;
489
490         if (blocked)
491                 rfkill->state |= bit;
492         else
493                 rfkill->state &= ~bit;
494 }
495
496 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
497 {
498         unsigned long flags;
499         bool prev, hwblock;
500
501         BUG_ON(!rfkill);
502
503         spin_lock_irqsave(&rfkill->lock, flags);
504         prev = !!(rfkill->state & RFKILL_BLOCK_SW);
505         __rfkill_set_sw_state(rfkill, blocked);
506         hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
507         blocked = blocked || hwblock;
508         spin_unlock_irqrestore(&rfkill->lock, flags);
509
510         if (!rfkill->registered)
511                 return blocked;
512
513         if (prev != blocked && !hwblock)
514                 schedule_work(&rfkill->uevent_work);
515
516         rfkill_led_trigger_event(rfkill);
517
518         return blocked;
519 }
520 EXPORT_SYMBOL(rfkill_set_sw_state);
521
522 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
523 {
524         unsigned long flags;
525
526         BUG_ON(!rfkill);
527         BUG_ON(rfkill->registered);
528
529         spin_lock_irqsave(&rfkill->lock, flags);
530         __rfkill_set_sw_state(rfkill, blocked);
531         rfkill->persistent = true;
532         spin_unlock_irqrestore(&rfkill->lock, flags);
533 }
534 EXPORT_SYMBOL(rfkill_init_sw_state);
535
536 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
537 {
538         unsigned long flags;
539         bool swprev, hwprev;
540
541         BUG_ON(!rfkill);
542
543         spin_lock_irqsave(&rfkill->lock, flags);
544
545         /*
546          * No need to care about prev/setblock ... this is for uevent only
547          * and that will get triggered by rfkill_set_block anyway.
548          */
549         swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
550         hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
551         __rfkill_set_sw_state(rfkill, sw);
552         if (hw)
553                 rfkill->state |= RFKILL_BLOCK_HW;
554         else
555                 rfkill->state &= ~RFKILL_BLOCK_HW;
556
557         spin_unlock_irqrestore(&rfkill->lock, flags);
558
559         if (!rfkill->registered) {
560                 rfkill->persistent = true;
561         } else {
562                 if (swprev != sw || hwprev != hw)
563                         schedule_work(&rfkill->uevent_work);
564
565                 rfkill_led_trigger_event(rfkill);
566         }
567 }
568 EXPORT_SYMBOL(rfkill_set_states);
569
570 static ssize_t rfkill_name_show(struct device *dev,
571                                 struct device_attribute *attr,
572                                 char *buf)
573 {
574         struct rfkill *rfkill = to_rfkill(dev);
575
576         return sprintf(buf, "%s\n", rfkill->name);
577 }
578
579 static const char *rfkill_get_type_str(enum rfkill_type type)
580 {
581         switch (type) {
582         case RFKILL_TYPE_WLAN:
583                 return "wlan";
584         case RFKILL_TYPE_BLUETOOTH:
585                 return "bluetooth";
586         case RFKILL_TYPE_UWB:
587                 return "ultrawideband";
588         case RFKILL_TYPE_WIMAX:
589                 return "wimax";
590         case RFKILL_TYPE_WWAN:
591                 return "wwan";
592         default:
593                 BUG();
594         }
595
596         BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_WWAN + 1);
597 }
598
599 static ssize_t rfkill_type_show(struct device *dev,
600                                 struct device_attribute *attr,
601                                 char *buf)
602 {
603         struct rfkill *rfkill = to_rfkill(dev);
604
605         return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
606 }
607
608 static ssize_t rfkill_idx_show(struct device *dev,
609                                struct device_attribute *attr,
610                                char *buf)
611 {
612         struct rfkill *rfkill = to_rfkill(dev);
613
614         return sprintf(buf, "%d\n", rfkill->idx);
615 }
616
617 static ssize_t rfkill_persistent_show(struct device *dev,
618                                struct device_attribute *attr,
619                                char *buf)
620 {
621         struct rfkill *rfkill = to_rfkill(dev);
622
623         return sprintf(buf, "%d\n", rfkill->persistent);
624 }
625
626 static u8 user_state_from_blocked(unsigned long state)
627 {
628         if (state & RFKILL_BLOCK_HW)
629                 return RFKILL_USER_STATE_HARD_BLOCKED;
630         if (state & RFKILL_BLOCK_SW)
631                 return RFKILL_USER_STATE_SOFT_BLOCKED;
632
633         return RFKILL_USER_STATE_UNBLOCKED;
634 }
635
636 static ssize_t rfkill_state_show(struct device *dev,
637                                  struct device_attribute *attr,
638                                  char *buf)
639 {
640         struct rfkill *rfkill = to_rfkill(dev);
641         unsigned long flags;
642         u32 state;
643
644         spin_lock_irqsave(&rfkill->lock, flags);
645         state = rfkill->state;
646         spin_unlock_irqrestore(&rfkill->lock, flags);
647
648         return sprintf(buf, "%d\n", user_state_from_blocked(state));
649 }
650
651 static ssize_t rfkill_state_store(struct device *dev,
652                                   struct device_attribute *attr,
653                                   const char *buf, size_t count)
654 {
655         struct rfkill *rfkill = to_rfkill(dev);
656         unsigned long state;
657         int err;
658
659         if (!capable(CAP_NET_ADMIN))
660                 return -EPERM;
661
662         err = strict_strtoul(buf, 0, &state);
663         if (err)
664                 return err;
665
666         if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
667             state != RFKILL_USER_STATE_UNBLOCKED)
668                 return -EINVAL;
669
670         mutex_lock(&rfkill_global_mutex);
671         rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
672         mutex_unlock(&rfkill_global_mutex);
673
674         return err ?: count;
675 }
676
677 static ssize_t rfkill_claim_show(struct device *dev,
678                                  struct device_attribute *attr,
679                                  char *buf)
680 {
681         return sprintf(buf, "%d\n", 0);
682 }
683
684 static ssize_t rfkill_claim_store(struct device *dev,
685                                   struct device_attribute *attr,
686                                   const char *buf, size_t count)
687 {
688         return -EOPNOTSUPP;
689 }
690
691 static struct device_attribute rfkill_dev_attrs[] = {
692         __ATTR(name, S_IRUGO, rfkill_name_show, NULL),
693         __ATTR(type, S_IRUGO, rfkill_type_show, NULL),
694         __ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
695         __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
696         __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
697         __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
698         __ATTR_NULL
699 };
700
701 static void rfkill_release(struct device *dev)
702 {
703         struct rfkill *rfkill = to_rfkill(dev);
704
705         kfree(rfkill);
706 }
707
708 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
709 {
710         struct rfkill *rfkill = to_rfkill(dev);
711         unsigned long flags;
712         u32 state;
713         int error;
714
715         error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
716         if (error)
717                 return error;
718         error = add_uevent_var(env, "RFKILL_TYPE=%s",
719                                rfkill_get_type_str(rfkill->type));
720         if (error)
721                 return error;
722         spin_lock_irqsave(&rfkill->lock, flags);
723         state = rfkill->state;
724         spin_unlock_irqrestore(&rfkill->lock, flags);
725         error = add_uevent_var(env, "RFKILL_STATE=%d",
726                                user_state_from_blocked(state));
727         return error;
728 }
729
730 void rfkill_pause_polling(struct rfkill *rfkill)
731 {
732         BUG_ON(!rfkill);
733
734         if (!rfkill->ops->poll)
735                 return;
736
737         cancel_delayed_work_sync(&rfkill->poll_work);
738 }
739 EXPORT_SYMBOL(rfkill_pause_polling);
740
741 void rfkill_resume_polling(struct rfkill *rfkill)
742 {
743         BUG_ON(!rfkill);
744
745         if (!rfkill->ops->poll)
746                 return;
747
748         schedule_work(&rfkill->poll_work.work);
749 }
750 EXPORT_SYMBOL(rfkill_resume_polling);
751
752 static int rfkill_suspend(struct device *dev, pm_message_t state)
753 {
754         struct rfkill *rfkill = to_rfkill(dev);
755
756         rfkill_pause_polling(rfkill);
757
758         return 0;
759 }
760
761 static int rfkill_resume(struct device *dev)
762 {
763         struct rfkill *rfkill = to_rfkill(dev);
764         bool cur;
765
766         if (!rfkill->persistent) {
767                 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
768                 rfkill_set_block(rfkill, cur);
769         }
770
771         rfkill_resume_polling(rfkill);
772
773         return 0;
774 }
775
776 static struct class rfkill_class = {
777         .name           = "rfkill",
778         .dev_release    = rfkill_release,
779         .dev_attrs      = rfkill_dev_attrs,
780         .dev_uevent     = rfkill_dev_uevent,
781         .suspend        = rfkill_suspend,
782         .resume         = rfkill_resume,
783 };
784
785 bool rfkill_blocked(struct rfkill *rfkill)
786 {
787         unsigned long flags;
788         u32 state;
789
790         spin_lock_irqsave(&rfkill->lock, flags);
791         state = rfkill->state;
792         spin_unlock_irqrestore(&rfkill->lock, flags);
793
794         return !!(state & RFKILL_BLOCK_ANY);
795 }
796 EXPORT_SYMBOL(rfkill_blocked);
797
798
799 struct rfkill * __must_check rfkill_alloc(const char *name,
800                                           struct device *parent,
801                                           const enum rfkill_type type,
802                                           const struct rfkill_ops *ops,
803                                           void *ops_data)
804 {
805         struct rfkill *rfkill;
806         struct device *dev;
807
808         if (WARN_ON(!ops))
809                 return NULL;
810
811         if (WARN_ON(!ops->set_block))
812                 return NULL;
813
814         if (WARN_ON(!name))
815                 return NULL;
816
817         if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
818                 return NULL;
819
820         rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
821         if (!rfkill)
822                 return NULL;
823
824         spin_lock_init(&rfkill->lock);
825         INIT_LIST_HEAD(&rfkill->node);
826         rfkill->type = type;
827         rfkill->name = name;
828         rfkill->ops = ops;
829         rfkill->data = ops_data;
830
831         dev = &rfkill->dev;
832         dev->class = &rfkill_class;
833         dev->parent = parent;
834         device_initialize(dev);
835
836         return rfkill;
837 }
838 EXPORT_SYMBOL(rfkill_alloc);
839
840 static void rfkill_poll(struct work_struct *work)
841 {
842         struct rfkill *rfkill;
843
844         rfkill = container_of(work, struct rfkill, poll_work.work);
845
846         /*
847          * Poll hardware state -- driver will use one of the
848          * rfkill_set{,_hw,_sw}_state functions and use its
849          * return value to update the current status.
850          */
851         rfkill->ops->poll(rfkill, rfkill->data);
852
853         schedule_delayed_work(&rfkill->poll_work,
854                 round_jiffies_relative(POLL_INTERVAL));
855 }
856
857 static void rfkill_uevent_work(struct work_struct *work)
858 {
859         struct rfkill *rfkill;
860
861         rfkill = container_of(work, struct rfkill, uevent_work);
862
863         mutex_lock(&rfkill_global_mutex);
864         rfkill_event(rfkill);
865         mutex_unlock(&rfkill_global_mutex);
866 }
867
868 static void rfkill_sync_work(struct work_struct *work)
869 {
870         struct rfkill *rfkill;
871         bool cur;
872
873         rfkill = container_of(work, struct rfkill, sync_work);
874
875         mutex_lock(&rfkill_global_mutex);
876         cur = rfkill_global_states[rfkill->type].cur;
877         rfkill_set_block(rfkill, cur);
878         mutex_unlock(&rfkill_global_mutex);
879 }
880
881 int __must_check rfkill_register(struct rfkill *rfkill)
882 {
883         static unsigned long rfkill_no;
884         struct device *dev = &rfkill->dev;
885         int error;
886
887         BUG_ON(!rfkill);
888
889         mutex_lock(&rfkill_global_mutex);
890
891         if (rfkill->registered) {
892                 error = -EALREADY;
893                 goto unlock;
894         }
895
896         rfkill->idx = rfkill_no;
897         dev_set_name(dev, "rfkill%lu", rfkill_no);
898         rfkill_no++;
899
900         list_add_tail(&rfkill->node, &rfkill_list);
901
902         error = device_add(dev);
903         if (error)
904                 goto remove;
905
906         error = rfkill_led_trigger_register(rfkill);
907         if (error)
908                 goto devdel;
909
910         rfkill->registered = true;
911
912         INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
913         INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
914         INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
915
916         if (rfkill->ops->poll)
917                 schedule_delayed_work(&rfkill->poll_work,
918                         round_jiffies_relative(POLL_INTERVAL));
919
920         if (!rfkill->persistent || rfkill_epo_lock_active) {
921                 schedule_work(&rfkill->sync_work);
922         } else {
923 #ifdef CONFIG_RFKILL_INPUT
924                 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
925
926                 if (!atomic_read(&rfkill_input_disabled))
927                         __rfkill_switch_all(rfkill->type, soft_blocked);
928 #endif
929         }
930
931         rfkill_send_events(rfkill, RFKILL_OP_ADD);
932
933         mutex_unlock(&rfkill_global_mutex);
934         return 0;
935
936  devdel:
937         device_del(&rfkill->dev);
938  remove:
939         list_del_init(&rfkill->node);
940  unlock:
941         mutex_unlock(&rfkill_global_mutex);
942         return error;
943 }
944 EXPORT_SYMBOL(rfkill_register);
945
946 void rfkill_unregister(struct rfkill *rfkill)
947 {
948         BUG_ON(!rfkill);
949
950         if (rfkill->ops->poll)
951                 cancel_delayed_work_sync(&rfkill->poll_work);
952
953         cancel_work_sync(&rfkill->uevent_work);
954         cancel_work_sync(&rfkill->sync_work);
955
956         rfkill->registered = false;
957
958         device_del(&rfkill->dev);
959
960         mutex_lock(&rfkill_global_mutex);
961         rfkill_send_events(rfkill, RFKILL_OP_DEL);
962         list_del_init(&rfkill->node);
963         mutex_unlock(&rfkill_global_mutex);
964
965         rfkill_led_trigger_unregister(rfkill);
966 }
967 EXPORT_SYMBOL(rfkill_unregister);
968
969 void rfkill_destroy(struct rfkill *rfkill)
970 {
971         if (rfkill)
972                 put_device(&rfkill->dev);
973 }
974 EXPORT_SYMBOL(rfkill_destroy);
975
976 static int rfkill_fop_open(struct inode *inode, struct file *file)
977 {
978         struct rfkill_data *data;
979         struct rfkill *rfkill;
980         struct rfkill_int_event *ev, *tmp;
981
982         data = kzalloc(sizeof(*data), GFP_KERNEL);
983         if (!data)
984                 return -ENOMEM;
985
986         INIT_LIST_HEAD(&data->events);
987         mutex_init(&data->mtx);
988         init_waitqueue_head(&data->read_wait);
989
990         mutex_lock(&rfkill_global_mutex);
991         mutex_lock(&data->mtx);
992         /*
993          * start getting events from elsewhere but hold mtx to get
994          * startup events added first
995          */
996         list_add(&data->list, &rfkill_fds);
997
998         list_for_each_entry(rfkill, &rfkill_list, node) {
999                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1000                 if (!ev)
1001                         goto free;
1002                 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1003                 list_add_tail(&ev->list, &data->events);
1004         }
1005         mutex_unlock(&data->mtx);
1006         mutex_unlock(&rfkill_global_mutex);
1007
1008         file->private_data = data;
1009
1010         return nonseekable_open(inode, file);
1011
1012  free:
1013         mutex_unlock(&data->mtx);
1014         mutex_unlock(&rfkill_global_mutex);
1015         mutex_destroy(&data->mtx);
1016         list_for_each_entry_safe(ev, tmp, &data->events, list)
1017                 kfree(ev);
1018         kfree(data);
1019         return -ENOMEM;
1020 }
1021
1022 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1023 {
1024         struct rfkill_data *data = file->private_data;
1025         unsigned int res = POLLOUT | POLLWRNORM;
1026
1027         poll_wait(file, &data->read_wait, wait);
1028
1029         mutex_lock(&data->mtx);
1030         if (!list_empty(&data->events))
1031                 res = POLLIN | POLLRDNORM;
1032         mutex_unlock(&data->mtx);
1033
1034         return res;
1035 }
1036
1037 static bool rfkill_readable(struct rfkill_data *data)
1038 {
1039         bool r;
1040
1041         mutex_lock(&data->mtx);
1042         r = !list_empty(&data->events);
1043         mutex_unlock(&data->mtx);
1044
1045         return r;
1046 }
1047
1048 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1049                                size_t count, loff_t *pos)
1050 {
1051         struct rfkill_data *data = file->private_data;
1052         struct rfkill_int_event *ev;
1053         unsigned long sz;
1054         int ret;
1055
1056         mutex_lock(&data->mtx);
1057
1058         while (list_empty(&data->events)) {
1059                 if (file->f_flags & O_NONBLOCK) {
1060                         ret = -EAGAIN;
1061                         goto out;
1062                 }
1063                 mutex_unlock(&data->mtx);
1064                 ret = wait_event_interruptible(data->read_wait,
1065                                                rfkill_readable(data));
1066                 mutex_lock(&data->mtx);
1067
1068                 if (ret)
1069                         goto out;
1070         }
1071
1072         ev = list_first_entry(&data->events, struct rfkill_int_event,
1073                                 list);
1074
1075         sz = min_t(unsigned long, sizeof(ev->ev), count);
1076         ret = sz;
1077         if (copy_to_user(buf, &ev->ev, sz))
1078                 ret = -EFAULT;
1079
1080         list_del(&ev->list);
1081         kfree(ev);
1082  out:
1083         mutex_unlock(&data->mtx);
1084         return ret;
1085 }
1086
1087 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1088                                 size_t count, loff_t *pos)
1089 {
1090         struct rfkill *rfkill;
1091         struct rfkill_event ev;
1092
1093         /* we don't need the 'hard' variable but accept it */
1094         if (count < RFKILL_EVENT_SIZE_V1 - 1)
1095                 return -EINVAL;
1096
1097         /*
1098          * Copy as much data as we can accept into our 'ev' buffer,
1099          * but tell userspace how much we've copied so it can determine
1100          * our API version even in a write() call, if it cares.
1101          */
1102         count = min(count, sizeof(ev));
1103         if (copy_from_user(&ev, buf, count))
1104                 return -EFAULT;
1105
1106         if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1107                 return -EINVAL;
1108
1109         if (ev.type >= NUM_RFKILL_TYPES)
1110                 return -EINVAL;
1111
1112         mutex_lock(&rfkill_global_mutex);
1113
1114         if (ev.op == RFKILL_OP_CHANGE_ALL) {
1115                 if (ev.type == RFKILL_TYPE_ALL) {
1116                         enum rfkill_type i;
1117                         for (i = 0; i < NUM_RFKILL_TYPES; i++)
1118                                 rfkill_global_states[i].cur = ev.soft;
1119                 } else {
1120                         rfkill_global_states[ev.type].cur = ev.soft;
1121                 }
1122         }
1123
1124         list_for_each_entry(rfkill, &rfkill_list, node) {
1125                 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1126                         continue;
1127
1128                 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1129                         continue;
1130
1131                 rfkill_set_block(rfkill, ev.soft);
1132         }
1133         mutex_unlock(&rfkill_global_mutex);
1134
1135         return count;
1136 }
1137
1138 static int rfkill_fop_release(struct inode *inode, struct file *file)
1139 {
1140         struct rfkill_data *data = file->private_data;
1141         struct rfkill_int_event *ev, *tmp;
1142
1143         mutex_lock(&rfkill_global_mutex);
1144         list_del(&data->list);
1145         mutex_unlock(&rfkill_global_mutex);
1146
1147         mutex_destroy(&data->mtx);
1148         list_for_each_entry_safe(ev, tmp, &data->events, list)
1149                 kfree(ev);
1150
1151 #ifdef CONFIG_RFKILL_INPUT
1152         if (data->input_handler)
1153                 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1154                         printk(KERN_DEBUG "rfkill: input handler enabled\n");
1155 #endif
1156
1157         kfree(data);
1158
1159         return 0;
1160 }
1161
1162 #ifdef CONFIG_RFKILL_INPUT
1163 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1164                              unsigned long arg)
1165 {
1166         struct rfkill_data *data = file->private_data;
1167
1168         if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1169                 return -ENOSYS;
1170
1171         if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1172                 return -ENOSYS;
1173
1174         mutex_lock(&data->mtx);
1175
1176         if (!data->input_handler) {
1177                 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1178                         printk(KERN_DEBUG "rfkill: input handler disabled\n");
1179                 data->input_handler = true;
1180         }
1181
1182         mutex_unlock(&data->mtx);
1183
1184         return 0;
1185 }
1186 #endif
1187
1188 static const struct file_operations rfkill_fops = {
1189         .open           = rfkill_fop_open,
1190         .read           = rfkill_fop_read,
1191         .write          = rfkill_fop_write,
1192         .poll           = rfkill_fop_poll,
1193         .release        = rfkill_fop_release,
1194 #ifdef CONFIG_RFKILL_INPUT
1195         .unlocked_ioctl = rfkill_fop_ioctl,
1196         .compat_ioctl   = rfkill_fop_ioctl,
1197 #endif
1198 };
1199
1200 static struct miscdevice rfkill_miscdev = {
1201         .name   = "rfkill",
1202         .fops   = &rfkill_fops,
1203         .minor  = MISC_DYNAMIC_MINOR,
1204 };
1205
1206 static int __init rfkill_init(void)
1207 {
1208         int error;
1209         int i;
1210
1211         for (i = 0; i < NUM_RFKILL_TYPES; i++)
1212                 rfkill_global_states[i].cur = !rfkill_default_state;
1213
1214         error = class_register(&rfkill_class);
1215         if (error)
1216                 goto out;
1217
1218         error = misc_register(&rfkill_miscdev);
1219         if (error) {
1220                 class_unregister(&rfkill_class);
1221                 goto out;
1222         }
1223
1224 #ifdef CONFIG_RFKILL_INPUT
1225         error = rfkill_handler_init();
1226         if (error) {
1227                 misc_deregister(&rfkill_miscdev);
1228                 class_unregister(&rfkill_class);
1229                 goto out;
1230         }
1231 #endif
1232
1233  out:
1234         return error;
1235 }
1236 subsys_initcall(rfkill_init);
1237
1238 static void __exit rfkill_exit(void)
1239 {
1240 #ifdef CONFIG_RFKILL_INPUT
1241         rfkill_handler_exit();
1242 #endif
1243         misc_deregister(&rfkill_miscdev);
1244         class_unregister(&rfkill_class);
1245 }
1246 module_exit(rfkill_exit);