Merge branch 'fix/asoc' of git://github.com/tiwai/sound
[pandora-kernel.git] / net / rds / iw_rdma.c
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36
37 #include "rds.h"
38 #include "iw.h"
39
40
41 /*
42  * This is stored as mr->r_trans_private.
43  */
44 struct rds_iw_mr {
45         struct rds_iw_device    *device;
46         struct rds_iw_mr_pool   *pool;
47         struct rdma_cm_id       *cm_id;
48
49         struct ib_mr    *mr;
50         struct ib_fast_reg_page_list *page_list;
51
52         struct rds_iw_mapping   mapping;
53         unsigned char           remap_count;
54 };
55
56 /*
57  * Our own little MR pool
58  */
59 struct rds_iw_mr_pool {
60         struct rds_iw_device    *device;                /* back ptr to the device that owns us */
61
62         struct mutex            flush_lock;             /* serialize fmr invalidate */
63         struct work_struct      flush_worker;           /* flush worker */
64
65         spinlock_t              list_lock;              /* protect variables below */
66         atomic_t                item_count;             /* total # of MRs */
67         atomic_t                dirty_count;            /* # dirty of MRs */
68         struct list_head        dirty_list;             /* dirty mappings */
69         struct list_head        clean_list;             /* unused & unamapped MRs */
70         atomic_t                free_pinned;            /* memory pinned by free MRs */
71         unsigned long           max_message_size;       /* in pages */
72         unsigned long           max_items;
73         unsigned long           max_items_soft;
74         unsigned long           max_free_pinned;
75         int                     max_pages;
76 };
77
78 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
79 static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
80 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
81 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
82                           struct rds_iw_mr *ibmr,
83                           struct scatterlist *sg, unsigned int nents);
84 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
85 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
86                         struct list_head *unmap_list,
87                         struct list_head *kill_list);
88 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
89
90 static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
91 {
92         struct rds_iw_device *iwdev;
93         struct rds_iw_cm_id *i_cm_id;
94
95         *rds_iwdev = NULL;
96         *cm_id = NULL;
97
98         list_for_each_entry(iwdev, &rds_iw_devices, list) {
99                 spin_lock_irq(&iwdev->spinlock);
100                 list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
101                         struct sockaddr_in *src_addr, *dst_addr;
102
103                         src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
104                         dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
105
106                         rdsdebug("local ipaddr = %x port %d, "
107                                  "remote ipaddr = %x port %d"
108                                  "..looking for %x port %d, "
109                                  "remote ipaddr = %x port %d\n",
110                                 src_addr->sin_addr.s_addr,
111                                 src_addr->sin_port,
112                                 dst_addr->sin_addr.s_addr,
113                                 dst_addr->sin_port,
114                                 rs->rs_bound_addr,
115                                 rs->rs_bound_port,
116                                 rs->rs_conn_addr,
117                                 rs->rs_conn_port);
118 #ifdef WORKING_TUPLE_DETECTION
119                         if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
120                             src_addr->sin_port == rs->rs_bound_port &&
121                             dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
122                             dst_addr->sin_port == rs->rs_conn_port) {
123 #else
124                         /* FIXME - needs to compare the local and remote
125                          * ipaddr/port tuple, but the ipaddr is the only
126                          * available information in the rds_sock (as the rest are
127                          * zero'ed.  It doesn't appear to be properly populated
128                          * during connection setup...
129                          */
130                         if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
131 #endif
132                                 spin_unlock_irq(&iwdev->spinlock);
133                                 *rds_iwdev = iwdev;
134                                 *cm_id = i_cm_id->cm_id;
135                                 return 0;
136                         }
137                 }
138                 spin_unlock_irq(&iwdev->spinlock);
139         }
140
141         return 1;
142 }
143
144 static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
145 {
146         struct rds_iw_cm_id *i_cm_id;
147
148         i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
149         if (!i_cm_id)
150                 return -ENOMEM;
151
152         i_cm_id->cm_id = cm_id;
153
154         spin_lock_irq(&rds_iwdev->spinlock);
155         list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
156         spin_unlock_irq(&rds_iwdev->spinlock);
157
158         return 0;
159 }
160
161 static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
162                                 struct rdma_cm_id *cm_id)
163 {
164         struct rds_iw_cm_id *i_cm_id;
165
166         spin_lock_irq(&rds_iwdev->spinlock);
167         list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
168                 if (i_cm_id->cm_id == cm_id) {
169                         list_del(&i_cm_id->list);
170                         kfree(i_cm_id);
171                         break;
172                 }
173         }
174         spin_unlock_irq(&rds_iwdev->spinlock);
175 }
176
177
178 int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
179 {
180         struct sockaddr_in *src_addr, *dst_addr;
181         struct rds_iw_device *rds_iwdev_old;
182         struct rds_sock rs;
183         struct rdma_cm_id *pcm_id;
184         int rc;
185
186         src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
187         dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
188
189         rs.rs_bound_addr = src_addr->sin_addr.s_addr;
190         rs.rs_bound_port = src_addr->sin_port;
191         rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
192         rs.rs_conn_port = dst_addr->sin_port;
193
194         rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
195         if (rc)
196                 rds_iw_remove_cm_id(rds_iwdev, cm_id);
197
198         return rds_iw_add_cm_id(rds_iwdev, cm_id);
199 }
200
201 void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
202 {
203         struct rds_iw_connection *ic = conn->c_transport_data;
204
205         /* conn was previously on the nodev_conns_list */
206         spin_lock_irq(&iw_nodev_conns_lock);
207         BUG_ON(list_empty(&iw_nodev_conns));
208         BUG_ON(list_empty(&ic->iw_node));
209         list_del(&ic->iw_node);
210
211         spin_lock(&rds_iwdev->spinlock);
212         list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
213         spin_unlock(&rds_iwdev->spinlock);
214         spin_unlock_irq(&iw_nodev_conns_lock);
215
216         ic->rds_iwdev = rds_iwdev;
217 }
218
219 void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
220 {
221         struct rds_iw_connection *ic = conn->c_transport_data;
222
223         /* place conn on nodev_conns_list */
224         spin_lock(&iw_nodev_conns_lock);
225
226         spin_lock_irq(&rds_iwdev->spinlock);
227         BUG_ON(list_empty(&ic->iw_node));
228         list_del(&ic->iw_node);
229         spin_unlock_irq(&rds_iwdev->spinlock);
230
231         list_add_tail(&ic->iw_node, &iw_nodev_conns);
232
233         spin_unlock(&iw_nodev_conns_lock);
234
235         rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
236         ic->rds_iwdev = NULL;
237 }
238
239 void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
240 {
241         struct rds_iw_connection *ic, *_ic;
242         LIST_HEAD(tmp_list);
243
244         /* avoid calling conn_destroy with irqs off */
245         spin_lock_irq(list_lock);
246         list_splice(list, &tmp_list);
247         INIT_LIST_HEAD(list);
248         spin_unlock_irq(list_lock);
249
250         list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
251                 rds_conn_destroy(ic->conn);
252 }
253
254 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
255                 struct scatterlist *list, unsigned int sg_len)
256 {
257         sg->list = list;
258         sg->len = sg_len;
259         sg->dma_len = 0;
260         sg->dma_npages = 0;
261         sg->bytes = 0;
262 }
263
264 static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
265                         struct rds_iw_scatterlist *sg)
266 {
267         struct ib_device *dev = rds_iwdev->dev;
268         u64 *dma_pages = NULL;
269         int i, j, ret;
270
271         WARN_ON(sg->dma_len);
272
273         sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
274         if (unlikely(!sg->dma_len)) {
275                 printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
276                 return ERR_PTR(-EBUSY);
277         }
278
279         sg->bytes = 0;
280         sg->dma_npages = 0;
281
282         ret = -EINVAL;
283         for (i = 0; i < sg->dma_len; ++i) {
284                 unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
285                 u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
286                 u64 end_addr;
287
288                 sg->bytes += dma_len;
289
290                 end_addr = dma_addr + dma_len;
291                 if (dma_addr & PAGE_MASK) {
292                         if (i > 0)
293                                 goto out_unmap;
294                         dma_addr &= ~PAGE_MASK;
295                 }
296                 if (end_addr & PAGE_MASK) {
297                         if (i < sg->dma_len - 1)
298                                 goto out_unmap;
299                         end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
300                 }
301
302                 sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
303         }
304
305         /* Now gather the dma addrs into one list */
306         if (sg->dma_npages > fastreg_message_size)
307                 goto out_unmap;
308
309         dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
310         if (!dma_pages) {
311                 ret = -ENOMEM;
312                 goto out_unmap;
313         }
314
315         for (i = j = 0; i < sg->dma_len; ++i) {
316                 unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
317                 u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
318                 u64 end_addr;
319
320                 end_addr = dma_addr + dma_len;
321                 dma_addr &= ~PAGE_MASK;
322                 for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
323                         dma_pages[j++] = dma_addr;
324                 BUG_ON(j > sg->dma_npages);
325         }
326
327         return dma_pages;
328
329 out_unmap:
330         ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
331         sg->dma_len = 0;
332         kfree(dma_pages);
333         return ERR_PTR(ret);
334 }
335
336
337 struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
338 {
339         struct rds_iw_mr_pool *pool;
340
341         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
342         if (!pool) {
343                 printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
344                 return ERR_PTR(-ENOMEM);
345         }
346
347         pool->device = rds_iwdev;
348         INIT_LIST_HEAD(&pool->dirty_list);
349         INIT_LIST_HEAD(&pool->clean_list);
350         mutex_init(&pool->flush_lock);
351         spin_lock_init(&pool->list_lock);
352         INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
353
354         pool->max_message_size = fastreg_message_size;
355         pool->max_items = fastreg_pool_size;
356         pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
357         pool->max_pages = fastreg_message_size;
358
359         /* We never allow more than max_items MRs to be allocated.
360          * When we exceed more than max_items_soft, we start freeing
361          * items more aggressively.
362          * Make sure that max_items > max_items_soft > max_items / 2
363          */
364         pool->max_items_soft = pool->max_items * 3 / 4;
365
366         return pool;
367 }
368
369 void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
370 {
371         struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
372
373         iinfo->rdma_mr_max = pool->max_items;
374         iinfo->rdma_mr_size = pool->max_pages;
375 }
376
377 void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
378 {
379         flush_workqueue(rds_wq);
380         rds_iw_flush_mr_pool(pool, 1);
381         BUG_ON(atomic_read(&pool->item_count));
382         BUG_ON(atomic_read(&pool->free_pinned));
383         kfree(pool);
384 }
385
386 static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
387 {
388         struct rds_iw_mr *ibmr = NULL;
389         unsigned long flags;
390
391         spin_lock_irqsave(&pool->list_lock, flags);
392         if (!list_empty(&pool->clean_list)) {
393                 ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
394                 list_del_init(&ibmr->mapping.m_list);
395         }
396         spin_unlock_irqrestore(&pool->list_lock, flags);
397
398         return ibmr;
399 }
400
401 static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
402 {
403         struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
404         struct rds_iw_mr *ibmr = NULL;
405         int err = 0, iter = 0;
406
407         while (1) {
408                 ibmr = rds_iw_reuse_fmr(pool);
409                 if (ibmr)
410                         return ibmr;
411
412                 /* No clean MRs - now we have the choice of either
413                  * allocating a fresh MR up to the limit imposed by the
414                  * driver, or flush any dirty unused MRs.
415                  * We try to avoid stalling in the send path if possible,
416                  * so we allocate as long as we're allowed to.
417                  *
418                  * We're fussy with enforcing the FMR limit, though. If the driver
419                  * tells us we can't use more than N fmrs, we shouldn't start
420                  * arguing with it */
421                 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
422                         break;
423
424                 atomic_dec(&pool->item_count);
425
426                 if (++iter > 2) {
427                         rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
428                         return ERR_PTR(-EAGAIN);
429                 }
430
431                 /* We do have some empty MRs. Flush them out. */
432                 rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
433                 rds_iw_flush_mr_pool(pool, 0);
434         }
435
436         ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
437         if (!ibmr) {
438                 err = -ENOMEM;
439                 goto out_no_cigar;
440         }
441
442         spin_lock_init(&ibmr->mapping.m_lock);
443         INIT_LIST_HEAD(&ibmr->mapping.m_list);
444         ibmr->mapping.m_mr = ibmr;
445
446         err = rds_iw_init_fastreg(pool, ibmr);
447         if (err)
448                 goto out_no_cigar;
449
450         rds_iw_stats_inc(s_iw_rdma_mr_alloc);
451         return ibmr;
452
453 out_no_cigar:
454         if (ibmr) {
455                 rds_iw_destroy_fastreg(pool, ibmr);
456                 kfree(ibmr);
457         }
458         atomic_dec(&pool->item_count);
459         return ERR_PTR(err);
460 }
461
462 void rds_iw_sync_mr(void *trans_private, int direction)
463 {
464         struct rds_iw_mr *ibmr = trans_private;
465         struct rds_iw_device *rds_iwdev = ibmr->device;
466
467         switch (direction) {
468         case DMA_FROM_DEVICE:
469                 ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
470                         ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
471                 break;
472         case DMA_TO_DEVICE:
473                 ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
474                         ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
475                 break;
476         }
477 }
478
479 static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all)
480 {
481         unsigned int item_count;
482
483         item_count = atomic_read(&pool->item_count);
484         if (free_all)
485                 return item_count;
486
487         return 0;
488 }
489
490 /*
491  * Flush our pool of MRs.
492  * At a minimum, all currently unused MRs are unmapped.
493  * If the number of MRs allocated exceeds the limit, we also try
494  * to free as many MRs as needed to get back to this limit.
495  */
496 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
497 {
498         struct rds_iw_mr *ibmr, *next;
499         LIST_HEAD(unmap_list);
500         LIST_HEAD(kill_list);
501         unsigned long flags;
502         unsigned int nfreed = 0, ncleaned = 0, free_goal;
503         int ret = 0;
504
505         rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
506
507         mutex_lock(&pool->flush_lock);
508
509         spin_lock_irqsave(&pool->list_lock, flags);
510         /* Get the list of all mappings to be destroyed */
511         list_splice_init(&pool->dirty_list, &unmap_list);
512         if (free_all)
513                 list_splice_init(&pool->clean_list, &kill_list);
514         spin_unlock_irqrestore(&pool->list_lock, flags);
515
516         free_goal = rds_iw_flush_goal(pool, free_all);
517
518         /* Batched invalidate of dirty MRs.
519          * For FMR based MRs, the mappings on the unmap list are
520          * actually members of an ibmr (ibmr->mapping). They either
521          * migrate to the kill_list, or have been cleaned and should be
522          * moved to the clean_list.
523          * For fastregs, they will be dynamically allocated, and
524          * will be destroyed by the unmap function.
525          */
526         if (!list_empty(&unmap_list)) {
527                 ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list);
528                 /* If we've been asked to destroy all MRs, move those
529                  * that were simply cleaned to the kill list */
530                 if (free_all)
531                         list_splice_init(&unmap_list, &kill_list);
532         }
533
534         /* Destroy any MRs that are past their best before date */
535         list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
536                 rds_iw_stats_inc(s_iw_rdma_mr_free);
537                 list_del(&ibmr->mapping.m_list);
538                 rds_iw_destroy_fastreg(pool, ibmr);
539                 kfree(ibmr);
540                 nfreed++;
541         }
542
543         /* Anything that remains are laundered ibmrs, which we can add
544          * back to the clean list. */
545         if (!list_empty(&unmap_list)) {
546                 spin_lock_irqsave(&pool->list_lock, flags);
547                 list_splice(&unmap_list, &pool->clean_list);
548                 spin_unlock_irqrestore(&pool->list_lock, flags);
549         }
550
551         atomic_sub(ncleaned, &pool->dirty_count);
552         atomic_sub(nfreed, &pool->item_count);
553
554         mutex_unlock(&pool->flush_lock);
555         return ret;
556 }
557
558 static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
559 {
560         struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
561
562         rds_iw_flush_mr_pool(pool, 0);
563 }
564
565 void rds_iw_free_mr(void *trans_private, int invalidate)
566 {
567         struct rds_iw_mr *ibmr = trans_private;
568         struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
569
570         rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
571         if (!pool)
572                 return;
573
574         /* Return it to the pool's free list */
575         rds_iw_free_fastreg(pool, ibmr);
576
577         /* If we've pinned too many pages, request a flush */
578         if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
579             atomic_read(&pool->dirty_count) >= pool->max_items / 10)
580                 queue_work(rds_wq, &pool->flush_worker);
581
582         if (invalidate) {
583                 if (likely(!in_interrupt())) {
584                         rds_iw_flush_mr_pool(pool, 0);
585                 } else {
586                         /* We get here if the user created a MR marked
587                          * as use_once and invalidate at the same time. */
588                         queue_work(rds_wq, &pool->flush_worker);
589                 }
590         }
591 }
592
593 void rds_iw_flush_mrs(void)
594 {
595         struct rds_iw_device *rds_iwdev;
596
597         list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
598                 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
599
600                 if (pool)
601                         rds_iw_flush_mr_pool(pool, 0);
602         }
603 }
604
605 void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
606                     struct rds_sock *rs, u32 *key_ret)
607 {
608         struct rds_iw_device *rds_iwdev;
609         struct rds_iw_mr *ibmr = NULL;
610         struct rdma_cm_id *cm_id;
611         int ret;
612
613         ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
614         if (ret || !cm_id) {
615                 ret = -ENODEV;
616                 goto out;
617         }
618
619         if (!rds_iwdev->mr_pool) {
620                 ret = -ENODEV;
621                 goto out;
622         }
623
624         ibmr = rds_iw_alloc_mr(rds_iwdev);
625         if (IS_ERR(ibmr))
626                 return ibmr;
627
628         ibmr->cm_id = cm_id;
629         ibmr->device = rds_iwdev;
630
631         ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
632         if (ret == 0)
633                 *key_ret = ibmr->mr->rkey;
634         else
635                 printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
636
637 out:
638         if (ret) {
639                 if (ibmr)
640                         rds_iw_free_mr(ibmr, 0);
641                 ibmr = ERR_PTR(ret);
642         }
643         return ibmr;
644 }
645
646 /*
647  * iWARP fastreg handling
648  *
649  * The life cycle of a fastreg registration is a bit different from
650  * FMRs.
651  * The idea behind fastreg is to have one MR, to which we bind different
652  * mappings over time. To avoid stalling on the expensive map and invalidate
653  * operations, these operations are pipelined on the same send queue on
654  * which we want to send the message containing the r_key.
655  *
656  * This creates a bit of a problem for us, as we do not have the destination
657  * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
658  * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
659  * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
660  * before queuing the SEND. When completions for these arrive, they are
661  * dispatched to the MR has a bit set showing that RDMa can be performed.
662  *
663  * There is another interesting aspect that's related to invalidation.
664  * The application can request that a mapping is invalidated in FREE_MR.
665  * The expectation there is that this invalidation step includes ALL
666  * PREVIOUSLY FREED MRs.
667  */
668 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
669                                 struct rds_iw_mr *ibmr)
670 {
671         struct rds_iw_device *rds_iwdev = pool->device;
672         struct ib_fast_reg_page_list *page_list = NULL;
673         struct ib_mr *mr;
674         int err;
675
676         mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
677         if (IS_ERR(mr)) {
678                 err = PTR_ERR(mr);
679
680                 printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
681                 return err;
682         }
683
684         /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
685          * is not filled in.
686          */
687         page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
688         if (IS_ERR(page_list)) {
689                 err = PTR_ERR(page_list);
690
691                 printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
692                 ib_dereg_mr(mr);
693                 return err;
694         }
695
696         ibmr->page_list = page_list;
697         ibmr->mr = mr;
698         return 0;
699 }
700
701 static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
702 {
703         struct rds_iw_mr *ibmr = mapping->m_mr;
704         struct ib_send_wr f_wr, *failed_wr;
705         int ret;
706
707         /*
708          * Perform a WR for the fast_reg_mr. Each individual page
709          * in the sg list is added to the fast reg page list and placed
710          * inside the fast_reg_mr WR.  The key used is a rolling 8bit
711          * counter, which should guarantee uniqueness.
712          */
713         ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
714         mapping->m_rkey = ibmr->mr->rkey;
715
716         memset(&f_wr, 0, sizeof(f_wr));
717         f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
718         f_wr.opcode = IB_WR_FAST_REG_MR;
719         f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
720         f_wr.wr.fast_reg.rkey = mapping->m_rkey;
721         f_wr.wr.fast_reg.page_list = ibmr->page_list;
722         f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
723         f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
724         f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
725                                 IB_ACCESS_REMOTE_READ |
726                                 IB_ACCESS_REMOTE_WRITE;
727         f_wr.wr.fast_reg.iova_start = 0;
728         f_wr.send_flags = IB_SEND_SIGNALED;
729
730         failed_wr = &f_wr;
731         ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
732         BUG_ON(failed_wr != &f_wr);
733         if (ret)
734                 printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
735                         __func__, __LINE__, ret);
736         return ret;
737 }
738
739 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
740 {
741         struct ib_send_wr s_wr, *failed_wr;
742         int ret = 0;
743
744         if (!ibmr->cm_id->qp || !ibmr->mr)
745                 goto out;
746
747         memset(&s_wr, 0, sizeof(s_wr));
748         s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
749         s_wr.opcode = IB_WR_LOCAL_INV;
750         s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
751         s_wr.send_flags = IB_SEND_SIGNALED;
752
753         failed_wr = &s_wr;
754         ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
755         if (ret) {
756                 printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
757                         __func__, __LINE__, ret);
758                 goto out;
759         }
760 out:
761         return ret;
762 }
763
764 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
765                         struct rds_iw_mr *ibmr,
766                         struct scatterlist *sg,
767                         unsigned int sg_len)
768 {
769         struct rds_iw_device *rds_iwdev = pool->device;
770         struct rds_iw_mapping *mapping = &ibmr->mapping;
771         u64 *dma_pages;
772         int i, ret = 0;
773
774         rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
775
776         dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
777         if (IS_ERR(dma_pages)) {
778                 ret = PTR_ERR(dma_pages);
779                 dma_pages = NULL;
780                 goto out;
781         }
782
783         if (mapping->m_sg.dma_len > pool->max_message_size) {
784                 ret = -EMSGSIZE;
785                 goto out;
786         }
787
788         for (i = 0; i < mapping->m_sg.dma_npages; ++i)
789                 ibmr->page_list->page_list[i] = dma_pages[i];
790
791         ret = rds_iw_rdma_build_fastreg(mapping);
792         if (ret)
793                 goto out;
794
795         rds_iw_stats_inc(s_iw_rdma_mr_used);
796
797 out:
798         kfree(dma_pages);
799
800         return ret;
801 }
802
803 /*
804  * "Free" a fastreg MR.
805  */
806 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
807                 struct rds_iw_mr *ibmr)
808 {
809         unsigned long flags;
810         int ret;
811
812         if (!ibmr->mapping.m_sg.dma_len)
813                 return;
814
815         ret = rds_iw_rdma_fastreg_inv(ibmr);
816         if (ret)
817                 return;
818
819         /* Try to post the LOCAL_INV WR to the queue. */
820         spin_lock_irqsave(&pool->list_lock, flags);
821
822         list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
823         atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
824         atomic_inc(&pool->dirty_count);
825
826         spin_unlock_irqrestore(&pool->list_lock, flags);
827 }
828
829 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
830                                 struct list_head *unmap_list,
831                                 struct list_head *kill_list)
832 {
833         struct rds_iw_mapping *mapping, *next;
834         unsigned int ncleaned = 0;
835         LIST_HEAD(laundered);
836
837         /* Batched invalidation of fastreg MRs.
838          * Why do we do it this way, even though we could pipeline unmap
839          * and remap? The reason is the application semantics - when the
840          * application requests an invalidation of MRs, it expects all
841          * previously released R_Keys to become invalid.
842          *
843          * If we implement MR reuse naively, we risk memory corruption
844          * (this has actually been observed). So the default behavior
845          * requires that a MR goes through an explicit unmap operation before
846          * we can reuse it again.
847          *
848          * We could probably improve on this a little, by allowing immediate
849          * reuse of a MR on the same socket (eg you could add small
850          * cache of unused MRs to strct rds_socket - GET_MR could grab one
851          * of these without requiring an explicit invalidate).
852          */
853         while (!list_empty(unmap_list)) {
854                 unsigned long flags;
855
856                 spin_lock_irqsave(&pool->list_lock, flags);
857                 list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
858                         list_move(&mapping->m_list, &laundered);
859                         ncleaned++;
860                 }
861                 spin_unlock_irqrestore(&pool->list_lock, flags);
862         }
863
864         /* Move all laundered mappings back to the unmap list.
865          * We do not kill any WRs right now - it doesn't seem the
866          * fastreg API has a max_remap limit. */
867         list_splice_init(&laundered, unmap_list);
868
869         return ncleaned;
870 }
871
872 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
873                 struct rds_iw_mr *ibmr)
874 {
875         if (ibmr->page_list)
876                 ib_free_fast_reg_page_list(ibmr->page_list);
877         if (ibmr->mr)
878                 ib_dereg_mr(ibmr->mr);
879 }