mac80211: Minor optimization in ieee80211_rx_h_data
[pandora-kernel.git] / net / mac80211 / rx.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010  Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32  * monitor mode reception
33  *
34  * This function cleans up the SKB, i.e. it removes all the stuff
35  * only useful for monitoring.
36  */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38                                            struct sk_buff *skb)
39 {
40         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41                 if (likely(skb->len > FCS_LEN))
42                         __pskb_trim(skb, skb->len - FCS_LEN);
43                 else {
44                         /* driver bug */
45                         WARN_ON(1);
46                         dev_kfree_skb(skb);
47                         skb = NULL;
48                 }
49         }
50
51         return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55                                     int present_fcs_len)
56 {
57         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60         if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61                 return 1;
62         if (unlikely(skb->len < 16 + present_fcs_len))
63                 return 1;
64         if (ieee80211_is_ctl(hdr->frame_control) &&
65             !ieee80211_is_pspoll(hdr->frame_control) &&
66             !ieee80211_is_back_req(hdr->frame_control))
67                 return 1;
68         return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73                           struct ieee80211_rx_status *status)
74 {
75         int len;
76
77         /* always present fields */
78         len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80         if (status->flag & RX_FLAG_TSFT)
81                 len += 8;
82         if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83                 len += 1;
84
85         if (len & 1) /* padding for RX_FLAGS if necessary */
86                 len++;
87
88         return len;
89 }
90
91 /*
92  * ieee80211_add_rx_radiotap_header - add radiotap header
93  *
94  * add a radiotap header containing all the fields which the hardware provided.
95  */
96 static void
97 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
98                                  struct sk_buff *skb,
99                                  struct ieee80211_rate *rate,
100                                  int rtap_len)
101 {
102         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
103         struct ieee80211_radiotap_header *rthdr;
104         unsigned char *pos;
105         u16 rx_flags = 0;
106
107         rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
108         memset(rthdr, 0, rtap_len);
109
110         /* radiotap header, set always present flags */
111         rthdr->it_present =
112                 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
113                             (1 << IEEE80211_RADIOTAP_CHANNEL) |
114                             (1 << IEEE80211_RADIOTAP_ANTENNA) |
115                             (1 << IEEE80211_RADIOTAP_RX_FLAGS));
116         rthdr->it_len = cpu_to_le16(rtap_len);
117
118         pos = (unsigned char *)(rthdr+1);
119
120         /* the order of the following fields is important */
121
122         /* IEEE80211_RADIOTAP_TSFT */
123         if (status->flag & RX_FLAG_TSFT) {
124                 put_unaligned_le64(status->mactime, pos);
125                 rthdr->it_present |=
126                         cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
127                 pos += 8;
128         }
129
130         /* IEEE80211_RADIOTAP_FLAGS */
131         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
132                 *pos |= IEEE80211_RADIOTAP_F_FCS;
133         if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
134                 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
135         if (status->flag & RX_FLAG_SHORTPRE)
136                 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
137         pos++;
138
139         /* IEEE80211_RADIOTAP_RATE */
140         if (status->flag & RX_FLAG_HT) {
141                 /*
142                  * TODO: add following information into radiotap header once
143                  * suitable fields are defined for it:
144                  * - MCS index (status->rate_idx)
145                  * - HT40 (status->flag & RX_FLAG_40MHZ)
146                  * - short-GI (status->flag & RX_FLAG_SHORT_GI)
147                  */
148                 *pos = 0;
149         } else {
150                 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
151                 *pos = rate->bitrate / 5;
152         }
153         pos++;
154
155         /* IEEE80211_RADIOTAP_CHANNEL */
156         put_unaligned_le16(status->freq, pos);
157         pos += 2;
158         if (status->band == IEEE80211_BAND_5GHZ)
159                 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
160                                    pos);
161         else if (status->flag & RX_FLAG_HT)
162                 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
163                                    pos);
164         else if (rate->flags & IEEE80211_RATE_ERP_G)
165                 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
166                                    pos);
167         else
168                 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
169                                    pos);
170         pos += 2;
171
172         /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173         if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
174                 *pos = status->signal;
175                 rthdr->it_present |=
176                         cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
177                 pos++;
178         }
179
180         /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181
182         /* IEEE80211_RADIOTAP_ANTENNA */
183         *pos = status->antenna;
184         pos++;
185
186         /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
187
188         /* IEEE80211_RADIOTAP_RX_FLAGS */
189         /* ensure 2 byte alignment for the 2 byte field as required */
190         if ((pos - (u8 *)rthdr) & 1)
191                 pos++;
192         if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
193                 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
194         put_unaligned_le16(rx_flags, pos);
195         pos += 2;
196 }
197
198 /*
199  * This function copies a received frame to all monitor interfaces and
200  * returns a cleaned-up SKB that no longer includes the FCS nor the
201  * radiotap header the driver might have added.
202  */
203 static struct sk_buff *
204 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
205                      struct ieee80211_rate *rate)
206 {
207         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
208         struct ieee80211_sub_if_data *sdata;
209         int needed_headroom = 0;
210         struct sk_buff *skb, *skb2;
211         struct net_device *prev_dev = NULL;
212         int present_fcs_len = 0;
213
214         /*
215          * First, we may need to make a copy of the skb because
216          *  (1) we need to modify it for radiotap (if not present), and
217          *  (2) the other RX handlers will modify the skb we got.
218          *
219          * We don't need to, of course, if we aren't going to return
220          * the SKB because it has a bad FCS/PLCP checksum.
221          */
222
223         /* room for the radiotap header based on driver features */
224         needed_headroom = ieee80211_rx_radiotap_len(local, status);
225
226         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
227                 present_fcs_len = FCS_LEN;
228
229         /* make sure hdr->frame_control is on the linear part */
230         if (!pskb_may_pull(origskb, 2)) {
231                 dev_kfree_skb(origskb);
232                 return NULL;
233         }
234
235         if (!local->monitors) {
236                 if (should_drop_frame(origskb, present_fcs_len)) {
237                         dev_kfree_skb(origskb);
238                         return NULL;
239                 }
240
241                 return remove_monitor_info(local, origskb);
242         }
243
244         if (should_drop_frame(origskb, present_fcs_len)) {
245                 /* only need to expand headroom if necessary */
246                 skb = origskb;
247                 origskb = NULL;
248
249                 /*
250                  * This shouldn't trigger often because most devices have an
251                  * RX header they pull before we get here, and that should
252                  * be big enough for our radiotap information. We should
253                  * probably export the length to drivers so that we can have
254                  * them allocate enough headroom to start with.
255                  */
256                 if (skb_headroom(skb) < needed_headroom &&
257                     pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
258                         dev_kfree_skb(skb);
259                         return NULL;
260                 }
261         } else {
262                 /*
263                  * Need to make a copy and possibly remove radiotap header
264                  * and FCS from the original.
265                  */
266                 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
267
268                 origskb = remove_monitor_info(local, origskb);
269
270                 if (!skb)
271                         return origskb;
272         }
273
274         /* prepend radiotap information */
275         ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
276
277         skb_reset_mac_header(skb);
278         skb->ip_summed = CHECKSUM_UNNECESSARY;
279         skb->pkt_type = PACKET_OTHERHOST;
280         skb->protocol = htons(ETH_P_802_2);
281
282         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
283                 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
284                         continue;
285
286                 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
287                         continue;
288
289                 if (!ieee80211_sdata_running(sdata))
290                         continue;
291
292                 if (prev_dev) {
293                         skb2 = skb_clone(skb, GFP_ATOMIC);
294                         if (skb2) {
295                                 skb2->dev = prev_dev;
296                                 netif_receive_skb(skb2);
297                         }
298                 }
299
300                 prev_dev = sdata->dev;
301                 sdata->dev->stats.rx_packets++;
302                 sdata->dev->stats.rx_bytes += skb->len;
303         }
304
305         if (prev_dev) {
306                 skb->dev = prev_dev;
307                 netif_receive_skb(skb);
308         } else
309                 dev_kfree_skb(skb);
310
311         return origskb;
312 }
313
314
315 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
316 {
317         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
318         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
319         int tid;
320
321         /* does the frame have a qos control field? */
322         if (ieee80211_is_data_qos(hdr->frame_control)) {
323                 u8 *qc = ieee80211_get_qos_ctl(hdr);
324                 /* frame has qos control */
325                 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
326                 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
327                         status->rx_flags |= IEEE80211_RX_AMSDU;
328         } else {
329                 /*
330                  * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
331                  *
332                  *      Sequence numbers for management frames, QoS data
333                  *      frames with a broadcast/multicast address in the
334                  *      Address 1 field, and all non-QoS data frames sent
335                  *      by QoS STAs are assigned using an additional single
336                  *      modulo-4096 counter, [...]
337                  *
338                  * We also use that counter for non-QoS STAs.
339                  */
340                 tid = NUM_RX_DATA_QUEUES - 1;
341         }
342
343         rx->queue = tid;
344         /* Set skb->priority to 1d tag if highest order bit of TID is not set.
345          * For now, set skb->priority to 0 for other cases. */
346         rx->skb->priority = (tid > 7) ? 0 : tid;
347 }
348
349 /**
350  * DOC: Packet alignment
351  *
352  * Drivers always need to pass packets that are aligned to two-byte boundaries
353  * to the stack.
354  *
355  * Additionally, should, if possible, align the payload data in a way that
356  * guarantees that the contained IP header is aligned to a four-byte
357  * boundary. In the case of regular frames, this simply means aligning the
358  * payload to a four-byte boundary (because either the IP header is directly
359  * contained, or IV/RFC1042 headers that have a length divisible by four are
360  * in front of it).  If the payload data is not properly aligned and the
361  * architecture doesn't support efficient unaligned operations, mac80211
362  * will align the data.
363  *
364  * With A-MSDU frames, however, the payload data address must yield two modulo
365  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
366  * push the IP header further back to a multiple of four again. Thankfully, the
367  * specs were sane enough this time around to require padding each A-MSDU
368  * subframe to a length that is a multiple of four.
369  *
370  * Padding like Atheros hardware adds which is inbetween the 802.11 header and
371  * the payload is not supported, the driver is required to move the 802.11
372  * header to be directly in front of the payload in that case.
373  */
374 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
375 {
376 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
377         WARN_ONCE((unsigned long)rx->skb->data & 1,
378                   "unaligned packet at 0x%p\n", rx->skb->data);
379 #endif
380 }
381
382
383 /* rx handlers */
384
385 static ieee80211_rx_result debug_noinline
386 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
387 {
388         struct ieee80211_local *local = rx->local;
389         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
390         struct sk_buff *skb = rx->skb;
391
392         if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN)))
393                 return RX_CONTINUE;
394
395         if (test_bit(SCAN_HW_SCANNING, &local->scanning))
396                 return ieee80211_scan_rx(rx->sdata, skb);
397
398         if (test_bit(SCAN_SW_SCANNING, &local->scanning)) {
399                 /* drop all the other packets during a software scan anyway */
400                 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
401                         dev_kfree_skb(skb);
402                 return RX_QUEUED;
403         }
404
405         /* scanning finished during invoking of handlers */
406         I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
407         return RX_DROP_UNUSABLE;
408 }
409
410
411 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
412 {
413         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
414
415         if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
416                 return 0;
417
418         return ieee80211_is_robust_mgmt_frame(hdr);
419 }
420
421
422 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
423 {
424         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
425
426         if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
427                 return 0;
428
429         return ieee80211_is_robust_mgmt_frame(hdr);
430 }
431
432
433 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
434 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
435 {
436         struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
437         struct ieee80211_mmie *mmie;
438
439         if (skb->len < 24 + sizeof(*mmie) ||
440             !is_multicast_ether_addr(hdr->da))
441                 return -1;
442
443         if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
444                 return -1; /* not a robust management frame */
445
446         mmie = (struct ieee80211_mmie *)
447                 (skb->data + skb->len - sizeof(*mmie));
448         if (mmie->element_id != WLAN_EID_MMIE ||
449             mmie->length != sizeof(*mmie) - 2)
450                 return -1;
451
452         return le16_to_cpu(mmie->key_id);
453 }
454
455
456 static ieee80211_rx_result
457 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
458 {
459         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
460         unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
461         char *dev_addr = rx->sdata->vif.addr;
462
463         if (ieee80211_is_data(hdr->frame_control)) {
464                 if (is_multicast_ether_addr(hdr->addr1)) {
465                         if (ieee80211_has_tods(hdr->frame_control) ||
466                                 !ieee80211_has_fromds(hdr->frame_control))
467                                 return RX_DROP_MONITOR;
468                         if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
469                                 return RX_DROP_MONITOR;
470                 } else {
471                         if (!ieee80211_has_a4(hdr->frame_control))
472                                 return RX_DROP_MONITOR;
473                         if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
474                                 return RX_DROP_MONITOR;
475                 }
476         }
477
478         /* If there is not an established peer link and this is not a peer link
479          * establisment frame, beacon or probe, drop the frame.
480          */
481
482         if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
483                 struct ieee80211_mgmt *mgmt;
484
485                 if (!ieee80211_is_mgmt(hdr->frame_control))
486                         return RX_DROP_MONITOR;
487
488                 if (ieee80211_is_action(hdr->frame_control)) {
489                         mgmt = (struct ieee80211_mgmt *)hdr;
490                         if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
491                                 return RX_DROP_MONITOR;
492                         return RX_CONTINUE;
493                 }
494
495                 if (ieee80211_is_probe_req(hdr->frame_control) ||
496                     ieee80211_is_probe_resp(hdr->frame_control) ||
497                     ieee80211_is_beacon(hdr->frame_control))
498                         return RX_CONTINUE;
499
500                 return RX_DROP_MONITOR;
501
502         }
503
504 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
505
506         if (ieee80211_is_data(hdr->frame_control) &&
507             is_multicast_ether_addr(hdr->addr1) &&
508             mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
509                 return RX_DROP_MONITOR;
510 #undef msh_h_get
511
512         return RX_CONTINUE;
513 }
514
515 #define SEQ_MODULO 0x1000
516 #define SEQ_MASK   0xfff
517
518 static inline int seq_less(u16 sq1, u16 sq2)
519 {
520         return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
521 }
522
523 static inline u16 seq_inc(u16 sq)
524 {
525         return (sq + 1) & SEQ_MASK;
526 }
527
528 static inline u16 seq_sub(u16 sq1, u16 sq2)
529 {
530         return (sq1 - sq2) & SEQ_MASK;
531 }
532
533
534 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
535                                             struct tid_ampdu_rx *tid_agg_rx,
536                                             int index,
537                                             struct sk_buff_head *frames)
538 {
539         struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
540
541         lockdep_assert_held(&tid_agg_rx->reorder_lock);
542
543         if (!skb)
544                 goto no_frame;
545
546         /* release the frame from the reorder ring buffer */
547         tid_agg_rx->stored_mpdu_num--;
548         tid_agg_rx->reorder_buf[index] = NULL;
549         __skb_queue_tail(frames, skb);
550
551 no_frame:
552         tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
553 }
554
555 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
556                                              struct tid_ampdu_rx *tid_agg_rx,
557                                              u16 head_seq_num,
558                                              struct sk_buff_head *frames)
559 {
560         int index;
561
562         lockdep_assert_held(&tid_agg_rx->reorder_lock);
563
564         while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
565                 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
566                                                         tid_agg_rx->buf_size;
567                 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
568         }
569 }
570
571 /*
572  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
573  * the skb was added to the buffer longer than this time ago, the earlier
574  * frames that have not yet been received are assumed to be lost and the skb
575  * can be released for processing. This may also release other skb's from the
576  * reorder buffer if there are no additional gaps between the frames.
577  *
578  * Callers must hold tid_agg_rx->reorder_lock.
579  */
580 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
581
582 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
583                                           struct tid_ampdu_rx *tid_agg_rx,
584                                           struct sk_buff_head *frames)
585 {
586         int index, j;
587
588         lockdep_assert_held(&tid_agg_rx->reorder_lock);
589
590         /* release the buffer until next missing frame */
591         index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
592                                                 tid_agg_rx->buf_size;
593         if (!tid_agg_rx->reorder_buf[index] &&
594             tid_agg_rx->stored_mpdu_num > 1) {
595                 /*
596                  * No buffers ready to be released, but check whether any
597                  * frames in the reorder buffer have timed out.
598                  */
599                 int skipped = 1;
600                 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
601                      j = (j + 1) % tid_agg_rx->buf_size) {
602                         if (!tid_agg_rx->reorder_buf[j]) {
603                                 skipped++;
604                                 continue;
605                         }
606                         if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
607                                         HT_RX_REORDER_BUF_TIMEOUT))
608                                 goto set_release_timer;
609
610 #ifdef CONFIG_MAC80211_HT_DEBUG
611                         if (net_ratelimit())
612                                 wiphy_debug(hw->wiphy,
613                                             "release an RX reorder frame due to timeout on earlier frames\n");
614 #endif
615                         ieee80211_release_reorder_frame(hw, tid_agg_rx,
616                                                         j, frames);
617
618                         /*
619                          * Increment the head seq# also for the skipped slots.
620                          */
621                         tid_agg_rx->head_seq_num =
622                                 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
623                         skipped = 0;
624                 }
625         } else while (tid_agg_rx->reorder_buf[index]) {
626                 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
627                 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
628                                                         tid_agg_rx->buf_size;
629         }
630
631         /*
632          * Disable the reorder release timer for now.
633          *
634          * The current implementation lacks a proper locking scheme
635          * which would protect vital statistic and debug counters
636          * from being updated by two different but concurrent BHs.
637          *
638          * More information about the topic is available from:
639          * - thread: http://marc.info/?t=128635927000001
640          *
641          * What was wrong:
642          * =>  http://marc.info/?l=linux-wireless&m=128636170811964
643          * "Basically the thing is that until your patch, the data
644          *  in the struct didn't actually need locking because it
645          *  was accessed by the RX path only which is not concurrent."
646          *
647          * List of what needs to be fixed:
648          * => http://marc.info/?l=linux-wireless&m=128656352920957
649          *
650
651         if (tid_agg_rx->stored_mpdu_num) {
652                 j = index = seq_sub(tid_agg_rx->head_seq_num,
653                                     tid_agg_rx->ssn) % tid_agg_rx->buf_size;
654
655                 for (; j != (index - 1) % tid_agg_rx->buf_size;
656                      j = (j + 1) % tid_agg_rx->buf_size) {
657                         if (tid_agg_rx->reorder_buf[j])
658                                 break;
659                 }
660
661  set_release_timer:
662
663                 mod_timer(&tid_agg_rx->reorder_timer,
664                           tid_agg_rx->reorder_time[j] +
665                           HT_RX_REORDER_BUF_TIMEOUT);
666         } else {
667                 del_timer(&tid_agg_rx->reorder_timer);
668         }
669         */
670
671 set_release_timer:
672         return;
673 }
674
675 /*
676  * As this function belongs to the RX path it must be under
677  * rcu_read_lock protection. It returns false if the frame
678  * can be processed immediately, true if it was consumed.
679  */
680 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
681                                              struct tid_ampdu_rx *tid_agg_rx,
682                                              struct sk_buff *skb,
683                                              struct sk_buff_head *frames)
684 {
685         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
686         u16 sc = le16_to_cpu(hdr->seq_ctrl);
687         u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
688         u16 head_seq_num, buf_size;
689         int index;
690         bool ret = true;
691
692         spin_lock(&tid_agg_rx->reorder_lock);
693
694         buf_size = tid_agg_rx->buf_size;
695         head_seq_num = tid_agg_rx->head_seq_num;
696
697         /* frame with out of date sequence number */
698         if (seq_less(mpdu_seq_num, head_seq_num)) {
699                 dev_kfree_skb(skb);
700                 goto out;
701         }
702
703         /*
704          * If frame the sequence number exceeds our buffering window
705          * size release some previous frames to make room for this one.
706          */
707         if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
708                 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
709                 /* release stored frames up to new head to stack */
710                 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
711                                                  frames);
712         }
713
714         /* Now the new frame is always in the range of the reordering buffer */
715
716         index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
717
718         /* check if we already stored this frame */
719         if (tid_agg_rx->reorder_buf[index]) {
720                 dev_kfree_skb(skb);
721                 goto out;
722         }
723
724         /*
725          * If the current MPDU is in the right order and nothing else
726          * is stored we can process it directly, no need to buffer it.
727          */
728         if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
729             tid_agg_rx->stored_mpdu_num == 0) {
730                 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
731                 ret = false;
732                 goto out;
733         }
734
735         /* put the frame in the reordering buffer */
736         tid_agg_rx->reorder_buf[index] = skb;
737         tid_agg_rx->reorder_time[index] = jiffies;
738         tid_agg_rx->stored_mpdu_num++;
739         ieee80211_sta_reorder_release(hw, tid_agg_rx, frames);
740
741  out:
742         spin_unlock(&tid_agg_rx->reorder_lock);
743         return ret;
744 }
745
746 /*
747  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
748  * true if the MPDU was buffered, false if it should be processed.
749  */
750 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
751                                        struct sk_buff_head *frames)
752 {
753         struct sk_buff *skb = rx->skb;
754         struct ieee80211_local *local = rx->local;
755         struct ieee80211_hw *hw = &local->hw;
756         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
757         struct sta_info *sta = rx->sta;
758         struct tid_ampdu_rx *tid_agg_rx;
759         u16 sc;
760         int tid;
761
762         if (!ieee80211_is_data_qos(hdr->frame_control))
763                 goto dont_reorder;
764
765         /*
766          * filter the QoS data rx stream according to
767          * STA/TID and check if this STA/TID is on aggregation
768          */
769
770         if (!sta)
771                 goto dont_reorder;
772
773         tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
774
775         tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
776         if (!tid_agg_rx)
777                 goto dont_reorder;
778
779         /* qos null data frames are excluded */
780         if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
781                 goto dont_reorder;
782
783         /* new, potentially un-ordered, ampdu frame - process it */
784
785         /* reset session timer */
786         if (tid_agg_rx->timeout)
787                 mod_timer(&tid_agg_rx->session_timer,
788                           TU_TO_EXP_TIME(tid_agg_rx->timeout));
789
790         /* if this mpdu is fragmented - terminate rx aggregation session */
791         sc = le16_to_cpu(hdr->seq_ctrl);
792         if (sc & IEEE80211_SCTL_FRAG) {
793                 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
794                 skb_queue_tail(&rx->sdata->skb_queue, skb);
795                 ieee80211_queue_work(&local->hw, &rx->sdata->work);
796                 return;
797         }
798
799         /*
800          * No locking needed -- we will only ever process one
801          * RX packet at a time, and thus own tid_agg_rx. All
802          * other code manipulating it needs to (and does) make
803          * sure that we cannot get to it any more before doing
804          * anything with it.
805          */
806         if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames))
807                 return;
808
809  dont_reorder:
810         __skb_queue_tail(frames, skb);
811 }
812
813 static ieee80211_rx_result debug_noinline
814 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
815 {
816         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
817         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
818
819         /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
820         if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
821                 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
822                              rx->sta->last_seq_ctrl[rx->queue] ==
823                              hdr->seq_ctrl)) {
824                         if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
825                                 rx->local->dot11FrameDuplicateCount++;
826                                 rx->sta->num_duplicates++;
827                         }
828                         return RX_DROP_MONITOR;
829                 } else
830                         rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
831         }
832
833         if (unlikely(rx->skb->len < 16)) {
834                 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
835                 return RX_DROP_MONITOR;
836         }
837
838         /* Drop disallowed frame classes based on STA auth/assoc state;
839          * IEEE 802.11, Chap 5.5.
840          *
841          * mac80211 filters only based on association state, i.e. it drops
842          * Class 3 frames from not associated stations. hostapd sends
843          * deauth/disassoc frames when needed. In addition, hostapd is
844          * responsible for filtering on both auth and assoc states.
845          */
846
847         if (ieee80211_vif_is_mesh(&rx->sdata->vif))
848                 return ieee80211_rx_mesh_check(rx);
849
850         if (unlikely((ieee80211_is_data(hdr->frame_control) ||
851                       ieee80211_is_pspoll(hdr->frame_control)) &&
852                      rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
853                      rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
854                      (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
855                 if ((!ieee80211_has_fromds(hdr->frame_control) &&
856                      !ieee80211_has_tods(hdr->frame_control) &&
857                      ieee80211_is_data(hdr->frame_control)) ||
858                     !(status->rx_flags & IEEE80211_RX_RA_MATCH)) {
859                         /* Drop IBSS frames and frames for other hosts
860                          * silently. */
861                         return RX_DROP_MONITOR;
862                 }
863
864                 return RX_DROP_MONITOR;
865         }
866
867         return RX_CONTINUE;
868 }
869
870
871 static ieee80211_rx_result debug_noinline
872 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
873 {
874         struct sk_buff *skb = rx->skb;
875         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
876         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
877         int keyidx;
878         int hdrlen;
879         ieee80211_rx_result result = RX_DROP_UNUSABLE;
880         struct ieee80211_key *sta_ptk = NULL;
881         int mmie_keyidx = -1;
882         __le16 fc;
883
884         /*
885          * Key selection 101
886          *
887          * There are four types of keys:
888          *  - GTK (group keys)
889          *  - IGTK (group keys for management frames)
890          *  - PTK (pairwise keys)
891          *  - STK (station-to-station pairwise keys)
892          *
893          * When selecting a key, we have to distinguish between multicast
894          * (including broadcast) and unicast frames, the latter can only
895          * use PTKs and STKs while the former always use GTKs and IGTKs.
896          * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
897          * unicast frames can also use key indices like GTKs. Hence, if we
898          * don't have a PTK/STK we check the key index for a WEP key.
899          *
900          * Note that in a regular BSS, multicast frames are sent by the
901          * AP only, associated stations unicast the frame to the AP first
902          * which then multicasts it on their behalf.
903          *
904          * There is also a slight problem in IBSS mode: GTKs are negotiated
905          * with each station, that is something we don't currently handle.
906          * The spec seems to expect that one negotiates the same key with
907          * every station but there's no such requirement; VLANs could be
908          * possible.
909          */
910
911         /*
912          * No point in finding a key and decrypting if the frame is neither
913          * addressed to us nor a multicast frame.
914          */
915         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
916                 return RX_CONTINUE;
917
918         /* start without a key */
919         rx->key = NULL;
920
921         if (rx->sta)
922                 sta_ptk = rcu_dereference(rx->sta->ptk);
923
924         fc = hdr->frame_control;
925
926         if (!ieee80211_has_protected(fc))
927                 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
928
929         if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
930                 rx->key = sta_ptk;
931                 if ((status->flag & RX_FLAG_DECRYPTED) &&
932                     (status->flag & RX_FLAG_IV_STRIPPED))
933                         return RX_CONTINUE;
934                 /* Skip decryption if the frame is not protected. */
935                 if (!ieee80211_has_protected(fc))
936                         return RX_CONTINUE;
937         } else if (mmie_keyidx >= 0) {
938                 /* Broadcast/multicast robust management frame / BIP */
939                 if ((status->flag & RX_FLAG_DECRYPTED) &&
940                     (status->flag & RX_FLAG_IV_STRIPPED))
941                         return RX_CONTINUE;
942
943                 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
944                     mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
945                         return RX_DROP_MONITOR; /* unexpected BIP keyidx */
946                 if (rx->sta)
947                         rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
948                 if (!rx->key)
949                         rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
950         } else if (!ieee80211_has_protected(fc)) {
951                 /*
952                  * The frame was not protected, so skip decryption. However, we
953                  * need to set rx->key if there is a key that could have been
954                  * used so that the frame may be dropped if encryption would
955                  * have been expected.
956                  */
957                 struct ieee80211_key *key = NULL;
958                 if (ieee80211_is_mgmt(fc) &&
959                     is_multicast_ether_addr(hdr->addr1) &&
960                     (key = rcu_dereference(rx->sdata->default_mgmt_key)))
961                         rx->key = key;
962                 else if ((key = rcu_dereference(rx->sdata->default_key)))
963                         rx->key = key;
964                 return RX_CONTINUE;
965         } else {
966                 u8 keyid;
967                 /*
968                  * The device doesn't give us the IV so we won't be
969                  * able to look up the key. That's ok though, we
970                  * don't need to decrypt the frame, we just won't
971                  * be able to keep statistics accurate.
972                  * Except for key threshold notifications, should
973                  * we somehow allow the driver to tell us which key
974                  * the hardware used if this flag is set?
975                  */
976                 if ((status->flag & RX_FLAG_DECRYPTED) &&
977                     (status->flag & RX_FLAG_IV_STRIPPED))
978                         return RX_CONTINUE;
979
980                 hdrlen = ieee80211_hdrlen(fc);
981
982                 if (rx->skb->len < 8 + hdrlen)
983                         return RX_DROP_UNUSABLE; /* TODO: count this? */
984
985                 /*
986                  * no need to call ieee80211_wep_get_keyidx,
987                  * it verifies a bunch of things we've done already
988                  */
989                 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
990                 keyidx = keyid >> 6;
991
992                 /* check per-station GTK first, if multicast packet */
993                 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
994                         rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
995
996                 /* if not found, try default key */
997                 if (!rx->key) {
998                         rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
999
1000                         /*
1001                          * RSNA-protected unicast frames should always be
1002                          * sent with pairwise or station-to-station keys,
1003                          * but for WEP we allow using a key index as well.
1004                          */
1005                         if (rx->key &&
1006                             rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1007                             rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1008                             !is_multicast_ether_addr(hdr->addr1))
1009                                 rx->key = NULL;
1010                 }
1011         }
1012
1013         if (rx->key) {
1014                 rx->key->tx_rx_count++;
1015                 /* TODO: add threshold stuff again */
1016         } else {
1017                 return RX_DROP_MONITOR;
1018         }
1019
1020         if (skb_linearize(rx->skb))
1021                 return RX_DROP_UNUSABLE;
1022         /* the hdr variable is invalid now! */
1023
1024         switch (rx->key->conf.cipher) {
1025         case WLAN_CIPHER_SUITE_WEP40:
1026         case WLAN_CIPHER_SUITE_WEP104:
1027                 /* Check for weak IVs if possible */
1028                 if (rx->sta && ieee80211_is_data(fc) &&
1029                     (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1030                      !(status->flag & RX_FLAG_DECRYPTED)) &&
1031                     ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1032                         rx->sta->wep_weak_iv_count++;
1033
1034                 result = ieee80211_crypto_wep_decrypt(rx);
1035                 break;
1036         case WLAN_CIPHER_SUITE_TKIP:
1037                 result = ieee80211_crypto_tkip_decrypt(rx);
1038                 break;
1039         case WLAN_CIPHER_SUITE_CCMP:
1040                 result = ieee80211_crypto_ccmp_decrypt(rx);
1041                 break;
1042         case WLAN_CIPHER_SUITE_AES_CMAC:
1043                 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1044                 break;
1045         default:
1046                 /*
1047                  * We can reach here only with HW-only algorithms
1048                  * but why didn't it decrypt the frame?!
1049                  */
1050                 return RX_DROP_UNUSABLE;
1051         }
1052
1053         /* either the frame has been decrypted or will be dropped */
1054         status->flag |= RX_FLAG_DECRYPTED;
1055
1056         return result;
1057 }
1058
1059 static ieee80211_rx_result debug_noinline
1060 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1061 {
1062         struct ieee80211_local *local;
1063         struct ieee80211_hdr *hdr;
1064         struct sk_buff *skb;
1065
1066         local = rx->local;
1067         skb = rx->skb;
1068         hdr = (struct ieee80211_hdr *) skb->data;
1069
1070         if (!local->pspolling)
1071                 return RX_CONTINUE;
1072
1073         if (!ieee80211_has_fromds(hdr->frame_control))
1074                 /* this is not from AP */
1075                 return RX_CONTINUE;
1076
1077         if (!ieee80211_is_data(hdr->frame_control))
1078                 return RX_CONTINUE;
1079
1080         if (!ieee80211_has_moredata(hdr->frame_control)) {
1081                 /* AP has no more frames buffered for us */
1082                 local->pspolling = false;
1083                 return RX_CONTINUE;
1084         }
1085
1086         /* more data bit is set, let's request a new frame from the AP */
1087         ieee80211_send_pspoll(local, rx->sdata);
1088
1089         return RX_CONTINUE;
1090 }
1091
1092 static void ap_sta_ps_start(struct sta_info *sta)
1093 {
1094         struct ieee80211_sub_if_data *sdata = sta->sdata;
1095         struct ieee80211_local *local = sdata->local;
1096
1097         atomic_inc(&sdata->bss->num_sta_ps);
1098         set_sta_flags(sta, WLAN_STA_PS_STA);
1099         drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1100 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1101         printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1102                sdata->name, sta->sta.addr, sta->sta.aid);
1103 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1104 }
1105
1106 static void ap_sta_ps_end(struct sta_info *sta)
1107 {
1108         struct ieee80211_sub_if_data *sdata = sta->sdata;
1109
1110         atomic_dec(&sdata->bss->num_sta_ps);
1111
1112 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1113         printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1114                sdata->name, sta->sta.addr, sta->sta.aid);
1115 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1116
1117         if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1118 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1119                 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1120                        sdata->name, sta->sta.addr, sta->sta.aid);
1121 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1122                 return;
1123         }
1124
1125         ieee80211_sta_ps_deliver_wakeup(sta);
1126 }
1127
1128 static ieee80211_rx_result debug_noinline
1129 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1130 {
1131         struct sta_info *sta = rx->sta;
1132         struct sk_buff *skb = rx->skb;
1133         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1134         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1135
1136         if (!sta)
1137                 return RX_CONTINUE;
1138
1139         /*
1140          * Update last_rx only for IBSS packets which are for the current
1141          * BSSID to avoid keeping the current IBSS network alive in cases
1142          * where other STAs start using different BSSID.
1143          */
1144         if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1145                 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1146                                                 NL80211_IFTYPE_ADHOC);
1147                 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1148                         sta->last_rx = jiffies;
1149         } else if (!is_multicast_ether_addr(hdr->addr1)) {
1150                 /*
1151                  * Mesh beacons will update last_rx when if they are found to
1152                  * match the current local configuration when processed.
1153                  */
1154                 sta->last_rx = jiffies;
1155         }
1156
1157         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1158                 return RX_CONTINUE;
1159
1160         if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1161                 ieee80211_sta_rx_notify(rx->sdata, hdr);
1162
1163         sta->rx_fragments++;
1164         sta->rx_bytes += rx->skb->len;
1165         sta->last_signal = status->signal;
1166
1167         /*
1168          * Change STA power saving mode only at the end of a frame
1169          * exchange sequence.
1170          */
1171         if (!ieee80211_has_morefrags(hdr->frame_control) &&
1172             (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1173              rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1174                 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1175                         /*
1176                          * Ignore doze->wake transitions that are
1177                          * indicated by non-data frames, the standard
1178                          * is unclear here, but for example going to
1179                          * PS mode and then scanning would cause a
1180                          * doze->wake transition for the probe request,
1181                          * and that is clearly undesirable.
1182                          */
1183                         if (ieee80211_is_data(hdr->frame_control) &&
1184                             !ieee80211_has_pm(hdr->frame_control))
1185                                 ap_sta_ps_end(sta);
1186                 } else {
1187                         if (ieee80211_has_pm(hdr->frame_control))
1188                                 ap_sta_ps_start(sta);
1189                 }
1190         }
1191
1192         /*
1193          * Drop (qos-)data::nullfunc frames silently, since they
1194          * are used only to control station power saving mode.
1195          */
1196         if (ieee80211_is_nullfunc(hdr->frame_control) ||
1197             ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1198                 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1199
1200                 /*
1201                  * If we receive a 4-addr nullfunc frame from a STA
1202                  * that was not moved to a 4-addr STA vlan yet, drop
1203                  * the frame to the monitor interface, to make sure
1204                  * that hostapd sees it
1205                  */
1206                 if (ieee80211_has_a4(hdr->frame_control) &&
1207                     (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1208                      (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1209                       !rx->sdata->u.vlan.sta)))
1210                         return RX_DROP_MONITOR;
1211                 /*
1212                  * Update counter and free packet here to avoid
1213                  * counting this as a dropped packed.
1214                  */
1215                 sta->rx_packets++;
1216                 dev_kfree_skb(rx->skb);
1217                 return RX_QUEUED;
1218         }
1219
1220         return RX_CONTINUE;
1221 } /* ieee80211_rx_h_sta_process */
1222
1223 static inline struct ieee80211_fragment_entry *
1224 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1225                          unsigned int frag, unsigned int seq, int rx_queue,
1226                          struct sk_buff **skb)
1227 {
1228         struct ieee80211_fragment_entry *entry;
1229         int idx;
1230
1231         idx = sdata->fragment_next;
1232         entry = &sdata->fragments[sdata->fragment_next++];
1233         if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1234                 sdata->fragment_next = 0;
1235
1236         if (!skb_queue_empty(&entry->skb_list)) {
1237 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1238                 struct ieee80211_hdr *hdr =
1239                         (struct ieee80211_hdr *) entry->skb_list.next->data;
1240                 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1241                        "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1242                        "addr1=%pM addr2=%pM\n",
1243                        sdata->name, idx,
1244                        jiffies - entry->first_frag_time, entry->seq,
1245                        entry->last_frag, hdr->addr1, hdr->addr2);
1246 #endif
1247                 __skb_queue_purge(&entry->skb_list);
1248         }
1249
1250         __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1251         *skb = NULL;
1252         entry->first_frag_time = jiffies;
1253         entry->seq = seq;
1254         entry->rx_queue = rx_queue;
1255         entry->last_frag = frag;
1256         entry->ccmp = 0;
1257         entry->extra_len = 0;
1258
1259         return entry;
1260 }
1261
1262 static inline struct ieee80211_fragment_entry *
1263 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1264                           unsigned int frag, unsigned int seq,
1265                           int rx_queue, struct ieee80211_hdr *hdr)
1266 {
1267         struct ieee80211_fragment_entry *entry;
1268         int i, idx;
1269
1270         idx = sdata->fragment_next;
1271         for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1272                 struct ieee80211_hdr *f_hdr;
1273
1274                 idx--;
1275                 if (idx < 0)
1276                         idx = IEEE80211_FRAGMENT_MAX - 1;
1277
1278                 entry = &sdata->fragments[idx];
1279                 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1280                     entry->rx_queue != rx_queue ||
1281                     entry->last_frag + 1 != frag)
1282                         continue;
1283
1284                 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1285
1286                 /*
1287                  * Check ftype and addresses are equal, else check next fragment
1288                  */
1289                 if (((hdr->frame_control ^ f_hdr->frame_control) &
1290                      cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1291                     compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1292                     compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1293                         continue;
1294
1295                 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1296                         __skb_queue_purge(&entry->skb_list);
1297                         continue;
1298                 }
1299                 return entry;
1300         }
1301
1302         return NULL;
1303 }
1304
1305 static ieee80211_rx_result debug_noinline
1306 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1307 {
1308         struct ieee80211_hdr *hdr;
1309         u16 sc;
1310         __le16 fc;
1311         unsigned int frag, seq;
1312         struct ieee80211_fragment_entry *entry;
1313         struct sk_buff *skb;
1314         struct ieee80211_rx_status *status;
1315
1316         hdr = (struct ieee80211_hdr *)rx->skb->data;
1317         fc = hdr->frame_control;
1318         sc = le16_to_cpu(hdr->seq_ctrl);
1319         frag = sc & IEEE80211_SCTL_FRAG;
1320
1321         if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1322                    (rx->skb)->len < 24 ||
1323                    is_multicast_ether_addr(hdr->addr1))) {
1324                 /* not fragmented */
1325                 goto out;
1326         }
1327         I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1328
1329         if (skb_linearize(rx->skb))
1330                 return RX_DROP_UNUSABLE;
1331
1332         /*
1333          *  skb_linearize() might change the skb->data and
1334          *  previously cached variables (in this case, hdr) need to
1335          *  be refreshed with the new data.
1336          */
1337         hdr = (struct ieee80211_hdr *)rx->skb->data;
1338         seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1339
1340         if (frag == 0) {
1341                 /* This is the first fragment of a new frame. */
1342                 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1343                                                  rx->queue, &(rx->skb));
1344                 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1345                     ieee80211_has_protected(fc)) {
1346                         int queue = ieee80211_is_mgmt(fc) ?
1347                                 NUM_RX_DATA_QUEUES : rx->queue;
1348                         /* Store CCMP PN so that we can verify that the next
1349                          * fragment has a sequential PN value. */
1350                         entry->ccmp = 1;
1351                         memcpy(entry->last_pn,
1352                                rx->key->u.ccmp.rx_pn[queue],
1353                                CCMP_PN_LEN);
1354                 }
1355                 return RX_QUEUED;
1356         }
1357
1358         /* This is a fragment for a frame that should already be pending in
1359          * fragment cache. Add this fragment to the end of the pending entry.
1360          */
1361         entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1362         if (!entry) {
1363                 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1364                 return RX_DROP_MONITOR;
1365         }
1366
1367         /* Verify that MPDUs within one MSDU have sequential PN values.
1368          * (IEEE 802.11i, 8.3.3.4.5) */
1369         if (entry->ccmp) {
1370                 int i;
1371                 u8 pn[CCMP_PN_LEN], *rpn;
1372                 int queue;
1373                 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1374                         return RX_DROP_UNUSABLE;
1375                 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1376                 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1377                         pn[i]++;
1378                         if (pn[i])
1379                                 break;
1380                 }
1381                 queue = ieee80211_is_mgmt(fc) ?
1382                         NUM_RX_DATA_QUEUES : rx->queue;
1383                 rpn = rx->key->u.ccmp.rx_pn[queue];
1384                 if (memcmp(pn, rpn, CCMP_PN_LEN))
1385                         return RX_DROP_UNUSABLE;
1386                 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1387         }
1388
1389         skb_pull(rx->skb, ieee80211_hdrlen(fc));
1390         __skb_queue_tail(&entry->skb_list, rx->skb);
1391         entry->last_frag = frag;
1392         entry->extra_len += rx->skb->len;
1393         if (ieee80211_has_morefrags(fc)) {
1394                 rx->skb = NULL;
1395                 return RX_QUEUED;
1396         }
1397
1398         rx->skb = __skb_dequeue(&entry->skb_list);
1399         if (skb_tailroom(rx->skb) < entry->extra_len) {
1400                 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1401                 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1402                                               GFP_ATOMIC))) {
1403                         I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1404                         __skb_queue_purge(&entry->skb_list);
1405                         return RX_DROP_UNUSABLE;
1406                 }
1407         }
1408         while ((skb = __skb_dequeue(&entry->skb_list))) {
1409                 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1410                 dev_kfree_skb(skb);
1411         }
1412
1413         /* Complete frame has been reassembled - process it now */
1414         status = IEEE80211_SKB_RXCB(rx->skb);
1415         status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1416
1417  out:
1418         if (rx->sta)
1419                 rx->sta->rx_packets++;
1420         if (is_multicast_ether_addr(hdr->addr1))
1421                 rx->local->dot11MulticastReceivedFrameCount++;
1422         else
1423                 ieee80211_led_rx(rx->local);
1424         return RX_CONTINUE;
1425 }
1426
1427 static ieee80211_rx_result debug_noinline
1428 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1429 {
1430         struct ieee80211_sub_if_data *sdata = rx->sdata;
1431         __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1432         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1433
1434         if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1435                    !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1436                 return RX_CONTINUE;
1437
1438         if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1439             (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1440                 return RX_DROP_UNUSABLE;
1441
1442         if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1443                 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1444         else
1445                 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1446
1447         /* Free PS Poll skb here instead of returning RX_DROP that would
1448          * count as an dropped frame. */
1449         dev_kfree_skb(rx->skb);
1450
1451         return RX_QUEUED;
1452 }
1453
1454 static ieee80211_rx_result debug_noinline
1455 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1456 {
1457         u8 *data = rx->skb->data;
1458         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1459
1460         if (!ieee80211_is_data_qos(hdr->frame_control))
1461                 return RX_CONTINUE;
1462
1463         /* remove the qos control field, update frame type and meta-data */
1464         memmove(data + IEEE80211_QOS_CTL_LEN, data,
1465                 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1466         hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1467         /* change frame type to non QOS */
1468         hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1469
1470         return RX_CONTINUE;
1471 }
1472
1473 static int
1474 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1475 {
1476         if (unlikely(!rx->sta ||
1477             !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1478                 return -EACCES;
1479
1480         return 0;
1481 }
1482
1483 static int
1484 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1485 {
1486         struct sk_buff *skb = rx->skb;
1487         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1488
1489         /*
1490          * Pass through unencrypted frames if the hardware has
1491          * decrypted them already.
1492          */
1493         if (status->flag & RX_FLAG_DECRYPTED)
1494                 return 0;
1495
1496         /* Drop unencrypted frames if key is set. */
1497         if (unlikely(!ieee80211_has_protected(fc) &&
1498                      !ieee80211_is_nullfunc(fc) &&
1499                      ieee80211_is_data(fc) &&
1500                      (rx->key || rx->sdata->drop_unencrypted)))
1501                 return -EACCES;
1502
1503         return 0;
1504 }
1505
1506 static int
1507 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1508 {
1509         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1510         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1511         __le16 fc = hdr->frame_control;
1512
1513         /*
1514          * Pass through unencrypted frames if the hardware has
1515          * decrypted them already.
1516          */
1517         if (status->flag & RX_FLAG_DECRYPTED)
1518                 return 0;
1519
1520         if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1521                 if (unlikely(!ieee80211_has_protected(fc) &&
1522                              ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1523                              rx->key))
1524                         return -EACCES;
1525                 /* BIP does not use Protected field, so need to check MMIE */
1526                 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1527                              ieee80211_get_mmie_keyidx(rx->skb) < 0))
1528                         return -EACCES;
1529                 /*
1530                  * When using MFP, Action frames are not allowed prior to
1531                  * having configured keys.
1532                  */
1533                 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1534                              ieee80211_is_robust_mgmt_frame(
1535                                      (struct ieee80211_hdr *) rx->skb->data)))
1536                         return -EACCES;
1537         }
1538
1539         return 0;
1540 }
1541
1542 static int
1543 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1544 {
1545         struct ieee80211_sub_if_data *sdata = rx->sdata;
1546         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1547
1548         if (ieee80211_has_a4(hdr->frame_control) &&
1549             sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1550                 return -1;
1551
1552         if (is_multicast_ether_addr(hdr->addr1) &&
1553             ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1554              (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1555                 return -1;
1556
1557         return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1558 }
1559
1560 /*
1561  * requires that rx->skb is a frame with ethernet header
1562  */
1563 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1564 {
1565         static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1566                 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1567         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1568
1569         /*
1570          * Allow EAPOL frames to us/the PAE group address regardless
1571          * of whether the frame was encrypted or not.
1572          */
1573         if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1574             (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1575              compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1576                 return true;
1577
1578         if (ieee80211_802_1x_port_control(rx) ||
1579             ieee80211_drop_unencrypted(rx, fc))
1580                 return false;
1581
1582         return true;
1583 }
1584
1585 /*
1586  * requires that rx->skb is a frame with ethernet header
1587  */
1588 static void
1589 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1590 {
1591         struct ieee80211_sub_if_data *sdata = rx->sdata;
1592         struct net_device *dev = sdata->dev;
1593         struct sk_buff *skb, *xmit_skb;
1594         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1595         struct sta_info *dsta;
1596         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1597
1598         skb = rx->skb;
1599         xmit_skb = NULL;
1600
1601         if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1602              sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1603             !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1604             (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1605             (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1606                 if (is_multicast_ether_addr(ehdr->h_dest)) {
1607                         /*
1608                          * send multicast frames both to higher layers in
1609                          * local net stack and back to the wireless medium
1610                          */
1611                         xmit_skb = skb_copy(skb, GFP_ATOMIC);
1612                         if (!xmit_skb && net_ratelimit())
1613                                 printk(KERN_DEBUG "%s: failed to clone "
1614                                        "multicast frame\n", dev->name);
1615                 } else {
1616                         dsta = sta_info_get(sdata, skb->data);
1617                         if (dsta) {
1618                                 /*
1619                                  * The destination station is associated to
1620                                  * this AP (in this VLAN), so send the frame
1621                                  * directly to it and do not pass it to local
1622                                  * net stack.
1623                                  */
1624                                 xmit_skb = skb;
1625                                 skb = NULL;
1626                         }
1627                 }
1628         }
1629
1630         if (skb) {
1631                 int align __maybe_unused;
1632
1633 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1634                 /*
1635                  * 'align' will only take the values 0 or 2 here
1636                  * since all frames are required to be aligned
1637                  * to 2-byte boundaries when being passed to
1638                  * mac80211. That also explains the __skb_push()
1639                  * below.
1640                  */
1641                 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1642                 if (align) {
1643                         if (WARN_ON(skb_headroom(skb) < 3)) {
1644                                 dev_kfree_skb(skb);
1645                                 skb = NULL;
1646                         } else {
1647                                 u8 *data = skb->data;
1648                                 size_t len = skb_headlen(skb);
1649                                 skb->data -= align;
1650                                 memmove(skb->data, data, len);
1651                                 skb_set_tail_pointer(skb, len);
1652                         }
1653                 }
1654 #endif
1655
1656                 if (skb) {
1657                         /* deliver to local stack */
1658                         skb->protocol = eth_type_trans(skb, dev);
1659                         memset(skb->cb, 0, sizeof(skb->cb));
1660                         netif_receive_skb(skb);
1661                 }
1662         }
1663
1664         if (xmit_skb) {
1665                 /* send to wireless media */
1666                 xmit_skb->protocol = htons(ETH_P_802_3);
1667                 skb_reset_network_header(xmit_skb);
1668                 skb_reset_mac_header(xmit_skb);
1669                 dev_queue_xmit(xmit_skb);
1670         }
1671 }
1672
1673 static ieee80211_rx_result debug_noinline
1674 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1675 {
1676         struct net_device *dev = rx->sdata->dev;
1677         struct sk_buff *skb = rx->skb;
1678         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1679         __le16 fc = hdr->frame_control;
1680         struct sk_buff_head frame_list;
1681         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1682
1683         if (unlikely(!ieee80211_is_data(fc)))
1684                 return RX_CONTINUE;
1685
1686         if (unlikely(!ieee80211_is_data_present(fc)))
1687                 return RX_DROP_MONITOR;
1688
1689         if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1690                 return RX_CONTINUE;
1691
1692         if (ieee80211_has_a4(hdr->frame_control) &&
1693             rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1694             !rx->sdata->u.vlan.sta)
1695                 return RX_DROP_UNUSABLE;
1696
1697         if (is_multicast_ether_addr(hdr->addr1) &&
1698             ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1699               rx->sdata->u.vlan.sta) ||
1700              (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1701               rx->sdata->u.mgd.use_4addr)))
1702                 return RX_DROP_UNUSABLE;
1703
1704         skb->dev = dev;
1705         __skb_queue_head_init(&frame_list);
1706
1707         if (skb_linearize(skb))
1708                 return RX_DROP_UNUSABLE;
1709
1710         ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1711                                  rx->sdata->vif.type,
1712                                  rx->local->hw.extra_tx_headroom);
1713
1714         while (!skb_queue_empty(&frame_list)) {
1715                 rx->skb = __skb_dequeue(&frame_list);
1716
1717                 if (!ieee80211_frame_allowed(rx, fc)) {
1718                         dev_kfree_skb(rx->skb);
1719                         continue;
1720                 }
1721                 dev->stats.rx_packets++;
1722                 dev->stats.rx_bytes += rx->skb->len;
1723
1724                 ieee80211_deliver_skb(rx);
1725         }
1726
1727         return RX_QUEUED;
1728 }
1729
1730 #ifdef CONFIG_MAC80211_MESH
1731 static ieee80211_rx_result
1732 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1733 {
1734         struct ieee80211_hdr *hdr;
1735         struct ieee80211s_hdr *mesh_hdr;
1736         unsigned int hdrlen;
1737         struct sk_buff *skb = rx->skb, *fwd_skb;
1738         struct ieee80211_local *local = rx->local;
1739         struct ieee80211_sub_if_data *sdata = rx->sdata;
1740         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1741
1742         hdr = (struct ieee80211_hdr *) skb->data;
1743         hdrlen = ieee80211_hdrlen(hdr->frame_control);
1744         mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1745
1746         if (!ieee80211_is_data(hdr->frame_control))
1747                 return RX_CONTINUE;
1748
1749         if (!mesh_hdr->ttl)
1750                 /* illegal frame */
1751                 return RX_DROP_MONITOR;
1752
1753         if (mesh_hdr->flags & MESH_FLAGS_AE) {
1754                 struct mesh_path *mppath;
1755                 char *proxied_addr;
1756                 char *mpp_addr;
1757
1758                 if (is_multicast_ether_addr(hdr->addr1)) {
1759                         mpp_addr = hdr->addr3;
1760                         proxied_addr = mesh_hdr->eaddr1;
1761                 } else {
1762                         mpp_addr = hdr->addr4;
1763                         proxied_addr = mesh_hdr->eaddr2;
1764                 }
1765
1766                 rcu_read_lock();
1767                 mppath = mpp_path_lookup(proxied_addr, sdata);
1768                 if (!mppath) {
1769                         mpp_path_add(proxied_addr, mpp_addr, sdata);
1770                 } else {
1771                         spin_lock_bh(&mppath->state_lock);
1772                         if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1773                                 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1774                         spin_unlock_bh(&mppath->state_lock);
1775                 }
1776                 rcu_read_unlock();
1777         }
1778
1779         /* Frame has reached destination.  Don't forward */
1780         if (!is_multicast_ether_addr(hdr->addr1) &&
1781             compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1782                 return RX_CONTINUE;
1783
1784         mesh_hdr->ttl--;
1785
1786         if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1787                 if (!mesh_hdr->ttl)
1788                         IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1789                                                      dropped_frames_ttl);
1790                 else {
1791                         struct ieee80211_hdr *fwd_hdr;
1792                         struct ieee80211_tx_info *info;
1793
1794                         fwd_skb = skb_copy(skb, GFP_ATOMIC);
1795
1796                         if (!fwd_skb && net_ratelimit())
1797                                 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1798                                                    sdata->name);
1799
1800                         fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
1801                         memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1802                         info = IEEE80211_SKB_CB(fwd_skb);
1803                         memset(info, 0, sizeof(*info));
1804                         info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1805                         info->control.vif = &rx->sdata->vif;
1806                         skb_set_queue_mapping(skb,
1807                                 ieee80211_select_queue(rx->sdata, fwd_skb));
1808                         ieee80211_set_qos_hdr(local, skb);
1809                         if (is_multicast_ether_addr(fwd_hdr->addr1))
1810                                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1811                                                                 fwded_mcast);
1812                         else {
1813                                 int err;
1814                                 /*
1815                                  * Save TA to addr1 to send TA a path error if a
1816                                  * suitable next hop is not found
1817                                  */
1818                                 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1819                                                 ETH_ALEN);
1820                                 err = mesh_nexthop_lookup(fwd_skb, sdata);
1821                                 /* Failed to immediately resolve next hop:
1822                                  * fwded frame was dropped or will be added
1823                                  * later to the pending skb queue.  */
1824                                 if (err)
1825                                         return RX_DROP_MONITOR;
1826
1827                                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1828                                                                 fwded_unicast);
1829                         }
1830                         IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1831                                                      fwded_frames);
1832                         ieee80211_add_pending_skb(local, fwd_skb);
1833                 }
1834         }
1835
1836         if (is_multicast_ether_addr(hdr->addr1) ||
1837             sdata->dev->flags & IFF_PROMISC)
1838                 return RX_CONTINUE;
1839         else
1840                 return RX_DROP_MONITOR;
1841 }
1842 #endif
1843
1844 static ieee80211_rx_result debug_noinline
1845 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1846 {
1847         struct ieee80211_sub_if_data *sdata = rx->sdata;
1848         struct ieee80211_local *local = rx->local;
1849         struct net_device *dev = sdata->dev;
1850         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1851         __le16 fc = hdr->frame_control;
1852         int err;
1853
1854         if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1855                 return RX_CONTINUE;
1856
1857         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1858                 return RX_DROP_MONITOR;
1859
1860         /*
1861          * Allow the cooked monitor interface of an AP to see 4-addr frames so
1862          * that a 4-addr station can be detected and moved into a separate VLAN
1863          */
1864         if (ieee80211_has_a4(hdr->frame_control) &&
1865             sdata->vif.type == NL80211_IFTYPE_AP)
1866                 return RX_DROP_MONITOR;
1867
1868         err = __ieee80211_data_to_8023(rx);
1869         if (unlikely(err))
1870                 return RX_DROP_UNUSABLE;
1871
1872         if (!ieee80211_frame_allowed(rx, fc))
1873                 return RX_DROP_MONITOR;
1874
1875         rx->skb->dev = dev;
1876
1877         dev->stats.rx_packets++;
1878         dev->stats.rx_bytes += rx->skb->len;
1879
1880         if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1881             !is_multicast_ether_addr(((struct ethhdr *)rx->skb->data)->h_dest)) {
1882                         mod_timer(&local->dynamic_ps_timer, jiffies +
1883                          msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1884         }
1885
1886         ieee80211_deliver_skb(rx);
1887
1888         return RX_QUEUED;
1889 }
1890
1891 static ieee80211_rx_result debug_noinline
1892 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1893 {
1894         struct ieee80211_local *local = rx->local;
1895         struct ieee80211_hw *hw = &local->hw;
1896         struct sk_buff *skb = rx->skb;
1897         struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1898         struct tid_ampdu_rx *tid_agg_rx;
1899         u16 start_seq_num;
1900         u16 tid;
1901
1902         if (likely(!ieee80211_is_ctl(bar->frame_control)))
1903                 return RX_CONTINUE;
1904
1905         if (ieee80211_is_back_req(bar->frame_control)) {
1906                 struct {
1907                         __le16 control, start_seq_num;
1908                 } __packed bar_data;
1909
1910                 if (!rx->sta)
1911                         return RX_DROP_MONITOR;
1912
1913                 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
1914                                   &bar_data, sizeof(bar_data)))
1915                         return RX_DROP_MONITOR;
1916
1917                 tid = le16_to_cpu(bar_data.control) >> 12;
1918
1919                 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
1920                 if (!tid_agg_rx)
1921                         return RX_DROP_MONITOR;
1922
1923                 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
1924
1925                 /* reset session timer */
1926                 if (tid_agg_rx->timeout)
1927                         mod_timer(&tid_agg_rx->session_timer,
1928                                   TU_TO_EXP_TIME(tid_agg_rx->timeout));
1929
1930                 spin_lock(&tid_agg_rx->reorder_lock);
1931                 /* release stored frames up to start of BAR */
1932                 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1933                                                  frames);
1934                 spin_unlock(&tid_agg_rx->reorder_lock);
1935
1936                 kfree_skb(skb);
1937                 return RX_QUEUED;
1938         }
1939
1940         /*
1941          * After this point, we only want management frames,
1942          * so we can drop all remaining control frames to
1943          * cooked monitor interfaces.
1944          */
1945         return RX_DROP_MONITOR;
1946 }
1947
1948 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1949                                            struct ieee80211_mgmt *mgmt,
1950                                            size_t len)
1951 {
1952         struct ieee80211_local *local = sdata->local;
1953         struct sk_buff *skb;
1954         struct ieee80211_mgmt *resp;
1955
1956         if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1957                 /* Not to own unicast address */
1958                 return;
1959         }
1960
1961         if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1962             compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1963                 /* Not from the current AP or not associated yet. */
1964                 return;
1965         }
1966
1967         if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1968                 /* Too short SA Query request frame */
1969                 return;
1970         }
1971
1972         skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1973         if (skb == NULL)
1974                 return;
1975
1976         skb_reserve(skb, local->hw.extra_tx_headroom);
1977         resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1978         memset(resp, 0, 24);
1979         memcpy(resp->da, mgmt->sa, ETH_ALEN);
1980         memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1981         memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1982         resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1983                                           IEEE80211_STYPE_ACTION);
1984         skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1985         resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
1986         resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
1987         memcpy(resp->u.action.u.sa_query.trans_id,
1988                mgmt->u.action.u.sa_query.trans_id,
1989                WLAN_SA_QUERY_TR_ID_LEN);
1990
1991         ieee80211_tx_skb(sdata, skb);
1992 }
1993
1994 static ieee80211_rx_result debug_noinline
1995 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
1996 {
1997         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1998         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1999
2000         /*
2001          * From here on, look only at management frames.
2002          * Data and control frames are already handled,
2003          * and unknown (reserved) frames are useless.
2004          */
2005         if (rx->skb->len < 24)
2006                 return RX_DROP_MONITOR;
2007
2008         if (!ieee80211_is_mgmt(mgmt->frame_control))
2009                 return RX_DROP_MONITOR;
2010
2011         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2012                 return RX_DROP_MONITOR;
2013
2014         if (ieee80211_drop_unencrypted_mgmt(rx))
2015                 return RX_DROP_UNUSABLE;
2016
2017         return RX_CONTINUE;
2018 }
2019
2020 static ieee80211_rx_result debug_noinline
2021 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2022 {
2023         struct ieee80211_local *local = rx->local;
2024         struct ieee80211_sub_if_data *sdata = rx->sdata;
2025         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2026         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2027         int len = rx->skb->len;
2028
2029         if (!ieee80211_is_action(mgmt->frame_control))
2030                 return RX_CONTINUE;
2031
2032         /* drop too small frames */
2033         if (len < IEEE80211_MIN_ACTION_SIZE)
2034                 return RX_DROP_UNUSABLE;
2035
2036         if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2037                 return RX_DROP_UNUSABLE;
2038
2039         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2040                 return RX_DROP_UNUSABLE;
2041
2042         switch (mgmt->u.action.category) {
2043         case WLAN_CATEGORY_BACK:
2044                 /*
2045                  * The aggregation code is not prepared to handle
2046                  * anything but STA/AP due to the BSSID handling;
2047                  * IBSS could work in the code but isn't supported
2048                  * by drivers or the standard.
2049                  */
2050                 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2051                     sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2052                     sdata->vif.type != NL80211_IFTYPE_AP)
2053                         break;
2054
2055                 /* verify action_code is present */
2056                 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2057                         break;
2058
2059                 switch (mgmt->u.action.u.addba_req.action_code) {
2060                 case WLAN_ACTION_ADDBA_REQ:
2061                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2062                                    sizeof(mgmt->u.action.u.addba_req)))
2063                                 goto invalid;
2064                         break;
2065                 case WLAN_ACTION_ADDBA_RESP:
2066                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2067                                    sizeof(mgmt->u.action.u.addba_resp)))
2068                                 goto invalid;
2069                         break;
2070                 case WLAN_ACTION_DELBA:
2071                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2072                                    sizeof(mgmt->u.action.u.delba)))
2073                                 goto invalid;
2074                         break;
2075                 default:
2076                         goto invalid;
2077                 }
2078
2079                 goto queue;
2080         case WLAN_CATEGORY_SPECTRUM_MGMT:
2081                 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2082                         break;
2083
2084                 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2085                         break;
2086
2087                 /* verify action_code is present */
2088                 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2089                         break;
2090
2091                 switch (mgmt->u.action.u.measurement.action_code) {
2092                 case WLAN_ACTION_SPCT_MSR_REQ:
2093                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2094                                    sizeof(mgmt->u.action.u.measurement)))
2095                                 break;
2096                         ieee80211_process_measurement_req(sdata, mgmt, len);
2097                         goto handled;
2098                 case WLAN_ACTION_SPCT_CHL_SWITCH:
2099                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2100                                    sizeof(mgmt->u.action.u.chan_switch)))
2101                                 break;
2102
2103                         if (sdata->vif.type != NL80211_IFTYPE_STATION)
2104                                 break;
2105
2106                         if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2107                                 break;
2108
2109                         goto queue;
2110                 }
2111                 break;
2112         case WLAN_CATEGORY_SA_QUERY:
2113                 if (len < (IEEE80211_MIN_ACTION_SIZE +
2114                            sizeof(mgmt->u.action.u.sa_query)))
2115                         break;
2116
2117                 switch (mgmt->u.action.u.sa_query.action) {
2118                 case WLAN_ACTION_SA_QUERY_REQUEST:
2119                         if (sdata->vif.type != NL80211_IFTYPE_STATION)
2120                                 break;
2121                         ieee80211_process_sa_query_req(sdata, mgmt, len);
2122                         goto handled;
2123                 }
2124                 break;
2125         case WLAN_CATEGORY_MESH_PLINK:
2126         case WLAN_CATEGORY_MESH_PATH_SEL:
2127                 if (!ieee80211_vif_is_mesh(&sdata->vif))
2128                         break;
2129                 goto queue;
2130         }
2131
2132         return RX_CONTINUE;
2133
2134  invalid:
2135         status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2136         /* will return in the next handlers */
2137         return RX_CONTINUE;
2138
2139  handled:
2140         if (rx->sta)
2141                 rx->sta->rx_packets++;
2142         dev_kfree_skb(rx->skb);
2143         return RX_QUEUED;
2144
2145  queue:
2146         rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2147         skb_queue_tail(&sdata->skb_queue, rx->skb);
2148         ieee80211_queue_work(&local->hw, &sdata->work);
2149         if (rx->sta)
2150                 rx->sta->rx_packets++;
2151         return RX_QUEUED;
2152 }
2153
2154 static ieee80211_rx_result debug_noinline
2155 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2156 {
2157         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2158
2159         /* skip known-bad action frames and return them in the next handler */
2160         if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2161                 return RX_CONTINUE;
2162
2163         /*
2164          * Getting here means the kernel doesn't know how to handle
2165          * it, but maybe userspace does ... include returned frames
2166          * so userspace can register for those to know whether ones
2167          * it transmitted were processed or returned.
2168          */
2169
2170         if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2171                              rx->skb->data, rx->skb->len,
2172                              GFP_ATOMIC)) {
2173                 if (rx->sta)
2174                         rx->sta->rx_packets++;
2175                 dev_kfree_skb(rx->skb);
2176                 return RX_QUEUED;
2177         }
2178
2179
2180         return RX_CONTINUE;
2181 }
2182
2183 static ieee80211_rx_result debug_noinline
2184 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2185 {
2186         struct ieee80211_local *local = rx->local;
2187         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2188         struct sk_buff *nskb;
2189         struct ieee80211_sub_if_data *sdata = rx->sdata;
2190         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2191
2192         if (!ieee80211_is_action(mgmt->frame_control))
2193                 return RX_CONTINUE;
2194
2195         /*
2196          * For AP mode, hostapd is responsible for handling any action
2197          * frames that we didn't handle, including returning unknown
2198          * ones. For all other modes we will return them to the sender,
2199          * setting the 0x80 bit in the action category, as required by
2200          * 802.11-2007 7.3.1.11.
2201          * Newer versions of hostapd shall also use the management frame
2202          * registration mechanisms, but older ones still use cooked
2203          * monitor interfaces so push all frames there.
2204          */
2205         if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2206             (sdata->vif.type == NL80211_IFTYPE_AP ||
2207              sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2208                 return RX_DROP_MONITOR;
2209
2210         /* do not return rejected action frames */
2211         if (mgmt->u.action.category & 0x80)
2212                 return RX_DROP_UNUSABLE;
2213
2214         nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2215                                GFP_ATOMIC);
2216         if (nskb) {
2217                 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2218
2219                 nmgmt->u.action.category |= 0x80;
2220                 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2221                 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2222
2223                 memset(nskb->cb, 0, sizeof(nskb->cb));
2224
2225                 ieee80211_tx_skb(rx->sdata, nskb);
2226         }
2227         dev_kfree_skb(rx->skb);
2228         return RX_QUEUED;
2229 }
2230
2231 static ieee80211_rx_result debug_noinline
2232 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2233 {
2234         struct ieee80211_sub_if_data *sdata = rx->sdata;
2235         ieee80211_rx_result rxs;
2236         struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2237         __le16 stype;
2238
2239         rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2240         if (rxs != RX_CONTINUE)
2241                 return rxs;
2242
2243         stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2244
2245         if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2246             sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2247             sdata->vif.type != NL80211_IFTYPE_STATION)
2248                 return RX_DROP_MONITOR;
2249
2250         switch (stype) {
2251         case cpu_to_le16(IEEE80211_STYPE_BEACON):
2252         case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2253                 /* process for all: mesh, mlme, ibss */
2254                 break;
2255         case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2256         case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2257                 /* process only for station */
2258                 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2259                         return RX_DROP_MONITOR;
2260                 break;
2261         case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2262         case cpu_to_le16(IEEE80211_STYPE_AUTH):
2263                 /* process only for ibss */
2264                 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2265                         return RX_DROP_MONITOR;
2266                 break;
2267         default:
2268                 return RX_DROP_MONITOR;
2269         }
2270
2271         /* queue up frame and kick off work to process it */
2272         rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2273         skb_queue_tail(&sdata->skb_queue, rx->skb);
2274         ieee80211_queue_work(&rx->local->hw, &sdata->work);
2275         if (rx->sta)
2276                 rx->sta->rx_packets++;
2277
2278         return RX_QUEUED;
2279 }
2280
2281 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2282                                             struct ieee80211_rx_data *rx)
2283 {
2284         int keyidx;
2285         unsigned int hdrlen;
2286
2287         hdrlen = ieee80211_hdrlen(hdr->frame_control);
2288         if (rx->skb->len >= hdrlen + 4)
2289                 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2290         else
2291                 keyidx = -1;
2292
2293         if (!rx->sta) {
2294                 /*
2295                  * Some hardware seem to generate incorrect Michael MIC
2296                  * reports; ignore them to avoid triggering countermeasures.
2297                  */
2298                 return;
2299         }
2300
2301         if (!ieee80211_has_protected(hdr->frame_control))
2302                 return;
2303
2304         if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2305                 /*
2306                  * APs with pairwise keys should never receive Michael MIC
2307                  * errors for non-zero keyidx because these are reserved for
2308                  * group keys and only the AP is sending real multicast
2309                  * frames in the BSS.
2310                  */
2311                 return;
2312         }
2313
2314         if (!ieee80211_is_data(hdr->frame_control) &&
2315             !ieee80211_is_auth(hdr->frame_control))
2316                 return;
2317
2318         mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2319                                         GFP_ATOMIC);
2320 }
2321
2322 /* TODO: use IEEE80211_RX_FRAGMENTED */
2323 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2324                                         struct ieee80211_rate *rate)
2325 {
2326         struct ieee80211_sub_if_data *sdata;
2327         struct ieee80211_local *local = rx->local;
2328         struct ieee80211_rtap_hdr {
2329                 struct ieee80211_radiotap_header hdr;
2330                 u8 flags;
2331                 u8 rate_or_pad;
2332                 __le16 chan_freq;
2333                 __le16 chan_flags;
2334         } __packed *rthdr;
2335         struct sk_buff *skb = rx->skb, *skb2;
2336         struct net_device *prev_dev = NULL;
2337         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2338
2339         /*
2340          * If cooked monitor has been processed already, then
2341          * don't do it again. If not, set the flag.
2342          */
2343         if (rx->flags & IEEE80211_RX_CMNTR)
2344                 goto out_free_skb;
2345         rx->flags |= IEEE80211_RX_CMNTR;
2346
2347         if (skb_headroom(skb) < sizeof(*rthdr) &&
2348             pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2349                 goto out_free_skb;
2350
2351         rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2352         memset(rthdr, 0, sizeof(*rthdr));
2353         rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2354         rthdr->hdr.it_present =
2355                 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2356                             (1 << IEEE80211_RADIOTAP_CHANNEL));
2357
2358         if (rate) {
2359                 rthdr->rate_or_pad = rate->bitrate / 5;
2360                 rthdr->hdr.it_present |=
2361                         cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2362         }
2363         rthdr->chan_freq = cpu_to_le16(status->freq);
2364
2365         if (status->band == IEEE80211_BAND_5GHZ)
2366                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2367                                                 IEEE80211_CHAN_5GHZ);
2368         else
2369                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2370                                                 IEEE80211_CHAN_2GHZ);
2371
2372         skb_set_mac_header(skb, 0);
2373         skb->ip_summed = CHECKSUM_UNNECESSARY;
2374         skb->pkt_type = PACKET_OTHERHOST;
2375         skb->protocol = htons(ETH_P_802_2);
2376
2377         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2378                 if (!ieee80211_sdata_running(sdata))
2379                         continue;
2380
2381                 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2382                     !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2383                         continue;
2384
2385                 if (prev_dev) {
2386                         skb2 = skb_clone(skb, GFP_ATOMIC);
2387                         if (skb2) {
2388                                 skb2->dev = prev_dev;
2389                                 netif_receive_skb(skb2);
2390                         }
2391                 }
2392
2393                 prev_dev = sdata->dev;
2394                 sdata->dev->stats.rx_packets++;
2395                 sdata->dev->stats.rx_bytes += skb->len;
2396         }
2397
2398         if (prev_dev) {
2399                 skb->dev = prev_dev;
2400                 netif_receive_skb(skb);
2401                 return;
2402         }
2403
2404  out_free_skb:
2405         dev_kfree_skb(skb);
2406 }
2407
2408 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2409                                          ieee80211_rx_result res)
2410 {
2411         switch (res) {
2412         case RX_DROP_MONITOR:
2413                 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2414                 if (rx->sta)
2415                         rx->sta->rx_dropped++;
2416                 /* fall through */
2417         case RX_CONTINUE: {
2418                 struct ieee80211_rate *rate = NULL;
2419                 struct ieee80211_supported_band *sband;
2420                 struct ieee80211_rx_status *status;
2421
2422                 status = IEEE80211_SKB_RXCB((rx->skb));
2423
2424                 sband = rx->local->hw.wiphy->bands[status->band];
2425                 if (!(status->flag & RX_FLAG_HT))
2426                         rate = &sband->bitrates[status->rate_idx];
2427
2428                 ieee80211_rx_cooked_monitor(rx, rate);
2429                 break;
2430                 }
2431         case RX_DROP_UNUSABLE:
2432                 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2433                 if (rx->sta)
2434                         rx->sta->rx_dropped++;
2435                 dev_kfree_skb(rx->skb);
2436                 break;
2437         case RX_QUEUED:
2438                 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2439                 break;
2440         }
2441 }
2442
2443 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2444                                   struct sk_buff_head *frames)
2445 {
2446         ieee80211_rx_result res = RX_DROP_MONITOR;
2447         struct sk_buff *skb;
2448
2449 #define CALL_RXH(rxh)                   \
2450         do {                            \
2451                 res = rxh(rx);          \
2452                 if (res != RX_CONTINUE) \
2453                         goto rxh_next;  \
2454         } while (0);
2455
2456         while ((skb = __skb_dequeue(frames))) {
2457                 /*
2458                  * all the other fields are valid across frames
2459                  * that belong to an aMPDU since they are on the
2460                  * same TID from the same station
2461                  */
2462                 rx->skb = skb;
2463                 rx->flags = 0;
2464
2465                 CALL_RXH(ieee80211_rx_h_decrypt)
2466                 CALL_RXH(ieee80211_rx_h_check_more_data)
2467                 CALL_RXH(ieee80211_rx_h_sta_process)
2468                 CALL_RXH(ieee80211_rx_h_defragment)
2469                 CALL_RXH(ieee80211_rx_h_ps_poll)
2470                 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2471                 /* must be after MMIC verify so header is counted in MPDU mic */
2472                 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2473                 CALL_RXH(ieee80211_rx_h_amsdu)
2474 #ifdef CONFIG_MAC80211_MESH
2475                 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2476                         CALL_RXH(ieee80211_rx_h_mesh_fwding);
2477 #endif
2478                 CALL_RXH(ieee80211_rx_h_data)
2479
2480                 /* special treatment -- needs the queue */
2481                 res = ieee80211_rx_h_ctrl(rx, frames);
2482                 if (res != RX_CONTINUE)
2483                         goto rxh_next;
2484
2485                 CALL_RXH(ieee80211_rx_h_mgmt_check)
2486                 CALL_RXH(ieee80211_rx_h_action)
2487                 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2488                 CALL_RXH(ieee80211_rx_h_action_return)
2489                 CALL_RXH(ieee80211_rx_h_mgmt)
2490
2491  rxh_next:
2492                 ieee80211_rx_handlers_result(rx, res);
2493
2494 #undef CALL_RXH
2495         }
2496 }
2497
2498 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2499 {
2500         struct sk_buff_head reorder_release;
2501         ieee80211_rx_result res = RX_DROP_MONITOR;
2502
2503         __skb_queue_head_init(&reorder_release);
2504
2505 #define CALL_RXH(rxh)                   \
2506         do {                            \
2507                 res = rxh(rx);          \
2508                 if (res != RX_CONTINUE) \
2509                         goto rxh_next;  \
2510         } while (0);
2511
2512         CALL_RXH(ieee80211_rx_h_passive_scan)
2513         CALL_RXH(ieee80211_rx_h_check)
2514
2515         ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2516
2517         ieee80211_rx_handlers(rx, &reorder_release);
2518         return;
2519
2520  rxh_next:
2521         ieee80211_rx_handlers_result(rx, res);
2522
2523 #undef CALL_RXH
2524 }
2525
2526 /*
2527  * This function makes calls into the RX path, therefore
2528  * it has to be invoked under RCU read lock.
2529  */
2530 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2531 {
2532         struct sk_buff_head frames;
2533         struct ieee80211_rx_data rx = {
2534                 .sta = sta,
2535                 .sdata = sta->sdata,
2536                 .local = sta->local,
2537                 .queue = tid,
2538         };
2539         struct tid_ampdu_rx *tid_agg_rx;
2540
2541         tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2542         if (!tid_agg_rx)
2543                 return;
2544
2545         __skb_queue_head_init(&frames);
2546
2547         spin_lock(&tid_agg_rx->reorder_lock);
2548         ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx, &frames);
2549         spin_unlock(&tid_agg_rx->reorder_lock);
2550
2551         ieee80211_rx_handlers(&rx, &frames);
2552 }
2553
2554 /* main receive path */
2555
2556 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2557                                 struct ieee80211_hdr *hdr)
2558 {
2559         struct ieee80211_sub_if_data *sdata = rx->sdata;
2560         struct sk_buff *skb = rx->skb;
2561         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2562         u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2563         int multicast = is_multicast_ether_addr(hdr->addr1);
2564
2565         switch (sdata->vif.type) {
2566         case NL80211_IFTYPE_STATION:
2567                 if (!bssid && !sdata->u.mgd.use_4addr)
2568                         return 0;
2569                 if (!multicast &&
2570                     compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2571                         if (!(sdata->dev->flags & IFF_PROMISC))
2572                                 return 0;
2573                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2574                 }
2575                 break;
2576         case NL80211_IFTYPE_ADHOC:
2577                 if (!bssid)
2578                         return 0;
2579                 if (ieee80211_is_beacon(hdr->frame_control)) {
2580                         return 1;
2581                 }
2582                 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2583                         if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2584                                 return 0;
2585                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2586                 } else if (!multicast &&
2587                            compare_ether_addr(sdata->vif.addr,
2588                                               hdr->addr1) != 0) {
2589                         if (!(sdata->dev->flags & IFF_PROMISC))
2590                                 return 0;
2591                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2592                 } else if (!rx->sta) {
2593                         int rate_idx;
2594                         if (status->flag & RX_FLAG_HT)
2595                                 rate_idx = 0; /* TODO: HT rates */
2596                         else
2597                                 rate_idx = status->rate_idx;
2598                         rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2599                                         hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2600                 }
2601                 break;
2602         case NL80211_IFTYPE_MESH_POINT:
2603                 if (!multicast &&
2604                     compare_ether_addr(sdata->vif.addr,
2605                                        hdr->addr1) != 0) {
2606                         if (!(sdata->dev->flags & IFF_PROMISC))
2607                                 return 0;
2608
2609                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2610                 }
2611                 break;
2612         case NL80211_IFTYPE_AP_VLAN:
2613         case NL80211_IFTYPE_AP:
2614                 if (!bssid) {
2615                         if (compare_ether_addr(sdata->vif.addr,
2616                                                hdr->addr1))
2617                                 return 0;
2618                 } else if (!ieee80211_bssid_match(bssid,
2619                                         sdata->vif.addr)) {
2620                         if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2621                                 return 0;
2622                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2623                 }
2624                 break;
2625         case NL80211_IFTYPE_WDS:
2626                 if (bssid || !ieee80211_is_data(hdr->frame_control))
2627                         return 0;
2628                 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2629                         return 0;
2630                 break;
2631         default:
2632                 /* should never get here */
2633                 WARN_ON(1);
2634                 break;
2635         }
2636
2637         return 1;
2638 }
2639
2640 /*
2641  * This function returns whether or not the SKB
2642  * was destined for RX processing or not, which,
2643  * if consume is true, is equivalent to whether
2644  * or not the skb was consumed.
2645  */
2646 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2647                                             struct sk_buff *skb, bool consume)
2648 {
2649         struct ieee80211_local *local = rx->local;
2650         struct ieee80211_sub_if_data *sdata = rx->sdata;
2651         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2652         struct ieee80211_hdr *hdr = (void *)skb->data;
2653         int prepares;
2654
2655         rx->skb = skb;
2656         status->rx_flags |= IEEE80211_RX_RA_MATCH;
2657         prepares = prepare_for_handlers(rx, hdr);
2658
2659         if (!prepares)
2660                 return false;
2661
2662         if (status->flag & RX_FLAG_MMIC_ERROR) {
2663                 if (status->rx_flags & IEEE80211_RX_RA_MATCH)
2664                         ieee80211_rx_michael_mic_report(hdr, rx);
2665                 return false;
2666         }
2667
2668         if (!consume) {
2669                 skb = skb_copy(skb, GFP_ATOMIC);
2670                 if (!skb) {
2671                         if (net_ratelimit())
2672                                 wiphy_debug(local->hw.wiphy,
2673                                         "failed to copy multicast frame for %s\n",
2674                                         sdata->name);
2675                         return true;
2676                 }
2677
2678                 rx->skb = skb;
2679         }
2680
2681         ieee80211_invoke_rx_handlers(rx);
2682         return true;
2683 }
2684
2685 /*
2686  * This is the actual Rx frames handler. as it blongs to Rx path it must
2687  * be called with rcu_read_lock protection.
2688  */
2689 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2690                                          struct sk_buff *skb)
2691 {
2692         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2693         struct ieee80211_local *local = hw_to_local(hw);
2694         struct ieee80211_sub_if_data *sdata;
2695         struct ieee80211_hdr *hdr;
2696         __le16 fc;
2697         struct ieee80211_rx_data rx;
2698         struct ieee80211_sub_if_data *prev;
2699         struct sta_info *sta, *tmp, *prev_sta;
2700         int err = 0;
2701
2702         fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2703         memset(&rx, 0, sizeof(rx));
2704         rx.skb = skb;
2705         rx.local = local;
2706
2707         if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2708                 local->dot11ReceivedFragmentCount++;
2709
2710         if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2711                      test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2712                 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2713
2714         if (ieee80211_is_mgmt(fc))
2715                 err = skb_linearize(skb);
2716         else
2717                 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2718
2719         if (err) {
2720                 dev_kfree_skb(skb);
2721                 return;
2722         }
2723
2724         hdr = (struct ieee80211_hdr *)skb->data;
2725         ieee80211_parse_qos(&rx);
2726         ieee80211_verify_alignment(&rx);
2727
2728         if (ieee80211_is_data(fc)) {
2729                 prev_sta = NULL;
2730
2731                 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2732                         if (!prev_sta) {
2733                                 prev_sta = sta;
2734                                 continue;
2735                         }
2736
2737                         rx.sta = prev_sta;
2738                         rx.sdata = prev_sta->sdata;
2739                         ieee80211_prepare_and_rx_handle(&rx, skb, false);
2740
2741                         prev_sta = sta;
2742                 }
2743
2744                 if (prev_sta) {
2745                         rx.sta = prev_sta;
2746                         rx.sdata = prev_sta->sdata;
2747
2748                         if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2749                                 return;
2750                 }
2751         }
2752
2753         prev = NULL;
2754
2755         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2756                 if (!ieee80211_sdata_running(sdata))
2757                         continue;
2758
2759                 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2760                     sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2761                         continue;
2762
2763                 /*
2764                  * frame is destined for this interface, but if it's
2765                  * not also for the previous one we handle that after
2766                  * the loop to avoid copying the SKB once too much
2767                  */
2768
2769                 if (!prev) {
2770                         prev = sdata;
2771                         continue;
2772                 }
2773
2774                 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2775                 rx.sdata = prev;
2776                 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2777
2778                 prev = sdata;
2779         }
2780
2781         if (prev) {
2782                 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2783                 rx.sdata = prev;
2784
2785                 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2786                         return;
2787         }
2788
2789         dev_kfree_skb(skb);
2790 }
2791
2792 /*
2793  * This is the receive path handler. It is called by a low level driver when an
2794  * 802.11 MPDU is received from the hardware.
2795  */
2796 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2797 {
2798         struct ieee80211_local *local = hw_to_local(hw);
2799         struct ieee80211_rate *rate = NULL;
2800         struct ieee80211_supported_band *sband;
2801         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2802
2803         WARN_ON_ONCE(softirq_count() == 0);
2804
2805         if (WARN_ON(status->band < 0 ||
2806                     status->band >= IEEE80211_NUM_BANDS))
2807                 goto drop;
2808
2809         sband = local->hw.wiphy->bands[status->band];
2810         if (WARN_ON(!sband))
2811                 goto drop;
2812
2813         /*
2814          * If we're suspending, it is possible although not too likely
2815          * that we'd be receiving frames after having already partially
2816          * quiesced the stack. We can't process such frames then since
2817          * that might, for example, cause stations to be added or other
2818          * driver callbacks be invoked.
2819          */
2820         if (unlikely(local->quiescing || local->suspended))
2821                 goto drop;
2822
2823         /*
2824          * The same happens when we're not even started,
2825          * but that's worth a warning.
2826          */
2827         if (WARN_ON(!local->started))
2828                 goto drop;
2829
2830         if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2831                 /*
2832                  * Validate the rate, unless a PLCP error means that
2833                  * we probably can't have a valid rate here anyway.
2834                  */
2835
2836                 if (status->flag & RX_FLAG_HT) {
2837                         /*
2838                          * rate_idx is MCS index, which can be [0-76]
2839                          * as documented on:
2840                          *
2841                          * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2842                          *
2843                          * Anything else would be some sort of driver or
2844                          * hardware error. The driver should catch hardware
2845                          * errors.
2846                          */
2847                         if (WARN((status->rate_idx < 0 ||
2848                                  status->rate_idx > 76),
2849                                  "Rate marked as an HT rate but passed "
2850                                  "status->rate_idx is not "
2851                                  "an MCS index [0-76]: %d (0x%02x)\n",
2852                                  status->rate_idx,
2853                                  status->rate_idx))
2854                                 goto drop;
2855                 } else {
2856                         if (WARN_ON(status->rate_idx < 0 ||
2857                                     status->rate_idx >= sband->n_bitrates))
2858                                 goto drop;
2859                         rate = &sband->bitrates[status->rate_idx];
2860                 }
2861         }
2862
2863         status->rx_flags = 0;
2864
2865         /*
2866          * key references and virtual interfaces are protected using RCU
2867          * and this requires that we are in a read-side RCU section during
2868          * receive processing
2869          */
2870         rcu_read_lock();
2871
2872         /*
2873          * Frames with failed FCS/PLCP checksum are not returned,
2874          * all other frames are returned without radiotap header
2875          * if it was previously present.
2876          * Also, frames with less than 16 bytes are dropped.
2877          */
2878         skb = ieee80211_rx_monitor(local, skb, rate);
2879         if (!skb) {
2880                 rcu_read_unlock();
2881                 return;
2882         }
2883
2884         __ieee80211_rx_handle_packet(hw, skb);
2885
2886         rcu_read_unlock();
2887
2888         return;
2889  drop:
2890         kfree_skb(skb);
2891 }
2892 EXPORT_SYMBOL(ieee80211_rx);
2893
2894 /* This is a version of the rx handler that can be called from hard irq
2895  * context. Post the skb on the queue and schedule the tasklet */
2896 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2897 {
2898         struct ieee80211_local *local = hw_to_local(hw);
2899
2900         BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2901
2902         skb->pkt_type = IEEE80211_RX_MSG;
2903         skb_queue_tail(&local->skb_queue, skb);
2904         tasklet_schedule(&local->tasklet);
2905 }
2906 EXPORT_SYMBOL(ieee80211_rx_irqsafe);