443724f54724d7072f23bef325ec4657ed7448a9
[pandora-kernel.git] / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13
14 /*
15  *      Changes:
16  *      Yuji SEKIYA @USAGI:     Support default route on router node;
17  *                              remove ip6_null_entry from the top of
18  *                              routing table.
19  *      Ville Nuorvala:         Fixed routing subtrees.
20  */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <net/ipv6.h>
32 #include <net/ndisc.h>
33 #include <net/addrconf.h>
34
35 #include <net/ip6_fib.h>
36 #include <net/ip6_route.h>
37
38 #define RT6_DEBUG 2
39
40 #if RT6_DEBUG >= 3
41 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
42 #else
43 #define RT6_TRACE(x...) do { ; } while (0)
44 #endif
45
46 static struct kmem_cache * fib6_node_kmem __read_mostly;
47
48 enum fib_walk_state_t
49 {
50 #ifdef CONFIG_IPV6_SUBTREES
51         FWS_S,
52 #endif
53         FWS_L,
54         FWS_R,
55         FWS_C,
56         FWS_U
57 };
58
59 struct fib6_cleaner_t
60 {
61         struct fib6_walker_t w;
62         struct net *net;
63         int (*func)(struct rt6_info *, void *arg);
64         void *arg;
65 };
66
67 static DEFINE_RWLOCK(fib6_walker_lock);
68
69 #ifdef CONFIG_IPV6_SUBTREES
70 #define FWS_INIT FWS_S
71 #else
72 #define FWS_INIT FWS_L
73 #endif
74
75 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
76                               struct rt6_info *rt);
77 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
78 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
79 static int fib6_walk(struct fib6_walker_t *w);
80 static int fib6_walk_continue(struct fib6_walker_t *w);
81
82 /*
83  *      A routing update causes an increase of the serial number on the
84  *      affected subtree. This allows for cached routes to be asynchronously
85  *      tested when modifications are made to the destination cache as a
86  *      result of redirects, path MTU changes, etc.
87  */
88
89 static __u32 rt_sernum;
90
91 static void fib6_gc_timer_cb(unsigned long arg);
92
93 static LIST_HEAD(fib6_walkers);
94 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
95
96 static inline void fib6_walker_link(struct fib6_walker_t *w)
97 {
98         write_lock_bh(&fib6_walker_lock);
99         list_add(&w->lh, &fib6_walkers);
100         write_unlock_bh(&fib6_walker_lock);
101 }
102
103 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
104 {
105         write_lock_bh(&fib6_walker_lock);
106         list_del(&w->lh);
107         write_unlock_bh(&fib6_walker_lock);
108 }
109 static __inline__ u32 fib6_new_sernum(void)
110 {
111         u32 n = ++rt_sernum;
112         if ((__s32)n <= 0)
113                 rt_sernum = n = 1;
114         return n;
115 }
116
117 /*
118  *      Auxiliary address test functions for the radix tree.
119  *
120  *      These assume a 32bit processor (although it will work on
121  *      64bit processors)
122  */
123
124 /*
125  *      test bit
126  */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE     0
131 #endif
132
133 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135         const __be32 *addr = token;
136         /*
137          * Here,
138          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139          * is optimized version of
140          *      htonl(1 << ((~fn_bit)&0x1F))
141          * See include/asm-generic/bitops/le.h.
142          */
143         return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144                addr[fn_bit >> 5];
145 }
146
147 static __inline__ struct fib6_node * node_alloc(void)
148 {
149         struct fib6_node *fn;
150
151         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
152
153         return fn;
154 }
155
156 static __inline__ void node_free(struct fib6_node * fn)
157 {
158         kmem_cache_free(fib6_node_kmem, fn);
159 }
160
161 static __inline__ void rt6_release(struct rt6_info *rt)
162 {
163         if (atomic_dec_and_test(&rt->rt6i_ref))
164                 dst_free(&rt->dst);
165 }
166
167 static void fib6_link_table(struct net *net, struct fib6_table *tb)
168 {
169         unsigned int h;
170
171         /*
172          * Initialize table lock at a single place to give lockdep a key,
173          * tables aren't visible prior to being linked to the list.
174          */
175         rwlock_init(&tb->tb6_lock);
176
177         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
178
179         /*
180          * No protection necessary, this is the only list mutatation
181          * operation, tables never disappear once they exist.
182          */
183         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
184 }
185
186 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
187
188 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
189 {
190         struct fib6_table *table;
191
192         table = kzalloc(sizeof(*table), GFP_ATOMIC);
193         if (table != NULL) {
194                 table->tb6_id = id;
195                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
196                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
197         }
198
199         return table;
200 }
201
202 struct fib6_table *fib6_new_table(struct net *net, u32 id)
203 {
204         struct fib6_table *tb;
205
206         if (id == 0)
207                 id = RT6_TABLE_MAIN;
208         tb = fib6_get_table(net, id);
209         if (tb)
210                 return tb;
211
212         tb = fib6_alloc_table(net, id);
213         if (tb != NULL)
214                 fib6_link_table(net, tb);
215
216         return tb;
217 }
218
219 struct fib6_table *fib6_get_table(struct net *net, u32 id)
220 {
221         struct fib6_table *tb;
222         struct hlist_head *head;
223         struct hlist_node *node;
224         unsigned int h;
225
226         if (id == 0)
227                 id = RT6_TABLE_MAIN;
228         h = id & (FIB6_TABLE_HASHSZ - 1);
229         rcu_read_lock();
230         head = &net->ipv6.fib_table_hash[h];
231         hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
232                 if (tb->tb6_id == id) {
233                         rcu_read_unlock();
234                         return tb;
235                 }
236         }
237         rcu_read_unlock();
238
239         return NULL;
240 }
241
242 static void __net_init fib6_tables_init(struct net *net)
243 {
244         fib6_link_table(net, net->ipv6.fib6_main_tbl);
245         fib6_link_table(net, net->ipv6.fib6_local_tbl);
246 }
247 #else
248
249 struct fib6_table *fib6_new_table(struct net *net, u32 id)
250 {
251         return fib6_get_table(net, id);
252 }
253
254 struct fib6_table *fib6_get_table(struct net *net, u32 id)
255 {
256           return net->ipv6.fib6_main_tbl;
257 }
258
259 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
260                                    int flags, pol_lookup_t lookup)
261 {
262         return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
263 }
264
265 static void __net_init fib6_tables_init(struct net *net)
266 {
267         fib6_link_table(net, net->ipv6.fib6_main_tbl);
268 }
269
270 #endif
271
272 static int fib6_dump_node(struct fib6_walker_t *w)
273 {
274         int res;
275         struct rt6_info *rt;
276
277         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
278                 res = rt6_dump_route(rt, w->args);
279                 if (res < 0) {
280                         /* Frame is full, suspend walking */
281                         w->leaf = rt;
282                         return 1;
283                 }
284                 WARN_ON(res == 0);
285         }
286         w->leaf = NULL;
287         return 0;
288 }
289
290 static void fib6_dump_end(struct netlink_callback *cb)
291 {
292         struct fib6_walker_t *w = (void*)cb->args[2];
293
294         if (w) {
295                 if (cb->args[4]) {
296                         cb->args[4] = 0;
297                         fib6_walker_unlink(w);
298                 }
299                 cb->args[2] = 0;
300                 kfree(w);
301         }
302         cb->done = (void*)cb->args[3];
303         cb->args[1] = 3;
304 }
305
306 static int fib6_dump_done(struct netlink_callback *cb)
307 {
308         fib6_dump_end(cb);
309         return cb->done ? cb->done(cb) : 0;
310 }
311
312 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
313                            struct netlink_callback *cb)
314 {
315         struct fib6_walker_t *w;
316         int res;
317
318         w = (void *)cb->args[2];
319         w->root = &table->tb6_root;
320
321         if (cb->args[4] == 0) {
322                 w->count = 0;
323                 w->skip = 0;
324
325                 read_lock_bh(&table->tb6_lock);
326                 res = fib6_walk(w);
327                 read_unlock_bh(&table->tb6_lock);
328                 if (res > 0) {
329                         cb->args[4] = 1;
330                         cb->args[5] = w->root->fn_sernum;
331                 }
332         } else {
333                 if (cb->args[5] != w->root->fn_sernum) {
334                         /* Begin at the root if the tree changed */
335                         cb->args[5] = w->root->fn_sernum;
336                         w->state = FWS_INIT;
337                         w->node = w->root;
338                         w->skip = w->count;
339                 } else
340                         w->skip = 0;
341
342                 read_lock_bh(&table->tb6_lock);
343                 res = fib6_walk_continue(w);
344                 read_unlock_bh(&table->tb6_lock);
345                 if (res <= 0) {
346                         fib6_walker_unlink(w);
347                         cb->args[4] = 0;
348                 }
349         }
350
351         return res;
352 }
353
354 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
355 {
356         struct net *net = sock_net(skb->sk);
357         unsigned int h, s_h;
358         unsigned int e = 0, s_e;
359         struct rt6_rtnl_dump_arg arg;
360         struct fib6_walker_t *w;
361         struct fib6_table *tb;
362         struct hlist_node *node;
363         struct hlist_head *head;
364         int res = 0;
365
366         s_h = cb->args[0];
367         s_e = cb->args[1];
368
369         w = (void *)cb->args[2];
370         if (w == NULL) {
371                 /* New dump:
372                  *
373                  * 1. hook callback destructor.
374                  */
375                 cb->args[3] = (long)cb->done;
376                 cb->done = fib6_dump_done;
377
378                 /*
379                  * 2. allocate and initialize walker.
380                  */
381                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
382                 if (w == NULL)
383                         return -ENOMEM;
384                 w->func = fib6_dump_node;
385                 cb->args[2] = (long)w;
386         }
387
388         arg.skb = skb;
389         arg.cb = cb;
390         arg.net = net;
391         w->args = &arg;
392
393         rcu_read_lock();
394         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
395                 e = 0;
396                 head = &net->ipv6.fib_table_hash[h];
397                 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
398                         if (e < s_e)
399                                 goto next;
400                         res = fib6_dump_table(tb, skb, cb);
401                         if (res != 0)
402                                 goto out;
403 next:
404                         e++;
405                 }
406         }
407 out:
408         rcu_read_unlock();
409         cb->args[1] = e;
410         cb->args[0] = h;
411
412         res = res < 0 ? res : skb->len;
413         if (res <= 0)
414                 fib6_dump_end(cb);
415         return res;
416 }
417
418 /*
419  *      Routing Table
420  *
421  *      return the appropriate node for a routing tree "add" operation
422  *      by either creating and inserting or by returning an existing
423  *      node.
424  */
425
426 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
427                                      int addrlen, int plen,
428                                      int offset)
429 {
430         struct fib6_node *fn, *in, *ln;
431         struct fib6_node *pn = NULL;
432         struct rt6key *key;
433         int     bit;
434         __be32  dir = 0;
435         __u32   sernum = fib6_new_sernum();
436
437         RT6_TRACE("fib6_add_1\n");
438
439         /* insert node in tree */
440
441         fn = root;
442
443         do {
444                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
445
446                 /*
447                  *      Prefix match
448                  */
449                 if (plen < fn->fn_bit ||
450                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
451                         goto insert_above;
452
453                 /*
454                  *      Exact match ?
455                  */
456
457                 if (plen == fn->fn_bit) {
458                         /* clean up an intermediate node */
459                         if ((fn->fn_flags & RTN_RTINFO) == 0) {
460                                 rt6_release(fn->leaf);
461                                 fn->leaf = NULL;
462                         }
463
464                         fn->fn_sernum = sernum;
465
466                         return fn;
467                 }
468
469                 /*
470                  *      We have more bits to go
471                  */
472
473                 /* Try to walk down on tree. */
474                 fn->fn_sernum = sernum;
475                 dir = addr_bit_set(addr, fn->fn_bit);
476                 pn = fn;
477                 fn = dir ? fn->right: fn->left;
478         } while (fn);
479
480         /*
481          *      We walked to the bottom of tree.
482          *      Create new leaf node without children.
483          */
484
485         ln = node_alloc();
486
487         if (ln == NULL)
488                 return NULL;
489         ln->fn_bit = plen;
490
491         ln->parent = pn;
492         ln->fn_sernum = sernum;
493
494         if (dir)
495                 pn->right = ln;
496         else
497                 pn->left  = ln;
498
499         return ln;
500
501
502 insert_above:
503         /*
504          * split since we don't have a common prefix anymore or
505          * we have a less significant route.
506          * we've to insert an intermediate node on the list
507          * this new node will point to the one we need to create
508          * and the current
509          */
510
511         pn = fn->parent;
512
513         /* find 1st bit in difference between the 2 addrs.
514
515            See comment in __ipv6_addr_diff: bit may be an invalid value,
516            but if it is >= plen, the value is ignored in any case.
517          */
518
519         bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
520
521         /*
522          *              (intermediate)[in]
523          *                /        \
524          *      (new leaf node)[ln] (old node)[fn]
525          */
526         if (plen > bit) {
527                 in = node_alloc();
528                 ln = node_alloc();
529
530                 if (in == NULL || ln == NULL) {
531                         if (in)
532                                 node_free(in);
533                         if (ln)
534                                 node_free(ln);
535                         return NULL;
536                 }
537
538                 /*
539                  * new intermediate node.
540                  * RTN_RTINFO will
541                  * be off since that an address that chooses one of
542                  * the branches would not match less specific routes
543                  * in the other branch
544                  */
545
546                 in->fn_bit = bit;
547
548                 in->parent = pn;
549                 in->leaf = fn->leaf;
550                 atomic_inc(&in->leaf->rt6i_ref);
551
552                 in->fn_sernum = sernum;
553
554                 /* update parent pointer */
555                 if (dir)
556                         pn->right = in;
557                 else
558                         pn->left  = in;
559
560                 ln->fn_bit = plen;
561
562                 ln->parent = in;
563                 fn->parent = in;
564
565                 ln->fn_sernum = sernum;
566
567                 if (addr_bit_set(addr, bit)) {
568                         in->right = ln;
569                         in->left  = fn;
570                 } else {
571                         in->left  = ln;
572                         in->right = fn;
573                 }
574         } else { /* plen <= bit */
575
576                 /*
577                  *              (new leaf node)[ln]
578                  *                /        \
579                  *           (old node)[fn] NULL
580                  */
581
582                 ln = node_alloc();
583
584                 if (ln == NULL)
585                         return NULL;
586
587                 ln->fn_bit = plen;
588
589                 ln->parent = pn;
590
591                 ln->fn_sernum = sernum;
592
593                 if (dir)
594                         pn->right = ln;
595                 else
596                         pn->left  = ln;
597
598                 if (addr_bit_set(&key->addr, plen))
599                         ln->right = fn;
600                 else
601                         ln->left  = fn;
602
603                 fn->parent = ln;
604         }
605         return ln;
606 }
607
608 /*
609  *      Insert routing information in a node.
610  */
611
612 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
613                             struct nl_info *info)
614 {
615         struct rt6_info *iter = NULL;
616         struct rt6_info **ins;
617
618         ins = &fn->leaf;
619
620         for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
621                 /*
622                  *      Search for duplicates
623                  */
624
625                 if (iter->rt6i_metric == rt->rt6i_metric) {
626                         /*
627                          *      Same priority level
628                          */
629
630                         if (iter->rt6i_dev == rt->rt6i_dev &&
631                             iter->rt6i_idev == rt->rt6i_idev &&
632                             ipv6_addr_equal(&iter->rt6i_gateway,
633                                             &rt->rt6i_gateway)) {
634                                 if (!(iter->rt6i_flags&RTF_EXPIRES))
635                                         return -EEXIST;
636                                 iter->rt6i_expires = rt->rt6i_expires;
637                                 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
638                                         iter->rt6i_flags &= ~RTF_EXPIRES;
639                                         iter->rt6i_expires = 0;
640                                 }
641                                 return -EEXIST;
642                         }
643                 }
644
645                 if (iter->rt6i_metric > rt->rt6i_metric)
646                         break;
647
648                 ins = &iter->dst.rt6_next;
649         }
650
651         /* Reset round-robin state, if necessary */
652         if (ins == &fn->leaf)
653                 fn->rr_ptr = NULL;
654
655         /*
656          *      insert node
657          */
658
659         rt->dst.rt6_next = iter;
660         *ins = rt;
661         rt->rt6i_node = fn;
662         atomic_inc(&rt->rt6i_ref);
663         inet6_rt_notify(RTM_NEWROUTE, rt, info);
664         info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
665
666         if ((fn->fn_flags & RTN_RTINFO) == 0) {
667                 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
668                 fn->fn_flags |= RTN_RTINFO;
669         }
670
671         return 0;
672 }
673
674 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
675 {
676         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
677             (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
678                 mod_timer(&net->ipv6.ip6_fib_timer,
679                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
680 }
681
682 void fib6_force_start_gc(struct net *net)
683 {
684         if (!timer_pending(&net->ipv6.ip6_fib_timer))
685                 mod_timer(&net->ipv6.ip6_fib_timer,
686                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
687 }
688
689 /*
690  *      Add routing information to the routing tree.
691  *      <destination addr>/<source addr>
692  *      with source addr info in sub-trees
693  */
694
695 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
696 {
697         struct fib6_node *fn, *pn = NULL;
698         int err = -ENOMEM;
699
700         fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
701                         rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
702
703         if (fn == NULL)
704                 goto out;
705
706         pn = fn;
707
708 #ifdef CONFIG_IPV6_SUBTREES
709         if (rt->rt6i_src.plen) {
710                 struct fib6_node *sn;
711
712                 if (fn->subtree == NULL) {
713                         struct fib6_node *sfn;
714
715                         /*
716                          * Create subtree.
717                          *
718                          *              fn[main tree]
719                          *              |
720                          *              sfn[subtree root]
721                          *                 \
722                          *                  sn[new leaf node]
723                          */
724
725                         /* Create subtree root node */
726                         sfn = node_alloc();
727                         if (sfn == NULL)
728                                 goto st_failure;
729
730                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
731                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
732                         sfn->fn_flags = RTN_ROOT;
733                         sfn->fn_sernum = fib6_new_sernum();
734
735                         /* Now add the first leaf node to new subtree */
736
737                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
738                                         sizeof(struct in6_addr), rt->rt6i_src.plen,
739                                         offsetof(struct rt6_info, rt6i_src));
740
741                         if (sn == NULL) {
742                                 /* If it is failed, discard just allocated
743                                    root, and then (in st_failure) stale node
744                                    in main tree.
745                                  */
746                                 node_free(sfn);
747                                 goto st_failure;
748                         }
749
750                         /* Now link new subtree to main tree */
751                         sfn->parent = fn;
752                         fn->subtree = sfn;
753                 } else {
754                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
755                                         sizeof(struct in6_addr), rt->rt6i_src.plen,
756                                         offsetof(struct rt6_info, rt6i_src));
757
758                         if (sn == NULL)
759                                 goto st_failure;
760                 }
761
762                 if (fn->leaf == NULL) {
763                         fn->leaf = rt;
764                         atomic_inc(&rt->rt6i_ref);
765                 }
766                 fn = sn;
767         }
768 #endif
769
770         err = fib6_add_rt2node(fn, rt, info);
771
772         if (err == 0) {
773                 fib6_start_gc(info->nl_net, rt);
774                 if (!(rt->rt6i_flags&RTF_CACHE))
775                         fib6_prune_clones(info->nl_net, pn, rt);
776         }
777
778 out:
779         if (err) {
780 #ifdef CONFIG_IPV6_SUBTREES
781                 /*
782                  * If fib6_add_1 has cleared the old leaf pointer in the
783                  * super-tree leaf node we have to find a new one for it.
784                  */
785                 if (pn != fn && pn->leaf == rt) {
786                         pn->leaf = NULL;
787                         atomic_dec(&rt->rt6i_ref);
788                 }
789                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
790                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
791 #if RT6_DEBUG >= 2
792                         if (!pn->leaf) {
793                                 WARN_ON(pn->leaf == NULL);
794                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
795                         }
796 #endif
797                         atomic_inc(&pn->leaf->rt6i_ref);
798                 }
799 #endif
800                 dst_free(&rt->dst);
801         }
802         return err;
803
804 #ifdef CONFIG_IPV6_SUBTREES
805         /* Subtree creation failed, probably main tree node
806            is orphan. If it is, shoot it.
807          */
808 st_failure:
809         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
810                 fib6_repair_tree(info->nl_net, fn);
811         dst_free(&rt->dst);
812         return err;
813 #endif
814 }
815
816 /*
817  *      Routing tree lookup
818  *
819  */
820
821 struct lookup_args {
822         int             offset;         /* key offset on rt6_info       */
823         const struct in6_addr   *addr;          /* search key                   */
824 };
825
826 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
827                                         struct lookup_args *args)
828 {
829         struct fib6_node *fn;
830         __be32 dir;
831
832         if (unlikely(args->offset == 0))
833                 return NULL;
834
835         /*
836          *      Descend on a tree
837          */
838
839         fn = root;
840
841         for (;;) {
842                 struct fib6_node *next;
843
844                 dir = addr_bit_set(args->addr, fn->fn_bit);
845
846                 next = dir ? fn->right : fn->left;
847
848                 if (next) {
849                         fn = next;
850                         continue;
851                 }
852
853                 break;
854         }
855
856         while(fn) {
857                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
858                         struct rt6key *key;
859
860                         key = (struct rt6key *) ((u8 *) fn->leaf +
861                                                  args->offset);
862
863                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
864 #ifdef CONFIG_IPV6_SUBTREES
865                                 if (fn->subtree) {
866                                         struct fib6_node *sfn;
867                                         sfn = fib6_lookup_1(fn->subtree,
868                                                             args + 1);
869                                         if (!sfn)
870                                                 goto backtrack;
871                                         fn = sfn;
872                                 }
873 #endif
874                                 if (fn->fn_flags & RTN_RTINFO)
875                                         return fn;
876                         }
877                 }
878 #ifdef CONFIG_IPV6_SUBTREES
879 backtrack:
880 #endif
881                 if (fn->fn_flags & RTN_ROOT)
882                         break;
883
884                 fn = fn->parent;
885         }
886
887         return NULL;
888 }
889
890 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
891                                const struct in6_addr *saddr)
892 {
893         struct fib6_node *fn;
894         struct lookup_args args[] = {
895                 {
896                         .offset = offsetof(struct rt6_info, rt6i_dst),
897                         .addr = daddr,
898                 },
899 #ifdef CONFIG_IPV6_SUBTREES
900                 {
901                         .offset = offsetof(struct rt6_info, rt6i_src),
902                         .addr = saddr,
903                 },
904 #endif
905                 {
906                         .offset = 0,    /* sentinel */
907                 }
908         };
909
910         fn = fib6_lookup_1(root, daddr ? args : args + 1);
911
912         if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
913                 fn = root;
914
915         return fn;
916 }
917
918 /*
919  *      Get node with specified destination prefix (and source prefix,
920  *      if subtrees are used)
921  */
922
923
924 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
925                                         const struct in6_addr *addr,
926                                         int plen, int offset)
927 {
928         struct fib6_node *fn;
929
930         for (fn = root; fn ; ) {
931                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
932
933                 /*
934                  *      Prefix match
935                  */
936                 if (plen < fn->fn_bit ||
937                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
938                         return NULL;
939
940                 if (plen == fn->fn_bit)
941                         return fn;
942
943                 /*
944                  *      We have more bits to go
945                  */
946                 if (addr_bit_set(addr, fn->fn_bit))
947                         fn = fn->right;
948                 else
949                         fn = fn->left;
950         }
951         return NULL;
952 }
953
954 struct fib6_node * fib6_locate(struct fib6_node *root,
955                                const struct in6_addr *daddr, int dst_len,
956                                const struct in6_addr *saddr, int src_len)
957 {
958         struct fib6_node *fn;
959
960         fn = fib6_locate_1(root, daddr, dst_len,
961                            offsetof(struct rt6_info, rt6i_dst));
962
963 #ifdef CONFIG_IPV6_SUBTREES
964         if (src_len) {
965                 WARN_ON(saddr == NULL);
966                 if (fn && fn->subtree)
967                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
968                                            offsetof(struct rt6_info, rt6i_src));
969         }
970 #endif
971
972         if (fn && fn->fn_flags&RTN_RTINFO)
973                 return fn;
974
975         return NULL;
976 }
977
978
979 /*
980  *      Deletion
981  *
982  */
983
984 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
985 {
986         if (fn->fn_flags&RTN_ROOT)
987                 return net->ipv6.ip6_null_entry;
988
989         while(fn) {
990                 if(fn->left)
991                         return fn->left->leaf;
992
993                 if(fn->right)
994                         return fn->right->leaf;
995
996                 fn = FIB6_SUBTREE(fn);
997         }
998         return NULL;
999 }
1000
1001 /*
1002  *      Called to trim the tree of intermediate nodes when possible. "fn"
1003  *      is the node we want to try and remove.
1004  */
1005
1006 static struct fib6_node *fib6_repair_tree(struct net *net,
1007                                            struct fib6_node *fn)
1008 {
1009         int children;
1010         int nstate;
1011         struct fib6_node *child, *pn;
1012         struct fib6_walker_t *w;
1013         int iter = 0;
1014
1015         for (;;) {
1016                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1017                 iter++;
1018
1019                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1020                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1021                 WARN_ON(fn->leaf != NULL);
1022
1023                 children = 0;
1024                 child = NULL;
1025                 if (fn->right) child = fn->right, children |= 1;
1026                 if (fn->left) child = fn->left, children |= 2;
1027
1028                 if (children == 3 || FIB6_SUBTREE(fn)
1029 #ifdef CONFIG_IPV6_SUBTREES
1030                     /* Subtree root (i.e. fn) may have one child */
1031                     || (children && fn->fn_flags&RTN_ROOT)
1032 #endif
1033                     ) {
1034                         fn->leaf = fib6_find_prefix(net, fn);
1035 #if RT6_DEBUG >= 2
1036                         if (fn->leaf==NULL) {
1037                                 WARN_ON(!fn->leaf);
1038                                 fn->leaf = net->ipv6.ip6_null_entry;
1039                         }
1040 #endif
1041                         atomic_inc(&fn->leaf->rt6i_ref);
1042                         return fn->parent;
1043                 }
1044
1045                 pn = fn->parent;
1046 #ifdef CONFIG_IPV6_SUBTREES
1047                 if (FIB6_SUBTREE(pn) == fn) {
1048                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1049                         FIB6_SUBTREE(pn) = NULL;
1050                         nstate = FWS_L;
1051                 } else {
1052                         WARN_ON(fn->fn_flags & RTN_ROOT);
1053 #endif
1054                         if (pn->right == fn) pn->right = child;
1055                         else if (pn->left == fn) pn->left = child;
1056 #if RT6_DEBUG >= 2
1057                         else
1058                                 WARN_ON(1);
1059 #endif
1060                         if (child)
1061                                 child->parent = pn;
1062                         nstate = FWS_R;
1063 #ifdef CONFIG_IPV6_SUBTREES
1064                 }
1065 #endif
1066
1067                 read_lock(&fib6_walker_lock);
1068                 FOR_WALKERS(w) {
1069                         if (child == NULL) {
1070                                 if (w->root == fn) {
1071                                         w->root = w->node = NULL;
1072                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1073                                 } else if (w->node == fn) {
1074                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1075                                         w->node = pn;
1076                                         w->state = nstate;
1077                                 }
1078                         } else {
1079                                 if (w->root == fn) {
1080                                         w->root = child;
1081                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1082                                 }
1083                                 if (w->node == fn) {
1084                                         w->node = child;
1085                                         if (children&2) {
1086                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1087                                                 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1088                                         } else {
1089                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1090                                                 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1091                                         }
1092                                 }
1093                         }
1094                 }
1095                 read_unlock(&fib6_walker_lock);
1096
1097                 node_free(fn);
1098                 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1099                         return pn;
1100
1101                 rt6_release(pn->leaf);
1102                 pn->leaf = NULL;
1103                 fn = pn;
1104         }
1105 }
1106
1107 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1108                            struct nl_info *info)
1109 {
1110         struct fib6_walker_t *w;
1111         struct rt6_info *rt = *rtp;
1112         struct net *net = info->nl_net;
1113
1114         RT6_TRACE("fib6_del_route\n");
1115
1116         /* Unlink it */
1117         *rtp = rt->dst.rt6_next;
1118         rt->rt6i_node = NULL;
1119         net->ipv6.rt6_stats->fib_rt_entries--;
1120         net->ipv6.rt6_stats->fib_discarded_routes++;
1121
1122         /* Reset round-robin state, if necessary */
1123         if (fn->rr_ptr == rt)
1124                 fn->rr_ptr = NULL;
1125
1126         /* Adjust walkers */
1127         read_lock(&fib6_walker_lock);
1128         FOR_WALKERS(w) {
1129                 if (w->state == FWS_C && w->leaf == rt) {
1130                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1131                         w->leaf = rt->dst.rt6_next;
1132                         if (w->leaf == NULL)
1133                                 w->state = FWS_U;
1134                 }
1135         }
1136         read_unlock(&fib6_walker_lock);
1137
1138         rt->dst.rt6_next = NULL;
1139
1140         /* If it was last route, expunge its radix tree node */
1141         if (fn->leaf == NULL) {
1142                 fn->fn_flags &= ~RTN_RTINFO;
1143                 net->ipv6.rt6_stats->fib_route_nodes--;
1144                 fn = fib6_repair_tree(net, fn);
1145         }
1146
1147         if (atomic_read(&rt->rt6i_ref) != 1) {
1148                 /* This route is used as dummy address holder in some split
1149                  * nodes. It is not leaked, but it still holds other resources,
1150                  * which must be released in time. So, scan ascendant nodes
1151                  * and replace dummy references to this route with references
1152                  * to still alive ones.
1153                  */
1154                 while (fn) {
1155                         if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1156                                 fn->leaf = fib6_find_prefix(net, fn);
1157                                 atomic_inc(&fn->leaf->rt6i_ref);
1158                                 rt6_release(rt);
1159                         }
1160                         fn = fn->parent;
1161                 }
1162                 /* No more references are possible at this point. */
1163                 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1164         }
1165
1166         inet6_rt_notify(RTM_DELROUTE, rt, info);
1167         rt6_release(rt);
1168 }
1169
1170 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1171 {
1172         struct net *net = info->nl_net;
1173         struct fib6_node *fn = rt->rt6i_node;
1174         struct rt6_info **rtp;
1175
1176 #if RT6_DEBUG >= 2
1177         if (rt->dst.obsolete>0) {
1178                 WARN_ON(fn != NULL);
1179                 return -ENOENT;
1180         }
1181 #endif
1182         if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1183                 return -ENOENT;
1184
1185         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1186
1187         if (!(rt->rt6i_flags&RTF_CACHE)) {
1188                 struct fib6_node *pn = fn;
1189 #ifdef CONFIG_IPV6_SUBTREES
1190                 /* clones of this route might be in another subtree */
1191                 if (rt->rt6i_src.plen) {
1192                         while (!(pn->fn_flags&RTN_ROOT))
1193                                 pn = pn->parent;
1194                         pn = pn->parent;
1195                 }
1196 #endif
1197                 fib6_prune_clones(info->nl_net, pn, rt);
1198         }
1199
1200         /*
1201          *      Walk the leaf entries looking for ourself
1202          */
1203
1204         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1205                 if (*rtp == rt) {
1206                         fib6_del_route(fn, rtp, info);
1207                         return 0;
1208                 }
1209         }
1210         return -ENOENT;
1211 }
1212
1213 /*
1214  *      Tree traversal function.
1215  *
1216  *      Certainly, it is not interrupt safe.
1217  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1218  *      It means, that we can modify tree during walking
1219  *      and use this function for garbage collection, clone pruning,
1220  *      cleaning tree when a device goes down etc. etc.
1221  *
1222  *      It guarantees that every node will be traversed,
1223  *      and that it will be traversed only once.
1224  *
1225  *      Callback function w->func may return:
1226  *      0 -> continue walking.
1227  *      positive value -> walking is suspended (used by tree dumps,
1228  *      and probably by gc, if it will be split to several slices)
1229  *      negative value -> terminate walking.
1230  *
1231  *      The function itself returns:
1232  *      0   -> walk is complete.
1233  *      >0  -> walk is incomplete (i.e. suspended)
1234  *      <0  -> walk is terminated by an error.
1235  */
1236
1237 static int fib6_walk_continue(struct fib6_walker_t *w)
1238 {
1239         struct fib6_node *fn, *pn;
1240
1241         for (;;) {
1242                 fn = w->node;
1243                 if (fn == NULL)
1244                         return 0;
1245
1246                 if (w->prune && fn != w->root &&
1247                     fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1248                         w->state = FWS_C;
1249                         w->leaf = fn->leaf;
1250                 }
1251                 switch (w->state) {
1252 #ifdef CONFIG_IPV6_SUBTREES
1253                 case FWS_S:
1254                         if (FIB6_SUBTREE(fn)) {
1255                                 w->node = FIB6_SUBTREE(fn);
1256                                 continue;
1257                         }
1258                         w->state = FWS_L;
1259 #endif
1260                 case FWS_L:
1261                         if (fn->left) {
1262                                 w->node = fn->left;
1263                                 w->state = FWS_INIT;
1264                                 continue;
1265                         }
1266                         w->state = FWS_R;
1267                 case FWS_R:
1268                         if (fn->right) {
1269                                 w->node = fn->right;
1270                                 w->state = FWS_INIT;
1271                                 continue;
1272                         }
1273                         w->state = FWS_C;
1274                         w->leaf = fn->leaf;
1275                 case FWS_C:
1276                         if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1277                                 int err;
1278
1279                                 if (w->count < w->skip) {
1280                                         w->count++;
1281                                         continue;
1282                                 }
1283
1284                                 err = w->func(w);
1285                                 if (err)
1286                                         return err;
1287
1288                                 w->count++;
1289                                 continue;
1290                         }
1291                         w->state = FWS_U;
1292                 case FWS_U:
1293                         if (fn == w->root)
1294                                 return 0;
1295                         pn = fn->parent;
1296                         w->node = pn;
1297 #ifdef CONFIG_IPV6_SUBTREES
1298                         if (FIB6_SUBTREE(pn) == fn) {
1299                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1300                                 w->state = FWS_L;
1301                                 continue;
1302                         }
1303 #endif
1304                         if (pn->left == fn) {
1305                                 w->state = FWS_R;
1306                                 continue;
1307                         }
1308                         if (pn->right == fn) {
1309                                 w->state = FWS_C;
1310                                 w->leaf = w->node->leaf;
1311                                 continue;
1312                         }
1313 #if RT6_DEBUG >= 2
1314                         WARN_ON(1);
1315 #endif
1316                 }
1317         }
1318 }
1319
1320 static int fib6_walk(struct fib6_walker_t *w)
1321 {
1322         int res;
1323
1324         w->state = FWS_INIT;
1325         w->node = w->root;
1326
1327         fib6_walker_link(w);
1328         res = fib6_walk_continue(w);
1329         if (res <= 0)
1330                 fib6_walker_unlink(w);
1331         return res;
1332 }
1333
1334 static int fib6_clean_node(struct fib6_walker_t *w)
1335 {
1336         int res;
1337         struct rt6_info *rt;
1338         struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1339         struct nl_info info = {
1340                 .nl_net = c->net,
1341         };
1342
1343         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1344                 res = c->func(rt, c->arg);
1345                 if (res < 0) {
1346                         w->leaf = rt;
1347                         res = fib6_del(rt, &info);
1348                         if (res) {
1349 #if RT6_DEBUG >= 2
1350                                 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1351 #endif
1352                                 continue;
1353                         }
1354                         return 0;
1355                 }
1356                 WARN_ON(res != 0);
1357         }
1358         w->leaf = rt;
1359         return 0;
1360 }
1361
1362 /*
1363  *      Convenient frontend to tree walker.
1364  *
1365  *      func is called on each route.
1366  *              It may return -1 -> delete this route.
1367  *                            0  -> continue walking
1368  *
1369  *      prune==1 -> only immediate children of node (certainly,
1370  *      ignoring pure split nodes) will be scanned.
1371  */
1372
1373 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1374                             int (*func)(struct rt6_info *, void *arg),
1375                             int prune, void *arg)
1376 {
1377         struct fib6_cleaner_t c;
1378
1379         c.w.root = root;
1380         c.w.func = fib6_clean_node;
1381         c.w.prune = prune;
1382         c.w.count = 0;
1383         c.w.skip = 0;
1384         c.func = func;
1385         c.arg = arg;
1386         c.net = net;
1387
1388         fib6_walk(&c.w);
1389 }
1390
1391 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1392                     int prune, void *arg)
1393 {
1394         struct fib6_table *table;
1395         struct hlist_node *node;
1396         struct hlist_head *head;
1397         unsigned int h;
1398
1399         rcu_read_lock();
1400         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1401                 head = &net->ipv6.fib_table_hash[h];
1402                 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1403                         write_lock_bh(&table->tb6_lock);
1404                         fib6_clean_tree(net, &table->tb6_root,
1405                                         func, prune, arg);
1406                         write_unlock_bh(&table->tb6_lock);
1407                 }
1408         }
1409         rcu_read_unlock();
1410 }
1411
1412 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1413 {
1414         if (rt->rt6i_flags & RTF_CACHE) {
1415                 RT6_TRACE("pruning clone %p\n", rt);
1416                 return -1;
1417         }
1418
1419         return 0;
1420 }
1421
1422 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1423                               struct rt6_info *rt)
1424 {
1425         fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1426 }
1427
1428 /*
1429  *      Garbage collection
1430  */
1431
1432 static struct fib6_gc_args
1433 {
1434         int                     timeout;
1435         int                     more;
1436 } gc_args;
1437
1438 static int fib6_age(struct rt6_info *rt, void *arg)
1439 {
1440         unsigned long now = jiffies;
1441
1442         /*
1443          *      check addrconf expiration here.
1444          *      Routes are expired even if they are in use.
1445          *
1446          *      Also age clones. Note, that clones are aged out
1447          *      only if they are not in use now.
1448          */
1449
1450         if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1451                 if (time_after(now, rt->rt6i_expires)) {
1452                         RT6_TRACE("expiring %p\n", rt);
1453                         return -1;
1454                 }
1455                 gc_args.more++;
1456         } else if (rt->rt6i_flags & RTF_CACHE) {
1457                 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1458                     time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1459                         RT6_TRACE("aging clone %p\n", rt);
1460                         return -1;
1461                 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1462                            (!(dst_get_neighbour_raw(&rt->dst)->flags & NTF_ROUTER))) {
1463                         RT6_TRACE("purging route %p via non-router but gateway\n",
1464                                   rt);
1465                         return -1;
1466                 }
1467                 gc_args.more++;
1468         }
1469
1470         return 0;
1471 }
1472
1473 static DEFINE_SPINLOCK(fib6_gc_lock);
1474
1475 void fib6_run_gc(unsigned long expires, struct net *net)
1476 {
1477         if (expires != ~0UL) {
1478                 spin_lock_bh(&fib6_gc_lock);
1479                 gc_args.timeout = expires ? (int)expires :
1480                         net->ipv6.sysctl.ip6_rt_gc_interval;
1481         } else {
1482                 if (!spin_trylock_bh(&fib6_gc_lock)) {
1483                         mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1484                         return;
1485                 }
1486                 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1487         }
1488
1489         gc_args.more = icmp6_dst_gc();
1490
1491         fib6_clean_all(net, fib6_age, 0, NULL);
1492
1493         if (gc_args.more)
1494                 mod_timer(&net->ipv6.ip6_fib_timer,
1495                           round_jiffies(jiffies
1496                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1497         else
1498                 del_timer(&net->ipv6.ip6_fib_timer);
1499         spin_unlock_bh(&fib6_gc_lock);
1500 }
1501
1502 static void fib6_gc_timer_cb(unsigned long arg)
1503 {
1504         fib6_run_gc(0, (struct net *)arg);
1505 }
1506
1507 static int __net_init fib6_net_init(struct net *net)
1508 {
1509         size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1510
1511         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1512
1513         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1514         if (!net->ipv6.rt6_stats)
1515                 goto out_timer;
1516
1517         /* Avoid false sharing : Use at least a full cache line */
1518         size = max_t(size_t, size, L1_CACHE_BYTES);
1519
1520         net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1521         if (!net->ipv6.fib_table_hash)
1522                 goto out_rt6_stats;
1523
1524         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1525                                           GFP_KERNEL);
1526         if (!net->ipv6.fib6_main_tbl)
1527                 goto out_fib_table_hash;
1528
1529         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1530         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1531         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1532                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1533
1534 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1535         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1536                                            GFP_KERNEL);
1537         if (!net->ipv6.fib6_local_tbl)
1538                 goto out_fib6_main_tbl;
1539         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1540         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1541         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1542                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1543 #endif
1544         fib6_tables_init(net);
1545
1546         return 0;
1547
1548 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1549 out_fib6_main_tbl:
1550         kfree(net->ipv6.fib6_main_tbl);
1551 #endif
1552 out_fib_table_hash:
1553         kfree(net->ipv6.fib_table_hash);
1554 out_rt6_stats:
1555         kfree(net->ipv6.rt6_stats);
1556 out_timer:
1557         return -ENOMEM;
1558  }
1559
1560 static void fib6_net_exit(struct net *net)
1561 {
1562         rt6_ifdown(net, NULL);
1563         del_timer_sync(&net->ipv6.ip6_fib_timer);
1564
1565 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1566         kfree(net->ipv6.fib6_local_tbl);
1567 #endif
1568         kfree(net->ipv6.fib6_main_tbl);
1569         kfree(net->ipv6.fib_table_hash);
1570         kfree(net->ipv6.rt6_stats);
1571 }
1572
1573 static struct pernet_operations fib6_net_ops = {
1574         .init = fib6_net_init,
1575         .exit = fib6_net_exit,
1576 };
1577
1578 int __init fib6_init(void)
1579 {
1580         int ret = -ENOMEM;
1581
1582         fib6_node_kmem = kmem_cache_create("fib6_nodes",
1583                                            sizeof(struct fib6_node),
1584                                            0, SLAB_HWCACHE_ALIGN,
1585                                            NULL);
1586         if (!fib6_node_kmem)
1587                 goto out;
1588
1589         ret = register_pernet_subsys(&fib6_net_ops);
1590         if (ret)
1591                 goto out_kmem_cache_create;
1592
1593         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1594                               NULL);
1595         if (ret)
1596                 goto out_unregister_subsys;
1597 out:
1598         return ret;
1599
1600 out_unregister_subsys:
1601         unregister_pernet_subsys(&fib6_net_ops);
1602 out_kmem_cache_create:
1603         kmem_cache_destroy(fib6_node_kmem);
1604         goto out;
1605 }
1606
1607 void fib6_gc_cleanup(void)
1608 {
1609         unregister_pernet_subsys(&fib6_net_ops);
1610         kmem_cache_destroy(fib6_node_kmem);
1611 }