Merge branch 'for-3.2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[pandora-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75 #include <net/secure_seq.h>
76
77 #include <linux/inet.h>
78 #include <linux/ipv6.h>
79 #include <linux/stddef.h>
80 #include <linux/proc_fs.h>
81 #include <linux/seq_file.h>
82
83 #include <linux/crypto.h>
84 #include <linux/scatterlist.h>
85
86 int sysctl_tcp_tw_reuse __read_mostly;
87 int sysctl_tcp_low_latency __read_mostly;
88 EXPORT_SYMBOL(sysctl_tcp_low_latency);
89
90
91 #ifdef CONFIG_TCP_MD5SIG
92 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
93                                                    __be32 addr);
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #else
97 static inline
98 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
99 {
100         return NULL;
101 }
102 #endif
103
104 struct inet_hashinfo tcp_hashinfo;
105 EXPORT_SYMBOL(tcp_hashinfo);
106
107 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
108 {
109         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
110                                           ip_hdr(skb)->saddr,
111                                           tcp_hdr(skb)->dest,
112                                           tcp_hdr(skb)->source);
113 }
114
115 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
116 {
117         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
118         struct tcp_sock *tp = tcp_sk(sk);
119
120         /* With PAWS, it is safe from the viewpoint
121            of data integrity. Even without PAWS it is safe provided sequence
122            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123
124            Actually, the idea is close to VJ's one, only timestamp cache is
125            held not per host, but per port pair and TW bucket is used as state
126            holder.
127
128            If TW bucket has been already destroyed we fall back to VJ's scheme
129            and use initial timestamp retrieved from peer table.
130          */
131         if (tcptw->tw_ts_recent_stamp &&
132             (twp == NULL || (sysctl_tcp_tw_reuse &&
133                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
134                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
135                 if (tp->write_seq == 0)
136                         tp->write_seq = 1;
137                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
138                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
139                 sock_hold(sktw);
140                 return 1;
141         }
142
143         return 0;
144 }
145 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
146
147 /* This will initiate an outgoing connection. */
148 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
149 {
150         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151         struct inet_sock *inet = inet_sk(sk);
152         struct tcp_sock *tp = tcp_sk(sk);
153         __be16 orig_sport, orig_dport;
154         __be32 daddr, nexthop;
155         struct flowi4 *fl4;
156         struct rtable *rt;
157         int err;
158         struct ip_options_rcu *inet_opt;
159
160         if (addr_len < sizeof(struct sockaddr_in))
161                 return -EINVAL;
162
163         if (usin->sin_family != AF_INET)
164                 return -EAFNOSUPPORT;
165
166         nexthop = daddr = usin->sin_addr.s_addr;
167         inet_opt = rcu_dereference_protected(inet->inet_opt,
168                                              sock_owned_by_user(sk));
169         if (inet_opt && inet_opt->opt.srr) {
170                 if (!daddr)
171                         return -EINVAL;
172                 nexthop = inet_opt->opt.faddr;
173         }
174
175         orig_sport = inet->inet_sport;
176         orig_dport = usin->sin_port;
177         fl4 = &inet->cork.fl.u.ip4;
178         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
179                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
180                               IPPROTO_TCP,
181                               orig_sport, orig_dport, sk, true);
182         if (IS_ERR(rt)) {
183                 err = PTR_ERR(rt);
184                 if (err == -ENETUNREACH)
185                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
186                 return err;
187         }
188
189         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
190                 ip_rt_put(rt);
191                 return -ENETUNREACH;
192         }
193
194         if (!inet_opt || !inet_opt->opt.srr)
195                 daddr = fl4->daddr;
196
197         if (!inet->inet_saddr)
198                 inet->inet_saddr = fl4->saddr;
199         inet->inet_rcv_saddr = inet->inet_saddr;
200
201         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
202                 /* Reset inherited state */
203                 tp->rx_opt.ts_recent       = 0;
204                 tp->rx_opt.ts_recent_stamp = 0;
205                 tp->write_seq              = 0;
206         }
207
208         if (tcp_death_row.sysctl_tw_recycle &&
209             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
210                 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
211                 /*
212                  * VJ's idea. We save last timestamp seen from
213                  * the destination in peer table, when entering state
214                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
215                  * when trying new connection.
216                  */
217                 if (peer) {
218                         inet_peer_refcheck(peer);
219                         if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
220                                 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
221                                 tp->rx_opt.ts_recent = peer->tcp_ts;
222                         }
223                 }
224         }
225
226         inet->inet_dport = usin->sin_port;
227         inet->inet_daddr = daddr;
228
229         inet_csk(sk)->icsk_ext_hdr_len = 0;
230         if (inet_opt)
231                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
232
233         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
234
235         /* Socket identity is still unknown (sport may be zero).
236          * However we set state to SYN-SENT and not releasing socket
237          * lock select source port, enter ourselves into the hash tables and
238          * complete initialization after this.
239          */
240         tcp_set_state(sk, TCP_SYN_SENT);
241         err = inet_hash_connect(&tcp_death_row, sk);
242         if (err)
243                 goto failure;
244
245         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
246                                inet->inet_sport, inet->inet_dport, sk);
247         if (IS_ERR(rt)) {
248                 err = PTR_ERR(rt);
249                 rt = NULL;
250                 goto failure;
251         }
252         /* OK, now commit destination to socket.  */
253         sk->sk_gso_type = SKB_GSO_TCPV4;
254         sk_setup_caps(sk, &rt->dst);
255
256         if (!tp->write_seq)
257                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
258                                                            inet->inet_daddr,
259                                                            inet->inet_sport,
260                                                            usin->sin_port);
261
262         inet->inet_id = tp->write_seq ^ jiffies;
263
264         err = tcp_connect(sk);
265         rt = NULL;
266         if (err)
267                 goto failure;
268
269         return 0;
270
271 failure:
272         /*
273          * This unhashes the socket and releases the local port,
274          * if necessary.
275          */
276         tcp_set_state(sk, TCP_CLOSE);
277         ip_rt_put(rt);
278         sk->sk_route_caps = 0;
279         inet->inet_dport = 0;
280         return err;
281 }
282 EXPORT_SYMBOL(tcp_v4_connect);
283
284 /*
285  * This routine does path mtu discovery as defined in RFC1191.
286  */
287 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
288 {
289         struct dst_entry *dst;
290         struct inet_sock *inet = inet_sk(sk);
291
292         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
293          * send out by Linux are always <576bytes so they should go through
294          * unfragmented).
295          */
296         if (sk->sk_state == TCP_LISTEN)
297                 return;
298
299         /* We don't check in the destentry if pmtu discovery is forbidden
300          * on this route. We just assume that no packet_to_big packets
301          * are send back when pmtu discovery is not active.
302          * There is a small race when the user changes this flag in the
303          * route, but I think that's acceptable.
304          */
305         if ((dst = __sk_dst_check(sk, 0)) == NULL)
306                 return;
307
308         dst->ops->update_pmtu(dst, mtu);
309
310         /* Something is about to be wrong... Remember soft error
311          * for the case, if this connection will not able to recover.
312          */
313         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
314                 sk->sk_err_soft = EMSGSIZE;
315
316         mtu = dst_mtu(dst);
317
318         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
319             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
320                 tcp_sync_mss(sk, mtu);
321
322                 /* Resend the TCP packet because it's
323                  * clear that the old packet has been
324                  * dropped. This is the new "fast" path mtu
325                  * discovery.
326                  */
327                 tcp_simple_retransmit(sk);
328         } /* else let the usual retransmit timer handle it */
329 }
330
331 /*
332  * This routine is called by the ICMP module when it gets some
333  * sort of error condition.  If err < 0 then the socket should
334  * be closed and the error returned to the user.  If err > 0
335  * it's just the icmp type << 8 | icmp code.  After adjustment
336  * header points to the first 8 bytes of the tcp header.  We need
337  * to find the appropriate port.
338  *
339  * The locking strategy used here is very "optimistic". When
340  * someone else accesses the socket the ICMP is just dropped
341  * and for some paths there is no check at all.
342  * A more general error queue to queue errors for later handling
343  * is probably better.
344  *
345  */
346
347 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
348 {
349         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
350         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
351         struct inet_connection_sock *icsk;
352         struct tcp_sock *tp;
353         struct inet_sock *inet;
354         const int type = icmp_hdr(icmp_skb)->type;
355         const int code = icmp_hdr(icmp_skb)->code;
356         struct sock *sk;
357         struct sk_buff *skb;
358         __u32 seq;
359         __u32 remaining;
360         int err;
361         struct net *net = dev_net(icmp_skb->dev);
362
363         if (icmp_skb->len < (iph->ihl << 2) + 8) {
364                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
365                 return;
366         }
367
368         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
369                         iph->saddr, th->source, inet_iif(icmp_skb));
370         if (!sk) {
371                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372                 return;
373         }
374         if (sk->sk_state == TCP_TIME_WAIT) {
375                 inet_twsk_put(inet_twsk(sk));
376                 return;
377         }
378
379         bh_lock_sock(sk);
380         /* If too many ICMPs get dropped on busy
381          * servers this needs to be solved differently.
382          */
383         if (sock_owned_by_user(sk))
384                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
385
386         if (sk->sk_state == TCP_CLOSE)
387                 goto out;
388
389         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
390                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
391                 goto out;
392         }
393
394         icsk = inet_csk(sk);
395         tp = tcp_sk(sk);
396         seq = ntohl(th->seq);
397         if (sk->sk_state != TCP_LISTEN &&
398             !between(seq, tp->snd_una, tp->snd_nxt)) {
399                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
400                 goto out;
401         }
402
403         switch (type) {
404         case ICMP_SOURCE_QUENCH:
405                 /* Just silently ignore these. */
406                 goto out;
407         case ICMP_PARAMETERPROB:
408                 err = EPROTO;
409                 break;
410         case ICMP_DEST_UNREACH:
411                 if (code > NR_ICMP_UNREACH)
412                         goto out;
413
414                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
415                         if (!sock_owned_by_user(sk))
416                                 do_pmtu_discovery(sk, iph, info);
417                         goto out;
418                 }
419
420                 err = icmp_err_convert[code].errno;
421                 /* check if icmp_skb allows revert of backoff
422                  * (see draft-zimmermann-tcp-lcd) */
423                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
424                         break;
425                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
426                     !icsk->icsk_backoff)
427                         break;
428
429                 if (sock_owned_by_user(sk))
430                         break;
431
432                 icsk->icsk_backoff--;
433                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
434                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
435                 tcp_bound_rto(sk);
436
437                 skb = tcp_write_queue_head(sk);
438                 BUG_ON(!skb);
439
440                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
441                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
442
443                 if (remaining) {
444                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
445                                                   remaining, TCP_RTO_MAX);
446                 } else {
447                         /* RTO revert clocked out retransmission.
448                          * Will retransmit now */
449                         tcp_retransmit_timer(sk);
450                 }
451
452                 break;
453         case ICMP_TIME_EXCEEDED:
454                 err = EHOSTUNREACH;
455                 break;
456         default:
457                 goto out;
458         }
459
460         switch (sk->sk_state) {
461                 struct request_sock *req, **prev;
462         case TCP_LISTEN:
463                 if (sock_owned_by_user(sk))
464                         goto out;
465
466                 req = inet_csk_search_req(sk, &prev, th->dest,
467                                           iph->daddr, iph->saddr);
468                 if (!req)
469                         goto out;
470
471                 /* ICMPs are not backlogged, hence we cannot get
472                    an established socket here.
473                  */
474                 WARN_ON(req->sk);
475
476                 if (seq != tcp_rsk(req)->snt_isn) {
477                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
478                         goto out;
479                 }
480
481                 /*
482                  * Still in SYN_RECV, just remove it silently.
483                  * There is no good way to pass the error to the newly
484                  * created socket, and POSIX does not want network
485                  * errors returned from accept().
486                  */
487                 inet_csk_reqsk_queue_drop(sk, req, prev);
488                 goto out;
489
490         case TCP_SYN_SENT:
491         case TCP_SYN_RECV:  /* Cannot happen.
492                                It can f.e. if SYNs crossed.
493                              */
494                 if (!sock_owned_by_user(sk)) {
495                         sk->sk_err = err;
496
497                         sk->sk_error_report(sk);
498
499                         tcp_done(sk);
500                 } else {
501                         sk->sk_err_soft = err;
502                 }
503                 goto out;
504         }
505
506         /* If we've already connected we will keep trying
507          * until we time out, or the user gives up.
508          *
509          * rfc1122 4.2.3.9 allows to consider as hard errors
510          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
511          * but it is obsoleted by pmtu discovery).
512          *
513          * Note, that in modern internet, where routing is unreliable
514          * and in each dark corner broken firewalls sit, sending random
515          * errors ordered by their masters even this two messages finally lose
516          * their original sense (even Linux sends invalid PORT_UNREACHs)
517          *
518          * Now we are in compliance with RFCs.
519          *                                                      --ANK (980905)
520          */
521
522         inet = inet_sk(sk);
523         if (!sock_owned_by_user(sk) && inet->recverr) {
524                 sk->sk_err = err;
525                 sk->sk_error_report(sk);
526         } else  { /* Only an error on timeout */
527                 sk->sk_err_soft = err;
528         }
529
530 out:
531         bh_unlock_sock(sk);
532         sock_put(sk);
533 }
534
535 static void __tcp_v4_send_check(struct sk_buff *skb,
536                                 __be32 saddr, __be32 daddr)
537 {
538         struct tcphdr *th = tcp_hdr(skb);
539
540         if (skb->ip_summed == CHECKSUM_PARTIAL) {
541                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
542                 skb->csum_start = skb_transport_header(skb) - skb->head;
543                 skb->csum_offset = offsetof(struct tcphdr, check);
544         } else {
545                 th->check = tcp_v4_check(skb->len, saddr, daddr,
546                                          csum_partial(th,
547                                                       th->doff << 2,
548                                                       skb->csum));
549         }
550 }
551
552 /* This routine computes an IPv4 TCP checksum. */
553 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
554 {
555         const struct inet_sock *inet = inet_sk(sk);
556
557         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
558 }
559 EXPORT_SYMBOL(tcp_v4_send_check);
560
561 int tcp_v4_gso_send_check(struct sk_buff *skb)
562 {
563         const struct iphdr *iph;
564         struct tcphdr *th;
565
566         if (!pskb_may_pull(skb, sizeof(*th)))
567                 return -EINVAL;
568
569         iph = ip_hdr(skb);
570         th = tcp_hdr(skb);
571
572         th->check = 0;
573         skb->ip_summed = CHECKSUM_PARTIAL;
574         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
575         return 0;
576 }
577
578 /*
579  *      This routine will send an RST to the other tcp.
580  *
581  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
582  *                    for reset.
583  *      Answer: if a packet caused RST, it is not for a socket
584  *              existing in our system, if it is matched to a socket,
585  *              it is just duplicate segment or bug in other side's TCP.
586  *              So that we build reply only basing on parameters
587  *              arrived with segment.
588  *      Exception: precedence violation. We do not implement it in any case.
589  */
590
591 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
592 {
593         const struct tcphdr *th = tcp_hdr(skb);
594         struct {
595                 struct tcphdr th;
596 #ifdef CONFIG_TCP_MD5SIG
597                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
598 #endif
599         } rep;
600         struct ip_reply_arg arg;
601 #ifdef CONFIG_TCP_MD5SIG
602         struct tcp_md5sig_key *key;
603 #endif
604         struct net *net;
605
606         /* Never send a reset in response to a reset. */
607         if (th->rst)
608                 return;
609
610         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
611                 return;
612
613         /* Swap the send and the receive. */
614         memset(&rep, 0, sizeof(rep));
615         rep.th.dest   = th->source;
616         rep.th.source = th->dest;
617         rep.th.doff   = sizeof(struct tcphdr) / 4;
618         rep.th.rst    = 1;
619
620         if (th->ack) {
621                 rep.th.seq = th->ack_seq;
622         } else {
623                 rep.th.ack = 1;
624                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
625                                        skb->len - (th->doff << 2));
626         }
627
628         memset(&arg, 0, sizeof(arg));
629         arg.iov[0].iov_base = (unsigned char *)&rep;
630         arg.iov[0].iov_len  = sizeof(rep.th);
631
632 #ifdef CONFIG_TCP_MD5SIG
633         key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
634         if (key) {
635                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
636                                    (TCPOPT_NOP << 16) |
637                                    (TCPOPT_MD5SIG << 8) |
638                                    TCPOLEN_MD5SIG);
639                 /* Update length and the length the header thinks exists */
640                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
641                 rep.th.doff = arg.iov[0].iov_len / 4;
642
643                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
644                                      key, ip_hdr(skb)->saddr,
645                                      ip_hdr(skb)->daddr, &rep.th);
646         }
647 #endif
648         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
649                                       ip_hdr(skb)->saddr, /* XXX */
650                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
651         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
652         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
653
654         net = dev_net(skb_dst(skb)->dev);
655         arg.tos = ip_hdr(skb)->tos;
656         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
657                       &arg, arg.iov[0].iov_len);
658
659         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
660         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
661 }
662
663 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
664    outside socket context is ugly, certainly. What can I do?
665  */
666
667 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
668                             u32 win, u32 ts, int oif,
669                             struct tcp_md5sig_key *key,
670                             int reply_flags, u8 tos)
671 {
672         const struct tcphdr *th = tcp_hdr(skb);
673         struct {
674                 struct tcphdr th;
675                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
676 #ifdef CONFIG_TCP_MD5SIG
677                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
678 #endif
679                         ];
680         } rep;
681         struct ip_reply_arg arg;
682         struct net *net = dev_net(skb_dst(skb)->dev);
683
684         memset(&rep.th, 0, sizeof(struct tcphdr));
685         memset(&arg, 0, sizeof(arg));
686
687         arg.iov[0].iov_base = (unsigned char *)&rep;
688         arg.iov[0].iov_len  = sizeof(rep.th);
689         if (ts) {
690                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
691                                    (TCPOPT_TIMESTAMP << 8) |
692                                    TCPOLEN_TIMESTAMP);
693                 rep.opt[1] = htonl(tcp_time_stamp);
694                 rep.opt[2] = htonl(ts);
695                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
696         }
697
698         /* Swap the send and the receive. */
699         rep.th.dest    = th->source;
700         rep.th.source  = th->dest;
701         rep.th.doff    = arg.iov[0].iov_len / 4;
702         rep.th.seq     = htonl(seq);
703         rep.th.ack_seq = htonl(ack);
704         rep.th.ack     = 1;
705         rep.th.window  = htons(win);
706
707 #ifdef CONFIG_TCP_MD5SIG
708         if (key) {
709                 int offset = (ts) ? 3 : 0;
710
711                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
712                                           (TCPOPT_NOP << 16) |
713                                           (TCPOPT_MD5SIG << 8) |
714                                           TCPOLEN_MD5SIG);
715                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
716                 rep.th.doff = arg.iov[0].iov_len/4;
717
718                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
719                                     key, ip_hdr(skb)->saddr,
720                                     ip_hdr(skb)->daddr, &rep.th);
721         }
722 #endif
723         arg.flags = reply_flags;
724         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
725                                       ip_hdr(skb)->saddr, /* XXX */
726                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
727         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
728         if (oif)
729                 arg.bound_dev_if = oif;
730         arg.tos = tos;
731         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
732                       &arg, arg.iov[0].iov_len);
733
734         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
735 }
736
737 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
738 {
739         struct inet_timewait_sock *tw = inet_twsk(sk);
740         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
741
742         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
743                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
744                         tcptw->tw_ts_recent,
745                         tw->tw_bound_dev_if,
746                         tcp_twsk_md5_key(tcptw),
747                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
748                         tw->tw_tos
749                         );
750
751         inet_twsk_put(tw);
752 }
753
754 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
755                                   struct request_sock *req)
756 {
757         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
758                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
759                         req->ts_recent,
760                         0,
761                         tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
762                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
763                         ip_hdr(skb)->tos);
764 }
765
766 /*
767  *      Send a SYN-ACK after having received a SYN.
768  *      This still operates on a request_sock only, not on a big
769  *      socket.
770  */
771 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
772                               struct request_sock *req,
773                               struct request_values *rvp)
774 {
775         const struct inet_request_sock *ireq = inet_rsk(req);
776         struct flowi4 fl4;
777         int err = -1;
778         struct sk_buff * skb;
779
780         /* First, grab a route. */
781         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
782                 return -1;
783
784         skb = tcp_make_synack(sk, dst, req, rvp);
785
786         if (skb) {
787                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
788
789                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
790                                             ireq->rmt_addr,
791                                             ireq->opt);
792                 err = net_xmit_eval(err);
793         }
794
795         dst_release(dst);
796         return err;
797 }
798
799 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
800                               struct request_values *rvp)
801 {
802         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
803         return tcp_v4_send_synack(sk, NULL, req, rvp);
804 }
805
806 /*
807  *      IPv4 request_sock destructor.
808  */
809 static void tcp_v4_reqsk_destructor(struct request_sock *req)
810 {
811         kfree(inet_rsk(req)->opt);
812 }
813
814 /*
815  * Return 1 if a syncookie should be sent
816  */
817 int tcp_syn_flood_action(struct sock *sk,
818                          const struct sk_buff *skb,
819                          const char *proto)
820 {
821         const char *msg = "Dropping request";
822         int want_cookie = 0;
823         struct listen_sock *lopt;
824
825
826
827 #ifdef CONFIG_SYN_COOKIES
828         if (sysctl_tcp_syncookies) {
829                 msg = "Sending cookies";
830                 want_cookie = 1;
831                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
832         } else
833 #endif
834                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
835
836         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
837         if (!lopt->synflood_warned) {
838                 lopt->synflood_warned = 1;
839                 pr_info("%s: Possible SYN flooding on port %d. %s. "
840                         " Check SNMP counters.\n",
841                         proto, ntohs(tcp_hdr(skb)->dest), msg);
842         }
843         return want_cookie;
844 }
845 EXPORT_SYMBOL(tcp_syn_flood_action);
846
847 /*
848  * Save and compile IPv4 options into the request_sock if needed.
849  */
850 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
851                                                   struct sk_buff *skb)
852 {
853         const struct ip_options *opt = &(IPCB(skb)->opt);
854         struct ip_options_rcu *dopt = NULL;
855
856         if (opt && opt->optlen) {
857                 int opt_size = sizeof(*dopt) + opt->optlen;
858
859                 dopt = kmalloc(opt_size, GFP_ATOMIC);
860                 if (dopt) {
861                         if (ip_options_echo(&dopt->opt, skb)) {
862                                 kfree(dopt);
863                                 dopt = NULL;
864                         }
865                 }
866         }
867         return dopt;
868 }
869
870 #ifdef CONFIG_TCP_MD5SIG
871 /*
872  * RFC2385 MD5 checksumming requires a mapping of
873  * IP address->MD5 Key.
874  * We need to maintain these in the sk structure.
875  */
876
877 /* Find the Key structure for an address.  */
878 static struct tcp_md5sig_key *
879                         tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         int i;
883
884         if (!tp->md5sig_info || !tp->md5sig_info->entries4)
885                 return NULL;
886         for (i = 0; i < tp->md5sig_info->entries4; i++) {
887                 if (tp->md5sig_info->keys4[i].addr == addr)
888                         return &tp->md5sig_info->keys4[i].base;
889         }
890         return NULL;
891 }
892
893 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
894                                          struct sock *addr_sk)
895 {
896         return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
897 }
898 EXPORT_SYMBOL(tcp_v4_md5_lookup);
899
900 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
901                                                       struct request_sock *req)
902 {
903         return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
904 }
905
906 /* This can be called on a newly created socket, from other files */
907 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
908                       u8 *newkey, u8 newkeylen)
909 {
910         /* Add Key to the list */
911         struct tcp_md5sig_key *key;
912         struct tcp_sock *tp = tcp_sk(sk);
913         struct tcp4_md5sig_key *keys;
914
915         key = tcp_v4_md5_do_lookup(sk, addr);
916         if (key) {
917                 /* Pre-existing entry - just update that one. */
918                 kfree(key->key);
919                 key->key = newkey;
920                 key->keylen = newkeylen;
921         } else {
922                 struct tcp_md5sig_info *md5sig;
923
924                 if (!tp->md5sig_info) {
925                         tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
926                                                   GFP_ATOMIC);
927                         if (!tp->md5sig_info) {
928                                 kfree(newkey);
929                                 return -ENOMEM;
930                         }
931                         sk_nocaps_add(sk, NETIF_F_GSO_MASK);
932                 }
933
934                 md5sig = tp->md5sig_info;
935                 if (md5sig->entries4 == 0 &&
936                     tcp_alloc_md5sig_pool(sk) == NULL) {
937                         kfree(newkey);
938                         return -ENOMEM;
939                 }
940
941                 if (md5sig->alloced4 == md5sig->entries4) {
942                         keys = kmalloc((sizeof(*keys) *
943                                         (md5sig->entries4 + 1)), GFP_ATOMIC);
944                         if (!keys) {
945                                 kfree(newkey);
946                                 if (md5sig->entries4 == 0)
947                                         tcp_free_md5sig_pool();
948                                 return -ENOMEM;
949                         }
950
951                         if (md5sig->entries4)
952                                 memcpy(keys, md5sig->keys4,
953                                        sizeof(*keys) * md5sig->entries4);
954
955                         /* Free old key list, and reference new one */
956                         kfree(md5sig->keys4);
957                         md5sig->keys4 = keys;
958                         md5sig->alloced4++;
959                 }
960                 md5sig->entries4++;
961                 md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
962                 md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
963                 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
964         }
965         return 0;
966 }
967 EXPORT_SYMBOL(tcp_v4_md5_do_add);
968
969 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
970                                u8 *newkey, u8 newkeylen)
971 {
972         return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
973                                  newkey, newkeylen);
974 }
975
976 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
977 {
978         struct tcp_sock *tp = tcp_sk(sk);
979         int i;
980
981         for (i = 0; i < tp->md5sig_info->entries4; i++) {
982                 if (tp->md5sig_info->keys4[i].addr == addr) {
983                         /* Free the key */
984                         kfree(tp->md5sig_info->keys4[i].base.key);
985                         tp->md5sig_info->entries4--;
986
987                         if (tp->md5sig_info->entries4 == 0) {
988                                 kfree(tp->md5sig_info->keys4);
989                                 tp->md5sig_info->keys4 = NULL;
990                                 tp->md5sig_info->alloced4 = 0;
991                                 tcp_free_md5sig_pool();
992                         } else if (tp->md5sig_info->entries4 != i) {
993                                 /* Need to do some manipulation */
994                                 memmove(&tp->md5sig_info->keys4[i],
995                                         &tp->md5sig_info->keys4[i+1],
996                                         (tp->md5sig_info->entries4 - i) *
997                                          sizeof(struct tcp4_md5sig_key));
998                         }
999                         return 0;
1000                 }
1001         }
1002         return -ENOENT;
1003 }
1004 EXPORT_SYMBOL(tcp_v4_md5_do_del);
1005
1006 static void tcp_v4_clear_md5_list(struct sock *sk)
1007 {
1008         struct tcp_sock *tp = tcp_sk(sk);
1009
1010         /* Free each key, then the set of key keys,
1011          * the crypto element, and then decrement our
1012          * hold on the last resort crypto.
1013          */
1014         if (tp->md5sig_info->entries4) {
1015                 int i;
1016                 for (i = 0; i < tp->md5sig_info->entries4; i++)
1017                         kfree(tp->md5sig_info->keys4[i].base.key);
1018                 tp->md5sig_info->entries4 = 0;
1019                 tcp_free_md5sig_pool();
1020         }
1021         if (tp->md5sig_info->keys4) {
1022                 kfree(tp->md5sig_info->keys4);
1023                 tp->md5sig_info->keys4 = NULL;
1024                 tp->md5sig_info->alloced4  = 0;
1025         }
1026 }
1027
1028 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1029                                  int optlen)
1030 {
1031         struct tcp_md5sig cmd;
1032         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1033         u8 *newkey;
1034
1035         if (optlen < sizeof(cmd))
1036                 return -EINVAL;
1037
1038         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1039                 return -EFAULT;
1040
1041         if (sin->sin_family != AF_INET)
1042                 return -EINVAL;
1043
1044         if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1045                 if (!tcp_sk(sk)->md5sig_info)
1046                         return -ENOENT;
1047                 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1048         }
1049
1050         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1051                 return -EINVAL;
1052
1053         if (!tcp_sk(sk)->md5sig_info) {
1054                 struct tcp_sock *tp = tcp_sk(sk);
1055                 struct tcp_md5sig_info *p;
1056
1057                 p = kzalloc(sizeof(*p), sk->sk_allocation);
1058                 if (!p)
1059                         return -EINVAL;
1060
1061                 tp->md5sig_info = p;
1062                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1063         }
1064
1065         newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1066         if (!newkey)
1067                 return -ENOMEM;
1068         return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1069                                  newkey, cmd.tcpm_keylen);
1070 }
1071
1072 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1073                                         __be32 daddr, __be32 saddr, int nbytes)
1074 {
1075         struct tcp4_pseudohdr *bp;
1076         struct scatterlist sg;
1077
1078         bp = &hp->md5_blk.ip4;
1079
1080         /*
1081          * 1. the TCP pseudo-header (in the order: source IP address,
1082          * destination IP address, zero-padded protocol number, and
1083          * segment length)
1084          */
1085         bp->saddr = saddr;
1086         bp->daddr = daddr;
1087         bp->pad = 0;
1088         bp->protocol = IPPROTO_TCP;
1089         bp->len = cpu_to_be16(nbytes);
1090
1091         sg_init_one(&sg, bp, sizeof(*bp));
1092         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1093 }
1094
1095 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1096                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1097 {
1098         struct tcp_md5sig_pool *hp;
1099         struct hash_desc *desc;
1100
1101         hp = tcp_get_md5sig_pool();
1102         if (!hp)
1103                 goto clear_hash_noput;
1104         desc = &hp->md5_desc;
1105
1106         if (crypto_hash_init(desc))
1107                 goto clear_hash;
1108         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1109                 goto clear_hash;
1110         if (tcp_md5_hash_header(hp, th))
1111                 goto clear_hash;
1112         if (tcp_md5_hash_key(hp, key))
1113                 goto clear_hash;
1114         if (crypto_hash_final(desc, md5_hash))
1115                 goto clear_hash;
1116
1117         tcp_put_md5sig_pool();
1118         return 0;
1119
1120 clear_hash:
1121         tcp_put_md5sig_pool();
1122 clear_hash_noput:
1123         memset(md5_hash, 0, 16);
1124         return 1;
1125 }
1126
1127 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1128                         const struct sock *sk, const struct request_sock *req,
1129                         const struct sk_buff *skb)
1130 {
1131         struct tcp_md5sig_pool *hp;
1132         struct hash_desc *desc;
1133         const struct tcphdr *th = tcp_hdr(skb);
1134         __be32 saddr, daddr;
1135
1136         if (sk) {
1137                 saddr = inet_sk(sk)->inet_saddr;
1138                 daddr = inet_sk(sk)->inet_daddr;
1139         } else if (req) {
1140                 saddr = inet_rsk(req)->loc_addr;
1141                 daddr = inet_rsk(req)->rmt_addr;
1142         } else {
1143                 const struct iphdr *iph = ip_hdr(skb);
1144                 saddr = iph->saddr;
1145                 daddr = iph->daddr;
1146         }
1147
1148         hp = tcp_get_md5sig_pool();
1149         if (!hp)
1150                 goto clear_hash_noput;
1151         desc = &hp->md5_desc;
1152
1153         if (crypto_hash_init(desc))
1154                 goto clear_hash;
1155
1156         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1157                 goto clear_hash;
1158         if (tcp_md5_hash_header(hp, th))
1159                 goto clear_hash;
1160         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1161                 goto clear_hash;
1162         if (tcp_md5_hash_key(hp, key))
1163                 goto clear_hash;
1164         if (crypto_hash_final(desc, md5_hash))
1165                 goto clear_hash;
1166
1167         tcp_put_md5sig_pool();
1168         return 0;
1169
1170 clear_hash:
1171         tcp_put_md5sig_pool();
1172 clear_hash_noput:
1173         memset(md5_hash, 0, 16);
1174         return 1;
1175 }
1176 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1177
1178 static int tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1179 {
1180         /*
1181          * This gets called for each TCP segment that arrives
1182          * so we want to be efficient.
1183          * We have 3 drop cases:
1184          * o No MD5 hash and one expected.
1185          * o MD5 hash and we're not expecting one.
1186          * o MD5 hash and its wrong.
1187          */
1188         const __u8 *hash_location = NULL;
1189         struct tcp_md5sig_key *hash_expected;
1190         const struct iphdr *iph = ip_hdr(skb);
1191         const struct tcphdr *th = tcp_hdr(skb);
1192         int genhash;
1193         unsigned char newhash[16];
1194
1195         hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1196         hash_location = tcp_parse_md5sig_option(th);
1197
1198         /* We've parsed the options - do we have a hash? */
1199         if (!hash_expected && !hash_location)
1200                 return 0;
1201
1202         if (hash_expected && !hash_location) {
1203                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1204                 return 1;
1205         }
1206
1207         if (!hash_expected && hash_location) {
1208                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1209                 return 1;
1210         }
1211
1212         /* Okay, so this is hash_expected and hash_location -
1213          * so we need to calculate the checksum.
1214          */
1215         genhash = tcp_v4_md5_hash_skb(newhash,
1216                                       hash_expected,
1217                                       NULL, NULL, skb);
1218
1219         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1220                 if (net_ratelimit()) {
1221                         printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1222                                &iph->saddr, ntohs(th->source),
1223                                &iph->daddr, ntohs(th->dest),
1224                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1225                 }
1226                 return 1;
1227         }
1228         return 0;
1229 }
1230
1231 #endif
1232
1233 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1234         .family         =       PF_INET,
1235         .obj_size       =       sizeof(struct tcp_request_sock),
1236         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1237         .send_ack       =       tcp_v4_reqsk_send_ack,
1238         .destructor     =       tcp_v4_reqsk_destructor,
1239         .send_reset     =       tcp_v4_send_reset,
1240         .syn_ack_timeout =      tcp_syn_ack_timeout,
1241 };
1242
1243 #ifdef CONFIG_TCP_MD5SIG
1244 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1245         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1246         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1247 };
1248 #endif
1249
1250 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1251 {
1252         struct tcp_extend_values tmp_ext;
1253         struct tcp_options_received tmp_opt;
1254         const u8 *hash_location;
1255         struct request_sock *req;
1256         struct inet_request_sock *ireq;
1257         struct tcp_sock *tp = tcp_sk(sk);
1258         struct dst_entry *dst = NULL;
1259         __be32 saddr = ip_hdr(skb)->saddr;
1260         __be32 daddr = ip_hdr(skb)->daddr;
1261         __u32 isn = TCP_SKB_CB(skb)->when;
1262         int want_cookie = 0;
1263
1264         /* Never answer to SYNs send to broadcast or multicast */
1265         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1266                 goto drop;
1267
1268         /* TW buckets are converted to open requests without
1269          * limitations, they conserve resources and peer is
1270          * evidently real one.
1271          */
1272         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1273                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1274                 if (!want_cookie)
1275                         goto drop;
1276         }
1277
1278         /* Accept backlog is full. If we have already queued enough
1279          * of warm entries in syn queue, drop request. It is better than
1280          * clogging syn queue with openreqs with exponentially increasing
1281          * timeout.
1282          */
1283         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1284                 goto drop;
1285
1286         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1287         if (!req)
1288                 goto drop;
1289
1290 #ifdef CONFIG_TCP_MD5SIG
1291         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1292 #endif
1293
1294         tcp_clear_options(&tmp_opt);
1295         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1296         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1297         tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1298
1299         if (tmp_opt.cookie_plus > 0 &&
1300             tmp_opt.saw_tstamp &&
1301             !tp->rx_opt.cookie_out_never &&
1302             (sysctl_tcp_cookie_size > 0 ||
1303              (tp->cookie_values != NULL &&
1304               tp->cookie_values->cookie_desired > 0))) {
1305                 u8 *c;
1306                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1307                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1308
1309                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1310                         goto drop_and_release;
1311
1312                 /* Secret recipe starts with IP addresses */
1313                 *mess++ ^= (__force u32)daddr;
1314                 *mess++ ^= (__force u32)saddr;
1315
1316                 /* plus variable length Initiator Cookie */
1317                 c = (u8 *)mess;
1318                 while (l-- > 0)
1319                         *c++ ^= *hash_location++;
1320
1321                 want_cookie = 0;        /* not our kind of cookie */
1322                 tmp_ext.cookie_out_never = 0; /* false */
1323                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1324         } else if (!tp->rx_opt.cookie_in_always) {
1325                 /* redundant indications, but ensure initialization. */
1326                 tmp_ext.cookie_out_never = 1; /* true */
1327                 tmp_ext.cookie_plus = 0;
1328         } else {
1329                 goto drop_and_release;
1330         }
1331         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1332
1333         if (want_cookie && !tmp_opt.saw_tstamp)
1334                 tcp_clear_options(&tmp_opt);
1335
1336         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1337         tcp_openreq_init(req, &tmp_opt, skb);
1338
1339         ireq = inet_rsk(req);
1340         ireq->loc_addr = daddr;
1341         ireq->rmt_addr = saddr;
1342         ireq->no_srccheck = inet_sk(sk)->transparent;
1343         ireq->opt = tcp_v4_save_options(sk, skb);
1344
1345         if (security_inet_conn_request(sk, skb, req))
1346                 goto drop_and_free;
1347
1348         if (!want_cookie || tmp_opt.tstamp_ok)
1349                 TCP_ECN_create_request(req, tcp_hdr(skb));
1350
1351         if (want_cookie) {
1352                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1353                 req->cookie_ts = tmp_opt.tstamp_ok;
1354         } else if (!isn) {
1355                 struct inet_peer *peer = NULL;
1356                 struct flowi4 fl4;
1357
1358                 /* VJ's idea. We save last timestamp seen
1359                  * from the destination in peer table, when entering
1360                  * state TIME-WAIT, and check against it before
1361                  * accepting new connection request.
1362                  *
1363                  * If "isn" is not zero, this request hit alive
1364                  * timewait bucket, so that all the necessary checks
1365                  * are made in the function processing timewait state.
1366                  */
1367                 if (tmp_opt.saw_tstamp &&
1368                     tcp_death_row.sysctl_tw_recycle &&
1369                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1370                     fl4.daddr == saddr &&
1371                     (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1372                         inet_peer_refcheck(peer);
1373                         if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1374                             (s32)(peer->tcp_ts - req->ts_recent) >
1375                                                         TCP_PAWS_WINDOW) {
1376                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1377                                 goto drop_and_release;
1378                         }
1379                 }
1380                 /* Kill the following clause, if you dislike this way. */
1381                 else if (!sysctl_tcp_syncookies &&
1382                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1383                           (sysctl_max_syn_backlog >> 2)) &&
1384                          (!peer || !peer->tcp_ts_stamp) &&
1385                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1386                         /* Without syncookies last quarter of
1387                          * backlog is filled with destinations,
1388                          * proven to be alive.
1389                          * It means that we continue to communicate
1390                          * to destinations, already remembered
1391                          * to the moment of synflood.
1392                          */
1393                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1394                                        &saddr, ntohs(tcp_hdr(skb)->source));
1395                         goto drop_and_release;
1396                 }
1397
1398                 isn = tcp_v4_init_sequence(skb);
1399         }
1400         tcp_rsk(req)->snt_isn = isn;
1401         tcp_rsk(req)->snt_synack = tcp_time_stamp;
1402
1403         if (tcp_v4_send_synack(sk, dst, req,
1404                                (struct request_values *)&tmp_ext) ||
1405             want_cookie)
1406                 goto drop_and_free;
1407
1408         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1409         return 0;
1410
1411 drop_and_release:
1412         dst_release(dst);
1413 drop_and_free:
1414         reqsk_free(req);
1415 drop:
1416         return 0;
1417 }
1418 EXPORT_SYMBOL(tcp_v4_conn_request);
1419
1420
1421 /*
1422  * The three way handshake has completed - we got a valid synack -
1423  * now create the new socket.
1424  */
1425 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1426                                   struct request_sock *req,
1427                                   struct dst_entry *dst)
1428 {
1429         struct inet_request_sock *ireq;
1430         struct inet_sock *newinet;
1431         struct tcp_sock *newtp;
1432         struct sock *newsk;
1433 #ifdef CONFIG_TCP_MD5SIG
1434         struct tcp_md5sig_key *key;
1435 #endif
1436         struct ip_options_rcu *inet_opt;
1437
1438         if (sk_acceptq_is_full(sk))
1439                 goto exit_overflow;
1440
1441         newsk = tcp_create_openreq_child(sk, req, skb);
1442         if (!newsk)
1443                 goto exit_nonewsk;
1444
1445         newsk->sk_gso_type = SKB_GSO_TCPV4;
1446
1447         newtp                 = tcp_sk(newsk);
1448         newinet               = inet_sk(newsk);
1449         ireq                  = inet_rsk(req);
1450         newinet->inet_daddr   = ireq->rmt_addr;
1451         newinet->inet_rcv_saddr = ireq->loc_addr;
1452         newinet->inet_saddr           = ireq->loc_addr;
1453         inet_opt              = ireq->opt;
1454         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1455         ireq->opt             = NULL;
1456         newinet->mc_index     = inet_iif(skb);
1457         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1458         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1459         if (inet_opt)
1460                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1461         newinet->inet_id = newtp->write_seq ^ jiffies;
1462
1463         if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1464                 goto put_and_exit;
1465
1466         sk_setup_caps(newsk, dst);
1467
1468         tcp_mtup_init(newsk);
1469         tcp_sync_mss(newsk, dst_mtu(dst));
1470         newtp->advmss = dst_metric_advmss(dst);
1471         if (tcp_sk(sk)->rx_opt.user_mss &&
1472             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1473                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1474
1475         tcp_initialize_rcv_mss(newsk);
1476         if (tcp_rsk(req)->snt_synack)
1477                 tcp_valid_rtt_meas(newsk,
1478                     tcp_time_stamp - tcp_rsk(req)->snt_synack);
1479         newtp->total_retrans = req->retrans;
1480
1481 #ifdef CONFIG_TCP_MD5SIG
1482         /* Copy over the MD5 key from the original socket */
1483         key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1484         if (key != NULL) {
1485                 /*
1486                  * We're using one, so create a matching key
1487                  * on the newsk structure. If we fail to get
1488                  * memory, then we end up not copying the key
1489                  * across. Shucks.
1490                  */
1491                 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1492                 if (newkey != NULL)
1493                         tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1494                                           newkey, key->keylen);
1495                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1496         }
1497 #endif
1498
1499         if (__inet_inherit_port(sk, newsk) < 0)
1500                 goto put_and_exit;
1501         __inet_hash_nolisten(newsk, NULL);
1502
1503         return newsk;
1504
1505 exit_overflow:
1506         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1507 exit_nonewsk:
1508         dst_release(dst);
1509 exit:
1510         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1511         return NULL;
1512 put_and_exit:
1513         tcp_clear_xmit_timers(newsk);
1514         bh_unlock_sock(newsk);
1515         sock_put(newsk);
1516         goto exit;
1517 }
1518 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1519
1520 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1521 {
1522         struct tcphdr *th = tcp_hdr(skb);
1523         const struct iphdr *iph = ip_hdr(skb);
1524         struct sock *nsk;
1525         struct request_sock **prev;
1526         /* Find possible connection requests. */
1527         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1528                                                        iph->saddr, iph->daddr);
1529         if (req)
1530                 return tcp_check_req(sk, skb, req, prev);
1531
1532         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1533                         th->source, iph->daddr, th->dest, inet_iif(skb));
1534
1535         if (nsk) {
1536                 if (nsk->sk_state != TCP_TIME_WAIT) {
1537                         bh_lock_sock(nsk);
1538                         return nsk;
1539                 }
1540                 inet_twsk_put(inet_twsk(nsk));
1541                 return NULL;
1542         }
1543
1544 #ifdef CONFIG_SYN_COOKIES
1545         if (!th->syn)
1546                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1547 #endif
1548         return sk;
1549 }
1550
1551 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1552 {
1553         const struct iphdr *iph = ip_hdr(skb);
1554
1555         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1556                 if (!tcp_v4_check(skb->len, iph->saddr,
1557                                   iph->daddr, skb->csum)) {
1558                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1559                         return 0;
1560                 }
1561         }
1562
1563         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1564                                        skb->len, IPPROTO_TCP, 0);
1565
1566         if (skb->len <= 76) {
1567                 return __skb_checksum_complete(skb);
1568         }
1569         return 0;
1570 }
1571
1572
1573 /* The socket must have it's spinlock held when we get
1574  * here.
1575  *
1576  * We have a potential double-lock case here, so even when
1577  * doing backlog processing we use the BH locking scheme.
1578  * This is because we cannot sleep with the original spinlock
1579  * held.
1580  */
1581 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1582 {
1583         struct sock *rsk;
1584 #ifdef CONFIG_TCP_MD5SIG
1585         /*
1586          * We really want to reject the packet as early as possible
1587          * if:
1588          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1589          *  o There is an MD5 option and we're not expecting one
1590          */
1591         if (tcp_v4_inbound_md5_hash(sk, skb))
1592                 goto discard;
1593 #endif
1594
1595         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1596                 sock_rps_save_rxhash(sk, skb);
1597                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1598                         rsk = sk;
1599                         goto reset;
1600                 }
1601                 return 0;
1602         }
1603
1604         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1605                 goto csum_err;
1606
1607         if (sk->sk_state == TCP_LISTEN) {
1608                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1609                 if (!nsk)
1610                         goto discard;
1611
1612                 if (nsk != sk) {
1613                         sock_rps_save_rxhash(nsk, skb);
1614                         if (tcp_child_process(sk, nsk, skb)) {
1615                                 rsk = nsk;
1616                                 goto reset;
1617                         }
1618                         return 0;
1619                 }
1620         } else
1621                 sock_rps_save_rxhash(sk, skb);
1622
1623         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1624                 rsk = sk;
1625                 goto reset;
1626         }
1627         return 0;
1628
1629 reset:
1630         tcp_v4_send_reset(rsk, skb);
1631 discard:
1632         kfree_skb(skb);
1633         /* Be careful here. If this function gets more complicated and
1634          * gcc suffers from register pressure on the x86, sk (in %ebx)
1635          * might be destroyed here. This current version compiles correctly,
1636          * but you have been warned.
1637          */
1638         return 0;
1639
1640 csum_err:
1641         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1642         goto discard;
1643 }
1644 EXPORT_SYMBOL(tcp_v4_do_rcv);
1645
1646 /*
1647  *      From tcp_input.c
1648  */
1649
1650 int tcp_v4_rcv(struct sk_buff *skb)
1651 {
1652         const struct iphdr *iph;
1653         const struct tcphdr *th;
1654         struct sock *sk;
1655         int ret;
1656         struct net *net = dev_net(skb->dev);
1657
1658         if (skb->pkt_type != PACKET_HOST)
1659                 goto discard_it;
1660
1661         /* Count it even if it's bad */
1662         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1663
1664         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1665                 goto discard_it;
1666
1667         th = tcp_hdr(skb);
1668
1669         if (th->doff < sizeof(struct tcphdr) / 4)
1670                 goto bad_packet;
1671         if (!pskb_may_pull(skb, th->doff * 4))
1672                 goto discard_it;
1673
1674         /* An explanation is required here, I think.
1675          * Packet length and doff are validated by header prediction,
1676          * provided case of th->doff==0 is eliminated.
1677          * So, we defer the checks. */
1678         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1679                 goto bad_packet;
1680
1681         th = tcp_hdr(skb);
1682         iph = ip_hdr(skb);
1683         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1684         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1685                                     skb->len - th->doff * 4);
1686         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1687         TCP_SKB_CB(skb)->when    = 0;
1688         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1689         TCP_SKB_CB(skb)->sacked  = 0;
1690
1691         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1692         if (!sk)
1693                 goto no_tcp_socket;
1694
1695 process:
1696         if (sk->sk_state == TCP_TIME_WAIT)
1697                 goto do_time_wait;
1698
1699         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1700                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1701                 goto discard_and_relse;
1702         }
1703
1704         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1705                 goto discard_and_relse;
1706         nf_reset(skb);
1707
1708         if (sk_filter(sk, skb))
1709                 goto discard_and_relse;
1710
1711         skb->dev = NULL;
1712
1713         bh_lock_sock_nested(sk);
1714         ret = 0;
1715         if (!sock_owned_by_user(sk)) {
1716 #ifdef CONFIG_NET_DMA
1717                 struct tcp_sock *tp = tcp_sk(sk);
1718                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1719                         tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1720                 if (tp->ucopy.dma_chan)
1721                         ret = tcp_v4_do_rcv(sk, skb);
1722                 else
1723 #endif
1724                 {
1725                         if (!tcp_prequeue(sk, skb))
1726                                 ret = tcp_v4_do_rcv(sk, skb);
1727                 }
1728         } else if (unlikely(sk_add_backlog(sk, skb))) {
1729                 bh_unlock_sock(sk);
1730                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1731                 goto discard_and_relse;
1732         }
1733         bh_unlock_sock(sk);
1734
1735         sock_put(sk);
1736
1737         return ret;
1738
1739 no_tcp_socket:
1740         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1741                 goto discard_it;
1742
1743         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1744 bad_packet:
1745                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1746         } else {
1747                 tcp_v4_send_reset(NULL, skb);
1748         }
1749
1750 discard_it:
1751         /* Discard frame. */
1752         kfree_skb(skb);
1753         return 0;
1754
1755 discard_and_relse:
1756         sock_put(sk);
1757         goto discard_it;
1758
1759 do_time_wait:
1760         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1761                 inet_twsk_put(inet_twsk(sk));
1762                 goto discard_it;
1763         }
1764
1765         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1766                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1767                 inet_twsk_put(inet_twsk(sk));
1768                 goto discard_it;
1769         }
1770         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1771         case TCP_TW_SYN: {
1772                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1773                                                         &tcp_hashinfo,
1774                                                         iph->daddr, th->dest,
1775                                                         inet_iif(skb));
1776                 if (sk2) {
1777                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1778                         inet_twsk_put(inet_twsk(sk));
1779                         sk = sk2;
1780                         goto process;
1781                 }
1782                 /* Fall through to ACK */
1783         }
1784         case TCP_TW_ACK:
1785                 tcp_v4_timewait_ack(sk, skb);
1786                 break;
1787         case TCP_TW_RST:
1788                 goto no_tcp_socket;
1789         case TCP_TW_SUCCESS:;
1790         }
1791         goto discard_it;
1792 }
1793
1794 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1795 {
1796         struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1797         struct inet_sock *inet = inet_sk(sk);
1798         struct inet_peer *peer;
1799
1800         if (!rt ||
1801             inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1802                 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1803                 *release_it = true;
1804         } else {
1805                 if (!rt->peer)
1806                         rt_bind_peer(rt, inet->inet_daddr, 1);
1807                 peer = rt->peer;
1808                 *release_it = false;
1809         }
1810
1811         return peer;
1812 }
1813 EXPORT_SYMBOL(tcp_v4_get_peer);
1814
1815 void *tcp_v4_tw_get_peer(struct sock *sk)
1816 {
1817         const struct inet_timewait_sock *tw = inet_twsk(sk);
1818
1819         return inet_getpeer_v4(tw->tw_daddr, 1);
1820 }
1821 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1822
1823 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1824         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1825         .twsk_unique    = tcp_twsk_unique,
1826         .twsk_destructor= tcp_twsk_destructor,
1827         .twsk_getpeer   = tcp_v4_tw_get_peer,
1828 };
1829
1830 const struct inet_connection_sock_af_ops ipv4_specific = {
1831         .queue_xmit        = ip_queue_xmit,
1832         .send_check        = tcp_v4_send_check,
1833         .rebuild_header    = inet_sk_rebuild_header,
1834         .conn_request      = tcp_v4_conn_request,
1835         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1836         .get_peer          = tcp_v4_get_peer,
1837         .net_header_len    = sizeof(struct iphdr),
1838         .setsockopt        = ip_setsockopt,
1839         .getsockopt        = ip_getsockopt,
1840         .addr2sockaddr     = inet_csk_addr2sockaddr,
1841         .sockaddr_len      = sizeof(struct sockaddr_in),
1842         .bind_conflict     = inet_csk_bind_conflict,
1843 #ifdef CONFIG_COMPAT
1844         .compat_setsockopt = compat_ip_setsockopt,
1845         .compat_getsockopt = compat_ip_getsockopt,
1846 #endif
1847 };
1848 EXPORT_SYMBOL(ipv4_specific);
1849
1850 #ifdef CONFIG_TCP_MD5SIG
1851 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1852         .md5_lookup             = tcp_v4_md5_lookup,
1853         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1854         .md5_add                = tcp_v4_md5_add_func,
1855         .md5_parse              = tcp_v4_parse_md5_keys,
1856 };
1857 #endif
1858
1859 /* NOTE: A lot of things set to zero explicitly by call to
1860  *       sk_alloc() so need not be done here.
1861  */
1862 static int tcp_v4_init_sock(struct sock *sk)
1863 {
1864         struct inet_connection_sock *icsk = inet_csk(sk);
1865         struct tcp_sock *tp = tcp_sk(sk);
1866
1867         skb_queue_head_init(&tp->out_of_order_queue);
1868         tcp_init_xmit_timers(sk);
1869         tcp_prequeue_init(tp);
1870
1871         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1872         tp->mdev = TCP_TIMEOUT_INIT;
1873
1874         /* So many TCP implementations out there (incorrectly) count the
1875          * initial SYN frame in their delayed-ACK and congestion control
1876          * algorithms that we must have the following bandaid to talk
1877          * efficiently to them.  -DaveM
1878          */
1879         tp->snd_cwnd = TCP_INIT_CWND;
1880
1881         /* See draft-stevens-tcpca-spec-01 for discussion of the
1882          * initialization of these values.
1883          */
1884         tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1885         tp->snd_cwnd_clamp = ~0;
1886         tp->mss_cache = TCP_MSS_DEFAULT;
1887
1888         tp->reordering = sysctl_tcp_reordering;
1889         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1890
1891         sk->sk_state = TCP_CLOSE;
1892
1893         sk->sk_write_space = sk_stream_write_space;
1894         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1895
1896         icsk->icsk_af_ops = &ipv4_specific;
1897         icsk->icsk_sync_mss = tcp_sync_mss;
1898 #ifdef CONFIG_TCP_MD5SIG
1899         tp->af_specific = &tcp_sock_ipv4_specific;
1900 #endif
1901
1902         /* TCP Cookie Transactions */
1903         if (sysctl_tcp_cookie_size > 0) {
1904                 /* Default, cookies without s_data_payload. */
1905                 tp->cookie_values =
1906                         kzalloc(sizeof(*tp->cookie_values),
1907                                 sk->sk_allocation);
1908                 if (tp->cookie_values != NULL)
1909                         kref_init(&tp->cookie_values->kref);
1910         }
1911         /* Presumed zeroed, in order of appearance:
1912          *      cookie_in_always, cookie_out_never,
1913          *      s_data_constant, s_data_in, s_data_out
1914          */
1915         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1916         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1917
1918         local_bh_disable();
1919         percpu_counter_inc(&tcp_sockets_allocated);
1920         local_bh_enable();
1921
1922         return 0;
1923 }
1924
1925 void tcp_v4_destroy_sock(struct sock *sk)
1926 {
1927         struct tcp_sock *tp = tcp_sk(sk);
1928
1929         tcp_clear_xmit_timers(sk);
1930
1931         tcp_cleanup_congestion_control(sk);
1932
1933         /* Cleanup up the write buffer. */
1934         tcp_write_queue_purge(sk);
1935
1936         /* Cleans up our, hopefully empty, out_of_order_queue. */
1937         __skb_queue_purge(&tp->out_of_order_queue);
1938
1939 #ifdef CONFIG_TCP_MD5SIG
1940         /* Clean up the MD5 key list, if any */
1941         if (tp->md5sig_info) {
1942                 tcp_v4_clear_md5_list(sk);
1943                 kfree(tp->md5sig_info);
1944                 tp->md5sig_info = NULL;
1945         }
1946 #endif
1947
1948 #ifdef CONFIG_NET_DMA
1949         /* Cleans up our sk_async_wait_queue */
1950         __skb_queue_purge(&sk->sk_async_wait_queue);
1951 #endif
1952
1953         /* Clean prequeue, it must be empty really */
1954         __skb_queue_purge(&tp->ucopy.prequeue);
1955
1956         /* Clean up a referenced TCP bind bucket. */
1957         if (inet_csk(sk)->icsk_bind_hash)
1958                 inet_put_port(sk);
1959
1960         /*
1961          * If sendmsg cached page exists, toss it.
1962          */
1963         if (sk->sk_sndmsg_page) {
1964                 __free_page(sk->sk_sndmsg_page);
1965                 sk->sk_sndmsg_page = NULL;
1966         }
1967
1968         /* TCP Cookie Transactions */
1969         if (tp->cookie_values != NULL) {
1970                 kref_put(&tp->cookie_values->kref,
1971                          tcp_cookie_values_release);
1972                 tp->cookie_values = NULL;
1973         }
1974
1975         percpu_counter_dec(&tcp_sockets_allocated);
1976 }
1977 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1978
1979 #ifdef CONFIG_PROC_FS
1980 /* Proc filesystem TCP sock list dumping. */
1981
1982 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1983 {
1984         return hlist_nulls_empty(head) ? NULL :
1985                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1986 }
1987
1988 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1989 {
1990         return !is_a_nulls(tw->tw_node.next) ?
1991                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1992 }
1993
1994 /*
1995  * Get next listener socket follow cur.  If cur is NULL, get first socket
1996  * starting from bucket given in st->bucket; when st->bucket is zero the
1997  * very first socket in the hash table is returned.
1998  */
1999 static void *listening_get_next(struct seq_file *seq, void *cur)
2000 {
2001         struct inet_connection_sock *icsk;
2002         struct hlist_nulls_node *node;
2003         struct sock *sk = cur;
2004         struct inet_listen_hashbucket *ilb;
2005         struct tcp_iter_state *st = seq->private;
2006         struct net *net = seq_file_net(seq);
2007
2008         if (!sk) {
2009                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2010                 spin_lock_bh(&ilb->lock);
2011                 sk = sk_nulls_head(&ilb->head);
2012                 st->offset = 0;
2013                 goto get_sk;
2014         }
2015         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2016         ++st->num;
2017         ++st->offset;
2018
2019         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2020                 struct request_sock *req = cur;
2021
2022                 icsk = inet_csk(st->syn_wait_sk);
2023                 req = req->dl_next;
2024                 while (1) {
2025                         while (req) {
2026                                 if (req->rsk_ops->family == st->family) {
2027                                         cur = req;
2028                                         goto out;
2029                                 }
2030                                 req = req->dl_next;
2031                         }
2032                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2033                                 break;
2034 get_req:
2035                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2036                 }
2037                 sk        = sk_nulls_next(st->syn_wait_sk);
2038                 st->state = TCP_SEQ_STATE_LISTENING;
2039                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2040         } else {
2041                 icsk = inet_csk(sk);
2042                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2043                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2044                         goto start_req;
2045                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2046                 sk = sk_nulls_next(sk);
2047         }
2048 get_sk:
2049         sk_nulls_for_each_from(sk, node) {
2050                 if (!net_eq(sock_net(sk), net))
2051                         continue;
2052                 if (sk->sk_family == st->family) {
2053                         cur = sk;
2054                         goto out;
2055                 }
2056                 icsk = inet_csk(sk);
2057                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2058                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2059 start_req:
2060                         st->uid         = sock_i_uid(sk);
2061                         st->syn_wait_sk = sk;
2062                         st->state       = TCP_SEQ_STATE_OPENREQ;
2063                         st->sbucket     = 0;
2064                         goto get_req;
2065                 }
2066                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2067         }
2068         spin_unlock_bh(&ilb->lock);
2069         st->offset = 0;
2070         if (++st->bucket < INET_LHTABLE_SIZE) {
2071                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2072                 spin_lock_bh(&ilb->lock);
2073                 sk = sk_nulls_head(&ilb->head);
2074                 goto get_sk;
2075         }
2076         cur = NULL;
2077 out:
2078         return cur;
2079 }
2080
2081 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2082 {
2083         struct tcp_iter_state *st = seq->private;
2084         void *rc;
2085
2086         st->bucket = 0;
2087         st->offset = 0;
2088         rc = listening_get_next(seq, NULL);
2089
2090         while (rc && *pos) {
2091                 rc = listening_get_next(seq, rc);
2092                 --*pos;
2093         }
2094         return rc;
2095 }
2096
2097 static inline int empty_bucket(struct tcp_iter_state *st)
2098 {
2099         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2100                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2101 }
2102
2103 /*
2104  * Get first established socket starting from bucket given in st->bucket.
2105  * If st->bucket is zero, the very first socket in the hash is returned.
2106  */
2107 static void *established_get_first(struct seq_file *seq)
2108 {
2109         struct tcp_iter_state *st = seq->private;
2110         struct net *net = seq_file_net(seq);
2111         void *rc = NULL;
2112
2113         st->offset = 0;
2114         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2115                 struct sock *sk;
2116                 struct hlist_nulls_node *node;
2117                 struct inet_timewait_sock *tw;
2118                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2119
2120                 /* Lockless fast path for the common case of empty buckets */
2121                 if (empty_bucket(st))
2122                         continue;
2123
2124                 spin_lock_bh(lock);
2125                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2126                         if (sk->sk_family != st->family ||
2127                             !net_eq(sock_net(sk), net)) {
2128                                 continue;
2129                         }
2130                         rc = sk;
2131                         goto out;
2132                 }
2133                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2134                 inet_twsk_for_each(tw, node,
2135                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2136                         if (tw->tw_family != st->family ||
2137                             !net_eq(twsk_net(tw), net)) {
2138                                 continue;
2139                         }
2140                         rc = tw;
2141                         goto out;
2142                 }
2143                 spin_unlock_bh(lock);
2144                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2145         }
2146 out:
2147         return rc;
2148 }
2149
2150 static void *established_get_next(struct seq_file *seq, void *cur)
2151 {
2152         struct sock *sk = cur;
2153         struct inet_timewait_sock *tw;
2154         struct hlist_nulls_node *node;
2155         struct tcp_iter_state *st = seq->private;
2156         struct net *net = seq_file_net(seq);
2157
2158         ++st->num;
2159         ++st->offset;
2160
2161         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2162                 tw = cur;
2163                 tw = tw_next(tw);
2164 get_tw:
2165                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2166                         tw = tw_next(tw);
2167                 }
2168                 if (tw) {
2169                         cur = tw;
2170                         goto out;
2171                 }
2172                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2173                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2174
2175                 /* Look for next non empty bucket */
2176                 st->offset = 0;
2177                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2178                                 empty_bucket(st))
2179                         ;
2180                 if (st->bucket > tcp_hashinfo.ehash_mask)
2181                         return NULL;
2182
2183                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2184                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2185         } else
2186                 sk = sk_nulls_next(sk);
2187
2188         sk_nulls_for_each_from(sk, node) {
2189                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2190                         goto found;
2191         }
2192
2193         st->state = TCP_SEQ_STATE_TIME_WAIT;
2194         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2195         goto get_tw;
2196 found:
2197         cur = sk;
2198 out:
2199         return cur;
2200 }
2201
2202 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2203 {
2204         struct tcp_iter_state *st = seq->private;
2205         void *rc;
2206
2207         st->bucket = 0;
2208         rc = established_get_first(seq);
2209
2210         while (rc && pos) {
2211                 rc = established_get_next(seq, rc);
2212                 --pos;
2213         }
2214         return rc;
2215 }
2216
2217 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2218 {
2219         void *rc;
2220         struct tcp_iter_state *st = seq->private;
2221
2222         st->state = TCP_SEQ_STATE_LISTENING;
2223         rc        = listening_get_idx(seq, &pos);
2224
2225         if (!rc) {
2226                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2227                 rc        = established_get_idx(seq, pos);
2228         }
2229
2230         return rc;
2231 }
2232
2233 static void *tcp_seek_last_pos(struct seq_file *seq)
2234 {
2235         struct tcp_iter_state *st = seq->private;
2236         int offset = st->offset;
2237         int orig_num = st->num;
2238         void *rc = NULL;
2239
2240         switch (st->state) {
2241         case TCP_SEQ_STATE_OPENREQ:
2242         case TCP_SEQ_STATE_LISTENING:
2243                 if (st->bucket >= INET_LHTABLE_SIZE)
2244                         break;
2245                 st->state = TCP_SEQ_STATE_LISTENING;
2246                 rc = listening_get_next(seq, NULL);
2247                 while (offset-- && rc)
2248                         rc = listening_get_next(seq, rc);
2249                 if (rc)
2250                         break;
2251                 st->bucket = 0;
2252                 /* Fallthrough */
2253         case TCP_SEQ_STATE_ESTABLISHED:
2254         case TCP_SEQ_STATE_TIME_WAIT:
2255                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2256                 if (st->bucket > tcp_hashinfo.ehash_mask)
2257                         break;
2258                 rc = established_get_first(seq);
2259                 while (offset-- && rc)
2260                         rc = established_get_next(seq, rc);
2261         }
2262
2263         st->num = orig_num;
2264
2265         return rc;
2266 }
2267
2268 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2269 {
2270         struct tcp_iter_state *st = seq->private;
2271         void *rc;
2272
2273         if (*pos && *pos == st->last_pos) {
2274                 rc = tcp_seek_last_pos(seq);
2275                 if (rc)
2276                         goto out;
2277         }
2278
2279         st->state = TCP_SEQ_STATE_LISTENING;
2280         st->num = 0;
2281         st->bucket = 0;
2282         st->offset = 0;
2283         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2284
2285 out:
2286         st->last_pos = *pos;
2287         return rc;
2288 }
2289
2290 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2291 {
2292         struct tcp_iter_state *st = seq->private;
2293         void *rc = NULL;
2294
2295         if (v == SEQ_START_TOKEN) {
2296                 rc = tcp_get_idx(seq, 0);
2297                 goto out;
2298         }
2299
2300         switch (st->state) {
2301         case TCP_SEQ_STATE_OPENREQ:
2302         case TCP_SEQ_STATE_LISTENING:
2303                 rc = listening_get_next(seq, v);
2304                 if (!rc) {
2305                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2306                         st->bucket = 0;
2307                         st->offset = 0;
2308                         rc        = established_get_first(seq);
2309                 }
2310                 break;
2311         case TCP_SEQ_STATE_ESTABLISHED:
2312         case TCP_SEQ_STATE_TIME_WAIT:
2313                 rc = established_get_next(seq, v);
2314                 break;
2315         }
2316 out:
2317         ++*pos;
2318         st->last_pos = *pos;
2319         return rc;
2320 }
2321
2322 static void tcp_seq_stop(struct seq_file *seq, void *v)
2323 {
2324         struct tcp_iter_state *st = seq->private;
2325
2326         switch (st->state) {
2327         case TCP_SEQ_STATE_OPENREQ:
2328                 if (v) {
2329                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2330                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2331                 }
2332         case TCP_SEQ_STATE_LISTENING:
2333                 if (v != SEQ_START_TOKEN)
2334                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2335                 break;
2336         case TCP_SEQ_STATE_TIME_WAIT:
2337         case TCP_SEQ_STATE_ESTABLISHED:
2338                 if (v)
2339                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2340                 break;
2341         }
2342 }
2343
2344 int tcp_seq_open(struct inode *inode, struct file *file)
2345 {
2346         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2347         struct tcp_iter_state *s;
2348         int err;
2349
2350         err = seq_open_net(inode, file, &afinfo->seq_ops,
2351                           sizeof(struct tcp_iter_state));
2352         if (err < 0)
2353                 return err;
2354
2355         s = ((struct seq_file *)file->private_data)->private;
2356         s->family               = afinfo->family;
2357         s->last_pos             = 0;
2358         return 0;
2359 }
2360 EXPORT_SYMBOL(tcp_seq_open);
2361
2362 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2363 {
2364         int rc = 0;
2365         struct proc_dir_entry *p;
2366
2367         afinfo->seq_ops.start           = tcp_seq_start;
2368         afinfo->seq_ops.next            = tcp_seq_next;
2369         afinfo->seq_ops.stop            = tcp_seq_stop;
2370
2371         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2372                              afinfo->seq_fops, afinfo);
2373         if (!p)
2374                 rc = -ENOMEM;
2375         return rc;
2376 }
2377 EXPORT_SYMBOL(tcp_proc_register);
2378
2379 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2380 {
2381         proc_net_remove(net, afinfo->name);
2382 }
2383 EXPORT_SYMBOL(tcp_proc_unregister);
2384
2385 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2386                          struct seq_file *f, int i, int uid, int *len)
2387 {
2388         const struct inet_request_sock *ireq = inet_rsk(req);
2389         int ttd = req->expires - jiffies;
2390
2391         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2392                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2393                 i,
2394                 ireq->loc_addr,
2395                 ntohs(inet_sk(sk)->inet_sport),
2396                 ireq->rmt_addr,
2397                 ntohs(ireq->rmt_port),
2398                 TCP_SYN_RECV,
2399                 0, 0, /* could print option size, but that is af dependent. */
2400                 1,    /* timers active (only the expire timer) */
2401                 jiffies_to_clock_t(ttd),
2402                 req->retrans,
2403                 uid,
2404                 0,  /* non standard timer */
2405                 0, /* open_requests have no inode */
2406                 atomic_read(&sk->sk_refcnt),
2407                 req,
2408                 len);
2409 }
2410
2411 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2412 {
2413         int timer_active;
2414         unsigned long timer_expires;
2415         const struct tcp_sock *tp = tcp_sk(sk);
2416         const struct inet_connection_sock *icsk = inet_csk(sk);
2417         const struct inet_sock *inet = inet_sk(sk);
2418         __be32 dest = inet->inet_daddr;
2419         __be32 src = inet->inet_rcv_saddr;
2420         __u16 destp = ntohs(inet->inet_dport);
2421         __u16 srcp = ntohs(inet->inet_sport);
2422         int rx_queue;
2423
2424         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2425                 timer_active    = 1;
2426                 timer_expires   = icsk->icsk_timeout;
2427         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2428                 timer_active    = 4;
2429                 timer_expires   = icsk->icsk_timeout;
2430         } else if (timer_pending(&sk->sk_timer)) {
2431                 timer_active    = 2;
2432                 timer_expires   = sk->sk_timer.expires;
2433         } else {
2434                 timer_active    = 0;
2435                 timer_expires = jiffies;
2436         }
2437
2438         if (sk->sk_state == TCP_LISTEN)
2439                 rx_queue = sk->sk_ack_backlog;
2440         else
2441                 /*
2442                  * because we dont lock socket, we might find a transient negative value
2443                  */
2444                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2445
2446         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2447                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2448                 i, src, srcp, dest, destp, sk->sk_state,
2449                 tp->write_seq - tp->snd_una,
2450                 rx_queue,
2451                 timer_active,
2452                 jiffies_to_clock_t(timer_expires - jiffies),
2453                 icsk->icsk_retransmits,
2454                 sock_i_uid(sk),
2455                 icsk->icsk_probes_out,
2456                 sock_i_ino(sk),
2457                 atomic_read(&sk->sk_refcnt), sk,
2458                 jiffies_to_clock_t(icsk->icsk_rto),
2459                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2460                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2461                 tp->snd_cwnd,
2462                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2463                 len);
2464 }
2465
2466 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2467                                struct seq_file *f, int i, int *len)
2468 {
2469         __be32 dest, src;
2470         __u16 destp, srcp;
2471         int ttd = tw->tw_ttd - jiffies;
2472
2473         if (ttd < 0)
2474                 ttd = 0;
2475
2476         dest  = tw->tw_daddr;
2477         src   = tw->tw_rcv_saddr;
2478         destp = ntohs(tw->tw_dport);
2479         srcp  = ntohs(tw->tw_sport);
2480
2481         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2482                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2483                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2484                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2485                 atomic_read(&tw->tw_refcnt), tw, len);
2486 }
2487
2488 #define TMPSZ 150
2489
2490 static int tcp4_seq_show(struct seq_file *seq, void *v)
2491 {
2492         struct tcp_iter_state *st;
2493         int len;
2494
2495         if (v == SEQ_START_TOKEN) {
2496                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2497                            "  sl  local_address rem_address   st tx_queue "
2498                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2499                            "inode");
2500                 goto out;
2501         }
2502         st = seq->private;
2503
2504         switch (st->state) {
2505         case TCP_SEQ_STATE_LISTENING:
2506         case TCP_SEQ_STATE_ESTABLISHED:
2507                 get_tcp4_sock(v, seq, st->num, &len);
2508                 break;
2509         case TCP_SEQ_STATE_OPENREQ:
2510                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2511                 break;
2512         case TCP_SEQ_STATE_TIME_WAIT:
2513                 get_timewait4_sock(v, seq, st->num, &len);
2514                 break;
2515         }
2516         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2517 out:
2518         return 0;
2519 }
2520
2521 static const struct file_operations tcp_afinfo_seq_fops = {
2522         .owner   = THIS_MODULE,
2523         .open    = tcp_seq_open,
2524         .read    = seq_read,
2525         .llseek  = seq_lseek,
2526         .release = seq_release_net
2527 };
2528
2529 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2530         .name           = "tcp",
2531         .family         = AF_INET,
2532         .seq_fops       = &tcp_afinfo_seq_fops,
2533         .seq_ops        = {
2534                 .show           = tcp4_seq_show,
2535         },
2536 };
2537
2538 static int __net_init tcp4_proc_init_net(struct net *net)
2539 {
2540         return tcp_proc_register(net, &tcp4_seq_afinfo);
2541 }
2542
2543 static void __net_exit tcp4_proc_exit_net(struct net *net)
2544 {
2545         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2546 }
2547
2548 static struct pernet_operations tcp4_net_ops = {
2549         .init = tcp4_proc_init_net,
2550         .exit = tcp4_proc_exit_net,
2551 };
2552
2553 int __init tcp4_proc_init(void)
2554 {
2555         return register_pernet_subsys(&tcp4_net_ops);
2556 }
2557
2558 void tcp4_proc_exit(void)
2559 {
2560         unregister_pernet_subsys(&tcp4_net_ops);
2561 }
2562 #endif /* CONFIG_PROC_FS */
2563
2564 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2565 {
2566         const struct iphdr *iph = skb_gro_network_header(skb);
2567
2568         switch (skb->ip_summed) {
2569         case CHECKSUM_COMPLETE:
2570                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2571                                   skb->csum)) {
2572                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2573                         break;
2574                 }
2575
2576                 /* fall through */
2577         case CHECKSUM_NONE:
2578                 NAPI_GRO_CB(skb)->flush = 1;
2579                 return NULL;
2580         }
2581
2582         return tcp_gro_receive(head, skb);
2583 }
2584
2585 int tcp4_gro_complete(struct sk_buff *skb)
2586 {
2587         const struct iphdr *iph = ip_hdr(skb);
2588         struct tcphdr *th = tcp_hdr(skb);
2589
2590         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2591                                   iph->saddr, iph->daddr, 0);
2592         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2593
2594         return tcp_gro_complete(skb);
2595 }
2596
2597 struct proto tcp_prot = {
2598         .name                   = "TCP",
2599         .owner                  = THIS_MODULE,
2600         .close                  = tcp_close,
2601         .connect                = tcp_v4_connect,
2602         .disconnect             = tcp_disconnect,
2603         .accept                 = inet_csk_accept,
2604         .ioctl                  = tcp_ioctl,
2605         .init                   = tcp_v4_init_sock,
2606         .destroy                = tcp_v4_destroy_sock,
2607         .shutdown               = tcp_shutdown,
2608         .setsockopt             = tcp_setsockopt,
2609         .getsockopt             = tcp_getsockopt,
2610         .recvmsg                = tcp_recvmsg,
2611         .sendmsg                = tcp_sendmsg,
2612         .sendpage               = tcp_sendpage,
2613         .backlog_rcv            = tcp_v4_do_rcv,
2614         .hash                   = inet_hash,
2615         .unhash                 = inet_unhash,
2616         .get_port               = inet_csk_get_port,
2617         .enter_memory_pressure  = tcp_enter_memory_pressure,
2618         .sockets_allocated      = &tcp_sockets_allocated,
2619         .orphan_count           = &tcp_orphan_count,
2620         .memory_allocated       = &tcp_memory_allocated,
2621         .memory_pressure        = &tcp_memory_pressure,
2622         .sysctl_mem             = sysctl_tcp_mem,
2623         .sysctl_wmem            = sysctl_tcp_wmem,
2624         .sysctl_rmem            = sysctl_tcp_rmem,
2625         .max_header             = MAX_TCP_HEADER,
2626         .obj_size               = sizeof(struct tcp_sock),
2627         .slab_flags             = SLAB_DESTROY_BY_RCU,
2628         .twsk_prot              = &tcp_timewait_sock_ops,
2629         .rsk_prot               = &tcp_request_sock_ops,
2630         .h.hashinfo             = &tcp_hashinfo,
2631         .no_autobind            = true,
2632 #ifdef CONFIG_COMPAT
2633         .compat_setsockopt      = compat_tcp_setsockopt,
2634         .compat_getsockopt      = compat_tcp_getsockopt,
2635 #endif
2636 };
2637 EXPORT_SYMBOL(tcp_prot);
2638
2639
2640 static int __net_init tcp_sk_init(struct net *net)
2641 {
2642         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2643                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2644 }
2645
2646 static void __net_exit tcp_sk_exit(struct net *net)
2647 {
2648         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2649 }
2650
2651 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2652 {
2653         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2654 }
2655
2656 static struct pernet_operations __net_initdata tcp_sk_ops = {
2657        .init       = tcp_sk_init,
2658        .exit       = tcp_sk_exit,
2659        .exit_batch = tcp_sk_exit_batch,
2660 };
2661
2662 void __init tcp_v4_init(void)
2663 {
2664         inet_hashinfo_init(&tcp_hashinfo);
2665         if (register_pernet_subsys(&tcp_sk_ops))
2666                 panic("Failed to create the TCP control socket.\n");
2667 }