Merge git://git.jan-o-sch.net/btrfs-unstable into for-linus
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
110 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
113 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
114
115 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
119 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129         struct inet_connection_sock *icsk = inet_csk(sk);
130         const unsigned int lss = icsk->icsk_ack.last_seg_size;
131         unsigned int len;
132
133         icsk->icsk_ack.last_seg_size = 0;
134
135         /* skb->len may jitter because of SACKs, even if peer
136          * sends good full-sized frames.
137          */
138         len = skb_shinfo(skb)->gso_size ? : skb->len;
139         if (len >= icsk->icsk_ack.rcv_mss) {
140                 icsk->icsk_ack.rcv_mss = len;
141         } else {
142                 /* Otherwise, we make more careful check taking into account,
143                  * that SACKs block is variable.
144                  *
145                  * "len" is invariant segment length, including TCP header.
146                  */
147                 len += skb->data - skb_transport_header(skb);
148                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149                     /* If PSH is not set, packet should be
150                      * full sized, provided peer TCP is not badly broken.
151                      * This observation (if it is correct 8)) allows
152                      * to handle super-low mtu links fairly.
153                      */
154                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156                         /* Subtract also invariant (if peer is RFC compliant),
157                          * tcp header plus fixed timestamp option length.
158                          * Resulting "len" is MSS free of SACK jitter.
159                          */
160                         len -= tcp_sk(sk)->tcp_header_len;
161                         icsk->icsk_ack.last_seg_size = len;
162                         if (len == lss) {
163                                 icsk->icsk_ack.rcv_mss = len;
164                                 return;
165                         }
166                 }
167                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170         }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175         struct inet_connection_sock *icsk = inet_csk(sk);
176         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178         if (quickacks == 0)
179                 quickacks = 2;
180         if (quickacks > icsk->icsk_ack.quick)
181                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186         struct inet_connection_sock *icsk = inet_csk(sk);
187         tcp_incr_quickack(sk);
188         icsk->icsk_ack.pingpong = 0;
189         icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195
196 static inline int tcp_in_quickack_mode(const struct sock *sk)
197 {
198         const struct inet_connection_sock *icsk = inet_csk(sk);
199         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
200 }
201
202 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
203 {
204         if (tp->ecn_flags & TCP_ECN_OK)
205                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
206 }
207
208 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
209 {
210         if (tcp_hdr(skb)->cwr)
211                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213
214 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
215 {
216         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217 }
218
219 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
220 {
221         if (!(tp->ecn_flags & TCP_ECN_OK))
222                 return;
223
224         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225         case INET_ECN_NOT_ECT:
226                 /* Funny extension: if ECT is not set on a segment,
227                  * and we already seen ECT on a previous segment,
228                  * it is probably a retransmit.
229                  */
230                 if (tp->ecn_flags & TCP_ECN_SEEN)
231                         tcp_enter_quickack_mode((struct sock *)tp);
232                 break;
233         case INET_ECN_CE:
234                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
235                 /* fallinto */
236         default:
237                 tp->ecn_flags |= TCP_ECN_SEEN;
238         }
239 }
240
241 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
242 {
243         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
244                 tp->ecn_flags &= ~TCP_ECN_OK;
245 }
246
247 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
250                 tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252
253 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
254 {
255         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
256                 return 1;
257         return 0;
258 }
259
260 /* Buffer size and advertised window tuning.
261  *
262  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
263  */
264
265 static void tcp_fixup_sndbuf(struct sock *sk)
266 {
267         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
268
269         sndmem *= TCP_INIT_CWND;
270         if (sk->sk_sndbuf < sndmem)
271                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
272 }
273
274 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
275  *
276  * All tcp_full_space() is split to two parts: "network" buffer, allocated
277  * forward and advertised in receiver window (tp->rcv_wnd) and
278  * "application buffer", required to isolate scheduling/application
279  * latencies from network.
280  * window_clamp is maximal advertised window. It can be less than
281  * tcp_full_space(), in this case tcp_full_space() - window_clamp
282  * is reserved for "application" buffer. The less window_clamp is
283  * the smoother our behaviour from viewpoint of network, but the lower
284  * throughput and the higher sensitivity of the connection to losses. 8)
285  *
286  * rcv_ssthresh is more strict window_clamp used at "slow start"
287  * phase to predict further behaviour of this connection.
288  * It is used for two goals:
289  * - to enforce header prediction at sender, even when application
290  *   requires some significant "application buffer". It is check #1.
291  * - to prevent pruning of receive queue because of misprediction
292  *   of receiver window. Check #2.
293  *
294  * The scheme does not work when sender sends good segments opening
295  * window and then starts to feed us spaghetti. But it should work
296  * in common situations. Otherwise, we have to rely on queue collapsing.
297  */
298
299 /* Slow part of check#2. */
300 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
301 {
302         struct tcp_sock *tp = tcp_sk(sk);
303         /* Optimize this! */
304         int truesize = tcp_win_from_space(skb->truesize) >> 1;
305         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
306
307         while (tp->rcv_ssthresh <= window) {
308                 if (truesize <= skb->len)
309                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
310
311                 truesize >>= 1;
312                 window >>= 1;
313         }
314         return 0;
315 }
316
317 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
318 {
319         struct tcp_sock *tp = tcp_sk(sk);
320
321         /* Check #1 */
322         if (tp->rcv_ssthresh < tp->window_clamp &&
323             (int)tp->rcv_ssthresh < tcp_space(sk) &&
324             !sk_under_memory_pressure(sk)) {
325                 int incr;
326
327                 /* Check #2. Increase window, if skb with such overhead
328                  * will fit to rcvbuf in future.
329                  */
330                 if (tcp_win_from_space(skb->truesize) <= skb->len)
331                         incr = 2 * tp->advmss;
332                 else
333                         incr = __tcp_grow_window(sk, skb);
334
335                 if (incr) {
336                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
337                                                tp->window_clamp);
338                         inet_csk(sk)->icsk_ack.quick |= 1;
339                 }
340         }
341 }
342
343 /* 3. Tuning rcvbuf, when connection enters established state. */
344
345 static void tcp_fixup_rcvbuf(struct sock *sk)
346 {
347         u32 mss = tcp_sk(sk)->advmss;
348         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
349         int rcvmem;
350
351         /* Limit to 10 segments if mss <= 1460,
352          * or 14600/mss segments, with a minimum of two segments.
353          */
354         if (mss > 1460)
355                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
356
357         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
358         while (tcp_win_from_space(rcvmem) < mss)
359                 rcvmem += 128;
360
361         rcvmem *= icwnd;
362
363         if (sk->sk_rcvbuf < rcvmem)
364                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
365 }
366
367 /* 4. Try to fixup all. It is made immediately after connection enters
368  *    established state.
369  */
370 static void tcp_init_buffer_space(struct sock *sk)
371 {
372         struct tcp_sock *tp = tcp_sk(sk);
373         int maxwin;
374
375         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
376                 tcp_fixup_rcvbuf(sk);
377         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
378                 tcp_fixup_sndbuf(sk);
379
380         tp->rcvq_space.space = tp->rcv_wnd;
381
382         maxwin = tcp_full_space(sk);
383
384         if (tp->window_clamp >= maxwin) {
385                 tp->window_clamp = maxwin;
386
387                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
388                         tp->window_clamp = max(maxwin -
389                                                (maxwin >> sysctl_tcp_app_win),
390                                                4 * tp->advmss);
391         }
392
393         /* Force reservation of one segment. */
394         if (sysctl_tcp_app_win &&
395             tp->window_clamp > 2 * tp->advmss &&
396             tp->window_clamp + tp->advmss > maxwin)
397                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
398
399         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
400         tp->snd_cwnd_stamp = tcp_time_stamp;
401 }
402
403 /* 5. Recalculate window clamp after socket hit its memory bounds. */
404 static void tcp_clamp_window(struct sock *sk)
405 {
406         struct tcp_sock *tp = tcp_sk(sk);
407         struct inet_connection_sock *icsk = inet_csk(sk);
408
409         icsk->icsk_ack.quick = 0;
410
411         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
412             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
413             !sk_under_memory_pressure(sk) &&
414             sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
415                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
416                                     sysctl_tcp_rmem[2]);
417         }
418         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
419                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
420 }
421
422 /* Initialize RCV_MSS value.
423  * RCV_MSS is an our guess about MSS used by the peer.
424  * We haven't any direct information about the MSS.
425  * It's better to underestimate the RCV_MSS rather than overestimate.
426  * Overestimations make us ACKing less frequently than needed.
427  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
428  */
429 void tcp_initialize_rcv_mss(struct sock *sk)
430 {
431         const struct tcp_sock *tp = tcp_sk(sk);
432         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
433
434         hint = min(hint, tp->rcv_wnd / 2);
435         hint = min(hint, TCP_MSS_DEFAULT);
436         hint = max(hint, TCP_MIN_MSS);
437
438         inet_csk(sk)->icsk_ack.rcv_mss = hint;
439 }
440 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
441
442 /* Receiver "autotuning" code.
443  *
444  * The algorithm for RTT estimation w/o timestamps is based on
445  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
446  * <http://public.lanl.gov/radiant/pubs.html#DRS>
447  *
448  * More detail on this code can be found at
449  * <http://staff.psc.edu/jheffner/>,
450  * though this reference is out of date.  A new paper
451  * is pending.
452  */
453 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
454 {
455         u32 new_sample = tp->rcv_rtt_est.rtt;
456         long m = sample;
457
458         if (m == 0)
459                 m = 1;
460
461         if (new_sample != 0) {
462                 /* If we sample in larger samples in the non-timestamp
463                  * case, we could grossly overestimate the RTT especially
464                  * with chatty applications or bulk transfer apps which
465                  * are stalled on filesystem I/O.
466                  *
467                  * Also, since we are only going for a minimum in the
468                  * non-timestamp case, we do not smooth things out
469                  * else with timestamps disabled convergence takes too
470                  * long.
471                  */
472                 if (!win_dep) {
473                         m -= (new_sample >> 3);
474                         new_sample += m;
475                 } else if (m < new_sample)
476                         new_sample = m << 3;
477         } else {
478                 /* No previous measure. */
479                 new_sample = m << 3;
480         }
481
482         if (tp->rcv_rtt_est.rtt != new_sample)
483                 tp->rcv_rtt_est.rtt = new_sample;
484 }
485
486 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
487 {
488         if (tp->rcv_rtt_est.time == 0)
489                 goto new_measure;
490         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
491                 return;
492         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
493
494 new_measure:
495         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
496         tp->rcv_rtt_est.time = tcp_time_stamp;
497 }
498
499 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
500                                           const struct sk_buff *skb)
501 {
502         struct tcp_sock *tp = tcp_sk(sk);
503         if (tp->rx_opt.rcv_tsecr &&
504             (TCP_SKB_CB(skb)->end_seq -
505              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
506                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
507 }
508
509 /*
510  * This function should be called every time data is copied to user space.
511  * It calculates the appropriate TCP receive buffer space.
512  */
513 void tcp_rcv_space_adjust(struct sock *sk)
514 {
515         struct tcp_sock *tp = tcp_sk(sk);
516         int time;
517         int space;
518
519         if (tp->rcvq_space.time == 0)
520                 goto new_measure;
521
522         time = tcp_time_stamp - tp->rcvq_space.time;
523         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
524                 return;
525
526         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
527
528         space = max(tp->rcvq_space.space, space);
529
530         if (tp->rcvq_space.space != space) {
531                 int rcvmem;
532
533                 tp->rcvq_space.space = space;
534
535                 if (sysctl_tcp_moderate_rcvbuf &&
536                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
537                         int new_clamp = space;
538
539                         /* Receive space grows, normalize in order to
540                          * take into account packet headers and sk_buff
541                          * structure overhead.
542                          */
543                         space /= tp->advmss;
544                         if (!space)
545                                 space = 1;
546                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
547                         while (tcp_win_from_space(rcvmem) < tp->advmss)
548                                 rcvmem += 128;
549                         space *= rcvmem;
550                         space = min(space, sysctl_tcp_rmem[2]);
551                         if (space > sk->sk_rcvbuf) {
552                                 sk->sk_rcvbuf = space;
553
554                                 /* Make the window clamp follow along.  */
555                                 tp->window_clamp = new_clamp;
556                         }
557                 }
558         }
559
560 new_measure:
561         tp->rcvq_space.seq = tp->copied_seq;
562         tp->rcvq_space.time = tcp_time_stamp;
563 }
564
565 /* There is something which you must keep in mind when you analyze the
566  * behavior of the tp->ato delayed ack timeout interval.  When a
567  * connection starts up, we want to ack as quickly as possible.  The
568  * problem is that "good" TCP's do slow start at the beginning of data
569  * transmission.  The means that until we send the first few ACK's the
570  * sender will sit on his end and only queue most of his data, because
571  * he can only send snd_cwnd unacked packets at any given time.  For
572  * each ACK we send, he increments snd_cwnd and transmits more of his
573  * queue.  -DaveM
574  */
575 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
576 {
577         struct tcp_sock *tp = tcp_sk(sk);
578         struct inet_connection_sock *icsk = inet_csk(sk);
579         u32 now;
580
581         inet_csk_schedule_ack(sk);
582
583         tcp_measure_rcv_mss(sk, skb);
584
585         tcp_rcv_rtt_measure(tp);
586
587         now = tcp_time_stamp;
588
589         if (!icsk->icsk_ack.ato) {
590                 /* The _first_ data packet received, initialize
591                  * delayed ACK engine.
592                  */
593                 tcp_incr_quickack(sk);
594                 icsk->icsk_ack.ato = TCP_ATO_MIN;
595         } else {
596                 int m = now - icsk->icsk_ack.lrcvtime;
597
598                 if (m <= TCP_ATO_MIN / 2) {
599                         /* The fastest case is the first. */
600                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
601                 } else if (m < icsk->icsk_ack.ato) {
602                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
603                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
604                                 icsk->icsk_ack.ato = icsk->icsk_rto;
605                 } else if (m > icsk->icsk_rto) {
606                         /* Too long gap. Apparently sender failed to
607                          * restart window, so that we send ACKs quickly.
608                          */
609                         tcp_incr_quickack(sk);
610                         sk_mem_reclaim(sk);
611                 }
612         }
613         icsk->icsk_ack.lrcvtime = now;
614
615         TCP_ECN_check_ce(tp, skb);
616
617         if (skb->len >= 128)
618                 tcp_grow_window(sk, skb);
619 }
620
621 /* Called to compute a smoothed rtt estimate. The data fed to this
622  * routine either comes from timestamps, or from segments that were
623  * known _not_ to have been retransmitted [see Karn/Partridge
624  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
625  * piece by Van Jacobson.
626  * NOTE: the next three routines used to be one big routine.
627  * To save cycles in the RFC 1323 implementation it was better to break
628  * it up into three procedures. -- erics
629  */
630 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
631 {
632         struct tcp_sock *tp = tcp_sk(sk);
633         long m = mrtt; /* RTT */
634
635         /*      The following amusing code comes from Jacobson's
636          *      article in SIGCOMM '88.  Note that rtt and mdev
637          *      are scaled versions of rtt and mean deviation.
638          *      This is designed to be as fast as possible
639          *      m stands for "measurement".
640          *
641          *      On a 1990 paper the rto value is changed to:
642          *      RTO = rtt + 4 * mdev
643          *
644          * Funny. This algorithm seems to be very broken.
645          * These formulae increase RTO, when it should be decreased, increase
646          * too slowly, when it should be increased quickly, decrease too quickly
647          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
648          * does not matter how to _calculate_ it. Seems, it was trap
649          * that VJ failed to avoid. 8)
650          */
651         if (m == 0)
652                 m = 1;
653         if (tp->srtt != 0) {
654                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
655                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
656                 if (m < 0) {
657                         m = -m;         /* m is now abs(error) */
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                         /* This is similar to one of Eifel findings.
660                          * Eifel blocks mdev updates when rtt decreases.
661                          * This solution is a bit different: we use finer gain
662                          * for mdev in this case (alpha*beta).
663                          * Like Eifel it also prevents growth of rto,
664                          * but also it limits too fast rto decreases,
665                          * happening in pure Eifel.
666                          */
667                         if (m > 0)
668                                 m >>= 3;
669                 } else {
670                         m -= (tp->mdev >> 2);   /* similar update on mdev */
671                 }
672                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
673                 if (tp->mdev > tp->mdev_max) {
674                         tp->mdev_max = tp->mdev;
675                         if (tp->mdev_max > tp->rttvar)
676                                 tp->rttvar = tp->mdev_max;
677                 }
678                 if (after(tp->snd_una, tp->rtt_seq)) {
679                         if (tp->mdev_max < tp->rttvar)
680                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
681                         tp->rtt_seq = tp->snd_nxt;
682                         tp->mdev_max = tcp_rto_min(sk);
683                 }
684         } else {
685                 /* no previous measure. */
686                 tp->srtt = m << 3;      /* take the measured time to be rtt */
687                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
688                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
689                 tp->rtt_seq = tp->snd_nxt;
690         }
691 }
692
693 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
694  * routine referred to above.
695  */
696 static inline void tcp_set_rto(struct sock *sk)
697 {
698         const struct tcp_sock *tp = tcp_sk(sk);
699         /* Old crap is replaced with new one. 8)
700          *
701          * More seriously:
702          * 1. If rtt variance happened to be less 50msec, it is hallucination.
703          *    It cannot be less due to utterly erratic ACK generation made
704          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
705          *    to do with delayed acks, because at cwnd>2 true delack timeout
706          *    is invisible. Actually, Linux-2.4 also generates erratic
707          *    ACKs in some circumstances.
708          */
709         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
710
711         /* 2. Fixups made earlier cannot be right.
712          *    If we do not estimate RTO correctly without them,
713          *    all the algo is pure shit and should be replaced
714          *    with correct one. It is exactly, which we pretend to do.
715          */
716
717         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
718          * guarantees that rto is higher.
719          */
720         tcp_bound_rto(sk);
721 }
722
723 /* Save metrics learned by this TCP session.
724    This function is called only, when TCP finishes successfully
725    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
726  */
727 void tcp_update_metrics(struct sock *sk)
728 {
729         struct tcp_sock *tp = tcp_sk(sk);
730         struct dst_entry *dst = __sk_dst_get(sk);
731
732         if (sysctl_tcp_nometrics_save)
733                 return;
734
735         dst_confirm(dst);
736
737         if (dst && (dst->flags & DST_HOST)) {
738                 const struct inet_connection_sock *icsk = inet_csk(sk);
739                 int m;
740                 unsigned long rtt;
741
742                 if (icsk->icsk_backoff || !tp->srtt) {
743                         /* This session failed to estimate rtt. Why?
744                          * Probably, no packets returned in time.
745                          * Reset our results.
746                          */
747                         if (!(dst_metric_locked(dst, RTAX_RTT)))
748                                 dst_metric_set(dst, RTAX_RTT, 0);
749                         return;
750                 }
751
752                 rtt = dst_metric_rtt(dst, RTAX_RTT);
753                 m = rtt - tp->srtt;
754
755                 /* If newly calculated rtt larger than stored one,
756                  * store new one. Otherwise, use EWMA. Remember,
757                  * rtt overestimation is always better than underestimation.
758                  */
759                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
760                         if (m <= 0)
761                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
762                         else
763                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
764                 }
765
766                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
767                         unsigned long var;
768                         if (m < 0)
769                                 m = -m;
770
771                         /* Scale deviation to rttvar fixed point */
772                         m >>= 1;
773                         if (m < tp->mdev)
774                                 m = tp->mdev;
775
776                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
777                         if (m >= var)
778                                 var = m;
779                         else
780                                 var -= (var - m) >> 2;
781
782                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
783                 }
784
785                 if (tcp_in_initial_slowstart(tp)) {
786                         /* Slow start still did not finish. */
787                         if (dst_metric(dst, RTAX_SSTHRESH) &&
788                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
790                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
791                         if (!dst_metric_locked(dst, RTAX_CWND) &&
792                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
793                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
794                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
795                            icsk->icsk_ca_state == TCP_CA_Open) {
796                         /* Cong. avoidance phase, cwnd is reliable. */
797                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
798                                 dst_metric_set(dst, RTAX_SSTHRESH,
799                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
800                         if (!dst_metric_locked(dst, RTAX_CWND))
801                                 dst_metric_set(dst, RTAX_CWND,
802                                                (dst_metric(dst, RTAX_CWND) +
803                                                 tp->snd_cwnd) >> 1);
804                 } else {
805                         /* Else slow start did not finish, cwnd is non-sense,
806                            ssthresh may be also invalid.
807                          */
808                         if (!dst_metric_locked(dst, RTAX_CWND))
809                                 dst_metric_set(dst, RTAX_CWND,
810                                                (dst_metric(dst, RTAX_CWND) +
811                                                 tp->snd_ssthresh) >> 1);
812                         if (dst_metric(dst, RTAX_SSTHRESH) &&
813                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
814                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
815                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
816                 }
817
818                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
819                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
820                             tp->reordering != sysctl_tcp_reordering)
821                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
822                 }
823         }
824 }
825
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829
830         if (!cwnd)
831                 cwnd = TCP_INIT_CWND;
832         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834
835 /* Set slow start threshold and cwnd not falling to slow start */
836 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
837 {
838         struct tcp_sock *tp = tcp_sk(sk);
839         const struct inet_connection_sock *icsk = inet_csk(sk);
840
841         tp->prior_ssthresh = 0;
842         tp->bytes_acked = 0;
843         if (icsk->icsk_ca_state < TCP_CA_CWR) {
844                 tp->undo_marker = 0;
845                 if (set_ssthresh)
846                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
847                 tp->snd_cwnd = min(tp->snd_cwnd,
848                                    tcp_packets_in_flight(tp) + 1U);
849                 tp->snd_cwnd_cnt = 0;
850                 tp->high_seq = tp->snd_nxt;
851                 tp->snd_cwnd_stamp = tcp_time_stamp;
852                 TCP_ECN_queue_cwr(tp);
853
854                 tcp_set_ca_state(sk, TCP_CA_CWR);
855         }
856 }
857
858 /*
859  * Packet counting of FACK is based on in-order assumptions, therefore TCP
860  * disables it when reordering is detected
861  */
862 static void tcp_disable_fack(struct tcp_sock *tp)
863 {
864         /* RFC3517 uses different metric in lost marker => reset on change */
865         if (tcp_is_fack(tp))
866                 tp->lost_skb_hint = NULL;
867         tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
868 }
869
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock *tp)
872 {
873         tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
874 }
875
876 /* Initialize metrics on socket. */
877
878 static void tcp_init_metrics(struct sock *sk)
879 {
880         struct tcp_sock *tp = tcp_sk(sk);
881         struct dst_entry *dst = __sk_dst_get(sk);
882
883         if (dst == NULL)
884                 goto reset;
885
886         dst_confirm(dst);
887
888         if (dst_metric_locked(dst, RTAX_CWND))
889                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
890         if (dst_metric(dst, RTAX_SSTHRESH)) {
891                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
892                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
893                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
894         } else {
895                 /* ssthresh may have been reduced unnecessarily during.
896                  * 3WHS. Restore it back to its initial default.
897                  */
898                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
899         }
900         if (dst_metric(dst, RTAX_REORDERING) &&
901             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
902                 tcp_disable_fack(tp);
903                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
904         }
905
906         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
907                 goto reset;
908
909         /* Initial rtt is determined from SYN,SYN-ACK.
910          * The segment is small and rtt may appear much
911          * less than real one. Use per-dst memory
912          * to make it more realistic.
913          *
914          * A bit of theory. RTT is time passed after "normal" sized packet
915          * is sent until it is ACKed. In normal circumstances sending small
916          * packets force peer to delay ACKs and calculation is correct too.
917          * The algorithm is adaptive and, provided we follow specs, it
918          * NEVER underestimate RTT. BUT! If peer tries to make some clever
919          * tricks sort of "quick acks" for time long enough to decrease RTT
920          * to low value, and then abruptly stops to do it and starts to delay
921          * ACKs, wait for troubles.
922          */
923         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
924                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
925                 tp->rtt_seq = tp->snd_nxt;
926         }
927         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
928                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
929                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930         }
931         tcp_set_rto(sk);
932 reset:
933         if (tp->srtt == 0) {
934                 /* RFC2988bis: We've failed to get a valid RTT sample from
935                  * 3WHS. This is most likely due to retransmission,
936                  * including spurious one. Reset the RTO back to 3secs
937                  * from the more aggressive 1sec to avoid more spurious
938                  * retransmission.
939                  */
940                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
941                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
942         }
943         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
944          * retransmitted. In light of RFC2988bis' more aggressive 1sec
945          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
946          * retransmission has occurred.
947          */
948         if (tp->total_retrans > 1)
949                 tp->snd_cwnd = 1;
950         else
951                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
952         tp->snd_cwnd_stamp = tcp_time_stamp;
953 }
954
955 static void tcp_update_reordering(struct sock *sk, const int metric,
956                                   const int ts)
957 {
958         struct tcp_sock *tp = tcp_sk(sk);
959         if (metric > tp->reordering) {
960                 int mib_idx;
961
962                 tp->reordering = min(TCP_MAX_REORDERING, metric);
963
964                 /* This exciting event is worth to be remembered. 8) */
965                 if (ts)
966                         mib_idx = LINUX_MIB_TCPTSREORDER;
967                 else if (tcp_is_reno(tp))
968                         mib_idx = LINUX_MIB_TCPRENOREORDER;
969                 else if (tcp_is_fack(tp))
970                         mib_idx = LINUX_MIB_TCPFACKREORDER;
971                 else
972                         mib_idx = LINUX_MIB_TCPSACKREORDER;
973
974                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
975 #if FASTRETRANS_DEBUG > 1
976                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
977                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
978                        tp->reordering,
979                        tp->fackets_out,
980                        tp->sacked_out,
981                        tp->undo_marker ? tp->undo_retrans : 0);
982 #endif
983                 tcp_disable_fack(tp);
984         }
985 }
986
987 /* This must be called before lost_out is incremented */
988 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
989 {
990         if ((tp->retransmit_skb_hint == NULL) ||
991             before(TCP_SKB_CB(skb)->seq,
992                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
993                 tp->retransmit_skb_hint = skb;
994
995         if (!tp->lost_out ||
996             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
997                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
998 }
999
1000 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1001 {
1002         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003                 tcp_verify_retransmit_hint(tp, skb);
1004
1005                 tp->lost_out += tcp_skb_pcount(skb);
1006                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007         }
1008 }
1009
1010 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1011                                             struct sk_buff *skb)
1012 {
1013         tcp_verify_retransmit_hint(tp, skb);
1014
1015         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1016                 tp->lost_out += tcp_skb_pcount(skb);
1017                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018         }
1019 }
1020
1021 /* This procedure tags the retransmission queue when SACKs arrive.
1022  *
1023  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1024  * Packets in queue with these bits set are counted in variables
1025  * sacked_out, retrans_out and lost_out, correspondingly.
1026  *
1027  * Valid combinations are:
1028  * Tag  InFlight        Description
1029  * 0    1               - orig segment is in flight.
1030  * S    0               - nothing flies, orig reached receiver.
1031  * L    0               - nothing flies, orig lost by net.
1032  * R    2               - both orig and retransmit are in flight.
1033  * L|R  1               - orig is lost, retransmit is in flight.
1034  * S|R  1               - orig reached receiver, retrans is still in flight.
1035  * (L|S|R is logically valid, it could occur when L|R is sacked,
1036  *  but it is equivalent to plain S and code short-curcuits it to S.
1037  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1038  *
1039  * These 6 states form finite state machine, controlled by the following events:
1040  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1041  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1042  * 3. Loss detection event of two flavors:
1043  *      A. Scoreboard estimator decided the packet is lost.
1044  *         A'. Reno "three dupacks" marks head of queue lost.
1045  *         A''. Its FACK modification, head until snd.fack is lost.
1046  *      B. SACK arrives sacking SND.NXT at the moment, when the
1047  *         segment was retransmitted.
1048  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1049  *
1050  * It is pleasant to note, that state diagram turns out to be commutative,
1051  * so that we are allowed not to be bothered by order of our actions,
1052  * when multiple events arrive simultaneously. (see the function below).
1053  *
1054  * Reordering detection.
1055  * --------------------
1056  * Reordering metric is maximal distance, which a packet can be displaced
1057  * in packet stream. With SACKs we can estimate it:
1058  *
1059  * 1. SACK fills old hole and the corresponding segment was not
1060  *    ever retransmitted -> reordering. Alas, we cannot use it
1061  *    when segment was retransmitted.
1062  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1063  *    for retransmitted and already SACKed segment -> reordering..
1064  * Both of these heuristics are not used in Loss state, when we cannot
1065  * account for retransmits accurately.
1066  *
1067  * SACK block validation.
1068  * ----------------------
1069  *
1070  * SACK block range validation checks that the received SACK block fits to
1071  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1072  * Note that SND.UNA is not included to the range though being valid because
1073  * it means that the receiver is rather inconsistent with itself reporting
1074  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1075  * perfectly valid, however, in light of RFC2018 which explicitly states
1076  * that "SACK block MUST reflect the newest segment.  Even if the newest
1077  * segment is going to be discarded ...", not that it looks very clever
1078  * in case of head skb. Due to potentional receiver driven attacks, we
1079  * choose to avoid immediate execution of a walk in write queue due to
1080  * reneging and defer head skb's loss recovery to standard loss recovery
1081  * procedure that will eventually trigger (nothing forbids us doing this).
1082  *
1083  * Implements also blockage to start_seq wrap-around. Problem lies in the
1084  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1085  * there's no guarantee that it will be before snd_nxt (n). The problem
1086  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1087  * wrap (s_w):
1088  *
1089  *         <- outs wnd ->                          <- wrapzone ->
1090  *         u     e      n                         u_w   e_w  s n_w
1091  *         |     |      |                          |     |   |  |
1092  * |<------------+------+----- TCP seqno space --------------+---------->|
1093  * ...-- <2^31 ->|                                           |<--------...
1094  * ...---- >2^31 ------>|                                    |<--------...
1095  *
1096  * Current code wouldn't be vulnerable but it's better still to discard such
1097  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1098  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1099  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1100  * equal to the ideal case (infinite seqno space without wrap caused issues).
1101  *
1102  * With D-SACK the lower bound is extended to cover sequence space below
1103  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1104  * again, D-SACK block must not to go across snd_una (for the same reason as
1105  * for the normal SACK blocks, explained above). But there all simplicity
1106  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1107  * fully below undo_marker they do not affect behavior in anyway and can
1108  * therefore be safely ignored. In rare cases (which are more or less
1109  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1110  * fragmentation and packet reordering past skb's retransmission. To consider
1111  * them correctly, the acceptable range must be extended even more though
1112  * the exact amount is rather hard to quantify. However, tp->max_window can
1113  * be used as an exaggerated estimate.
1114  */
1115 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1116                                   u32 start_seq, u32 end_seq)
1117 {
1118         /* Too far in future, or reversed (interpretation is ambiguous) */
1119         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1120                 return 0;
1121
1122         /* Nasty start_seq wrap-around check (see comments above) */
1123         if (!before(start_seq, tp->snd_nxt))
1124                 return 0;
1125
1126         /* In outstanding window? ...This is valid exit for D-SACKs too.
1127          * start_seq == snd_una is non-sensical (see comments above)
1128          */
1129         if (after(start_seq, tp->snd_una))
1130                 return 1;
1131
1132         if (!is_dsack || !tp->undo_marker)
1133                 return 0;
1134
1135         /* ...Then it's D-SACK, and must reside below snd_una completely */
1136         if (after(end_seq, tp->snd_una))
1137                 return 0;
1138
1139         if (!before(start_seq, tp->undo_marker))
1140                 return 1;
1141
1142         /* Too old */
1143         if (!after(end_seq, tp->undo_marker))
1144                 return 0;
1145
1146         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1147          *   start_seq < undo_marker and end_seq >= undo_marker.
1148          */
1149         return !before(start_seq, end_seq - tp->max_window);
1150 }
1151
1152 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1153  * Event "B". Later note: FACK people cheated me again 8), we have to account
1154  * for reordering! Ugly, but should help.
1155  *
1156  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1157  * less than what is now known to be received by the other end (derived from
1158  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1159  * retransmitted skbs to avoid some costly processing per ACKs.
1160  */
1161 static void tcp_mark_lost_retrans(struct sock *sk)
1162 {
1163         const struct inet_connection_sock *icsk = inet_csk(sk);
1164         struct tcp_sock *tp = tcp_sk(sk);
1165         struct sk_buff *skb;
1166         int cnt = 0;
1167         u32 new_low_seq = tp->snd_nxt;
1168         u32 received_upto = tcp_highest_sack_seq(tp);
1169
1170         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1171             !after(received_upto, tp->lost_retrans_low) ||
1172             icsk->icsk_ca_state != TCP_CA_Recovery)
1173                 return;
1174
1175         tcp_for_write_queue(skb, sk) {
1176                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1177
1178                 if (skb == tcp_send_head(sk))
1179                         break;
1180                 if (cnt == tp->retrans_out)
1181                         break;
1182                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1183                         continue;
1184
1185                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1186                         continue;
1187
1188                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1189                  * constraint here (see above) but figuring out that at
1190                  * least tp->reordering SACK blocks reside between ack_seq
1191                  * and received_upto is not easy task to do cheaply with
1192                  * the available datastructures.
1193                  *
1194                  * Whether FACK should check here for tp->reordering segs
1195                  * in-between one could argue for either way (it would be
1196                  * rather simple to implement as we could count fack_count
1197                  * during the walk and do tp->fackets_out - fack_count).
1198                  */
1199                 if (after(received_upto, ack_seq)) {
1200                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1201                         tp->retrans_out -= tcp_skb_pcount(skb);
1202
1203                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1204                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1205                 } else {
1206                         if (before(ack_seq, new_low_seq))
1207                                 new_low_seq = ack_seq;
1208                         cnt += tcp_skb_pcount(skb);
1209                 }
1210         }
1211
1212         if (tp->retrans_out)
1213                 tp->lost_retrans_low = new_low_seq;
1214 }
1215
1216 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1217                            struct tcp_sack_block_wire *sp, int num_sacks,
1218                            u32 prior_snd_una)
1219 {
1220         struct tcp_sock *tp = tcp_sk(sk);
1221         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1222         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1223         int dup_sack = 0;
1224
1225         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1226                 dup_sack = 1;
1227                 tcp_dsack_seen(tp);
1228                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1229         } else if (num_sacks > 1) {
1230                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1231                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1232
1233                 if (!after(end_seq_0, end_seq_1) &&
1234                     !before(start_seq_0, start_seq_1)) {
1235                         dup_sack = 1;
1236                         tcp_dsack_seen(tp);
1237                         NET_INC_STATS_BH(sock_net(sk),
1238                                         LINUX_MIB_TCPDSACKOFORECV);
1239                 }
1240         }
1241
1242         /* D-SACK for already forgotten data... Do dumb counting. */
1243         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1244             !after(end_seq_0, prior_snd_una) &&
1245             after(end_seq_0, tp->undo_marker))
1246                 tp->undo_retrans--;
1247
1248         return dup_sack;
1249 }
1250
1251 struct tcp_sacktag_state {
1252         int reord;
1253         int fack_count;
1254         int flag;
1255 };
1256
1257 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1258  * the incoming SACK may not exactly match but we can find smaller MSS
1259  * aligned portion of it that matches. Therefore we might need to fragment
1260  * which may fail and creates some hassle (caller must handle error case
1261  * returns).
1262  *
1263  * FIXME: this could be merged to shift decision code
1264  */
1265 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1266                                  u32 start_seq, u32 end_seq)
1267 {
1268         int in_sack, err;
1269         unsigned int pkt_len;
1270         unsigned int mss;
1271
1272         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1273                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1274
1275         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1276             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1277                 mss = tcp_skb_mss(skb);
1278                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1279
1280                 if (!in_sack) {
1281                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1282                         if (pkt_len < mss)
1283                                 pkt_len = mss;
1284                 } else {
1285                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1286                         if (pkt_len < mss)
1287                                 return -EINVAL;
1288                 }
1289
1290                 /* Round if necessary so that SACKs cover only full MSSes
1291                  * and/or the remaining small portion (if present)
1292                  */
1293                 if (pkt_len > mss) {
1294                         unsigned int new_len = (pkt_len / mss) * mss;
1295                         if (!in_sack && new_len < pkt_len) {
1296                                 new_len += mss;
1297                                 if (new_len > skb->len)
1298                                         return 0;
1299                         }
1300                         pkt_len = new_len;
1301                 }
1302                 err = tcp_fragment(sk, skb, pkt_len, mss);
1303                 if (err < 0)
1304                         return err;
1305         }
1306
1307         return in_sack;
1308 }
1309
1310 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1311 static u8 tcp_sacktag_one(struct sock *sk,
1312                           struct tcp_sacktag_state *state, u8 sacked,
1313                           u32 start_seq, u32 end_seq,
1314                           int dup_sack, int pcount)
1315 {
1316         struct tcp_sock *tp = tcp_sk(sk);
1317         int fack_count = state->fack_count;
1318
1319         /* Account D-SACK for retransmitted packet. */
1320         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1321                 if (tp->undo_marker && tp->undo_retrans &&
1322                     after(end_seq, tp->undo_marker))
1323                         tp->undo_retrans--;
1324                 if (sacked & TCPCB_SACKED_ACKED)
1325                         state->reord = min(fack_count, state->reord);
1326         }
1327
1328         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1329         if (!after(end_seq, tp->snd_una))
1330                 return sacked;
1331
1332         if (!(sacked & TCPCB_SACKED_ACKED)) {
1333                 if (sacked & TCPCB_SACKED_RETRANS) {
1334                         /* If the segment is not tagged as lost,
1335                          * we do not clear RETRANS, believing
1336                          * that retransmission is still in flight.
1337                          */
1338                         if (sacked & TCPCB_LOST) {
1339                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1340                                 tp->lost_out -= pcount;
1341                                 tp->retrans_out -= pcount;
1342                         }
1343                 } else {
1344                         if (!(sacked & TCPCB_RETRANS)) {
1345                                 /* New sack for not retransmitted frame,
1346                                  * which was in hole. It is reordering.
1347                                  */
1348                                 if (before(start_seq,
1349                                            tcp_highest_sack_seq(tp)))
1350                                         state->reord = min(fack_count,
1351                                                            state->reord);
1352
1353                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1354                                 if (!after(end_seq, tp->frto_highmark))
1355                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1356                         }
1357
1358                         if (sacked & TCPCB_LOST) {
1359                                 sacked &= ~TCPCB_LOST;
1360                                 tp->lost_out -= pcount;
1361                         }
1362                 }
1363
1364                 sacked |= TCPCB_SACKED_ACKED;
1365                 state->flag |= FLAG_DATA_SACKED;
1366                 tp->sacked_out += pcount;
1367
1368                 fack_count += pcount;
1369
1370                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1371                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1372                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1373                         tp->lost_cnt_hint += pcount;
1374
1375                 if (fack_count > tp->fackets_out)
1376                         tp->fackets_out = fack_count;
1377         }
1378
1379         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1380          * frames and clear it. undo_retrans is decreased above, L|R frames
1381          * are accounted above as well.
1382          */
1383         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1384                 sacked &= ~TCPCB_SACKED_RETRANS;
1385                 tp->retrans_out -= pcount;
1386         }
1387
1388         return sacked;
1389 }
1390
1391 /* Shift newly-SACKed bytes from this skb to the immediately previous
1392  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1393  */
1394 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1395                            struct tcp_sacktag_state *state,
1396                            unsigned int pcount, int shifted, int mss,
1397                            int dup_sack)
1398 {
1399         struct tcp_sock *tp = tcp_sk(sk);
1400         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1401         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1402         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1403
1404         BUG_ON(!pcount);
1405
1406         /* Adjust counters and hints for the newly sacked sequence
1407          * range but discard the return value since prev is already
1408          * marked. We must tag the range first because the seq
1409          * advancement below implicitly advances
1410          * tcp_highest_sack_seq() when skb is highest_sack.
1411          */
1412         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1413                         start_seq, end_seq, dup_sack, pcount);
1414
1415         if (skb == tp->lost_skb_hint)
1416                 tp->lost_cnt_hint += pcount;
1417
1418         TCP_SKB_CB(prev)->end_seq += shifted;
1419         TCP_SKB_CB(skb)->seq += shifted;
1420
1421         skb_shinfo(prev)->gso_segs += pcount;
1422         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1423         skb_shinfo(skb)->gso_segs -= pcount;
1424
1425         /* When we're adding to gso_segs == 1, gso_size will be zero,
1426          * in theory this shouldn't be necessary but as long as DSACK
1427          * code can come after this skb later on it's better to keep
1428          * setting gso_size to something.
1429          */
1430         if (!skb_shinfo(prev)->gso_size) {
1431                 skb_shinfo(prev)->gso_size = mss;
1432                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1433         }
1434
1435         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1436         if (skb_shinfo(skb)->gso_segs <= 1) {
1437                 skb_shinfo(skb)->gso_size = 0;
1438                 skb_shinfo(skb)->gso_type = 0;
1439         }
1440
1441         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1442         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1443
1444         if (skb->len > 0) {
1445                 BUG_ON(!tcp_skb_pcount(skb));
1446                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1447                 return 0;
1448         }
1449
1450         /* Whole SKB was eaten :-) */
1451
1452         if (skb == tp->retransmit_skb_hint)
1453                 tp->retransmit_skb_hint = prev;
1454         if (skb == tp->scoreboard_skb_hint)
1455                 tp->scoreboard_skb_hint = prev;
1456         if (skb == tp->lost_skb_hint) {
1457                 tp->lost_skb_hint = prev;
1458                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1459         }
1460
1461         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1462         if (skb == tcp_highest_sack(sk))
1463                 tcp_advance_highest_sack(sk, skb);
1464
1465         tcp_unlink_write_queue(skb, sk);
1466         sk_wmem_free_skb(sk, skb);
1467
1468         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1469
1470         return 1;
1471 }
1472
1473 /* I wish gso_size would have a bit more sane initialization than
1474  * something-or-zero which complicates things
1475  */
1476 static int tcp_skb_seglen(const struct sk_buff *skb)
1477 {
1478         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1479 }
1480
1481 /* Shifting pages past head area doesn't work */
1482 static int skb_can_shift(const struct sk_buff *skb)
1483 {
1484         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1485 }
1486
1487 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1488  * skb.
1489  */
1490 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1491                                           struct tcp_sacktag_state *state,
1492                                           u32 start_seq, u32 end_seq,
1493                                           int dup_sack)
1494 {
1495         struct tcp_sock *tp = tcp_sk(sk);
1496         struct sk_buff *prev;
1497         int mss;
1498         int pcount = 0;
1499         int len;
1500         int in_sack;
1501
1502         if (!sk_can_gso(sk))
1503                 goto fallback;
1504
1505         /* Normally R but no L won't result in plain S */
1506         if (!dup_sack &&
1507             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1508                 goto fallback;
1509         if (!skb_can_shift(skb))
1510                 goto fallback;
1511         /* This frame is about to be dropped (was ACKed). */
1512         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1513                 goto fallback;
1514
1515         /* Can only happen with delayed DSACK + discard craziness */
1516         if (unlikely(skb == tcp_write_queue_head(sk)))
1517                 goto fallback;
1518         prev = tcp_write_queue_prev(sk, skb);
1519
1520         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1521                 goto fallback;
1522
1523         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1524                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1525
1526         if (in_sack) {
1527                 len = skb->len;
1528                 pcount = tcp_skb_pcount(skb);
1529                 mss = tcp_skb_seglen(skb);
1530
1531                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1532                  * drop this restriction as unnecessary
1533                  */
1534                 if (mss != tcp_skb_seglen(prev))
1535                         goto fallback;
1536         } else {
1537                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1538                         goto noop;
1539                 /* CHECKME: This is non-MSS split case only?, this will
1540                  * cause skipped skbs due to advancing loop btw, original
1541                  * has that feature too
1542                  */
1543                 if (tcp_skb_pcount(skb) <= 1)
1544                         goto noop;
1545
1546                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1547                 if (!in_sack) {
1548                         /* TODO: head merge to next could be attempted here
1549                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1550                          * though it might not be worth of the additional hassle
1551                          *
1552                          * ...we can probably just fallback to what was done
1553                          * previously. We could try merging non-SACKed ones
1554                          * as well but it probably isn't going to buy off
1555                          * because later SACKs might again split them, and
1556                          * it would make skb timestamp tracking considerably
1557                          * harder problem.
1558                          */
1559                         goto fallback;
1560                 }
1561
1562                 len = end_seq - TCP_SKB_CB(skb)->seq;
1563                 BUG_ON(len < 0);
1564                 BUG_ON(len > skb->len);
1565
1566                 /* MSS boundaries should be honoured or else pcount will
1567                  * severely break even though it makes things bit trickier.
1568                  * Optimize common case to avoid most of the divides
1569                  */
1570                 mss = tcp_skb_mss(skb);
1571
1572                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1573                  * drop this restriction as unnecessary
1574                  */
1575                 if (mss != tcp_skb_seglen(prev))
1576                         goto fallback;
1577
1578                 if (len == mss) {
1579                         pcount = 1;
1580                 } else if (len < mss) {
1581                         goto noop;
1582                 } else {
1583                         pcount = len / mss;
1584                         len = pcount * mss;
1585                 }
1586         }
1587
1588         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1589         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1590                 goto fallback;
1591
1592         if (!skb_shift(prev, skb, len))
1593                 goto fallback;
1594         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1595                 goto out;
1596
1597         /* Hole filled allows collapsing with the next as well, this is very
1598          * useful when hole on every nth skb pattern happens
1599          */
1600         if (prev == tcp_write_queue_tail(sk))
1601                 goto out;
1602         skb = tcp_write_queue_next(sk, prev);
1603
1604         if (!skb_can_shift(skb) ||
1605             (skb == tcp_send_head(sk)) ||
1606             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1607             (mss != tcp_skb_seglen(skb)))
1608                 goto out;
1609
1610         len = skb->len;
1611         if (skb_shift(prev, skb, len)) {
1612                 pcount += tcp_skb_pcount(skb);
1613                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1614         }
1615
1616 out:
1617         state->fack_count += pcount;
1618         return prev;
1619
1620 noop:
1621         return skb;
1622
1623 fallback:
1624         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1625         return NULL;
1626 }
1627
1628 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1629                                         struct tcp_sack_block *next_dup,
1630                                         struct tcp_sacktag_state *state,
1631                                         u32 start_seq, u32 end_seq,
1632                                         int dup_sack_in)
1633 {
1634         struct tcp_sock *tp = tcp_sk(sk);
1635         struct sk_buff *tmp;
1636
1637         tcp_for_write_queue_from(skb, sk) {
1638                 int in_sack = 0;
1639                 int dup_sack = dup_sack_in;
1640
1641                 if (skb == tcp_send_head(sk))
1642                         break;
1643
1644                 /* queue is in-order => we can short-circuit the walk early */
1645                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1646                         break;
1647
1648                 if ((next_dup != NULL) &&
1649                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1650                         in_sack = tcp_match_skb_to_sack(sk, skb,
1651                                                         next_dup->start_seq,
1652                                                         next_dup->end_seq);
1653                         if (in_sack > 0)
1654                                 dup_sack = 1;
1655                 }
1656
1657                 /* skb reference here is a bit tricky to get right, since
1658                  * shifting can eat and free both this skb and the next,
1659                  * so not even _safe variant of the loop is enough.
1660                  */
1661                 if (in_sack <= 0) {
1662                         tmp = tcp_shift_skb_data(sk, skb, state,
1663                                                  start_seq, end_seq, dup_sack);
1664                         if (tmp != NULL) {
1665                                 if (tmp != skb) {
1666                                         skb = tmp;
1667                                         continue;
1668                                 }
1669
1670                                 in_sack = 0;
1671                         } else {
1672                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1673                                                                 start_seq,
1674                                                                 end_seq);
1675                         }
1676                 }
1677
1678                 if (unlikely(in_sack < 0))
1679                         break;
1680
1681                 if (in_sack) {
1682                         TCP_SKB_CB(skb)->sacked =
1683                                 tcp_sacktag_one(sk,
1684                                                 state,
1685                                                 TCP_SKB_CB(skb)->sacked,
1686                                                 TCP_SKB_CB(skb)->seq,
1687                                                 TCP_SKB_CB(skb)->end_seq,
1688                                                 dup_sack,
1689                                                 tcp_skb_pcount(skb));
1690
1691                         if (!before(TCP_SKB_CB(skb)->seq,
1692                                     tcp_highest_sack_seq(tp)))
1693                                 tcp_advance_highest_sack(sk, skb);
1694                 }
1695
1696                 state->fack_count += tcp_skb_pcount(skb);
1697         }
1698         return skb;
1699 }
1700
1701 /* Avoid all extra work that is being done by sacktag while walking in
1702  * a normal way
1703  */
1704 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1705                                         struct tcp_sacktag_state *state,
1706                                         u32 skip_to_seq)
1707 {
1708         tcp_for_write_queue_from(skb, sk) {
1709                 if (skb == tcp_send_head(sk))
1710                         break;
1711
1712                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1713                         break;
1714
1715                 state->fack_count += tcp_skb_pcount(skb);
1716         }
1717         return skb;
1718 }
1719
1720 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1721                                                 struct sock *sk,
1722                                                 struct tcp_sack_block *next_dup,
1723                                                 struct tcp_sacktag_state *state,
1724                                                 u32 skip_to_seq)
1725 {
1726         if (next_dup == NULL)
1727                 return skb;
1728
1729         if (before(next_dup->start_seq, skip_to_seq)) {
1730                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1731                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1732                                        next_dup->start_seq, next_dup->end_seq,
1733                                        1);
1734         }
1735
1736         return skb;
1737 }
1738
1739 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1740 {
1741         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1742 }
1743
1744 static int
1745 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1746                         u32 prior_snd_una)
1747 {
1748         const struct inet_connection_sock *icsk = inet_csk(sk);
1749         struct tcp_sock *tp = tcp_sk(sk);
1750         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1751                                     TCP_SKB_CB(ack_skb)->sacked);
1752         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1753         struct tcp_sack_block sp[TCP_NUM_SACKS];
1754         struct tcp_sack_block *cache;
1755         struct tcp_sacktag_state state;
1756         struct sk_buff *skb;
1757         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1758         int used_sacks;
1759         int found_dup_sack = 0;
1760         int i, j;
1761         int first_sack_index;
1762
1763         state.flag = 0;
1764         state.reord = tp->packets_out;
1765
1766         if (!tp->sacked_out) {
1767                 if (WARN_ON(tp->fackets_out))
1768                         tp->fackets_out = 0;
1769                 tcp_highest_sack_reset(sk);
1770         }
1771
1772         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1773                                          num_sacks, prior_snd_una);
1774         if (found_dup_sack)
1775                 state.flag |= FLAG_DSACKING_ACK;
1776
1777         /* Eliminate too old ACKs, but take into
1778          * account more or less fresh ones, they can
1779          * contain valid SACK info.
1780          */
1781         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1782                 return 0;
1783
1784         if (!tp->packets_out)
1785                 goto out;
1786
1787         used_sacks = 0;
1788         first_sack_index = 0;
1789         for (i = 0; i < num_sacks; i++) {
1790                 int dup_sack = !i && found_dup_sack;
1791
1792                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1793                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1794
1795                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1796                                             sp[used_sacks].start_seq,
1797                                             sp[used_sacks].end_seq)) {
1798                         int mib_idx;
1799
1800                         if (dup_sack) {
1801                                 if (!tp->undo_marker)
1802                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1803                                 else
1804                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1805                         } else {
1806                                 /* Don't count olds caused by ACK reordering */
1807                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1808                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1809                                         continue;
1810                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1811                         }
1812
1813                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1814                         if (i == 0)
1815                                 first_sack_index = -1;
1816                         continue;
1817                 }
1818
1819                 /* Ignore very old stuff early */
1820                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1821                         continue;
1822
1823                 used_sacks++;
1824         }
1825
1826         /* order SACK blocks to allow in order walk of the retrans queue */
1827         for (i = used_sacks - 1; i > 0; i--) {
1828                 for (j = 0; j < i; j++) {
1829                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1830                                 swap(sp[j], sp[j + 1]);
1831
1832                                 /* Track where the first SACK block goes to */
1833                                 if (j == first_sack_index)
1834                                         first_sack_index = j + 1;
1835                         }
1836                 }
1837         }
1838
1839         skb = tcp_write_queue_head(sk);
1840         state.fack_count = 0;
1841         i = 0;
1842
1843         if (!tp->sacked_out) {
1844                 /* It's already past, so skip checking against it */
1845                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1846         } else {
1847                 cache = tp->recv_sack_cache;
1848                 /* Skip empty blocks in at head of the cache */
1849                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1850                        !cache->end_seq)
1851                         cache++;
1852         }
1853
1854         while (i < used_sacks) {
1855                 u32 start_seq = sp[i].start_seq;
1856                 u32 end_seq = sp[i].end_seq;
1857                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1858                 struct tcp_sack_block *next_dup = NULL;
1859
1860                 if (found_dup_sack && ((i + 1) == first_sack_index))
1861                         next_dup = &sp[i + 1];
1862
1863                 /* Skip too early cached blocks */
1864                 while (tcp_sack_cache_ok(tp, cache) &&
1865                        !before(start_seq, cache->end_seq))
1866                         cache++;
1867
1868                 /* Can skip some work by looking recv_sack_cache? */
1869                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1870                     after(end_seq, cache->start_seq)) {
1871
1872                         /* Head todo? */
1873                         if (before(start_seq, cache->start_seq)) {
1874                                 skb = tcp_sacktag_skip(skb, sk, &state,
1875                                                        start_seq);
1876                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1877                                                        &state,
1878                                                        start_seq,
1879                                                        cache->start_seq,
1880                                                        dup_sack);
1881                         }
1882
1883                         /* Rest of the block already fully processed? */
1884                         if (!after(end_seq, cache->end_seq))
1885                                 goto advance_sp;
1886
1887                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1888                                                        &state,
1889                                                        cache->end_seq);
1890
1891                         /* ...tail remains todo... */
1892                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1893                                 /* ...but better entrypoint exists! */
1894                                 skb = tcp_highest_sack(sk);
1895                                 if (skb == NULL)
1896                                         break;
1897                                 state.fack_count = tp->fackets_out;
1898                                 cache++;
1899                                 goto walk;
1900                         }
1901
1902                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1903                         /* Check overlap against next cached too (past this one already) */
1904                         cache++;
1905                         continue;
1906                 }
1907
1908                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1909                         skb = tcp_highest_sack(sk);
1910                         if (skb == NULL)
1911                                 break;
1912                         state.fack_count = tp->fackets_out;
1913                 }
1914                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1915
1916 walk:
1917                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1918                                        start_seq, end_seq, dup_sack);
1919
1920 advance_sp:
1921                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1922                  * due to in-order walk
1923                  */
1924                 if (after(end_seq, tp->frto_highmark))
1925                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1926
1927                 i++;
1928         }
1929
1930         /* Clear the head of the cache sack blocks so we can skip it next time */
1931         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1932                 tp->recv_sack_cache[i].start_seq = 0;
1933                 tp->recv_sack_cache[i].end_seq = 0;
1934         }
1935         for (j = 0; j < used_sacks; j++)
1936                 tp->recv_sack_cache[i++] = sp[j];
1937
1938         tcp_mark_lost_retrans(sk);
1939
1940         tcp_verify_left_out(tp);
1941
1942         if ((state.reord < tp->fackets_out) &&
1943             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1944             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1945                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1946
1947 out:
1948
1949 #if FASTRETRANS_DEBUG > 0
1950         WARN_ON((int)tp->sacked_out < 0);
1951         WARN_ON((int)tp->lost_out < 0);
1952         WARN_ON((int)tp->retrans_out < 0);
1953         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1954 #endif
1955         return state.flag;
1956 }
1957
1958 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1959  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1960  */
1961 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1962 {
1963         u32 holes;
1964
1965         holes = max(tp->lost_out, 1U);
1966         holes = min(holes, tp->packets_out);
1967
1968         if ((tp->sacked_out + holes) > tp->packets_out) {
1969                 tp->sacked_out = tp->packets_out - holes;
1970                 return 1;
1971         }
1972         return 0;
1973 }
1974
1975 /* If we receive more dupacks than we expected counting segments
1976  * in assumption of absent reordering, interpret this as reordering.
1977  * The only another reason could be bug in receiver TCP.
1978  */
1979 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1980 {
1981         struct tcp_sock *tp = tcp_sk(sk);
1982         if (tcp_limit_reno_sacked(tp))
1983                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1984 }
1985
1986 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1987
1988 static void tcp_add_reno_sack(struct sock *sk)
1989 {
1990         struct tcp_sock *tp = tcp_sk(sk);
1991         tp->sacked_out++;
1992         tcp_check_reno_reordering(sk, 0);
1993         tcp_verify_left_out(tp);
1994 }
1995
1996 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1997
1998 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1999 {
2000         struct tcp_sock *tp = tcp_sk(sk);
2001
2002         if (acked > 0) {
2003                 /* One ACK acked hole. The rest eat duplicate ACKs. */
2004                 if (acked - 1 >= tp->sacked_out)
2005                         tp->sacked_out = 0;
2006                 else
2007                         tp->sacked_out -= acked - 1;
2008         }
2009         tcp_check_reno_reordering(sk, acked);
2010         tcp_verify_left_out(tp);
2011 }
2012
2013 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2014 {
2015         tp->sacked_out = 0;
2016 }
2017
2018 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2019 {
2020         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2021 }
2022
2023 /* F-RTO can only be used if TCP has never retransmitted anything other than
2024  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2025  */
2026 int tcp_use_frto(struct sock *sk)
2027 {
2028         const struct tcp_sock *tp = tcp_sk(sk);
2029         const struct inet_connection_sock *icsk = inet_csk(sk);
2030         struct sk_buff *skb;
2031
2032         if (!sysctl_tcp_frto)
2033                 return 0;
2034
2035         /* MTU probe and F-RTO won't really play nicely along currently */
2036         if (icsk->icsk_mtup.probe_size)
2037                 return 0;
2038
2039         if (tcp_is_sackfrto(tp))
2040                 return 1;
2041
2042         /* Avoid expensive walking of rexmit queue if possible */
2043         if (tp->retrans_out > 1)
2044                 return 0;
2045
2046         skb = tcp_write_queue_head(sk);
2047         if (tcp_skb_is_last(sk, skb))
2048                 return 1;
2049         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2050         tcp_for_write_queue_from(skb, sk) {
2051                 if (skb == tcp_send_head(sk))
2052                         break;
2053                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2054                         return 0;
2055                 /* Short-circuit when first non-SACKed skb has been checked */
2056                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2057                         break;
2058         }
2059         return 1;
2060 }
2061
2062 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2063  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2064  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2065  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2066  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2067  * bits are handled if the Loss state is really to be entered (in
2068  * tcp_enter_frto_loss).
2069  *
2070  * Do like tcp_enter_loss() would; when RTO expires the second time it
2071  * does:
2072  *  "Reduce ssthresh if it has not yet been made inside this window."
2073  */
2074 void tcp_enter_frto(struct sock *sk)
2075 {
2076         const struct inet_connection_sock *icsk = inet_csk(sk);
2077         struct tcp_sock *tp = tcp_sk(sk);
2078         struct sk_buff *skb;
2079
2080         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2081             tp->snd_una == tp->high_seq ||
2082             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2083              !icsk->icsk_retransmits)) {
2084                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2085                 /* Our state is too optimistic in ssthresh() call because cwnd
2086                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2087                  * recovery has not yet completed. Pattern would be this: RTO,
2088                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2089                  * up here twice).
2090                  * RFC4138 should be more specific on what to do, even though
2091                  * RTO is quite unlikely to occur after the first Cumulative ACK
2092                  * due to back-off and complexity of triggering events ...
2093                  */
2094                 if (tp->frto_counter) {
2095                         u32 stored_cwnd;
2096                         stored_cwnd = tp->snd_cwnd;
2097                         tp->snd_cwnd = 2;
2098                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2099                         tp->snd_cwnd = stored_cwnd;
2100                 } else {
2101                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2102                 }
2103                 /* ... in theory, cong.control module could do "any tricks" in
2104                  * ssthresh(), which means that ca_state, lost bits and lost_out
2105                  * counter would have to be faked before the call occurs. We
2106                  * consider that too expensive, unlikely and hacky, so modules
2107                  * using these in ssthresh() must deal these incompatibility
2108                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2109                  */
2110                 tcp_ca_event(sk, CA_EVENT_FRTO);
2111         }
2112
2113         tp->undo_marker = tp->snd_una;
2114         tp->undo_retrans = 0;
2115
2116         skb = tcp_write_queue_head(sk);
2117         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2118                 tp->undo_marker = 0;
2119         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2120                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2121                 tp->retrans_out -= tcp_skb_pcount(skb);
2122         }
2123         tcp_verify_left_out(tp);
2124
2125         /* Too bad if TCP was application limited */
2126         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2127
2128         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2129          * The last condition is necessary at least in tp->frto_counter case.
2130          */
2131         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2132             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2133             after(tp->high_seq, tp->snd_una)) {
2134                 tp->frto_highmark = tp->high_seq;
2135         } else {
2136                 tp->frto_highmark = tp->snd_nxt;
2137         }
2138         tcp_set_ca_state(sk, TCP_CA_Disorder);
2139         tp->high_seq = tp->snd_nxt;
2140         tp->frto_counter = 1;
2141 }
2142
2143 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2144  * which indicates that we should follow the traditional RTO recovery,
2145  * i.e. mark everything lost and do go-back-N retransmission.
2146  */
2147 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2148 {
2149         struct tcp_sock *tp = tcp_sk(sk);
2150         struct sk_buff *skb;
2151
2152         tp->lost_out = 0;
2153         tp->retrans_out = 0;
2154         if (tcp_is_reno(tp))
2155                 tcp_reset_reno_sack(tp);
2156
2157         tcp_for_write_queue(skb, sk) {
2158                 if (skb == tcp_send_head(sk))
2159                         break;
2160
2161                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2162                 /*
2163                  * Count the retransmission made on RTO correctly (only when
2164                  * waiting for the first ACK and did not get it)...
2165                  */
2166                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2167                         /* For some reason this R-bit might get cleared? */
2168                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2169                                 tp->retrans_out += tcp_skb_pcount(skb);
2170                         /* ...enter this if branch just for the first segment */
2171                         flag |= FLAG_DATA_ACKED;
2172                 } else {
2173                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2174                                 tp->undo_marker = 0;
2175                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2176                 }
2177
2178                 /* Marking forward transmissions that were made after RTO lost
2179                  * can cause unnecessary retransmissions in some scenarios,
2180                  * SACK blocks will mitigate that in some but not in all cases.
2181                  * We used to not mark them but it was causing break-ups with
2182                  * receivers that do only in-order receival.
2183                  *
2184                  * TODO: we could detect presence of such receiver and select
2185                  * different behavior per flow.
2186                  */
2187                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2188                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2189                         tp->lost_out += tcp_skb_pcount(skb);
2190                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2191                 }
2192         }
2193         tcp_verify_left_out(tp);
2194
2195         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2196         tp->snd_cwnd_cnt = 0;
2197         tp->snd_cwnd_stamp = tcp_time_stamp;
2198         tp->frto_counter = 0;
2199         tp->bytes_acked = 0;
2200
2201         tp->reordering = min_t(unsigned int, tp->reordering,
2202                                sysctl_tcp_reordering);
2203         tcp_set_ca_state(sk, TCP_CA_Loss);
2204         tp->high_seq = tp->snd_nxt;
2205         TCP_ECN_queue_cwr(tp);
2206
2207         tcp_clear_all_retrans_hints(tp);
2208 }
2209
2210 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2211 {
2212         tp->retrans_out = 0;
2213         tp->lost_out = 0;
2214
2215         tp->undo_marker = 0;
2216         tp->undo_retrans = 0;
2217 }
2218
2219 void tcp_clear_retrans(struct tcp_sock *tp)
2220 {
2221         tcp_clear_retrans_partial(tp);
2222
2223         tp->fackets_out = 0;
2224         tp->sacked_out = 0;
2225 }
2226
2227 /* Enter Loss state. If "how" is not zero, forget all SACK information
2228  * and reset tags completely, otherwise preserve SACKs. If receiver
2229  * dropped its ofo queue, we will know this due to reneging detection.
2230  */
2231 void tcp_enter_loss(struct sock *sk, int how)
2232 {
2233         const struct inet_connection_sock *icsk = inet_csk(sk);
2234         struct tcp_sock *tp = tcp_sk(sk);
2235         struct sk_buff *skb;
2236
2237         /* Reduce ssthresh if it has not yet been made inside this window. */
2238         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2239             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2240                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2241                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2242                 tcp_ca_event(sk, CA_EVENT_LOSS);
2243         }
2244         tp->snd_cwnd       = 1;
2245         tp->snd_cwnd_cnt   = 0;
2246         tp->snd_cwnd_stamp = tcp_time_stamp;
2247
2248         tp->bytes_acked = 0;
2249         tcp_clear_retrans_partial(tp);
2250
2251         if (tcp_is_reno(tp))
2252                 tcp_reset_reno_sack(tp);
2253
2254         if (!how) {
2255                 /* Push undo marker, if it was plain RTO and nothing
2256                  * was retransmitted. */
2257                 tp->undo_marker = tp->snd_una;
2258         } else {
2259                 tp->sacked_out = 0;
2260                 tp->fackets_out = 0;
2261         }
2262         tcp_clear_all_retrans_hints(tp);
2263
2264         tcp_for_write_queue(skb, sk) {
2265                 if (skb == tcp_send_head(sk))
2266                         break;
2267
2268                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2269                         tp->undo_marker = 0;
2270                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2271                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2272                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2273                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2274                         tp->lost_out += tcp_skb_pcount(skb);
2275                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2276                 }
2277         }
2278         tcp_verify_left_out(tp);
2279
2280         tp->reordering = min_t(unsigned int, tp->reordering,
2281                                sysctl_tcp_reordering);
2282         tcp_set_ca_state(sk, TCP_CA_Loss);
2283         tp->high_seq = tp->snd_nxt;
2284         TCP_ECN_queue_cwr(tp);
2285         /* Abort F-RTO algorithm if one is in progress */
2286         tp->frto_counter = 0;
2287 }
2288
2289 /* If ACK arrived pointing to a remembered SACK, it means that our
2290  * remembered SACKs do not reflect real state of receiver i.e.
2291  * receiver _host_ is heavily congested (or buggy).
2292  *
2293  * Do processing similar to RTO timeout.
2294  */
2295 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2296 {
2297         if (flag & FLAG_SACK_RENEGING) {
2298                 struct inet_connection_sock *icsk = inet_csk(sk);
2299                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2300
2301                 tcp_enter_loss(sk, 1);
2302                 icsk->icsk_retransmits++;
2303                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2304                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2305                                           icsk->icsk_rto, TCP_RTO_MAX);
2306                 return 1;
2307         }
2308         return 0;
2309 }
2310
2311 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2312 {
2313         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2314 }
2315
2316 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2317  * counter when SACK is enabled (without SACK, sacked_out is used for
2318  * that purpose).
2319  *
2320  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2321  * segments up to the highest received SACK block so far and holes in
2322  * between them.
2323  *
2324  * With reordering, holes may still be in flight, so RFC3517 recovery
2325  * uses pure sacked_out (total number of SACKed segments) even though
2326  * it violates the RFC that uses duplicate ACKs, often these are equal
2327  * but when e.g. out-of-window ACKs or packet duplication occurs,
2328  * they differ. Since neither occurs due to loss, TCP should really
2329  * ignore them.
2330  */
2331 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2332 {
2333         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2334 }
2335
2336 static inline int tcp_skb_timedout(const struct sock *sk,
2337                                    const struct sk_buff *skb)
2338 {
2339         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2340 }
2341
2342 static inline int tcp_head_timedout(const struct sock *sk)
2343 {
2344         const struct tcp_sock *tp = tcp_sk(sk);
2345
2346         return tp->packets_out &&
2347                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2348 }
2349
2350 /* Linux NewReno/SACK/FACK/ECN state machine.
2351  * --------------------------------------
2352  *
2353  * "Open"       Normal state, no dubious events, fast path.
2354  * "Disorder"   In all the respects it is "Open",
2355  *              but requires a bit more attention. It is entered when
2356  *              we see some SACKs or dupacks. It is split of "Open"
2357  *              mainly to move some processing from fast path to slow one.
2358  * "CWR"        CWND was reduced due to some Congestion Notification event.
2359  *              It can be ECN, ICMP source quench, local device congestion.
2360  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2361  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2362  *
2363  * tcp_fastretrans_alert() is entered:
2364  * - each incoming ACK, if state is not "Open"
2365  * - when arrived ACK is unusual, namely:
2366  *      * SACK
2367  *      * Duplicate ACK.
2368  *      * ECN ECE.
2369  *
2370  * Counting packets in flight is pretty simple.
2371  *
2372  *      in_flight = packets_out - left_out + retrans_out
2373  *
2374  *      packets_out is SND.NXT-SND.UNA counted in packets.
2375  *
2376  *      retrans_out is number of retransmitted segments.
2377  *
2378  *      left_out is number of segments left network, but not ACKed yet.
2379  *
2380  *              left_out = sacked_out + lost_out
2381  *
2382  *     sacked_out: Packets, which arrived to receiver out of order
2383  *                 and hence not ACKed. With SACKs this number is simply
2384  *                 amount of SACKed data. Even without SACKs
2385  *                 it is easy to give pretty reliable estimate of this number,
2386  *                 counting duplicate ACKs.
2387  *
2388  *       lost_out: Packets lost by network. TCP has no explicit
2389  *                 "loss notification" feedback from network (for now).
2390  *                 It means that this number can be only _guessed_.
2391  *                 Actually, it is the heuristics to predict lossage that
2392  *                 distinguishes different algorithms.
2393  *
2394  *      F.e. after RTO, when all the queue is considered as lost,
2395  *      lost_out = packets_out and in_flight = retrans_out.
2396  *
2397  *              Essentially, we have now two algorithms counting
2398  *              lost packets.
2399  *
2400  *              FACK: It is the simplest heuristics. As soon as we decided
2401  *              that something is lost, we decide that _all_ not SACKed
2402  *              packets until the most forward SACK are lost. I.e.
2403  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2404  *              It is absolutely correct estimate, if network does not reorder
2405  *              packets. And it loses any connection to reality when reordering
2406  *              takes place. We use FACK by default until reordering
2407  *              is suspected on the path to this destination.
2408  *
2409  *              NewReno: when Recovery is entered, we assume that one segment
2410  *              is lost (classic Reno). While we are in Recovery and
2411  *              a partial ACK arrives, we assume that one more packet
2412  *              is lost (NewReno). This heuristics are the same in NewReno
2413  *              and SACK.
2414  *
2415  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2416  *  deflation etc. CWND is real congestion window, never inflated, changes
2417  *  only according to classic VJ rules.
2418  *
2419  * Really tricky (and requiring careful tuning) part of algorithm
2420  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2421  * The first determines the moment _when_ we should reduce CWND and,
2422  * hence, slow down forward transmission. In fact, it determines the moment
2423  * when we decide that hole is caused by loss, rather than by a reorder.
2424  *
2425  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2426  * holes, caused by lost packets.
2427  *
2428  * And the most logically complicated part of algorithm is undo
2429  * heuristics. We detect false retransmits due to both too early
2430  * fast retransmit (reordering) and underestimated RTO, analyzing
2431  * timestamps and D-SACKs. When we detect that some segments were
2432  * retransmitted by mistake and CWND reduction was wrong, we undo
2433  * window reduction and abort recovery phase. This logic is hidden
2434  * inside several functions named tcp_try_undo_<something>.
2435  */
2436
2437 /* This function decides, when we should leave Disordered state
2438  * and enter Recovery phase, reducing congestion window.
2439  *
2440  * Main question: may we further continue forward transmission
2441  * with the same cwnd?
2442  */
2443 static int tcp_time_to_recover(struct sock *sk)
2444 {
2445         struct tcp_sock *tp = tcp_sk(sk);
2446         __u32 packets_out;
2447
2448         /* Do not perform any recovery during F-RTO algorithm */
2449         if (tp->frto_counter)
2450                 return 0;
2451
2452         /* Trick#1: The loss is proven. */
2453         if (tp->lost_out)
2454                 return 1;
2455
2456         /* Not-A-Trick#2 : Classic rule... */
2457         if (tcp_dupack_heuristics(tp) > tp->reordering)
2458                 return 1;
2459
2460         /* Trick#3 : when we use RFC2988 timer restart, fast
2461          * retransmit can be triggered by timeout of queue head.
2462          */
2463         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2464                 return 1;
2465
2466         /* Trick#4: It is still not OK... But will it be useful to delay
2467          * recovery more?
2468          */
2469         packets_out = tp->packets_out;
2470         if (packets_out <= tp->reordering &&
2471             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2472             !tcp_may_send_now(sk)) {
2473                 /* We have nothing to send. This connection is limited
2474                  * either by receiver window or by application.
2475                  */
2476                 return 1;
2477         }
2478
2479         /* If a thin stream is detected, retransmit after first
2480          * received dupack. Employ only if SACK is supported in order
2481          * to avoid possible corner-case series of spurious retransmissions
2482          * Use only if there are no unsent data.
2483          */
2484         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2485             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2486             tcp_is_sack(tp) && !tcp_send_head(sk))
2487                 return 1;
2488
2489         return 0;
2490 }
2491
2492 /* New heuristics: it is possible only after we switched to restart timer
2493  * each time when something is ACKed. Hence, we can detect timed out packets
2494  * during fast retransmit without falling to slow start.
2495  *
2496  * Usefulness of this as is very questionable, since we should know which of
2497  * the segments is the next to timeout which is relatively expensive to find
2498  * in general case unless we add some data structure just for that. The
2499  * current approach certainly won't find the right one too often and when it
2500  * finally does find _something_ it usually marks large part of the window
2501  * right away (because a retransmission with a larger timestamp blocks the
2502  * loop from advancing). -ij
2503  */
2504 static void tcp_timeout_skbs(struct sock *sk)
2505 {
2506         struct tcp_sock *tp = tcp_sk(sk);
2507         struct sk_buff *skb;
2508
2509         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2510                 return;
2511
2512         skb = tp->scoreboard_skb_hint;
2513         if (tp->scoreboard_skb_hint == NULL)
2514                 skb = tcp_write_queue_head(sk);
2515
2516         tcp_for_write_queue_from(skb, sk) {
2517                 if (skb == tcp_send_head(sk))
2518                         break;
2519                 if (!tcp_skb_timedout(sk, skb))
2520                         break;
2521
2522                 tcp_skb_mark_lost(tp, skb);
2523         }
2524
2525         tp->scoreboard_skb_hint = skb;
2526
2527         tcp_verify_left_out(tp);
2528 }
2529
2530 /* Detect loss in event "A" above by marking head of queue up as lost.
2531  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2532  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2533  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2534  * the maximum SACKed segments to pass before reaching this limit.
2535  */
2536 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2537 {
2538         struct tcp_sock *tp = tcp_sk(sk);
2539         struct sk_buff *skb;
2540         int cnt, oldcnt;
2541         int err;
2542         unsigned int mss;
2543         /* Use SACK to deduce losses of new sequences sent during recovery */
2544         const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2545
2546         WARN_ON(packets > tp->packets_out);
2547         if (tp->lost_skb_hint) {
2548                 skb = tp->lost_skb_hint;
2549                 cnt = tp->lost_cnt_hint;
2550                 /* Head already handled? */
2551                 if (mark_head && skb != tcp_write_queue_head(sk))
2552                         return;
2553         } else {
2554                 skb = tcp_write_queue_head(sk);
2555                 cnt = 0;
2556         }
2557
2558         tcp_for_write_queue_from(skb, sk) {
2559                 if (skb == tcp_send_head(sk))
2560                         break;
2561                 /* TODO: do this better */
2562                 /* this is not the most efficient way to do this... */
2563                 tp->lost_skb_hint = skb;
2564                 tp->lost_cnt_hint = cnt;
2565
2566                 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2567                         break;
2568
2569                 oldcnt = cnt;
2570                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2571                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2572                         cnt += tcp_skb_pcount(skb);
2573
2574                 if (cnt > packets) {
2575                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2576                             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2577                             (oldcnt >= packets))
2578                                 break;
2579
2580                         mss = skb_shinfo(skb)->gso_size;
2581                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2582                         if (err < 0)
2583                                 break;
2584                         cnt = packets;
2585                 }
2586
2587                 tcp_skb_mark_lost(tp, skb);
2588
2589                 if (mark_head)
2590                         break;
2591         }
2592         tcp_verify_left_out(tp);
2593 }
2594
2595 /* Account newly detected lost packet(s) */
2596
2597 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2598 {
2599         struct tcp_sock *tp = tcp_sk(sk);
2600
2601         if (tcp_is_reno(tp)) {
2602                 tcp_mark_head_lost(sk, 1, 1);
2603         } else if (tcp_is_fack(tp)) {
2604                 int lost = tp->fackets_out - tp->reordering;
2605                 if (lost <= 0)
2606                         lost = 1;
2607                 tcp_mark_head_lost(sk, lost, 0);
2608         } else {
2609                 int sacked_upto = tp->sacked_out - tp->reordering;
2610                 if (sacked_upto >= 0)
2611                         tcp_mark_head_lost(sk, sacked_upto, 0);
2612                 else if (fast_rexmit)
2613                         tcp_mark_head_lost(sk, 1, 1);
2614         }
2615
2616         tcp_timeout_skbs(sk);
2617 }
2618
2619 /* CWND moderation, preventing bursts due to too big ACKs
2620  * in dubious situations.
2621  */
2622 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2623 {
2624         tp->snd_cwnd = min(tp->snd_cwnd,
2625                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2626         tp->snd_cwnd_stamp = tcp_time_stamp;
2627 }
2628
2629 /* Lower bound on congestion window is slow start threshold
2630  * unless congestion avoidance choice decides to overide it.
2631  */
2632 static inline u32 tcp_cwnd_min(const struct sock *sk)
2633 {
2634         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2635
2636         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2637 }
2638
2639 /* Decrease cwnd each second ack. */
2640 static void tcp_cwnd_down(struct sock *sk, int flag)
2641 {
2642         struct tcp_sock *tp = tcp_sk(sk);
2643         int decr = tp->snd_cwnd_cnt + 1;
2644
2645         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2646             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2647                 tp->snd_cwnd_cnt = decr & 1;
2648                 decr >>= 1;
2649
2650                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2651                         tp->snd_cwnd -= decr;
2652
2653                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2654                 tp->snd_cwnd_stamp = tcp_time_stamp;
2655         }
2656 }
2657
2658 /* Nothing was retransmitted or returned timestamp is less
2659  * than timestamp of the first retransmission.
2660  */
2661 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2662 {
2663         return !tp->retrans_stamp ||
2664                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2665                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2666 }
2667
2668 /* Undo procedures. */
2669
2670 #if FASTRETRANS_DEBUG > 1
2671 static void DBGUNDO(struct sock *sk, const char *msg)
2672 {
2673         struct tcp_sock *tp = tcp_sk(sk);
2674         struct inet_sock *inet = inet_sk(sk);
2675
2676         if (sk->sk_family == AF_INET) {
2677                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2678                        msg,
2679                        &inet->inet_daddr, ntohs(inet->inet_dport),
2680                        tp->snd_cwnd, tcp_left_out(tp),
2681                        tp->snd_ssthresh, tp->prior_ssthresh,
2682                        tp->packets_out);
2683         }
2684 #if IS_ENABLED(CONFIG_IPV6)
2685         else if (sk->sk_family == AF_INET6) {
2686                 struct ipv6_pinfo *np = inet6_sk(sk);
2687                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2688                        msg,
2689                        &np->daddr, ntohs(inet->inet_dport),
2690                        tp->snd_cwnd, tcp_left_out(tp),
2691                        tp->snd_ssthresh, tp->prior_ssthresh,
2692                        tp->packets_out);
2693         }
2694 #endif
2695 }
2696 #else
2697 #define DBGUNDO(x...) do { } while (0)
2698 #endif
2699
2700 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2701 {
2702         struct tcp_sock *tp = tcp_sk(sk);
2703
2704         if (tp->prior_ssthresh) {
2705                 const struct inet_connection_sock *icsk = inet_csk(sk);
2706
2707                 if (icsk->icsk_ca_ops->undo_cwnd)
2708                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2709                 else
2710                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2711
2712                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2713                         tp->snd_ssthresh = tp->prior_ssthresh;
2714                         TCP_ECN_withdraw_cwr(tp);
2715                 }
2716         } else {
2717                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2718         }
2719         tp->snd_cwnd_stamp = tcp_time_stamp;
2720 }
2721
2722 static inline int tcp_may_undo(const struct tcp_sock *tp)
2723 {
2724         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2725 }
2726
2727 /* People celebrate: "We love our President!" */
2728 static int tcp_try_undo_recovery(struct sock *sk)
2729 {
2730         struct tcp_sock *tp = tcp_sk(sk);
2731
2732         if (tcp_may_undo(tp)) {
2733                 int mib_idx;
2734
2735                 /* Happy end! We did not retransmit anything
2736                  * or our original transmission succeeded.
2737                  */
2738                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2739                 tcp_undo_cwr(sk, true);
2740                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2741                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2742                 else
2743                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2744
2745                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2746                 tp->undo_marker = 0;
2747         }
2748         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2749                 /* Hold old state until something *above* high_seq
2750                  * is ACKed. For Reno it is MUST to prevent false
2751                  * fast retransmits (RFC2582). SACK TCP is safe. */
2752                 tcp_moderate_cwnd(tp);
2753                 return 1;
2754         }
2755         tcp_set_ca_state(sk, TCP_CA_Open);
2756         return 0;
2757 }
2758
2759 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2760 static void tcp_try_undo_dsack(struct sock *sk)
2761 {
2762         struct tcp_sock *tp = tcp_sk(sk);
2763
2764         if (tp->undo_marker && !tp->undo_retrans) {
2765                 DBGUNDO(sk, "D-SACK");
2766                 tcp_undo_cwr(sk, true);
2767                 tp->undo_marker = 0;
2768                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2769         }
2770 }
2771
2772 /* We can clear retrans_stamp when there are no retransmissions in the
2773  * window. It would seem that it is trivially available for us in
2774  * tp->retrans_out, however, that kind of assumptions doesn't consider
2775  * what will happen if errors occur when sending retransmission for the
2776  * second time. ...It could the that such segment has only
2777  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2778  * the head skb is enough except for some reneging corner cases that
2779  * are not worth the effort.
2780  *
2781  * Main reason for all this complexity is the fact that connection dying
2782  * time now depends on the validity of the retrans_stamp, in particular,
2783  * that successive retransmissions of a segment must not advance
2784  * retrans_stamp under any conditions.
2785  */
2786 static int tcp_any_retrans_done(const struct sock *sk)
2787 {
2788         const struct tcp_sock *tp = tcp_sk(sk);
2789         struct sk_buff *skb;
2790
2791         if (tp->retrans_out)
2792                 return 1;
2793
2794         skb = tcp_write_queue_head(sk);
2795         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2796                 return 1;
2797
2798         return 0;
2799 }
2800
2801 /* Undo during fast recovery after partial ACK. */
2802
2803 static int tcp_try_undo_partial(struct sock *sk, int acked)
2804 {
2805         struct tcp_sock *tp = tcp_sk(sk);
2806         /* Partial ACK arrived. Force Hoe's retransmit. */
2807         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2808
2809         if (tcp_may_undo(tp)) {
2810                 /* Plain luck! Hole if filled with delayed
2811                  * packet, rather than with a retransmit.
2812                  */
2813                 if (!tcp_any_retrans_done(sk))
2814                         tp->retrans_stamp = 0;
2815
2816                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2817
2818                 DBGUNDO(sk, "Hoe");
2819                 tcp_undo_cwr(sk, false);
2820                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2821
2822                 /* So... Do not make Hoe's retransmit yet.
2823                  * If the first packet was delayed, the rest
2824                  * ones are most probably delayed as well.
2825                  */
2826                 failed = 0;
2827         }
2828         return failed;
2829 }
2830
2831 /* Undo during loss recovery after partial ACK. */
2832 static int tcp_try_undo_loss(struct sock *sk)
2833 {
2834         struct tcp_sock *tp = tcp_sk(sk);
2835
2836         if (tcp_may_undo(tp)) {
2837                 struct sk_buff *skb;
2838                 tcp_for_write_queue(skb, sk) {
2839                         if (skb == tcp_send_head(sk))
2840                                 break;
2841                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2842                 }
2843
2844                 tcp_clear_all_retrans_hints(tp);
2845
2846                 DBGUNDO(sk, "partial loss");
2847                 tp->lost_out = 0;
2848                 tcp_undo_cwr(sk, true);
2849                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2850                 inet_csk(sk)->icsk_retransmits = 0;
2851                 tp->undo_marker = 0;
2852                 if (tcp_is_sack(tp))
2853                         tcp_set_ca_state(sk, TCP_CA_Open);
2854                 return 1;
2855         }
2856         return 0;
2857 }
2858
2859 static inline void tcp_complete_cwr(struct sock *sk)
2860 {
2861         struct tcp_sock *tp = tcp_sk(sk);
2862
2863         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2864         if (tp->undo_marker) {
2865                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2866                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2867                 else /* PRR */
2868                         tp->snd_cwnd = tp->snd_ssthresh;
2869                 tp->snd_cwnd_stamp = tcp_time_stamp;
2870         }
2871         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2872 }
2873
2874 static void tcp_try_keep_open(struct sock *sk)
2875 {
2876         struct tcp_sock *tp = tcp_sk(sk);
2877         int state = TCP_CA_Open;
2878
2879         if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2880                 state = TCP_CA_Disorder;
2881
2882         if (inet_csk(sk)->icsk_ca_state != state) {
2883                 tcp_set_ca_state(sk, state);
2884                 tp->high_seq = tp->snd_nxt;
2885         }
2886 }
2887
2888 static void tcp_try_to_open(struct sock *sk, int flag)
2889 {
2890         struct tcp_sock *tp = tcp_sk(sk);
2891
2892         tcp_verify_left_out(tp);
2893
2894         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2895                 tp->retrans_stamp = 0;
2896
2897         if (flag & FLAG_ECE)
2898                 tcp_enter_cwr(sk, 1);
2899
2900         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2901                 tcp_try_keep_open(sk);
2902                 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2903                         tcp_moderate_cwnd(tp);
2904         } else {
2905                 tcp_cwnd_down(sk, flag);
2906         }
2907 }
2908
2909 static void tcp_mtup_probe_failed(struct sock *sk)
2910 {
2911         struct inet_connection_sock *icsk = inet_csk(sk);
2912
2913         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2914         icsk->icsk_mtup.probe_size = 0;
2915 }
2916
2917 static void tcp_mtup_probe_success(struct sock *sk)
2918 {
2919         struct tcp_sock *tp = tcp_sk(sk);
2920         struct inet_connection_sock *icsk = inet_csk(sk);
2921
2922         /* FIXME: breaks with very large cwnd */
2923         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2924         tp->snd_cwnd = tp->snd_cwnd *
2925                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2926                        icsk->icsk_mtup.probe_size;
2927         tp->snd_cwnd_cnt = 0;
2928         tp->snd_cwnd_stamp = tcp_time_stamp;
2929         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2930
2931         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2932         icsk->icsk_mtup.probe_size = 0;
2933         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2934 }
2935
2936 /* Do a simple retransmit without using the backoff mechanisms in
2937  * tcp_timer. This is used for path mtu discovery.
2938  * The socket is already locked here.
2939  */
2940 void tcp_simple_retransmit(struct sock *sk)
2941 {
2942         const struct inet_connection_sock *icsk = inet_csk(sk);
2943         struct tcp_sock *tp = tcp_sk(sk);
2944         struct sk_buff *skb;
2945         unsigned int mss = tcp_current_mss(sk);
2946         u32 prior_lost = tp->lost_out;
2947
2948         tcp_for_write_queue(skb, sk) {
2949                 if (skb == tcp_send_head(sk))
2950                         break;
2951                 if (tcp_skb_seglen(skb) > mss &&
2952                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2953                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2954                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2955                                 tp->retrans_out -= tcp_skb_pcount(skb);
2956                         }
2957                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2958                 }
2959         }
2960
2961         tcp_clear_retrans_hints_partial(tp);
2962
2963         if (prior_lost == tp->lost_out)
2964                 return;
2965
2966         if (tcp_is_reno(tp))
2967                 tcp_limit_reno_sacked(tp);
2968
2969         tcp_verify_left_out(tp);
2970
2971         /* Don't muck with the congestion window here.
2972          * Reason is that we do not increase amount of _data_
2973          * in network, but units changed and effective
2974          * cwnd/ssthresh really reduced now.
2975          */
2976         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2977                 tp->high_seq = tp->snd_nxt;
2978                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2979                 tp->prior_ssthresh = 0;
2980                 tp->undo_marker = 0;
2981                 tcp_set_ca_state(sk, TCP_CA_Loss);
2982         }
2983         tcp_xmit_retransmit_queue(sk);
2984 }
2985 EXPORT_SYMBOL(tcp_simple_retransmit);
2986
2987 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2988  * (proportional rate reduction with slow start reduction bound) as described in
2989  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2990  * It computes the number of packets to send (sndcnt) based on packets newly
2991  * delivered:
2992  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2993  *      cwnd reductions across a full RTT.
2994  *   2) If packets in flight is lower than ssthresh (such as due to excess
2995  *      losses and/or application stalls), do not perform any further cwnd
2996  *      reductions, but instead slow start up to ssthresh.
2997  */
2998 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2999                                         int fast_rexmit, int flag)
3000 {
3001         struct tcp_sock *tp = tcp_sk(sk);
3002         int sndcnt = 0;
3003         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3004
3005         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3006                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3007                                tp->prior_cwnd - 1;
3008                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3009         } else {
3010                 sndcnt = min_t(int, delta,
3011                                max_t(int, tp->prr_delivered - tp->prr_out,
3012                                      newly_acked_sacked) + 1);
3013         }
3014
3015         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3016         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3017 }
3018
3019 /* Process an event, which can update packets-in-flight not trivially.
3020  * Main goal of this function is to calculate new estimate for left_out,
3021  * taking into account both packets sitting in receiver's buffer and
3022  * packets lost by network.
3023  *
3024  * Besides that it does CWND reduction, when packet loss is detected
3025  * and changes state of machine.
3026  *
3027  * It does _not_ decide what to send, it is made in function
3028  * tcp_xmit_retransmit_queue().
3029  */
3030 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3031                                   int newly_acked_sacked, bool is_dupack,
3032                                   int flag)
3033 {
3034         struct inet_connection_sock *icsk = inet_csk(sk);
3035         struct tcp_sock *tp = tcp_sk(sk);
3036         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3037                                     (tcp_fackets_out(tp) > tp->reordering));
3038         int fast_rexmit = 0, mib_idx;
3039
3040         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3041                 tp->sacked_out = 0;
3042         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3043                 tp->fackets_out = 0;
3044
3045         /* Now state machine starts.
3046          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3047         if (flag & FLAG_ECE)
3048                 tp->prior_ssthresh = 0;
3049
3050         /* B. In all the states check for reneging SACKs. */
3051         if (tcp_check_sack_reneging(sk, flag))
3052                 return;
3053
3054         /* C. Check consistency of the current state. */
3055         tcp_verify_left_out(tp);
3056
3057         /* D. Check state exit conditions. State can be terminated
3058          *    when high_seq is ACKed. */
3059         if (icsk->icsk_ca_state == TCP_CA_Open) {
3060                 WARN_ON(tp->retrans_out != 0);
3061                 tp->retrans_stamp = 0;
3062         } else if (!before(tp->snd_una, tp->high_seq)) {
3063                 switch (icsk->icsk_ca_state) {
3064                 case TCP_CA_Loss:
3065                         icsk->icsk_retransmits = 0;
3066                         if (tcp_try_undo_recovery(sk))
3067                                 return;
3068                         break;
3069
3070                 case TCP_CA_CWR:
3071                         /* CWR is to be held something *above* high_seq
3072                          * is ACKed for CWR bit to reach receiver. */
3073                         if (tp->snd_una != tp->high_seq) {
3074                                 tcp_complete_cwr(sk);
3075                                 tcp_set_ca_state(sk, TCP_CA_Open);
3076                         }
3077                         break;
3078
3079                 case TCP_CA_Recovery:
3080                         if (tcp_is_reno(tp))
3081                                 tcp_reset_reno_sack(tp);
3082                         if (tcp_try_undo_recovery(sk))
3083                                 return;
3084                         tcp_complete_cwr(sk);
3085                         break;
3086                 }
3087         }
3088
3089         /* E. Process state. */
3090         switch (icsk->icsk_ca_state) {
3091         case TCP_CA_Recovery:
3092                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3093                         if (tcp_is_reno(tp) && is_dupack)
3094                                 tcp_add_reno_sack(sk);
3095                 } else
3096                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3097                 break;
3098         case TCP_CA_Loss:
3099                 if (flag & FLAG_DATA_ACKED)
3100                         icsk->icsk_retransmits = 0;
3101                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3102                         tcp_reset_reno_sack(tp);
3103                 if (!tcp_try_undo_loss(sk)) {
3104                         tcp_moderate_cwnd(tp);
3105                         tcp_xmit_retransmit_queue(sk);
3106                         return;
3107                 }
3108                 if (icsk->icsk_ca_state != TCP_CA_Open)
3109                         return;
3110                 /* Loss is undone; fall through to processing in Open state. */
3111         default:
3112                 if (tcp_is_reno(tp)) {
3113                         if (flag & FLAG_SND_UNA_ADVANCED)
3114                                 tcp_reset_reno_sack(tp);
3115                         if (is_dupack)
3116                                 tcp_add_reno_sack(sk);
3117                 }
3118
3119                 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3120                         tcp_try_undo_dsack(sk);
3121
3122                 if (!tcp_time_to_recover(sk)) {
3123                         tcp_try_to_open(sk, flag);
3124                         return;
3125                 }
3126
3127                 /* MTU probe failure: don't reduce cwnd */
3128                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3129                     icsk->icsk_mtup.probe_size &&
3130                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3131                         tcp_mtup_probe_failed(sk);
3132                         /* Restores the reduction we did in tcp_mtup_probe() */
3133                         tp->snd_cwnd++;
3134                         tcp_simple_retransmit(sk);
3135                         return;
3136                 }
3137
3138                 /* Otherwise enter Recovery state */
3139
3140                 if (tcp_is_reno(tp))
3141                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3142                 else
3143                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3144
3145                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3146
3147                 tp->high_seq = tp->snd_nxt;
3148                 tp->prior_ssthresh = 0;
3149                 tp->undo_marker = tp->snd_una;
3150                 tp->undo_retrans = tp->retrans_out;
3151
3152                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3153                         if (!(flag & FLAG_ECE))
3154                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3155                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3156                         TCP_ECN_queue_cwr(tp);
3157                 }
3158
3159                 tp->bytes_acked = 0;
3160                 tp->snd_cwnd_cnt = 0;
3161                 tp->prior_cwnd = tp->snd_cwnd;
3162                 tp->prr_delivered = 0;
3163                 tp->prr_out = 0;
3164                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3165                 fast_rexmit = 1;
3166         }
3167
3168         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3169                 tcp_update_scoreboard(sk, fast_rexmit);
3170         tp->prr_delivered += newly_acked_sacked;
3171         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3172         tcp_xmit_retransmit_queue(sk);
3173 }
3174
3175 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3176 {
3177         tcp_rtt_estimator(sk, seq_rtt);
3178         tcp_set_rto(sk);
3179         inet_csk(sk)->icsk_backoff = 0;
3180 }
3181 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3182
3183 /* Read draft-ietf-tcplw-high-performance before mucking
3184  * with this code. (Supersedes RFC1323)
3185  */
3186 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3187 {
3188         /* RTTM Rule: A TSecr value received in a segment is used to
3189          * update the averaged RTT measurement only if the segment
3190          * acknowledges some new data, i.e., only if it advances the
3191          * left edge of the send window.
3192          *
3193          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3194          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3195          *
3196          * Changed: reset backoff as soon as we see the first valid sample.
3197          * If we do not, we get strongly overestimated rto. With timestamps
3198          * samples are accepted even from very old segments: f.e., when rtt=1
3199          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3200          * answer arrives rto becomes 120 seconds! If at least one of segments
3201          * in window is lost... Voila.                          --ANK (010210)
3202          */
3203         struct tcp_sock *tp = tcp_sk(sk);
3204
3205         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3206 }
3207
3208 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3209 {
3210         /* We don't have a timestamp. Can only use
3211          * packets that are not retransmitted to determine
3212          * rtt estimates. Also, we must not reset the
3213          * backoff for rto until we get a non-retransmitted
3214          * packet. This allows us to deal with a situation
3215          * where the network delay has increased suddenly.
3216          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3217          */
3218
3219         if (flag & FLAG_RETRANS_DATA_ACKED)
3220                 return;
3221
3222         tcp_valid_rtt_meas(sk, seq_rtt);
3223 }
3224
3225 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3226                                       const s32 seq_rtt)
3227 {
3228         const struct tcp_sock *tp = tcp_sk(sk);
3229         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3230         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3231                 tcp_ack_saw_tstamp(sk, flag);
3232         else if (seq_rtt >= 0)
3233                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3234 }
3235
3236 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3237 {
3238         const struct inet_connection_sock *icsk = inet_csk(sk);
3239         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3240         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3241 }
3242
3243 /* Restart timer after forward progress on connection.
3244  * RFC2988 recommends to restart timer to now+rto.
3245  */
3246 static void tcp_rearm_rto(struct sock *sk)
3247 {
3248         const struct tcp_sock *tp = tcp_sk(sk);
3249
3250         if (!tp->packets_out) {
3251                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3252         } else {
3253                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3254                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3255         }
3256 }
3257
3258 /* If we get here, the whole TSO packet has not been acked. */
3259 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3260 {
3261         struct tcp_sock *tp = tcp_sk(sk);
3262         u32 packets_acked;
3263
3264         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3265
3266         packets_acked = tcp_skb_pcount(skb);
3267         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3268                 return 0;
3269         packets_acked -= tcp_skb_pcount(skb);
3270
3271         if (packets_acked) {
3272                 BUG_ON(tcp_skb_pcount(skb) == 0);
3273                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3274         }
3275
3276         return packets_acked;
3277 }
3278
3279 /* Remove acknowledged frames from the retransmission queue. If our packet
3280  * is before the ack sequence we can discard it as it's confirmed to have
3281  * arrived at the other end.
3282  */
3283 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3284                                u32 prior_snd_una)
3285 {
3286         struct tcp_sock *tp = tcp_sk(sk);
3287         const struct inet_connection_sock *icsk = inet_csk(sk);
3288         struct sk_buff *skb;
3289         u32 now = tcp_time_stamp;
3290         int fully_acked = 1;
3291         int flag = 0;
3292         u32 pkts_acked = 0;
3293         u32 reord = tp->packets_out;
3294         u32 prior_sacked = tp->sacked_out;
3295         s32 seq_rtt = -1;
3296         s32 ca_seq_rtt = -1;
3297         ktime_t last_ackt = net_invalid_timestamp();
3298
3299         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3300                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3301                 u32 acked_pcount;
3302                 u8 sacked = scb->sacked;
3303
3304                 /* Determine how many packets and what bytes were acked, tso and else */
3305                 if (after(scb->end_seq, tp->snd_una)) {
3306                         if (tcp_skb_pcount(skb) == 1 ||
3307                             !after(tp->snd_una, scb->seq))
3308                                 break;
3309
3310                         acked_pcount = tcp_tso_acked(sk, skb);
3311                         if (!acked_pcount)
3312                                 break;
3313
3314                         fully_acked = 0;
3315                 } else {
3316                         acked_pcount = tcp_skb_pcount(skb);
3317                 }
3318
3319                 if (sacked & TCPCB_RETRANS) {
3320                         if (sacked & TCPCB_SACKED_RETRANS)
3321                                 tp->retrans_out -= acked_pcount;
3322                         flag |= FLAG_RETRANS_DATA_ACKED;
3323                         ca_seq_rtt = -1;
3324                         seq_rtt = -1;
3325                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3326                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3327                 } else {
3328                         ca_seq_rtt = now - scb->when;
3329                         last_ackt = skb->tstamp;
3330                         if (seq_rtt < 0) {
3331                                 seq_rtt = ca_seq_rtt;
3332                         }
3333                         if (!(sacked & TCPCB_SACKED_ACKED))
3334                                 reord = min(pkts_acked, reord);
3335                 }
3336
3337                 if (sacked & TCPCB_SACKED_ACKED)
3338                         tp->sacked_out -= acked_pcount;
3339                 if (sacked & TCPCB_LOST)
3340                         tp->lost_out -= acked_pcount;
3341
3342                 tp->packets_out -= acked_pcount;
3343                 pkts_acked += acked_pcount;
3344
3345                 /* Initial outgoing SYN's get put onto the write_queue
3346                  * just like anything else we transmit.  It is not
3347                  * true data, and if we misinform our callers that
3348                  * this ACK acks real data, we will erroneously exit
3349                  * connection startup slow start one packet too
3350                  * quickly.  This is severely frowned upon behavior.
3351                  */
3352                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3353                         flag |= FLAG_DATA_ACKED;
3354                 } else {
3355                         flag |= FLAG_SYN_ACKED;
3356                         tp->retrans_stamp = 0;
3357                 }
3358
3359                 if (!fully_acked)
3360                         break;
3361
3362                 tcp_unlink_write_queue(skb, sk);
3363                 sk_wmem_free_skb(sk, skb);
3364                 tp->scoreboard_skb_hint = NULL;
3365                 if (skb == tp->retransmit_skb_hint)
3366                         tp->retransmit_skb_hint = NULL;
3367                 if (skb == tp->lost_skb_hint)
3368                         tp->lost_skb_hint = NULL;
3369         }
3370
3371         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3372                 tp->snd_up = tp->snd_una;
3373
3374         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3375                 flag |= FLAG_SACK_RENEGING;
3376
3377         if (flag & FLAG_ACKED) {
3378                 const struct tcp_congestion_ops *ca_ops
3379                         = inet_csk(sk)->icsk_ca_ops;
3380
3381                 if (unlikely(icsk->icsk_mtup.probe_size &&
3382                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3383                         tcp_mtup_probe_success(sk);
3384                 }
3385
3386                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3387                 tcp_rearm_rto(sk);
3388
3389                 if (tcp_is_reno(tp)) {
3390                         tcp_remove_reno_sacks(sk, pkts_acked);
3391                 } else {
3392                         int delta;
3393
3394                         /* Non-retransmitted hole got filled? That's reordering */
3395                         if (reord < prior_fackets)
3396                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3397
3398                         delta = tcp_is_fack(tp) ? pkts_acked :
3399                                                   prior_sacked - tp->sacked_out;
3400                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3401                 }
3402
3403                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3404
3405                 if (ca_ops->pkts_acked) {
3406                         s32 rtt_us = -1;
3407
3408                         /* Is the ACK triggering packet unambiguous? */
3409                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3410                                 /* High resolution needed and available? */
3411                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3412                                     !ktime_equal(last_ackt,
3413                                                  net_invalid_timestamp()))
3414                                         rtt_us = ktime_us_delta(ktime_get_real(),
3415                                                                 last_ackt);
3416                                 else if (ca_seq_rtt >= 0)
3417                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3418                         }
3419
3420                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3421                 }
3422         }
3423
3424 #if FASTRETRANS_DEBUG > 0
3425         WARN_ON((int)tp->sacked_out < 0);
3426         WARN_ON((int)tp->lost_out < 0);
3427         WARN_ON((int)tp->retrans_out < 0);
3428         if (!tp->packets_out && tcp_is_sack(tp)) {
3429                 icsk = inet_csk(sk);
3430                 if (tp->lost_out) {
3431                         printk(KERN_DEBUG "Leak l=%u %d\n",
3432                                tp->lost_out, icsk->icsk_ca_state);
3433                         tp->lost_out = 0;
3434                 }
3435                 if (tp->sacked_out) {
3436                         printk(KERN_DEBUG "Leak s=%u %d\n",
3437                                tp->sacked_out, icsk->icsk_ca_state);
3438                         tp->sacked_out = 0;
3439                 }
3440                 if (tp->retrans_out) {
3441                         printk(KERN_DEBUG "Leak r=%u %d\n",
3442                                tp->retrans_out, icsk->icsk_ca_state);
3443                         tp->retrans_out = 0;
3444                 }
3445         }
3446 #endif
3447         return flag;
3448 }
3449
3450 static void tcp_ack_probe(struct sock *sk)
3451 {
3452         const struct tcp_sock *tp = tcp_sk(sk);
3453         struct inet_connection_sock *icsk = inet_csk(sk);
3454
3455         /* Was it a usable window open? */
3456
3457         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3458                 icsk->icsk_backoff = 0;
3459                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3460                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3461                  * This function is not for random using!
3462                  */
3463         } else {
3464                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3465                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3466                                           TCP_RTO_MAX);
3467         }
3468 }
3469
3470 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3471 {
3472         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3473                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3474 }
3475
3476 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3477 {
3478         const struct tcp_sock *tp = tcp_sk(sk);
3479         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3480                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3481 }
3482
3483 /* Check that window update is acceptable.
3484  * The function assumes that snd_una<=ack<=snd_next.
3485  */
3486 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3487                                         const u32 ack, const u32 ack_seq,
3488                                         const u32 nwin)
3489 {
3490         return  after(ack, tp->snd_una) ||
3491                 after(ack_seq, tp->snd_wl1) ||
3492                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3493 }
3494
3495 /* Update our send window.
3496  *
3497  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3498  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3499  */
3500 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3501                                  u32 ack_seq)
3502 {
3503         struct tcp_sock *tp = tcp_sk(sk);
3504         int flag = 0;
3505         u32 nwin = ntohs(tcp_hdr(skb)->window);
3506
3507         if (likely(!tcp_hdr(skb)->syn))
3508                 nwin <<= tp->rx_opt.snd_wscale;
3509
3510         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3511                 flag |= FLAG_WIN_UPDATE;
3512                 tcp_update_wl(tp, ack_seq);
3513
3514                 if (tp->snd_wnd != nwin) {
3515                         tp->snd_wnd = nwin;
3516
3517                         /* Note, it is the only place, where
3518                          * fast path is recovered for sending TCP.
3519                          */
3520                         tp->pred_flags = 0;
3521                         tcp_fast_path_check(sk);
3522
3523                         if (nwin > tp->max_window) {
3524                                 tp->max_window = nwin;
3525                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3526                         }
3527                 }
3528         }
3529
3530         tp->snd_una = ack;
3531
3532         return flag;
3533 }
3534
3535 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3536  * continue in congestion avoidance.
3537  */
3538 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3539 {
3540         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3541         tp->snd_cwnd_cnt = 0;
3542         tp->bytes_acked = 0;
3543         TCP_ECN_queue_cwr(tp);
3544         tcp_moderate_cwnd(tp);
3545 }
3546
3547 /* A conservative spurious RTO response algorithm: reduce cwnd using
3548  * rate halving and continue in congestion avoidance.
3549  */
3550 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3551 {
3552         tcp_enter_cwr(sk, 0);
3553 }
3554
3555 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3556 {
3557         if (flag & FLAG_ECE)
3558                 tcp_ratehalving_spur_to_response(sk);
3559         else
3560                 tcp_undo_cwr(sk, true);
3561 }
3562
3563 /* F-RTO spurious RTO detection algorithm (RFC4138)
3564  *
3565  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3566  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3567  * window (but not to or beyond highest sequence sent before RTO):
3568  *   On First ACK,  send two new segments out.
3569  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3570  *                  algorithm is not part of the F-RTO detection algorithm
3571  *                  given in RFC4138 but can be selected separately).
3572  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3573  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3574  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3575  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3576  *
3577  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3578  * original window even after we transmit two new data segments.
3579  *
3580  * SACK version:
3581  *   on first step, wait until first cumulative ACK arrives, then move to
3582  *   the second step. In second step, the next ACK decides.
3583  *
3584  * F-RTO is implemented (mainly) in four functions:
3585  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3586  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3587  *     called when tcp_use_frto() showed green light
3588  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3589  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3590  *     to prove that the RTO is indeed spurious. It transfers the control
3591  *     from F-RTO to the conventional RTO recovery
3592  */
3593 static int tcp_process_frto(struct sock *sk, int flag)
3594 {
3595         struct tcp_sock *tp = tcp_sk(sk);
3596
3597         tcp_verify_left_out(tp);
3598
3599         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3600         if (flag & FLAG_DATA_ACKED)
3601                 inet_csk(sk)->icsk_retransmits = 0;
3602
3603         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3604             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3605                 tp->undo_marker = 0;
3606
3607         if (!before(tp->snd_una, tp->frto_highmark)) {
3608                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3609                 return 1;
3610         }
3611
3612         if (!tcp_is_sackfrto(tp)) {
3613                 /* RFC4138 shortcoming in step 2; should also have case c):
3614                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3615                  * data, winupdate
3616                  */
3617                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3618                         return 1;
3619
3620                 if (!(flag & FLAG_DATA_ACKED)) {
3621                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3622                                             flag);
3623                         return 1;
3624                 }
3625         } else {
3626                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3627                         /* Prevent sending of new data. */
3628                         tp->snd_cwnd = min(tp->snd_cwnd,
3629                                            tcp_packets_in_flight(tp));
3630                         return 1;
3631                 }
3632
3633                 if ((tp->frto_counter >= 2) &&
3634                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3635                      ((flag & FLAG_DATA_SACKED) &&
3636                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3637                         /* RFC4138 shortcoming (see comment above) */
3638                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3639                             (flag & FLAG_NOT_DUP))
3640                                 return 1;
3641
3642                         tcp_enter_frto_loss(sk, 3, flag);
3643                         return 1;
3644                 }
3645         }
3646
3647         if (tp->frto_counter == 1) {
3648                 /* tcp_may_send_now needs to see updated state */
3649                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3650                 tp->frto_counter = 2;
3651
3652                 if (!tcp_may_send_now(sk))
3653                         tcp_enter_frto_loss(sk, 2, flag);
3654
3655                 return 1;
3656         } else {
3657                 switch (sysctl_tcp_frto_response) {
3658                 case 2:
3659                         tcp_undo_spur_to_response(sk, flag);
3660                         break;
3661                 case 1:
3662                         tcp_conservative_spur_to_response(tp);
3663                         break;
3664                 default:
3665                         tcp_ratehalving_spur_to_response(sk);
3666                         break;
3667                 }
3668                 tp->frto_counter = 0;
3669                 tp->undo_marker = 0;
3670                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3671         }
3672         return 0;
3673 }
3674
3675 /* This routine deals with incoming acks, but not outgoing ones. */
3676 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3677 {
3678         struct inet_connection_sock *icsk = inet_csk(sk);
3679         struct tcp_sock *tp = tcp_sk(sk);
3680         u32 prior_snd_una = tp->snd_una;
3681         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3682         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3683         bool is_dupack = false;
3684         u32 prior_in_flight;
3685         u32 prior_fackets;
3686         int prior_packets;
3687         int prior_sacked = tp->sacked_out;
3688         int pkts_acked = 0;
3689         int newly_acked_sacked = 0;
3690         int frto_cwnd = 0;
3691
3692         /* If the ack is older than previous acks
3693          * then we can probably ignore it.
3694          */
3695         if (before(ack, prior_snd_una))
3696                 goto old_ack;
3697
3698         /* If the ack includes data we haven't sent yet, discard
3699          * this segment (RFC793 Section 3.9).
3700          */
3701         if (after(ack, tp->snd_nxt))
3702                 goto invalid_ack;
3703
3704         if (after(ack, prior_snd_una))
3705                 flag |= FLAG_SND_UNA_ADVANCED;
3706
3707         if (sysctl_tcp_abc) {
3708                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3709                         tp->bytes_acked += ack - prior_snd_una;
3710                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3711                         /* we assume just one segment left network */
3712                         tp->bytes_acked += min(ack - prior_snd_una,
3713                                                tp->mss_cache);
3714         }
3715
3716         prior_fackets = tp->fackets_out;
3717         prior_in_flight = tcp_packets_in_flight(tp);
3718
3719         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3720                 /* Window is constant, pure forward advance.
3721                  * No more checks are required.
3722                  * Note, we use the fact that SND.UNA>=SND.WL2.
3723                  */
3724                 tcp_update_wl(tp, ack_seq);
3725                 tp->snd_una = ack;
3726                 flag |= FLAG_WIN_UPDATE;
3727
3728                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3729
3730                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3731         } else {
3732                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3733                         flag |= FLAG_DATA;
3734                 else
3735                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3736
3737                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3738
3739                 if (TCP_SKB_CB(skb)->sacked)
3740                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3741
3742                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3743                         flag |= FLAG_ECE;
3744
3745                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3746         }
3747
3748         /* We passed data and got it acked, remove any soft error
3749          * log. Something worked...
3750          */
3751         sk->sk_err_soft = 0;
3752         icsk->icsk_probes_out = 0;
3753         tp->rcv_tstamp = tcp_time_stamp;
3754         prior_packets = tp->packets_out;
3755         if (!prior_packets)
3756                 goto no_queue;
3757
3758         /* See if we can take anything off of the retransmit queue. */
3759         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3760
3761         pkts_acked = prior_packets - tp->packets_out;
3762         newly_acked_sacked = (prior_packets - prior_sacked) -
3763                              (tp->packets_out - tp->sacked_out);
3764
3765         if (tp->frto_counter)
3766                 frto_cwnd = tcp_process_frto(sk, flag);
3767         /* Guarantee sacktag reordering detection against wrap-arounds */
3768         if (before(tp->frto_highmark, tp->snd_una))
3769                 tp->frto_highmark = 0;
3770
3771         if (tcp_ack_is_dubious(sk, flag)) {
3772                 /* Advance CWND, if state allows this. */
3773                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3774                     tcp_may_raise_cwnd(sk, flag))
3775                         tcp_cong_avoid(sk, ack, prior_in_flight);
3776                 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3777                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3778                                       is_dupack, flag);
3779         } else {
3780                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3781                         tcp_cong_avoid(sk, ack, prior_in_flight);
3782         }
3783
3784         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3785                 dst_confirm(__sk_dst_get(sk));
3786
3787         return 1;
3788
3789 no_queue:
3790         /* If data was DSACKed, see if we can undo a cwnd reduction. */
3791         if (flag & FLAG_DSACKING_ACK)
3792                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3793                                       is_dupack, flag);
3794         /* If this ack opens up a zero window, clear backoff.  It was
3795          * being used to time the probes, and is probably far higher than
3796          * it needs to be for normal retransmission.
3797          */
3798         if (tcp_send_head(sk))
3799                 tcp_ack_probe(sk);
3800         return 1;
3801
3802 invalid_ack:
3803         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3804         return -1;
3805
3806 old_ack:
3807         /* If data was SACKed, tag it and see if we should send more data.
3808          * If data was DSACKed, see if we can undo a cwnd reduction.
3809          */
3810         if (TCP_SKB_CB(skb)->sacked) {
3811                 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3812                 newly_acked_sacked = tp->sacked_out - prior_sacked;
3813                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3814                                       is_dupack, flag);
3815         }
3816
3817         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3818         return 0;
3819 }
3820
3821 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3822  * But, this can also be called on packets in the established flow when
3823  * the fast version below fails.
3824  */
3825 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3826                        const u8 **hvpp, int estab)
3827 {
3828         const unsigned char *ptr;
3829         const struct tcphdr *th = tcp_hdr(skb);
3830         int length = (th->doff * 4) - sizeof(struct tcphdr);
3831
3832         ptr = (const unsigned char *)(th + 1);
3833         opt_rx->saw_tstamp = 0;
3834
3835         while (length > 0) {
3836                 int opcode = *ptr++;
3837                 int opsize;
3838
3839                 switch (opcode) {
3840                 case TCPOPT_EOL:
3841                         return;
3842                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3843                         length--;
3844                         continue;
3845                 default:
3846                         opsize = *ptr++;
3847                         if (opsize < 2) /* "silly options" */
3848                                 return;
3849                         if (opsize > length)
3850                                 return; /* don't parse partial options */
3851                         switch (opcode) {
3852                         case TCPOPT_MSS:
3853                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3854                                         u16 in_mss = get_unaligned_be16(ptr);
3855                                         if (in_mss) {
3856                                                 if (opt_rx->user_mss &&
3857                                                     opt_rx->user_mss < in_mss)
3858                                                         in_mss = opt_rx->user_mss;
3859                                                 opt_rx->mss_clamp = in_mss;
3860                                         }
3861                                 }
3862                                 break;
3863                         case TCPOPT_WINDOW:
3864                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3865                                     !estab && sysctl_tcp_window_scaling) {
3866                                         __u8 snd_wscale = *(__u8 *)ptr;
3867                                         opt_rx->wscale_ok = 1;
3868                                         if (snd_wscale > 14) {
3869                                                 if (net_ratelimit())
3870                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3871                                                                "scaling value %d >14 received.\n",
3872                                                                snd_wscale);
3873                                                 snd_wscale = 14;
3874                                         }
3875                                         opt_rx->snd_wscale = snd_wscale;
3876                                 }
3877                                 break;
3878                         case TCPOPT_TIMESTAMP:
3879                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3880                                     ((estab && opt_rx->tstamp_ok) ||
3881                                      (!estab && sysctl_tcp_timestamps))) {
3882                                         opt_rx->saw_tstamp = 1;
3883                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3884                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3885                                 }
3886                                 break;
3887                         case TCPOPT_SACK_PERM:
3888                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3889                                     !estab && sysctl_tcp_sack) {
3890                                         opt_rx->sack_ok = TCP_SACK_SEEN;
3891                                         tcp_sack_reset(opt_rx);
3892                                 }
3893                                 break;
3894
3895                         case TCPOPT_SACK:
3896                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3897                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3898                                    opt_rx->sack_ok) {
3899                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3900                                 }
3901                                 break;
3902 #ifdef CONFIG_TCP_MD5SIG
3903                         case TCPOPT_MD5SIG:
3904                                 /*
3905                                  * The MD5 Hash has already been
3906                                  * checked (see tcp_v{4,6}_do_rcv()).
3907                                  */
3908                                 break;
3909 #endif
3910                         case TCPOPT_COOKIE:
3911                                 /* This option is variable length.
3912                                  */
3913                                 switch (opsize) {
3914                                 case TCPOLEN_COOKIE_BASE:
3915                                         /* not yet implemented */
3916                                         break;
3917                                 case TCPOLEN_COOKIE_PAIR:
3918                                         /* not yet implemented */
3919                                         break;
3920                                 case TCPOLEN_COOKIE_MIN+0:
3921                                 case TCPOLEN_COOKIE_MIN+2:
3922                                 case TCPOLEN_COOKIE_MIN+4:
3923                                 case TCPOLEN_COOKIE_MIN+6:
3924                                 case TCPOLEN_COOKIE_MAX:
3925                                         /* 16-bit multiple */
3926                                         opt_rx->cookie_plus = opsize;
3927                                         *hvpp = ptr;
3928                                         break;
3929                                 default:
3930                                         /* ignore option */
3931                                         break;
3932                                 }
3933                                 break;
3934                         }
3935
3936                         ptr += opsize-2;
3937                         length -= opsize;
3938                 }
3939         }
3940 }
3941 EXPORT_SYMBOL(tcp_parse_options);
3942
3943 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3944 {
3945         const __be32 *ptr = (const __be32 *)(th + 1);
3946
3947         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3948                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3949                 tp->rx_opt.saw_tstamp = 1;
3950                 ++ptr;
3951                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3952                 ++ptr;
3953                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3954                 return 1;
3955         }
3956         return 0;
3957 }
3958
3959 /* Fast parse options. This hopes to only see timestamps.
3960  * If it is wrong it falls back on tcp_parse_options().
3961  */
3962 static int tcp_fast_parse_options(const struct sk_buff *skb,
3963                                   const struct tcphdr *th,
3964                                   struct tcp_sock *tp, const u8 **hvpp)
3965 {
3966         /* In the spirit of fast parsing, compare doff directly to constant
3967          * values.  Because equality is used, short doff can be ignored here.
3968          */
3969         if (th->doff == (sizeof(*th) / 4)) {
3970                 tp->rx_opt.saw_tstamp = 0;
3971                 return 0;
3972         } else if (tp->rx_opt.tstamp_ok &&
3973                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3974                 if (tcp_parse_aligned_timestamp(tp, th))
3975                         return 1;
3976         }
3977         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3978         return 1;
3979 }
3980
3981 #ifdef CONFIG_TCP_MD5SIG
3982 /*
3983  * Parse MD5 Signature option
3984  */
3985 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3986 {
3987         int length = (th->doff << 2) - sizeof(*th);
3988         const u8 *ptr = (const u8 *)(th + 1);
3989
3990         /* If the TCP option is too short, we can short cut */
3991         if (length < TCPOLEN_MD5SIG)
3992                 return NULL;
3993
3994         while (length > 0) {
3995                 int opcode = *ptr++;
3996                 int opsize;
3997
3998                 switch(opcode) {
3999                 case TCPOPT_EOL:
4000                         return NULL;
4001                 case TCPOPT_NOP:
4002                         length--;
4003                         continue;
4004                 default:
4005                         opsize = *ptr++;
4006                         if (opsize < 2 || opsize > length)
4007                                 return NULL;
4008                         if (opcode == TCPOPT_MD5SIG)
4009                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4010                 }
4011                 ptr += opsize - 2;
4012                 length -= opsize;
4013         }
4014         return NULL;
4015 }
4016 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4017 #endif
4018
4019 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4020 {
4021         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4022         tp->rx_opt.ts_recent_stamp = get_seconds();
4023 }
4024
4025 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4026 {
4027         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4028                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4029                  * extra check below makes sure this can only happen
4030                  * for pure ACK frames.  -DaveM
4031                  *
4032                  * Not only, also it occurs for expired timestamps.
4033                  */
4034
4035                 if (tcp_paws_check(&tp->rx_opt, 0))
4036                         tcp_store_ts_recent(tp);
4037         }
4038 }
4039
4040 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4041  *
4042  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4043  * it can pass through stack. So, the following predicate verifies that
4044  * this segment is not used for anything but congestion avoidance or
4045  * fast retransmit. Moreover, we even are able to eliminate most of such
4046  * second order effects, if we apply some small "replay" window (~RTO)
4047  * to timestamp space.
4048  *
4049  * All these measures still do not guarantee that we reject wrapped ACKs
4050  * on networks with high bandwidth, when sequence space is recycled fastly,
4051  * but it guarantees that such events will be very rare and do not affect
4052  * connection seriously. This doesn't look nice, but alas, PAWS is really
4053  * buggy extension.
4054  *
4055  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4056  * states that events when retransmit arrives after original data are rare.
4057  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4058  * the biggest problem on large power networks even with minor reordering.
4059  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4060  * up to bandwidth of 18Gigabit/sec. 8) ]
4061  */
4062
4063 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4064 {
4065         const struct tcp_sock *tp = tcp_sk(sk);
4066         const struct tcphdr *th = tcp_hdr(skb);
4067         u32 seq = TCP_SKB_CB(skb)->seq;
4068         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4069
4070         return (/* 1. Pure ACK with correct sequence number. */
4071                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4072
4073                 /* 2. ... and duplicate ACK. */
4074                 ack == tp->snd_una &&
4075
4076                 /* 3. ... and does not update window. */
4077                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4078
4079                 /* 4. ... and sits in replay window. */
4080                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4081 }
4082
4083 static inline int tcp_paws_discard(const struct sock *sk,
4084                                    const struct sk_buff *skb)
4085 {
4086         const struct tcp_sock *tp = tcp_sk(sk);
4087
4088         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4089                !tcp_disordered_ack(sk, skb);
4090 }
4091
4092 /* Check segment sequence number for validity.
4093  *
4094  * Segment controls are considered valid, if the segment
4095  * fits to the window after truncation to the window. Acceptability
4096  * of data (and SYN, FIN, of course) is checked separately.
4097  * See tcp_data_queue(), for example.
4098  *
4099  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4100  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4101  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4102  * (borrowed from freebsd)
4103  */
4104
4105 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4106 {
4107         return  !before(end_seq, tp->rcv_wup) &&
4108                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4109 }
4110
4111 /* When we get a reset we do this. */
4112 static void tcp_reset(struct sock *sk)
4113 {
4114         /* We want the right error as BSD sees it (and indeed as we do). */
4115         switch (sk->sk_state) {
4116         case TCP_SYN_SENT:
4117                 sk->sk_err = ECONNREFUSED;
4118                 break;
4119         case TCP_CLOSE_WAIT:
4120                 sk->sk_err = EPIPE;
4121                 break;
4122         case TCP_CLOSE:
4123                 return;
4124         default:
4125                 sk->sk_err = ECONNRESET;
4126         }
4127         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4128         smp_wmb();
4129
4130         if (!sock_flag(sk, SOCK_DEAD))
4131                 sk->sk_error_report(sk);
4132
4133         tcp_done(sk);
4134 }
4135
4136 /*
4137  *      Process the FIN bit. This now behaves as it is supposed to work
4138  *      and the FIN takes effect when it is validly part of sequence
4139  *      space. Not before when we get holes.
4140  *
4141  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4142  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4143  *      TIME-WAIT)
4144  *
4145  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4146  *      close and we go into CLOSING (and later onto TIME-WAIT)
4147  *
4148  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4149  */
4150 static void tcp_fin(struct sock *sk)
4151 {
4152         struct tcp_sock *tp = tcp_sk(sk);
4153
4154         inet_csk_schedule_ack(sk);
4155
4156         sk->sk_shutdown |= RCV_SHUTDOWN;
4157         sock_set_flag(sk, SOCK_DONE);
4158
4159         switch (sk->sk_state) {
4160         case TCP_SYN_RECV:
4161         case TCP_ESTABLISHED:
4162                 /* Move to CLOSE_WAIT */
4163                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4164                 inet_csk(sk)->icsk_ack.pingpong = 1;
4165                 break;
4166
4167         case TCP_CLOSE_WAIT:
4168         case TCP_CLOSING:
4169                 /* Received a retransmission of the FIN, do
4170                  * nothing.
4171                  */
4172                 break;
4173         case TCP_LAST_ACK:
4174                 /* RFC793: Remain in the LAST-ACK state. */
4175                 break;
4176
4177         case TCP_FIN_WAIT1:
4178                 /* This case occurs when a simultaneous close
4179                  * happens, we must ack the received FIN and
4180                  * enter the CLOSING state.
4181                  */
4182                 tcp_send_ack(sk);
4183                 tcp_set_state(sk, TCP_CLOSING);
4184                 break;
4185         case TCP_FIN_WAIT2:
4186                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4187                 tcp_send_ack(sk);
4188                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4189                 break;
4190         default:
4191                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4192                  * cases we should never reach this piece of code.
4193                  */
4194                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4195                        __func__, sk->sk_state);
4196                 break;
4197         }
4198
4199         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4200          * Probably, we should reset in this case. For now drop them.
4201          */
4202         __skb_queue_purge(&tp->out_of_order_queue);
4203         if (tcp_is_sack(tp))
4204                 tcp_sack_reset(&tp->rx_opt);
4205         sk_mem_reclaim(sk);
4206
4207         if (!sock_flag(sk, SOCK_DEAD)) {
4208                 sk->sk_state_change(sk);
4209
4210                 /* Do not send POLL_HUP for half duplex close. */
4211                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4212                     sk->sk_state == TCP_CLOSE)
4213                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4214                 else
4215                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4216         }
4217 }
4218
4219 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4220                                   u32 end_seq)
4221 {
4222         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4223                 if (before(seq, sp->start_seq))
4224                         sp->start_seq = seq;
4225                 if (after(end_seq, sp->end_seq))
4226                         sp->end_seq = end_seq;
4227                 return 1;
4228         }
4229         return 0;
4230 }
4231
4232 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4233 {
4234         struct tcp_sock *tp = tcp_sk(sk);
4235
4236         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4237                 int mib_idx;
4238
4239                 if (before(seq, tp->rcv_nxt))
4240                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4241                 else
4242                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4243
4244                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4245
4246                 tp->rx_opt.dsack = 1;
4247                 tp->duplicate_sack[0].start_seq = seq;
4248                 tp->duplicate_sack[0].end_seq = end_seq;
4249         }
4250 }
4251
4252 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4253 {
4254         struct tcp_sock *tp = tcp_sk(sk);
4255
4256         if (!tp->rx_opt.dsack)
4257                 tcp_dsack_set(sk, seq, end_seq);
4258         else
4259                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4260 }
4261
4262 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4263 {
4264         struct tcp_sock *tp = tcp_sk(sk);
4265
4266         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4267             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4268                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4269                 tcp_enter_quickack_mode(sk);
4270
4271                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4272                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4273
4274                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4275                                 end_seq = tp->rcv_nxt;
4276                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4277                 }
4278         }
4279
4280         tcp_send_ack(sk);
4281 }
4282
4283 /* These routines update the SACK block as out-of-order packets arrive or
4284  * in-order packets close up the sequence space.
4285  */
4286 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4287 {
4288         int this_sack;
4289         struct tcp_sack_block *sp = &tp->selective_acks[0];
4290         struct tcp_sack_block *swalk = sp + 1;
4291
4292         /* See if the recent change to the first SACK eats into
4293          * or hits the sequence space of other SACK blocks, if so coalesce.
4294          */
4295         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4296                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4297                         int i;
4298
4299                         /* Zap SWALK, by moving every further SACK up by one slot.
4300                          * Decrease num_sacks.
4301                          */
4302                         tp->rx_opt.num_sacks--;
4303                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4304                                 sp[i] = sp[i + 1];
4305                         continue;
4306                 }
4307                 this_sack++, swalk++;
4308         }
4309 }
4310
4311 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4312 {
4313         struct tcp_sock *tp = tcp_sk(sk);
4314         struct tcp_sack_block *sp = &tp->selective_acks[0];
4315         int cur_sacks = tp->rx_opt.num_sacks;
4316         int this_sack;
4317
4318         if (!cur_sacks)
4319                 goto new_sack;
4320
4321         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4322                 if (tcp_sack_extend(sp, seq, end_seq)) {
4323                         /* Rotate this_sack to the first one. */
4324                         for (; this_sack > 0; this_sack--, sp--)
4325                                 swap(*sp, *(sp - 1));
4326                         if (cur_sacks > 1)
4327                                 tcp_sack_maybe_coalesce(tp);
4328                         return;
4329                 }
4330         }
4331
4332         /* Could not find an adjacent existing SACK, build a new one,
4333          * put it at the front, and shift everyone else down.  We
4334          * always know there is at least one SACK present already here.
4335          *
4336          * If the sack array is full, forget about the last one.
4337          */
4338         if (this_sack >= TCP_NUM_SACKS) {
4339                 this_sack--;
4340                 tp->rx_opt.num_sacks--;
4341                 sp--;
4342         }
4343         for (; this_sack > 0; this_sack--, sp--)
4344                 *sp = *(sp - 1);
4345
4346 new_sack:
4347         /* Build the new head SACK, and we're done. */
4348         sp->start_seq = seq;
4349         sp->end_seq = end_seq;
4350         tp->rx_opt.num_sacks++;
4351 }
4352
4353 /* RCV.NXT advances, some SACKs should be eaten. */
4354
4355 static void tcp_sack_remove(struct tcp_sock *tp)
4356 {
4357         struct tcp_sack_block *sp = &tp->selective_acks[0];
4358         int num_sacks = tp->rx_opt.num_sacks;
4359         int this_sack;
4360
4361         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4362         if (skb_queue_empty(&tp->out_of_order_queue)) {
4363                 tp->rx_opt.num_sacks = 0;
4364                 return;
4365         }
4366
4367         for (this_sack = 0; this_sack < num_sacks;) {
4368                 /* Check if the start of the sack is covered by RCV.NXT. */
4369                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4370                         int i;
4371
4372                         /* RCV.NXT must cover all the block! */
4373                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4374
4375                         /* Zap this SACK, by moving forward any other SACKS. */
4376                         for (i=this_sack+1; i < num_sacks; i++)
4377                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4378                         num_sacks--;
4379                         continue;
4380                 }
4381                 this_sack++;
4382                 sp++;
4383         }
4384         tp->rx_opt.num_sacks = num_sacks;
4385 }
4386
4387 /* This one checks to see if we can put data from the
4388  * out_of_order queue into the receive_queue.
4389  */
4390 static void tcp_ofo_queue(struct sock *sk)
4391 {
4392         struct tcp_sock *tp = tcp_sk(sk);
4393         __u32 dsack_high = tp->rcv_nxt;
4394         struct sk_buff *skb;
4395
4396         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4397                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4398                         break;
4399
4400                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4401                         __u32 dsack = dsack_high;
4402                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4403                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4404                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4405                 }
4406
4407                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4408                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4409                         __skb_unlink(skb, &tp->out_of_order_queue);
4410                         __kfree_skb(skb);
4411                         continue;
4412                 }
4413                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4414                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4415                            TCP_SKB_CB(skb)->end_seq);
4416
4417                 __skb_unlink(skb, &tp->out_of_order_queue);
4418                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4419                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4420                 if (tcp_hdr(skb)->fin)
4421                         tcp_fin(sk);
4422         }
4423 }
4424
4425 static int tcp_prune_ofo_queue(struct sock *sk);
4426 static int tcp_prune_queue(struct sock *sk);
4427
4428 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4429 {
4430         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4431             !sk_rmem_schedule(sk, size)) {
4432
4433                 if (tcp_prune_queue(sk) < 0)
4434                         return -1;
4435
4436                 if (!sk_rmem_schedule(sk, size)) {
4437                         if (!tcp_prune_ofo_queue(sk))
4438                                 return -1;
4439
4440                         if (!sk_rmem_schedule(sk, size))
4441                                 return -1;
4442                 }
4443         }
4444         return 0;
4445 }
4446
4447 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4448 {
4449         const struct tcphdr *th = tcp_hdr(skb);
4450         struct tcp_sock *tp = tcp_sk(sk);
4451         int eaten = -1;
4452
4453         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4454                 goto drop;
4455
4456         skb_dst_drop(skb);
4457         __skb_pull(skb, th->doff * 4);
4458
4459         TCP_ECN_accept_cwr(tp, skb);
4460
4461         tp->rx_opt.dsack = 0;
4462
4463         /*  Queue data for delivery to the user.
4464          *  Packets in sequence go to the receive queue.
4465          *  Out of sequence packets to the out_of_order_queue.
4466          */
4467         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4468                 if (tcp_receive_window(tp) == 0)
4469                         goto out_of_window;
4470
4471                 /* Ok. In sequence. In window. */
4472                 if (tp->ucopy.task == current &&
4473                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4474                     sock_owned_by_user(sk) && !tp->urg_data) {
4475                         int chunk = min_t(unsigned int, skb->len,
4476                                           tp->ucopy.len);
4477
4478                         __set_current_state(TASK_RUNNING);
4479
4480                         local_bh_enable();
4481                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4482                                 tp->ucopy.len -= chunk;
4483                                 tp->copied_seq += chunk;
4484                                 eaten = (chunk == skb->len);
4485                                 tcp_rcv_space_adjust(sk);
4486                         }
4487                         local_bh_disable();
4488                 }
4489
4490                 if (eaten <= 0) {
4491 queue_and_out:
4492                         if (eaten < 0 &&
4493                             tcp_try_rmem_schedule(sk, skb->truesize))
4494                                 goto drop;
4495
4496                         skb_set_owner_r(skb, sk);
4497                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4498                 }
4499                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4500                 if (skb->len)
4501                         tcp_event_data_recv(sk, skb);
4502                 if (th->fin)
4503                         tcp_fin(sk);
4504
4505                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4506                         tcp_ofo_queue(sk);
4507
4508                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4509                          * gap in queue is filled.
4510                          */
4511                         if (skb_queue_empty(&tp->out_of_order_queue))
4512                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4513                 }
4514
4515                 if (tp->rx_opt.num_sacks)
4516                         tcp_sack_remove(tp);
4517
4518                 tcp_fast_path_check(sk);
4519
4520                 if (eaten > 0)
4521                         __kfree_skb(skb);
4522                 else if (!sock_flag(sk, SOCK_DEAD))
4523                         sk->sk_data_ready(sk, 0);
4524                 return;
4525         }
4526
4527         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4528                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4529                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4530                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4531
4532 out_of_window:
4533                 tcp_enter_quickack_mode(sk);
4534                 inet_csk_schedule_ack(sk);
4535 drop:
4536                 __kfree_skb(skb);
4537                 return;
4538         }
4539
4540         /* Out of window. F.e. zero window probe. */
4541         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4542                 goto out_of_window;
4543
4544         tcp_enter_quickack_mode(sk);
4545
4546         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4547                 /* Partial packet, seq < rcv_next < end_seq */
4548                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4549                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4550                            TCP_SKB_CB(skb)->end_seq);
4551
4552                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4553
4554                 /* If window is closed, drop tail of packet. But after
4555                  * remembering D-SACK for its head made in previous line.
4556                  */
4557                 if (!tcp_receive_window(tp))
4558                         goto out_of_window;
4559                 goto queue_and_out;
4560         }
4561
4562         TCP_ECN_check_ce(tp, skb);
4563
4564         if (tcp_try_rmem_schedule(sk, skb->truesize))
4565                 goto drop;
4566
4567         /* Disable header prediction. */
4568         tp->pred_flags = 0;
4569         inet_csk_schedule_ack(sk);
4570
4571         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4572                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4573
4574         skb_set_owner_r(skb, sk);
4575
4576         if (!skb_peek(&tp->out_of_order_queue)) {
4577                 /* Initial out of order segment, build 1 SACK. */
4578                 if (tcp_is_sack(tp)) {
4579                         tp->rx_opt.num_sacks = 1;
4580                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4581                         tp->selective_acks[0].end_seq =
4582                                                 TCP_SKB_CB(skb)->end_seq;
4583                 }
4584                 __skb_queue_head(&tp->out_of_order_queue, skb);
4585         } else {
4586                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4587                 u32 seq = TCP_SKB_CB(skb)->seq;
4588                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4589
4590                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4591                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4592
4593                         if (!tp->rx_opt.num_sacks ||
4594                             tp->selective_acks[0].end_seq != seq)
4595                                 goto add_sack;
4596
4597                         /* Common case: data arrive in order after hole. */
4598                         tp->selective_acks[0].end_seq = end_seq;
4599                         return;
4600                 }
4601
4602                 /* Find place to insert this segment. */
4603                 while (1) {
4604                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4605                                 break;
4606                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4607                                 skb1 = NULL;
4608                                 break;
4609                         }
4610                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4611                 }
4612
4613                 /* Do skb overlap to previous one? */
4614                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4615                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4616                                 /* All the bits are present. Drop. */
4617                                 __kfree_skb(skb);
4618                                 tcp_dsack_set(sk, seq, end_seq);
4619                                 goto add_sack;
4620                         }
4621                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4622                                 /* Partial overlap. */
4623                                 tcp_dsack_set(sk, seq,
4624                                               TCP_SKB_CB(skb1)->end_seq);
4625                         } else {
4626                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4627                                                        skb1))
4628                                         skb1 = NULL;
4629                                 else
4630                                         skb1 = skb_queue_prev(
4631                                                 &tp->out_of_order_queue,
4632                                                 skb1);
4633                         }
4634                 }
4635                 if (!skb1)
4636                         __skb_queue_head(&tp->out_of_order_queue, skb);
4637                 else
4638                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4639
4640                 /* And clean segments covered by new one as whole. */
4641                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4642                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4643
4644                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4645                                 break;
4646                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4647                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4648                                                  end_seq);
4649                                 break;
4650                         }
4651                         __skb_unlink(skb1, &tp->out_of_order_queue);
4652                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4653                                          TCP_SKB_CB(skb1)->end_seq);
4654                         __kfree_skb(skb1);
4655                 }
4656
4657 add_sack:
4658                 if (tcp_is_sack(tp))
4659                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4660         }
4661 }
4662
4663 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4664                                         struct sk_buff_head *list)
4665 {
4666         struct sk_buff *next = NULL;
4667
4668         if (!skb_queue_is_last(list, skb))
4669                 next = skb_queue_next(list, skb);
4670
4671         __skb_unlink(skb, list);
4672         __kfree_skb(skb);
4673         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4674
4675         return next;
4676 }
4677
4678 /* Collapse contiguous sequence of skbs head..tail with
4679  * sequence numbers start..end.
4680  *
4681  * If tail is NULL, this means until the end of the list.
4682  *
4683  * Segments with FIN/SYN are not collapsed (only because this
4684  * simplifies code)
4685  */
4686 static void
4687 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4688              struct sk_buff *head, struct sk_buff *tail,
4689              u32 start, u32 end)
4690 {
4691         struct sk_buff *skb, *n;
4692         bool end_of_skbs;
4693
4694         /* First, check that queue is collapsible and find
4695          * the point where collapsing can be useful. */
4696         skb = head;
4697 restart:
4698         end_of_skbs = true;
4699         skb_queue_walk_from_safe(list, skb, n) {
4700                 if (skb == tail)
4701                         break;
4702                 /* No new bits? It is possible on ofo queue. */
4703                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4704                         skb = tcp_collapse_one(sk, skb, list);
4705                         if (!skb)
4706                                 break;
4707                         goto restart;
4708                 }
4709
4710                 /* The first skb to collapse is:
4711                  * - not SYN/FIN and
4712                  * - bloated or contains data before "start" or
4713                  *   overlaps to the next one.
4714                  */
4715                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4716                     (tcp_win_from_space(skb->truesize) > skb->len ||
4717                      before(TCP_SKB_CB(skb)->seq, start))) {
4718                         end_of_skbs = false;
4719                         break;
4720                 }
4721
4722                 if (!skb_queue_is_last(list, skb)) {
4723                         struct sk_buff *next = skb_queue_next(list, skb);
4724                         if (next != tail &&
4725                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4726                                 end_of_skbs = false;
4727                                 break;
4728                         }
4729                 }
4730
4731                 /* Decided to skip this, advance start seq. */
4732                 start = TCP_SKB_CB(skb)->end_seq;
4733         }
4734         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4735                 return;
4736
4737         while (before(start, end)) {
4738                 struct sk_buff *nskb;
4739                 unsigned int header = skb_headroom(skb);
4740                 int copy = SKB_MAX_ORDER(header, 0);
4741
4742                 /* Too big header? This can happen with IPv6. */
4743                 if (copy < 0)
4744                         return;
4745                 if (end - start < copy)
4746                         copy = end - start;
4747                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4748                 if (!nskb)
4749                         return;
4750
4751                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4752                 skb_set_network_header(nskb, (skb_network_header(skb) -
4753                                               skb->head));
4754                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4755                                                 skb->head));
4756                 skb_reserve(nskb, header);
4757                 memcpy(nskb->head, skb->head, header);
4758                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4759                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4760                 __skb_queue_before(list, skb, nskb);
4761                 skb_set_owner_r(nskb, sk);
4762
4763                 /* Copy data, releasing collapsed skbs. */
4764                 while (copy > 0) {
4765                         int offset = start - TCP_SKB_CB(skb)->seq;
4766                         int size = TCP_SKB_CB(skb)->end_seq - start;
4767
4768                         BUG_ON(offset < 0);
4769                         if (size > 0) {
4770                                 size = min(copy, size);
4771                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4772                                         BUG();
4773                                 TCP_SKB_CB(nskb)->end_seq += size;
4774                                 copy -= size;
4775                                 start += size;
4776                         }
4777                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4778                                 skb = tcp_collapse_one(sk, skb, list);
4779                                 if (!skb ||
4780                                     skb == tail ||
4781                                     tcp_hdr(skb)->syn ||
4782                                     tcp_hdr(skb)->fin)
4783                                         return;
4784                         }
4785                 }
4786         }
4787 }
4788
4789 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4790  * and tcp_collapse() them until all the queue is collapsed.
4791  */
4792 static void tcp_collapse_ofo_queue(struct sock *sk)
4793 {
4794         struct tcp_sock *tp = tcp_sk(sk);
4795         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4796         struct sk_buff *head;
4797         u32 start, end;
4798
4799         if (skb == NULL)
4800                 return;
4801
4802         start = TCP_SKB_CB(skb)->seq;
4803         end = TCP_SKB_CB(skb)->end_seq;
4804         head = skb;
4805
4806         for (;;) {
4807                 struct sk_buff *next = NULL;
4808
4809                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4810                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4811                 skb = next;
4812
4813                 /* Segment is terminated when we see gap or when
4814                  * we are at the end of all the queue. */
4815                 if (!skb ||
4816                     after(TCP_SKB_CB(skb)->seq, end) ||
4817                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4818                         tcp_collapse(sk, &tp->out_of_order_queue,
4819                                      head, skb, start, end);
4820                         head = skb;
4821                         if (!skb)
4822                                 break;
4823                         /* Start new segment */
4824                         start = TCP_SKB_CB(skb)->seq;
4825                         end = TCP_SKB_CB(skb)->end_seq;
4826                 } else {
4827                         if (before(TCP_SKB_CB(skb)->seq, start))
4828                                 start = TCP_SKB_CB(skb)->seq;
4829                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4830                                 end = TCP_SKB_CB(skb)->end_seq;
4831                 }
4832         }
4833 }
4834
4835 /*
4836  * Purge the out-of-order queue.
4837  * Return true if queue was pruned.
4838  */
4839 static int tcp_prune_ofo_queue(struct sock *sk)
4840 {
4841         struct tcp_sock *tp = tcp_sk(sk);
4842         int res = 0;
4843
4844         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4845                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4846                 __skb_queue_purge(&tp->out_of_order_queue);
4847
4848                 /* Reset SACK state.  A conforming SACK implementation will
4849                  * do the same at a timeout based retransmit.  When a connection
4850                  * is in a sad state like this, we care only about integrity
4851                  * of the connection not performance.
4852                  */
4853                 if (tp->rx_opt.sack_ok)
4854                         tcp_sack_reset(&tp->rx_opt);
4855                 sk_mem_reclaim(sk);
4856                 res = 1;
4857         }
4858         return res;
4859 }
4860
4861 /* Reduce allocated memory if we can, trying to get
4862  * the socket within its memory limits again.
4863  *
4864  * Return less than zero if we should start dropping frames
4865  * until the socket owning process reads some of the data
4866  * to stabilize the situation.
4867  */
4868 static int tcp_prune_queue(struct sock *sk)
4869 {
4870         struct tcp_sock *tp = tcp_sk(sk);
4871
4872         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4873
4874         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4875
4876         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4877                 tcp_clamp_window(sk);
4878         else if (sk_under_memory_pressure(sk))
4879                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4880
4881         tcp_collapse_ofo_queue(sk);
4882         if (!skb_queue_empty(&sk->sk_receive_queue))
4883                 tcp_collapse(sk, &sk->sk_receive_queue,
4884                              skb_peek(&sk->sk_receive_queue),
4885                              NULL,
4886                              tp->copied_seq, tp->rcv_nxt);
4887         sk_mem_reclaim(sk);
4888
4889         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4890                 return 0;
4891
4892         /* Collapsing did not help, destructive actions follow.
4893          * This must not ever occur. */
4894
4895         tcp_prune_ofo_queue(sk);
4896
4897         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4898                 return 0;
4899
4900         /* If we are really being abused, tell the caller to silently
4901          * drop receive data on the floor.  It will get retransmitted
4902          * and hopefully then we'll have sufficient space.
4903          */
4904         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4905
4906         /* Massive buffer overcommit. */
4907         tp->pred_flags = 0;
4908         return -1;
4909 }
4910
4911 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4912  * As additional protections, we do not touch cwnd in retransmission phases,
4913  * and if application hit its sndbuf limit recently.
4914  */
4915 void tcp_cwnd_application_limited(struct sock *sk)
4916 {
4917         struct tcp_sock *tp = tcp_sk(sk);
4918
4919         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4920             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4921                 /* Limited by application or receiver window. */
4922                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4923                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4924                 if (win_used < tp->snd_cwnd) {
4925                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4926                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4927                 }
4928                 tp->snd_cwnd_used = 0;
4929         }
4930         tp->snd_cwnd_stamp = tcp_time_stamp;
4931 }
4932
4933 static int tcp_should_expand_sndbuf(const struct sock *sk)
4934 {
4935         const struct tcp_sock *tp = tcp_sk(sk);
4936
4937         /* If the user specified a specific send buffer setting, do
4938          * not modify it.
4939          */
4940         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4941                 return 0;
4942
4943         /* If we are under global TCP memory pressure, do not expand.  */
4944         if (sk_under_memory_pressure(sk))
4945                 return 0;
4946
4947         /* If we are under soft global TCP memory pressure, do not expand.  */
4948         if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4949                 return 0;
4950
4951         /* If we filled the congestion window, do not expand.  */
4952         if (tp->packets_out >= tp->snd_cwnd)
4953                 return 0;
4954
4955         return 1;
4956 }
4957
4958 /* When incoming ACK allowed to free some skb from write_queue,
4959  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4960  * on the exit from tcp input handler.
4961  *
4962  * PROBLEM: sndbuf expansion does not work well with largesend.
4963  */
4964 static void tcp_new_space(struct sock *sk)
4965 {
4966         struct tcp_sock *tp = tcp_sk(sk);
4967
4968         if (tcp_should_expand_sndbuf(sk)) {
4969                 int sndmem = SKB_TRUESIZE(max_t(u32,
4970                                                 tp->rx_opt.mss_clamp,
4971                                                 tp->mss_cache) +
4972                                           MAX_TCP_HEADER);
4973                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4974                                      tp->reordering + 1);
4975                 sndmem *= 2 * demanded;
4976                 if (sndmem > sk->sk_sndbuf)
4977                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4978                 tp->snd_cwnd_stamp = tcp_time_stamp;
4979         }
4980
4981         sk->sk_write_space(sk);
4982 }
4983
4984 static void tcp_check_space(struct sock *sk)
4985 {
4986         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4987                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4988                 if (sk->sk_socket &&
4989                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4990                         tcp_new_space(sk);
4991         }
4992 }
4993
4994 static inline void tcp_data_snd_check(struct sock *sk)
4995 {
4996         tcp_push_pending_frames(sk);
4997         tcp_check_space(sk);
4998 }
4999
5000 /*
5001  * Check if sending an ack is needed.
5002  */
5003 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5004 {
5005         struct tcp_sock *tp = tcp_sk(sk);
5006
5007             /* More than one full frame received... */
5008         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5009              /* ... and right edge of window advances far enough.
5010               * (tcp_recvmsg() will send ACK otherwise). Or...
5011               */
5012              __tcp_select_window(sk) >= tp->rcv_wnd) ||
5013             /* We ACK each frame or... */
5014             tcp_in_quickack_mode(sk) ||
5015             /* We have out of order data. */
5016             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5017                 /* Then ack it now */
5018                 tcp_send_ack(sk);
5019         } else {
5020                 /* Else, send delayed ack. */
5021                 tcp_send_delayed_ack(sk);
5022         }
5023 }
5024
5025 static inline void tcp_ack_snd_check(struct sock *sk)
5026 {
5027         if (!inet_csk_ack_scheduled(sk)) {
5028                 /* We sent a data segment already. */
5029                 return;
5030         }
5031         __tcp_ack_snd_check(sk, 1);
5032 }
5033
5034 /*
5035  *      This routine is only called when we have urgent data
5036  *      signaled. Its the 'slow' part of tcp_urg. It could be
5037  *      moved inline now as tcp_urg is only called from one
5038  *      place. We handle URGent data wrong. We have to - as
5039  *      BSD still doesn't use the correction from RFC961.
5040  *      For 1003.1g we should support a new option TCP_STDURG to permit
5041  *      either form (or just set the sysctl tcp_stdurg).
5042  */
5043
5044 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5045 {
5046         struct tcp_sock *tp = tcp_sk(sk);
5047         u32 ptr = ntohs(th->urg_ptr);
5048
5049         if (ptr && !sysctl_tcp_stdurg)
5050                 ptr--;
5051         ptr += ntohl(th->seq);
5052
5053         /* Ignore urgent data that we've already seen and read. */
5054         if (after(tp->copied_seq, ptr))
5055                 return;
5056
5057         /* Do not replay urg ptr.
5058          *
5059          * NOTE: interesting situation not covered by specs.
5060          * Misbehaving sender may send urg ptr, pointing to segment,
5061          * which we already have in ofo queue. We are not able to fetch
5062          * such data and will stay in TCP_URG_NOTYET until will be eaten
5063          * by recvmsg(). Seems, we are not obliged to handle such wicked
5064          * situations. But it is worth to think about possibility of some
5065          * DoSes using some hypothetical application level deadlock.
5066          */
5067         if (before(ptr, tp->rcv_nxt))
5068                 return;
5069
5070         /* Do we already have a newer (or duplicate) urgent pointer? */
5071         if (tp->urg_data && !after(ptr, tp->urg_seq))
5072                 return;
5073
5074         /* Tell the world about our new urgent pointer. */
5075         sk_send_sigurg(sk);
5076
5077         /* We may be adding urgent data when the last byte read was
5078          * urgent. To do this requires some care. We cannot just ignore
5079          * tp->copied_seq since we would read the last urgent byte again
5080          * as data, nor can we alter copied_seq until this data arrives
5081          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5082          *
5083          * NOTE. Double Dutch. Rendering to plain English: author of comment
5084          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5085          * and expect that both A and B disappear from stream. This is _wrong_.
5086          * Though this happens in BSD with high probability, this is occasional.
5087          * Any application relying on this is buggy. Note also, that fix "works"
5088          * only in this artificial test. Insert some normal data between A and B and we will
5089          * decline of BSD again. Verdict: it is better to remove to trap
5090          * buggy users.
5091          */
5092         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5093             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5094                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5095                 tp->copied_seq++;
5096                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5097                         __skb_unlink(skb, &sk->sk_receive_queue);
5098                         __kfree_skb(skb);
5099                 }
5100         }
5101
5102         tp->urg_data = TCP_URG_NOTYET;
5103         tp->urg_seq = ptr;
5104
5105         /* Disable header prediction. */
5106         tp->pred_flags = 0;
5107 }
5108
5109 /* This is the 'fast' part of urgent handling. */
5110 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5111 {
5112         struct tcp_sock *tp = tcp_sk(sk);
5113
5114         /* Check if we get a new urgent pointer - normally not. */
5115         if (th->urg)
5116                 tcp_check_urg(sk, th);
5117
5118         /* Do we wait for any urgent data? - normally not... */
5119         if (tp->urg_data == TCP_URG_NOTYET) {
5120                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5121                           th->syn;
5122
5123                 /* Is the urgent pointer pointing into this packet? */
5124                 if (ptr < skb->len) {
5125                         u8 tmp;
5126                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5127                                 BUG();
5128                         tp->urg_data = TCP_URG_VALID | tmp;
5129                         if (!sock_flag(sk, SOCK_DEAD))
5130                                 sk->sk_data_ready(sk, 0);
5131                 }
5132         }
5133 }
5134
5135 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5136 {
5137         struct tcp_sock *tp = tcp_sk(sk);
5138         int chunk = skb->len - hlen;
5139         int err;
5140
5141         local_bh_enable();
5142         if (skb_csum_unnecessary(skb))
5143                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5144         else
5145                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5146                                                        tp->ucopy.iov);
5147
5148         if (!err) {
5149                 tp->ucopy.len -= chunk;
5150                 tp->copied_seq += chunk;
5151                 tcp_rcv_space_adjust(sk);
5152         }
5153
5154         local_bh_disable();
5155         return err;
5156 }
5157
5158 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5159                                             struct sk_buff *skb)
5160 {
5161         __sum16 result;
5162
5163         if (sock_owned_by_user(sk)) {
5164                 local_bh_enable();
5165                 result = __tcp_checksum_complete(skb);
5166                 local_bh_disable();
5167         } else {
5168                 result = __tcp_checksum_complete(skb);
5169         }
5170         return result;
5171 }
5172
5173 static inline int tcp_checksum_complete_user(struct sock *sk,
5174                                              struct sk_buff *skb)
5175 {
5176         return !skb_csum_unnecessary(skb) &&
5177                __tcp_checksum_complete_user(sk, skb);
5178 }
5179
5180 #ifdef CONFIG_NET_DMA
5181 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5182                                   int hlen)
5183 {
5184         struct tcp_sock *tp = tcp_sk(sk);
5185         int chunk = skb->len - hlen;
5186         int dma_cookie;
5187         int copied_early = 0;
5188
5189         if (tp->ucopy.wakeup)
5190                 return 0;
5191
5192         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5193                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5194
5195         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5196
5197                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5198                                                          skb, hlen,
5199                                                          tp->ucopy.iov, chunk,
5200                                                          tp->ucopy.pinned_list);
5201
5202                 if (dma_cookie < 0)
5203                         goto out;
5204
5205                 tp->ucopy.dma_cookie = dma_cookie;
5206                 copied_early = 1;
5207
5208                 tp->ucopy.len -= chunk;
5209                 tp->copied_seq += chunk;
5210                 tcp_rcv_space_adjust(sk);
5211
5212                 if ((tp->ucopy.len == 0) ||
5213                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5214                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5215                         tp->ucopy.wakeup = 1;
5216                         sk->sk_data_ready(sk, 0);
5217                 }
5218         } else if (chunk > 0) {
5219                 tp->ucopy.wakeup = 1;
5220                 sk->sk_data_ready(sk, 0);
5221         }
5222 out:
5223         return copied_early;
5224 }
5225 #endif /* CONFIG_NET_DMA */
5226
5227 /* Does PAWS and seqno based validation of an incoming segment, flags will
5228  * play significant role here.
5229  */
5230 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5231                               const struct tcphdr *th, int syn_inerr)
5232 {
5233         const u8 *hash_location;
5234         struct tcp_sock *tp = tcp_sk(sk);
5235
5236         /* RFC1323: H1. Apply PAWS check first. */
5237         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5238             tp->rx_opt.saw_tstamp &&
5239             tcp_paws_discard(sk, skb)) {
5240                 if (!th->rst) {
5241                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5242                         tcp_send_dupack(sk, skb);
5243                         goto discard;
5244                 }
5245                 /* Reset is accepted even if it did not pass PAWS. */
5246         }
5247
5248         /* Step 1: check sequence number */
5249         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5250                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5251                  * (RST) segments are validated by checking their SEQ-fields."
5252                  * And page 69: "If an incoming segment is not acceptable,
5253                  * an acknowledgment should be sent in reply (unless the RST
5254                  * bit is set, if so drop the segment and return)".
5255                  */
5256                 if (!th->rst)
5257                         tcp_send_dupack(sk, skb);
5258                 goto discard;
5259         }
5260
5261         /* Step 2: check RST bit */
5262         if (th->rst) {
5263                 tcp_reset(sk);
5264                 goto discard;
5265         }
5266
5267         /* ts_recent update must be made after we are sure that the packet
5268          * is in window.
5269          */
5270         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5271
5272         /* step 3: check security and precedence [ignored] */
5273
5274         /* step 4: Check for a SYN in window. */
5275         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5276                 if (syn_inerr)
5277                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5278                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5279                 tcp_reset(sk);
5280                 return -1;
5281         }
5282
5283         return 1;
5284
5285 discard:
5286         __kfree_skb(skb);
5287         return 0;
5288 }
5289
5290 /*
5291  *      TCP receive function for the ESTABLISHED state.
5292  *
5293  *      It is split into a fast path and a slow path. The fast path is
5294  *      disabled when:
5295  *      - A zero window was announced from us - zero window probing
5296  *        is only handled properly in the slow path.
5297  *      - Out of order segments arrived.
5298  *      - Urgent data is expected.
5299  *      - There is no buffer space left
5300  *      - Unexpected TCP flags/window values/header lengths are received
5301  *        (detected by checking the TCP header against pred_flags)
5302  *      - Data is sent in both directions. Fast path only supports pure senders
5303  *        or pure receivers (this means either the sequence number or the ack
5304  *        value must stay constant)
5305  *      - Unexpected TCP option.
5306  *
5307  *      When these conditions are not satisfied it drops into a standard
5308  *      receive procedure patterned after RFC793 to handle all cases.
5309  *      The first three cases are guaranteed by proper pred_flags setting,
5310  *      the rest is checked inline. Fast processing is turned on in
5311  *      tcp_data_queue when everything is OK.
5312  */
5313 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5314                         const struct tcphdr *th, unsigned int len)
5315 {
5316         struct tcp_sock *tp = tcp_sk(sk);
5317         int res;
5318
5319         /*
5320          *      Header prediction.
5321          *      The code loosely follows the one in the famous
5322          *      "30 instruction TCP receive" Van Jacobson mail.
5323          *
5324          *      Van's trick is to deposit buffers into socket queue
5325          *      on a device interrupt, to call tcp_recv function
5326          *      on the receive process context and checksum and copy
5327          *      the buffer to user space. smart...
5328          *
5329          *      Our current scheme is not silly either but we take the
5330          *      extra cost of the net_bh soft interrupt processing...
5331          *      We do checksum and copy also but from device to kernel.
5332          */
5333
5334         tp->rx_opt.saw_tstamp = 0;
5335
5336         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5337          *      if header_prediction is to be made
5338          *      'S' will always be tp->tcp_header_len >> 2
5339          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5340          *  turn it off (when there are holes in the receive
5341          *       space for instance)
5342          *      PSH flag is ignored.
5343          */
5344
5345         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5346             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5347             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5348                 int tcp_header_len = tp->tcp_header_len;
5349
5350                 /* Timestamp header prediction: tcp_header_len
5351                  * is automatically equal to th->doff*4 due to pred_flags
5352                  * match.
5353                  */
5354
5355                 /* Check timestamp */
5356                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5357                         /* No? Slow path! */
5358                         if (!tcp_parse_aligned_timestamp(tp, th))
5359                                 goto slow_path;
5360
5361                         /* If PAWS failed, check it more carefully in slow path */
5362                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5363                                 goto slow_path;
5364
5365                         /* DO NOT update ts_recent here, if checksum fails
5366                          * and timestamp was corrupted part, it will result
5367                          * in a hung connection since we will drop all
5368                          * future packets due to the PAWS test.
5369                          */
5370                 }
5371
5372                 if (len <= tcp_header_len) {
5373                         /* Bulk data transfer: sender */
5374                         if (len == tcp_header_len) {
5375                                 /* Predicted packet is in window by definition.
5376                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5377                                  * Hence, check seq<=rcv_wup reduces to:
5378                                  */
5379                                 if (tcp_header_len ==
5380                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5381                                     tp->rcv_nxt == tp->rcv_wup)
5382                                         tcp_store_ts_recent(tp);
5383
5384                                 /* We know that such packets are checksummed
5385                                  * on entry.
5386                                  */
5387                                 tcp_ack(sk, skb, 0);
5388                                 __kfree_skb(skb);
5389                                 tcp_data_snd_check(sk);
5390                                 return 0;
5391                         } else { /* Header too small */
5392                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5393                                 goto discard;
5394                         }
5395                 } else {
5396                         int eaten = 0;
5397                         int copied_early = 0;
5398
5399                         if (tp->copied_seq == tp->rcv_nxt &&
5400                             len - tcp_header_len <= tp->ucopy.len) {
5401 #ifdef CONFIG_NET_DMA
5402                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5403                                         copied_early = 1;
5404                                         eaten = 1;
5405                                 }
5406 #endif
5407                                 if (tp->ucopy.task == current &&
5408                                     sock_owned_by_user(sk) && !copied_early) {
5409                                         __set_current_state(TASK_RUNNING);
5410
5411                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5412                                                 eaten = 1;
5413                                 }
5414                                 if (eaten) {
5415                                         /* Predicted packet is in window by definition.
5416                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5417                                          * Hence, check seq<=rcv_wup reduces to:
5418                                          */
5419                                         if (tcp_header_len ==
5420                                             (sizeof(struct tcphdr) +
5421                                              TCPOLEN_TSTAMP_ALIGNED) &&
5422                                             tp->rcv_nxt == tp->rcv_wup)
5423                                                 tcp_store_ts_recent(tp);
5424
5425                                         tcp_rcv_rtt_measure_ts(sk, skb);
5426
5427                                         __skb_pull(skb, tcp_header_len);
5428                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5429                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5430                                 }
5431                                 if (copied_early)
5432                                         tcp_cleanup_rbuf(sk, skb->len);
5433                         }
5434                         if (!eaten) {
5435                                 if (tcp_checksum_complete_user(sk, skb))
5436                                         goto csum_error;
5437
5438                                 /* Predicted packet is in window by definition.
5439                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5440                                  * Hence, check seq<=rcv_wup reduces to:
5441                                  */
5442                                 if (tcp_header_len ==
5443                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5444                                     tp->rcv_nxt == tp->rcv_wup)
5445                                         tcp_store_ts_recent(tp);
5446
5447                                 tcp_rcv_rtt_measure_ts(sk, skb);
5448
5449                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5450                                         goto step5;
5451
5452                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5453
5454                                 /* Bulk data transfer: receiver */
5455                                 __skb_pull(skb, tcp_header_len);
5456                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5457                                 skb_set_owner_r(skb, sk);
5458                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5459                         }
5460
5461                         tcp_event_data_recv(sk, skb);
5462
5463                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5464                                 /* Well, only one small jumplet in fast path... */
5465                                 tcp_ack(sk, skb, FLAG_DATA);
5466                                 tcp_data_snd_check(sk);
5467                                 if (!inet_csk_ack_scheduled(sk))
5468                                         goto no_ack;
5469                         }
5470
5471                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5472                                 __tcp_ack_snd_check(sk, 0);
5473 no_ack:
5474 #ifdef CONFIG_NET_DMA
5475                         if (copied_early)
5476                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5477                         else
5478 #endif
5479                         if (eaten)
5480                                 __kfree_skb(skb);
5481                         else
5482                                 sk->sk_data_ready(sk, 0);
5483                         return 0;
5484                 }
5485         }
5486
5487 slow_path:
5488         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5489                 goto csum_error;
5490
5491         /*
5492          *      Standard slow path.
5493          */
5494
5495         res = tcp_validate_incoming(sk, skb, th, 1);
5496         if (res <= 0)
5497                 return -res;
5498
5499 step5:
5500         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5501                 goto discard;
5502
5503         tcp_rcv_rtt_measure_ts(sk, skb);
5504
5505         /* Process urgent data. */
5506         tcp_urg(sk, skb, th);
5507
5508         /* step 7: process the segment text */
5509         tcp_data_queue(sk, skb);
5510
5511         tcp_data_snd_check(sk);
5512         tcp_ack_snd_check(sk);
5513         return 0;
5514
5515 csum_error:
5516         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5517
5518 discard:
5519         __kfree_skb(skb);
5520         return 0;
5521 }
5522 EXPORT_SYMBOL(tcp_rcv_established);
5523
5524 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5525                                          const struct tcphdr *th, unsigned int len)
5526 {
5527         const u8 *hash_location;
5528         struct inet_connection_sock *icsk = inet_csk(sk);
5529         struct tcp_sock *tp = tcp_sk(sk);
5530         struct tcp_cookie_values *cvp = tp->cookie_values;
5531         int saved_clamp = tp->rx_opt.mss_clamp;
5532
5533         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5534
5535         if (th->ack) {
5536                 /* rfc793:
5537                  * "If the state is SYN-SENT then
5538                  *    first check the ACK bit
5539                  *      If the ACK bit is set
5540                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5541                  *        a reset (unless the RST bit is set, if so drop
5542                  *        the segment and return)"
5543                  *
5544                  *  We do not send data with SYN, so that RFC-correct
5545                  *  test reduces to:
5546                  */
5547                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5548                         goto reset_and_undo;
5549
5550                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5551                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5552                              tcp_time_stamp)) {
5553                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5554                         goto reset_and_undo;
5555                 }
5556
5557                 /* Now ACK is acceptable.
5558                  *
5559                  * "If the RST bit is set
5560                  *    If the ACK was acceptable then signal the user "error:
5561                  *    connection reset", drop the segment, enter CLOSED state,
5562                  *    delete TCB, and return."
5563                  */
5564
5565                 if (th->rst) {
5566                         tcp_reset(sk);
5567                         goto discard;
5568                 }
5569
5570                 /* rfc793:
5571                  *   "fifth, if neither of the SYN or RST bits is set then
5572                  *    drop the segment and return."
5573                  *
5574                  *    See note below!
5575                  *                                        --ANK(990513)
5576                  */
5577                 if (!th->syn)
5578                         goto discard_and_undo;
5579
5580                 /* rfc793:
5581                  *   "If the SYN bit is on ...
5582                  *    are acceptable then ...
5583                  *    (our SYN has been ACKed), change the connection
5584                  *    state to ESTABLISHED..."
5585                  */
5586
5587                 TCP_ECN_rcv_synack(tp, th);
5588
5589                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5590                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5591
5592                 /* Ok.. it's good. Set up sequence numbers and
5593                  * move to established.
5594                  */
5595                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5596                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5597
5598                 /* RFC1323: The window in SYN & SYN/ACK segments is
5599                  * never scaled.
5600                  */
5601                 tp->snd_wnd = ntohs(th->window);
5602                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5603
5604                 if (!tp->rx_opt.wscale_ok) {
5605                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5606                         tp->window_clamp = min(tp->window_clamp, 65535U);
5607                 }
5608
5609                 if (tp->rx_opt.saw_tstamp) {
5610                         tp->rx_opt.tstamp_ok       = 1;
5611                         tp->tcp_header_len =
5612                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5613                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5614                         tcp_store_ts_recent(tp);
5615                 } else {
5616                         tp->tcp_header_len = sizeof(struct tcphdr);
5617                 }
5618
5619                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5620                         tcp_enable_fack(tp);
5621
5622                 tcp_mtup_init(sk);
5623                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5624                 tcp_initialize_rcv_mss(sk);
5625
5626                 /* Remember, tcp_poll() does not lock socket!
5627                  * Change state from SYN-SENT only after copied_seq
5628                  * is initialized. */
5629                 tp->copied_seq = tp->rcv_nxt;
5630
5631                 if (cvp != NULL &&
5632                     cvp->cookie_pair_size > 0 &&
5633                     tp->rx_opt.cookie_plus > 0) {
5634                         int cookie_size = tp->rx_opt.cookie_plus
5635                                         - TCPOLEN_COOKIE_BASE;
5636                         int cookie_pair_size = cookie_size
5637                                              + cvp->cookie_desired;
5638
5639                         /* A cookie extension option was sent and returned.
5640                          * Note that each incoming SYNACK replaces the
5641                          * Responder cookie.  The initial exchange is most
5642                          * fragile, as protection against spoofing relies
5643                          * entirely upon the sequence and timestamp (above).
5644                          * This replacement strategy allows the correct pair to
5645                          * pass through, while any others will be filtered via
5646                          * Responder verification later.
5647                          */
5648                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5649                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5650                                        hash_location, cookie_size);
5651                                 cvp->cookie_pair_size = cookie_pair_size;
5652                         }
5653                 }
5654
5655                 smp_mb();
5656                 tcp_set_state(sk, TCP_ESTABLISHED);
5657
5658                 security_inet_conn_established(sk, skb);
5659
5660                 /* Make sure socket is routed, for correct metrics.  */
5661                 icsk->icsk_af_ops->rebuild_header(sk);
5662
5663                 tcp_init_metrics(sk);
5664
5665                 tcp_init_congestion_control(sk);
5666
5667                 /* Prevent spurious tcp_cwnd_restart() on first data
5668                  * packet.
5669                  */
5670                 tp->lsndtime = tcp_time_stamp;
5671
5672                 tcp_init_buffer_space(sk);
5673
5674                 if (sock_flag(sk, SOCK_KEEPOPEN))
5675                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5676
5677                 if (!tp->rx_opt.snd_wscale)
5678                         __tcp_fast_path_on(tp, tp->snd_wnd);
5679                 else
5680                         tp->pred_flags = 0;
5681
5682                 if (!sock_flag(sk, SOCK_DEAD)) {
5683                         sk->sk_state_change(sk);
5684                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5685                 }
5686
5687                 if (sk->sk_write_pending ||
5688                     icsk->icsk_accept_queue.rskq_defer_accept ||
5689                     icsk->icsk_ack.pingpong) {
5690                         /* Save one ACK. Data will be ready after
5691                          * several ticks, if write_pending is set.
5692                          *
5693                          * It may be deleted, but with this feature tcpdumps
5694                          * look so _wonderfully_ clever, that I was not able
5695                          * to stand against the temptation 8)     --ANK
5696                          */
5697                         inet_csk_schedule_ack(sk);
5698                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5699                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5700                         tcp_incr_quickack(sk);
5701                         tcp_enter_quickack_mode(sk);
5702                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5703                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5704
5705 discard:
5706                         __kfree_skb(skb);
5707                         return 0;
5708                 } else {
5709                         tcp_send_ack(sk);
5710                 }
5711                 return -1;
5712         }
5713
5714         /* No ACK in the segment */
5715
5716         if (th->rst) {
5717                 /* rfc793:
5718                  * "If the RST bit is set
5719                  *
5720                  *      Otherwise (no ACK) drop the segment and return."
5721                  */
5722
5723                 goto discard_and_undo;
5724         }
5725
5726         /* PAWS check. */
5727         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5728             tcp_paws_reject(&tp->rx_opt, 0))
5729                 goto discard_and_undo;
5730
5731         if (th->syn) {
5732                 /* We see SYN without ACK. It is attempt of
5733                  * simultaneous connect with crossed SYNs.
5734                  * Particularly, it can be connect to self.
5735                  */
5736                 tcp_set_state(sk, TCP_SYN_RECV);
5737
5738                 if (tp->rx_opt.saw_tstamp) {
5739                         tp->rx_opt.tstamp_ok = 1;
5740                         tcp_store_ts_recent(tp);
5741                         tp->tcp_header_len =
5742                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5743                 } else {
5744                         tp->tcp_header_len = sizeof(struct tcphdr);
5745                 }
5746
5747                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5748                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5749
5750                 /* RFC1323: The window in SYN & SYN/ACK segments is
5751                  * never scaled.
5752                  */
5753                 tp->snd_wnd    = ntohs(th->window);
5754                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5755                 tp->max_window = tp->snd_wnd;
5756
5757                 TCP_ECN_rcv_syn(tp, th);
5758
5759                 tcp_mtup_init(sk);
5760                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5761                 tcp_initialize_rcv_mss(sk);
5762
5763                 tcp_send_synack(sk);
5764 #if 0
5765                 /* Note, we could accept data and URG from this segment.
5766                  * There are no obstacles to make this.
5767                  *
5768                  * However, if we ignore data in ACKless segments sometimes,
5769                  * we have no reasons to accept it sometimes.
5770                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5771                  * is not flawless. So, discard packet for sanity.
5772                  * Uncomment this return to process the data.
5773                  */
5774                 return -1;
5775 #else
5776                 goto discard;
5777 #endif
5778         }
5779         /* "fifth, if neither of the SYN or RST bits is set then
5780          * drop the segment and return."
5781          */
5782
5783 discard_and_undo:
5784         tcp_clear_options(&tp->rx_opt);
5785         tp->rx_opt.mss_clamp = saved_clamp;
5786         goto discard;
5787
5788 reset_and_undo:
5789         tcp_clear_options(&tp->rx_opt);
5790         tp->rx_opt.mss_clamp = saved_clamp;
5791         return 1;
5792 }
5793
5794 /*
5795  *      This function implements the receiving procedure of RFC 793 for
5796  *      all states except ESTABLISHED and TIME_WAIT.
5797  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5798  *      address independent.
5799  */
5800
5801 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5802                           const struct tcphdr *th, unsigned int len)
5803 {
5804         struct tcp_sock *tp = tcp_sk(sk);
5805         struct inet_connection_sock *icsk = inet_csk(sk);
5806         int queued = 0;
5807         int res;
5808
5809         tp->rx_opt.saw_tstamp = 0;
5810
5811         switch (sk->sk_state) {
5812         case TCP_CLOSE:
5813                 goto discard;
5814
5815         case TCP_LISTEN:
5816                 if (th->ack)
5817                         return 1;
5818
5819                 if (th->rst)
5820                         goto discard;
5821
5822                 if (th->syn) {
5823                         if (th->fin)
5824                                 goto discard;
5825                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5826                                 return 1;
5827
5828                         /* Now we have several options: In theory there is
5829                          * nothing else in the frame. KA9Q has an option to
5830                          * send data with the syn, BSD accepts data with the
5831                          * syn up to the [to be] advertised window and
5832                          * Solaris 2.1 gives you a protocol error. For now
5833                          * we just ignore it, that fits the spec precisely
5834                          * and avoids incompatibilities. It would be nice in
5835                          * future to drop through and process the data.
5836                          *
5837                          * Now that TTCP is starting to be used we ought to
5838                          * queue this data.
5839                          * But, this leaves one open to an easy denial of
5840                          * service attack, and SYN cookies can't defend
5841                          * against this problem. So, we drop the data
5842                          * in the interest of security over speed unless
5843                          * it's still in use.
5844                          */
5845                         kfree_skb(skb);
5846                         return 0;
5847                 }
5848                 goto discard;
5849
5850         case TCP_SYN_SENT:
5851                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5852                 if (queued >= 0)
5853                         return queued;
5854
5855                 /* Do step6 onward by hand. */
5856                 tcp_urg(sk, skb, th);
5857                 __kfree_skb(skb);
5858                 tcp_data_snd_check(sk);
5859                 return 0;
5860         }
5861
5862         res = tcp_validate_incoming(sk, skb, th, 0);
5863         if (res <= 0)
5864                 return -res;
5865
5866         /* step 5: check the ACK field */
5867         if (th->ack) {
5868                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5869
5870                 switch (sk->sk_state) {
5871                 case TCP_SYN_RECV:
5872                         if (acceptable) {
5873                                 tp->copied_seq = tp->rcv_nxt;
5874                                 smp_mb();
5875                                 tcp_set_state(sk, TCP_ESTABLISHED);
5876                                 sk->sk_state_change(sk);
5877
5878                                 /* Note, that this wakeup is only for marginal
5879                                  * crossed SYN case. Passively open sockets
5880                                  * are not waked up, because sk->sk_sleep ==
5881                                  * NULL and sk->sk_socket == NULL.
5882                                  */
5883                                 if (sk->sk_socket)
5884                                         sk_wake_async(sk,
5885                                                       SOCK_WAKE_IO, POLL_OUT);
5886
5887                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5888                                 tp->snd_wnd = ntohs(th->window) <<
5889                                               tp->rx_opt.snd_wscale;
5890                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5891
5892                                 if (tp->rx_opt.tstamp_ok)
5893                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5894
5895                                 /* Make sure socket is routed, for
5896                                  * correct metrics.
5897                                  */
5898                                 icsk->icsk_af_ops->rebuild_header(sk);
5899
5900                                 tcp_init_metrics(sk);
5901
5902                                 tcp_init_congestion_control(sk);
5903
5904                                 /* Prevent spurious tcp_cwnd_restart() on
5905                                  * first data packet.
5906                                  */
5907                                 tp->lsndtime = tcp_time_stamp;
5908
5909                                 tcp_mtup_init(sk);
5910                                 tcp_initialize_rcv_mss(sk);
5911                                 tcp_init_buffer_space(sk);
5912                                 tcp_fast_path_on(tp);
5913                         } else {
5914                                 return 1;
5915                         }
5916                         break;
5917
5918                 case TCP_FIN_WAIT1:
5919                         if (tp->snd_una == tp->write_seq) {
5920                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5921                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5922                                 dst_confirm(__sk_dst_get(sk));
5923
5924                                 if (!sock_flag(sk, SOCK_DEAD))
5925                                         /* Wake up lingering close() */
5926                                         sk->sk_state_change(sk);
5927                                 else {
5928                                         int tmo;
5929
5930                                         if (tp->linger2 < 0 ||
5931                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5932                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5933                                                 tcp_done(sk);
5934                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5935                                                 return 1;
5936                                         }
5937
5938                                         tmo = tcp_fin_time(sk);
5939                                         if (tmo > TCP_TIMEWAIT_LEN) {
5940                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5941                                         } else if (th->fin || sock_owned_by_user(sk)) {
5942                                                 /* Bad case. We could lose such FIN otherwise.
5943                                                  * It is not a big problem, but it looks confusing
5944                                                  * and not so rare event. We still can lose it now,
5945                                                  * if it spins in bh_lock_sock(), but it is really
5946                                                  * marginal case.
5947                                                  */
5948                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5949                                         } else {
5950                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5951                                                 goto discard;
5952                                         }
5953                                 }
5954                         }
5955                         break;
5956
5957                 case TCP_CLOSING:
5958                         if (tp->snd_una == tp->write_seq) {
5959                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5960                                 goto discard;
5961                         }
5962                         break;
5963
5964                 case TCP_LAST_ACK:
5965                         if (tp->snd_una == tp->write_seq) {
5966                                 tcp_update_metrics(sk);
5967                                 tcp_done(sk);
5968                                 goto discard;
5969                         }
5970                         break;
5971                 }
5972         } else
5973                 goto discard;
5974
5975         /* step 6: check the URG bit */
5976         tcp_urg(sk, skb, th);
5977
5978         /* step 7: process the segment text */
5979         switch (sk->sk_state) {
5980         case TCP_CLOSE_WAIT:
5981         case TCP_CLOSING:
5982         case TCP_LAST_ACK:
5983                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5984                         break;
5985         case TCP_FIN_WAIT1:
5986         case TCP_FIN_WAIT2:
5987                 /* RFC 793 says to queue data in these states,
5988                  * RFC 1122 says we MUST send a reset.
5989                  * BSD 4.4 also does reset.
5990                  */
5991                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5992                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5993                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5994                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5995                                 tcp_reset(sk);
5996                                 return 1;
5997                         }
5998                 }
5999                 /* Fall through */
6000         case TCP_ESTABLISHED:
6001                 tcp_data_queue(sk, skb);
6002                 queued = 1;
6003                 break;
6004         }
6005
6006         /* tcp_data could move socket to TIME-WAIT */
6007         if (sk->sk_state != TCP_CLOSE) {
6008                 tcp_data_snd_check(sk);
6009                 tcp_ack_snd_check(sk);
6010         }
6011
6012         if (!queued) {
6013 discard:
6014                 __kfree_skb(skb);
6015         }
6016         return 0;
6017 }
6018 EXPORT_SYMBOL(tcp_rcv_state_process);