Merge branch 'perf/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/acme...
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 2;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_frto_response __read_mostly;
96 int sysctl_tcp_nometrics_save __read_mostly;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_abc __read_mostly;
102
103 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
104 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
105 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
107 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
108 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
109 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
110 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
116
117 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125
126 /* Adapt the MSS value used to make delayed ack decision to the
127  * real world.
128  */
129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131         struct inet_connection_sock *icsk = inet_csk(sk);
132         const unsigned int lss = icsk->icsk_ack.last_seg_size;
133         unsigned int len;
134
135         icsk->icsk_ack.last_seg_size = 0;
136
137         /* skb->len may jitter because of SACKs, even if peer
138          * sends good full-sized frames.
139          */
140         len = skb_shinfo(skb)->gso_size ? : skb->len;
141         if (len >= icsk->icsk_ack.rcv_mss) {
142                 icsk->icsk_ack.rcv_mss = len;
143         } else {
144                 /* Otherwise, we make more careful check taking into account,
145                  * that SACKs block is variable.
146                  *
147                  * "len" is invariant segment length, including TCP header.
148                  */
149                 len += skb->data - skb_transport_header(skb);
150                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151                     /* If PSH is not set, packet should be
152                      * full sized, provided peer TCP is not badly broken.
153                      * This observation (if it is correct 8)) allows
154                      * to handle super-low mtu links fairly.
155                      */
156                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158                         /* Subtract also invariant (if peer is RFC compliant),
159                          * tcp header plus fixed timestamp option length.
160                          * Resulting "len" is MSS free of SACK jitter.
161                          */
162                         len -= tcp_sk(sk)->tcp_header_len;
163                         icsk->icsk_ack.last_seg_size = len;
164                         if (len == lss) {
165                                 icsk->icsk_ack.rcv_mss = len;
166                                 return;
167                         }
168                 }
169                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172         }
173 }
174
175 static void tcp_incr_quickack(struct sock *sk)
176 {
177         struct inet_connection_sock *icsk = inet_csk(sk);
178         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179
180         if (quickacks == 0)
181                 quickacks = 2;
182         if (quickacks > icsk->icsk_ack.quick)
183                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185
186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188         struct inet_connection_sock *icsk = inet_csk(sk);
189         tcp_incr_quickack(sk);
190         icsk->icsk_ack.pingpong = 0;
191         icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193
194 /* Send ACKs quickly, if "quick" count is not exhausted
195  * and the session is not interactive.
196  */
197
198 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 {
200         const struct inet_connection_sock *icsk = inet_csk(sk);
201         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 }
203
204 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 {
206         if (tp->ecn_flags & TCP_ECN_OK)
207                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 }
209
210 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 {
212         if (tcp_hdr(skb)->cwr)
213                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 {
218         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220
221 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 {
223         if (!(tp->ecn_flags & TCP_ECN_OK))
224                 return;
225
226         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227         case INET_ECN_NOT_ECT:
228                 /* Funny extension: if ECT is not set on a segment,
229                  * and we already seen ECT on a previous segment,
230                  * it is probably a retransmit.
231                  */
232                 if (tp->ecn_flags & TCP_ECN_SEEN)
233                         tcp_enter_quickack_mode((struct sock *)tp);
234                 break;
235         case INET_ECN_CE:
236                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
237                 /* fallinto */
238         default:
239                 tp->ecn_flags |= TCP_ECN_SEEN;
240         }
241 }
242
243 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
244 {
245         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
246                 tp->ecn_flags &= ~TCP_ECN_OK;
247 }
248
249 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
250 {
251         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
252                 tp->ecn_flags &= ~TCP_ECN_OK;
253 }
254
255 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
256 {
257         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
258                 return 1;
259         return 0;
260 }
261
262 /* Buffer size and advertised window tuning.
263  *
264  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265  */
266
267 static void tcp_fixup_sndbuf(struct sock *sk)
268 {
269         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
270
271         sndmem *= TCP_INIT_CWND;
272         if (sk->sk_sndbuf < sndmem)
273                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
274 }
275
276 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
277  *
278  * All tcp_full_space() is split to two parts: "network" buffer, allocated
279  * forward and advertised in receiver window (tp->rcv_wnd) and
280  * "application buffer", required to isolate scheduling/application
281  * latencies from network.
282  * window_clamp is maximal advertised window. It can be less than
283  * tcp_full_space(), in this case tcp_full_space() - window_clamp
284  * is reserved for "application" buffer. The less window_clamp is
285  * the smoother our behaviour from viewpoint of network, but the lower
286  * throughput and the higher sensitivity of the connection to losses. 8)
287  *
288  * rcv_ssthresh is more strict window_clamp used at "slow start"
289  * phase to predict further behaviour of this connection.
290  * It is used for two goals:
291  * - to enforce header prediction at sender, even when application
292  *   requires some significant "application buffer". It is check #1.
293  * - to prevent pruning of receive queue because of misprediction
294  *   of receiver window. Check #2.
295  *
296  * The scheme does not work when sender sends good segments opening
297  * window and then starts to feed us spaghetti. But it should work
298  * in common situations. Otherwise, we have to rely on queue collapsing.
299  */
300
301 /* Slow part of check#2. */
302 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305         /* Optimize this! */
306         int truesize = tcp_win_from_space(skb->truesize) >> 1;
307         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
308
309         while (tp->rcv_ssthresh <= window) {
310                 if (truesize <= skb->len)
311                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
312
313                 truesize >>= 1;
314                 window >>= 1;
315         }
316         return 0;
317 }
318
319 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
320 {
321         struct tcp_sock *tp = tcp_sk(sk);
322
323         /* Check #1 */
324         if (tp->rcv_ssthresh < tp->window_clamp &&
325             (int)tp->rcv_ssthresh < tcp_space(sk) &&
326             !sk_under_memory_pressure(sk)) {
327                 int incr;
328
329                 /* Check #2. Increase window, if skb with such overhead
330                  * will fit to rcvbuf in future.
331                  */
332                 if (tcp_win_from_space(skb->truesize) <= skb->len)
333                         incr = 2 * tp->advmss;
334                 else
335                         incr = __tcp_grow_window(sk, skb);
336
337                 if (incr) {
338                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
339                                                tp->window_clamp);
340                         inet_csk(sk)->icsk_ack.quick |= 1;
341                 }
342         }
343 }
344
345 /* 3. Tuning rcvbuf, when connection enters established state. */
346
347 static void tcp_fixup_rcvbuf(struct sock *sk)
348 {
349         u32 mss = tcp_sk(sk)->advmss;
350         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
351         int rcvmem;
352
353         /* Limit to 10 segments if mss <= 1460,
354          * or 14600/mss segments, with a minimum of two segments.
355          */
356         if (mss > 1460)
357                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
358
359         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
360         while (tcp_win_from_space(rcvmem) < mss)
361                 rcvmem += 128;
362
363         rcvmem *= icwnd;
364
365         if (sk->sk_rcvbuf < rcvmem)
366                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
367 }
368
369 /* 4. Try to fixup all. It is made immediately after connection enters
370  *    established state.
371  */
372 static void tcp_init_buffer_space(struct sock *sk)
373 {
374         struct tcp_sock *tp = tcp_sk(sk);
375         int maxwin;
376
377         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
378                 tcp_fixup_rcvbuf(sk);
379         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
380                 tcp_fixup_sndbuf(sk);
381
382         tp->rcvq_space.space = tp->rcv_wnd;
383
384         maxwin = tcp_full_space(sk);
385
386         if (tp->window_clamp >= maxwin) {
387                 tp->window_clamp = maxwin;
388
389                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
390                         tp->window_clamp = max(maxwin -
391                                                (maxwin >> sysctl_tcp_app_win),
392                                                4 * tp->advmss);
393         }
394
395         /* Force reservation of one segment. */
396         if (sysctl_tcp_app_win &&
397             tp->window_clamp > 2 * tp->advmss &&
398             tp->window_clamp + tp->advmss > maxwin)
399                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
400
401         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
402         tp->snd_cwnd_stamp = tcp_time_stamp;
403 }
404
405 /* 5. Recalculate window clamp after socket hit its memory bounds. */
406 static void tcp_clamp_window(struct sock *sk)
407 {
408         struct tcp_sock *tp = tcp_sk(sk);
409         struct inet_connection_sock *icsk = inet_csk(sk);
410
411         icsk->icsk_ack.quick = 0;
412
413         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
414             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
415             !sk_under_memory_pressure(sk) &&
416             sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
417                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
418                                     sysctl_tcp_rmem[2]);
419         }
420         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
421                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
422 }
423
424 /* Initialize RCV_MSS value.
425  * RCV_MSS is an our guess about MSS used by the peer.
426  * We haven't any direct information about the MSS.
427  * It's better to underestimate the RCV_MSS rather than overestimate.
428  * Overestimations make us ACKing less frequently than needed.
429  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
430  */
431 void tcp_initialize_rcv_mss(struct sock *sk)
432 {
433         const struct tcp_sock *tp = tcp_sk(sk);
434         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
435
436         hint = min(hint, tp->rcv_wnd / 2);
437         hint = min(hint, TCP_MSS_DEFAULT);
438         hint = max(hint, TCP_MIN_MSS);
439
440         inet_csk(sk)->icsk_ack.rcv_mss = hint;
441 }
442 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
443
444 /* Receiver "autotuning" code.
445  *
446  * The algorithm for RTT estimation w/o timestamps is based on
447  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
448  * <http://public.lanl.gov/radiant/pubs.html#DRS>
449  *
450  * More detail on this code can be found at
451  * <http://staff.psc.edu/jheffner/>,
452  * though this reference is out of date.  A new paper
453  * is pending.
454  */
455 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
456 {
457         u32 new_sample = tp->rcv_rtt_est.rtt;
458         long m = sample;
459
460         if (m == 0)
461                 m = 1;
462
463         if (new_sample != 0) {
464                 /* If we sample in larger samples in the non-timestamp
465                  * case, we could grossly overestimate the RTT especially
466                  * with chatty applications or bulk transfer apps which
467                  * are stalled on filesystem I/O.
468                  *
469                  * Also, since we are only going for a minimum in the
470                  * non-timestamp case, we do not smooth things out
471                  * else with timestamps disabled convergence takes too
472                  * long.
473                  */
474                 if (!win_dep) {
475                         m -= (new_sample >> 3);
476                         new_sample += m;
477                 } else if (m < new_sample)
478                         new_sample = m << 3;
479         } else {
480                 /* No previous measure. */
481                 new_sample = m << 3;
482         }
483
484         if (tp->rcv_rtt_est.rtt != new_sample)
485                 tp->rcv_rtt_est.rtt = new_sample;
486 }
487
488 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
489 {
490         if (tp->rcv_rtt_est.time == 0)
491                 goto new_measure;
492         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
493                 return;
494         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
495
496 new_measure:
497         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
498         tp->rcv_rtt_est.time = tcp_time_stamp;
499 }
500
501 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
502                                           const struct sk_buff *skb)
503 {
504         struct tcp_sock *tp = tcp_sk(sk);
505         if (tp->rx_opt.rcv_tsecr &&
506             (TCP_SKB_CB(skb)->end_seq -
507              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
508                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
509 }
510
511 /*
512  * This function should be called every time data is copied to user space.
513  * It calculates the appropriate TCP receive buffer space.
514  */
515 void tcp_rcv_space_adjust(struct sock *sk)
516 {
517         struct tcp_sock *tp = tcp_sk(sk);
518         int time;
519         int space;
520
521         if (tp->rcvq_space.time == 0)
522                 goto new_measure;
523
524         time = tcp_time_stamp - tp->rcvq_space.time;
525         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
526                 return;
527
528         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
529
530         space = max(tp->rcvq_space.space, space);
531
532         if (tp->rcvq_space.space != space) {
533                 int rcvmem;
534
535                 tp->rcvq_space.space = space;
536
537                 if (sysctl_tcp_moderate_rcvbuf &&
538                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
539                         int new_clamp = space;
540
541                         /* Receive space grows, normalize in order to
542                          * take into account packet headers and sk_buff
543                          * structure overhead.
544                          */
545                         space /= tp->advmss;
546                         if (!space)
547                                 space = 1;
548                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
549                         while (tcp_win_from_space(rcvmem) < tp->advmss)
550                                 rcvmem += 128;
551                         space *= rcvmem;
552                         space = min(space, sysctl_tcp_rmem[2]);
553                         if (space > sk->sk_rcvbuf) {
554                                 sk->sk_rcvbuf = space;
555
556                                 /* Make the window clamp follow along.  */
557                                 tp->window_clamp = new_clamp;
558                         }
559                 }
560         }
561
562 new_measure:
563         tp->rcvq_space.seq = tp->copied_seq;
564         tp->rcvq_space.time = tcp_time_stamp;
565 }
566
567 /* There is something which you must keep in mind when you analyze the
568  * behavior of the tp->ato delayed ack timeout interval.  When a
569  * connection starts up, we want to ack as quickly as possible.  The
570  * problem is that "good" TCP's do slow start at the beginning of data
571  * transmission.  The means that until we send the first few ACK's the
572  * sender will sit on his end and only queue most of his data, because
573  * he can only send snd_cwnd unacked packets at any given time.  For
574  * each ACK we send, he increments snd_cwnd and transmits more of his
575  * queue.  -DaveM
576  */
577 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
578 {
579         struct tcp_sock *tp = tcp_sk(sk);
580         struct inet_connection_sock *icsk = inet_csk(sk);
581         u32 now;
582
583         inet_csk_schedule_ack(sk);
584
585         tcp_measure_rcv_mss(sk, skb);
586
587         tcp_rcv_rtt_measure(tp);
588
589         now = tcp_time_stamp;
590
591         if (!icsk->icsk_ack.ato) {
592                 /* The _first_ data packet received, initialize
593                  * delayed ACK engine.
594                  */
595                 tcp_incr_quickack(sk);
596                 icsk->icsk_ack.ato = TCP_ATO_MIN;
597         } else {
598                 int m = now - icsk->icsk_ack.lrcvtime;
599
600                 if (m <= TCP_ATO_MIN / 2) {
601                         /* The fastest case is the first. */
602                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
603                 } else if (m < icsk->icsk_ack.ato) {
604                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
605                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
606                                 icsk->icsk_ack.ato = icsk->icsk_rto;
607                 } else if (m > icsk->icsk_rto) {
608                         /* Too long gap. Apparently sender failed to
609                          * restart window, so that we send ACKs quickly.
610                          */
611                         tcp_incr_quickack(sk);
612                         sk_mem_reclaim(sk);
613                 }
614         }
615         icsk->icsk_ack.lrcvtime = now;
616
617         TCP_ECN_check_ce(tp, skb);
618
619         if (skb->len >= 128)
620                 tcp_grow_window(sk, skb);
621 }
622
623 /* Called to compute a smoothed rtt estimate. The data fed to this
624  * routine either comes from timestamps, or from segments that were
625  * known _not_ to have been retransmitted [see Karn/Partridge
626  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
627  * piece by Van Jacobson.
628  * NOTE: the next three routines used to be one big routine.
629  * To save cycles in the RFC 1323 implementation it was better to break
630  * it up into three procedures. -- erics
631  */
632 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
633 {
634         struct tcp_sock *tp = tcp_sk(sk);
635         long m = mrtt; /* RTT */
636
637         /*      The following amusing code comes from Jacobson's
638          *      article in SIGCOMM '88.  Note that rtt and mdev
639          *      are scaled versions of rtt and mean deviation.
640          *      This is designed to be as fast as possible
641          *      m stands for "measurement".
642          *
643          *      On a 1990 paper the rto value is changed to:
644          *      RTO = rtt + 4 * mdev
645          *
646          * Funny. This algorithm seems to be very broken.
647          * These formulae increase RTO, when it should be decreased, increase
648          * too slowly, when it should be increased quickly, decrease too quickly
649          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
650          * does not matter how to _calculate_ it. Seems, it was trap
651          * that VJ failed to avoid. 8)
652          */
653         if (m == 0)
654                 m = 1;
655         if (tp->srtt != 0) {
656                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
657                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
658                 if (m < 0) {
659                         m = -m;         /* m is now abs(error) */
660                         m -= (tp->mdev >> 2);   /* similar update on mdev */
661                         /* This is similar to one of Eifel findings.
662                          * Eifel blocks mdev updates when rtt decreases.
663                          * This solution is a bit different: we use finer gain
664                          * for mdev in this case (alpha*beta).
665                          * Like Eifel it also prevents growth of rto,
666                          * but also it limits too fast rto decreases,
667                          * happening in pure Eifel.
668                          */
669                         if (m > 0)
670                                 m >>= 3;
671                 } else {
672                         m -= (tp->mdev >> 2);   /* similar update on mdev */
673                 }
674                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
675                 if (tp->mdev > tp->mdev_max) {
676                         tp->mdev_max = tp->mdev;
677                         if (tp->mdev_max > tp->rttvar)
678                                 tp->rttvar = tp->mdev_max;
679                 }
680                 if (after(tp->snd_una, tp->rtt_seq)) {
681                         if (tp->mdev_max < tp->rttvar)
682                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
683                         tp->rtt_seq = tp->snd_nxt;
684                         tp->mdev_max = tcp_rto_min(sk);
685                 }
686         } else {
687                 /* no previous measure. */
688                 tp->srtt = m << 3;      /* take the measured time to be rtt */
689                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
690                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
691                 tp->rtt_seq = tp->snd_nxt;
692         }
693 }
694
695 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
696  * routine referred to above.
697  */
698 static inline void tcp_set_rto(struct sock *sk)
699 {
700         const struct tcp_sock *tp = tcp_sk(sk);
701         /* Old crap is replaced with new one. 8)
702          *
703          * More seriously:
704          * 1. If rtt variance happened to be less 50msec, it is hallucination.
705          *    It cannot be less due to utterly erratic ACK generation made
706          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
707          *    to do with delayed acks, because at cwnd>2 true delack timeout
708          *    is invisible. Actually, Linux-2.4 also generates erratic
709          *    ACKs in some circumstances.
710          */
711         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
712
713         /* 2. Fixups made earlier cannot be right.
714          *    If we do not estimate RTO correctly without them,
715          *    all the algo is pure shit and should be replaced
716          *    with correct one. It is exactly, which we pretend to do.
717          */
718
719         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
720          * guarantees that rto is higher.
721          */
722         tcp_bound_rto(sk);
723 }
724
725 /* Save metrics learned by this TCP session.
726    This function is called only, when TCP finishes successfully
727    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
728  */
729 void tcp_update_metrics(struct sock *sk)
730 {
731         struct tcp_sock *tp = tcp_sk(sk);
732         struct dst_entry *dst = __sk_dst_get(sk);
733
734         if (sysctl_tcp_nometrics_save)
735                 return;
736
737         dst_confirm(dst);
738
739         if (dst && (dst->flags & DST_HOST)) {
740                 const struct inet_connection_sock *icsk = inet_csk(sk);
741                 int m;
742                 unsigned long rtt;
743
744                 if (icsk->icsk_backoff || !tp->srtt) {
745                         /* This session failed to estimate rtt. Why?
746                          * Probably, no packets returned in time.
747                          * Reset our results.
748                          */
749                         if (!(dst_metric_locked(dst, RTAX_RTT)))
750                                 dst_metric_set(dst, RTAX_RTT, 0);
751                         return;
752                 }
753
754                 rtt = dst_metric_rtt(dst, RTAX_RTT);
755                 m = rtt - tp->srtt;
756
757                 /* If newly calculated rtt larger than stored one,
758                  * store new one. Otherwise, use EWMA. Remember,
759                  * rtt overestimation is always better than underestimation.
760                  */
761                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
762                         if (m <= 0)
763                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
764                         else
765                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
766                 }
767
768                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
769                         unsigned long var;
770                         if (m < 0)
771                                 m = -m;
772
773                         /* Scale deviation to rttvar fixed point */
774                         m >>= 1;
775                         if (m < tp->mdev)
776                                 m = tp->mdev;
777
778                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
779                         if (m >= var)
780                                 var = m;
781                         else
782                                 var -= (var - m) >> 2;
783
784                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
785                 }
786
787                 if (tcp_in_initial_slowstart(tp)) {
788                         /* Slow start still did not finish. */
789                         if (dst_metric(dst, RTAX_SSTHRESH) &&
790                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
791                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
792                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
793                         if (!dst_metric_locked(dst, RTAX_CWND) &&
794                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
795                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
796                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
797                            icsk->icsk_ca_state == TCP_CA_Open) {
798                         /* Cong. avoidance phase, cwnd is reliable. */
799                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
800                                 dst_metric_set(dst, RTAX_SSTHRESH,
801                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
802                         if (!dst_metric_locked(dst, RTAX_CWND))
803                                 dst_metric_set(dst, RTAX_CWND,
804                                                (dst_metric(dst, RTAX_CWND) +
805                                                 tp->snd_cwnd) >> 1);
806                 } else {
807                         /* Else slow start did not finish, cwnd is non-sense,
808                            ssthresh may be also invalid.
809                          */
810                         if (!dst_metric_locked(dst, RTAX_CWND))
811                                 dst_metric_set(dst, RTAX_CWND,
812                                                (dst_metric(dst, RTAX_CWND) +
813                                                 tp->snd_ssthresh) >> 1);
814                         if (dst_metric(dst, RTAX_SSTHRESH) &&
815                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
816                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
817                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
818                 }
819
820                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
821                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
822                             tp->reordering != sysctl_tcp_reordering)
823                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
824                 }
825         }
826 }
827
828 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
829 {
830         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
831
832         if (!cwnd)
833                 cwnd = TCP_INIT_CWND;
834         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840         struct tcp_sock *tp = tcp_sk(sk);
841         const struct inet_connection_sock *icsk = inet_csk(sk);
842
843         tp->prior_ssthresh = 0;
844         tp->bytes_acked = 0;
845         if (icsk->icsk_ca_state < TCP_CA_CWR) {
846                 tp->undo_marker = 0;
847                 if (set_ssthresh)
848                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849                 tp->snd_cwnd = min(tp->snd_cwnd,
850                                    tcp_packets_in_flight(tp) + 1U);
851                 tp->snd_cwnd_cnt = 0;
852                 tp->high_seq = tp->snd_nxt;
853                 tp->snd_cwnd_stamp = tcp_time_stamp;
854                 TCP_ECN_queue_cwr(tp);
855
856                 tcp_set_ca_state(sk, TCP_CA_CWR);
857         }
858 }
859
860 /*
861  * Packet counting of FACK is based on in-order assumptions, therefore TCP
862  * disables it when reordering is detected
863  */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866         /* RFC3517 uses different metric in lost marker => reset on change */
867         if (tcp_is_fack(tp))
868                 tp->lost_skb_hint = NULL;
869         tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
870 }
871
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875         tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
876 }
877
878 /* Initialize metrics on socket. */
879
880 static void tcp_init_metrics(struct sock *sk)
881 {
882         struct tcp_sock *tp = tcp_sk(sk);
883         struct dst_entry *dst = __sk_dst_get(sk);
884
885         if (dst == NULL)
886                 goto reset;
887
888         dst_confirm(dst);
889
890         if (dst_metric_locked(dst, RTAX_CWND))
891                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892         if (dst_metric(dst, RTAX_SSTHRESH)) {
893                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
896         } else {
897                 /* ssthresh may have been reduced unnecessarily during.
898                  * 3WHS. Restore it back to its initial default.
899                  */
900                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
901         }
902         if (dst_metric(dst, RTAX_REORDERING) &&
903             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
904                 tcp_disable_fack(tp);
905                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
906         }
907
908         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
909                 goto reset;
910
911         /* Initial rtt is determined from SYN,SYN-ACK.
912          * The segment is small and rtt may appear much
913          * less than real one. Use per-dst memory
914          * to make it more realistic.
915          *
916          * A bit of theory. RTT is time passed after "normal" sized packet
917          * is sent until it is ACKed. In normal circumstances sending small
918          * packets force peer to delay ACKs and calculation is correct too.
919          * The algorithm is adaptive and, provided we follow specs, it
920          * NEVER underestimate RTT. BUT! If peer tries to make some clever
921          * tricks sort of "quick acks" for time long enough to decrease RTT
922          * to low value, and then abruptly stops to do it and starts to delay
923          * ACKs, wait for troubles.
924          */
925         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
926                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
927                 tp->rtt_seq = tp->snd_nxt;
928         }
929         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
930                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
931                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
932         }
933         tcp_set_rto(sk);
934 reset:
935         if (tp->srtt == 0) {
936                 /* RFC2988bis: We've failed to get a valid RTT sample from
937                  * 3WHS. This is most likely due to retransmission,
938                  * including spurious one. Reset the RTO back to 3secs
939                  * from the more aggressive 1sec to avoid more spurious
940                  * retransmission.
941                  */
942                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
943                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
944         }
945         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
946          * retransmitted. In light of RFC2988bis' more aggressive 1sec
947          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
948          * retransmission has occurred.
949          */
950         if (tp->total_retrans > 1)
951                 tp->snd_cwnd = 1;
952         else
953                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
954         tp->snd_cwnd_stamp = tcp_time_stamp;
955 }
956
957 static void tcp_update_reordering(struct sock *sk, const int metric,
958                                   const int ts)
959 {
960         struct tcp_sock *tp = tcp_sk(sk);
961         if (metric > tp->reordering) {
962                 int mib_idx;
963
964                 tp->reordering = min(TCP_MAX_REORDERING, metric);
965
966                 /* This exciting event is worth to be remembered. 8) */
967                 if (ts)
968                         mib_idx = LINUX_MIB_TCPTSREORDER;
969                 else if (tcp_is_reno(tp))
970                         mib_idx = LINUX_MIB_TCPRENOREORDER;
971                 else if (tcp_is_fack(tp))
972                         mib_idx = LINUX_MIB_TCPFACKREORDER;
973                 else
974                         mib_idx = LINUX_MIB_TCPSACKREORDER;
975
976                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
977 #if FASTRETRANS_DEBUG > 1
978                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
979                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
980                        tp->reordering,
981                        tp->fackets_out,
982                        tp->sacked_out,
983                        tp->undo_marker ? tp->undo_retrans : 0);
984 #endif
985                 tcp_disable_fack(tp);
986         }
987 }
988
989 /* This must be called before lost_out is incremented */
990 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
991 {
992         if ((tp->retransmit_skb_hint == NULL) ||
993             before(TCP_SKB_CB(skb)->seq,
994                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
995                 tp->retransmit_skb_hint = skb;
996
997         if (!tp->lost_out ||
998             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
999                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1000 }
1001
1002 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1003 {
1004         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1005                 tcp_verify_retransmit_hint(tp, skb);
1006
1007                 tp->lost_out += tcp_skb_pcount(skb);
1008                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1009         }
1010 }
1011
1012 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1013                                             struct sk_buff *skb)
1014 {
1015         tcp_verify_retransmit_hint(tp, skb);
1016
1017         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1018                 tp->lost_out += tcp_skb_pcount(skb);
1019                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1020         }
1021 }
1022
1023 /* This procedure tags the retransmission queue when SACKs arrive.
1024  *
1025  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1026  * Packets in queue with these bits set are counted in variables
1027  * sacked_out, retrans_out and lost_out, correspondingly.
1028  *
1029  * Valid combinations are:
1030  * Tag  InFlight        Description
1031  * 0    1               - orig segment is in flight.
1032  * S    0               - nothing flies, orig reached receiver.
1033  * L    0               - nothing flies, orig lost by net.
1034  * R    2               - both orig and retransmit are in flight.
1035  * L|R  1               - orig is lost, retransmit is in flight.
1036  * S|R  1               - orig reached receiver, retrans is still in flight.
1037  * (L|S|R is logically valid, it could occur when L|R is sacked,
1038  *  but it is equivalent to plain S and code short-curcuits it to S.
1039  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1040  *
1041  * These 6 states form finite state machine, controlled by the following events:
1042  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1043  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1044  * 3. Loss detection event of two flavors:
1045  *      A. Scoreboard estimator decided the packet is lost.
1046  *         A'. Reno "three dupacks" marks head of queue lost.
1047  *         A''. Its FACK modification, head until snd.fack is lost.
1048  *      B. SACK arrives sacking SND.NXT at the moment, when the
1049  *         segment was retransmitted.
1050  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1051  *
1052  * It is pleasant to note, that state diagram turns out to be commutative,
1053  * so that we are allowed not to be bothered by order of our actions,
1054  * when multiple events arrive simultaneously. (see the function below).
1055  *
1056  * Reordering detection.
1057  * --------------------
1058  * Reordering metric is maximal distance, which a packet can be displaced
1059  * in packet stream. With SACKs we can estimate it:
1060  *
1061  * 1. SACK fills old hole and the corresponding segment was not
1062  *    ever retransmitted -> reordering. Alas, we cannot use it
1063  *    when segment was retransmitted.
1064  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1065  *    for retransmitted and already SACKed segment -> reordering..
1066  * Both of these heuristics are not used in Loss state, when we cannot
1067  * account for retransmits accurately.
1068  *
1069  * SACK block validation.
1070  * ----------------------
1071  *
1072  * SACK block range validation checks that the received SACK block fits to
1073  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1074  * Note that SND.UNA is not included to the range though being valid because
1075  * it means that the receiver is rather inconsistent with itself reporting
1076  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1077  * perfectly valid, however, in light of RFC2018 which explicitly states
1078  * that "SACK block MUST reflect the newest segment.  Even if the newest
1079  * segment is going to be discarded ...", not that it looks very clever
1080  * in case of head skb. Due to potentional receiver driven attacks, we
1081  * choose to avoid immediate execution of a walk in write queue due to
1082  * reneging and defer head skb's loss recovery to standard loss recovery
1083  * procedure that will eventually trigger (nothing forbids us doing this).
1084  *
1085  * Implements also blockage to start_seq wrap-around. Problem lies in the
1086  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1087  * there's no guarantee that it will be before snd_nxt (n). The problem
1088  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1089  * wrap (s_w):
1090  *
1091  *         <- outs wnd ->                          <- wrapzone ->
1092  *         u     e      n                         u_w   e_w  s n_w
1093  *         |     |      |                          |     |   |  |
1094  * |<------------+------+----- TCP seqno space --------------+---------->|
1095  * ...-- <2^31 ->|                                           |<--------...
1096  * ...---- >2^31 ------>|                                    |<--------...
1097  *
1098  * Current code wouldn't be vulnerable but it's better still to discard such
1099  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1100  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1101  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1102  * equal to the ideal case (infinite seqno space without wrap caused issues).
1103  *
1104  * With D-SACK the lower bound is extended to cover sequence space below
1105  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1106  * again, D-SACK block must not to go across snd_una (for the same reason as
1107  * for the normal SACK blocks, explained above). But there all simplicity
1108  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1109  * fully below undo_marker they do not affect behavior in anyway and can
1110  * therefore be safely ignored. In rare cases (which are more or less
1111  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1112  * fragmentation and packet reordering past skb's retransmission. To consider
1113  * them correctly, the acceptable range must be extended even more though
1114  * the exact amount is rather hard to quantify. However, tp->max_window can
1115  * be used as an exaggerated estimate.
1116  */
1117 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1118                                   u32 start_seq, u32 end_seq)
1119 {
1120         /* Too far in future, or reversed (interpretation is ambiguous) */
1121         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1122                 return 0;
1123
1124         /* Nasty start_seq wrap-around check (see comments above) */
1125         if (!before(start_seq, tp->snd_nxt))
1126                 return 0;
1127
1128         /* In outstanding window? ...This is valid exit for D-SACKs too.
1129          * start_seq == snd_una is non-sensical (see comments above)
1130          */
1131         if (after(start_seq, tp->snd_una))
1132                 return 1;
1133
1134         if (!is_dsack || !tp->undo_marker)
1135                 return 0;
1136
1137         /* ...Then it's D-SACK, and must reside below snd_una completely */
1138         if (after(end_seq, tp->snd_una))
1139                 return 0;
1140
1141         if (!before(start_seq, tp->undo_marker))
1142                 return 1;
1143
1144         /* Too old */
1145         if (!after(end_seq, tp->undo_marker))
1146                 return 0;
1147
1148         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1149          *   start_seq < undo_marker and end_seq >= undo_marker.
1150          */
1151         return !before(start_seq, end_seq - tp->max_window);
1152 }
1153
1154 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1155  * Event "B". Later note: FACK people cheated me again 8), we have to account
1156  * for reordering! Ugly, but should help.
1157  *
1158  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1159  * less than what is now known to be received by the other end (derived from
1160  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1161  * retransmitted skbs to avoid some costly processing per ACKs.
1162  */
1163 static void tcp_mark_lost_retrans(struct sock *sk)
1164 {
1165         const struct inet_connection_sock *icsk = inet_csk(sk);
1166         struct tcp_sock *tp = tcp_sk(sk);
1167         struct sk_buff *skb;
1168         int cnt = 0;
1169         u32 new_low_seq = tp->snd_nxt;
1170         u32 received_upto = tcp_highest_sack_seq(tp);
1171
1172         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1173             !after(received_upto, tp->lost_retrans_low) ||
1174             icsk->icsk_ca_state != TCP_CA_Recovery)
1175                 return;
1176
1177         tcp_for_write_queue(skb, sk) {
1178                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1179
1180                 if (skb == tcp_send_head(sk))
1181                         break;
1182                 if (cnt == tp->retrans_out)
1183                         break;
1184                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1185                         continue;
1186
1187                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1188                         continue;
1189
1190                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1191                  * constraint here (see above) but figuring out that at
1192                  * least tp->reordering SACK blocks reside between ack_seq
1193                  * and received_upto is not easy task to do cheaply with
1194                  * the available datastructures.
1195                  *
1196                  * Whether FACK should check here for tp->reordering segs
1197                  * in-between one could argue for either way (it would be
1198                  * rather simple to implement as we could count fack_count
1199                  * during the walk and do tp->fackets_out - fack_count).
1200                  */
1201                 if (after(received_upto, ack_seq)) {
1202                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1203                         tp->retrans_out -= tcp_skb_pcount(skb);
1204
1205                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1206                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1207                 } else {
1208                         if (before(ack_seq, new_low_seq))
1209                                 new_low_seq = ack_seq;
1210                         cnt += tcp_skb_pcount(skb);
1211                 }
1212         }
1213
1214         if (tp->retrans_out)
1215                 tp->lost_retrans_low = new_low_seq;
1216 }
1217
1218 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1219                            struct tcp_sack_block_wire *sp, int num_sacks,
1220                            u32 prior_snd_una)
1221 {
1222         struct tcp_sock *tp = tcp_sk(sk);
1223         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1224         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1225         int dup_sack = 0;
1226
1227         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1228                 dup_sack = 1;
1229                 tcp_dsack_seen(tp);
1230                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1231         } else if (num_sacks > 1) {
1232                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1233                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1234
1235                 if (!after(end_seq_0, end_seq_1) &&
1236                     !before(start_seq_0, start_seq_1)) {
1237                         dup_sack = 1;
1238                         tcp_dsack_seen(tp);
1239                         NET_INC_STATS_BH(sock_net(sk),
1240                                         LINUX_MIB_TCPDSACKOFORECV);
1241                 }
1242         }
1243
1244         /* D-SACK for already forgotten data... Do dumb counting. */
1245         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1246             !after(end_seq_0, prior_snd_una) &&
1247             after(end_seq_0, tp->undo_marker))
1248                 tp->undo_retrans--;
1249
1250         return dup_sack;
1251 }
1252
1253 struct tcp_sacktag_state {
1254         int reord;
1255         int fack_count;
1256         int flag;
1257 };
1258
1259 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1260  * the incoming SACK may not exactly match but we can find smaller MSS
1261  * aligned portion of it that matches. Therefore we might need to fragment
1262  * which may fail and creates some hassle (caller must handle error case
1263  * returns).
1264  *
1265  * FIXME: this could be merged to shift decision code
1266  */
1267 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1268                                  u32 start_seq, u32 end_seq)
1269 {
1270         int in_sack, err;
1271         unsigned int pkt_len;
1272         unsigned int mss;
1273
1274         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1275                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1276
1277         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1278             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1279                 mss = tcp_skb_mss(skb);
1280                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1281
1282                 if (!in_sack) {
1283                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1284                         if (pkt_len < mss)
1285                                 pkt_len = mss;
1286                 } else {
1287                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1288                         if (pkt_len < mss)
1289                                 return -EINVAL;
1290                 }
1291
1292                 /* Round if necessary so that SACKs cover only full MSSes
1293                  * and/or the remaining small portion (if present)
1294                  */
1295                 if (pkt_len > mss) {
1296                         unsigned int new_len = (pkt_len / mss) * mss;
1297                         if (!in_sack && new_len < pkt_len) {
1298                                 new_len += mss;
1299                                 if (new_len > skb->len)
1300                                         return 0;
1301                         }
1302                         pkt_len = new_len;
1303                 }
1304                 err = tcp_fragment(sk, skb, pkt_len, mss);
1305                 if (err < 0)
1306                         return err;
1307         }
1308
1309         return in_sack;
1310 }
1311
1312 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1313 static u8 tcp_sacktag_one(struct sock *sk,
1314                           struct tcp_sacktag_state *state, u8 sacked,
1315                           u32 start_seq, u32 end_seq,
1316                           int dup_sack, int pcount)
1317 {
1318         struct tcp_sock *tp = tcp_sk(sk);
1319         int fack_count = state->fack_count;
1320
1321         /* Account D-SACK for retransmitted packet. */
1322         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1323                 if (tp->undo_marker && tp->undo_retrans &&
1324                     after(end_seq, tp->undo_marker))
1325                         tp->undo_retrans--;
1326                 if (sacked & TCPCB_SACKED_ACKED)
1327                         state->reord = min(fack_count, state->reord);
1328         }
1329
1330         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1331         if (!after(end_seq, tp->snd_una))
1332                 return sacked;
1333
1334         if (!(sacked & TCPCB_SACKED_ACKED)) {
1335                 if (sacked & TCPCB_SACKED_RETRANS) {
1336                         /* If the segment is not tagged as lost,
1337                          * we do not clear RETRANS, believing
1338                          * that retransmission is still in flight.
1339                          */
1340                         if (sacked & TCPCB_LOST) {
1341                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1342                                 tp->lost_out -= pcount;
1343                                 tp->retrans_out -= pcount;
1344                         }
1345                 } else {
1346                         if (!(sacked & TCPCB_RETRANS)) {
1347                                 /* New sack for not retransmitted frame,
1348                                  * which was in hole. It is reordering.
1349                                  */
1350                                 if (before(start_seq,
1351                                            tcp_highest_sack_seq(tp)))
1352                                         state->reord = min(fack_count,
1353                                                            state->reord);
1354
1355                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1356                                 if (!after(end_seq, tp->frto_highmark))
1357                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1358                         }
1359
1360                         if (sacked & TCPCB_LOST) {
1361                                 sacked &= ~TCPCB_LOST;
1362                                 tp->lost_out -= pcount;
1363                         }
1364                 }
1365
1366                 sacked |= TCPCB_SACKED_ACKED;
1367                 state->flag |= FLAG_DATA_SACKED;
1368                 tp->sacked_out += pcount;
1369
1370                 fack_count += pcount;
1371
1372                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1373                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1374                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1375                         tp->lost_cnt_hint += pcount;
1376
1377                 if (fack_count > tp->fackets_out)
1378                         tp->fackets_out = fack_count;
1379         }
1380
1381         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1382          * frames and clear it. undo_retrans is decreased above, L|R frames
1383          * are accounted above as well.
1384          */
1385         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1386                 sacked &= ~TCPCB_SACKED_RETRANS;
1387                 tp->retrans_out -= pcount;
1388         }
1389
1390         return sacked;
1391 }
1392
1393 /* Shift newly-SACKed bytes from this skb to the immediately previous
1394  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1395  */
1396 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1397                            struct tcp_sacktag_state *state,
1398                            unsigned int pcount, int shifted, int mss,
1399                            int dup_sack)
1400 {
1401         struct tcp_sock *tp = tcp_sk(sk);
1402         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1403         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1404         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1405
1406         BUG_ON(!pcount);
1407
1408         /* Adjust counters and hints for the newly sacked sequence
1409          * range but discard the return value since prev is already
1410          * marked. We must tag the range first because the seq
1411          * advancement below implicitly advances
1412          * tcp_highest_sack_seq() when skb is highest_sack.
1413          */
1414         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1415                         start_seq, end_seq, dup_sack, pcount);
1416
1417         if (skb == tp->lost_skb_hint)
1418                 tp->lost_cnt_hint += pcount;
1419
1420         TCP_SKB_CB(prev)->end_seq += shifted;
1421         TCP_SKB_CB(skb)->seq += shifted;
1422
1423         skb_shinfo(prev)->gso_segs += pcount;
1424         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1425         skb_shinfo(skb)->gso_segs -= pcount;
1426
1427         /* When we're adding to gso_segs == 1, gso_size will be zero,
1428          * in theory this shouldn't be necessary but as long as DSACK
1429          * code can come after this skb later on it's better to keep
1430          * setting gso_size to something.
1431          */
1432         if (!skb_shinfo(prev)->gso_size) {
1433                 skb_shinfo(prev)->gso_size = mss;
1434                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1435         }
1436
1437         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1438         if (skb_shinfo(skb)->gso_segs <= 1) {
1439                 skb_shinfo(skb)->gso_size = 0;
1440                 skb_shinfo(skb)->gso_type = 0;
1441         }
1442
1443         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1444         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1445
1446         if (skb->len > 0) {
1447                 BUG_ON(!tcp_skb_pcount(skb));
1448                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1449                 return 0;
1450         }
1451
1452         /* Whole SKB was eaten :-) */
1453
1454         if (skb == tp->retransmit_skb_hint)
1455                 tp->retransmit_skb_hint = prev;
1456         if (skb == tp->scoreboard_skb_hint)
1457                 tp->scoreboard_skb_hint = prev;
1458         if (skb == tp->lost_skb_hint) {
1459                 tp->lost_skb_hint = prev;
1460                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1461         }
1462
1463         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1464         if (skb == tcp_highest_sack(sk))
1465                 tcp_advance_highest_sack(sk, skb);
1466
1467         tcp_unlink_write_queue(skb, sk);
1468         sk_wmem_free_skb(sk, skb);
1469
1470         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1471
1472         return 1;
1473 }
1474
1475 /* I wish gso_size would have a bit more sane initialization than
1476  * something-or-zero which complicates things
1477  */
1478 static int tcp_skb_seglen(const struct sk_buff *skb)
1479 {
1480         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1481 }
1482
1483 /* Shifting pages past head area doesn't work */
1484 static int skb_can_shift(const struct sk_buff *skb)
1485 {
1486         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1487 }
1488
1489 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1490  * skb.
1491  */
1492 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1493                                           struct tcp_sacktag_state *state,
1494                                           u32 start_seq, u32 end_seq,
1495                                           int dup_sack)
1496 {
1497         struct tcp_sock *tp = tcp_sk(sk);
1498         struct sk_buff *prev;
1499         int mss;
1500         int pcount = 0;
1501         int len;
1502         int in_sack;
1503
1504         if (!sk_can_gso(sk))
1505                 goto fallback;
1506
1507         /* Normally R but no L won't result in plain S */
1508         if (!dup_sack &&
1509             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1510                 goto fallback;
1511         if (!skb_can_shift(skb))
1512                 goto fallback;
1513         /* This frame is about to be dropped (was ACKed). */
1514         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1515                 goto fallback;
1516
1517         /* Can only happen with delayed DSACK + discard craziness */
1518         if (unlikely(skb == tcp_write_queue_head(sk)))
1519                 goto fallback;
1520         prev = tcp_write_queue_prev(sk, skb);
1521
1522         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1523                 goto fallback;
1524
1525         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1526                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1527
1528         if (in_sack) {
1529                 len = skb->len;
1530                 pcount = tcp_skb_pcount(skb);
1531                 mss = tcp_skb_seglen(skb);
1532
1533                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1534                  * drop this restriction as unnecessary
1535                  */
1536                 if (mss != tcp_skb_seglen(prev))
1537                         goto fallback;
1538         } else {
1539                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1540                         goto noop;
1541                 /* CHECKME: This is non-MSS split case only?, this will
1542                  * cause skipped skbs due to advancing loop btw, original
1543                  * has that feature too
1544                  */
1545                 if (tcp_skb_pcount(skb) <= 1)
1546                         goto noop;
1547
1548                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1549                 if (!in_sack) {
1550                         /* TODO: head merge to next could be attempted here
1551                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1552                          * though it might not be worth of the additional hassle
1553                          *
1554                          * ...we can probably just fallback to what was done
1555                          * previously. We could try merging non-SACKed ones
1556                          * as well but it probably isn't going to buy off
1557                          * because later SACKs might again split them, and
1558                          * it would make skb timestamp tracking considerably
1559                          * harder problem.
1560                          */
1561                         goto fallback;
1562                 }
1563
1564                 len = end_seq - TCP_SKB_CB(skb)->seq;
1565                 BUG_ON(len < 0);
1566                 BUG_ON(len > skb->len);
1567
1568                 /* MSS boundaries should be honoured or else pcount will
1569                  * severely break even though it makes things bit trickier.
1570                  * Optimize common case to avoid most of the divides
1571                  */
1572                 mss = tcp_skb_mss(skb);
1573
1574                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1575                  * drop this restriction as unnecessary
1576                  */
1577                 if (mss != tcp_skb_seglen(prev))
1578                         goto fallback;
1579
1580                 if (len == mss) {
1581                         pcount = 1;
1582                 } else if (len < mss) {
1583                         goto noop;
1584                 } else {
1585                         pcount = len / mss;
1586                         len = pcount * mss;
1587                 }
1588         }
1589
1590         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1591         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1592                 goto fallback;
1593
1594         if (!skb_shift(prev, skb, len))
1595                 goto fallback;
1596         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1597                 goto out;
1598
1599         /* Hole filled allows collapsing with the next as well, this is very
1600          * useful when hole on every nth skb pattern happens
1601          */
1602         if (prev == tcp_write_queue_tail(sk))
1603                 goto out;
1604         skb = tcp_write_queue_next(sk, prev);
1605
1606         if (!skb_can_shift(skb) ||
1607             (skb == tcp_send_head(sk)) ||
1608             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1609             (mss != tcp_skb_seglen(skb)))
1610                 goto out;
1611
1612         len = skb->len;
1613         if (skb_shift(prev, skb, len)) {
1614                 pcount += tcp_skb_pcount(skb);
1615                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1616         }
1617
1618 out:
1619         state->fack_count += pcount;
1620         return prev;
1621
1622 noop:
1623         return skb;
1624
1625 fallback:
1626         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1627         return NULL;
1628 }
1629
1630 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1631                                         struct tcp_sack_block *next_dup,
1632                                         struct tcp_sacktag_state *state,
1633                                         u32 start_seq, u32 end_seq,
1634                                         int dup_sack_in)
1635 {
1636         struct tcp_sock *tp = tcp_sk(sk);
1637         struct sk_buff *tmp;
1638
1639         tcp_for_write_queue_from(skb, sk) {
1640                 int in_sack = 0;
1641                 int dup_sack = dup_sack_in;
1642
1643                 if (skb == tcp_send_head(sk))
1644                         break;
1645
1646                 /* queue is in-order => we can short-circuit the walk early */
1647                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1648                         break;
1649
1650                 if ((next_dup != NULL) &&
1651                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1652                         in_sack = tcp_match_skb_to_sack(sk, skb,
1653                                                         next_dup->start_seq,
1654                                                         next_dup->end_seq);
1655                         if (in_sack > 0)
1656                                 dup_sack = 1;
1657                 }
1658
1659                 /* skb reference here is a bit tricky to get right, since
1660                  * shifting can eat and free both this skb and the next,
1661                  * so not even _safe variant of the loop is enough.
1662                  */
1663                 if (in_sack <= 0) {
1664                         tmp = tcp_shift_skb_data(sk, skb, state,
1665                                                  start_seq, end_seq, dup_sack);
1666                         if (tmp != NULL) {
1667                                 if (tmp != skb) {
1668                                         skb = tmp;
1669                                         continue;
1670                                 }
1671
1672                                 in_sack = 0;
1673                         } else {
1674                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1675                                                                 start_seq,
1676                                                                 end_seq);
1677                         }
1678                 }
1679
1680                 if (unlikely(in_sack < 0))
1681                         break;
1682
1683                 if (in_sack) {
1684                         TCP_SKB_CB(skb)->sacked =
1685                                 tcp_sacktag_one(sk,
1686                                                 state,
1687                                                 TCP_SKB_CB(skb)->sacked,
1688                                                 TCP_SKB_CB(skb)->seq,
1689                                                 TCP_SKB_CB(skb)->end_seq,
1690                                                 dup_sack,
1691                                                 tcp_skb_pcount(skb));
1692
1693                         if (!before(TCP_SKB_CB(skb)->seq,
1694                                     tcp_highest_sack_seq(tp)))
1695                                 tcp_advance_highest_sack(sk, skb);
1696                 }
1697
1698                 state->fack_count += tcp_skb_pcount(skb);
1699         }
1700         return skb;
1701 }
1702
1703 /* Avoid all extra work that is being done by sacktag while walking in
1704  * a normal way
1705  */
1706 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1707                                         struct tcp_sacktag_state *state,
1708                                         u32 skip_to_seq)
1709 {
1710         tcp_for_write_queue_from(skb, sk) {
1711                 if (skb == tcp_send_head(sk))
1712                         break;
1713
1714                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1715                         break;
1716
1717                 state->fack_count += tcp_skb_pcount(skb);
1718         }
1719         return skb;
1720 }
1721
1722 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1723                                                 struct sock *sk,
1724                                                 struct tcp_sack_block *next_dup,
1725                                                 struct tcp_sacktag_state *state,
1726                                                 u32 skip_to_seq)
1727 {
1728         if (next_dup == NULL)
1729                 return skb;
1730
1731         if (before(next_dup->start_seq, skip_to_seq)) {
1732                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1733                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1734                                        next_dup->start_seq, next_dup->end_seq,
1735                                        1);
1736         }
1737
1738         return skb;
1739 }
1740
1741 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1742 {
1743         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1744 }
1745
1746 static int
1747 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1748                         u32 prior_snd_una)
1749 {
1750         const struct inet_connection_sock *icsk = inet_csk(sk);
1751         struct tcp_sock *tp = tcp_sk(sk);
1752         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1753                                     TCP_SKB_CB(ack_skb)->sacked);
1754         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1755         struct tcp_sack_block sp[TCP_NUM_SACKS];
1756         struct tcp_sack_block *cache;
1757         struct tcp_sacktag_state state;
1758         struct sk_buff *skb;
1759         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1760         int used_sacks;
1761         int found_dup_sack = 0;
1762         int i, j;
1763         int first_sack_index;
1764
1765         state.flag = 0;
1766         state.reord = tp->packets_out;
1767
1768         if (!tp->sacked_out) {
1769                 if (WARN_ON(tp->fackets_out))
1770                         tp->fackets_out = 0;
1771                 tcp_highest_sack_reset(sk);
1772         }
1773
1774         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1775                                          num_sacks, prior_snd_una);
1776         if (found_dup_sack)
1777                 state.flag |= FLAG_DSACKING_ACK;
1778
1779         /* Eliminate too old ACKs, but take into
1780          * account more or less fresh ones, they can
1781          * contain valid SACK info.
1782          */
1783         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1784                 return 0;
1785
1786         if (!tp->packets_out)
1787                 goto out;
1788
1789         used_sacks = 0;
1790         first_sack_index = 0;
1791         for (i = 0; i < num_sacks; i++) {
1792                 int dup_sack = !i && found_dup_sack;
1793
1794                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1795                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1796
1797                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1798                                             sp[used_sacks].start_seq,
1799                                             sp[used_sacks].end_seq)) {
1800                         int mib_idx;
1801
1802                         if (dup_sack) {
1803                                 if (!tp->undo_marker)
1804                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1805                                 else
1806                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1807                         } else {
1808                                 /* Don't count olds caused by ACK reordering */
1809                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1810                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1811                                         continue;
1812                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1813                         }
1814
1815                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1816                         if (i == 0)
1817                                 first_sack_index = -1;
1818                         continue;
1819                 }
1820
1821                 /* Ignore very old stuff early */
1822                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1823                         continue;
1824
1825                 used_sacks++;
1826         }
1827
1828         /* order SACK blocks to allow in order walk of the retrans queue */
1829         for (i = used_sacks - 1; i > 0; i--) {
1830                 for (j = 0; j < i; j++) {
1831                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1832                                 swap(sp[j], sp[j + 1]);
1833
1834                                 /* Track where the first SACK block goes to */
1835                                 if (j == first_sack_index)
1836                                         first_sack_index = j + 1;
1837                         }
1838                 }
1839         }
1840
1841         skb = tcp_write_queue_head(sk);
1842         state.fack_count = 0;
1843         i = 0;
1844
1845         if (!tp->sacked_out) {
1846                 /* It's already past, so skip checking against it */
1847                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1848         } else {
1849                 cache = tp->recv_sack_cache;
1850                 /* Skip empty blocks in at head of the cache */
1851                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1852                        !cache->end_seq)
1853                         cache++;
1854         }
1855
1856         while (i < used_sacks) {
1857                 u32 start_seq = sp[i].start_seq;
1858                 u32 end_seq = sp[i].end_seq;
1859                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1860                 struct tcp_sack_block *next_dup = NULL;
1861
1862                 if (found_dup_sack && ((i + 1) == first_sack_index))
1863                         next_dup = &sp[i + 1];
1864
1865                 /* Skip too early cached blocks */
1866                 while (tcp_sack_cache_ok(tp, cache) &&
1867                        !before(start_seq, cache->end_seq))
1868                         cache++;
1869
1870                 /* Can skip some work by looking recv_sack_cache? */
1871                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1872                     after(end_seq, cache->start_seq)) {
1873
1874                         /* Head todo? */
1875                         if (before(start_seq, cache->start_seq)) {
1876                                 skb = tcp_sacktag_skip(skb, sk, &state,
1877                                                        start_seq);
1878                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1879                                                        &state,
1880                                                        start_seq,
1881                                                        cache->start_seq,
1882                                                        dup_sack);
1883                         }
1884
1885                         /* Rest of the block already fully processed? */
1886                         if (!after(end_seq, cache->end_seq))
1887                                 goto advance_sp;
1888
1889                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1890                                                        &state,
1891                                                        cache->end_seq);
1892
1893                         /* ...tail remains todo... */
1894                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1895                                 /* ...but better entrypoint exists! */
1896                                 skb = tcp_highest_sack(sk);
1897                                 if (skb == NULL)
1898                                         break;
1899                                 state.fack_count = tp->fackets_out;
1900                                 cache++;
1901                                 goto walk;
1902                         }
1903
1904                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1905                         /* Check overlap against next cached too (past this one already) */
1906                         cache++;
1907                         continue;
1908                 }
1909
1910                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1911                         skb = tcp_highest_sack(sk);
1912                         if (skb == NULL)
1913                                 break;
1914                         state.fack_count = tp->fackets_out;
1915                 }
1916                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1917
1918 walk:
1919                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1920                                        start_seq, end_seq, dup_sack);
1921
1922 advance_sp:
1923                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1924                  * due to in-order walk
1925                  */
1926                 if (after(end_seq, tp->frto_highmark))
1927                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1928
1929                 i++;
1930         }
1931
1932         /* Clear the head of the cache sack blocks so we can skip it next time */
1933         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1934                 tp->recv_sack_cache[i].start_seq = 0;
1935                 tp->recv_sack_cache[i].end_seq = 0;
1936         }
1937         for (j = 0; j < used_sacks; j++)
1938                 tp->recv_sack_cache[i++] = sp[j];
1939
1940         tcp_mark_lost_retrans(sk);
1941
1942         tcp_verify_left_out(tp);
1943
1944         if ((state.reord < tp->fackets_out) &&
1945             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1946             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1947                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1948
1949 out:
1950
1951 #if FASTRETRANS_DEBUG > 0
1952         WARN_ON((int)tp->sacked_out < 0);
1953         WARN_ON((int)tp->lost_out < 0);
1954         WARN_ON((int)tp->retrans_out < 0);
1955         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1956 #endif
1957         return state.flag;
1958 }
1959
1960 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1961  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1962  */
1963 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1964 {
1965         u32 holes;
1966
1967         holes = max(tp->lost_out, 1U);
1968         holes = min(holes, tp->packets_out);
1969
1970         if ((tp->sacked_out + holes) > tp->packets_out) {
1971                 tp->sacked_out = tp->packets_out - holes;
1972                 return 1;
1973         }
1974         return 0;
1975 }
1976
1977 /* If we receive more dupacks than we expected counting segments
1978  * in assumption of absent reordering, interpret this as reordering.
1979  * The only another reason could be bug in receiver TCP.
1980  */
1981 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1982 {
1983         struct tcp_sock *tp = tcp_sk(sk);
1984         if (tcp_limit_reno_sacked(tp))
1985                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1986 }
1987
1988 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1989
1990 static void tcp_add_reno_sack(struct sock *sk)
1991 {
1992         struct tcp_sock *tp = tcp_sk(sk);
1993         tp->sacked_out++;
1994         tcp_check_reno_reordering(sk, 0);
1995         tcp_verify_left_out(tp);
1996 }
1997
1998 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1999
2000 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2001 {
2002         struct tcp_sock *tp = tcp_sk(sk);
2003
2004         if (acked > 0) {
2005                 /* One ACK acked hole. The rest eat duplicate ACKs. */
2006                 if (acked - 1 >= tp->sacked_out)
2007                         tp->sacked_out = 0;
2008                 else
2009                         tp->sacked_out -= acked - 1;
2010         }
2011         tcp_check_reno_reordering(sk, acked);
2012         tcp_verify_left_out(tp);
2013 }
2014
2015 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2016 {
2017         tp->sacked_out = 0;
2018 }
2019
2020 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2021 {
2022         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2023 }
2024
2025 /* F-RTO can only be used if TCP has never retransmitted anything other than
2026  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2027  */
2028 int tcp_use_frto(struct sock *sk)
2029 {
2030         const struct tcp_sock *tp = tcp_sk(sk);
2031         const struct inet_connection_sock *icsk = inet_csk(sk);
2032         struct sk_buff *skb;
2033
2034         if (!sysctl_tcp_frto)
2035                 return 0;
2036
2037         /* MTU probe and F-RTO won't really play nicely along currently */
2038         if (icsk->icsk_mtup.probe_size)
2039                 return 0;
2040
2041         if (tcp_is_sackfrto(tp))
2042                 return 1;
2043
2044         /* Avoid expensive walking of rexmit queue if possible */
2045         if (tp->retrans_out > 1)
2046                 return 0;
2047
2048         skb = tcp_write_queue_head(sk);
2049         if (tcp_skb_is_last(sk, skb))
2050                 return 1;
2051         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2052         tcp_for_write_queue_from(skb, sk) {
2053                 if (skb == tcp_send_head(sk))
2054                         break;
2055                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2056                         return 0;
2057                 /* Short-circuit when first non-SACKed skb has been checked */
2058                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2059                         break;
2060         }
2061         return 1;
2062 }
2063
2064 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2065  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2066  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2067  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2068  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2069  * bits are handled if the Loss state is really to be entered (in
2070  * tcp_enter_frto_loss).
2071  *
2072  * Do like tcp_enter_loss() would; when RTO expires the second time it
2073  * does:
2074  *  "Reduce ssthresh if it has not yet been made inside this window."
2075  */
2076 void tcp_enter_frto(struct sock *sk)
2077 {
2078         const struct inet_connection_sock *icsk = inet_csk(sk);
2079         struct tcp_sock *tp = tcp_sk(sk);
2080         struct sk_buff *skb;
2081
2082         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2083             tp->snd_una == tp->high_seq ||
2084             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2085              !icsk->icsk_retransmits)) {
2086                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2087                 /* Our state is too optimistic in ssthresh() call because cwnd
2088                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2089                  * recovery has not yet completed. Pattern would be this: RTO,
2090                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2091                  * up here twice).
2092                  * RFC4138 should be more specific on what to do, even though
2093                  * RTO is quite unlikely to occur after the first Cumulative ACK
2094                  * due to back-off and complexity of triggering events ...
2095                  */
2096                 if (tp->frto_counter) {
2097                         u32 stored_cwnd;
2098                         stored_cwnd = tp->snd_cwnd;
2099                         tp->snd_cwnd = 2;
2100                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2101                         tp->snd_cwnd = stored_cwnd;
2102                 } else {
2103                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2104                 }
2105                 /* ... in theory, cong.control module could do "any tricks" in
2106                  * ssthresh(), which means that ca_state, lost bits and lost_out
2107                  * counter would have to be faked before the call occurs. We
2108                  * consider that too expensive, unlikely and hacky, so modules
2109                  * using these in ssthresh() must deal these incompatibility
2110                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2111                  */
2112                 tcp_ca_event(sk, CA_EVENT_FRTO);
2113         }
2114
2115         tp->undo_marker = tp->snd_una;
2116         tp->undo_retrans = 0;
2117
2118         skb = tcp_write_queue_head(sk);
2119         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2120                 tp->undo_marker = 0;
2121         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2122                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2123                 tp->retrans_out -= tcp_skb_pcount(skb);
2124         }
2125         tcp_verify_left_out(tp);
2126
2127         /* Too bad if TCP was application limited */
2128         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2129
2130         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2131          * The last condition is necessary at least in tp->frto_counter case.
2132          */
2133         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2134             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2135             after(tp->high_seq, tp->snd_una)) {
2136                 tp->frto_highmark = tp->high_seq;
2137         } else {
2138                 tp->frto_highmark = tp->snd_nxt;
2139         }
2140         tcp_set_ca_state(sk, TCP_CA_Disorder);
2141         tp->high_seq = tp->snd_nxt;
2142         tp->frto_counter = 1;
2143 }
2144
2145 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2146  * which indicates that we should follow the traditional RTO recovery,
2147  * i.e. mark everything lost and do go-back-N retransmission.
2148  */
2149 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2150 {
2151         struct tcp_sock *tp = tcp_sk(sk);
2152         struct sk_buff *skb;
2153
2154         tp->lost_out = 0;
2155         tp->retrans_out = 0;
2156         if (tcp_is_reno(tp))
2157                 tcp_reset_reno_sack(tp);
2158
2159         tcp_for_write_queue(skb, sk) {
2160                 if (skb == tcp_send_head(sk))
2161                         break;
2162
2163                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2164                 /*
2165                  * Count the retransmission made on RTO correctly (only when
2166                  * waiting for the first ACK and did not get it)...
2167                  */
2168                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2169                         /* For some reason this R-bit might get cleared? */
2170                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2171                                 tp->retrans_out += tcp_skb_pcount(skb);
2172                         /* ...enter this if branch just for the first segment */
2173                         flag |= FLAG_DATA_ACKED;
2174                 } else {
2175                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2176                                 tp->undo_marker = 0;
2177                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2178                 }
2179
2180                 /* Marking forward transmissions that were made after RTO lost
2181                  * can cause unnecessary retransmissions in some scenarios,
2182                  * SACK blocks will mitigate that in some but not in all cases.
2183                  * We used to not mark them but it was causing break-ups with
2184                  * receivers that do only in-order receival.
2185                  *
2186                  * TODO: we could detect presence of such receiver and select
2187                  * different behavior per flow.
2188                  */
2189                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2190                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2191                         tp->lost_out += tcp_skb_pcount(skb);
2192                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2193                 }
2194         }
2195         tcp_verify_left_out(tp);
2196
2197         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2198         tp->snd_cwnd_cnt = 0;
2199         tp->snd_cwnd_stamp = tcp_time_stamp;
2200         tp->frto_counter = 0;
2201         tp->bytes_acked = 0;
2202
2203         tp->reordering = min_t(unsigned int, tp->reordering,
2204                                sysctl_tcp_reordering);
2205         tcp_set_ca_state(sk, TCP_CA_Loss);
2206         tp->high_seq = tp->snd_nxt;
2207         TCP_ECN_queue_cwr(tp);
2208
2209         tcp_clear_all_retrans_hints(tp);
2210 }
2211
2212 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2213 {
2214         tp->retrans_out = 0;
2215         tp->lost_out = 0;
2216
2217         tp->undo_marker = 0;
2218         tp->undo_retrans = 0;
2219 }
2220
2221 void tcp_clear_retrans(struct tcp_sock *tp)
2222 {
2223         tcp_clear_retrans_partial(tp);
2224
2225         tp->fackets_out = 0;
2226         tp->sacked_out = 0;
2227 }
2228
2229 /* Enter Loss state. If "how" is not zero, forget all SACK information
2230  * and reset tags completely, otherwise preserve SACKs. If receiver
2231  * dropped its ofo queue, we will know this due to reneging detection.
2232  */
2233 void tcp_enter_loss(struct sock *sk, int how)
2234 {
2235         const struct inet_connection_sock *icsk = inet_csk(sk);
2236         struct tcp_sock *tp = tcp_sk(sk);
2237         struct sk_buff *skb;
2238
2239         /* Reduce ssthresh if it has not yet been made inside this window. */
2240         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2241             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2242                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2243                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2244                 tcp_ca_event(sk, CA_EVENT_LOSS);
2245         }
2246         tp->snd_cwnd       = 1;
2247         tp->snd_cwnd_cnt   = 0;
2248         tp->snd_cwnd_stamp = tcp_time_stamp;
2249
2250         tp->bytes_acked = 0;
2251         tcp_clear_retrans_partial(tp);
2252
2253         if (tcp_is_reno(tp))
2254                 tcp_reset_reno_sack(tp);
2255
2256         if (!how) {
2257                 /* Push undo marker, if it was plain RTO and nothing
2258                  * was retransmitted. */
2259                 tp->undo_marker = tp->snd_una;
2260         } else {
2261                 tp->sacked_out = 0;
2262                 tp->fackets_out = 0;
2263         }
2264         tcp_clear_all_retrans_hints(tp);
2265
2266         tcp_for_write_queue(skb, sk) {
2267                 if (skb == tcp_send_head(sk))
2268                         break;
2269
2270                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2271                         tp->undo_marker = 0;
2272                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2273                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2274                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2275                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2276                         tp->lost_out += tcp_skb_pcount(skb);
2277                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2278                 }
2279         }
2280         tcp_verify_left_out(tp);
2281
2282         tp->reordering = min_t(unsigned int, tp->reordering,
2283                                sysctl_tcp_reordering);
2284         tcp_set_ca_state(sk, TCP_CA_Loss);
2285         tp->high_seq = tp->snd_nxt;
2286         TCP_ECN_queue_cwr(tp);
2287         /* Abort F-RTO algorithm if one is in progress */
2288         tp->frto_counter = 0;
2289 }
2290
2291 /* If ACK arrived pointing to a remembered SACK, it means that our
2292  * remembered SACKs do not reflect real state of receiver i.e.
2293  * receiver _host_ is heavily congested (or buggy).
2294  *
2295  * Do processing similar to RTO timeout.
2296  */
2297 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2298 {
2299         if (flag & FLAG_SACK_RENEGING) {
2300                 struct inet_connection_sock *icsk = inet_csk(sk);
2301                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2302
2303                 tcp_enter_loss(sk, 1);
2304                 icsk->icsk_retransmits++;
2305                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2306                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2307                                           icsk->icsk_rto, TCP_RTO_MAX);
2308                 return 1;
2309         }
2310         return 0;
2311 }
2312
2313 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2314 {
2315         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2316 }
2317
2318 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2319  * counter when SACK is enabled (without SACK, sacked_out is used for
2320  * that purpose).
2321  *
2322  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2323  * segments up to the highest received SACK block so far and holes in
2324  * between them.
2325  *
2326  * With reordering, holes may still be in flight, so RFC3517 recovery
2327  * uses pure sacked_out (total number of SACKed segments) even though
2328  * it violates the RFC that uses duplicate ACKs, often these are equal
2329  * but when e.g. out-of-window ACKs or packet duplication occurs,
2330  * they differ. Since neither occurs due to loss, TCP should really
2331  * ignore them.
2332  */
2333 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2334 {
2335         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2336 }
2337
2338 static inline int tcp_skb_timedout(const struct sock *sk,
2339                                    const struct sk_buff *skb)
2340 {
2341         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2342 }
2343
2344 static inline int tcp_head_timedout(const struct sock *sk)
2345 {
2346         const struct tcp_sock *tp = tcp_sk(sk);
2347
2348         return tp->packets_out &&
2349                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2350 }
2351
2352 /* Linux NewReno/SACK/FACK/ECN state machine.
2353  * --------------------------------------
2354  *
2355  * "Open"       Normal state, no dubious events, fast path.
2356  * "Disorder"   In all the respects it is "Open",
2357  *              but requires a bit more attention. It is entered when
2358  *              we see some SACKs or dupacks. It is split of "Open"
2359  *              mainly to move some processing from fast path to slow one.
2360  * "CWR"        CWND was reduced due to some Congestion Notification event.
2361  *              It can be ECN, ICMP source quench, local device congestion.
2362  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2363  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2364  *
2365  * tcp_fastretrans_alert() is entered:
2366  * - each incoming ACK, if state is not "Open"
2367  * - when arrived ACK is unusual, namely:
2368  *      * SACK
2369  *      * Duplicate ACK.
2370  *      * ECN ECE.
2371  *
2372  * Counting packets in flight is pretty simple.
2373  *
2374  *      in_flight = packets_out - left_out + retrans_out
2375  *
2376  *      packets_out is SND.NXT-SND.UNA counted in packets.
2377  *
2378  *      retrans_out is number of retransmitted segments.
2379  *
2380  *      left_out is number of segments left network, but not ACKed yet.
2381  *
2382  *              left_out = sacked_out + lost_out
2383  *
2384  *     sacked_out: Packets, which arrived to receiver out of order
2385  *                 and hence not ACKed. With SACKs this number is simply
2386  *                 amount of SACKed data. Even without SACKs
2387  *                 it is easy to give pretty reliable estimate of this number,
2388  *                 counting duplicate ACKs.
2389  *
2390  *       lost_out: Packets lost by network. TCP has no explicit
2391  *                 "loss notification" feedback from network (for now).
2392  *                 It means that this number can be only _guessed_.
2393  *                 Actually, it is the heuristics to predict lossage that
2394  *                 distinguishes different algorithms.
2395  *
2396  *      F.e. after RTO, when all the queue is considered as lost,
2397  *      lost_out = packets_out and in_flight = retrans_out.
2398  *
2399  *              Essentially, we have now two algorithms counting
2400  *              lost packets.
2401  *
2402  *              FACK: It is the simplest heuristics. As soon as we decided
2403  *              that something is lost, we decide that _all_ not SACKed
2404  *              packets until the most forward SACK are lost. I.e.
2405  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2406  *              It is absolutely correct estimate, if network does not reorder
2407  *              packets. And it loses any connection to reality when reordering
2408  *              takes place. We use FACK by default until reordering
2409  *              is suspected on the path to this destination.
2410  *
2411  *              NewReno: when Recovery is entered, we assume that one segment
2412  *              is lost (classic Reno). While we are in Recovery and
2413  *              a partial ACK arrives, we assume that one more packet
2414  *              is lost (NewReno). This heuristics are the same in NewReno
2415  *              and SACK.
2416  *
2417  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2418  *  deflation etc. CWND is real congestion window, never inflated, changes
2419  *  only according to classic VJ rules.
2420  *
2421  * Really tricky (and requiring careful tuning) part of algorithm
2422  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2423  * The first determines the moment _when_ we should reduce CWND and,
2424  * hence, slow down forward transmission. In fact, it determines the moment
2425  * when we decide that hole is caused by loss, rather than by a reorder.
2426  *
2427  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2428  * holes, caused by lost packets.
2429  *
2430  * And the most logically complicated part of algorithm is undo
2431  * heuristics. We detect false retransmits due to both too early
2432  * fast retransmit (reordering) and underestimated RTO, analyzing
2433  * timestamps and D-SACKs. When we detect that some segments were
2434  * retransmitted by mistake and CWND reduction was wrong, we undo
2435  * window reduction and abort recovery phase. This logic is hidden
2436  * inside several functions named tcp_try_undo_<something>.
2437  */
2438
2439 /* This function decides, when we should leave Disordered state
2440  * and enter Recovery phase, reducing congestion window.
2441  *
2442  * Main question: may we further continue forward transmission
2443  * with the same cwnd?
2444  */
2445 static int tcp_time_to_recover(struct sock *sk)
2446 {
2447         struct tcp_sock *tp = tcp_sk(sk);
2448         __u32 packets_out;
2449
2450         /* Do not perform any recovery during F-RTO algorithm */
2451         if (tp->frto_counter)
2452                 return 0;
2453
2454         /* Trick#1: The loss is proven. */
2455         if (tp->lost_out)
2456                 return 1;
2457
2458         /* Not-A-Trick#2 : Classic rule... */
2459         if (tcp_dupack_heuristics(tp) > tp->reordering)
2460                 return 1;
2461
2462         /* Trick#3 : when we use RFC2988 timer restart, fast
2463          * retransmit can be triggered by timeout of queue head.
2464          */
2465         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2466                 return 1;
2467
2468         /* Trick#4: It is still not OK... But will it be useful to delay
2469          * recovery more?
2470          */
2471         packets_out = tp->packets_out;
2472         if (packets_out <= tp->reordering &&
2473             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2474             !tcp_may_send_now(sk)) {
2475                 /* We have nothing to send. This connection is limited
2476                  * either by receiver window or by application.
2477                  */
2478                 return 1;
2479         }
2480
2481         /* If a thin stream is detected, retransmit after first
2482          * received dupack. Employ only if SACK is supported in order
2483          * to avoid possible corner-case series of spurious retransmissions
2484          * Use only if there are no unsent data.
2485          */
2486         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2487             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2488             tcp_is_sack(tp) && !tcp_send_head(sk))
2489                 return 1;
2490
2491         return 0;
2492 }
2493
2494 /* New heuristics: it is possible only after we switched to restart timer
2495  * each time when something is ACKed. Hence, we can detect timed out packets
2496  * during fast retransmit without falling to slow start.
2497  *
2498  * Usefulness of this as is very questionable, since we should know which of
2499  * the segments is the next to timeout which is relatively expensive to find
2500  * in general case unless we add some data structure just for that. The
2501  * current approach certainly won't find the right one too often and when it
2502  * finally does find _something_ it usually marks large part of the window
2503  * right away (because a retransmission with a larger timestamp blocks the
2504  * loop from advancing). -ij
2505  */
2506 static void tcp_timeout_skbs(struct sock *sk)
2507 {
2508         struct tcp_sock *tp = tcp_sk(sk);
2509         struct sk_buff *skb;
2510
2511         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2512                 return;
2513
2514         skb = tp->scoreboard_skb_hint;
2515         if (tp->scoreboard_skb_hint == NULL)
2516                 skb = tcp_write_queue_head(sk);
2517
2518         tcp_for_write_queue_from(skb, sk) {
2519                 if (skb == tcp_send_head(sk))
2520                         break;
2521                 if (!tcp_skb_timedout(sk, skb))
2522                         break;
2523
2524                 tcp_skb_mark_lost(tp, skb);
2525         }
2526
2527         tp->scoreboard_skb_hint = skb;
2528
2529         tcp_verify_left_out(tp);
2530 }
2531
2532 /* Detect loss in event "A" above by marking head of queue up as lost.
2533  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2534  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2535  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2536  * the maximum SACKed segments to pass before reaching this limit.
2537  */
2538 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2539 {
2540         struct tcp_sock *tp = tcp_sk(sk);
2541         struct sk_buff *skb;
2542         int cnt, oldcnt;
2543         int err;
2544         unsigned int mss;
2545         /* Use SACK to deduce losses of new sequences sent during recovery */
2546         const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2547
2548         WARN_ON(packets > tp->packets_out);
2549         if (tp->lost_skb_hint) {
2550                 skb = tp->lost_skb_hint;
2551                 cnt = tp->lost_cnt_hint;
2552                 /* Head already handled? */
2553                 if (mark_head && skb != tcp_write_queue_head(sk))
2554                         return;
2555         } else {
2556                 skb = tcp_write_queue_head(sk);
2557                 cnt = 0;
2558         }
2559
2560         tcp_for_write_queue_from(skb, sk) {
2561                 if (skb == tcp_send_head(sk))
2562                         break;
2563                 /* TODO: do this better */
2564                 /* this is not the most efficient way to do this... */
2565                 tp->lost_skb_hint = skb;
2566                 tp->lost_cnt_hint = cnt;
2567
2568                 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2569                         break;
2570
2571                 oldcnt = cnt;
2572                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2573                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2574                         cnt += tcp_skb_pcount(skb);
2575
2576                 if (cnt > packets) {
2577                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2578                             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2579                             (oldcnt >= packets))
2580                                 break;
2581
2582                         mss = skb_shinfo(skb)->gso_size;
2583                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2584                         if (err < 0)
2585                                 break;
2586                         cnt = packets;
2587                 }
2588
2589                 tcp_skb_mark_lost(tp, skb);
2590
2591                 if (mark_head)
2592                         break;
2593         }
2594         tcp_verify_left_out(tp);
2595 }
2596
2597 /* Account newly detected lost packet(s) */
2598
2599 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2600 {
2601         struct tcp_sock *tp = tcp_sk(sk);
2602
2603         if (tcp_is_reno(tp)) {
2604                 tcp_mark_head_lost(sk, 1, 1);
2605         } else if (tcp_is_fack(tp)) {
2606                 int lost = tp->fackets_out - tp->reordering;
2607                 if (lost <= 0)
2608                         lost = 1;
2609                 tcp_mark_head_lost(sk, lost, 0);
2610         } else {
2611                 int sacked_upto = tp->sacked_out - tp->reordering;
2612                 if (sacked_upto >= 0)
2613                         tcp_mark_head_lost(sk, sacked_upto, 0);
2614                 else if (fast_rexmit)
2615                         tcp_mark_head_lost(sk, 1, 1);
2616         }
2617
2618         tcp_timeout_skbs(sk);
2619 }
2620
2621 /* CWND moderation, preventing bursts due to too big ACKs
2622  * in dubious situations.
2623  */
2624 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2625 {
2626         tp->snd_cwnd = min(tp->snd_cwnd,
2627                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2628         tp->snd_cwnd_stamp = tcp_time_stamp;
2629 }
2630
2631 /* Lower bound on congestion window is slow start threshold
2632  * unless congestion avoidance choice decides to overide it.
2633  */
2634 static inline u32 tcp_cwnd_min(const struct sock *sk)
2635 {
2636         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2637
2638         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2639 }
2640
2641 /* Decrease cwnd each second ack. */
2642 static void tcp_cwnd_down(struct sock *sk, int flag)
2643 {
2644         struct tcp_sock *tp = tcp_sk(sk);
2645         int decr = tp->snd_cwnd_cnt + 1;
2646
2647         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2648             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2649                 tp->snd_cwnd_cnt = decr & 1;
2650                 decr >>= 1;
2651
2652                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2653                         tp->snd_cwnd -= decr;
2654
2655                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2656                 tp->snd_cwnd_stamp = tcp_time_stamp;
2657         }
2658 }
2659
2660 /* Nothing was retransmitted or returned timestamp is less
2661  * than timestamp of the first retransmission.
2662  */
2663 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2664 {
2665         return !tp->retrans_stamp ||
2666                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2667                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2668 }
2669
2670 /* Undo procedures. */
2671
2672 #if FASTRETRANS_DEBUG > 1
2673 static void DBGUNDO(struct sock *sk, const char *msg)
2674 {
2675         struct tcp_sock *tp = tcp_sk(sk);
2676         struct inet_sock *inet = inet_sk(sk);
2677
2678         if (sk->sk_family == AF_INET) {
2679                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2680                        msg,
2681                        &inet->inet_daddr, ntohs(inet->inet_dport),
2682                        tp->snd_cwnd, tcp_left_out(tp),
2683                        tp->snd_ssthresh, tp->prior_ssthresh,
2684                        tp->packets_out);
2685         }
2686 #if IS_ENABLED(CONFIG_IPV6)
2687         else if (sk->sk_family == AF_INET6) {
2688                 struct ipv6_pinfo *np = inet6_sk(sk);
2689                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2690                        msg,
2691                        &np->daddr, ntohs(inet->inet_dport),
2692                        tp->snd_cwnd, tcp_left_out(tp),
2693                        tp->snd_ssthresh, tp->prior_ssthresh,
2694                        tp->packets_out);
2695         }
2696 #endif
2697 }
2698 #else
2699 #define DBGUNDO(x...) do { } while (0)
2700 #endif
2701
2702 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2703 {
2704         struct tcp_sock *tp = tcp_sk(sk);
2705
2706         if (tp->prior_ssthresh) {
2707                 const struct inet_connection_sock *icsk = inet_csk(sk);
2708
2709                 if (icsk->icsk_ca_ops->undo_cwnd)
2710                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2711                 else
2712                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2713
2714                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2715                         tp->snd_ssthresh = tp->prior_ssthresh;
2716                         TCP_ECN_withdraw_cwr(tp);
2717                 }
2718         } else {
2719                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2720         }
2721         tp->snd_cwnd_stamp = tcp_time_stamp;
2722 }
2723
2724 static inline int tcp_may_undo(const struct tcp_sock *tp)
2725 {
2726         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2727 }
2728
2729 /* People celebrate: "We love our President!" */
2730 static int tcp_try_undo_recovery(struct sock *sk)
2731 {
2732         struct tcp_sock *tp = tcp_sk(sk);
2733
2734         if (tcp_may_undo(tp)) {
2735                 int mib_idx;
2736
2737                 /* Happy end! We did not retransmit anything
2738                  * or our original transmission succeeded.
2739                  */
2740                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2741                 tcp_undo_cwr(sk, true);
2742                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2743                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2744                 else
2745                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2746
2747                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2748                 tp->undo_marker = 0;
2749         }
2750         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2751                 /* Hold old state until something *above* high_seq
2752                  * is ACKed. For Reno it is MUST to prevent false
2753                  * fast retransmits (RFC2582). SACK TCP is safe. */
2754                 tcp_moderate_cwnd(tp);
2755                 return 1;
2756         }
2757         tcp_set_ca_state(sk, TCP_CA_Open);
2758         return 0;
2759 }
2760
2761 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2762 static void tcp_try_undo_dsack(struct sock *sk)
2763 {
2764         struct tcp_sock *tp = tcp_sk(sk);
2765
2766         if (tp->undo_marker && !tp->undo_retrans) {
2767                 DBGUNDO(sk, "D-SACK");
2768                 tcp_undo_cwr(sk, true);
2769                 tp->undo_marker = 0;
2770                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2771         }
2772 }
2773
2774 /* We can clear retrans_stamp when there are no retransmissions in the
2775  * window. It would seem that it is trivially available for us in
2776  * tp->retrans_out, however, that kind of assumptions doesn't consider
2777  * what will happen if errors occur when sending retransmission for the
2778  * second time. ...It could the that such segment has only
2779  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2780  * the head skb is enough except for some reneging corner cases that
2781  * are not worth the effort.
2782  *
2783  * Main reason for all this complexity is the fact that connection dying
2784  * time now depends on the validity of the retrans_stamp, in particular,
2785  * that successive retransmissions of a segment must not advance
2786  * retrans_stamp under any conditions.
2787  */
2788 static int tcp_any_retrans_done(const struct sock *sk)
2789 {
2790         const struct tcp_sock *tp = tcp_sk(sk);
2791         struct sk_buff *skb;
2792
2793         if (tp->retrans_out)
2794                 return 1;
2795
2796         skb = tcp_write_queue_head(sk);
2797         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2798                 return 1;
2799
2800         return 0;
2801 }
2802
2803 /* Undo during fast recovery after partial ACK. */
2804
2805 static int tcp_try_undo_partial(struct sock *sk, int acked)
2806 {
2807         struct tcp_sock *tp = tcp_sk(sk);
2808         /* Partial ACK arrived. Force Hoe's retransmit. */
2809         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2810
2811         if (tcp_may_undo(tp)) {
2812                 /* Plain luck! Hole if filled with delayed
2813                  * packet, rather than with a retransmit.
2814                  */
2815                 if (!tcp_any_retrans_done(sk))
2816                         tp->retrans_stamp = 0;
2817
2818                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2819
2820                 DBGUNDO(sk, "Hoe");
2821                 tcp_undo_cwr(sk, false);
2822                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2823
2824                 /* So... Do not make Hoe's retransmit yet.
2825                  * If the first packet was delayed, the rest
2826                  * ones are most probably delayed as well.
2827                  */
2828                 failed = 0;
2829         }
2830         return failed;
2831 }
2832
2833 /* Undo during loss recovery after partial ACK. */
2834 static int tcp_try_undo_loss(struct sock *sk)
2835 {
2836         struct tcp_sock *tp = tcp_sk(sk);
2837
2838         if (tcp_may_undo(tp)) {
2839                 struct sk_buff *skb;
2840                 tcp_for_write_queue(skb, sk) {
2841                         if (skb == tcp_send_head(sk))
2842                                 break;
2843                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2844                 }
2845
2846                 tcp_clear_all_retrans_hints(tp);
2847
2848                 DBGUNDO(sk, "partial loss");
2849                 tp->lost_out = 0;
2850                 tcp_undo_cwr(sk, true);
2851                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2852                 inet_csk(sk)->icsk_retransmits = 0;
2853                 tp->undo_marker = 0;
2854                 if (tcp_is_sack(tp))
2855                         tcp_set_ca_state(sk, TCP_CA_Open);
2856                 return 1;
2857         }
2858         return 0;
2859 }
2860
2861 static inline void tcp_complete_cwr(struct sock *sk)
2862 {
2863         struct tcp_sock *tp = tcp_sk(sk);
2864
2865         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2866         if (tp->undo_marker) {
2867                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2868                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2869                 else /* PRR */
2870                         tp->snd_cwnd = tp->snd_ssthresh;
2871                 tp->snd_cwnd_stamp = tcp_time_stamp;
2872         }
2873         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2874 }
2875
2876 static void tcp_try_keep_open(struct sock *sk)
2877 {
2878         struct tcp_sock *tp = tcp_sk(sk);
2879         int state = TCP_CA_Open;
2880
2881         if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2882                 state = TCP_CA_Disorder;
2883
2884         if (inet_csk(sk)->icsk_ca_state != state) {
2885                 tcp_set_ca_state(sk, state);
2886                 tp->high_seq = tp->snd_nxt;
2887         }
2888 }
2889
2890 static void tcp_try_to_open(struct sock *sk, int flag)
2891 {
2892         struct tcp_sock *tp = tcp_sk(sk);
2893
2894         tcp_verify_left_out(tp);
2895
2896         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2897                 tp->retrans_stamp = 0;
2898
2899         if (flag & FLAG_ECE)
2900                 tcp_enter_cwr(sk, 1);
2901
2902         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2903                 tcp_try_keep_open(sk);
2904                 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2905                         tcp_moderate_cwnd(tp);
2906         } else {
2907                 tcp_cwnd_down(sk, flag);
2908         }
2909 }
2910
2911 static void tcp_mtup_probe_failed(struct sock *sk)
2912 {
2913         struct inet_connection_sock *icsk = inet_csk(sk);
2914
2915         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2916         icsk->icsk_mtup.probe_size = 0;
2917 }
2918
2919 static void tcp_mtup_probe_success(struct sock *sk)
2920 {
2921         struct tcp_sock *tp = tcp_sk(sk);
2922         struct inet_connection_sock *icsk = inet_csk(sk);
2923
2924         /* FIXME: breaks with very large cwnd */
2925         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2926         tp->snd_cwnd = tp->snd_cwnd *
2927                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2928                        icsk->icsk_mtup.probe_size;
2929         tp->snd_cwnd_cnt = 0;
2930         tp->snd_cwnd_stamp = tcp_time_stamp;
2931         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2932
2933         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2934         icsk->icsk_mtup.probe_size = 0;
2935         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2936 }
2937
2938 /* Do a simple retransmit without using the backoff mechanisms in
2939  * tcp_timer. This is used for path mtu discovery.
2940  * The socket is already locked here.
2941  */
2942 void tcp_simple_retransmit(struct sock *sk)
2943 {
2944         const struct inet_connection_sock *icsk = inet_csk(sk);
2945         struct tcp_sock *tp = tcp_sk(sk);
2946         struct sk_buff *skb;
2947         unsigned int mss = tcp_current_mss(sk);
2948         u32 prior_lost = tp->lost_out;
2949
2950         tcp_for_write_queue(skb, sk) {
2951                 if (skb == tcp_send_head(sk))
2952                         break;
2953                 if (tcp_skb_seglen(skb) > mss &&
2954                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2955                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2956                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2957                                 tp->retrans_out -= tcp_skb_pcount(skb);
2958                         }
2959                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2960                 }
2961         }
2962
2963         tcp_clear_retrans_hints_partial(tp);
2964
2965         if (prior_lost == tp->lost_out)
2966                 return;
2967
2968         if (tcp_is_reno(tp))
2969                 tcp_limit_reno_sacked(tp);
2970
2971         tcp_verify_left_out(tp);
2972
2973         /* Don't muck with the congestion window here.
2974          * Reason is that we do not increase amount of _data_
2975          * in network, but units changed and effective
2976          * cwnd/ssthresh really reduced now.
2977          */
2978         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2979                 tp->high_seq = tp->snd_nxt;
2980                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2981                 tp->prior_ssthresh = 0;
2982                 tp->undo_marker = 0;
2983                 tcp_set_ca_state(sk, TCP_CA_Loss);
2984         }
2985         tcp_xmit_retransmit_queue(sk);
2986 }
2987 EXPORT_SYMBOL(tcp_simple_retransmit);
2988
2989 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2990  * (proportional rate reduction with slow start reduction bound) as described in
2991  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2992  * It computes the number of packets to send (sndcnt) based on packets newly
2993  * delivered:
2994  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2995  *      cwnd reductions across a full RTT.
2996  *   2) If packets in flight is lower than ssthresh (such as due to excess
2997  *      losses and/or application stalls), do not perform any further cwnd
2998  *      reductions, but instead slow start up to ssthresh.
2999  */
3000 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3001                                         int fast_rexmit, int flag)
3002 {
3003         struct tcp_sock *tp = tcp_sk(sk);
3004         int sndcnt = 0;
3005         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3006
3007         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3008                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3009                                tp->prior_cwnd - 1;
3010                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3011         } else {
3012                 sndcnt = min_t(int, delta,
3013                                max_t(int, tp->prr_delivered - tp->prr_out,
3014                                      newly_acked_sacked) + 1);
3015         }
3016
3017         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3018         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3019 }
3020
3021 /* Process an event, which can update packets-in-flight not trivially.
3022  * Main goal of this function is to calculate new estimate for left_out,
3023  * taking into account both packets sitting in receiver's buffer and
3024  * packets lost by network.
3025  *
3026  * Besides that it does CWND reduction, when packet loss is detected
3027  * and changes state of machine.
3028  *
3029  * It does _not_ decide what to send, it is made in function
3030  * tcp_xmit_retransmit_queue().
3031  */
3032 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3033                                   int newly_acked_sacked, bool is_dupack,
3034                                   int flag)
3035 {
3036         struct inet_connection_sock *icsk = inet_csk(sk);
3037         struct tcp_sock *tp = tcp_sk(sk);
3038         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3039                                     (tcp_fackets_out(tp) > tp->reordering));
3040         int fast_rexmit = 0, mib_idx;
3041
3042         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3043                 tp->sacked_out = 0;
3044         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3045                 tp->fackets_out = 0;
3046
3047         /* Now state machine starts.
3048          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3049         if (flag & FLAG_ECE)
3050                 tp->prior_ssthresh = 0;
3051
3052         /* B. In all the states check for reneging SACKs. */
3053         if (tcp_check_sack_reneging(sk, flag))
3054                 return;
3055
3056         /* C. Check consistency of the current state. */
3057         tcp_verify_left_out(tp);
3058
3059         /* D. Check state exit conditions. State can be terminated
3060          *    when high_seq is ACKed. */
3061         if (icsk->icsk_ca_state == TCP_CA_Open) {
3062                 WARN_ON(tp->retrans_out != 0);
3063                 tp->retrans_stamp = 0;
3064         } else if (!before(tp->snd_una, tp->high_seq)) {
3065                 switch (icsk->icsk_ca_state) {
3066                 case TCP_CA_Loss:
3067                         icsk->icsk_retransmits = 0;
3068                         if (tcp_try_undo_recovery(sk))
3069                                 return;
3070                         break;
3071
3072                 case TCP_CA_CWR:
3073                         /* CWR is to be held something *above* high_seq
3074                          * is ACKed for CWR bit to reach receiver. */
3075                         if (tp->snd_una != tp->high_seq) {
3076                                 tcp_complete_cwr(sk);
3077                                 tcp_set_ca_state(sk, TCP_CA_Open);
3078                         }
3079                         break;
3080
3081                 case TCP_CA_Recovery:
3082                         if (tcp_is_reno(tp))
3083                                 tcp_reset_reno_sack(tp);
3084                         if (tcp_try_undo_recovery(sk))
3085                                 return;
3086                         tcp_complete_cwr(sk);
3087                         break;
3088                 }
3089         }
3090
3091         /* E. Process state. */
3092         switch (icsk->icsk_ca_state) {
3093         case TCP_CA_Recovery:
3094                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3095                         if (tcp_is_reno(tp) && is_dupack)
3096                                 tcp_add_reno_sack(sk);
3097                 } else
3098                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3099                 break;
3100         case TCP_CA_Loss:
3101                 if (flag & FLAG_DATA_ACKED)
3102                         icsk->icsk_retransmits = 0;
3103                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3104                         tcp_reset_reno_sack(tp);
3105                 if (!tcp_try_undo_loss(sk)) {
3106                         tcp_moderate_cwnd(tp);
3107                         tcp_xmit_retransmit_queue(sk);
3108                         return;
3109                 }
3110                 if (icsk->icsk_ca_state != TCP_CA_Open)
3111                         return;
3112                 /* Loss is undone; fall through to processing in Open state. */
3113         default:
3114                 if (tcp_is_reno(tp)) {
3115                         if (flag & FLAG_SND_UNA_ADVANCED)
3116                                 tcp_reset_reno_sack(tp);
3117                         if (is_dupack)
3118                                 tcp_add_reno_sack(sk);
3119                 }
3120
3121                 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3122                         tcp_try_undo_dsack(sk);
3123
3124                 if (!tcp_time_to_recover(sk)) {
3125                         tcp_try_to_open(sk, flag);
3126                         return;
3127                 }
3128
3129                 /* MTU probe failure: don't reduce cwnd */
3130                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3131                     icsk->icsk_mtup.probe_size &&
3132                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3133                         tcp_mtup_probe_failed(sk);
3134                         /* Restores the reduction we did in tcp_mtup_probe() */
3135                         tp->snd_cwnd++;
3136                         tcp_simple_retransmit(sk);
3137                         return;
3138                 }
3139
3140                 /* Otherwise enter Recovery state */
3141
3142                 if (tcp_is_reno(tp))
3143                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3144                 else
3145                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3146
3147                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3148
3149                 tp->high_seq = tp->snd_nxt;
3150                 tp->prior_ssthresh = 0;
3151                 tp->undo_marker = tp->snd_una;
3152                 tp->undo_retrans = tp->retrans_out;
3153
3154                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3155                         if (!(flag & FLAG_ECE))
3156                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3157                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3158                         TCP_ECN_queue_cwr(tp);
3159                 }
3160
3161                 tp->bytes_acked = 0;
3162                 tp->snd_cwnd_cnt = 0;
3163                 tp->prior_cwnd = tp->snd_cwnd;
3164                 tp->prr_delivered = 0;
3165                 tp->prr_out = 0;
3166                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3167                 fast_rexmit = 1;
3168         }
3169
3170         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3171                 tcp_update_scoreboard(sk, fast_rexmit);
3172         tp->prr_delivered += newly_acked_sacked;
3173         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3174         tcp_xmit_retransmit_queue(sk);
3175 }
3176
3177 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3178 {
3179         tcp_rtt_estimator(sk, seq_rtt);
3180         tcp_set_rto(sk);
3181         inet_csk(sk)->icsk_backoff = 0;
3182 }
3183 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3184
3185 /* Read draft-ietf-tcplw-high-performance before mucking
3186  * with this code. (Supersedes RFC1323)
3187  */
3188 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3189 {
3190         /* RTTM Rule: A TSecr value received in a segment is used to
3191          * update the averaged RTT measurement only if the segment
3192          * acknowledges some new data, i.e., only if it advances the
3193          * left edge of the send window.
3194          *
3195          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3196          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3197          *
3198          * Changed: reset backoff as soon as we see the first valid sample.
3199          * If we do not, we get strongly overestimated rto. With timestamps
3200          * samples are accepted even from very old segments: f.e., when rtt=1
3201          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3202          * answer arrives rto becomes 120 seconds! If at least one of segments
3203          * in window is lost... Voila.                          --ANK (010210)
3204          */
3205         struct tcp_sock *tp = tcp_sk(sk);
3206
3207         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3208 }
3209
3210 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3211 {
3212         /* We don't have a timestamp. Can only use
3213          * packets that are not retransmitted to determine
3214          * rtt estimates. Also, we must not reset the
3215          * backoff for rto until we get a non-retransmitted
3216          * packet. This allows us to deal with a situation
3217          * where the network delay has increased suddenly.
3218          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3219          */
3220
3221         if (flag & FLAG_RETRANS_DATA_ACKED)
3222                 return;
3223
3224         tcp_valid_rtt_meas(sk, seq_rtt);
3225 }
3226
3227 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3228                                       const s32 seq_rtt)
3229 {
3230         const struct tcp_sock *tp = tcp_sk(sk);
3231         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3232         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3233                 tcp_ack_saw_tstamp(sk, flag);
3234         else if (seq_rtt >= 0)
3235                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3236 }
3237
3238 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3239 {
3240         const struct inet_connection_sock *icsk = inet_csk(sk);
3241         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3242         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3243 }
3244
3245 /* Restart timer after forward progress on connection.
3246  * RFC2988 recommends to restart timer to now+rto.
3247  */
3248 static void tcp_rearm_rto(struct sock *sk)
3249 {
3250         const struct tcp_sock *tp = tcp_sk(sk);
3251
3252         if (!tp->packets_out) {
3253                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3254         } else {
3255                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3256                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3257         }
3258 }
3259
3260 /* If we get here, the whole TSO packet has not been acked. */
3261 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3262 {
3263         struct tcp_sock *tp = tcp_sk(sk);
3264         u32 packets_acked;
3265
3266         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3267
3268         packets_acked = tcp_skb_pcount(skb);
3269         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3270                 return 0;
3271         packets_acked -= tcp_skb_pcount(skb);
3272
3273         if (packets_acked) {
3274                 BUG_ON(tcp_skb_pcount(skb) == 0);
3275                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3276         }
3277
3278         return packets_acked;
3279 }
3280
3281 /* Remove acknowledged frames from the retransmission queue. If our packet
3282  * is before the ack sequence we can discard it as it's confirmed to have
3283  * arrived at the other end.
3284  */
3285 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3286                                u32 prior_snd_una)
3287 {
3288         struct tcp_sock *tp = tcp_sk(sk);
3289         const struct inet_connection_sock *icsk = inet_csk(sk);
3290         struct sk_buff *skb;
3291         u32 now = tcp_time_stamp;
3292         int fully_acked = 1;
3293         int flag = 0;
3294         u32 pkts_acked = 0;
3295         u32 reord = tp->packets_out;
3296         u32 prior_sacked = tp->sacked_out;
3297         s32 seq_rtt = -1;
3298         s32 ca_seq_rtt = -1;
3299         ktime_t last_ackt = net_invalid_timestamp();
3300
3301         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3302                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3303                 u32 acked_pcount;
3304                 u8 sacked = scb->sacked;
3305
3306                 /* Determine how many packets and what bytes were acked, tso and else */
3307                 if (after(scb->end_seq, tp->snd_una)) {
3308                         if (tcp_skb_pcount(skb) == 1 ||
3309                             !after(tp->snd_una, scb->seq))
3310                                 break;
3311
3312                         acked_pcount = tcp_tso_acked(sk, skb);
3313                         if (!acked_pcount)
3314                                 break;
3315
3316                         fully_acked = 0;
3317                 } else {
3318                         acked_pcount = tcp_skb_pcount(skb);
3319                 }
3320
3321                 if (sacked & TCPCB_RETRANS) {
3322                         if (sacked & TCPCB_SACKED_RETRANS)
3323                                 tp->retrans_out -= acked_pcount;
3324                         flag |= FLAG_RETRANS_DATA_ACKED;
3325                         ca_seq_rtt = -1;
3326                         seq_rtt = -1;
3327                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3328                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3329                 } else {
3330                         ca_seq_rtt = now - scb->when;
3331                         last_ackt = skb->tstamp;
3332                         if (seq_rtt < 0) {
3333                                 seq_rtt = ca_seq_rtt;
3334                         }
3335                         if (!(sacked & TCPCB_SACKED_ACKED))
3336                                 reord = min(pkts_acked, reord);
3337                 }
3338
3339                 if (sacked & TCPCB_SACKED_ACKED)
3340                         tp->sacked_out -= acked_pcount;
3341                 if (sacked & TCPCB_LOST)
3342                         tp->lost_out -= acked_pcount;
3343
3344                 tp->packets_out -= acked_pcount;
3345                 pkts_acked += acked_pcount;
3346
3347                 /* Initial outgoing SYN's get put onto the write_queue
3348                  * just like anything else we transmit.  It is not
3349                  * true data, and if we misinform our callers that
3350                  * this ACK acks real data, we will erroneously exit
3351                  * connection startup slow start one packet too
3352                  * quickly.  This is severely frowned upon behavior.
3353                  */
3354                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3355                         flag |= FLAG_DATA_ACKED;
3356                 } else {
3357                         flag |= FLAG_SYN_ACKED;
3358                         tp->retrans_stamp = 0;
3359                 }
3360
3361                 if (!fully_acked)
3362                         break;
3363
3364                 tcp_unlink_write_queue(skb, sk);
3365                 sk_wmem_free_skb(sk, skb);
3366                 tp->scoreboard_skb_hint = NULL;
3367                 if (skb == tp->retransmit_skb_hint)
3368                         tp->retransmit_skb_hint = NULL;
3369                 if (skb == tp->lost_skb_hint)
3370                         tp->lost_skb_hint = NULL;
3371         }
3372
3373         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3374                 tp->snd_up = tp->snd_una;
3375
3376         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3377                 flag |= FLAG_SACK_RENEGING;
3378
3379         if (flag & FLAG_ACKED) {
3380                 const struct tcp_congestion_ops *ca_ops
3381                         = inet_csk(sk)->icsk_ca_ops;
3382
3383                 if (unlikely(icsk->icsk_mtup.probe_size &&
3384                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3385                         tcp_mtup_probe_success(sk);
3386                 }
3387
3388                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3389                 tcp_rearm_rto(sk);
3390
3391                 if (tcp_is_reno(tp)) {
3392                         tcp_remove_reno_sacks(sk, pkts_acked);
3393                 } else {
3394                         int delta;
3395
3396                         /* Non-retransmitted hole got filled? That's reordering */
3397                         if (reord < prior_fackets)
3398                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3399
3400                         delta = tcp_is_fack(tp) ? pkts_acked :
3401                                                   prior_sacked - tp->sacked_out;
3402                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3403                 }
3404
3405                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3406
3407                 if (ca_ops->pkts_acked) {
3408                         s32 rtt_us = -1;
3409
3410                         /* Is the ACK triggering packet unambiguous? */
3411                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3412                                 /* High resolution needed and available? */
3413                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3414                                     !ktime_equal(last_ackt,
3415                                                  net_invalid_timestamp()))
3416                                         rtt_us = ktime_us_delta(ktime_get_real(),
3417                                                                 last_ackt);
3418                                 else if (ca_seq_rtt >= 0)
3419                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3420                         }
3421
3422                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3423                 }
3424         }
3425
3426 #if FASTRETRANS_DEBUG > 0
3427         WARN_ON((int)tp->sacked_out < 0);
3428         WARN_ON((int)tp->lost_out < 0);
3429         WARN_ON((int)tp->retrans_out < 0);
3430         if (!tp->packets_out && tcp_is_sack(tp)) {
3431                 icsk = inet_csk(sk);
3432                 if (tp->lost_out) {
3433                         printk(KERN_DEBUG "Leak l=%u %d\n",
3434                                tp->lost_out, icsk->icsk_ca_state);
3435                         tp->lost_out = 0;
3436                 }
3437                 if (tp->sacked_out) {
3438                         printk(KERN_DEBUG "Leak s=%u %d\n",
3439                                tp->sacked_out, icsk->icsk_ca_state);
3440                         tp->sacked_out = 0;
3441                 }
3442                 if (tp->retrans_out) {
3443                         printk(KERN_DEBUG "Leak r=%u %d\n",
3444                                tp->retrans_out, icsk->icsk_ca_state);
3445                         tp->retrans_out = 0;
3446                 }
3447         }
3448 #endif
3449         return flag;
3450 }
3451
3452 static void tcp_ack_probe(struct sock *sk)
3453 {
3454         const struct tcp_sock *tp = tcp_sk(sk);
3455         struct inet_connection_sock *icsk = inet_csk(sk);
3456
3457         /* Was it a usable window open? */
3458
3459         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3460                 icsk->icsk_backoff = 0;
3461                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3462                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3463                  * This function is not for random using!
3464                  */
3465         } else {
3466                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3467                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3468                                           TCP_RTO_MAX);
3469         }
3470 }
3471
3472 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3473 {
3474         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3475                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3476 }
3477
3478 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3479 {
3480         const struct tcp_sock *tp = tcp_sk(sk);
3481         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3482                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3483 }
3484
3485 /* Check that window update is acceptable.
3486  * The function assumes that snd_una<=ack<=snd_next.
3487  */
3488 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3489                                         const u32 ack, const u32 ack_seq,
3490                                         const u32 nwin)
3491 {
3492         return  after(ack, tp->snd_una) ||
3493                 after(ack_seq, tp->snd_wl1) ||
3494                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3495 }
3496
3497 /* Update our send window.
3498  *
3499  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3500  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3501  */
3502 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3503                                  u32 ack_seq)
3504 {
3505         struct tcp_sock *tp = tcp_sk(sk);
3506         int flag = 0;
3507         u32 nwin = ntohs(tcp_hdr(skb)->window);
3508
3509         if (likely(!tcp_hdr(skb)->syn))
3510                 nwin <<= tp->rx_opt.snd_wscale;
3511
3512         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3513                 flag |= FLAG_WIN_UPDATE;
3514                 tcp_update_wl(tp, ack_seq);
3515
3516                 if (tp->snd_wnd != nwin) {
3517                         tp->snd_wnd = nwin;
3518
3519                         /* Note, it is the only place, where
3520                          * fast path is recovered for sending TCP.
3521                          */
3522                         tp->pred_flags = 0;
3523                         tcp_fast_path_check(sk);
3524
3525                         if (nwin > tp->max_window) {
3526                                 tp->max_window = nwin;
3527                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3528                         }
3529                 }
3530         }
3531
3532         tp->snd_una = ack;
3533
3534         return flag;
3535 }
3536
3537 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3538  * continue in congestion avoidance.
3539  */
3540 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3541 {
3542         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3543         tp->snd_cwnd_cnt = 0;
3544         tp->bytes_acked = 0;
3545         TCP_ECN_queue_cwr(tp);
3546         tcp_moderate_cwnd(tp);
3547 }
3548
3549 /* A conservative spurious RTO response algorithm: reduce cwnd using
3550  * rate halving and continue in congestion avoidance.
3551  */
3552 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3553 {
3554         tcp_enter_cwr(sk, 0);
3555 }
3556
3557 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3558 {
3559         if (flag & FLAG_ECE)
3560                 tcp_ratehalving_spur_to_response(sk);
3561         else
3562                 tcp_undo_cwr(sk, true);
3563 }
3564
3565 /* F-RTO spurious RTO detection algorithm (RFC4138)
3566  *
3567  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3568  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3569  * window (but not to or beyond highest sequence sent before RTO):
3570  *   On First ACK,  send two new segments out.
3571  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3572  *                  algorithm is not part of the F-RTO detection algorithm
3573  *                  given in RFC4138 but can be selected separately).
3574  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3575  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3576  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3577  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3578  *
3579  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3580  * original window even after we transmit two new data segments.
3581  *
3582  * SACK version:
3583  *   on first step, wait until first cumulative ACK arrives, then move to
3584  *   the second step. In second step, the next ACK decides.
3585  *
3586  * F-RTO is implemented (mainly) in four functions:
3587  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3588  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3589  *     called when tcp_use_frto() showed green light
3590  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3591  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3592  *     to prove that the RTO is indeed spurious. It transfers the control
3593  *     from F-RTO to the conventional RTO recovery
3594  */
3595 static int tcp_process_frto(struct sock *sk, int flag)
3596 {
3597         struct tcp_sock *tp = tcp_sk(sk);
3598
3599         tcp_verify_left_out(tp);
3600
3601         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3602         if (flag & FLAG_DATA_ACKED)
3603                 inet_csk(sk)->icsk_retransmits = 0;
3604
3605         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3606             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3607                 tp->undo_marker = 0;
3608
3609         if (!before(tp->snd_una, tp->frto_highmark)) {
3610                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3611                 return 1;
3612         }
3613
3614         if (!tcp_is_sackfrto(tp)) {
3615                 /* RFC4138 shortcoming in step 2; should also have case c):
3616                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3617                  * data, winupdate
3618                  */
3619                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3620                         return 1;
3621
3622                 if (!(flag & FLAG_DATA_ACKED)) {
3623                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3624                                             flag);
3625                         return 1;
3626                 }
3627         } else {
3628                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3629                         /* Prevent sending of new data. */
3630                         tp->snd_cwnd = min(tp->snd_cwnd,
3631                                            tcp_packets_in_flight(tp));
3632                         return 1;
3633                 }
3634
3635                 if ((tp->frto_counter >= 2) &&
3636                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3637                      ((flag & FLAG_DATA_SACKED) &&
3638                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3639                         /* RFC4138 shortcoming (see comment above) */
3640                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3641                             (flag & FLAG_NOT_DUP))
3642                                 return 1;
3643
3644                         tcp_enter_frto_loss(sk, 3, flag);
3645                         return 1;
3646                 }
3647         }
3648
3649         if (tp->frto_counter == 1) {
3650                 /* tcp_may_send_now needs to see updated state */
3651                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3652                 tp->frto_counter = 2;
3653
3654                 if (!tcp_may_send_now(sk))
3655                         tcp_enter_frto_loss(sk, 2, flag);
3656
3657                 return 1;
3658         } else {
3659                 switch (sysctl_tcp_frto_response) {
3660                 case 2:
3661                         tcp_undo_spur_to_response(sk, flag);
3662                         break;
3663                 case 1:
3664                         tcp_conservative_spur_to_response(tp);
3665                         break;
3666                 default:
3667                         tcp_ratehalving_spur_to_response(sk);
3668                         break;
3669                 }
3670                 tp->frto_counter = 0;
3671                 tp->undo_marker = 0;
3672                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3673         }
3674         return 0;
3675 }
3676
3677 /* This routine deals with incoming acks, but not outgoing ones. */
3678 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3679 {
3680         struct inet_connection_sock *icsk = inet_csk(sk);
3681         struct tcp_sock *tp = tcp_sk(sk);
3682         u32 prior_snd_una = tp->snd_una;
3683         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3684         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3685         bool is_dupack = false;
3686         u32 prior_in_flight;
3687         u32 prior_fackets;
3688         int prior_packets;
3689         int prior_sacked = tp->sacked_out;
3690         int pkts_acked = 0;
3691         int newly_acked_sacked = 0;
3692         int frto_cwnd = 0;
3693
3694         /* If the ack is older than previous acks
3695          * then we can probably ignore it.
3696          */
3697         if (before(ack, prior_snd_una))
3698                 goto old_ack;
3699
3700         /* If the ack includes data we haven't sent yet, discard
3701          * this segment (RFC793 Section 3.9).
3702          */
3703         if (after(ack, tp->snd_nxt))
3704                 goto invalid_ack;
3705
3706         if (after(ack, prior_snd_una))
3707                 flag |= FLAG_SND_UNA_ADVANCED;
3708
3709         if (sysctl_tcp_abc) {
3710                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3711                         tp->bytes_acked += ack - prior_snd_una;
3712                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3713                         /* we assume just one segment left network */
3714                         tp->bytes_acked += min(ack - prior_snd_una,
3715                                                tp->mss_cache);
3716         }
3717
3718         prior_fackets = tp->fackets_out;
3719         prior_in_flight = tcp_packets_in_flight(tp);
3720
3721         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3722                 /* Window is constant, pure forward advance.
3723                  * No more checks are required.
3724                  * Note, we use the fact that SND.UNA>=SND.WL2.
3725                  */
3726                 tcp_update_wl(tp, ack_seq);
3727                 tp->snd_una = ack;
3728                 flag |= FLAG_WIN_UPDATE;
3729
3730                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3731
3732                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3733         } else {
3734                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3735                         flag |= FLAG_DATA;
3736                 else
3737                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3738
3739                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3740
3741                 if (TCP_SKB_CB(skb)->sacked)
3742                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3743
3744                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3745                         flag |= FLAG_ECE;
3746
3747                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3748         }
3749
3750         /* We passed data and got it acked, remove any soft error
3751          * log. Something worked...
3752          */
3753         sk->sk_err_soft = 0;
3754         icsk->icsk_probes_out = 0;
3755         tp->rcv_tstamp = tcp_time_stamp;
3756         prior_packets = tp->packets_out;
3757         if (!prior_packets)
3758                 goto no_queue;
3759
3760         /* See if we can take anything off of the retransmit queue. */
3761         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3762
3763         pkts_acked = prior_packets - tp->packets_out;
3764         newly_acked_sacked = (prior_packets - prior_sacked) -
3765                              (tp->packets_out - tp->sacked_out);
3766
3767         if (tp->frto_counter)
3768                 frto_cwnd = tcp_process_frto(sk, flag);
3769         /* Guarantee sacktag reordering detection against wrap-arounds */
3770         if (before(tp->frto_highmark, tp->snd_una))
3771                 tp->frto_highmark = 0;
3772
3773         if (tcp_ack_is_dubious(sk, flag)) {
3774                 /* Advance CWND, if state allows this. */
3775                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3776                     tcp_may_raise_cwnd(sk, flag))
3777                         tcp_cong_avoid(sk, ack, prior_in_flight);
3778                 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3779                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3780                                       is_dupack, flag);
3781         } else {
3782                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3783                         tcp_cong_avoid(sk, ack, prior_in_flight);
3784         }
3785
3786         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3787                 dst_confirm(__sk_dst_get(sk));
3788
3789         return 1;
3790
3791 no_queue:
3792         /* If data was DSACKed, see if we can undo a cwnd reduction. */
3793         if (flag & FLAG_DSACKING_ACK)
3794                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3795                                       is_dupack, flag);
3796         /* If this ack opens up a zero window, clear backoff.  It was
3797          * being used to time the probes, and is probably far higher than
3798          * it needs to be for normal retransmission.
3799          */
3800         if (tcp_send_head(sk))
3801                 tcp_ack_probe(sk);
3802         return 1;
3803
3804 invalid_ack:
3805         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3806         return -1;
3807
3808 old_ack:
3809         /* If data was SACKed, tag it and see if we should send more data.
3810          * If data was DSACKed, see if we can undo a cwnd reduction.
3811          */
3812         if (TCP_SKB_CB(skb)->sacked) {
3813                 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3814                 newly_acked_sacked = tp->sacked_out - prior_sacked;
3815                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3816                                       is_dupack, flag);
3817         }
3818
3819         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3820         return 0;
3821 }
3822
3823 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3824  * But, this can also be called on packets in the established flow when
3825  * the fast version below fails.
3826  */
3827 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3828                        const u8 **hvpp, int estab)
3829 {
3830         const unsigned char *ptr;
3831         const struct tcphdr *th = tcp_hdr(skb);
3832         int length = (th->doff * 4) - sizeof(struct tcphdr);
3833
3834         ptr = (const unsigned char *)(th + 1);
3835         opt_rx->saw_tstamp = 0;
3836
3837         while (length > 0) {
3838                 int opcode = *ptr++;
3839                 int opsize;
3840
3841                 switch (opcode) {
3842                 case TCPOPT_EOL:
3843                         return;
3844                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3845                         length--;
3846                         continue;
3847                 default:
3848                         opsize = *ptr++;
3849                         if (opsize < 2) /* "silly options" */
3850                                 return;
3851                         if (opsize > length)
3852                                 return; /* don't parse partial options */
3853                         switch (opcode) {
3854                         case TCPOPT_MSS:
3855                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3856                                         u16 in_mss = get_unaligned_be16(ptr);
3857                                         if (in_mss) {
3858                                                 if (opt_rx->user_mss &&
3859                                                     opt_rx->user_mss < in_mss)
3860                                                         in_mss = opt_rx->user_mss;
3861                                                 opt_rx->mss_clamp = in_mss;
3862                                         }
3863                                 }
3864                                 break;
3865                         case TCPOPT_WINDOW:
3866                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3867                                     !estab && sysctl_tcp_window_scaling) {
3868                                         __u8 snd_wscale = *(__u8 *)ptr;
3869                                         opt_rx->wscale_ok = 1;
3870                                         if (snd_wscale > 14) {
3871                                                 if (net_ratelimit())
3872                                                         pr_info("%s: Illegal window scaling value %d >14 received\n",
3873                                                                 __func__,
3874                                                                 snd_wscale);
3875                                                 snd_wscale = 14;
3876                                         }
3877                                         opt_rx->snd_wscale = snd_wscale;
3878                                 }
3879                                 break;
3880                         case TCPOPT_TIMESTAMP:
3881                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3882                                     ((estab && opt_rx->tstamp_ok) ||
3883                                      (!estab && sysctl_tcp_timestamps))) {
3884                                         opt_rx->saw_tstamp = 1;
3885                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3886                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3887                                 }
3888                                 break;
3889                         case TCPOPT_SACK_PERM:
3890                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3891                                     !estab && sysctl_tcp_sack) {
3892                                         opt_rx->sack_ok = TCP_SACK_SEEN;
3893                                         tcp_sack_reset(opt_rx);
3894                                 }
3895                                 break;
3896
3897                         case TCPOPT_SACK:
3898                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3899                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3900                                    opt_rx->sack_ok) {
3901                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3902                                 }
3903                                 break;
3904 #ifdef CONFIG_TCP_MD5SIG
3905                         case TCPOPT_MD5SIG:
3906                                 /*
3907                                  * The MD5 Hash has already been
3908                                  * checked (see tcp_v{4,6}_do_rcv()).
3909                                  */
3910                                 break;
3911 #endif
3912                         case TCPOPT_COOKIE:
3913                                 /* This option is variable length.
3914                                  */
3915                                 switch (opsize) {
3916                                 case TCPOLEN_COOKIE_BASE:
3917                                         /* not yet implemented */
3918                                         break;
3919                                 case TCPOLEN_COOKIE_PAIR:
3920                                         /* not yet implemented */
3921                                         break;
3922                                 case TCPOLEN_COOKIE_MIN+0:
3923                                 case TCPOLEN_COOKIE_MIN+2:
3924                                 case TCPOLEN_COOKIE_MIN+4:
3925                                 case TCPOLEN_COOKIE_MIN+6:
3926                                 case TCPOLEN_COOKIE_MAX:
3927                                         /* 16-bit multiple */
3928                                         opt_rx->cookie_plus = opsize;
3929                                         *hvpp = ptr;
3930                                         break;
3931                                 default:
3932                                         /* ignore option */
3933                                         break;
3934                                 }
3935                                 break;
3936                         }
3937
3938                         ptr += opsize-2;
3939                         length -= opsize;
3940                 }
3941         }
3942 }
3943 EXPORT_SYMBOL(tcp_parse_options);
3944
3945 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3946 {
3947         const __be32 *ptr = (const __be32 *)(th + 1);
3948
3949         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3950                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3951                 tp->rx_opt.saw_tstamp = 1;
3952                 ++ptr;
3953                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3954                 ++ptr;
3955                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3956                 return 1;
3957         }
3958         return 0;
3959 }
3960
3961 /* Fast parse options. This hopes to only see timestamps.
3962  * If it is wrong it falls back on tcp_parse_options().
3963  */
3964 static int tcp_fast_parse_options(const struct sk_buff *skb,
3965                                   const struct tcphdr *th,
3966                                   struct tcp_sock *tp, const u8 **hvpp)
3967 {
3968         /* In the spirit of fast parsing, compare doff directly to constant
3969          * values.  Because equality is used, short doff can be ignored here.
3970          */
3971         if (th->doff == (sizeof(*th) / 4)) {
3972                 tp->rx_opt.saw_tstamp = 0;
3973                 return 0;
3974         } else if (tp->rx_opt.tstamp_ok &&
3975                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3976                 if (tcp_parse_aligned_timestamp(tp, th))
3977                         return 1;
3978         }
3979         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3980         return 1;
3981 }
3982
3983 #ifdef CONFIG_TCP_MD5SIG
3984 /*
3985  * Parse MD5 Signature option
3986  */
3987 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3988 {
3989         int length = (th->doff << 2) - sizeof(*th);
3990         const u8 *ptr = (const u8 *)(th + 1);
3991
3992         /* If the TCP option is too short, we can short cut */
3993         if (length < TCPOLEN_MD5SIG)
3994                 return NULL;
3995
3996         while (length > 0) {
3997                 int opcode = *ptr++;
3998                 int opsize;
3999
4000                 switch(opcode) {
4001                 case TCPOPT_EOL:
4002                         return NULL;
4003                 case TCPOPT_NOP:
4004                         length--;
4005                         continue;
4006                 default:
4007                         opsize = *ptr++;
4008                         if (opsize < 2 || opsize > length)
4009                                 return NULL;
4010                         if (opcode == TCPOPT_MD5SIG)
4011                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4012                 }
4013                 ptr += opsize - 2;
4014                 length -= opsize;
4015         }
4016         return NULL;
4017 }
4018 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4019 #endif
4020
4021 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4022 {
4023         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4024         tp->rx_opt.ts_recent_stamp = get_seconds();
4025 }
4026
4027 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4028 {
4029         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4030                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4031                  * extra check below makes sure this can only happen
4032                  * for pure ACK frames.  -DaveM
4033                  *
4034                  * Not only, also it occurs for expired timestamps.
4035                  */
4036
4037                 if (tcp_paws_check(&tp->rx_opt, 0))
4038                         tcp_store_ts_recent(tp);
4039         }
4040 }
4041
4042 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4043  *
4044  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4045  * it can pass through stack. So, the following predicate verifies that
4046  * this segment is not used for anything but congestion avoidance or
4047  * fast retransmit. Moreover, we even are able to eliminate most of such
4048  * second order effects, if we apply some small "replay" window (~RTO)
4049  * to timestamp space.
4050  *
4051  * All these measures still do not guarantee that we reject wrapped ACKs
4052  * on networks with high bandwidth, when sequence space is recycled fastly,
4053  * but it guarantees that such events will be very rare and do not affect
4054  * connection seriously. This doesn't look nice, but alas, PAWS is really
4055  * buggy extension.
4056  *
4057  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4058  * states that events when retransmit arrives after original data are rare.
4059  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4060  * the biggest problem on large power networks even with minor reordering.
4061  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4062  * up to bandwidth of 18Gigabit/sec. 8) ]
4063  */
4064
4065 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4066 {
4067         const struct tcp_sock *tp = tcp_sk(sk);
4068         const struct tcphdr *th = tcp_hdr(skb);
4069         u32 seq = TCP_SKB_CB(skb)->seq;
4070         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4071
4072         return (/* 1. Pure ACK with correct sequence number. */
4073                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4074
4075                 /* 2. ... and duplicate ACK. */
4076                 ack == tp->snd_una &&
4077
4078                 /* 3. ... and does not update window. */
4079                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4080
4081                 /* 4. ... and sits in replay window. */
4082                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4083 }
4084
4085 static inline int tcp_paws_discard(const struct sock *sk,
4086                                    const struct sk_buff *skb)
4087 {
4088         const struct tcp_sock *tp = tcp_sk(sk);
4089
4090         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4091                !tcp_disordered_ack(sk, skb);
4092 }
4093
4094 /* Check segment sequence number for validity.
4095  *
4096  * Segment controls are considered valid, if the segment
4097  * fits to the window after truncation to the window. Acceptability
4098  * of data (and SYN, FIN, of course) is checked separately.
4099  * See tcp_data_queue(), for example.
4100  *
4101  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4102  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4103  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4104  * (borrowed from freebsd)
4105  */
4106
4107 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4108 {
4109         return  !before(end_seq, tp->rcv_wup) &&
4110                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4111 }
4112
4113 /* When we get a reset we do this. */
4114 static void tcp_reset(struct sock *sk)
4115 {
4116         /* We want the right error as BSD sees it (and indeed as we do). */
4117         switch (sk->sk_state) {
4118         case TCP_SYN_SENT:
4119                 sk->sk_err = ECONNREFUSED;
4120                 break;
4121         case TCP_CLOSE_WAIT:
4122                 sk->sk_err = EPIPE;
4123                 break;
4124         case TCP_CLOSE:
4125                 return;
4126         default:
4127                 sk->sk_err = ECONNRESET;
4128         }
4129         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4130         smp_wmb();
4131
4132         if (!sock_flag(sk, SOCK_DEAD))
4133                 sk->sk_error_report(sk);
4134
4135         tcp_done(sk);
4136 }
4137
4138 /*
4139  *      Process the FIN bit. This now behaves as it is supposed to work
4140  *      and the FIN takes effect when it is validly part of sequence
4141  *      space. Not before when we get holes.
4142  *
4143  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4144  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4145  *      TIME-WAIT)
4146  *
4147  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4148  *      close and we go into CLOSING (and later onto TIME-WAIT)
4149  *
4150  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4151  */
4152 static void tcp_fin(struct sock *sk)
4153 {
4154         struct tcp_sock *tp = tcp_sk(sk);
4155
4156         inet_csk_schedule_ack(sk);
4157
4158         sk->sk_shutdown |= RCV_SHUTDOWN;
4159         sock_set_flag(sk, SOCK_DONE);
4160
4161         switch (sk->sk_state) {
4162         case TCP_SYN_RECV:
4163         case TCP_ESTABLISHED:
4164                 /* Move to CLOSE_WAIT */
4165                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4166                 inet_csk(sk)->icsk_ack.pingpong = 1;
4167                 break;
4168
4169         case TCP_CLOSE_WAIT:
4170         case TCP_CLOSING:
4171                 /* Received a retransmission of the FIN, do
4172                  * nothing.
4173                  */
4174                 break;
4175         case TCP_LAST_ACK:
4176                 /* RFC793: Remain in the LAST-ACK state. */
4177                 break;
4178
4179         case TCP_FIN_WAIT1:
4180                 /* This case occurs when a simultaneous close
4181                  * happens, we must ack the received FIN and
4182                  * enter the CLOSING state.
4183                  */
4184                 tcp_send_ack(sk);
4185                 tcp_set_state(sk, TCP_CLOSING);
4186                 break;
4187         case TCP_FIN_WAIT2:
4188                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4189                 tcp_send_ack(sk);
4190                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4191                 break;
4192         default:
4193                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4194                  * cases we should never reach this piece of code.
4195                  */
4196                 pr_err("%s: Impossible, sk->sk_state=%d\n",
4197                        __func__, sk->sk_state);
4198                 break;
4199         }
4200
4201         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4202          * Probably, we should reset in this case. For now drop them.
4203          */
4204         __skb_queue_purge(&tp->out_of_order_queue);
4205         if (tcp_is_sack(tp))
4206                 tcp_sack_reset(&tp->rx_opt);
4207         sk_mem_reclaim(sk);
4208
4209         if (!sock_flag(sk, SOCK_DEAD)) {
4210                 sk->sk_state_change(sk);
4211
4212                 /* Do not send POLL_HUP for half duplex close. */
4213                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4214                     sk->sk_state == TCP_CLOSE)
4215                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4216                 else
4217                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4218         }
4219 }
4220
4221 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4222                                   u32 end_seq)
4223 {
4224         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4225                 if (before(seq, sp->start_seq))
4226                         sp->start_seq = seq;
4227                 if (after(end_seq, sp->end_seq))
4228                         sp->end_seq = end_seq;
4229                 return 1;
4230         }
4231         return 0;
4232 }
4233
4234 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4235 {
4236         struct tcp_sock *tp = tcp_sk(sk);
4237
4238         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4239                 int mib_idx;
4240
4241                 if (before(seq, tp->rcv_nxt))
4242                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4243                 else
4244                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4245
4246                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4247
4248                 tp->rx_opt.dsack = 1;
4249                 tp->duplicate_sack[0].start_seq = seq;
4250                 tp->duplicate_sack[0].end_seq = end_seq;
4251         }
4252 }
4253
4254 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4255 {
4256         struct tcp_sock *tp = tcp_sk(sk);
4257
4258         if (!tp->rx_opt.dsack)
4259                 tcp_dsack_set(sk, seq, end_seq);
4260         else
4261                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4262 }
4263
4264 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4265 {
4266         struct tcp_sock *tp = tcp_sk(sk);
4267
4268         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4269             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4270                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4271                 tcp_enter_quickack_mode(sk);
4272
4273                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4274                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4275
4276                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4277                                 end_seq = tp->rcv_nxt;
4278                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4279                 }
4280         }
4281
4282         tcp_send_ack(sk);
4283 }
4284
4285 /* These routines update the SACK block as out-of-order packets arrive or
4286  * in-order packets close up the sequence space.
4287  */
4288 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4289 {
4290         int this_sack;
4291         struct tcp_sack_block *sp = &tp->selective_acks[0];
4292         struct tcp_sack_block *swalk = sp + 1;
4293
4294         /* See if the recent change to the first SACK eats into
4295          * or hits the sequence space of other SACK blocks, if so coalesce.
4296          */
4297         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4298                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4299                         int i;
4300
4301                         /* Zap SWALK, by moving every further SACK up by one slot.
4302                          * Decrease num_sacks.
4303                          */
4304                         tp->rx_opt.num_sacks--;
4305                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4306                                 sp[i] = sp[i + 1];
4307                         continue;
4308                 }
4309                 this_sack++, swalk++;
4310         }
4311 }
4312
4313 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4314 {
4315         struct tcp_sock *tp = tcp_sk(sk);
4316         struct tcp_sack_block *sp = &tp->selective_acks[0];
4317         int cur_sacks = tp->rx_opt.num_sacks;
4318         int this_sack;
4319
4320         if (!cur_sacks)
4321                 goto new_sack;
4322
4323         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4324                 if (tcp_sack_extend(sp, seq, end_seq)) {
4325                         /* Rotate this_sack to the first one. */
4326                         for (; this_sack > 0; this_sack--, sp--)
4327                                 swap(*sp, *(sp - 1));
4328                         if (cur_sacks > 1)
4329                                 tcp_sack_maybe_coalesce(tp);
4330                         return;
4331                 }
4332         }
4333
4334         /* Could not find an adjacent existing SACK, build a new one,
4335          * put it at the front, and shift everyone else down.  We
4336          * always know there is at least one SACK present already here.
4337          *
4338          * If the sack array is full, forget about the last one.
4339          */
4340         if (this_sack >= TCP_NUM_SACKS) {
4341                 this_sack--;
4342                 tp->rx_opt.num_sacks--;
4343                 sp--;
4344         }
4345         for (; this_sack > 0; this_sack--, sp--)
4346                 *sp = *(sp - 1);
4347
4348 new_sack:
4349         /* Build the new head SACK, and we're done. */
4350         sp->start_seq = seq;
4351         sp->end_seq = end_seq;
4352         tp->rx_opt.num_sacks++;
4353 }
4354
4355 /* RCV.NXT advances, some SACKs should be eaten. */
4356
4357 static void tcp_sack_remove(struct tcp_sock *tp)
4358 {
4359         struct tcp_sack_block *sp = &tp->selective_acks[0];
4360         int num_sacks = tp->rx_opt.num_sacks;
4361         int this_sack;
4362
4363         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4364         if (skb_queue_empty(&tp->out_of_order_queue)) {
4365                 tp->rx_opt.num_sacks = 0;
4366                 return;
4367         }
4368
4369         for (this_sack = 0; this_sack < num_sacks;) {
4370                 /* Check if the start of the sack is covered by RCV.NXT. */
4371                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4372                         int i;
4373
4374                         /* RCV.NXT must cover all the block! */
4375                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4376
4377                         /* Zap this SACK, by moving forward any other SACKS. */
4378                         for (i=this_sack+1; i < num_sacks; i++)
4379                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4380                         num_sacks--;
4381                         continue;
4382                 }
4383                 this_sack++;
4384                 sp++;
4385         }
4386         tp->rx_opt.num_sacks = num_sacks;
4387 }
4388
4389 /* This one checks to see if we can put data from the
4390  * out_of_order queue into the receive_queue.
4391  */
4392 static void tcp_ofo_queue(struct sock *sk)
4393 {
4394         struct tcp_sock *tp = tcp_sk(sk);
4395         __u32 dsack_high = tp->rcv_nxt;
4396         struct sk_buff *skb;
4397
4398         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4399                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4400                         break;
4401
4402                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4403                         __u32 dsack = dsack_high;
4404                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4405                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4406                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4407                 }
4408
4409                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4410                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4411                         __skb_unlink(skb, &tp->out_of_order_queue);
4412                         __kfree_skb(skb);
4413                         continue;
4414                 }
4415                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4416                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4417                            TCP_SKB_CB(skb)->end_seq);
4418
4419                 __skb_unlink(skb, &tp->out_of_order_queue);
4420                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4421                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4422                 if (tcp_hdr(skb)->fin)
4423                         tcp_fin(sk);
4424         }
4425 }
4426
4427 static int tcp_prune_ofo_queue(struct sock *sk);
4428 static int tcp_prune_queue(struct sock *sk);
4429
4430 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4431 {
4432         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4433             !sk_rmem_schedule(sk, size)) {
4434
4435                 if (tcp_prune_queue(sk) < 0)
4436                         return -1;
4437
4438                 if (!sk_rmem_schedule(sk, size)) {
4439                         if (!tcp_prune_ofo_queue(sk))
4440                                 return -1;
4441
4442                         if (!sk_rmem_schedule(sk, size))
4443                                 return -1;
4444                 }
4445         }
4446         return 0;
4447 }
4448
4449 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4450 {
4451         struct tcp_sock *tp = tcp_sk(sk);
4452         struct sk_buff *skb1;
4453         u32 seq, end_seq;
4454
4455         TCP_ECN_check_ce(tp, skb);
4456
4457         if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4458                 /* TODO: should increment a counter */
4459                 __kfree_skb(skb);
4460                 return;
4461         }
4462
4463         /* Disable header prediction. */
4464         tp->pred_flags = 0;
4465         inet_csk_schedule_ack(sk);
4466
4467         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4468                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4469
4470         skb1 = skb_peek_tail(&tp->out_of_order_queue);
4471         if (!skb1) {
4472                 /* Initial out of order segment, build 1 SACK. */
4473                 if (tcp_is_sack(tp)) {
4474                         tp->rx_opt.num_sacks = 1;
4475                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4476                         tp->selective_acks[0].end_seq =
4477                                                 TCP_SKB_CB(skb)->end_seq;
4478                 }
4479                 __skb_queue_head(&tp->out_of_order_queue, skb);
4480                 goto end;
4481         }
4482
4483         seq = TCP_SKB_CB(skb)->seq;
4484         end_seq = TCP_SKB_CB(skb)->end_seq;
4485
4486         if (seq == TCP_SKB_CB(skb1)->end_seq) {
4487                 /* Packets in ofo can stay in queue a long time.
4488                  * Better try to coalesce them right now
4489                  * to avoid future tcp_collapse_ofo_queue(),
4490                  * probably the most expensive function in tcp stack.
4491                  */
4492                 if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
4493                         NET_INC_STATS_BH(sock_net(sk),
4494                                          LINUX_MIB_TCPRCVCOALESCE);
4495                         BUG_ON(skb_copy_bits(skb, 0,
4496                                              skb_put(skb1, skb->len),
4497                                              skb->len));
4498                         TCP_SKB_CB(skb1)->end_seq = end_seq;
4499                         TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
4500                         __kfree_skb(skb);
4501                         skb = NULL;
4502                 } else {
4503                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4504                 }
4505
4506                 if (!tp->rx_opt.num_sacks ||
4507                     tp->selective_acks[0].end_seq != seq)
4508                         goto add_sack;
4509
4510                 /* Common case: data arrive in order after hole. */
4511                 tp->selective_acks[0].end_seq = end_seq;
4512                 goto end;
4513         }
4514
4515         /* Find place to insert this segment. */
4516         while (1) {
4517                 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4518                         break;
4519                 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4520                         skb1 = NULL;
4521                         break;
4522                 }
4523                 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4524         }
4525
4526         /* Do skb overlap to previous one? */
4527         if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4528                 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4529                         /* All the bits are present. Drop. */
4530                         __kfree_skb(skb);
4531                         skb = NULL;
4532                         tcp_dsack_set(sk, seq, end_seq);
4533                         goto add_sack;
4534                 }
4535                 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4536                         /* Partial overlap. */
4537                         tcp_dsack_set(sk, seq,
4538                                       TCP_SKB_CB(skb1)->end_seq);
4539                 } else {
4540                         if (skb_queue_is_first(&tp->out_of_order_queue,
4541                                                skb1))
4542                                 skb1 = NULL;
4543                         else
4544                                 skb1 = skb_queue_prev(
4545                                         &tp->out_of_order_queue,
4546                                         skb1);
4547                 }
4548         }
4549         if (!skb1)
4550                 __skb_queue_head(&tp->out_of_order_queue, skb);
4551         else
4552                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4553
4554         /* And clean segments covered by new one as whole. */
4555         while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4556                 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4557
4558                 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4559                         break;
4560                 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4561                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4562                                          end_seq);
4563                         break;
4564                 }
4565                 __skb_unlink(skb1, &tp->out_of_order_queue);
4566                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4567                                  TCP_SKB_CB(skb1)->end_seq);
4568                 __kfree_skb(skb1);
4569         }
4570
4571 add_sack:
4572         if (tcp_is_sack(tp))
4573                 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4574 end:
4575         if (skb)
4576                 skb_set_owner_r(skb, sk);
4577 }
4578
4579
4580 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4581 {
4582         const struct tcphdr *th = tcp_hdr(skb);
4583         struct tcp_sock *tp = tcp_sk(sk);
4584         int eaten = -1;
4585
4586         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4587                 goto drop;
4588
4589         skb_dst_drop(skb);
4590         __skb_pull(skb, th->doff * 4);
4591
4592         TCP_ECN_accept_cwr(tp, skb);
4593
4594         tp->rx_opt.dsack = 0;
4595
4596         /*  Queue data for delivery to the user.
4597          *  Packets in sequence go to the receive queue.
4598          *  Out of sequence packets to the out_of_order_queue.
4599          */
4600         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4601                 if (tcp_receive_window(tp) == 0)
4602                         goto out_of_window;
4603
4604                 /* Ok. In sequence. In window. */
4605                 if (tp->ucopy.task == current &&
4606                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4607                     sock_owned_by_user(sk) && !tp->urg_data) {
4608                         int chunk = min_t(unsigned int, skb->len,
4609                                           tp->ucopy.len);
4610
4611                         __set_current_state(TASK_RUNNING);
4612
4613                         local_bh_enable();
4614                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4615                                 tp->ucopy.len -= chunk;
4616                                 tp->copied_seq += chunk;
4617                                 eaten = (chunk == skb->len);
4618                                 tcp_rcv_space_adjust(sk);
4619                         }
4620                         local_bh_disable();
4621                 }
4622
4623                 if (eaten <= 0) {
4624 queue_and_out:
4625                         if (eaten < 0 &&
4626                             tcp_try_rmem_schedule(sk, skb->truesize))
4627                                 goto drop;
4628
4629                         skb_set_owner_r(skb, sk);
4630                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4631                 }
4632                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4633                 if (skb->len)
4634                         tcp_event_data_recv(sk, skb);
4635                 if (th->fin)
4636                         tcp_fin(sk);
4637
4638                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4639                         tcp_ofo_queue(sk);
4640
4641                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4642                          * gap in queue is filled.
4643                          */
4644                         if (skb_queue_empty(&tp->out_of_order_queue))
4645                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4646                 }
4647
4648                 if (tp->rx_opt.num_sacks)
4649                         tcp_sack_remove(tp);
4650
4651                 tcp_fast_path_check(sk);
4652
4653                 if (eaten > 0)
4654                         __kfree_skb(skb);
4655                 else if (!sock_flag(sk, SOCK_DEAD))
4656                         sk->sk_data_ready(sk, 0);
4657                 return;
4658         }
4659
4660         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4661                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4662                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4663                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4664
4665 out_of_window:
4666                 tcp_enter_quickack_mode(sk);
4667                 inet_csk_schedule_ack(sk);
4668 drop:
4669                 __kfree_skb(skb);
4670                 return;
4671         }
4672
4673         /* Out of window. F.e. zero window probe. */
4674         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4675                 goto out_of_window;
4676
4677         tcp_enter_quickack_mode(sk);
4678
4679         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4680                 /* Partial packet, seq < rcv_next < end_seq */
4681                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4682                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4683                            TCP_SKB_CB(skb)->end_seq);
4684
4685                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4686
4687                 /* If window is closed, drop tail of packet. But after
4688                  * remembering D-SACK for its head made in previous line.
4689                  */
4690                 if (!tcp_receive_window(tp))
4691                         goto out_of_window;
4692                 goto queue_and_out;
4693         }
4694
4695         tcp_data_queue_ofo(sk, skb);
4696 }
4697
4698 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4699                                         struct sk_buff_head *list)
4700 {
4701         struct sk_buff *next = NULL;
4702
4703         if (!skb_queue_is_last(list, skb))
4704                 next = skb_queue_next(list, skb);
4705
4706         __skb_unlink(skb, list);
4707         __kfree_skb(skb);
4708         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4709
4710         return next;
4711 }
4712
4713 /* Collapse contiguous sequence of skbs head..tail with
4714  * sequence numbers start..end.
4715  *
4716  * If tail is NULL, this means until the end of the list.
4717  *
4718  * Segments with FIN/SYN are not collapsed (only because this
4719  * simplifies code)
4720  */
4721 static void
4722 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4723              struct sk_buff *head, struct sk_buff *tail,
4724              u32 start, u32 end)
4725 {
4726         struct sk_buff *skb, *n;
4727         bool end_of_skbs;
4728
4729         /* First, check that queue is collapsible and find
4730          * the point where collapsing can be useful. */
4731         skb = head;
4732 restart:
4733         end_of_skbs = true;
4734         skb_queue_walk_from_safe(list, skb, n) {
4735                 if (skb == tail)
4736                         break;
4737                 /* No new bits? It is possible on ofo queue. */
4738                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4739                         skb = tcp_collapse_one(sk, skb, list);
4740                         if (!skb)
4741                                 break;
4742                         goto restart;
4743                 }
4744
4745                 /* The first skb to collapse is:
4746                  * - not SYN/FIN and
4747                  * - bloated or contains data before "start" or
4748                  *   overlaps to the next one.
4749                  */
4750                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4751                     (tcp_win_from_space(skb->truesize) > skb->len ||
4752                      before(TCP_SKB_CB(skb)->seq, start))) {
4753                         end_of_skbs = false;
4754                         break;
4755                 }
4756
4757                 if (!skb_queue_is_last(list, skb)) {
4758                         struct sk_buff *next = skb_queue_next(list, skb);
4759                         if (next != tail &&
4760                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4761                                 end_of_skbs = false;
4762                                 break;
4763                         }
4764                 }
4765
4766                 /* Decided to skip this, advance start seq. */
4767                 start = TCP_SKB_CB(skb)->end_seq;
4768         }
4769         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4770                 return;
4771
4772         while (before(start, end)) {
4773                 struct sk_buff *nskb;
4774                 unsigned int header = skb_headroom(skb);
4775                 int copy = SKB_MAX_ORDER(header, 0);
4776
4777                 /* Too big header? This can happen with IPv6. */
4778                 if (copy < 0)
4779                         return;
4780                 if (end - start < copy)
4781                         copy = end - start;
4782                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4783                 if (!nskb)
4784                         return;
4785
4786                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4787                 skb_set_network_header(nskb, (skb_network_header(skb) -
4788                                               skb->head));
4789                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4790                                                 skb->head));
4791                 skb_reserve(nskb, header);
4792                 memcpy(nskb->head, skb->head, header);
4793                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4794                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4795                 __skb_queue_before(list, skb, nskb);
4796                 skb_set_owner_r(nskb, sk);
4797
4798                 /* Copy data, releasing collapsed skbs. */
4799                 while (copy > 0) {
4800                         int offset = start - TCP_SKB_CB(skb)->seq;
4801                         int size = TCP_SKB_CB(skb)->end_seq - start;
4802
4803                         BUG_ON(offset < 0);
4804                         if (size > 0) {
4805                                 size = min(copy, size);
4806                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4807                                         BUG();
4808                                 TCP_SKB_CB(nskb)->end_seq += size;
4809                                 copy -= size;
4810                                 start += size;
4811                         }
4812                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4813                                 skb = tcp_collapse_one(sk, skb, list);
4814                                 if (!skb ||
4815                                     skb == tail ||
4816                                     tcp_hdr(skb)->syn ||
4817                                     tcp_hdr(skb)->fin)
4818                                         return;
4819                         }
4820                 }
4821         }
4822 }
4823
4824 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4825  * and tcp_collapse() them until all the queue is collapsed.
4826  */
4827 static void tcp_collapse_ofo_queue(struct sock *sk)
4828 {
4829         struct tcp_sock *tp = tcp_sk(sk);
4830         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4831         struct sk_buff *head;
4832         u32 start, end;
4833
4834         if (skb == NULL)
4835                 return;
4836
4837         start = TCP_SKB_CB(skb)->seq;
4838         end = TCP_SKB_CB(skb)->end_seq;
4839         head = skb;
4840
4841         for (;;) {
4842                 struct sk_buff *next = NULL;
4843
4844                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4845                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4846                 skb = next;
4847
4848                 /* Segment is terminated when we see gap or when
4849                  * we are at the end of all the queue. */
4850                 if (!skb ||
4851                     after(TCP_SKB_CB(skb)->seq, end) ||
4852                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4853                         tcp_collapse(sk, &tp->out_of_order_queue,
4854                                      head, skb, start, end);
4855                         head = skb;
4856                         if (!skb)
4857                                 break;
4858                         /* Start new segment */
4859                         start = TCP_SKB_CB(skb)->seq;
4860                         end = TCP_SKB_CB(skb)->end_seq;
4861                 } else {
4862                         if (before(TCP_SKB_CB(skb)->seq, start))
4863                                 start = TCP_SKB_CB(skb)->seq;
4864                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4865                                 end = TCP_SKB_CB(skb)->end_seq;
4866                 }
4867         }
4868 }
4869
4870 /*
4871  * Purge the out-of-order queue.
4872  * Return true if queue was pruned.
4873  */
4874 static int tcp_prune_ofo_queue(struct sock *sk)
4875 {
4876         struct tcp_sock *tp = tcp_sk(sk);
4877         int res = 0;
4878
4879         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4880                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4881                 __skb_queue_purge(&tp->out_of_order_queue);
4882
4883                 /* Reset SACK state.  A conforming SACK implementation will
4884                  * do the same at a timeout based retransmit.  When a connection
4885                  * is in a sad state like this, we care only about integrity
4886                  * of the connection not performance.
4887                  */
4888                 if (tp->rx_opt.sack_ok)
4889                         tcp_sack_reset(&tp->rx_opt);
4890                 sk_mem_reclaim(sk);
4891                 res = 1;
4892         }
4893         return res;
4894 }
4895
4896 /* Reduce allocated memory if we can, trying to get
4897  * the socket within its memory limits again.
4898  *
4899  * Return less than zero if we should start dropping frames
4900  * until the socket owning process reads some of the data
4901  * to stabilize the situation.
4902  */
4903 static int tcp_prune_queue(struct sock *sk)
4904 {
4905         struct tcp_sock *tp = tcp_sk(sk);
4906
4907         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4908
4909         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4910
4911         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4912                 tcp_clamp_window(sk);
4913         else if (sk_under_memory_pressure(sk))
4914                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4915
4916         tcp_collapse_ofo_queue(sk);
4917         if (!skb_queue_empty(&sk->sk_receive_queue))
4918                 tcp_collapse(sk, &sk->sk_receive_queue,
4919                              skb_peek(&sk->sk_receive_queue),
4920                              NULL,
4921                              tp->copied_seq, tp->rcv_nxt);
4922         sk_mem_reclaim(sk);
4923
4924         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4925                 return 0;
4926
4927         /* Collapsing did not help, destructive actions follow.
4928          * This must not ever occur. */
4929
4930         tcp_prune_ofo_queue(sk);
4931
4932         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4933                 return 0;
4934
4935         /* If we are really being abused, tell the caller to silently
4936          * drop receive data on the floor.  It will get retransmitted
4937          * and hopefully then we'll have sufficient space.
4938          */
4939         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4940
4941         /* Massive buffer overcommit. */
4942         tp->pred_flags = 0;
4943         return -1;
4944 }
4945
4946 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4947  * As additional protections, we do not touch cwnd in retransmission phases,
4948  * and if application hit its sndbuf limit recently.
4949  */
4950 void tcp_cwnd_application_limited(struct sock *sk)
4951 {
4952         struct tcp_sock *tp = tcp_sk(sk);
4953
4954         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4955             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4956                 /* Limited by application or receiver window. */
4957                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4958                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4959                 if (win_used < tp->snd_cwnd) {
4960                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4961                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4962                 }
4963                 tp->snd_cwnd_used = 0;
4964         }
4965         tp->snd_cwnd_stamp = tcp_time_stamp;
4966 }
4967
4968 static int tcp_should_expand_sndbuf(const struct sock *sk)
4969 {
4970         const struct tcp_sock *tp = tcp_sk(sk);
4971
4972         /* If the user specified a specific send buffer setting, do
4973          * not modify it.
4974          */
4975         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4976                 return 0;
4977
4978         /* If we are under global TCP memory pressure, do not expand.  */
4979         if (sk_under_memory_pressure(sk))
4980                 return 0;
4981
4982         /* If we are under soft global TCP memory pressure, do not expand.  */
4983         if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4984                 return 0;
4985
4986         /* If we filled the congestion window, do not expand.  */
4987         if (tp->packets_out >= tp->snd_cwnd)
4988                 return 0;
4989
4990         return 1;
4991 }
4992
4993 /* When incoming ACK allowed to free some skb from write_queue,
4994  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4995  * on the exit from tcp input handler.
4996  *
4997  * PROBLEM: sndbuf expansion does not work well with largesend.
4998  */
4999 static void tcp_new_space(struct sock *sk)
5000 {
5001         struct tcp_sock *tp = tcp_sk(sk);
5002
5003         if (tcp_should_expand_sndbuf(sk)) {
5004                 int sndmem = SKB_TRUESIZE(max_t(u32,
5005                                                 tp->rx_opt.mss_clamp,
5006                                                 tp->mss_cache) +
5007                                           MAX_TCP_HEADER);
5008                 int demanded = max_t(unsigned int, tp->snd_cwnd,
5009                                      tp->reordering + 1);
5010                 sndmem *= 2 * demanded;
5011                 if (sndmem > sk->sk_sndbuf)
5012                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5013                 tp->snd_cwnd_stamp = tcp_time_stamp;
5014         }
5015
5016         sk->sk_write_space(sk);
5017 }
5018
5019 static void tcp_check_space(struct sock *sk)
5020 {
5021         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5022                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5023                 if (sk->sk_socket &&
5024                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5025                         tcp_new_space(sk);
5026         }
5027 }
5028
5029 static inline void tcp_data_snd_check(struct sock *sk)
5030 {
5031         tcp_push_pending_frames(sk);
5032         tcp_check_space(sk);
5033 }
5034
5035 /*
5036  * Check if sending an ack is needed.
5037  */
5038 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5039 {
5040         struct tcp_sock *tp = tcp_sk(sk);
5041
5042             /* More than one full frame received... */
5043         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5044              /* ... and right edge of window advances far enough.
5045               * (tcp_recvmsg() will send ACK otherwise). Or...
5046               */
5047              __tcp_select_window(sk) >= tp->rcv_wnd) ||
5048             /* We ACK each frame or... */
5049             tcp_in_quickack_mode(sk) ||
5050             /* We have out of order data. */
5051             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5052                 /* Then ack it now */
5053                 tcp_send_ack(sk);
5054         } else {
5055                 /* Else, send delayed ack. */
5056                 tcp_send_delayed_ack(sk);
5057         }
5058 }
5059
5060 static inline void tcp_ack_snd_check(struct sock *sk)
5061 {
5062         if (!inet_csk_ack_scheduled(sk)) {
5063                 /* We sent a data segment already. */
5064                 return;
5065         }
5066         __tcp_ack_snd_check(sk, 1);
5067 }
5068
5069 /*
5070  *      This routine is only called when we have urgent data
5071  *      signaled. Its the 'slow' part of tcp_urg. It could be
5072  *      moved inline now as tcp_urg is only called from one
5073  *      place. We handle URGent data wrong. We have to - as
5074  *      BSD still doesn't use the correction from RFC961.
5075  *      For 1003.1g we should support a new option TCP_STDURG to permit
5076  *      either form (or just set the sysctl tcp_stdurg).
5077  */
5078
5079 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5080 {
5081         struct tcp_sock *tp = tcp_sk(sk);
5082         u32 ptr = ntohs(th->urg_ptr);
5083
5084         if (ptr && !sysctl_tcp_stdurg)
5085                 ptr--;
5086         ptr += ntohl(th->seq);
5087
5088         /* Ignore urgent data that we've already seen and read. */
5089         if (after(tp->copied_seq, ptr))
5090                 return;
5091
5092         /* Do not replay urg ptr.
5093          *
5094          * NOTE: interesting situation not covered by specs.
5095          * Misbehaving sender may send urg ptr, pointing to segment,
5096          * which we already have in ofo queue. We are not able to fetch
5097          * such data and will stay in TCP_URG_NOTYET until will be eaten
5098          * by recvmsg(). Seems, we are not obliged to handle such wicked
5099          * situations. But it is worth to think about possibility of some
5100          * DoSes using some hypothetical application level deadlock.
5101          */
5102         if (before(ptr, tp->rcv_nxt))
5103                 return;
5104
5105         /* Do we already have a newer (or duplicate) urgent pointer? */
5106         if (tp->urg_data && !after(ptr, tp->urg_seq))
5107                 return;
5108
5109         /* Tell the world about our new urgent pointer. */
5110         sk_send_sigurg(sk);
5111
5112         /* We may be adding urgent data when the last byte read was
5113          * urgent. To do this requires some care. We cannot just ignore
5114          * tp->copied_seq since we would read the last urgent byte again
5115          * as data, nor can we alter copied_seq until this data arrives
5116          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5117          *
5118          * NOTE. Double Dutch. Rendering to plain English: author of comment
5119          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5120          * and expect that both A and B disappear from stream. This is _wrong_.
5121          * Though this happens in BSD with high probability, this is occasional.
5122          * Any application relying on this is buggy. Note also, that fix "works"
5123          * only in this artificial test. Insert some normal data between A and B and we will
5124          * decline of BSD again. Verdict: it is better to remove to trap
5125          * buggy users.
5126          */
5127         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5128             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5129                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5130                 tp->copied_seq++;
5131                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5132                         __skb_unlink(skb, &sk->sk_receive_queue);
5133                         __kfree_skb(skb);
5134                 }
5135         }
5136
5137         tp->urg_data = TCP_URG_NOTYET;
5138         tp->urg_seq = ptr;
5139
5140         /* Disable header prediction. */
5141         tp->pred_flags = 0;
5142 }
5143
5144 /* This is the 'fast' part of urgent handling. */
5145 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5146 {
5147         struct tcp_sock *tp = tcp_sk(sk);
5148
5149         /* Check if we get a new urgent pointer - normally not. */
5150         if (th->urg)
5151                 tcp_check_urg(sk, th);
5152
5153         /* Do we wait for any urgent data? - normally not... */
5154         if (tp->urg_data == TCP_URG_NOTYET) {
5155                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5156                           th->syn;
5157
5158                 /* Is the urgent pointer pointing into this packet? */
5159                 if (ptr < skb->len) {
5160                         u8 tmp;
5161                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5162                                 BUG();
5163                         tp->urg_data = TCP_URG_VALID | tmp;
5164                         if (!sock_flag(sk, SOCK_DEAD))
5165                                 sk->sk_data_ready(sk, 0);
5166                 }
5167         }
5168 }
5169
5170 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5171 {
5172         struct tcp_sock *tp = tcp_sk(sk);
5173         int chunk = skb->len - hlen;
5174         int err;
5175
5176         local_bh_enable();
5177         if (skb_csum_unnecessary(skb))
5178                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5179         else
5180                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5181                                                        tp->ucopy.iov);
5182
5183         if (!err) {
5184                 tp->ucopy.len -= chunk;
5185                 tp->copied_seq += chunk;
5186                 tcp_rcv_space_adjust(sk);
5187         }
5188
5189         local_bh_disable();
5190         return err;
5191 }
5192
5193 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5194                                             struct sk_buff *skb)
5195 {
5196         __sum16 result;
5197
5198         if (sock_owned_by_user(sk)) {
5199                 local_bh_enable();
5200                 result = __tcp_checksum_complete(skb);
5201                 local_bh_disable();
5202         } else {
5203                 result = __tcp_checksum_complete(skb);
5204         }
5205         return result;
5206 }
5207
5208 static inline int tcp_checksum_complete_user(struct sock *sk,
5209                                              struct sk_buff *skb)
5210 {
5211         return !skb_csum_unnecessary(skb) &&
5212                __tcp_checksum_complete_user(sk, skb);
5213 }
5214
5215 #ifdef CONFIG_NET_DMA
5216 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5217                                   int hlen)
5218 {
5219         struct tcp_sock *tp = tcp_sk(sk);
5220         int chunk = skb->len - hlen;
5221         int dma_cookie;
5222         int copied_early = 0;
5223
5224         if (tp->ucopy.wakeup)
5225                 return 0;
5226
5227         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5228                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5229
5230         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5231
5232                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5233                                                          skb, hlen,
5234                                                          tp->ucopy.iov, chunk,
5235                                                          tp->ucopy.pinned_list);
5236
5237                 if (dma_cookie < 0)
5238                         goto out;
5239
5240                 tp->ucopy.dma_cookie = dma_cookie;
5241                 copied_early = 1;
5242
5243                 tp->ucopy.len -= chunk;
5244                 tp->copied_seq += chunk;
5245                 tcp_rcv_space_adjust(sk);
5246
5247                 if ((tp->ucopy.len == 0) ||
5248                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5249                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5250                         tp->ucopy.wakeup = 1;
5251                         sk->sk_data_ready(sk, 0);
5252                 }
5253         } else if (chunk > 0) {
5254                 tp->ucopy.wakeup = 1;
5255                 sk->sk_data_ready(sk, 0);
5256         }
5257 out:
5258         return copied_early;
5259 }
5260 #endif /* CONFIG_NET_DMA */
5261
5262 /* Does PAWS and seqno based validation of an incoming segment, flags will
5263  * play significant role here.
5264  */
5265 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5266                               const struct tcphdr *th, int syn_inerr)
5267 {
5268         const u8 *hash_location;
5269         struct tcp_sock *tp = tcp_sk(sk);
5270
5271         /* RFC1323: H1. Apply PAWS check first. */
5272         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5273             tp->rx_opt.saw_tstamp &&
5274             tcp_paws_discard(sk, skb)) {
5275                 if (!th->rst) {
5276                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5277                         tcp_send_dupack(sk, skb);
5278                         goto discard;
5279                 }
5280                 /* Reset is accepted even if it did not pass PAWS. */
5281         }
5282
5283         /* Step 1: check sequence number */
5284         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5285                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5286                  * (RST) segments are validated by checking their SEQ-fields."
5287                  * And page 69: "If an incoming segment is not acceptable,
5288                  * an acknowledgment should be sent in reply (unless the RST
5289                  * bit is set, if so drop the segment and return)".
5290                  */
5291                 if (!th->rst)
5292                         tcp_send_dupack(sk, skb);
5293                 goto discard;
5294         }
5295
5296         /* Step 2: check RST bit */
5297         if (th->rst) {
5298                 tcp_reset(sk);
5299                 goto discard;
5300         }
5301
5302         /* ts_recent update must be made after we are sure that the packet
5303          * is in window.
5304          */
5305         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5306
5307         /* step 3: check security and precedence [ignored] */
5308
5309         /* step 4: Check for a SYN in window. */
5310         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5311                 if (syn_inerr)
5312                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5313                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5314                 tcp_reset(sk);
5315                 return -1;
5316         }
5317
5318         return 1;
5319
5320 discard:
5321         __kfree_skb(skb);
5322         return 0;
5323 }
5324
5325 /*
5326  *      TCP receive function for the ESTABLISHED state.
5327  *
5328  *      It is split into a fast path and a slow path. The fast path is
5329  *      disabled when:
5330  *      - A zero window was announced from us - zero window probing
5331  *        is only handled properly in the slow path.
5332  *      - Out of order segments arrived.
5333  *      - Urgent data is expected.
5334  *      - There is no buffer space left
5335  *      - Unexpected TCP flags/window values/header lengths are received
5336  *        (detected by checking the TCP header against pred_flags)
5337  *      - Data is sent in both directions. Fast path only supports pure senders
5338  *        or pure receivers (this means either the sequence number or the ack
5339  *        value must stay constant)
5340  *      - Unexpected TCP option.
5341  *
5342  *      When these conditions are not satisfied it drops into a standard
5343  *      receive procedure patterned after RFC793 to handle all cases.
5344  *      The first three cases are guaranteed by proper pred_flags setting,
5345  *      the rest is checked inline. Fast processing is turned on in
5346  *      tcp_data_queue when everything is OK.
5347  */
5348 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5349                         const struct tcphdr *th, unsigned int len)
5350 {
5351         struct tcp_sock *tp = tcp_sk(sk);
5352         int res;
5353
5354         /*
5355          *      Header prediction.
5356          *      The code loosely follows the one in the famous
5357          *      "30 instruction TCP receive" Van Jacobson mail.
5358          *
5359          *      Van's trick is to deposit buffers into socket queue
5360          *      on a device interrupt, to call tcp_recv function
5361          *      on the receive process context and checksum and copy
5362          *      the buffer to user space. smart...
5363          *
5364          *      Our current scheme is not silly either but we take the
5365          *      extra cost of the net_bh soft interrupt processing...
5366          *      We do checksum and copy also but from device to kernel.
5367          */
5368
5369         tp->rx_opt.saw_tstamp = 0;
5370
5371         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5372          *      if header_prediction is to be made
5373          *      'S' will always be tp->tcp_header_len >> 2
5374          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5375          *  turn it off (when there are holes in the receive
5376          *       space for instance)
5377          *      PSH flag is ignored.
5378          */
5379
5380         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5381             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5382             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5383                 int tcp_header_len = tp->tcp_header_len;
5384
5385                 /* Timestamp header prediction: tcp_header_len
5386                  * is automatically equal to th->doff*4 due to pred_flags
5387                  * match.
5388                  */
5389
5390                 /* Check timestamp */
5391                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5392                         /* No? Slow path! */
5393                         if (!tcp_parse_aligned_timestamp(tp, th))
5394                                 goto slow_path;
5395
5396                         /* If PAWS failed, check it more carefully in slow path */
5397                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5398                                 goto slow_path;
5399
5400                         /* DO NOT update ts_recent here, if checksum fails
5401                          * and timestamp was corrupted part, it will result
5402                          * in a hung connection since we will drop all
5403                          * future packets due to the PAWS test.
5404                          */
5405                 }
5406
5407                 if (len <= tcp_header_len) {
5408                         /* Bulk data transfer: sender */
5409                         if (len == tcp_header_len) {
5410                                 /* Predicted packet is in window by definition.
5411                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5412                                  * Hence, check seq<=rcv_wup reduces to:
5413                                  */
5414                                 if (tcp_header_len ==
5415                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5416                                     tp->rcv_nxt == tp->rcv_wup)
5417                                         tcp_store_ts_recent(tp);
5418
5419                                 /* We know that such packets are checksummed
5420                                  * on entry.
5421                                  */
5422                                 tcp_ack(sk, skb, 0);
5423                                 __kfree_skb(skb);
5424                                 tcp_data_snd_check(sk);
5425                                 return 0;
5426                         } else { /* Header too small */
5427                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5428                                 goto discard;
5429                         }
5430                 } else {
5431                         int eaten = 0;
5432                         int copied_early = 0;
5433
5434                         if (tp->copied_seq == tp->rcv_nxt &&
5435                             len - tcp_header_len <= tp->ucopy.len) {
5436 #ifdef CONFIG_NET_DMA
5437                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5438                                         copied_early = 1;
5439                                         eaten = 1;
5440                                 }
5441 #endif
5442                                 if (tp->ucopy.task == current &&
5443                                     sock_owned_by_user(sk) && !copied_early) {
5444                                         __set_current_state(TASK_RUNNING);
5445
5446                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5447                                                 eaten = 1;
5448                                 }
5449                                 if (eaten) {
5450                                         /* Predicted packet is in window by definition.
5451                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5452                                          * Hence, check seq<=rcv_wup reduces to:
5453                                          */
5454                                         if (tcp_header_len ==
5455                                             (sizeof(struct tcphdr) +
5456                                              TCPOLEN_TSTAMP_ALIGNED) &&
5457                                             tp->rcv_nxt == tp->rcv_wup)
5458                                                 tcp_store_ts_recent(tp);
5459
5460                                         tcp_rcv_rtt_measure_ts(sk, skb);
5461
5462                                         __skb_pull(skb, tcp_header_len);
5463                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5464                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5465                                 }
5466                                 if (copied_early)
5467                                         tcp_cleanup_rbuf(sk, skb->len);
5468                         }
5469                         if (!eaten) {
5470                                 if (tcp_checksum_complete_user(sk, skb))
5471                                         goto csum_error;
5472
5473                                 /* Predicted packet is in window by definition.
5474                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5475                                  * Hence, check seq<=rcv_wup reduces to:
5476                                  */
5477                                 if (tcp_header_len ==
5478                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5479                                     tp->rcv_nxt == tp->rcv_wup)
5480                                         tcp_store_ts_recent(tp);
5481
5482                                 tcp_rcv_rtt_measure_ts(sk, skb);
5483
5484                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5485                                         goto step5;
5486
5487                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5488
5489                                 /* Bulk data transfer: receiver */
5490                                 __skb_pull(skb, tcp_header_len);
5491                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5492                                 skb_set_owner_r(skb, sk);
5493                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5494                         }
5495
5496                         tcp_event_data_recv(sk, skb);
5497
5498                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5499                                 /* Well, only one small jumplet in fast path... */
5500                                 tcp_ack(sk, skb, FLAG_DATA);
5501                                 tcp_data_snd_check(sk);
5502                                 if (!inet_csk_ack_scheduled(sk))
5503                                         goto no_ack;
5504                         }
5505
5506                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5507                                 __tcp_ack_snd_check(sk, 0);
5508 no_ack:
5509 #ifdef CONFIG_NET_DMA
5510                         if (copied_early)
5511                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5512                         else
5513 #endif
5514                         if (eaten)
5515                                 __kfree_skb(skb);
5516                         else
5517                                 sk->sk_data_ready(sk, 0);
5518                         return 0;
5519                 }
5520         }
5521
5522 slow_path:
5523         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5524                 goto csum_error;
5525
5526         /*
5527          *      Standard slow path.
5528          */
5529
5530         res = tcp_validate_incoming(sk, skb, th, 1);
5531         if (res <= 0)
5532                 return -res;
5533
5534 step5:
5535         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5536                 goto discard;
5537
5538         tcp_rcv_rtt_measure_ts(sk, skb);
5539
5540         /* Process urgent data. */
5541         tcp_urg(sk, skb, th);
5542
5543         /* step 7: process the segment text */
5544         tcp_data_queue(sk, skb);
5545
5546         tcp_data_snd_check(sk);
5547         tcp_ack_snd_check(sk);
5548         return 0;
5549
5550 csum_error:
5551         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5552
5553 discard:
5554         __kfree_skb(skb);
5555         return 0;
5556 }
5557 EXPORT_SYMBOL(tcp_rcv_established);
5558
5559 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5560                                          const struct tcphdr *th, unsigned int len)
5561 {
5562         const u8 *hash_location;
5563         struct inet_connection_sock *icsk = inet_csk(sk);
5564         struct tcp_sock *tp = tcp_sk(sk);
5565         struct tcp_cookie_values *cvp = tp->cookie_values;
5566         int saved_clamp = tp->rx_opt.mss_clamp;
5567
5568         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5569
5570         if (th->ack) {
5571                 /* rfc793:
5572                  * "If the state is SYN-SENT then
5573                  *    first check the ACK bit
5574                  *      If the ACK bit is set
5575                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5576                  *        a reset (unless the RST bit is set, if so drop
5577                  *        the segment and return)"
5578                  *
5579                  *  We do not send data with SYN, so that RFC-correct
5580                  *  test reduces to:
5581                  */
5582                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5583                         goto reset_and_undo;
5584
5585                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5586                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5587                              tcp_time_stamp)) {
5588                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5589                         goto reset_and_undo;
5590                 }
5591
5592                 /* Now ACK is acceptable.
5593                  *
5594                  * "If the RST bit is set
5595                  *    If the ACK was acceptable then signal the user "error:
5596                  *    connection reset", drop the segment, enter CLOSED state,
5597                  *    delete TCB, and return."
5598                  */
5599
5600                 if (th->rst) {
5601                         tcp_reset(sk);
5602                         goto discard;
5603                 }
5604
5605                 /* rfc793:
5606                  *   "fifth, if neither of the SYN or RST bits is set then
5607                  *    drop the segment and return."
5608                  *
5609                  *    See note below!
5610                  *                                        --ANK(990513)
5611                  */
5612                 if (!th->syn)
5613                         goto discard_and_undo;
5614
5615                 /* rfc793:
5616                  *   "If the SYN bit is on ...
5617                  *    are acceptable then ...
5618                  *    (our SYN has been ACKed), change the connection
5619                  *    state to ESTABLISHED..."
5620                  */
5621
5622                 TCP_ECN_rcv_synack(tp, th);
5623
5624                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5625                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5626
5627                 /* Ok.. it's good. Set up sequence numbers and
5628                  * move to established.
5629                  */
5630                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5631                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5632
5633                 /* RFC1323: The window in SYN & SYN/ACK segments is
5634                  * never scaled.
5635                  */
5636                 tp->snd_wnd = ntohs(th->window);
5637                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5638
5639                 if (!tp->rx_opt.wscale_ok) {
5640                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5641                         tp->window_clamp = min(tp->window_clamp, 65535U);
5642                 }
5643
5644                 if (tp->rx_opt.saw_tstamp) {
5645                         tp->rx_opt.tstamp_ok       = 1;
5646                         tp->tcp_header_len =
5647                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5648                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5649                         tcp_store_ts_recent(tp);
5650                 } else {
5651                         tp->tcp_header_len = sizeof(struct tcphdr);
5652                 }
5653
5654                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5655                         tcp_enable_fack(tp);
5656
5657                 tcp_mtup_init(sk);
5658                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5659                 tcp_initialize_rcv_mss(sk);
5660
5661                 /* Remember, tcp_poll() does not lock socket!
5662                  * Change state from SYN-SENT only after copied_seq
5663                  * is initialized. */
5664                 tp->copied_seq = tp->rcv_nxt;
5665
5666                 if (cvp != NULL &&
5667                     cvp->cookie_pair_size > 0 &&
5668                     tp->rx_opt.cookie_plus > 0) {
5669                         int cookie_size = tp->rx_opt.cookie_plus
5670                                         - TCPOLEN_COOKIE_BASE;
5671                         int cookie_pair_size = cookie_size
5672                                              + cvp->cookie_desired;
5673
5674                         /* A cookie extension option was sent and returned.
5675                          * Note that each incoming SYNACK replaces the
5676                          * Responder cookie.  The initial exchange is most
5677                          * fragile, as protection against spoofing relies
5678                          * entirely upon the sequence and timestamp (above).
5679                          * This replacement strategy allows the correct pair to
5680                          * pass through, while any others will be filtered via
5681                          * Responder verification later.
5682                          */
5683                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5684                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5685                                        hash_location, cookie_size);
5686                                 cvp->cookie_pair_size = cookie_pair_size;
5687                         }
5688                 }
5689
5690                 smp_mb();
5691                 tcp_set_state(sk, TCP_ESTABLISHED);
5692
5693                 security_inet_conn_established(sk, skb);
5694
5695                 /* Make sure socket is routed, for correct metrics.  */
5696                 icsk->icsk_af_ops->rebuild_header(sk);
5697
5698                 tcp_init_metrics(sk);
5699
5700                 tcp_init_congestion_control(sk);
5701
5702                 /* Prevent spurious tcp_cwnd_restart() on first data
5703                  * packet.
5704                  */
5705                 tp->lsndtime = tcp_time_stamp;
5706
5707                 tcp_init_buffer_space(sk);
5708
5709                 if (sock_flag(sk, SOCK_KEEPOPEN))
5710                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5711
5712                 if (!tp->rx_opt.snd_wscale)
5713                         __tcp_fast_path_on(tp, tp->snd_wnd);
5714                 else
5715                         tp->pred_flags = 0;
5716
5717                 if (!sock_flag(sk, SOCK_DEAD)) {
5718                         sk->sk_state_change(sk);
5719                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5720                 }
5721
5722                 if (sk->sk_write_pending ||
5723                     icsk->icsk_accept_queue.rskq_defer_accept ||
5724                     icsk->icsk_ack.pingpong) {
5725                         /* Save one ACK. Data will be ready after
5726                          * several ticks, if write_pending is set.
5727                          *
5728                          * It may be deleted, but with this feature tcpdumps
5729                          * look so _wonderfully_ clever, that I was not able
5730                          * to stand against the temptation 8)     --ANK
5731                          */
5732                         inet_csk_schedule_ack(sk);
5733                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5734                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5735                         tcp_incr_quickack(sk);
5736                         tcp_enter_quickack_mode(sk);
5737                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5738                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5739
5740 discard:
5741                         __kfree_skb(skb);
5742                         return 0;
5743                 } else {
5744                         tcp_send_ack(sk);
5745                 }
5746                 return -1;
5747         }
5748
5749         /* No ACK in the segment */
5750
5751         if (th->rst) {
5752                 /* rfc793:
5753                  * "If the RST bit is set
5754                  *
5755                  *      Otherwise (no ACK) drop the segment and return."
5756                  */
5757
5758                 goto discard_and_undo;
5759         }
5760
5761         /* PAWS check. */
5762         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5763             tcp_paws_reject(&tp->rx_opt, 0))
5764                 goto discard_and_undo;
5765
5766         if (th->syn) {
5767                 /* We see SYN without ACK. It is attempt of
5768                  * simultaneous connect with crossed SYNs.
5769                  * Particularly, it can be connect to self.
5770                  */
5771                 tcp_set_state(sk, TCP_SYN_RECV);
5772
5773                 if (tp->rx_opt.saw_tstamp) {
5774                         tp->rx_opt.tstamp_ok = 1;
5775                         tcp_store_ts_recent(tp);
5776                         tp->tcp_header_len =
5777                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5778                 } else {
5779                         tp->tcp_header_len = sizeof(struct tcphdr);
5780                 }
5781
5782                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5783                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5784
5785                 /* RFC1323: The window in SYN & SYN/ACK segments is
5786                  * never scaled.
5787                  */
5788                 tp->snd_wnd    = ntohs(th->window);
5789                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5790                 tp->max_window = tp->snd_wnd;
5791
5792                 TCP_ECN_rcv_syn(tp, th);
5793
5794                 tcp_mtup_init(sk);
5795                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5796                 tcp_initialize_rcv_mss(sk);
5797
5798                 tcp_send_synack(sk);
5799 #if 0
5800                 /* Note, we could accept data and URG from this segment.
5801                  * There are no obstacles to make this.
5802                  *
5803                  * However, if we ignore data in ACKless segments sometimes,
5804                  * we have no reasons to accept it sometimes.
5805                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5806                  * is not flawless. So, discard packet for sanity.
5807                  * Uncomment this return to process the data.
5808                  */
5809                 return -1;
5810 #else
5811                 goto discard;
5812 #endif
5813         }
5814         /* "fifth, if neither of the SYN or RST bits is set then
5815          * drop the segment and return."
5816          */
5817
5818 discard_and_undo:
5819         tcp_clear_options(&tp->rx_opt);
5820         tp->rx_opt.mss_clamp = saved_clamp;
5821         goto discard;
5822
5823 reset_and_undo:
5824         tcp_clear_options(&tp->rx_opt);
5825         tp->rx_opt.mss_clamp = saved_clamp;
5826         return 1;
5827 }
5828
5829 /*
5830  *      This function implements the receiving procedure of RFC 793 for
5831  *      all states except ESTABLISHED and TIME_WAIT.
5832  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5833  *      address independent.
5834  */
5835
5836 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5837                           const struct tcphdr *th, unsigned int len)
5838 {
5839         struct tcp_sock *tp = tcp_sk(sk);
5840         struct inet_connection_sock *icsk = inet_csk(sk);
5841         int queued = 0;
5842         int res;
5843
5844         tp->rx_opt.saw_tstamp = 0;
5845
5846         switch (sk->sk_state) {
5847         case TCP_CLOSE:
5848                 goto discard;
5849
5850         case TCP_LISTEN:
5851                 if (th->ack)
5852                         return 1;
5853
5854                 if (th->rst)
5855                         goto discard;
5856
5857                 if (th->syn) {
5858                         if (th->fin)
5859                                 goto discard;
5860                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5861                                 return 1;
5862
5863                         /* Now we have several options: In theory there is
5864                          * nothing else in the frame. KA9Q has an option to
5865                          * send data with the syn, BSD accepts data with the
5866                          * syn up to the [to be] advertised window and
5867                          * Solaris 2.1 gives you a protocol error. For now
5868                          * we just ignore it, that fits the spec precisely
5869                          * and avoids incompatibilities. It would be nice in
5870                          * future to drop through and process the data.
5871                          *
5872                          * Now that TTCP is starting to be used we ought to
5873                          * queue this data.
5874                          * But, this leaves one open to an easy denial of
5875                          * service attack, and SYN cookies can't defend
5876                          * against this problem. So, we drop the data
5877                          * in the interest of security over speed unless
5878                          * it's still in use.
5879                          */
5880                         kfree_skb(skb);
5881                         return 0;
5882                 }
5883                 goto discard;
5884
5885         case TCP_SYN_SENT:
5886                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5887                 if (queued >= 0)
5888                         return queued;
5889
5890                 /* Do step6 onward by hand. */
5891                 tcp_urg(sk, skb, th);
5892                 __kfree_skb(skb);
5893                 tcp_data_snd_check(sk);
5894                 return 0;
5895         }
5896
5897         res = tcp_validate_incoming(sk, skb, th, 0);
5898         if (res <= 0)
5899                 return -res;
5900
5901         /* step 5: check the ACK field */
5902         if (th->ack) {
5903                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5904
5905                 switch (sk->sk_state) {
5906                 case TCP_SYN_RECV:
5907                         if (acceptable) {
5908                                 tp->copied_seq = tp->rcv_nxt;
5909                                 smp_mb();
5910                                 tcp_set_state(sk, TCP_ESTABLISHED);
5911                                 sk->sk_state_change(sk);
5912
5913                                 /* Note, that this wakeup is only for marginal
5914                                  * crossed SYN case. Passively open sockets
5915                                  * are not waked up, because sk->sk_sleep ==
5916                                  * NULL and sk->sk_socket == NULL.
5917                                  */
5918                                 if (sk->sk_socket)
5919                                         sk_wake_async(sk,
5920                                                       SOCK_WAKE_IO, POLL_OUT);
5921
5922                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5923                                 tp->snd_wnd = ntohs(th->window) <<
5924                                               tp->rx_opt.snd_wscale;
5925                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5926
5927                                 if (tp->rx_opt.tstamp_ok)
5928                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5929
5930                                 /* Make sure socket is routed, for
5931                                  * correct metrics.
5932                                  */
5933                                 icsk->icsk_af_ops->rebuild_header(sk);
5934
5935                                 tcp_init_metrics(sk);
5936
5937                                 tcp_init_congestion_control(sk);
5938
5939                                 /* Prevent spurious tcp_cwnd_restart() on
5940                                  * first data packet.
5941                                  */
5942                                 tp->lsndtime = tcp_time_stamp;
5943
5944                                 tcp_mtup_init(sk);
5945                                 tcp_initialize_rcv_mss(sk);
5946                                 tcp_init_buffer_space(sk);
5947                                 tcp_fast_path_on(tp);
5948                         } else {
5949                                 return 1;
5950                         }
5951                         break;
5952
5953                 case TCP_FIN_WAIT1:
5954                         if (tp->snd_una == tp->write_seq) {
5955                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5956                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5957                                 dst_confirm(__sk_dst_get(sk));
5958
5959                                 if (!sock_flag(sk, SOCK_DEAD))
5960                                         /* Wake up lingering close() */
5961                                         sk->sk_state_change(sk);
5962                                 else {
5963                                         int tmo;
5964
5965                                         if (tp->linger2 < 0 ||
5966                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5967                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5968                                                 tcp_done(sk);
5969                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5970                                                 return 1;
5971                                         }
5972
5973                                         tmo = tcp_fin_time(sk);
5974                                         if (tmo > TCP_TIMEWAIT_LEN) {
5975                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5976                                         } else if (th->fin || sock_owned_by_user(sk)) {
5977                                                 /* Bad case. We could lose such FIN otherwise.
5978                                                  * It is not a big problem, but it looks confusing
5979                                                  * and not so rare event. We still can lose it now,
5980                                                  * if it spins in bh_lock_sock(), but it is really
5981                                                  * marginal case.
5982                                                  */
5983                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5984                                         } else {
5985                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5986                                                 goto discard;
5987                                         }
5988                                 }
5989                         }
5990                         break;
5991
5992                 case TCP_CLOSING:
5993                         if (tp->snd_una == tp->write_seq) {
5994                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5995                                 goto discard;
5996                         }
5997                         break;
5998
5999                 case TCP_LAST_ACK:
6000                         if (tp->snd_una == tp->write_seq) {
6001                                 tcp_update_metrics(sk);
6002                                 tcp_done(sk);
6003                                 goto discard;
6004                         }
6005                         break;
6006                 }
6007         } else
6008                 goto discard;
6009
6010         /* step 6: check the URG bit */
6011         tcp_urg(sk, skb, th);
6012
6013         /* step 7: process the segment text */
6014         switch (sk->sk_state) {
6015         case TCP_CLOSE_WAIT:
6016         case TCP_CLOSING:
6017         case TCP_LAST_ACK:
6018                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6019                         break;
6020         case TCP_FIN_WAIT1:
6021         case TCP_FIN_WAIT2:
6022                 /* RFC 793 says to queue data in these states,
6023                  * RFC 1122 says we MUST send a reset.
6024                  * BSD 4.4 also does reset.
6025                  */
6026                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6027                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6028                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6029                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6030                                 tcp_reset(sk);
6031                                 return 1;
6032                         }
6033                 }
6034                 /* Fall through */
6035         case TCP_ESTABLISHED:
6036                 tcp_data_queue(sk, skb);
6037                 queued = 1;
6038                 break;
6039         }
6040
6041         /* tcp_data could move socket to TIME-WAIT */
6042         if (sk->sk_state != TCP_CLOSE) {
6043                 tcp_data_snd_check(sk);
6044                 tcp_ack_snd_check(sk);
6045         }
6046
6047         if (!queued) {
6048 discard:
6049                 __kfree_skb(skb);
6050         }
6051         return 0;
6052 }
6053 EXPORT_SYMBOL(tcp_rcv_state_process);