Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
109 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130         struct inet_connection_sock *icsk = inet_csk(sk);
131         const unsigned int lss = icsk->icsk_ack.last_seg_size;
132         unsigned int len;
133
134         icsk->icsk_ack.last_seg_size = 0;
135
136         /* skb->len may jitter because of SACKs, even if peer
137          * sends good full-sized frames.
138          */
139         len = skb_shinfo(skb)->gso_size ? : skb->len;
140         if (len >= icsk->icsk_ack.rcv_mss) {
141                 icsk->icsk_ack.rcv_mss = len;
142         } else {
143                 /* Otherwise, we make more careful check taking into account,
144                  * that SACKs block is variable.
145                  *
146                  * "len" is invariant segment length, including TCP header.
147                  */
148                 len += skb->data - skb_transport_header(skb);
149                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150                     /* If PSH is not set, packet should be
151                      * full sized, provided peer TCP is not badly broken.
152                      * This observation (if it is correct 8)) allows
153                      * to handle super-low mtu links fairly.
154                      */
155                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157                         /* Subtract also invariant (if peer is RFC compliant),
158                          * tcp header plus fixed timestamp option length.
159                          * Resulting "len" is MSS free of SACK jitter.
160                          */
161                         len -= tcp_sk(sk)->tcp_header_len;
162                         icsk->icsk_ack.last_seg_size = len;
163                         if (len == lss) {
164                                 icsk->icsk_ack.rcv_mss = len;
165                                 return;
166                         }
167                 }
168                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171         }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176         struct inet_connection_sock *icsk = inet_csk(sk);
177         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179         if (quickacks == 0)
180                 quickacks = 2;
181         if (quickacks > icsk->icsk_ack.quick)
182                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187         struct inet_connection_sock *icsk = inet_csk(sk);
188         tcp_incr_quickack(sk);
189         icsk->icsk_ack.pingpong = 0;
190         icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199         const struct inet_connection_sock *icsk = inet_csk(sk);
200         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205         if (tp->ecn_flags & TCP_ECN_OK)
206                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211         if (tcp_hdr(skb)->cwr)
212                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222         if (!(tp->ecn_flags & TCP_ECN_OK))
223                 return;
224
225         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226         case INET_ECN_NOT_ECT:
227                 /* Funny extension: if ECT is not set on a segment,
228                  * and we already seen ECT on a previous segment,
229                  * it is probably a retransmit.
230                  */
231                 if (tp->ecn_flags & TCP_ECN_SEEN)
232                         tcp_enter_quickack_mode((struct sock *)tp);
233                 break;
234         case INET_ECN_CE:
235                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
236                 /* fallinto */
237         default:
238                 tp->ecn_flags |= TCP_ECN_SEEN;
239         }
240 }
241
242 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
243 {
244         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
245                 tp->ecn_flags &= ~TCP_ECN_OK;
246 }
247
248 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
249 {
250         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
251                 tp->ecn_flags &= ~TCP_ECN_OK;
252 }
253
254 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
255 {
256         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
257                 return 1;
258         return 0;
259 }
260
261 /* Buffer size and advertised window tuning.
262  *
263  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
264  */
265
266 static void tcp_fixup_sndbuf(struct sock *sk)
267 {
268         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
269
270         sndmem *= TCP_INIT_CWND;
271         if (sk->sk_sndbuf < sndmem)
272                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
273 }
274
275 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
276  *
277  * All tcp_full_space() is split to two parts: "network" buffer, allocated
278  * forward and advertised in receiver window (tp->rcv_wnd) and
279  * "application buffer", required to isolate scheduling/application
280  * latencies from network.
281  * window_clamp is maximal advertised window. It can be less than
282  * tcp_full_space(), in this case tcp_full_space() - window_clamp
283  * is reserved for "application" buffer. The less window_clamp is
284  * the smoother our behaviour from viewpoint of network, but the lower
285  * throughput and the higher sensitivity of the connection to losses. 8)
286  *
287  * rcv_ssthresh is more strict window_clamp used at "slow start"
288  * phase to predict further behaviour of this connection.
289  * It is used for two goals:
290  * - to enforce header prediction at sender, even when application
291  *   requires some significant "application buffer". It is check #1.
292  * - to prevent pruning of receive queue because of misprediction
293  *   of receiver window. Check #2.
294  *
295  * The scheme does not work when sender sends good segments opening
296  * window and then starts to feed us spaghetti. But it should work
297  * in common situations. Otherwise, we have to rely on queue collapsing.
298  */
299
300 /* Slow part of check#2. */
301 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
302 {
303         struct tcp_sock *tp = tcp_sk(sk);
304         /* Optimize this! */
305         int truesize = tcp_win_from_space(skb->truesize) >> 1;
306         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
307
308         while (tp->rcv_ssthresh <= window) {
309                 if (truesize <= skb->len)
310                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
311
312                 truesize >>= 1;
313                 window >>= 1;
314         }
315         return 0;
316 }
317
318 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
319 {
320         struct tcp_sock *tp = tcp_sk(sk);
321
322         /* Check #1 */
323         if (tp->rcv_ssthresh < tp->window_clamp &&
324             (int)tp->rcv_ssthresh < tcp_space(sk) &&
325             !tcp_memory_pressure) {
326                 int incr;
327
328                 /* Check #2. Increase window, if skb with such overhead
329                  * will fit to rcvbuf in future.
330                  */
331                 if (tcp_win_from_space(skb->truesize) <= skb->len)
332                         incr = 2 * tp->advmss;
333                 else
334                         incr = __tcp_grow_window(sk, skb);
335
336                 if (incr) {
337                         incr = max_t(int, incr, 2 * skb->len);
338                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
339                                                tp->window_clamp);
340                         inet_csk(sk)->icsk_ack.quick |= 1;
341                 }
342         }
343 }
344
345 /* 3. Tuning rcvbuf, when connection enters established state. */
346
347 static void tcp_fixup_rcvbuf(struct sock *sk)
348 {
349         u32 mss = tcp_sk(sk)->advmss;
350         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
351         int rcvmem;
352
353         /* Limit to 10 segments if mss <= 1460,
354          * or 14600/mss segments, with a minimum of two segments.
355          */
356         if (mss > 1460)
357                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
358
359         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
360         while (tcp_win_from_space(rcvmem) < mss)
361                 rcvmem += 128;
362
363         rcvmem *= icwnd;
364
365         if (sk->sk_rcvbuf < rcvmem)
366                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
367 }
368
369 /* 4. Try to fixup all. It is made immediately after connection enters
370  *    established state.
371  */
372 static void tcp_init_buffer_space(struct sock *sk)
373 {
374         struct tcp_sock *tp = tcp_sk(sk);
375         int maxwin;
376
377         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
378                 tcp_fixup_rcvbuf(sk);
379         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
380                 tcp_fixup_sndbuf(sk);
381
382         tp->rcvq_space.space = tp->rcv_wnd;
383
384         maxwin = tcp_full_space(sk);
385
386         if (tp->window_clamp >= maxwin) {
387                 tp->window_clamp = maxwin;
388
389                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
390                         tp->window_clamp = max(maxwin -
391                                                (maxwin >> sysctl_tcp_app_win),
392                                                4 * tp->advmss);
393         }
394
395         /* Force reservation of one segment. */
396         if (sysctl_tcp_app_win &&
397             tp->window_clamp > 2 * tp->advmss &&
398             tp->window_clamp + tp->advmss > maxwin)
399                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
400
401         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
402         tp->snd_cwnd_stamp = tcp_time_stamp;
403 }
404
405 /* 5. Recalculate window clamp after socket hit its memory bounds. */
406 static void tcp_clamp_window(struct sock *sk)
407 {
408         struct tcp_sock *tp = tcp_sk(sk);
409         struct inet_connection_sock *icsk = inet_csk(sk);
410
411         icsk->icsk_ack.quick = 0;
412
413         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
414             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
415             !tcp_memory_pressure &&
416             atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
417                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
418                                     sysctl_tcp_rmem[2]);
419         }
420         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
421                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
422 }
423
424 /* Initialize RCV_MSS value.
425  * RCV_MSS is an our guess about MSS used by the peer.
426  * We haven't any direct information about the MSS.
427  * It's better to underestimate the RCV_MSS rather than overestimate.
428  * Overestimations make us ACKing less frequently than needed.
429  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
430  */
431 void tcp_initialize_rcv_mss(struct sock *sk)
432 {
433         const struct tcp_sock *tp = tcp_sk(sk);
434         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
435
436         hint = min(hint, tp->rcv_wnd / 2);
437         hint = min(hint, TCP_MSS_DEFAULT);
438         hint = max(hint, TCP_MIN_MSS);
439
440         inet_csk(sk)->icsk_ack.rcv_mss = hint;
441 }
442 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
443
444 /* Receiver "autotuning" code.
445  *
446  * The algorithm for RTT estimation w/o timestamps is based on
447  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
448  * <http://public.lanl.gov/radiant/pubs.html#DRS>
449  *
450  * More detail on this code can be found at
451  * <http://staff.psc.edu/jheffner/>,
452  * though this reference is out of date.  A new paper
453  * is pending.
454  */
455 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
456 {
457         u32 new_sample = tp->rcv_rtt_est.rtt;
458         long m = sample;
459
460         if (m == 0)
461                 m = 1;
462
463         if (new_sample != 0) {
464                 /* If we sample in larger samples in the non-timestamp
465                  * case, we could grossly overestimate the RTT especially
466                  * with chatty applications or bulk transfer apps which
467                  * are stalled on filesystem I/O.
468                  *
469                  * Also, since we are only going for a minimum in the
470                  * non-timestamp case, we do not smooth things out
471                  * else with timestamps disabled convergence takes too
472                  * long.
473                  */
474                 if (!win_dep) {
475                         m -= (new_sample >> 3);
476                         new_sample += m;
477                 } else {
478                         m <<= 3;
479                         if (m < new_sample)
480                                 new_sample = m;
481                 }
482         } else {
483                 /* No previous measure. */
484                 new_sample = m << 3;
485         }
486
487         if (tp->rcv_rtt_est.rtt != new_sample)
488                 tp->rcv_rtt_est.rtt = new_sample;
489 }
490
491 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
492 {
493         if (tp->rcv_rtt_est.time == 0)
494                 goto new_measure;
495         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
496                 return;
497         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
498
499 new_measure:
500         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
501         tp->rcv_rtt_est.time = tcp_time_stamp;
502 }
503
504 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
505                                           const struct sk_buff *skb)
506 {
507         struct tcp_sock *tp = tcp_sk(sk);
508         if (tp->rx_opt.rcv_tsecr &&
509             (TCP_SKB_CB(skb)->end_seq -
510              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
511                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
512 }
513
514 /*
515  * This function should be called every time data is copied to user space.
516  * It calculates the appropriate TCP receive buffer space.
517  */
518 void tcp_rcv_space_adjust(struct sock *sk)
519 {
520         struct tcp_sock *tp = tcp_sk(sk);
521         int time;
522         int space;
523
524         if (tp->rcvq_space.time == 0)
525                 goto new_measure;
526
527         time = tcp_time_stamp - tp->rcvq_space.time;
528         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
529                 return;
530
531         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
532
533         space = max(tp->rcvq_space.space, space);
534
535         if (tp->rcvq_space.space != space) {
536                 int rcvmem;
537
538                 tp->rcvq_space.space = space;
539
540                 if (sysctl_tcp_moderate_rcvbuf &&
541                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
542                         int new_clamp = space;
543
544                         /* Receive space grows, normalize in order to
545                          * take into account packet headers and sk_buff
546                          * structure overhead.
547                          */
548                         space /= tp->advmss;
549                         if (!space)
550                                 space = 1;
551                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
552                         while (tcp_win_from_space(rcvmem) < tp->advmss)
553                                 rcvmem += 128;
554                         space *= rcvmem;
555                         space = min(space, sysctl_tcp_rmem[2]);
556                         if (space > sk->sk_rcvbuf) {
557                                 sk->sk_rcvbuf = space;
558
559                                 /* Make the window clamp follow along.  */
560                                 tp->window_clamp = new_clamp;
561                         }
562                 }
563         }
564
565 new_measure:
566         tp->rcvq_space.seq = tp->copied_seq;
567         tp->rcvq_space.time = tcp_time_stamp;
568 }
569
570 /* There is something which you must keep in mind when you analyze the
571  * behavior of the tp->ato delayed ack timeout interval.  When a
572  * connection starts up, we want to ack as quickly as possible.  The
573  * problem is that "good" TCP's do slow start at the beginning of data
574  * transmission.  The means that until we send the first few ACK's the
575  * sender will sit on his end and only queue most of his data, because
576  * he can only send snd_cwnd unacked packets at any given time.  For
577  * each ACK we send, he increments snd_cwnd and transmits more of his
578  * queue.  -DaveM
579  */
580 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
581 {
582         struct tcp_sock *tp = tcp_sk(sk);
583         struct inet_connection_sock *icsk = inet_csk(sk);
584         u32 now;
585
586         inet_csk_schedule_ack(sk);
587
588         tcp_measure_rcv_mss(sk, skb);
589
590         tcp_rcv_rtt_measure(tp);
591
592         now = tcp_time_stamp;
593
594         if (!icsk->icsk_ack.ato) {
595                 /* The _first_ data packet received, initialize
596                  * delayed ACK engine.
597                  */
598                 tcp_incr_quickack(sk);
599                 icsk->icsk_ack.ato = TCP_ATO_MIN;
600         } else {
601                 int m = now - icsk->icsk_ack.lrcvtime;
602
603                 if (m <= TCP_ATO_MIN / 2) {
604                         /* The fastest case is the first. */
605                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
606                 } else if (m < icsk->icsk_ack.ato) {
607                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
608                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
609                                 icsk->icsk_ack.ato = icsk->icsk_rto;
610                 } else if (m > icsk->icsk_rto) {
611                         /* Too long gap. Apparently sender failed to
612                          * restart window, so that we send ACKs quickly.
613                          */
614                         tcp_incr_quickack(sk);
615                         sk_mem_reclaim(sk);
616                 }
617         }
618         icsk->icsk_ack.lrcvtime = now;
619
620         TCP_ECN_check_ce(tp, skb);
621
622         if (skb->len >= 128)
623                 tcp_grow_window(sk, skb);
624 }
625
626 /* Called to compute a smoothed rtt estimate. The data fed to this
627  * routine either comes from timestamps, or from segments that were
628  * known _not_ to have been retransmitted [see Karn/Partridge
629  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
630  * piece by Van Jacobson.
631  * NOTE: the next three routines used to be one big routine.
632  * To save cycles in the RFC 1323 implementation it was better to break
633  * it up into three procedures. -- erics
634  */
635 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
636 {
637         struct tcp_sock *tp = tcp_sk(sk);
638         long m = mrtt; /* RTT */
639
640         /*      The following amusing code comes from Jacobson's
641          *      article in SIGCOMM '88.  Note that rtt and mdev
642          *      are scaled versions of rtt and mean deviation.
643          *      This is designed to be as fast as possible
644          *      m stands for "measurement".
645          *
646          *      On a 1990 paper the rto value is changed to:
647          *      RTO = rtt + 4 * mdev
648          *
649          * Funny. This algorithm seems to be very broken.
650          * These formulae increase RTO, when it should be decreased, increase
651          * too slowly, when it should be increased quickly, decrease too quickly
652          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
653          * does not matter how to _calculate_ it. Seems, it was trap
654          * that VJ failed to avoid. 8)
655          */
656         if (m == 0)
657                 m = 1;
658         if (tp->srtt != 0) {
659                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
660                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
661                 if (m < 0) {
662                         m = -m;         /* m is now abs(error) */
663                         m -= (tp->mdev >> 2);   /* similar update on mdev */
664                         /* This is similar to one of Eifel findings.
665                          * Eifel blocks mdev updates when rtt decreases.
666                          * This solution is a bit different: we use finer gain
667                          * for mdev in this case (alpha*beta).
668                          * Like Eifel it also prevents growth of rto,
669                          * but also it limits too fast rto decreases,
670                          * happening in pure Eifel.
671                          */
672                         if (m > 0)
673                                 m >>= 3;
674                 } else {
675                         m -= (tp->mdev >> 2);   /* similar update on mdev */
676                 }
677                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
678                 if (tp->mdev > tp->mdev_max) {
679                         tp->mdev_max = tp->mdev;
680                         if (tp->mdev_max > tp->rttvar)
681                                 tp->rttvar = tp->mdev_max;
682                 }
683                 if (after(tp->snd_una, tp->rtt_seq)) {
684                         if (tp->mdev_max < tp->rttvar)
685                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
686                         tp->rtt_seq = tp->snd_nxt;
687                         tp->mdev_max = tcp_rto_min(sk);
688                 }
689         } else {
690                 /* no previous measure. */
691                 tp->srtt = m << 3;      /* take the measured time to be rtt */
692                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
693                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
694                 tp->rtt_seq = tp->snd_nxt;
695         }
696 }
697
698 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
699  * routine referred to above.
700  */
701 static inline void tcp_set_rto(struct sock *sk)
702 {
703         const struct tcp_sock *tp = tcp_sk(sk);
704         /* Old crap is replaced with new one. 8)
705          *
706          * More seriously:
707          * 1. If rtt variance happened to be less 50msec, it is hallucination.
708          *    It cannot be less due to utterly erratic ACK generation made
709          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
710          *    to do with delayed acks, because at cwnd>2 true delack timeout
711          *    is invisible. Actually, Linux-2.4 also generates erratic
712          *    ACKs in some circumstances.
713          */
714         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
715
716         /* 2. Fixups made earlier cannot be right.
717          *    If we do not estimate RTO correctly without them,
718          *    all the algo is pure shit and should be replaced
719          *    with correct one. It is exactly, which we pretend to do.
720          */
721
722         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
723          * guarantees that rto is higher.
724          */
725         tcp_bound_rto(sk);
726 }
727
728 /* Save metrics learned by this TCP session.
729    This function is called only, when TCP finishes successfully
730    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
731  */
732 void tcp_update_metrics(struct sock *sk)
733 {
734         struct tcp_sock *tp = tcp_sk(sk);
735         struct dst_entry *dst = __sk_dst_get(sk);
736
737         if (sysctl_tcp_nometrics_save)
738                 return;
739
740         dst_confirm(dst);
741
742         if (dst && (dst->flags & DST_HOST)) {
743                 const struct inet_connection_sock *icsk = inet_csk(sk);
744                 int m;
745                 unsigned long rtt;
746
747                 if (icsk->icsk_backoff || !tp->srtt) {
748                         /* This session failed to estimate rtt. Why?
749                          * Probably, no packets returned in time.
750                          * Reset our results.
751                          */
752                         if (!(dst_metric_locked(dst, RTAX_RTT)))
753                                 dst_metric_set(dst, RTAX_RTT, 0);
754                         return;
755                 }
756
757                 rtt = dst_metric_rtt(dst, RTAX_RTT);
758                 m = rtt - tp->srtt;
759
760                 /* If newly calculated rtt larger than stored one,
761                  * store new one. Otherwise, use EWMA. Remember,
762                  * rtt overestimation is always better than underestimation.
763                  */
764                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
765                         if (m <= 0)
766                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
767                         else
768                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
769                 }
770
771                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
772                         unsigned long var;
773                         if (m < 0)
774                                 m = -m;
775
776                         /* Scale deviation to rttvar fixed point */
777                         m >>= 1;
778                         if (m < tp->mdev)
779                                 m = tp->mdev;
780
781                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
782                         if (m >= var)
783                                 var = m;
784                         else
785                                 var -= (var - m) >> 2;
786
787                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
788                 }
789
790                 if (tcp_in_initial_slowstart(tp)) {
791                         /* Slow start still did not finish. */
792                         if (dst_metric(dst, RTAX_SSTHRESH) &&
793                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
794                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
795                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
796                         if (!dst_metric_locked(dst, RTAX_CWND) &&
797                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
798                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
799                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
800                            icsk->icsk_ca_state == TCP_CA_Open) {
801                         /* Cong. avoidance phase, cwnd is reliable. */
802                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
803                                 dst_metric_set(dst, RTAX_SSTHRESH,
804                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
805                         if (!dst_metric_locked(dst, RTAX_CWND))
806                                 dst_metric_set(dst, RTAX_CWND,
807                                                (dst_metric(dst, RTAX_CWND) +
808                                                 tp->snd_cwnd) >> 1);
809                 } else {
810                         /* Else slow start did not finish, cwnd is non-sense,
811                            ssthresh may be also invalid.
812                          */
813                         if (!dst_metric_locked(dst, RTAX_CWND))
814                                 dst_metric_set(dst, RTAX_CWND,
815                                                (dst_metric(dst, RTAX_CWND) +
816                                                 tp->snd_ssthresh) >> 1);
817                         if (dst_metric(dst, RTAX_SSTHRESH) &&
818                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
819                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
820                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
821                 }
822
823                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
824                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
825                             tp->reordering != sysctl_tcp_reordering)
826                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
827                 }
828         }
829 }
830
831 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
832 {
833         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
834
835         if (!cwnd)
836                 cwnd = TCP_INIT_CWND;
837         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
838 }
839
840 /* Set slow start threshold and cwnd not falling to slow start */
841 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
842 {
843         struct tcp_sock *tp = tcp_sk(sk);
844         const struct inet_connection_sock *icsk = inet_csk(sk);
845
846         tp->prior_ssthresh = 0;
847         tp->bytes_acked = 0;
848         if (icsk->icsk_ca_state < TCP_CA_CWR) {
849                 tp->undo_marker = 0;
850                 if (set_ssthresh)
851                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
852                 tp->snd_cwnd = min(tp->snd_cwnd,
853                                    tcp_packets_in_flight(tp) + 1U);
854                 tp->snd_cwnd_cnt = 0;
855                 tp->high_seq = tp->snd_nxt;
856                 tp->snd_cwnd_stamp = tcp_time_stamp;
857                 TCP_ECN_queue_cwr(tp);
858
859                 tcp_set_ca_state(sk, TCP_CA_CWR);
860         }
861 }
862
863 /*
864  * Packet counting of FACK is based on in-order assumptions, therefore TCP
865  * disables it when reordering is detected
866  */
867 static void tcp_disable_fack(struct tcp_sock *tp)
868 {
869         /* RFC3517 uses different metric in lost marker => reset on change */
870         if (tcp_is_fack(tp))
871                 tp->lost_skb_hint = NULL;
872         tp->rx_opt.sack_ok &= ~2;
873 }
874
875 /* Take a notice that peer is sending D-SACKs */
876 static void tcp_dsack_seen(struct tcp_sock *tp)
877 {
878         tp->rx_opt.sack_ok |= 4;
879 }
880
881 /* Initialize metrics on socket. */
882
883 static void tcp_init_metrics(struct sock *sk)
884 {
885         struct tcp_sock *tp = tcp_sk(sk);
886         struct dst_entry *dst = __sk_dst_get(sk);
887
888         if (dst == NULL)
889                 goto reset;
890
891         dst_confirm(dst);
892
893         if (dst_metric_locked(dst, RTAX_CWND))
894                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
895         if (dst_metric(dst, RTAX_SSTHRESH)) {
896                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
897                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
898                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
899         } else {
900                 /* ssthresh may have been reduced unnecessarily during.
901                  * 3WHS. Restore it back to its initial default.
902                  */
903                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
904         }
905         if (dst_metric(dst, RTAX_REORDERING) &&
906             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
907                 tcp_disable_fack(tp);
908                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
909         }
910
911         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
912                 goto reset;
913
914         /* Initial rtt is determined from SYN,SYN-ACK.
915          * The segment is small and rtt may appear much
916          * less than real one. Use per-dst memory
917          * to make it more realistic.
918          *
919          * A bit of theory. RTT is time passed after "normal" sized packet
920          * is sent until it is ACKed. In normal circumstances sending small
921          * packets force peer to delay ACKs and calculation is correct too.
922          * The algorithm is adaptive and, provided we follow specs, it
923          * NEVER underestimate RTT. BUT! If peer tries to make some clever
924          * tricks sort of "quick acks" for time long enough to decrease RTT
925          * to low value, and then abruptly stops to do it and starts to delay
926          * ACKs, wait for troubles.
927          */
928         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
929                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
930                 tp->rtt_seq = tp->snd_nxt;
931         }
932         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
933                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
934                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
935         }
936         tcp_set_rto(sk);
937 reset:
938         if (tp->srtt == 0) {
939                 /* RFC2988bis: We've failed to get a valid RTT sample from
940                  * 3WHS. This is most likely due to retransmission,
941                  * including spurious one. Reset the RTO back to 3secs
942                  * from the more aggressive 1sec to avoid more spurious
943                  * retransmission.
944                  */
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
947         }
948         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
949          * retransmitted. In light of RFC2988bis' more aggressive 1sec
950          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
951          * retransmission has occurred.
952          */
953         if (tp->total_retrans > 1)
954                 tp->snd_cwnd = 1;
955         else
956                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
957         tp->snd_cwnd_stamp = tcp_time_stamp;
958 }
959
960 static void tcp_update_reordering(struct sock *sk, const int metric,
961                                   const int ts)
962 {
963         struct tcp_sock *tp = tcp_sk(sk);
964         if (metric > tp->reordering) {
965                 int mib_idx;
966
967                 tp->reordering = min(TCP_MAX_REORDERING, metric);
968
969                 /* This exciting event is worth to be remembered. 8) */
970                 if (ts)
971                         mib_idx = LINUX_MIB_TCPTSREORDER;
972                 else if (tcp_is_reno(tp))
973                         mib_idx = LINUX_MIB_TCPRENOREORDER;
974                 else if (tcp_is_fack(tp))
975                         mib_idx = LINUX_MIB_TCPFACKREORDER;
976                 else
977                         mib_idx = LINUX_MIB_TCPSACKREORDER;
978
979                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
980 #if FASTRETRANS_DEBUG > 1
981                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
982                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
983                        tp->reordering,
984                        tp->fackets_out,
985                        tp->sacked_out,
986                        tp->undo_marker ? tp->undo_retrans : 0);
987 #endif
988                 tcp_disable_fack(tp);
989         }
990 }
991
992 /* This must be called before lost_out is incremented */
993 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
994 {
995         if ((tp->retransmit_skb_hint == NULL) ||
996             before(TCP_SKB_CB(skb)->seq,
997                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
998                 tp->retransmit_skb_hint = skb;
999
1000         if (!tp->lost_out ||
1001             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1002                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1003 }
1004
1005 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1006 {
1007         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1008                 tcp_verify_retransmit_hint(tp, skb);
1009
1010                 tp->lost_out += tcp_skb_pcount(skb);
1011                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1012         }
1013 }
1014
1015 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1016                                             struct sk_buff *skb)
1017 {
1018         tcp_verify_retransmit_hint(tp, skb);
1019
1020         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1021                 tp->lost_out += tcp_skb_pcount(skb);
1022                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1023         }
1024 }
1025
1026 /* This procedure tags the retransmission queue when SACKs arrive.
1027  *
1028  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1029  * Packets in queue with these bits set are counted in variables
1030  * sacked_out, retrans_out and lost_out, correspondingly.
1031  *
1032  * Valid combinations are:
1033  * Tag  InFlight        Description
1034  * 0    1               - orig segment is in flight.
1035  * S    0               - nothing flies, orig reached receiver.
1036  * L    0               - nothing flies, orig lost by net.
1037  * R    2               - both orig and retransmit are in flight.
1038  * L|R  1               - orig is lost, retransmit is in flight.
1039  * S|R  1               - orig reached receiver, retrans is still in flight.
1040  * (L|S|R is logically valid, it could occur when L|R is sacked,
1041  *  but it is equivalent to plain S and code short-curcuits it to S.
1042  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1043  *
1044  * These 6 states form finite state machine, controlled by the following events:
1045  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1046  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1047  * 3. Loss detection event of one of three flavors:
1048  *      A. Scoreboard estimator decided the packet is lost.
1049  *         A'. Reno "three dupacks" marks head of queue lost.
1050  *         A''. Its FACK modfication, head until snd.fack is lost.
1051  *      B. SACK arrives sacking data transmitted after never retransmitted
1052  *         hole was sent out.
1053  *      C. SACK arrives sacking SND.NXT at the moment, when the
1054  *         segment was retransmitted.
1055  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1056  *
1057  * It is pleasant to note, that state diagram turns out to be commutative,
1058  * so that we are allowed not to be bothered by order of our actions,
1059  * when multiple events arrive simultaneously. (see the function below).
1060  *
1061  * Reordering detection.
1062  * --------------------
1063  * Reordering metric is maximal distance, which a packet can be displaced
1064  * in packet stream. With SACKs we can estimate it:
1065  *
1066  * 1. SACK fills old hole and the corresponding segment was not
1067  *    ever retransmitted -> reordering. Alas, we cannot use it
1068  *    when segment was retransmitted.
1069  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1070  *    for retransmitted and already SACKed segment -> reordering..
1071  * Both of these heuristics are not used in Loss state, when we cannot
1072  * account for retransmits accurately.
1073  *
1074  * SACK block validation.
1075  * ----------------------
1076  *
1077  * SACK block range validation checks that the received SACK block fits to
1078  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1079  * Note that SND.UNA is not included to the range though being valid because
1080  * it means that the receiver is rather inconsistent with itself reporting
1081  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1082  * perfectly valid, however, in light of RFC2018 which explicitly states
1083  * that "SACK block MUST reflect the newest segment.  Even if the newest
1084  * segment is going to be discarded ...", not that it looks very clever
1085  * in case of head skb. Due to potentional receiver driven attacks, we
1086  * choose to avoid immediate execution of a walk in write queue due to
1087  * reneging and defer head skb's loss recovery to standard loss recovery
1088  * procedure that will eventually trigger (nothing forbids us doing this).
1089  *
1090  * Implements also blockage to start_seq wrap-around. Problem lies in the
1091  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1092  * there's no guarantee that it will be before snd_nxt (n). The problem
1093  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1094  * wrap (s_w):
1095  *
1096  *         <- outs wnd ->                          <- wrapzone ->
1097  *         u     e      n                         u_w   e_w  s n_w
1098  *         |     |      |                          |     |   |  |
1099  * |<------------+------+----- TCP seqno space --------------+---------->|
1100  * ...-- <2^31 ->|                                           |<--------...
1101  * ...---- >2^31 ------>|                                    |<--------...
1102  *
1103  * Current code wouldn't be vulnerable but it's better still to discard such
1104  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1105  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1106  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1107  * equal to the ideal case (infinite seqno space without wrap caused issues).
1108  *
1109  * With D-SACK the lower bound is extended to cover sequence space below
1110  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1111  * again, D-SACK block must not to go across snd_una (for the same reason as
1112  * for the normal SACK blocks, explained above). But there all simplicity
1113  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1114  * fully below undo_marker they do not affect behavior in anyway and can
1115  * therefore be safely ignored. In rare cases (which are more or less
1116  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1117  * fragmentation and packet reordering past skb's retransmission. To consider
1118  * them correctly, the acceptable range must be extended even more though
1119  * the exact amount is rather hard to quantify. However, tp->max_window can
1120  * be used as an exaggerated estimate.
1121  */
1122 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1123                                   u32 start_seq, u32 end_seq)
1124 {
1125         /* Too far in future, or reversed (interpretation is ambiguous) */
1126         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1127                 return 0;
1128
1129         /* Nasty start_seq wrap-around check (see comments above) */
1130         if (!before(start_seq, tp->snd_nxt))
1131                 return 0;
1132
1133         /* In outstanding window? ...This is valid exit for D-SACKs too.
1134          * start_seq == snd_una is non-sensical (see comments above)
1135          */
1136         if (after(start_seq, tp->snd_una))
1137                 return 1;
1138
1139         if (!is_dsack || !tp->undo_marker)
1140                 return 0;
1141
1142         /* ...Then it's D-SACK, and must reside below snd_una completely */
1143         if (after(end_seq, tp->snd_una))
1144                 return 0;
1145
1146         if (!before(start_seq, tp->undo_marker))
1147                 return 1;
1148
1149         /* Too old */
1150         if (!after(end_seq, tp->undo_marker))
1151                 return 0;
1152
1153         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1154          *   start_seq < undo_marker and end_seq >= undo_marker.
1155          */
1156         return !before(start_seq, end_seq - tp->max_window);
1157 }
1158
1159 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1160  * Event "C". Later note: FACK people cheated me again 8), we have to account
1161  * for reordering! Ugly, but should help.
1162  *
1163  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1164  * less than what is now known to be received by the other end (derived from
1165  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1166  * retransmitted skbs to avoid some costly processing per ACKs.
1167  */
1168 static void tcp_mark_lost_retrans(struct sock *sk)
1169 {
1170         const struct inet_connection_sock *icsk = inet_csk(sk);
1171         struct tcp_sock *tp = tcp_sk(sk);
1172         struct sk_buff *skb;
1173         int cnt = 0;
1174         u32 new_low_seq = tp->snd_nxt;
1175         u32 received_upto = tcp_highest_sack_seq(tp);
1176
1177         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1178             !after(received_upto, tp->lost_retrans_low) ||
1179             icsk->icsk_ca_state != TCP_CA_Recovery)
1180                 return;
1181
1182         tcp_for_write_queue(skb, sk) {
1183                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1184
1185                 if (skb == tcp_send_head(sk))
1186                         break;
1187                 if (cnt == tp->retrans_out)
1188                         break;
1189                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1190                         continue;
1191
1192                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1193                         continue;
1194
1195                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1196                  * constraint here (see above) but figuring out that at
1197                  * least tp->reordering SACK blocks reside between ack_seq
1198                  * and received_upto is not easy task to do cheaply with
1199                  * the available datastructures.
1200                  *
1201                  * Whether FACK should check here for tp->reordering segs
1202                  * in-between one could argue for either way (it would be
1203                  * rather simple to implement as we could count fack_count
1204                  * during the walk and do tp->fackets_out - fack_count).
1205                  */
1206                 if (after(received_upto, ack_seq)) {
1207                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1208                         tp->retrans_out -= tcp_skb_pcount(skb);
1209
1210                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1211                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1212                 } else {
1213                         if (before(ack_seq, new_low_seq))
1214                                 new_low_seq = ack_seq;
1215                         cnt += tcp_skb_pcount(skb);
1216                 }
1217         }
1218
1219         if (tp->retrans_out)
1220                 tp->lost_retrans_low = new_low_seq;
1221 }
1222
1223 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1224                            struct tcp_sack_block_wire *sp, int num_sacks,
1225                            u32 prior_snd_una)
1226 {
1227         struct tcp_sock *tp = tcp_sk(sk);
1228         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1229         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1230         int dup_sack = 0;
1231
1232         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1233                 dup_sack = 1;
1234                 tcp_dsack_seen(tp);
1235                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1236         } else if (num_sacks > 1) {
1237                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1238                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1239
1240                 if (!after(end_seq_0, end_seq_1) &&
1241                     !before(start_seq_0, start_seq_1)) {
1242                         dup_sack = 1;
1243                         tcp_dsack_seen(tp);
1244                         NET_INC_STATS_BH(sock_net(sk),
1245                                         LINUX_MIB_TCPDSACKOFORECV);
1246                 }
1247         }
1248
1249         /* D-SACK for already forgotten data... Do dumb counting. */
1250         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1251             !after(end_seq_0, prior_snd_una) &&
1252             after(end_seq_0, tp->undo_marker))
1253                 tp->undo_retrans--;
1254
1255         return dup_sack;
1256 }
1257
1258 struct tcp_sacktag_state {
1259         int reord;
1260         int fack_count;
1261         int flag;
1262 };
1263
1264 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1265  * the incoming SACK may not exactly match but we can find smaller MSS
1266  * aligned portion of it that matches. Therefore we might need to fragment
1267  * which may fail and creates some hassle (caller must handle error case
1268  * returns).
1269  *
1270  * FIXME: this could be merged to shift decision code
1271  */
1272 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1273                                  u32 start_seq, u32 end_seq)
1274 {
1275         int in_sack, err;
1276         unsigned int pkt_len;
1277         unsigned int mss;
1278
1279         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1280                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1281
1282         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1283             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1284                 mss = tcp_skb_mss(skb);
1285                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1286
1287                 if (!in_sack) {
1288                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1289                         if (pkt_len < mss)
1290                                 pkt_len = mss;
1291                 } else {
1292                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1293                         if (pkt_len < mss)
1294                                 return -EINVAL;
1295                 }
1296
1297                 /* Round if necessary so that SACKs cover only full MSSes
1298                  * and/or the remaining small portion (if present)
1299                  */
1300                 if (pkt_len > mss) {
1301                         unsigned int new_len = (pkt_len / mss) * mss;
1302                         if (!in_sack && new_len < pkt_len) {
1303                                 new_len += mss;
1304                                 if (new_len > skb->len)
1305                                         return 0;
1306                         }
1307                         pkt_len = new_len;
1308                 }
1309                 err = tcp_fragment(sk, skb, pkt_len, mss);
1310                 if (err < 0)
1311                         return err;
1312         }
1313
1314         return in_sack;
1315 }
1316
1317 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1318 static u8 tcp_sacktag_one(struct sock *sk,
1319                           struct tcp_sacktag_state *state, u8 sacked,
1320                           u32 start_seq, u32 end_seq,
1321                           int dup_sack, int pcount)
1322 {
1323         struct tcp_sock *tp = tcp_sk(sk);
1324         int fack_count = state->fack_count;
1325
1326         /* Account D-SACK for retransmitted packet. */
1327         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1328                 if (tp->undo_marker && tp->undo_retrans &&
1329                     after(end_seq, tp->undo_marker))
1330                         tp->undo_retrans--;
1331                 if (sacked & TCPCB_SACKED_ACKED)
1332                         state->reord = min(fack_count, state->reord);
1333         }
1334
1335         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1336         if (!after(end_seq, tp->snd_una))
1337                 return sacked;
1338
1339         if (!(sacked & TCPCB_SACKED_ACKED)) {
1340                 if (sacked & TCPCB_SACKED_RETRANS) {
1341                         /* If the segment is not tagged as lost,
1342                          * we do not clear RETRANS, believing
1343                          * that retransmission is still in flight.
1344                          */
1345                         if (sacked & TCPCB_LOST) {
1346                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1347                                 tp->lost_out -= pcount;
1348                                 tp->retrans_out -= pcount;
1349                         }
1350                 } else {
1351                         if (!(sacked & TCPCB_RETRANS)) {
1352                                 /* New sack for not retransmitted frame,
1353                                  * which was in hole. It is reordering.
1354                                  */
1355                                 if (before(start_seq,
1356                                            tcp_highest_sack_seq(tp)))
1357                                         state->reord = min(fack_count,
1358                                                            state->reord);
1359
1360                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1361                                 if (!after(end_seq, tp->frto_highmark))
1362                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1363                         }
1364
1365                         if (sacked & TCPCB_LOST) {
1366                                 sacked &= ~TCPCB_LOST;
1367                                 tp->lost_out -= pcount;
1368                         }
1369                 }
1370
1371                 sacked |= TCPCB_SACKED_ACKED;
1372                 state->flag |= FLAG_DATA_SACKED;
1373                 tp->sacked_out += pcount;
1374
1375                 fack_count += pcount;
1376
1377                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1378                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1379                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1380                         tp->lost_cnt_hint += pcount;
1381
1382                 if (fack_count > tp->fackets_out)
1383                         tp->fackets_out = fack_count;
1384         }
1385
1386         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1387          * frames and clear it. undo_retrans is decreased above, L|R frames
1388          * are accounted above as well.
1389          */
1390         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1391                 sacked &= ~TCPCB_SACKED_RETRANS;
1392                 tp->retrans_out -= pcount;
1393         }
1394
1395         return sacked;
1396 }
1397
1398 /* Shift newly-SACKed bytes from this skb to the immediately previous
1399  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1400  */
1401 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1402                            struct tcp_sacktag_state *state,
1403                            unsigned int pcount, int shifted, int mss,
1404                            int dup_sack)
1405 {
1406         struct tcp_sock *tp = tcp_sk(sk);
1407         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1408         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1409         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1410
1411         BUG_ON(!pcount);
1412
1413         /* Adjust counters and hints for the newly sacked sequence
1414          * range but discard the return value since prev is already
1415          * marked. We must tag the range first because the seq
1416          * advancement below implicitly advances
1417          * tcp_highest_sack_seq() when skb is highest_sack.
1418          */
1419         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1420                         start_seq, end_seq, dup_sack, pcount);
1421
1422         if (skb == tp->lost_skb_hint)
1423                 tp->lost_cnt_hint += pcount;
1424
1425         TCP_SKB_CB(prev)->end_seq += shifted;
1426         TCP_SKB_CB(skb)->seq += shifted;
1427
1428         skb_shinfo(prev)->gso_segs += pcount;
1429         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1430         skb_shinfo(skb)->gso_segs -= pcount;
1431
1432         /* When we're adding to gso_segs == 1, gso_size will be zero,
1433          * in theory this shouldn't be necessary but as long as DSACK
1434          * code can come after this skb later on it's better to keep
1435          * setting gso_size to something.
1436          */
1437         if (!skb_shinfo(prev)->gso_size) {
1438                 skb_shinfo(prev)->gso_size = mss;
1439                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1440         }
1441
1442         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1443         if (skb_shinfo(skb)->gso_segs <= 1) {
1444                 skb_shinfo(skb)->gso_size = 0;
1445                 skb_shinfo(skb)->gso_type = 0;
1446         }
1447
1448         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1449         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1450
1451         if (skb->len > 0) {
1452                 BUG_ON(!tcp_skb_pcount(skb));
1453                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1454                 return 0;
1455         }
1456
1457         /* Whole SKB was eaten :-) */
1458
1459         if (skb == tp->retransmit_skb_hint)
1460                 tp->retransmit_skb_hint = prev;
1461         if (skb == tp->scoreboard_skb_hint)
1462                 tp->scoreboard_skb_hint = prev;
1463         if (skb == tp->lost_skb_hint) {
1464                 tp->lost_skb_hint = prev;
1465                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1466         }
1467
1468         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1469         if (skb == tcp_highest_sack(sk))
1470                 tcp_advance_highest_sack(sk, skb);
1471
1472         tcp_unlink_write_queue(skb, sk);
1473         sk_wmem_free_skb(sk, skb);
1474
1475         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1476
1477         return 1;
1478 }
1479
1480 /* I wish gso_size would have a bit more sane initialization than
1481  * something-or-zero which complicates things
1482  */
1483 static int tcp_skb_seglen(const struct sk_buff *skb)
1484 {
1485         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1486 }
1487
1488 /* Shifting pages past head area doesn't work */
1489 static int skb_can_shift(const struct sk_buff *skb)
1490 {
1491         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1492 }
1493
1494 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1495  * skb.
1496  */
1497 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1498                                           struct tcp_sacktag_state *state,
1499                                           u32 start_seq, u32 end_seq,
1500                                           int dup_sack)
1501 {
1502         struct tcp_sock *tp = tcp_sk(sk);
1503         struct sk_buff *prev;
1504         int mss;
1505         int pcount = 0;
1506         int len;
1507         int in_sack;
1508
1509         if (!sk_can_gso(sk))
1510                 goto fallback;
1511
1512         /* Normally R but no L won't result in plain S */
1513         if (!dup_sack &&
1514             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1515                 goto fallback;
1516         if (!skb_can_shift(skb))
1517                 goto fallback;
1518         /* This frame is about to be dropped (was ACKed). */
1519         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1520                 goto fallback;
1521
1522         /* Can only happen with delayed DSACK + discard craziness */
1523         if (unlikely(skb == tcp_write_queue_head(sk)))
1524                 goto fallback;
1525         prev = tcp_write_queue_prev(sk, skb);
1526
1527         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1528                 goto fallback;
1529
1530         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1531                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1532
1533         if (in_sack) {
1534                 len = skb->len;
1535                 pcount = tcp_skb_pcount(skb);
1536                 mss = tcp_skb_seglen(skb);
1537
1538                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1539                  * drop this restriction as unnecessary
1540                  */
1541                 if (mss != tcp_skb_seglen(prev))
1542                         goto fallback;
1543         } else {
1544                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1545                         goto noop;
1546                 /* CHECKME: This is non-MSS split case only?, this will
1547                  * cause skipped skbs due to advancing loop btw, original
1548                  * has that feature too
1549                  */
1550                 if (tcp_skb_pcount(skb) <= 1)
1551                         goto noop;
1552
1553                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1554                 if (!in_sack) {
1555                         /* TODO: head merge to next could be attempted here
1556                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1557                          * though it might not be worth of the additional hassle
1558                          *
1559                          * ...we can probably just fallback to what was done
1560                          * previously. We could try merging non-SACKed ones
1561                          * as well but it probably isn't going to buy off
1562                          * because later SACKs might again split them, and
1563                          * it would make skb timestamp tracking considerably
1564                          * harder problem.
1565                          */
1566                         goto fallback;
1567                 }
1568
1569                 len = end_seq - TCP_SKB_CB(skb)->seq;
1570                 BUG_ON(len < 0);
1571                 BUG_ON(len > skb->len);
1572
1573                 /* MSS boundaries should be honoured or else pcount will
1574                  * severely break even though it makes things bit trickier.
1575                  * Optimize common case to avoid most of the divides
1576                  */
1577                 mss = tcp_skb_mss(skb);
1578
1579                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1580                  * drop this restriction as unnecessary
1581                  */
1582                 if (mss != tcp_skb_seglen(prev))
1583                         goto fallback;
1584
1585                 if (len == mss) {
1586                         pcount = 1;
1587                 } else if (len < mss) {
1588                         goto noop;
1589                 } else {
1590                         pcount = len / mss;
1591                         len = pcount * mss;
1592                 }
1593         }
1594
1595         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1596         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1597                 goto fallback;
1598
1599         if (!skb_shift(prev, skb, len))
1600                 goto fallback;
1601         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1602                 goto out;
1603
1604         /* Hole filled allows collapsing with the next as well, this is very
1605          * useful when hole on every nth skb pattern happens
1606          */
1607         if (prev == tcp_write_queue_tail(sk))
1608                 goto out;
1609         skb = tcp_write_queue_next(sk, prev);
1610
1611         if (!skb_can_shift(skb) ||
1612             (skb == tcp_send_head(sk)) ||
1613             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1614             (mss != tcp_skb_seglen(skb)))
1615                 goto out;
1616
1617         len = skb->len;
1618         if (skb_shift(prev, skb, len)) {
1619                 pcount += tcp_skb_pcount(skb);
1620                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1621         }
1622
1623 out:
1624         state->fack_count += pcount;
1625         return prev;
1626
1627 noop:
1628         return skb;
1629
1630 fallback:
1631         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1632         return NULL;
1633 }
1634
1635 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1636                                         struct tcp_sack_block *next_dup,
1637                                         struct tcp_sacktag_state *state,
1638                                         u32 start_seq, u32 end_seq,
1639                                         int dup_sack_in)
1640 {
1641         struct tcp_sock *tp = tcp_sk(sk);
1642         struct sk_buff *tmp;
1643
1644         tcp_for_write_queue_from(skb, sk) {
1645                 int in_sack = 0;
1646                 int dup_sack = dup_sack_in;
1647
1648                 if (skb == tcp_send_head(sk))
1649                         break;
1650
1651                 /* queue is in-order => we can short-circuit the walk early */
1652                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1653                         break;
1654
1655                 if ((next_dup != NULL) &&
1656                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1657                         in_sack = tcp_match_skb_to_sack(sk, skb,
1658                                                         next_dup->start_seq,
1659                                                         next_dup->end_seq);
1660                         if (in_sack > 0)
1661                                 dup_sack = 1;
1662                 }
1663
1664                 /* skb reference here is a bit tricky to get right, since
1665                  * shifting can eat and free both this skb and the next,
1666                  * so not even _safe variant of the loop is enough.
1667                  */
1668                 if (in_sack <= 0) {
1669                         tmp = tcp_shift_skb_data(sk, skb, state,
1670                                                  start_seq, end_seq, dup_sack);
1671                         if (tmp != NULL) {
1672                                 if (tmp != skb) {
1673                                         skb = tmp;
1674                                         continue;
1675                                 }
1676
1677                                 in_sack = 0;
1678                         } else {
1679                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1680                                                                 start_seq,
1681                                                                 end_seq);
1682                         }
1683                 }
1684
1685                 if (unlikely(in_sack < 0))
1686                         break;
1687
1688                 if (in_sack) {
1689                         TCP_SKB_CB(skb)->sacked =
1690                                 tcp_sacktag_one(sk,
1691                                                 state,
1692                                                 TCP_SKB_CB(skb)->sacked,
1693                                                 TCP_SKB_CB(skb)->seq,
1694                                                 TCP_SKB_CB(skb)->end_seq,
1695                                                 dup_sack,
1696                                                 tcp_skb_pcount(skb));
1697
1698                         if (!before(TCP_SKB_CB(skb)->seq,
1699                                     tcp_highest_sack_seq(tp)))
1700                                 tcp_advance_highest_sack(sk, skb);
1701                 }
1702
1703                 state->fack_count += tcp_skb_pcount(skb);
1704         }
1705         return skb;
1706 }
1707
1708 /* Avoid all extra work that is being done by sacktag while walking in
1709  * a normal way
1710  */
1711 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1712                                         struct tcp_sacktag_state *state,
1713                                         u32 skip_to_seq)
1714 {
1715         tcp_for_write_queue_from(skb, sk) {
1716                 if (skb == tcp_send_head(sk))
1717                         break;
1718
1719                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1720                         break;
1721
1722                 state->fack_count += tcp_skb_pcount(skb);
1723         }
1724         return skb;
1725 }
1726
1727 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1728                                                 struct sock *sk,
1729                                                 struct tcp_sack_block *next_dup,
1730                                                 struct tcp_sacktag_state *state,
1731                                                 u32 skip_to_seq)
1732 {
1733         if (next_dup == NULL)
1734                 return skb;
1735
1736         if (before(next_dup->start_seq, skip_to_seq)) {
1737                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1738                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1739                                        next_dup->start_seq, next_dup->end_seq,
1740                                        1);
1741         }
1742
1743         return skb;
1744 }
1745
1746 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1747 {
1748         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1749 }
1750
1751 static int
1752 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1753                         u32 prior_snd_una)
1754 {
1755         const struct inet_connection_sock *icsk = inet_csk(sk);
1756         struct tcp_sock *tp = tcp_sk(sk);
1757         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1758                                     TCP_SKB_CB(ack_skb)->sacked);
1759         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1760         struct tcp_sack_block sp[TCP_NUM_SACKS];
1761         struct tcp_sack_block *cache;
1762         struct tcp_sacktag_state state;
1763         struct sk_buff *skb;
1764         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1765         int used_sacks;
1766         int found_dup_sack = 0;
1767         int i, j;
1768         int first_sack_index;
1769
1770         state.flag = 0;
1771         state.reord = tp->packets_out;
1772
1773         if (!tp->sacked_out) {
1774                 if (WARN_ON(tp->fackets_out))
1775                         tp->fackets_out = 0;
1776                 tcp_highest_sack_reset(sk);
1777         }
1778
1779         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1780                                          num_sacks, prior_snd_una);
1781         if (found_dup_sack)
1782                 state.flag |= FLAG_DSACKING_ACK;
1783
1784         /* Eliminate too old ACKs, but take into
1785          * account more or less fresh ones, they can
1786          * contain valid SACK info.
1787          */
1788         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1789                 return 0;
1790
1791         if (!tp->packets_out)
1792                 goto out;
1793
1794         used_sacks = 0;
1795         first_sack_index = 0;
1796         for (i = 0; i < num_sacks; i++) {
1797                 int dup_sack = !i && found_dup_sack;
1798
1799                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1800                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1801
1802                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1803                                             sp[used_sacks].start_seq,
1804                                             sp[used_sacks].end_seq)) {
1805                         int mib_idx;
1806
1807                         if (dup_sack) {
1808                                 if (!tp->undo_marker)
1809                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1810                                 else
1811                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1812                         } else {
1813                                 /* Don't count olds caused by ACK reordering */
1814                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1815                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1816                                         continue;
1817                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1818                         }
1819
1820                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1821                         if (i == 0)
1822                                 first_sack_index = -1;
1823                         continue;
1824                 }
1825
1826                 /* Ignore very old stuff early */
1827                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1828                         continue;
1829
1830                 used_sacks++;
1831         }
1832
1833         /* order SACK blocks to allow in order walk of the retrans queue */
1834         for (i = used_sacks - 1; i > 0; i--) {
1835                 for (j = 0; j < i; j++) {
1836                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1837                                 swap(sp[j], sp[j + 1]);
1838
1839                                 /* Track where the first SACK block goes to */
1840                                 if (j == first_sack_index)
1841                                         first_sack_index = j + 1;
1842                         }
1843                 }
1844         }
1845
1846         skb = tcp_write_queue_head(sk);
1847         state.fack_count = 0;
1848         i = 0;
1849
1850         if (!tp->sacked_out) {
1851                 /* It's already past, so skip checking against it */
1852                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1853         } else {
1854                 cache = tp->recv_sack_cache;
1855                 /* Skip empty blocks in at head of the cache */
1856                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1857                        !cache->end_seq)
1858                         cache++;
1859         }
1860
1861         while (i < used_sacks) {
1862                 u32 start_seq = sp[i].start_seq;
1863                 u32 end_seq = sp[i].end_seq;
1864                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1865                 struct tcp_sack_block *next_dup = NULL;
1866
1867                 if (found_dup_sack && ((i + 1) == first_sack_index))
1868                         next_dup = &sp[i + 1];
1869
1870                 /* Event "B" in the comment above. */
1871                 if (after(end_seq, tp->high_seq))
1872                         state.flag |= FLAG_DATA_LOST;
1873
1874                 /* Skip too early cached blocks */
1875                 while (tcp_sack_cache_ok(tp, cache) &&
1876                        !before(start_seq, cache->end_seq))
1877                         cache++;
1878
1879                 /* Can skip some work by looking recv_sack_cache? */
1880                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1881                     after(end_seq, cache->start_seq)) {
1882
1883                         /* Head todo? */
1884                         if (before(start_seq, cache->start_seq)) {
1885                                 skb = tcp_sacktag_skip(skb, sk, &state,
1886                                                        start_seq);
1887                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1888                                                        &state,
1889                                                        start_seq,
1890                                                        cache->start_seq,
1891                                                        dup_sack);
1892                         }
1893
1894                         /* Rest of the block already fully processed? */
1895                         if (!after(end_seq, cache->end_seq))
1896                                 goto advance_sp;
1897
1898                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1899                                                        &state,
1900                                                        cache->end_seq);
1901
1902                         /* ...tail remains todo... */
1903                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1904                                 /* ...but better entrypoint exists! */
1905                                 skb = tcp_highest_sack(sk);
1906                                 if (skb == NULL)
1907                                         break;
1908                                 state.fack_count = tp->fackets_out;
1909                                 cache++;
1910                                 goto walk;
1911                         }
1912
1913                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1914                         /* Check overlap against next cached too (past this one already) */
1915                         cache++;
1916                         continue;
1917                 }
1918
1919                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1920                         skb = tcp_highest_sack(sk);
1921                         if (skb == NULL)
1922                                 break;
1923                         state.fack_count = tp->fackets_out;
1924                 }
1925                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1926
1927 walk:
1928                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1929                                        start_seq, end_seq, dup_sack);
1930
1931 advance_sp:
1932                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1933                  * due to in-order walk
1934                  */
1935                 if (after(end_seq, tp->frto_highmark))
1936                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1937
1938                 i++;
1939         }
1940
1941         /* Clear the head of the cache sack blocks so we can skip it next time */
1942         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1943                 tp->recv_sack_cache[i].start_seq = 0;
1944                 tp->recv_sack_cache[i].end_seq = 0;
1945         }
1946         for (j = 0; j < used_sacks; j++)
1947                 tp->recv_sack_cache[i++] = sp[j];
1948
1949         tcp_mark_lost_retrans(sk);
1950
1951         tcp_verify_left_out(tp);
1952
1953         if ((state.reord < tp->fackets_out) &&
1954             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1955             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1956                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1957
1958 out:
1959
1960 #if FASTRETRANS_DEBUG > 0
1961         WARN_ON((int)tp->sacked_out < 0);
1962         WARN_ON((int)tp->lost_out < 0);
1963         WARN_ON((int)tp->retrans_out < 0);
1964         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1965 #endif
1966         return state.flag;
1967 }
1968
1969 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1970  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1971  */
1972 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1973 {
1974         u32 holes;
1975
1976         holes = max(tp->lost_out, 1U);
1977         holes = min(holes, tp->packets_out);
1978
1979         if ((tp->sacked_out + holes) > tp->packets_out) {
1980                 tp->sacked_out = tp->packets_out - holes;
1981                 return 1;
1982         }
1983         return 0;
1984 }
1985
1986 /* If we receive more dupacks than we expected counting segments
1987  * in assumption of absent reordering, interpret this as reordering.
1988  * The only another reason could be bug in receiver TCP.
1989  */
1990 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1991 {
1992         struct tcp_sock *tp = tcp_sk(sk);
1993         if (tcp_limit_reno_sacked(tp))
1994                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1995 }
1996
1997 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1998
1999 static void tcp_add_reno_sack(struct sock *sk)
2000 {
2001         struct tcp_sock *tp = tcp_sk(sk);
2002         tp->sacked_out++;
2003         tcp_check_reno_reordering(sk, 0);
2004         tcp_verify_left_out(tp);
2005 }
2006
2007 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2008
2009 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2010 {
2011         struct tcp_sock *tp = tcp_sk(sk);
2012
2013         if (acked > 0) {
2014                 /* One ACK acked hole. The rest eat duplicate ACKs. */
2015                 if (acked - 1 >= tp->sacked_out)
2016                         tp->sacked_out = 0;
2017                 else
2018                         tp->sacked_out -= acked - 1;
2019         }
2020         tcp_check_reno_reordering(sk, acked);
2021         tcp_verify_left_out(tp);
2022 }
2023
2024 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2025 {
2026         tp->sacked_out = 0;
2027 }
2028
2029 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2030 {
2031         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2032 }
2033
2034 /* F-RTO can only be used if TCP has never retransmitted anything other than
2035  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2036  */
2037 int tcp_use_frto(struct sock *sk)
2038 {
2039         const struct tcp_sock *tp = tcp_sk(sk);
2040         const struct inet_connection_sock *icsk = inet_csk(sk);
2041         struct sk_buff *skb;
2042
2043         if (!sysctl_tcp_frto)
2044                 return 0;
2045
2046         /* MTU probe and F-RTO won't really play nicely along currently */
2047         if (icsk->icsk_mtup.probe_size)
2048                 return 0;
2049
2050         if (tcp_is_sackfrto(tp))
2051                 return 1;
2052
2053         /* Avoid expensive walking of rexmit queue if possible */
2054         if (tp->retrans_out > 1)
2055                 return 0;
2056
2057         skb = tcp_write_queue_head(sk);
2058         if (tcp_skb_is_last(sk, skb))
2059                 return 1;
2060         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2061         tcp_for_write_queue_from(skb, sk) {
2062                 if (skb == tcp_send_head(sk))
2063                         break;
2064                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2065                         return 0;
2066                 /* Short-circuit when first non-SACKed skb has been checked */
2067                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2068                         break;
2069         }
2070         return 1;
2071 }
2072
2073 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2074  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2075  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2076  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2077  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2078  * bits are handled if the Loss state is really to be entered (in
2079  * tcp_enter_frto_loss).
2080  *
2081  * Do like tcp_enter_loss() would; when RTO expires the second time it
2082  * does:
2083  *  "Reduce ssthresh if it has not yet been made inside this window."
2084  */
2085 void tcp_enter_frto(struct sock *sk)
2086 {
2087         const struct inet_connection_sock *icsk = inet_csk(sk);
2088         struct tcp_sock *tp = tcp_sk(sk);
2089         struct sk_buff *skb;
2090
2091         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2092             tp->snd_una == tp->high_seq ||
2093             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2094              !icsk->icsk_retransmits)) {
2095                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2096                 /* Our state is too optimistic in ssthresh() call because cwnd
2097                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2098                  * recovery has not yet completed. Pattern would be this: RTO,
2099                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2100                  * up here twice).
2101                  * RFC4138 should be more specific on what to do, even though
2102                  * RTO is quite unlikely to occur after the first Cumulative ACK
2103                  * due to back-off and complexity of triggering events ...
2104                  */
2105                 if (tp->frto_counter) {
2106                         u32 stored_cwnd;
2107                         stored_cwnd = tp->snd_cwnd;
2108                         tp->snd_cwnd = 2;
2109                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2110                         tp->snd_cwnd = stored_cwnd;
2111                 } else {
2112                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2113                 }
2114                 /* ... in theory, cong.control module could do "any tricks" in
2115                  * ssthresh(), which means that ca_state, lost bits and lost_out
2116                  * counter would have to be faked before the call occurs. We
2117                  * consider that too expensive, unlikely and hacky, so modules
2118                  * using these in ssthresh() must deal these incompatibility
2119                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2120                  */
2121                 tcp_ca_event(sk, CA_EVENT_FRTO);
2122         }
2123
2124         tp->undo_marker = tp->snd_una;
2125         tp->undo_retrans = 0;
2126
2127         skb = tcp_write_queue_head(sk);
2128         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2129                 tp->undo_marker = 0;
2130         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2131                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2132                 tp->retrans_out -= tcp_skb_pcount(skb);
2133         }
2134         tcp_verify_left_out(tp);
2135
2136         /* Too bad if TCP was application limited */
2137         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2138
2139         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2140          * The last condition is necessary at least in tp->frto_counter case.
2141          */
2142         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2143             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2144             after(tp->high_seq, tp->snd_una)) {
2145                 tp->frto_highmark = tp->high_seq;
2146         } else {
2147                 tp->frto_highmark = tp->snd_nxt;
2148         }
2149         tcp_set_ca_state(sk, TCP_CA_Disorder);
2150         tp->high_seq = tp->snd_nxt;
2151         tp->frto_counter = 1;
2152 }
2153
2154 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2155  * which indicates that we should follow the traditional RTO recovery,
2156  * i.e. mark everything lost and do go-back-N retransmission.
2157  */
2158 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2159 {
2160         struct tcp_sock *tp = tcp_sk(sk);
2161         struct sk_buff *skb;
2162
2163         tp->lost_out = 0;
2164         tp->retrans_out = 0;
2165         if (tcp_is_reno(tp))
2166                 tcp_reset_reno_sack(tp);
2167
2168         tcp_for_write_queue(skb, sk) {
2169                 if (skb == tcp_send_head(sk))
2170                         break;
2171
2172                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2173                 /*
2174                  * Count the retransmission made on RTO correctly (only when
2175                  * waiting for the first ACK and did not get it)...
2176                  */
2177                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2178                         /* For some reason this R-bit might get cleared? */
2179                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2180                                 tp->retrans_out += tcp_skb_pcount(skb);
2181                         /* ...enter this if branch just for the first segment */
2182                         flag |= FLAG_DATA_ACKED;
2183                 } else {
2184                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2185                                 tp->undo_marker = 0;
2186                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2187                 }
2188
2189                 /* Marking forward transmissions that were made after RTO lost
2190                  * can cause unnecessary retransmissions in some scenarios,
2191                  * SACK blocks will mitigate that in some but not in all cases.
2192                  * We used to not mark them but it was causing break-ups with
2193                  * receivers that do only in-order receival.
2194                  *
2195                  * TODO: we could detect presence of such receiver and select
2196                  * different behavior per flow.
2197                  */
2198                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2199                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2200                         tp->lost_out += tcp_skb_pcount(skb);
2201                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2202                 }
2203         }
2204         tcp_verify_left_out(tp);
2205
2206         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2207         tp->snd_cwnd_cnt = 0;
2208         tp->snd_cwnd_stamp = tcp_time_stamp;
2209         tp->frto_counter = 0;
2210         tp->bytes_acked = 0;
2211
2212         tp->reordering = min_t(unsigned int, tp->reordering,
2213                                sysctl_tcp_reordering);
2214         tcp_set_ca_state(sk, TCP_CA_Loss);
2215         tp->high_seq = tp->snd_nxt;
2216         TCP_ECN_queue_cwr(tp);
2217
2218         tcp_clear_all_retrans_hints(tp);
2219 }
2220
2221 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2222 {
2223         tp->retrans_out = 0;
2224         tp->lost_out = 0;
2225
2226         tp->undo_marker = 0;
2227         tp->undo_retrans = 0;
2228 }
2229
2230 void tcp_clear_retrans(struct tcp_sock *tp)
2231 {
2232         tcp_clear_retrans_partial(tp);
2233
2234         tp->fackets_out = 0;
2235         tp->sacked_out = 0;
2236 }
2237
2238 /* Enter Loss state. If "how" is not zero, forget all SACK information
2239  * and reset tags completely, otherwise preserve SACKs. If receiver
2240  * dropped its ofo queue, we will know this due to reneging detection.
2241  */
2242 void tcp_enter_loss(struct sock *sk, int how)
2243 {
2244         const struct inet_connection_sock *icsk = inet_csk(sk);
2245         struct tcp_sock *tp = tcp_sk(sk);
2246         struct sk_buff *skb;
2247
2248         /* Reduce ssthresh if it has not yet been made inside this window. */
2249         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2250             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2251                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2252                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2253                 tcp_ca_event(sk, CA_EVENT_LOSS);
2254         }
2255         tp->snd_cwnd       = 1;
2256         tp->snd_cwnd_cnt   = 0;
2257         tp->snd_cwnd_stamp = tcp_time_stamp;
2258
2259         tp->bytes_acked = 0;
2260         tcp_clear_retrans_partial(tp);
2261
2262         if (tcp_is_reno(tp))
2263                 tcp_reset_reno_sack(tp);
2264
2265         if (!how) {
2266                 /* Push undo marker, if it was plain RTO and nothing
2267                  * was retransmitted. */
2268                 tp->undo_marker = tp->snd_una;
2269         } else {
2270                 tp->sacked_out = 0;
2271                 tp->fackets_out = 0;
2272         }
2273         tcp_clear_all_retrans_hints(tp);
2274
2275         tcp_for_write_queue(skb, sk) {
2276                 if (skb == tcp_send_head(sk))
2277                         break;
2278
2279                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2280                         tp->undo_marker = 0;
2281                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2282                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2283                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2284                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2285                         tp->lost_out += tcp_skb_pcount(skb);
2286                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2287                 }
2288         }
2289         tcp_verify_left_out(tp);
2290
2291         tp->reordering = min_t(unsigned int, tp->reordering,
2292                                sysctl_tcp_reordering);
2293         tcp_set_ca_state(sk, TCP_CA_Loss);
2294         tp->high_seq = tp->snd_nxt;
2295         TCP_ECN_queue_cwr(tp);
2296         /* Abort F-RTO algorithm if one is in progress */
2297         tp->frto_counter = 0;
2298 }
2299
2300 /* If ACK arrived pointing to a remembered SACK, it means that our
2301  * remembered SACKs do not reflect real state of receiver i.e.
2302  * receiver _host_ is heavily congested (or buggy).
2303  *
2304  * Do processing similar to RTO timeout.
2305  */
2306 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2307 {
2308         if (flag & FLAG_SACK_RENEGING) {
2309                 struct inet_connection_sock *icsk = inet_csk(sk);
2310                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2311
2312                 tcp_enter_loss(sk, 1);
2313                 icsk->icsk_retransmits++;
2314                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2315                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2316                                           icsk->icsk_rto, TCP_RTO_MAX);
2317                 return 1;
2318         }
2319         return 0;
2320 }
2321
2322 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2323 {
2324         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2325 }
2326
2327 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2328  * counter when SACK is enabled (without SACK, sacked_out is used for
2329  * that purpose).
2330  *
2331  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2332  * segments up to the highest received SACK block so far and holes in
2333  * between them.
2334  *
2335  * With reordering, holes may still be in flight, so RFC3517 recovery
2336  * uses pure sacked_out (total number of SACKed segments) even though
2337  * it violates the RFC that uses duplicate ACKs, often these are equal
2338  * but when e.g. out-of-window ACKs or packet duplication occurs,
2339  * they differ. Since neither occurs due to loss, TCP should really
2340  * ignore them.
2341  */
2342 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2343 {
2344         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2345 }
2346
2347 static inline int tcp_skb_timedout(const struct sock *sk,
2348                                    const struct sk_buff *skb)
2349 {
2350         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2351 }
2352
2353 static inline int tcp_head_timedout(const struct sock *sk)
2354 {
2355         const struct tcp_sock *tp = tcp_sk(sk);
2356
2357         return tp->packets_out &&
2358                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2359 }
2360
2361 /* Linux NewReno/SACK/FACK/ECN state machine.
2362  * --------------------------------------
2363  *
2364  * "Open"       Normal state, no dubious events, fast path.
2365  * "Disorder"   In all the respects it is "Open",
2366  *              but requires a bit more attention. It is entered when
2367  *              we see some SACKs or dupacks. It is split of "Open"
2368  *              mainly to move some processing from fast path to slow one.
2369  * "CWR"        CWND was reduced due to some Congestion Notification event.
2370  *              It can be ECN, ICMP source quench, local device congestion.
2371  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2372  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2373  *
2374  * tcp_fastretrans_alert() is entered:
2375  * - each incoming ACK, if state is not "Open"
2376  * - when arrived ACK is unusual, namely:
2377  *      * SACK
2378  *      * Duplicate ACK.
2379  *      * ECN ECE.
2380  *
2381  * Counting packets in flight is pretty simple.
2382  *
2383  *      in_flight = packets_out - left_out + retrans_out
2384  *
2385  *      packets_out is SND.NXT-SND.UNA counted in packets.
2386  *
2387  *      retrans_out is number of retransmitted segments.
2388  *
2389  *      left_out is number of segments left network, but not ACKed yet.
2390  *
2391  *              left_out = sacked_out + lost_out
2392  *
2393  *     sacked_out: Packets, which arrived to receiver out of order
2394  *                 and hence not ACKed. With SACKs this number is simply
2395  *                 amount of SACKed data. Even without SACKs
2396  *                 it is easy to give pretty reliable estimate of this number,
2397  *                 counting duplicate ACKs.
2398  *
2399  *       lost_out: Packets lost by network. TCP has no explicit
2400  *                 "loss notification" feedback from network (for now).
2401  *                 It means that this number can be only _guessed_.
2402  *                 Actually, it is the heuristics to predict lossage that
2403  *                 distinguishes different algorithms.
2404  *
2405  *      F.e. after RTO, when all the queue is considered as lost,
2406  *      lost_out = packets_out and in_flight = retrans_out.
2407  *
2408  *              Essentially, we have now two algorithms counting
2409  *              lost packets.
2410  *
2411  *              FACK: It is the simplest heuristics. As soon as we decided
2412  *              that something is lost, we decide that _all_ not SACKed
2413  *              packets until the most forward SACK are lost. I.e.
2414  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2415  *              It is absolutely correct estimate, if network does not reorder
2416  *              packets. And it loses any connection to reality when reordering
2417  *              takes place. We use FACK by default until reordering
2418  *              is suspected on the path to this destination.
2419  *
2420  *              NewReno: when Recovery is entered, we assume that one segment
2421  *              is lost (classic Reno). While we are in Recovery and
2422  *              a partial ACK arrives, we assume that one more packet
2423  *              is lost (NewReno). This heuristics are the same in NewReno
2424  *              and SACK.
2425  *
2426  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2427  *  deflation etc. CWND is real congestion window, never inflated, changes
2428  *  only according to classic VJ rules.
2429  *
2430  * Really tricky (and requiring careful tuning) part of algorithm
2431  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2432  * The first determines the moment _when_ we should reduce CWND and,
2433  * hence, slow down forward transmission. In fact, it determines the moment
2434  * when we decide that hole is caused by loss, rather than by a reorder.
2435  *
2436  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2437  * holes, caused by lost packets.
2438  *
2439  * And the most logically complicated part of algorithm is undo
2440  * heuristics. We detect false retransmits due to both too early
2441  * fast retransmit (reordering) and underestimated RTO, analyzing
2442  * timestamps and D-SACKs. When we detect that some segments were
2443  * retransmitted by mistake and CWND reduction was wrong, we undo
2444  * window reduction and abort recovery phase. This logic is hidden
2445  * inside several functions named tcp_try_undo_<something>.
2446  */
2447
2448 /* This function decides, when we should leave Disordered state
2449  * and enter Recovery phase, reducing congestion window.
2450  *
2451  * Main question: may we further continue forward transmission
2452  * with the same cwnd?
2453  */
2454 static int tcp_time_to_recover(struct sock *sk)
2455 {
2456         struct tcp_sock *tp = tcp_sk(sk);
2457         __u32 packets_out;
2458
2459         /* Do not perform any recovery during F-RTO algorithm */
2460         if (tp->frto_counter)
2461                 return 0;
2462
2463         /* Trick#1: The loss is proven. */
2464         if (tp->lost_out)
2465                 return 1;
2466
2467         /* Not-A-Trick#2 : Classic rule... */
2468         if (tcp_dupack_heuristics(tp) > tp->reordering)
2469                 return 1;
2470
2471         /* Trick#3 : when we use RFC2988 timer restart, fast
2472          * retransmit can be triggered by timeout of queue head.
2473          */
2474         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2475                 return 1;
2476
2477         /* Trick#4: It is still not OK... But will it be useful to delay
2478          * recovery more?
2479          */
2480         packets_out = tp->packets_out;
2481         if (packets_out <= tp->reordering &&
2482             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2483             !tcp_may_send_now(sk)) {
2484                 /* We have nothing to send. This connection is limited
2485                  * either by receiver window or by application.
2486                  */
2487                 return 1;
2488         }
2489
2490         /* If a thin stream is detected, retransmit after first
2491          * received dupack. Employ only if SACK is supported in order
2492          * to avoid possible corner-case series of spurious retransmissions
2493          * Use only if there are no unsent data.
2494          */
2495         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2496             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2497             tcp_is_sack(tp) && !tcp_send_head(sk))
2498                 return 1;
2499
2500         return 0;
2501 }
2502
2503 /* New heuristics: it is possible only after we switched to restart timer
2504  * each time when something is ACKed. Hence, we can detect timed out packets
2505  * during fast retransmit without falling to slow start.
2506  *
2507  * Usefulness of this as is very questionable, since we should know which of
2508  * the segments is the next to timeout which is relatively expensive to find
2509  * in general case unless we add some data structure just for that. The
2510  * current approach certainly won't find the right one too often and when it
2511  * finally does find _something_ it usually marks large part of the window
2512  * right away (because a retransmission with a larger timestamp blocks the
2513  * loop from advancing). -ij
2514  */
2515 static void tcp_timeout_skbs(struct sock *sk)
2516 {
2517         struct tcp_sock *tp = tcp_sk(sk);
2518         struct sk_buff *skb;
2519
2520         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2521                 return;
2522
2523         skb = tp->scoreboard_skb_hint;
2524         if (tp->scoreboard_skb_hint == NULL)
2525                 skb = tcp_write_queue_head(sk);
2526
2527         tcp_for_write_queue_from(skb, sk) {
2528                 if (skb == tcp_send_head(sk))
2529                         break;
2530                 if (!tcp_skb_timedout(sk, skb))
2531                         break;
2532
2533                 tcp_skb_mark_lost(tp, skb);
2534         }
2535
2536         tp->scoreboard_skb_hint = skb;
2537
2538         tcp_verify_left_out(tp);
2539 }
2540
2541 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2542  * is against sacked "cnt", otherwise it's against facked "cnt"
2543  */
2544 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2545 {
2546         struct tcp_sock *tp = tcp_sk(sk);
2547         struct sk_buff *skb;
2548         int cnt, oldcnt;
2549         int err;
2550         unsigned int mss;
2551
2552         WARN_ON(packets > tp->packets_out);
2553         if (tp->lost_skb_hint) {
2554                 skb = tp->lost_skb_hint;
2555                 cnt = tp->lost_cnt_hint;
2556                 /* Head already handled? */
2557                 if (mark_head && skb != tcp_write_queue_head(sk))
2558                         return;
2559         } else {
2560                 skb = tcp_write_queue_head(sk);
2561                 cnt = 0;
2562         }
2563
2564         tcp_for_write_queue_from(skb, sk) {
2565                 if (skb == tcp_send_head(sk))
2566                         break;
2567                 /* TODO: do this better */
2568                 /* this is not the most efficient way to do this... */
2569                 tp->lost_skb_hint = skb;
2570                 tp->lost_cnt_hint = cnt;
2571
2572                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2573                         break;
2574
2575                 oldcnt = cnt;
2576                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2577                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2578                         cnt += tcp_skb_pcount(skb);
2579
2580                 if (cnt > packets) {
2581                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2582                             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2583                             (oldcnt >= packets))
2584                                 break;
2585
2586                         mss = skb_shinfo(skb)->gso_size;
2587                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2588                         if (err < 0)
2589                                 break;
2590                         cnt = packets;
2591                 }
2592
2593                 tcp_skb_mark_lost(tp, skb);
2594
2595                 if (mark_head)
2596                         break;
2597         }
2598         tcp_verify_left_out(tp);
2599 }
2600
2601 /* Account newly detected lost packet(s) */
2602
2603 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2604 {
2605         struct tcp_sock *tp = tcp_sk(sk);
2606
2607         if (tcp_is_reno(tp)) {
2608                 tcp_mark_head_lost(sk, 1, 1);
2609         } else if (tcp_is_fack(tp)) {
2610                 int lost = tp->fackets_out - tp->reordering;
2611                 if (lost <= 0)
2612                         lost = 1;
2613                 tcp_mark_head_lost(sk, lost, 0);
2614         } else {
2615                 int sacked_upto = tp->sacked_out - tp->reordering;
2616                 if (sacked_upto >= 0)
2617                         tcp_mark_head_lost(sk, sacked_upto, 0);
2618                 else if (fast_rexmit)
2619                         tcp_mark_head_lost(sk, 1, 1);
2620         }
2621
2622         tcp_timeout_skbs(sk);
2623 }
2624
2625 /* CWND moderation, preventing bursts due to too big ACKs
2626  * in dubious situations.
2627  */
2628 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2629 {
2630         tp->snd_cwnd = min(tp->snd_cwnd,
2631                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2632         tp->snd_cwnd_stamp = tcp_time_stamp;
2633 }
2634
2635 /* Lower bound on congestion window is slow start threshold
2636  * unless congestion avoidance choice decides to overide it.
2637  */
2638 static inline u32 tcp_cwnd_min(const struct sock *sk)
2639 {
2640         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2641
2642         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2643 }
2644
2645 /* Decrease cwnd each second ack. */
2646 static void tcp_cwnd_down(struct sock *sk, int flag)
2647 {
2648         struct tcp_sock *tp = tcp_sk(sk);
2649         int decr = tp->snd_cwnd_cnt + 1;
2650
2651         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2652             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2653                 tp->snd_cwnd_cnt = decr & 1;
2654                 decr >>= 1;
2655
2656                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2657                         tp->snd_cwnd -= decr;
2658
2659                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2660                 tp->snd_cwnd_stamp = tcp_time_stamp;
2661         }
2662 }
2663
2664 /* Nothing was retransmitted or returned timestamp is less
2665  * than timestamp of the first retransmission.
2666  */
2667 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2668 {
2669         return !tp->retrans_stamp ||
2670                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2671                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2672 }
2673
2674 /* Undo procedures. */
2675
2676 #if FASTRETRANS_DEBUG > 1
2677 static void DBGUNDO(struct sock *sk, const char *msg)
2678 {
2679         struct tcp_sock *tp = tcp_sk(sk);
2680         struct inet_sock *inet = inet_sk(sk);
2681
2682         if (sk->sk_family == AF_INET) {
2683                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2684                        msg,
2685                        &inet->inet_daddr, ntohs(inet->inet_dport),
2686                        tp->snd_cwnd, tcp_left_out(tp),
2687                        tp->snd_ssthresh, tp->prior_ssthresh,
2688                        tp->packets_out);
2689         }
2690 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2691         else if (sk->sk_family == AF_INET6) {
2692                 struct ipv6_pinfo *np = inet6_sk(sk);
2693                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2694                        msg,
2695                        &np->daddr, ntohs(inet->inet_dport),
2696                        tp->snd_cwnd, tcp_left_out(tp),
2697                        tp->snd_ssthresh, tp->prior_ssthresh,
2698                        tp->packets_out);
2699         }
2700 #endif
2701 }
2702 #else
2703 #define DBGUNDO(x...) do { } while (0)
2704 #endif
2705
2706 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2707 {
2708         struct tcp_sock *tp = tcp_sk(sk);
2709
2710         if (tp->prior_ssthresh) {
2711                 const struct inet_connection_sock *icsk = inet_csk(sk);
2712
2713                 if (icsk->icsk_ca_ops->undo_cwnd)
2714                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2715                 else
2716                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2717
2718                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2719                         tp->snd_ssthresh = tp->prior_ssthresh;
2720                         TCP_ECN_withdraw_cwr(tp);
2721                 }
2722         } else {
2723                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2724         }
2725         tp->snd_cwnd_stamp = tcp_time_stamp;
2726 }
2727
2728 static inline int tcp_may_undo(const struct tcp_sock *tp)
2729 {
2730         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2731 }
2732
2733 /* People celebrate: "We love our President!" */
2734 static int tcp_try_undo_recovery(struct sock *sk)
2735 {
2736         struct tcp_sock *tp = tcp_sk(sk);
2737
2738         if (tcp_may_undo(tp)) {
2739                 int mib_idx;
2740
2741                 /* Happy end! We did not retransmit anything
2742                  * or our original transmission succeeded.
2743                  */
2744                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2745                 tcp_undo_cwr(sk, true);
2746                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2747                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2748                 else
2749                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2750
2751                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2752                 tp->undo_marker = 0;
2753         }
2754         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2755                 /* Hold old state until something *above* high_seq
2756                  * is ACKed. For Reno it is MUST to prevent false
2757                  * fast retransmits (RFC2582). SACK TCP is safe. */
2758                 tcp_moderate_cwnd(tp);
2759                 return 1;
2760         }
2761         tcp_set_ca_state(sk, TCP_CA_Open);
2762         return 0;
2763 }
2764
2765 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2766 static void tcp_try_undo_dsack(struct sock *sk)
2767 {
2768         struct tcp_sock *tp = tcp_sk(sk);
2769
2770         if (tp->undo_marker && !tp->undo_retrans) {
2771                 DBGUNDO(sk, "D-SACK");
2772                 tcp_undo_cwr(sk, true);
2773                 tp->undo_marker = 0;
2774                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2775         }
2776 }
2777
2778 /* We can clear retrans_stamp when there are no retransmissions in the
2779  * window. It would seem that it is trivially available for us in
2780  * tp->retrans_out, however, that kind of assumptions doesn't consider
2781  * what will happen if errors occur when sending retransmission for the
2782  * second time. ...It could the that such segment has only
2783  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2784  * the head skb is enough except for some reneging corner cases that
2785  * are not worth the effort.
2786  *
2787  * Main reason for all this complexity is the fact that connection dying
2788  * time now depends on the validity of the retrans_stamp, in particular,
2789  * that successive retransmissions of a segment must not advance
2790  * retrans_stamp under any conditions.
2791  */
2792 static int tcp_any_retrans_done(const struct sock *sk)
2793 {
2794         const struct tcp_sock *tp = tcp_sk(sk);
2795         struct sk_buff *skb;
2796
2797         if (tp->retrans_out)
2798                 return 1;
2799
2800         skb = tcp_write_queue_head(sk);
2801         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2802                 return 1;
2803
2804         return 0;
2805 }
2806
2807 /* Undo during fast recovery after partial ACK. */
2808
2809 static int tcp_try_undo_partial(struct sock *sk, int acked)
2810 {
2811         struct tcp_sock *tp = tcp_sk(sk);
2812         /* Partial ACK arrived. Force Hoe's retransmit. */
2813         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2814
2815         if (tcp_may_undo(tp)) {
2816                 /* Plain luck! Hole if filled with delayed
2817                  * packet, rather than with a retransmit.
2818                  */
2819                 if (!tcp_any_retrans_done(sk))
2820                         tp->retrans_stamp = 0;
2821
2822                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2823
2824                 DBGUNDO(sk, "Hoe");
2825                 tcp_undo_cwr(sk, false);
2826                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2827
2828                 /* So... Do not make Hoe's retransmit yet.
2829                  * If the first packet was delayed, the rest
2830                  * ones are most probably delayed as well.
2831                  */
2832                 failed = 0;
2833         }
2834         return failed;
2835 }
2836
2837 /* Undo during loss recovery after partial ACK. */
2838 static int tcp_try_undo_loss(struct sock *sk)
2839 {
2840         struct tcp_sock *tp = tcp_sk(sk);
2841
2842         if (tcp_may_undo(tp)) {
2843                 struct sk_buff *skb;
2844                 tcp_for_write_queue(skb, sk) {
2845                         if (skb == tcp_send_head(sk))
2846                                 break;
2847                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2848                 }
2849
2850                 tcp_clear_all_retrans_hints(tp);
2851
2852                 DBGUNDO(sk, "partial loss");
2853                 tp->lost_out = 0;
2854                 tcp_undo_cwr(sk, true);
2855                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2856                 inet_csk(sk)->icsk_retransmits = 0;
2857                 tp->undo_marker = 0;
2858                 if (tcp_is_sack(tp))
2859                         tcp_set_ca_state(sk, TCP_CA_Open);
2860                 return 1;
2861         }
2862         return 0;
2863 }
2864
2865 static inline void tcp_complete_cwr(struct sock *sk)
2866 {
2867         struct tcp_sock *tp = tcp_sk(sk);
2868
2869         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2870         if (tp->undo_marker) {
2871                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2872                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2873                 else /* PRR */
2874                         tp->snd_cwnd = tp->snd_ssthresh;
2875                 tp->snd_cwnd_stamp = tcp_time_stamp;
2876         }
2877         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2878 }
2879
2880 static void tcp_try_keep_open(struct sock *sk)
2881 {
2882         struct tcp_sock *tp = tcp_sk(sk);
2883         int state = TCP_CA_Open;
2884
2885         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2886                 state = TCP_CA_Disorder;
2887
2888         if (inet_csk(sk)->icsk_ca_state != state) {
2889                 tcp_set_ca_state(sk, state);
2890                 tp->high_seq = tp->snd_nxt;
2891         }
2892 }
2893
2894 static void tcp_try_to_open(struct sock *sk, int flag)
2895 {
2896         struct tcp_sock *tp = tcp_sk(sk);
2897
2898         tcp_verify_left_out(tp);
2899
2900         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2901                 tp->retrans_stamp = 0;
2902
2903         if (flag & FLAG_ECE)
2904                 tcp_enter_cwr(sk, 1);
2905
2906         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2907                 tcp_try_keep_open(sk);
2908                 tcp_moderate_cwnd(tp);
2909         } else {
2910                 tcp_cwnd_down(sk, flag);
2911         }
2912 }
2913
2914 static void tcp_mtup_probe_failed(struct sock *sk)
2915 {
2916         struct inet_connection_sock *icsk = inet_csk(sk);
2917
2918         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2919         icsk->icsk_mtup.probe_size = 0;
2920 }
2921
2922 static void tcp_mtup_probe_success(struct sock *sk)
2923 {
2924         struct tcp_sock *tp = tcp_sk(sk);
2925         struct inet_connection_sock *icsk = inet_csk(sk);
2926
2927         /* FIXME: breaks with very large cwnd */
2928         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2929         tp->snd_cwnd = tp->snd_cwnd *
2930                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2931                        icsk->icsk_mtup.probe_size;
2932         tp->snd_cwnd_cnt = 0;
2933         tp->snd_cwnd_stamp = tcp_time_stamp;
2934         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2935
2936         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2937         icsk->icsk_mtup.probe_size = 0;
2938         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2939 }
2940
2941 /* Do a simple retransmit without using the backoff mechanisms in
2942  * tcp_timer. This is used for path mtu discovery.
2943  * The socket is already locked here.
2944  */
2945 void tcp_simple_retransmit(struct sock *sk)
2946 {
2947         const struct inet_connection_sock *icsk = inet_csk(sk);
2948         struct tcp_sock *tp = tcp_sk(sk);
2949         struct sk_buff *skb;
2950         unsigned int mss = tcp_current_mss(sk);
2951         u32 prior_lost = tp->lost_out;
2952
2953         tcp_for_write_queue(skb, sk) {
2954                 if (skb == tcp_send_head(sk))
2955                         break;
2956                 if (tcp_skb_seglen(skb) > mss &&
2957                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2958                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2959                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2960                                 tp->retrans_out -= tcp_skb_pcount(skb);
2961                         }
2962                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2963                 }
2964         }
2965
2966         tcp_clear_retrans_hints_partial(tp);
2967
2968         if (prior_lost == tp->lost_out)
2969                 return;
2970
2971         if (tcp_is_reno(tp))
2972                 tcp_limit_reno_sacked(tp);
2973
2974         tcp_verify_left_out(tp);
2975
2976         /* Don't muck with the congestion window here.
2977          * Reason is that we do not increase amount of _data_
2978          * in network, but units changed and effective
2979          * cwnd/ssthresh really reduced now.
2980          */
2981         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2982                 tp->high_seq = tp->snd_nxt;
2983                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2984                 tp->prior_ssthresh = 0;
2985                 tp->undo_marker = 0;
2986                 tcp_set_ca_state(sk, TCP_CA_Loss);
2987         }
2988         tcp_xmit_retransmit_queue(sk);
2989 }
2990 EXPORT_SYMBOL(tcp_simple_retransmit);
2991
2992 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2993  * (proportional rate reduction with slow start reduction bound) as described in
2994  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2995  * It computes the number of packets to send (sndcnt) based on packets newly
2996  * delivered:
2997  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2998  *      cwnd reductions across a full RTT.
2999  *   2) If packets in flight is lower than ssthresh (such as due to excess
3000  *      losses and/or application stalls), do not perform any further cwnd
3001  *      reductions, but instead slow start up to ssthresh.
3002  */
3003 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3004                                         int fast_rexmit, int flag)
3005 {
3006         struct tcp_sock *tp = tcp_sk(sk);
3007         int sndcnt = 0;
3008         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3009
3010         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3011                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3012                                tp->prior_cwnd - 1;
3013                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3014         } else {
3015                 sndcnt = min_t(int, delta,
3016                                max_t(int, tp->prr_delivered - tp->prr_out,
3017                                      newly_acked_sacked) + 1);
3018         }
3019
3020         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3021         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3022 }
3023
3024 /* Process an event, which can update packets-in-flight not trivially.
3025  * Main goal of this function is to calculate new estimate for left_out,
3026  * taking into account both packets sitting in receiver's buffer and
3027  * packets lost by network.
3028  *
3029  * Besides that it does CWND reduction, when packet loss is detected
3030  * and changes state of machine.
3031  *
3032  * It does _not_ decide what to send, it is made in function
3033  * tcp_xmit_retransmit_queue().
3034  */
3035 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3036                                   int newly_acked_sacked, int flag)
3037 {
3038         struct inet_connection_sock *icsk = inet_csk(sk);
3039         struct tcp_sock *tp = tcp_sk(sk);
3040         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3041         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3042                                     (tcp_fackets_out(tp) > tp->reordering));
3043         int fast_rexmit = 0, mib_idx;
3044
3045         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3046                 tp->sacked_out = 0;
3047         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3048                 tp->fackets_out = 0;
3049
3050         /* Now state machine starts.
3051          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3052         if (flag & FLAG_ECE)
3053                 tp->prior_ssthresh = 0;
3054
3055         /* B. In all the states check for reneging SACKs. */
3056         if (tcp_check_sack_reneging(sk, flag))
3057                 return;
3058
3059         /* C. Process data loss notification, provided it is valid. */
3060         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3061             before(tp->snd_una, tp->high_seq) &&
3062             icsk->icsk_ca_state != TCP_CA_Open &&
3063             tp->fackets_out > tp->reordering) {
3064                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
3065                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
3066         }
3067
3068         /* D. Check consistency of the current state. */
3069         tcp_verify_left_out(tp);
3070
3071         /* E. Check state exit conditions. State can be terminated
3072          *    when high_seq is ACKed. */
3073         if (icsk->icsk_ca_state == TCP_CA_Open) {
3074                 WARN_ON(tp->retrans_out != 0);
3075                 tp->retrans_stamp = 0;
3076         } else if (!before(tp->snd_una, tp->high_seq)) {
3077                 switch (icsk->icsk_ca_state) {
3078                 case TCP_CA_Loss:
3079                         icsk->icsk_retransmits = 0;
3080                         if (tcp_try_undo_recovery(sk))
3081                                 return;
3082                         break;
3083
3084                 case TCP_CA_CWR:
3085                         /* CWR is to be held something *above* high_seq
3086                          * is ACKed for CWR bit to reach receiver. */
3087                         if (tp->snd_una != tp->high_seq) {
3088                                 tcp_complete_cwr(sk);
3089                                 tcp_set_ca_state(sk, TCP_CA_Open);
3090                         }
3091                         break;
3092
3093                 case TCP_CA_Disorder:
3094                         tcp_try_undo_dsack(sk);
3095                         if (!tp->undo_marker ||
3096                             /* For SACK case do not Open to allow to undo
3097                              * catching for all duplicate ACKs. */
3098                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3099                                 tp->undo_marker = 0;
3100                                 tcp_set_ca_state(sk, TCP_CA_Open);
3101                         }
3102                         break;
3103
3104                 case TCP_CA_Recovery:
3105                         if (tcp_is_reno(tp))
3106                                 tcp_reset_reno_sack(tp);
3107                         if (tcp_try_undo_recovery(sk))
3108                                 return;
3109                         tcp_complete_cwr(sk);
3110                         break;
3111                 }
3112         }
3113
3114         /* F. Process state. */
3115         switch (icsk->icsk_ca_state) {
3116         case TCP_CA_Recovery:
3117                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3118                         if (tcp_is_reno(tp) && is_dupack)
3119                                 tcp_add_reno_sack(sk);
3120                 } else
3121                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3122                 break;
3123         case TCP_CA_Loss:
3124                 if (flag & FLAG_DATA_ACKED)
3125                         icsk->icsk_retransmits = 0;
3126                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3127                         tcp_reset_reno_sack(tp);
3128                 if (!tcp_try_undo_loss(sk)) {
3129                         tcp_moderate_cwnd(tp);
3130                         tcp_xmit_retransmit_queue(sk);
3131                         return;
3132                 }
3133                 if (icsk->icsk_ca_state != TCP_CA_Open)
3134                         return;
3135                 /* Loss is undone; fall through to processing in Open state. */
3136         default:
3137                 if (tcp_is_reno(tp)) {
3138                         if (flag & FLAG_SND_UNA_ADVANCED)
3139                                 tcp_reset_reno_sack(tp);
3140                         if (is_dupack)
3141                                 tcp_add_reno_sack(sk);
3142                 }
3143
3144                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3145                         tcp_try_undo_dsack(sk);
3146
3147                 if (!tcp_time_to_recover(sk)) {
3148                         tcp_try_to_open(sk, flag);
3149                         return;
3150                 }
3151
3152                 /* MTU probe failure: don't reduce cwnd */
3153                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3154                     icsk->icsk_mtup.probe_size &&
3155                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3156                         tcp_mtup_probe_failed(sk);
3157                         /* Restores the reduction we did in tcp_mtup_probe() */
3158                         tp->snd_cwnd++;
3159                         tcp_simple_retransmit(sk);
3160                         return;
3161                 }
3162
3163                 /* Otherwise enter Recovery state */
3164
3165                 if (tcp_is_reno(tp))
3166                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3167                 else
3168                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3169
3170                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3171
3172                 tp->high_seq = tp->snd_nxt;
3173                 tp->prior_ssthresh = 0;
3174                 tp->undo_marker = tp->snd_una;
3175                 tp->undo_retrans = tp->retrans_out;
3176
3177                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3178                         if (!(flag & FLAG_ECE))
3179                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3180                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3181                         TCP_ECN_queue_cwr(tp);
3182                 }
3183
3184                 tp->bytes_acked = 0;
3185                 tp->snd_cwnd_cnt = 0;
3186                 tp->prior_cwnd = tp->snd_cwnd;
3187                 tp->prr_delivered = 0;
3188                 tp->prr_out = 0;
3189                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3190                 fast_rexmit = 1;
3191         }
3192
3193         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3194                 tcp_update_scoreboard(sk, fast_rexmit);
3195         tp->prr_delivered += newly_acked_sacked;
3196         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3197         tcp_xmit_retransmit_queue(sk);
3198 }
3199
3200 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3201 {
3202         tcp_rtt_estimator(sk, seq_rtt);
3203         tcp_set_rto(sk);
3204         inet_csk(sk)->icsk_backoff = 0;
3205 }
3206 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3207
3208 /* Read draft-ietf-tcplw-high-performance before mucking
3209  * with this code. (Supersedes RFC1323)
3210  */
3211 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3212 {
3213         /* RTTM Rule: A TSecr value received in a segment is used to
3214          * update the averaged RTT measurement only if the segment
3215          * acknowledges some new data, i.e., only if it advances the
3216          * left edge of the send window.
3217          *
3218          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3219          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3220          *
3221          * Changed: reset backoff as soon as we see the first valid sample.
3222          * If we do not, we get strongly overestimated rto. With timestamps
3223          * samples are accepted even from very old segments: f.e., when rtt=1
3224          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3225          * answer arrives rto becomes 120 seconds! If at least one of segments
3226          * in window is lost... Voila.                          --ANK (010210)
3227          */
3228         struct tcp_sock *tp = tcp_sk(sk);
3229
3230         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3231 }
3232
3233 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3234 {
3235         /* We don't have a timestamp. Can only use
3236          * packets that are not retransmitted to determine
3237          * rtt estimates. Also, we must not reset the
3238          * backoff for rto until we get a non-retransmitted
3239          * packet. This allows us to deal with a situation
3240          * where the network delay has increased suddenly.
3241          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3242          */
3243
3244         if (flag & FLAG_RETRANS_DATA_ACKED)
3245                 return;
3246
3247         tcp_valid_rtt_meas(sk, seq_rtt);
3248 }
3249
3250 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3251                                       const s32 seq_rtt)
3252 {
3253         const struct tcp_sock *tp = tcp_sk(sk);
3254         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3255         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3256                 tcp_ack_saw_tstamp(sk, flag);
3257         else if (seq_rtt >= 0)
3258                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3259 }
3260
3261 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3262 {
3263         const struct inet_connection_sock *icsk = inet_csk(sk);
3264         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3265         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3266 }
3267
3268 /* Restart timer after forward progress on connection.
3269  * RFC2988 recommends to restart timer to now+rto.
3270  */
3271 static void tcp_rearm_rto(struct sock *sk)
3272 {
3273         const struct tcp_sock *tp = tcp_sk(sk);
3274
3275         if (!tp->packets_out) {
3276                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3277         } else {
3278                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3279                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3280         }
3281 }
3282
3283 /* If we get here, the whole TSO packet has not been acked. */
3284 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3285 {
3286         struct tcp_sock *tp = tcp_sk(sk);
3287         u32 packets_acked;
3288
3289         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3290
3291         packets_acked = tcp_skb_pcount(skb);
3292         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3293                 return 0;
3294         packets_acked -= tcp_skb_pcount(skb);
3295
3296         if (packets_acked) {
3297                 BUG_ON(tcp_skb_pcount(skb) == 0);
3298                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3299         }
3300
3301         return packets_acked;
3302 }
3303
3304 /* Remove acknowledged frames from the retransmission queue. If our packet
3305  * is before the ack sequence we can discard it as it's confirmed to have
3306  * arrived at the other end.
3307  */
3308 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3309                                u32 prior_snd_una)
3310 {
3311         struct tcp_sock *tp = tcp_sk(sk);
3312         const struct inet_connection_sock *icsk = inet_csk(sk);
3313         struct sk_buff *skb;
3314         u32 now = tcp_time_stamp;
3315         int fully_acked = 1;
3316         int flag = 0;
3317         u32 pkts_acked = 0;
3318         u32 reord = tp->packets_out;
3319         u32 prior_sacked = tp->sacked_out;
3320         s32 seq_rtt = -1;
3321         s32 ca_seq_rtt = -1;
3322         ktime_t last_ackt = net_invalid_timestamp();
3323
3324         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3325                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3326                 u32 acked_pcount;
3327                 u8 sacked = scb->sacked;
3328
3329                 /* Determine how many packets and what bytes were acked, tso and else */
3330                 if (after(scb->end_seq, tp->snd_una)) {
3331                         if (tcp_skb_pcount(skb) == 1 ||
3332                             !after(tp->snd_una, scb->seq))
3333                                 break;
3334
3335                         acked_pcount = tcp_tso_acked(sk, skb);
3336                         if (!acked_pcount)
3337                                 break;
3338
3339                         fully_acked = 0;
3340                 } else {
3341                         acked_pcount = tcp_skb_pcount(skb);
3342                 }
3343
3344                 if (sacked & TCPCB_RETRANS) {
3345                         if (sacked & TCPCB_SACKED_RETRANS)
3346                                 tp->retrans_out -= acked_pcount;
3347                         flag |= FLAG_RETRANS_DATA_ACKED;
3348                         ca_seq_rtt = -1;
3349                         seq_rtt = -1;
3350                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3351                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3352                 } else {
3353                         ca_seq_rtt = now - scb->when;
3354                         last_ackt = skb->tstamp;
3355                         if (seq_rtt < 0) {
3356                                 seq_rtt = ca_seq_rtt;
3357                         }
3358                         if (!(sacked & TCPCB_SACKED_ACKED))
3359                                 reord = min(pkts_acked, reord);
3360                 }
3361
3362                 if (sacked & TCPCB_SACKED_ACKED)
3363                         tp->sacked_out -= acked_pcount;
3364                 if (sacked & TCPCB_LOST)
3365                         tp->lost_out -= acked_pcount;
3366
3367                 tp->packets_out -= acked_pcount;
3368                 pkts_acked += acked_pcount;
3369
3370                 /* Initial outgoing SYN's get put onto the write_queue
3371                  * just like anything else we transmit.  It is not
3372                  * true data, and if we misinform our callers that
3373                  * this ACK acks real data, we will erroneously exit
3374                  * connection startup slow start one packet too
3375                  * quickly.  This is severely frowned upon behavior.
3376                  */
3377                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3378                         flag |= FLAG_DATA_ACKED;
3379                 } else {
3380                         flag |= FLAG_SYN_ACKED;
3381                         tp->retrans_stamp = 0;
3382                 }
3383
3384                 if (!fully_acked)
3385                         break;
3386
3387                 tcp_unlink_write_queue(skb, sk);
3388                 sk_wmem_free_skb(sk, skb);
3389                 tp->scoreboard_skb_hint = NULL;
3390                 if (skb == tp->retransmit_skb_hint)
3391                         tp->retransmit_skb_hint = NULL;
3392                 if (skb == tp->lost_skb_hint)
3393                         tp->lost_skb_hint = NULL;
3394         }
3395
3396         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3397                 tp->snd_up = tp->snd_una;
3398
3399         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3400                 flag |= FLAG_SACK_RENEGING;
3401
3402         if (flag & FLAG_ACKED) {
3403                 const struct tcp_congestion_ops *ca_ops
3404                         = inet_csk(sk)->icsk_ca_ops;
3405
3406                 if (unlikely(icsk->icsk_mtup.probe_size &&
3407                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3408                         tcp_mtup_probe_success(sk);
3409                 }
3410
3411                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3412                 tcp_rearm_rto(sk);
3413
3414                 if (tcp_is_reno(tp)) {
3415                         tcp_remove_reno_sacks(sk, pkts_acked);
3416                 } else {
3417                         int delta;
3418
3419                         /* Non-retransmitted hole got filled? That's reordering */
3420                         if (reord < prior_fackets)
3421                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3422
3423                         delta = tcp_is_fack(tp) ? pkts_acked :
3424                                                   prior_sacked - tp->sacked_out;
3425                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3426                 }
3427
3428                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3429
3430                 if (ca_ops->pkts_acked) {
3431                         s32 rtt_us = -1;
3432
3433                         /* Is the ACK triggering packet unambiguous? */
3434                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3435                                 /* High resolution needed and available? */
3436                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3437                                     !ktime_equal(last_ackt,
3438                                                  net_invalid_timestamp()))
3439                                         rtt_us = ktime_us_delta(ktime_get_real(),
3440                                                                 last_ackt);
3441                                 else if (ca_seq_rtt >= 0)
3442                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3443                         }
3444
3445                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3446                 }
3447         }
3448
3449 #if FASTRETRANS_DEBUG > 0
3450         WARN_ON((int)tp->sacked_out < 0);
3451         WARN_ON((int)tp->lost_out < 0);
3452         WARN_ON((int)tp->retrans_out < 0);
3453         if (!tp->packets_out && tcp_is_sack(tp)) {
3454                 icsk = inet_csk(sk);
3455                 if (tp->lost_out) {
3456                         printk(KERN_DEBUG "Leak l=%u %d\n",
3457                                tp->lost_out, icsk->icsk_ca_state);
3458                         tp->lost_out = 0;
3459                 }
3460                 if (tp->sacked_out) {
3461                         printk(KERN_DEBUG "Leak s=%u %d\n",
3462                                tp->sacked_out, icsk->icsk_ca_state);
3463                         tp->sacked_out = 0;
3464                 }
3465                 if (tp->retrans_out) {
3466                         printk(KERN_DEBUG "Leak r=%u %d\n",
3467                                tp->retrans_out, icsk->icsk_ca_state);
3468                         tp->retrans_out = 0;
3469                 }
3470         }
3471 #endif
3472         return flag;
3473 }
3474
3475 static void tcp_ack_probe(struct sock *sk)
3476 {
3477         const struct tcp_sock *tp = tcp_sk(sk);
3478         struct inet_connection_sock *icsk = inet_csk(sk);
3479
3480         /* Was it a usable window open? */
3481
3482         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3483                 icsk->icsk_backoff = 0;
3484                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3485                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3486                  * This function is not for random using!
3487                  */
3488         } else {
3489                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3490                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3491                                           TCP_RTO_MAX);
3492         }
3493 }
3494
3495 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3496 {
3497         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3498                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3499 }
3500
3501 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3502 {
3503         const struct tcp_sock *tp = tcp_sk(sk);
3504         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3505                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3506 }
3507
3508 /* Check that window update is acceptable.
3509  * The function assumes that snd_una<=ack<=snd_next.
3510  */
3511 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3512                                         const u32 ack, const u32 ack_seq,
3513                                         const u32 nwin)
3514 {
3515         return  after(ack, tp->snd_una) ||
3516                 after(ack_seq, tp->snd_wl1) ||
3517                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3518 }
3519
3520 /* Update our send window.
3521  *
3522  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3523  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3524  */
3525 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3526                                  u32 ack_seq)
3527 {
3528         struct tcp_sock *tp = tcp_sk(sk);
3529         int flag = 0;
3530         u32 nwin = ntohs(tcp_hdr(skb)->window);
3531
3532         if (likely(!tcp_hdr(skb)->syn))
3533                 nwin <<= tp->rx_opt.snd_wscale;
3534
3535         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3536                 flag |= FLAG_WIN_UPDATE;
3537                 tcp_update_wl(tp, ack_seq);
3538
3539                 if (tp->snd_wnd != nwin) {
3540                         tp->snd_wnd = nwin;
3541
3542                         /* Note, it is the only place, where
3543                          * fast path is recovered for sending TCP.
3544                          */
3545                         tp->pred_flags = 0;
3546                         tcp_fast_path_check(sk);
3547
3548                         if (nwin > tp->max_window) {
3549                                 tp->max_window = nwin;
3550                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3551                         }
3552                 }
3553         }
3554
3555         tp->snd_una = ack;
3556
3557         return flag;
3558 }
3559
3560 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3561  * continue in congestion avoidance.
3562  */
3563 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3564 {
3565         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3566         tp->snd_cwnd_cnt = 0;
3567         tp->bytes_acked = 0;
3568         TCP_ECN_queue_cwr(tp);
3569         tcp_moderate_cwnd(tp);
3570 }
3571
3572 /* A conservative spurious RTO response algorithm: reduce cwnd using
3573  * rate halving and continue in congestion avoidance.
3574  */
3575 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3576 {
3577         tcp_enter_cwr(sk, 0);
3578 }
3579
3580 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3581 {
3582         if (flag & FLAG_ECE)
3583                 tcp_ratehalving_spur_to_response(sk);
3584         else
3585                 tcp_undo_cwr(sk, true);
3586 }
3587
3588 /* F-RTO spurious RTO detection algorithm (RFC4138)
3589  *
3590  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3591  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3592  * window (but not to or beyond highest sequence sent before RTO):
3593  *   On First ACK,  send two new segments out.
3594  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3595  *                  algorithm is not part of the F-RTO detection algorithm
3596  *                  given in RFC4138 but can be selected separately).
3597  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3598  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3599  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3600  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3601  *
3602  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3603  * original window even after we transmit two new data segments.
3604  *
3605  * SACK version:
3606  *   on first step, wait until first cumulative ACK arrives, then move to
3607  *   the second step. In second step, the next ACK decides.
3608  *
3609  * F-RTO is implemented (mainly) in four functions:
3610  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3611  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3612  *     called when tcp_use_frto() showed green light
3613  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3614  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3615  *     to prove that the RTO is indeed spurious. It transfers the control
3616  *     from F-RTO to the conventional RTO recovery
3617  */
3618 static int tcp_process_frto(struct sock *sk, int flag)
3619 {
3620         struct tcp_sock *tp = tcp_sk(sk);
3621
3622         tcp_verify_left_out(tp);
3623
3624         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3625         if (flag & FLAG_DATA_ACKED)
3626                 inet_csk(sk)->icsk_retransmits = 0;
3627
3628         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3629             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3630                 tp->undo_marker = 0;
3631
3632         if (!before(tp->snd_una, tp->frto_highmark)) {
3633                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3634                 return 1;
3635         }
3636
3637         if (!tcp_is_sackfrto(tp)) {
3638                 /* RFC4138 shortcoming in step 2; should also have case c):
3639                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3640                  * data, winupdate
3641                  */
3642                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3643                         return 1;
3644
3645                 if (!(flag & FLAG_DATA_ACKED)) {
3646                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3647                                             flag);
3648                         return 1;
3649                 }
3650         } else {
3651                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3652                         /* Prevent sending of new data. */
3653                         tp->snd_cwnd = min(tp->snd_cwnd,
3654                                            tcp_packets_in_flight(tp));
3655                         return 1;
3656                 }
3657
3658                 if ((tp->frto_counter >= 2) &&
3659                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3660                      ((flag & FLAG_DATA_SACKED) &&
3661                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3662                         /* RFC4138 shortcoming (see comment above) */
3663                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3664                             (flag & FLAG_NOT_DUP))
3665                                 return 1;
3666
3667                         tcp_enter_frto_loss(sk, 3, flag);
3668                         return 1;
3669                 }
3670         }
3671
3672         if (tp->frto_counter == 1) {
3673                 /* tcp_may_send_now needs to see updated state */
3674                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3675                 tp->frto_counter = 2;
3676
3677                 if (!tcp_may_send_now(sk))
3678                         tcp_enter_frto_loss(sk, 2, flag);
3679
3680                 return 1;
3681         } else {
3682                 switch (sysctl_tcp_frto_response) {
3683                 case 2:
3684                         tcp_undo_spur_to_response(sk, flag);
3685                         break;
3686                 case 1:
3687                         tcp_conservative_spur_to_response(tp);
3688                         break;
3689                 default:
3690                         tcp_ratehalving_spur_to_response(sk);
3691                         break;
3692                 }
3693                 tp->frto_counter = 0;
3694                 tp->undo_marker = 0;
3695                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3696         }
3697         return 0;
3698 }
3699
3700 /* This routine deals with incoming acks, but not outgoing ones. */
3701 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3702 {
3703         struct inet_connection_sock *icsk = inet_csk(sk);
3704         struct tcp_sock *tp = tcp_sk(sk);
3705         u32 prior_snd_una = tp->snd_una;
3706         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3707         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3708         u32 prior_in_flight;
3709         u32 prior_fackets;
3710         int prior_packets;
3711         int prior_sacked = tp->sacked_out;
3712         int newly_acked_sacked = 0;
3713         int frto_cwnd = 0;
3714
3715         /* If the ack is older than previous acks
3716          * then we can probably ignore it.
3717          */
3718         if (before(ack, prior_snd_una))
3719                 goto old_ack;
3720
3721         /* If the ack includes data we haven't sent yet, discard
3722          * this segment (RFC793 Section 3.9).
3723          */
3724         if (after(ack, tp->snd_nxt))
3725                 goto invalid_ack;
3726
3727         if (after(ack, prior_snd_una))
3728                 flag |= FLAG_SND_UNA_ADVANCED;
3729
3730         if (sysctl_tcp_abc) {
3731                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3732                         tp->bytes_acked += ack - prior_snd_una;
3733                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3734                         /* we assume just one segment left network */
3735                         tp->bytes_acked += min(ack - prior_snd_una,
3736                                                tp->mss_cache);
3737         }
3738
3739         prior_fackets = tp->fackets_out;
3740         prior_in_flight = tcp_packets_in_flight(tp);
3741
3742         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3743                 /* Window is constant, pure forward advance.
3744                  * No more checks are required.
3745                  * Note, we use the fact that SND.UNA>=SND.WL2.
3746                  */
3747                 tcp_update_wl(tp, ack_seq);
3748                 tp->snd_una = ack;
3749                 flag |= FLAG_WIN_UPDATE;
3750
3751                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3752
3753                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3754         } else {
3755                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3756                         flag |= FLAG_DATA;
3757                 else
3758                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3759
3760                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3761
3762                 if (TCP_SKB_CB(skb)->sacked)
3763                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3764
3765                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3766                         flag |= FLAG_ECE;
3767
3768                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3769         }
3770
3771         /* We passed data and got it acked, remove any soft error
3772          * log. Something worked...
3773          */
3774         sk->sk_err_soft = 0;
3775         icsk->icsk_probes_out = 0;
3776         tp->rcv_tstamp = tcp_time_stamp;
3777         prior_packets = tp->packets_out;
3778         if (!prior_packets)
3779                 goto no_queue;
3780
3781         /* See if we can take anything off of the retransmit queue. */
3782         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3783
3784         newly_acked_sacked = (prior_packets - prior_sacked) -
3785                              (tp->packets_out - tp->sacked_out);
3786
3787         if (tp->frto_counter)
3788                 frto_cwnd = tcp_process_frto(sk, flag);
3789         /* Guarantee sacktag reordering detection against wrap-arounds */
3790         if (before(tp->frto_highmark, tp->snd_una))
3791                 tp->frto_highmark = 0;
3792
3793         if (tcp_ack_is_dubious(sk, flag)) {
3794                 /* Advance CWND, if state allows this. */
3795                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3796                     tcp_may_raise_cwnd(sk, flag))
3797                         tcp_cong_avoid(sk, ack, prior_in_flight);
3798                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3799                                       newly_acked_sacked, flag);
3800         } else {
3801                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3802                         tcp_cong_avoid(sk, ack, prior_in_flight);
3803         }
3804
3805         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3806                 dst_confirm(__sk_dst_get(sk));
3807
3808         return 1;
3809
3810 no_queue:
3811         /* If this ack opens up a zero window, clear backoff.  It was
3812          * being used to time the probes, and is probably far higher than
3813          * it needs to be for normal retransmission.
3814          */
3815         if (tcp_send_head(sk))
3816                 tcp_ack_probe(sk);
3817         return 1;
3818
3819 invalid_ack:
3820         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3821         return -1;
3822
3823 old_ack:
3824         if (TCP_SKB_CB(skb)->sacked) {
3825                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3826                 if (icsk->icsk_ca_state == TCP_CA_Open)
3827                         tcp_try_keep_open(sk);
3828         }
3829
3830         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3831         return 0;
3832 }
3833
3834 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3835  * But, this can also be called on packets in the established flow when
3836  * the fast version below fails.
3837  */
3838 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3839                        const u8 **hvpp, int estab)
3840 {
3841         const unsigned char *ptr;
3842         const struct tcphdr *th = tcp_hdr(skb);
3843         int length = (th->doff * 4) - sizeof(struct tcphdr);
3844
3845         ptr = (const unsigned char *)(th + 1);
3846         opt_rx->saw_tstamp = 0;
3847
3848         while (length > 0) {
3849                 int opcode = *ptr++;
3850                 int opsize;
3851
3852                 switch (opcode) {
3853                 case TCPOPT_EOL:
3854                         return;
3855                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3856                         length--;
3857                         continue;
3858                 default:
3859                         opsize = *ptr++;
3860                         if (opsize < 2) /* "silly options" */
3861                                 return;
3862                         if (opsize > length)
3863                                 return; /* don't parse partial options */
3864                         switch (opcode) {
3865                         case TCPOPT_MSS:
3866                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3867                                         u16 in_mss = get_unaligned_be16(ptr);
3868                                         if (in_mss) {
3869                                                 if (opt_rx->user_mss &&
3870                                                     opt_rx->user_mss < in_mss)
3871                                                         in_mss = opt_rx->user_mss;
3872                                                 opt_rx->mss_clamp = in_mss;
3873                                         }
3874                                 }
3875                                 break;
3876                         case TCPOPT_WINDOW:
3877                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3878                                     !estab && sysctl_tcp_window_scaling) {
3879                                         __u8 snd_wscale = *(__u8 *)ptr;
3880                                         opt_rx->wscale_ok = 1;
3881                                         if (snd_wscale > 14) {
3882                                                 if (net_ratelimit())
3883                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3884                                                                "scaling value %d >14 received.\n",
3885                                                                snd_wscale);
3886                                                 snd_wscale = 14;
3887                                         }
3888                                         opt_rx->snd_wscale = snd_wscale;
3889                                 }
3890                                 break;
3891                         case TCPOPT_TIMESTAMP:
3892                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3893                                     ((estab && opt_rx->tstamp_ok) ||
3894                                      (!estab && sysctl_tcp_timestamps))) {
3895                                         opt_rx->saw_tstamp = 1;
3896                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3897                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3898                                 }
3899                                 break;
3900                         case TCPOPT_SACK_PERM:
3901                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3902                                     !estab && sysctl_tcp_sack) {
3903                                         opt_rx->sack_ok = 1;
3904                                         tcp_sack_reset(opt_rx);
3905                                 }
3906                                 break;
3907
3908                         case TCPOPT_SACK:
3909                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3910                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3911                                    opt_rx->sack_ok) {
3912                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3913                                 }
3914                                 break;
3915 #ifdef CONFIG_TCP_MD5SIG
3916                         case TCPOPT_MD5SIG:
3917                                 /*
3918                                  * The MD5 Hash has already been
3919                                  * checked (see tcp_v{4,6}_do_rcv()).
3920                                  */
3921                                 break;
3922 #endif
3923                         case TCPOPT_COOKIE:
3924                                 /* This option is variable length.
3925                                  */
3926                                 switch (opsize) {
3927                                 case TCPOLEN_COOKIE_BASE:
3928                                         /* not yet implemented */
3929                                         break;
3930                                 case TCPOLEN_COOKIE_PAIR:
3931                                         /* not yet implemented */
3932                                         break;
3933                                 case TCPOLEN_COOKIE_MIN+0:
3934                                 case TCPOLEN_COOKIE_MIN+2:
3935                                 case TCPOLEN_COOKIE_MIN+4:
3936                                 case TCPOLEN_COOKIE_MIN+6:
3937                                 case TCPOLEN_COOKIE_MAX:
3938                                         /* 16-bit multiple */
3939                                         opt_rx->cookie_plus = opsize;
3940                                         *hvpp = ptr;
3941                                         break;
3942                                 default:
3943                                         /* ignore option */
3944                                         break;
3945                                 }
3946                                 break;
3947                         }
3948
3949                         ptr += opsize-2;
3950                         length -= opsize;
3951                 }
3952         }
3953 }
3954 EXPORT_SYMBOL(tcp_parse_options);
3955
3956 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3957 {
3958         const __be32 *ptr = (const __be32 *)(th + 1);
3959
3960         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3961                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3962                 tp->rx_opt.saw_tstamp = 1;
3963                 ++ptr;
3964                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3965                 ++ptr;
3966                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3967                 return 1;
3968         }
3969         return 0;
3970 }
3971
3972 /* Fast parse options. This hopes to only see timestamps.
3973  * If it is wrong it falls back on tcp_parse_options().
3974  */
3975 static int tcp_fast_parse_options(const struct sk_buff *skb,
3976                                   const struct tcphdr *th,
3977                                   struct tcp_sock *tp, const u8 **hvpp)
3978 {
3979         /* In the spirit of fast parsing, compare doff directly to constant
3980          * values.  Because equality is used, short doff can be ignored here.
3981          */
3982         if (th->doff == (sizeof(*th) / 4)) {
3983                 tp->rx_opt.saw_tstamp = 0;
3984                 return 0;
3985         } else if (tp->rx_opt.tstamp_ok &&
3986                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3987                 if (tcp_parse_aligned_timestamp(tp, th))
3988                         return 1;
3989         }
3990         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3991         return 1;
3992 }
3993
3994 #ifdef CONFIG_TCP_MD5SIG
3995 /*
3996  * Parse MD5 Signature option
3997  */
3998 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3999 {
4000         int length = (th->doff << 2) - sizeof(*th);
4001         const u8 *ptr = (const u8 *)(th + 1);
4002
4003         /* If the TCP option is too short, we can short cut */
4004         if (length < TCPOLEN_MD5SIG)
4005                 return NULL;
4006
4007         while (length > 0) {
4008                 int opcode = *ptr++;
4009                 int opsize;
4010
4011                 switch(opcode) {
4012                 case TCPOPT_EOL:
4013                         return NULL;
4014                 case TCPOPT_NOP:
4015                         length--;
4016                         continue;
4017                 default:
4018                         opsize = *ptr++;
4019                         if (opsize < 2 || opsize > length)
4020                                 return NULL;
4021                         if (opcode == TCPOPT_MD5SIG)
4022                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4023                 }
4024                 ptr += opsize - 2;
4025                 length -= opsize;
4026         }
4027         return NULL;
4028 }
4029 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4030 #endif
4031
4032 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4033 {
4034         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4035         tp->rx_opt.ts_recent_stamp = get_seconds();
4036 }
4037
4038 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4039 {
4040         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4041                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4042                  * extra check below makes sure this can only happen
4043                  * for pure ACK frames.  -DaveM
4044                  *
4045                  * Not only, also it occurs for expired timestamps.
4046                  */
4047
4048                 if (tcp_paws_check(&tp->rx_opt, 0))
4049                         tcp_store_ts_recent(tp);
4050         }
4051 }
4052
4053 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4054  *
4055  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4056  * it can pass through stack. So, the following predicate verifies that
4057  * this segment is not used for anything but congestion avoidance or
4058  * fast retransmit. Moreover, we even are able to eliminate most of such
4059  * second order effects, if we apply some small "replay" window (~RTO)
4060  * to timestamp space.
4061  *
4062  * All these measures still do not guarantee that we reject wrapped ACKs
4063  * on networks with high bandwidth, when sequence space is recycled fastly,
4064  * but it guarantees that such events will be very rare and do not affect
4065  * connection seriously. This doesn't look nice, but alas, PAWS is really
4066  * buggy extension.
4067  *
4068  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4069  * states that events when retransmit arrives after original data are rare.
4070  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4071  * the biggest problem on large power networks even with minor reordering.
4072  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4073  * up to bandwidth of 18Gigabit/sec. 8) ]
4074  */
4075
4076 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4077 {
4078         const struct tcp_sock *tp = tcp_sk(sk);
4079         const struct tcphdr *th = tcp_hdr(skb);
4080         u32 seq = TCP_SKB_CB(skb)->seq;
4081         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4082
4083         return (/* 1. Pure ACK with correct sequence number. */
4084                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4085
4086                 /* 2. ... and duplicate ACK. */
4087                 ack == tp->snd_una &&
4088
4089                 /* 3. ... and does not update window. */
4090                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4091
4092                 /* 4. ... and sits in replay window. */
4093                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4094 }
4095
4096 static inline int tcp_paws_discard(const struct sock *sk,
4097                                    const struct sk_buff *skb)
4098 {
4099         const struct tcp_sock *tp = tcp_sk(sk);
4100
4101         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4102                !tcp_disordered_ack(sk, skb);
4103 }
4104
4105 /* Check segment sequence number for validity.
4106  *
4107  * Segment controls are considered valid, if the segment
4108  * fits to the window after truncation to the window. Acceptability
4109  * of data (and SYN, FIN, of course) is checked separately.
4110  * See tcp_data_queue(), for example.
4111  *
4112  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4113  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4114  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4115  * (borrowed from freebsd)
4116  */
4117
4118 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4119 {
4120         return  !before(end_seq, tp->rcv_wup) &&
4121                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4122 }
4123
4124 /* When we get a reset we do this. */
4125 static void tcp_reset(struct sock *sk)
4126 {
4127         /* We want the right error as BSD sees it (and indeed as we do). */
4128         switch (sk->sk_state) {
4129         case TCP_SYN_SENT:
4130                 sk->sk_err = ECONNREFUSED;
4131                 break;
4132         case TCP_CLOSE_WAIT:
4133                 sk->sk_err = EPIPE;
4134                 break;
4135         case TCP_CLOSE:
4136                 return;
4137         default:
4138                 sk->sk_err = ECONNRESET;
4139         }
4140         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4141         smp_wmb();
4142
4143         if (!sock_flag(sk, SOCK_DEAD))
4144                 sk->sk_error_report(sk);
4145
4146         tcp_done(sk);
4147 }
4148
4149 /*
4150  *      Process the FIN bit. This now behaves as it is supposed to work
4151  *      and the FIN takes effect when it is validly part of sequence
4152  *      space. Not before when we get holes.
4153  *
4154  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4155  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4156  *      TIME-WAIT)
4157  *
4158  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4159  *      close and we go into CLOSING (and later onto TIME-WAIT)
4160  *
4161  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4162  */
4163 static void tcp_fin(struct sock *sk)
4164 {
4165         struct tcp_sock *tp = tcp_sk(sk);
4166
4167         inet_csk_schedule_ack(sk);
4168
4169         sk->sk_shutdown |= RCV_SHUTDOWN;
4170         sock_set_flag(sk, SOCK_DONE);
4171
4172         switch (sk->sk_state) {
4173         case TCP_SYN_RECV:
4174         case TCP_ESTABLISHED:
4175                 /* Move to CLOSE_WAIT */
4176                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4177                 inet_csk(sk)->icsk_ack.pingpong = 1;
4178                 break;
4179
4180         case TCP_CLOSE_WAIT:
4181         case TCP_CLOSING:
4182                 /* Received a retransmission of the FIN, do
4183                  * nothing.
4184                  */
4185                 break;
4186         case TCP_LAST_ACK:
4187                 /* RFC793: Remain in the LAST-ACK state. */
4188                 break;
4189
4190         case TCP_FIN_WAIT1:
4191                 /* This case occurs when a simultaneous close
4192                  * happens, we must ack the received FIN and
4193                  * enter the CLOSING state.
4194                  */
4195                 tcp_send_ack(sk);
4196                 tcp_set_state(sk, TCP_CLOSING);
4197                 break;
4198         case TCP_FIN_WAIT2:
4199                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4200                 tcp_send_ack(sk);
4201                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4202                 break;
4203         default:
4204                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4205                  * cases we should never reach this piece of code.
4206                  */
4207                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4208                        __func__, sk->sk_state);
4209                 break;
4210         }
4211
4212         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4213          * Probably, we should reset in this case. For now drop them.
4214          */
4215         __skb_queue_purge(&tp->out_of_order_queue);
4216         if (tcp_is_sack(tp))
4217                 tcp_sack_reset(&tp->rx_opt);
4218         sk_mem_reclaim(sk);
4219
4220         if (!sock_flag(sk, SOCK_DEAD)) {
4221                 sk->sk_state_change(sk);
4222
4223                 /* Do not send POLL_HUP for half duplex close. */
4224                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4225                     sk->sk_state == TCP_CLOSE)
4226                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4227                 else
4228                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4229         }
4230 }
4231
4232 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4233                                   u32 end_seq)
4234 {
4235         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4236                 if (before(seq, sp->start_seq))
4237                         sp->start_seq = seq;
4238                 if (after(end_seq, sp->end_seq))
4239                         sp->end_seq = end_seq;
4240                 return 1;
4241         }
4242         return 0;
4243 }
4244
4245 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4246 {
4247         struct tcp_sock *tp = tcp_sk(sk);
4248
4249         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4250                 int mib_idx;
4251
4252                 if (before(seq, tp->rcv_nxt))
4253                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4254                 else
4255                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4256
4257                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4258
4259                 tp->rx_opt.dsack = 1;
4260                 tp->duplicate_sack[0].start_seq = seq;
4261                 tp->duplicate_sack[0].end_seq = end_seq;
4262         }
4263 }
4264
4265 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4266 {
4267         struct tcp_sock *tp = tcp_sk(sk);
4268
4269         if (!tp->rx_opt.dsack)
4270                 tcp_dsack_set(sk, seq, end_seq);
4271         else
4272                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4273 }
4274
4275 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4276 {
4277         struct tcp_sock *tp = tcp_sk(sk);
4278
4279         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4280             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4281                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4282                 tcp_enter_quickack_mode(sk);
4283
4284                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4285                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4286
4287                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4288                                 end_seq = tp->rcv_nxt;
4289                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4290                 }
4291         }
4292
4293         tcp_send_ack(sk);
4294 }
4295
4296 /* These routines update the SACK block as out-of-order packets arrive or
4297  * in-order packets close up the sequence space.
4298  */
4299 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4300 {
4301         int this_sack;
4302         struct tcp_sack_block *sp = &tp->selective_acks[0];
4303         struct tcp_sack_block *swalk = sp + 1;
4304
4305         /* See if the recent change to the first SACK eats into
4306          * or hits the sequence space of other SACK blocks, if so coalesce.
4307          */
4308         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4309                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4310                         int i;
4311
4312                         /* Zap SWALK, by moving every further SACK up by one slot.
4313                          * Decrease num_sacks.
4314                          */
4315                         tp->rx_opt.num_sacks--;
4316                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4317                                 sp[i] = sp[i + 1];
4318                         continue;
4319                 }
4320                 this_sack++, swalk++;
4321         }
4322 }
4323
4324 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4325 {
4326         struct tcp_sock *tp = tcp_sk(sk);
4327         struct tcp_sack_block *sp = &tp->selective_acks[0];
4328         int cur_sacks = tp->rx_opt.num_sacks;
4329         int this_sack;
4330
4331         if (!cur_sacks)
4332                 goto new_sack;
4333
4334         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4335                 if (tcp_sack_extend(sp, seq, end_seq)) {
4336                         /* Rotate this_sack to the first one. */
4337                         for (; this_sack > 0; this_sack--, sp--)
4338                                 swap(*sp, *(sp - 1));
4339                         if (cur_sacks > 1)
4340                                 tcp_sack_maybe_coalesce(tp);
4341                         return;
4342                 }
4343         }
4344
4345         /* Could not find an adjacent existing SACK, build a new one,
4346          * put it at the front, and shift everyone else down.  We
4347          * always know there is at least one SACK present already here.
4348          *
4349          * If the sack array is full, forget about the last one.
4350          */
4351         if (this_sack >= TCP_NUM_SACKS) {
4352                 this_sack--;
4353                 tp->rx_opt.num_sacks--;
4354                 sp--;
4355         }
4356         for (; this_sack > 0; this_sack--, sp--)
4357                 *sp = *(sp - 1);
4358
4359 new_sack:
4360         /* Build the new head SACK, and we're done. */
4361         sp->start_seq = seq;
4362         sp->end_seq = end_seq;
4363         tp->rx_opt.num_sacks++;
4364 }
4365
4366 /* RCV.NXT advances, some SACKs should be eaten. */
4367
4368 static void tcp_sack_remove(struct tcp_sock *tp)
4369 {
4370         struct tcp_sack_block *sp = &tp->selective_acks[0];
4371         int num_sacks = tp->rx_opt.num_sacks;
4372         int this_sack;
4373
4374         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4375         if (skb_queue_empty(&tp->out_of_order_queue)) {
4376                 tp->rx_opt.num_sacks = 0;
4377                 return;
4378         }
4379
4380         for (this_sack = 0; this_sack < num_sacks;) {
4381                 /* Check if the start of the sack is covered by RCV.NXT. */
4382                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4383                         int i;
4384
4385                         /* RCV.NXT must cover all the block! */
4386                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4387
4388                         /* Zap this SACK, by moving forward any other SACKS. */
4389                         for (i=this_sack+1; i < num_sacks; i++)
4390                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4391                         num_sacks--;
4392                         continue;
4393                 }
4394                 this_sack++;
4395                 sp++;
4396         }
4397         tp->rx_opt.num_sacks = num_sacks;
4398 }
4399
4400 /* This one checks to see if we can put data from the
4401  * out_of_order queue into the receive_queue.
4402  */
4403 static void tcp_ofo_queue(struct sock *sk)
4404 {
4405         struct tcp_sock *tp = tcp_sk(sk);
4406         __u32 dsack_high = tp->rcv_nxt;
4407         struct sk_buff *skb;
4408
4409         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4410                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4411                         break;
4412
4413                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4414                         __u32 dsack = dsack_high;
4415                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4416                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4417                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4418                 }
4419
4420                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4421                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4422                         __skb_unlink(skb, &tp->out_of_order_queue);
4423                         __kfree_skb(skb);
4424                         continue;
4425                 }
4426                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4427                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4428                            TCP_SKB_CB(skb)->end_seq);
4429
4430                 __skb_unlink(skb, &tp->out_of_order_queue);
4431                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4432                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4433                 if (tcp_hdr(skb)->fin)
4434                         tcp_fin(sk);
4435         }
4436 }
4437
4438 static int tcp_prune_ofo_queue(struct sock *sk);
4439 static int tcp_prune_queue(struct sock *sk);
4440
4441 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4442 {
4443         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4444             !sk_rmem_schedule(sk, size)) {
4445
4446                 if (tcp_prune_queue(sk) < 0)
4447                         return -1;
4448
4449                 if (!sk_rmem_schedule(sk, size)) {
4450                         if (!tcp_prune_ofo_queue(sk))
4451                                 return -1;
4452
4453                         if (!sk_rmem_schedule(sk, size))
4454                                 return -1;
4455                 }
4456         }
4457         return 0;
4458 }
4459
4460 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4461 {
4462         const struct tcphdr *th = tcp_hdr(skb);
4463         struct tcp_sock *tp = tcp_sk(sk);
4464         int eaten = -1;
4465
4466         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4467                 goto drop;
4468
4469         skb_dst_drop(skb);
4470         __skb_pull(skb, th->doff * 4);
4471
4472         TCP_ECN_accept_cwr(tp, skb);
4473
4474         tp->rx_opt.dsack = 0;
4475
4476         /*  Queue data for delivery to the user.
4477          *  Packets in sequence go to the receive queue.
4478          *  Out of sequence packets to the out_of_order_queue.
4479          */
4480         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4481                 if (tcp_receive_window(tp) == 0)
4482                         goto out_of_window;
4483
4484                 /* Ok. In sequence. In window. */
4485                 if (tp->ucopy.task == current &&
4486                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4487                     sock_owned_by_user(sk) && !tp->urg_data) {
4488                         int chunk = min_t(unsigned int, skb->len,
4489                                           tp->ucopy.len);
4490
4491                         __set_current_state(TASK_RUNNING);
4492
4493                         local_bh_enable();
4494                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4495                                 tp->ucopy.len -= chunk;
4496                                 tp->copied_seq += chunk;
4497                                 eaten = (chunk == skb->len);
4498                                 tcp_rcv_space_adjust(sk);
4499                         }
4500                         local_bh_disable();
4501                 }
4502
4503                 if (eaten <= 0) {
4504 queue_and_out:
4505                         if (eaten < 0 &&
4506                             tcp_try_rmem_schedule(sk, skb->truesize))
4507                                 goto drop;
4508
4509                         skb_set_owner_r(skb, sk);
4510                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4511                 }
4512                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4513                 if (skb->len)
4514                         tcp_event_data_recv(sk, skb);
4515                 if (th->fin)
4516                         tcp_fin(sk);
4517
4518                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4519                         tcp_ofo_queue(sk);
4520
4521                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4522                          * gap in queue is filled.
4523                          */
4524                         if (skb_queue_empty(&tp->out_of_order_queue))
4525                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4526                 }
4527
4528                 if (tp->rx_opt.num_sacks)
4529                         tcp_sack_remove(tp);
4530
4531                 tcp_fast_path_check(sk);
4532
4533                 if (eaten > 0)
4534                         __kfree_skb(skb);
4535                 else if (!sock_flag(sk, SOCK_DEAD))
4536                         sk->sk_data_ready(sk, 0);
4537                 return;
4538         }
4539
4540         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4541                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4542                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4543                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4544
4545 out_of_window:
4546                 tcp_enter_quickack_mode(sk);
4547                 inet_csk_schedule_ack(sk);
4548 drop:
4549                 __kfree_skb(skb);
4550                 return;
4551         }
4552
4553         /* Out of window. F.e. zero window probe. */
4554         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4555                 goto out_of_window;
4556
4557         tcp_enter_quickack_mode(sk);
4558
4559         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4560                 /* Partial packet, seq < rcv_next < end_seq */
4561                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4562                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4563                            TCP_SKB_CB(skb)->end_seq);
4564
4565                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4566
4567                 /* If window is closed, drop tail of packet. But after
4568                  * remembering D-SACK for its head made in previous line.
4569                  */
4570                 if (!tcp_receive_window(tp))
4571                         goto out_of_window;
4572                 goto queue_and_out;
4573         }
4574
4575         TCP_ECN_check_ce(tp, skb);
4576
4577         if (tcp_try_rmem_schedule(sk, skb->truesize))
4578                 goto drop;
4579
4580         /* Disable header prediction. */
4581         tp->pred_flags = 0;
4582         inet_csk_schedule_ack(sk);
4583
4584         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4585                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4586
4587         skb_set_owner_r(skb, sk);
4588
4589         if (!skb_peek(&tp->out_of_order_queue)) {
4590                 /* Initial out of order segment, build 1 SACK. */
4591                 if (tcp_is_sack(tp)) {
4592                         tp->rx_opt.num_sacks = 1;
4593                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4594                         tp->selective_acks[0].end_seq =
4595                                                 TCP_SKB_CB(skb)->end_seq;
4596                 }
4597                 __skb_queue_head(&tp->out_of_order_queue, skb);
4598         } else {
4599                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4600                 u32 seq = TCP_SKB_CB(skb)->seq;
4601                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4602
4603                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4604                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4605
4606                         if (!tp->rx_opt.num_sacks ||
4607                             tp->selective_acks[0].end_seq != seq)
4608                                 goto add_sack;
4609
4610                         /* Common case: data arrive in order after hole. */
4611                         tp->selective_acks[0].end_seq = end_seq;
4612                         return;
4613                 }
4614
4615                 /* Find place to insert this segment. */
4616                 while (1) {
4617                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4618                                 break;
4619                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4620                                 skb1 = NULL;
4621                                 break;
4622                         }
4623                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4624                 }
4625
4626                 /* Do skb overlap to previous one? */
4627                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4628                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4629                                 /* All the bits are present. Drop. */
4630                                 __kfree_skb(skb);
4631                                 tcp_dsack_set(sk, seq, end_seq);
4632                                 goto add_sack;
4633                         }
4634                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4635                                 /* Partial overlap. */
4636                                 tcp_dsack_set(sk, seq,
4637                                               TCP_SKB_CB(skb1)->end_seq);
4638                         } else {
4639                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4640                                                        skb1))
4641                                         skb1 = NULL;
4642                                 else
4643                                         skb1 = skb_queue_prev(
4644                                                 &tp->out_of_order_queue,
4645                                                 skb1);
4646                         }
4647                 }
4648                 if (!skb1)
4649                         __skb_queue_head(&tp->out_of_order_queue, skb);
4650                 else
4651                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4652
4653                 /* And clean segments covered by new one as whole. */
4654                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4655                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4656
4657                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4658                                 break;
4659                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4660                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4661                                                  end_seq);
4662                                 break;
4663                         }
4664                         __skb_unlink(skb1, &tp->out_of_order_queue);
4665                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4666                                          TCP_SKB_CB(skb1)->end_seq);
4667                         __kfree_skb(skb1);
4668                 }
4669
4670 add_sack:
4671                 if (tcp_is_sack(tp))
4672                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4673         }
4674 }
4675
4676 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4677                                         struct sk_buff_head *list)
4678 {
4679         struct sk_buff *next = NULL;
4680
4681         if (!skb_queue_is_last(list, skb))
4682                 next = skb_queue_next(list, skb);
4683
4684         __skb_unlink(skb, list);
4685         __kfree_skb(skb);
4686         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4687
4688         return next;
4689 }
4690
4691 /* Collapse contiguous sequence of skbs head..tail with
4692  * sequence numbers start..end.
4693  *
4694  * If tail is NULL, this means until the end of the list.
4695  *
4696  * Segments with FIN/SYN are not collapsed (only because this
4697  * simplifies code)
4698  */
4699 static void
4700 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4701              struct sk_buff *head, struct sk_buff *tail,
4702              u32 start, u32 end)
4703 {
4704         struct sk_buff *skb, *n;
4705         bool end_of_skbs;
4706
4707         /* First, check that queue is collapsible and find
4708          * the point where collapsing can be useful. */
4709         skb = head;
4710 restart:
4711         end_of_skbs = true;
4712         skb_queue_walk_from_safe(list, skb, n) {
4713                 if (skb == tail)
4714                         break;
4715                 /* No new bits? It is possible on ofo queue. */
4716                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4717                         skb = tcp_collapse_one(sk, skb, list);
4718                         if (!skb)
4719                                 break;
4720                         goto restart;
4721                 }
4722
4723                 /* The first skb to collapse is:
4724                  * - not SYN/FIN and
4725                  * - bloated or contains data before "start" or
4726                  *   overlaps to the next one.
4727                  */
4728                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4729                     (tcp_win_from_space(skb->truesize) > skb->len ||
4730                      before(TCP_SKB_CB(skb)->seq, start))) {
4731                         end_of_skbs = false;
4732                         break;
4733                 }
4734
4735                 if (!skb_queue_is_last(list, skb)) {
4736                         struct sk_buff *next = skb_queue_next(list, skb);
4737                         if (next != tail &&
4738                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4739                                 end_of_skbs = false;
4740                                 break;
4741                         }
4742                 }
4743
4744                 /* Decided to skip this, advance start seq. */
4745                 start = TCP_SKB_CB(skb)->end_seq;
4746         }
4747         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4748                 return;
4749
4750         while (before(start, end)) {
4751                 struct sk_buff *nskb;
4752                 unsigned int header = skb_headroom(skb);
4753                 int copy = SKB_MAX_ORDER(header, 0);
4754
4755                 /* Too big header? This can happen with IPv6. */
4756                 if (copy < 0)
4757                         return;
4758                 if (end - start < copy)
4759                         copy = end - start;
4760                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4761                 if (!nskb)
4762                         return;
4763
4764                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4765                 skb_set_network_header(nskb, (skb_network_header(skb) -
4766                                               skb->head));
4767                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4768                                                 skb->head));
4769                 skb_reserve(nskb, header);
4770                 memcpy(nskb->head, skb->head, header);
4771                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4772                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4773                 __skb_queue_before(list, skb, nskb);
4774                 skb_set_owner_r(nskb, sk);
4775
4776                 /* Copy data, releasing collapsed skbs. */
4777                 while (copy > 0) {
4778                         int offset = start - TCP_SKB_CB(skb)->seq;
4779                         int size = TCP_SKB_CB(skb)->end_seq - start;
4780
4781                         BUG_ON(offset < 0);
4782                         if (size > 0) {
4783                                 size = min(copy, size);
4784                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4785                                         BUG();
4786                                 TCP_SKB_CB(nskb)->end_seq += size;
4787                                 copy -= size;
4788                                 start += size;
4789                         }
4790                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4791                                 skb = tcp_collapse_one(sk, skb, list);
4792                                 if (!skb ||
4793                                     skb == tail ||
4794                                     tcp_hdr(skb)->syn ||
4795                                     tcp_hdr(skb)->fin)
4796                                         return;
4797                         }
4798                 }
4799         }
4800 }
4801
4802 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4803  * and tcp_collapse() them until all the queue is collapsed.
4804  */
4805 static void tcp_collapse_ofo_queue(struct sock *sk)
4806 {
4807         struct tcp_sock *tp = tcp_sk(sk);
4808         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4809         struct sk_buff *head;
4810         u32 start, end;
4811
4812         if (skb == NULL)
4813                 return;
4814
4815         start = TCP_SKB_CB(skb)->seq;
4816         end = TCP_SKB_CB(skb)->end_seq;
4817         head = skb;
4818
4819         for (;;) {
4820                 struct sk_buff *next = NULL;
4821
4822                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4823                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4824                 skb = next;
4825
4826                 /* Segment is terminated when we see gap or when
4827                  * we are at the end of all the queue. */
4828                 if (!skb ||
4829                     after(TCP_SKB_CB(skb)->seq, end) ||
4830                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4831                         tcp_collapse(sk, &tp->out_of_order_queue,
4832                                      head, skb, start, end);
4833                         head = skb;
4834                         if (!skb)
4835                                 break;
4836                         /* Start new segment */
4837                         start = TCP_SKB_CB(skb)->seq;
4838                         end = TCP_SKB_CB(skb)->end_seq;
4839                 } else {
4840                         if (before(TCP_SKB_CB(skb)->seq, start))
4841                                 start = TCP_SKB_CB(skb)->seq;
4842                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4843                                 end = TCP_SKB_CB(skb)->end_seq;
4844                 }
4845         }
4846 }
4847
4848 /*
4849  * Purge the out-of-order queue.
4850  * Return true if queue was pruned.
4851  */
4852 static int tcp_prune_ofo_queue(struct sock *sk)
4853 {
4854         struct tcp_sock *tp = tcp_sk(sk);
4855         int res = 0;
4856
4857         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4858                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4859                 __skb_queue_purge(&tp->out_of_order_queue);
4860
4861                 /* Reset SACK state.  A conforming SACK implementation will
4862                  * do the same at a timeout based retransmit.  When a connection
4863                  * is in a sad state like this, we care only about integrity
4864                  * of the connection not performance.
4865                  */
4866                 if (tp->rx_opt.sack_ok)
4867                         tcp_sack_reset(&tp->rx_opt);
4868                 sk_mem_reclaim(sk);
4869                 res = 1;
4870         }
4871         return res;
4872 }
4873
4874 /* Reduce allocated memory if we can, trying to get
4875  * the socket within its memory limits again.
4876  *
4877  * Return less than zero if we should start dropping frames
4878  * until the socket owning process reads some of the data
4879  * to stabilize the situation.
4880  */
4881 static int tcp_prune_queue(struct sock *sk)
4882 {
4883         struct tcp_sock *tp = tcp_sk(sk);
4884
4885         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4886
4887         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4888
4889         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4890                 tcp_clamp_window(sk);
4891         else if (tcp_memory_pressure)
4892                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4893
4894         tcp_collapse_ofo_queue(sk);
4895         if (!skb_queue_empty(&sk->sk_receive_queue))
4896                 tcp_collapse(sk, &sk->sk_receive_queue,
4897                              skb_peek(&sk->sk_receive_queue),
4898                              NULL,
4899                              tp->copied_seq, tp->rcv_nxt);
4900         sk_mem_reclaim(sk);
4901
4902         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4903                 return 0;
4904
4905         /* Collapsing did not help, destructive actions follow.
4906          * This must not ever occur. */
4907
4908         tcp_prune_ofo_queue(sk);
4909
4910         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4911                 return 0;
4912
4913         /* If we are really being abused, tell the caller to silently
4914          * drop receive data on the floor.  It will get retransmitted
4915          * and hopefully then we'll have sufficient space.
4916          */
4917         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4918
4919         /* Massive buffer overcommit. */
4920         tp->pred_flags = 0;
4921         return -1;
4922 }
4923
4924 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4925  * As additional protections, we do not touch cwnd in retransmission phases,
4926  * and if application hit its sndbuf limit recently.
4927  */
4928 void tcp_cwnd_application_limited(struct sock *sk)
4929 {
4930         struct tcp_sock *tp = tcp_sk(sk);
4931
4932         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4933             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4934                 /* Limited by application or receiver window. */
4935                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4936                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4937                 if (win_used < tp->snd_cwnd) {
4938                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4939                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4940                 }
4941                 tp->snd_cwnd_used = 0;
4942         }
4943         tp->snd_cwnd_stamp = tcp_time_stamp;
4944 }
4945
4946 static int tcp_should_expand_sndbuf(const struct sock *sk)
4947 {
4948         const struct tcp_sock *tp = tcp_sk(sk);
4949
4950         /* If the user specified a specific send buffer setting, do
4951          * not modify it.
4952          */
4953         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4954                 return 0;
4955
4956         /* If we are under global TCP memory pressure, do not expand.  */
4957         if (tcp_memory_pressure)
4958                 return 0;
4959
4960         /* If we are under soft global TCP memory pressure, do not expand.  */
4961         if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4962                 return 0;
4963
4964         /* If we filled the congestion window, do not expand.  */
4965         if (tp->packets_out >= tp->snd_cwnd)
4966                 return 0;
4967
4968         return 1;
4969 }
4970
4971 /* When incoming ACK allowed to free some skb from write_queue,
4972  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4973  * on the exit from tcp input handler.
4974  *
4975  * PROBLEM: sndbuf expansion does not work well with largesend.
4976  */
4977 static void tcp_new_space(struct sock *sk)
4978 {
4979         struct tcp_sock *tp = tcp_sk(sk);
4980
4981         if (tcp_should_expand_sndbuf(sk)) {
4982                 int sndmem = SKB_TRUESIZE(max_t(u32,
4983                                                 tp->rx_opt.mss_clamp,
4984                                                 tp->mss_cache) +
4985                                           MAX_TCP_HEADER);
4986                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4987                                      tp->reordering + 1);
4988                 sndmem *= 2 * demanded;
4989                 if (sndmem > sk->sk_sndbuf)
4990                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4991                 tp->snd_cwnd_stamp = tcp_time_stamp;
4992         }
4993
4994         sk->sk_write_space(sk);
4995 }
4996
4997 static void tcp_check_space(struct sock *sk)
4998 {
4999         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5000                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5001                 if (sk->sk_socket &&
5002                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5003                         tcp_new_space(sk);
5004         }
5005 }
5006
5007 static inline void tcp_data_snd_check(struct sock *sk)
5008 {
5009         tcp_push_pending_frames(sk);
5010         tcp_check_space(sk);
5011 }
5012
5013 /*
5014  * Check if sending an ack is needed.
5015  */
5016 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5017 {
5018         struct tcp_sock *tp = tcp_sk(sk);
5019
5020             /* More than one full frame received... */
5021         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5022              /* ... and right edge of window advances far enough.
5023               * (tcp_recvmsg() will send ACK otherwise). Or...
5024               */
5025              __tcp_select_window(sk) >= tp->rcv_wnd) ||
5026             /* We ACK each frame or... */
5027             tcp_in_quickack_mode(sk) ||
5028             /* We have out of order data. */
5029             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5030                 /* Then ack it now */
5031                 tcp_send_ack(sk);
5032         } else {
5033                 /* Else, send delayed ack. */
5034                 tcp_send_delayed_ack(sk);
5035         }
5036 }
5037
5038 static inline void tcp_ack_snd_check(struct sock *sk)
5039 {
5040         if (!inet_csk_ack_scheduled(sk)) {
5041                 /* We sent a data segment already. */
5042                 return;
5043         }
5044         __tcp_ack_snd_check(sk, 1);
5045 }
5046
5047 /*
5048  *      This routine is only called when we have urgent data
5049  *      signaled. Its the 'slow' part of tcp_urg. It could be
5050  *      moved inline now as tcp_urg is only called from one
5051  *      place. We handle URGent data wrong. We have to - as
5052  *      BSD still doesn't use the correction from RFC961.
5053  *      For 1003.1g we should support a new option TCP_STDURG to permit
5054  *      either form (or just set the sysctl tcp_stdurg).
5055  */
5056
5057 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5058 {
5059         struct tcp_sock *tp = tcp_sk(sk);
5060         u32 ptr = ntohs(th->urg_ptr);
5061
5062         if (ptr && !sysctl_tcp_stdurg)
5063                 ptr--;
5064         ptr += ntohl(th->seq);
5065
5066         /* Ignore urgent data that we've already seen and read. */
5067         if (after(tp->copied_seq, ptr))
5068                 return;
5069
5070         /* Do not replay urg ptr.
5071          *
5072          * NOTE: interesting situation not covered by specs.
5073          * Misbehaving sender may send urg ptr, pointing to segment,
5074          * which we already have in ofo queue. We are not able to fetch
5075          * such data and will stay in TCP_URG_NOTYET until will be eaten
5076          * by recvmsg(). Seems, we are not obliged to handle such wicked
5077          * situations. But it is worth to think about possibility of some
5078          * DoSes using some hypothetical application level deadlock.
5079          */
5080         if (before(ptr, tp->rcv_nxt))
5081                 return;
5082
5083         /* Do we already have a newer (or duplicate) urgent pointer? */
5084         if (tp->urg_data && !after(ptr, tp->urg_seq))
5085                 return;
5086
5087         /* Tell the world about our new urgent pointer. */
5088         sk_send_sigurg(sk);
5089
5090         /* We may be adding urgent data when the last byte read was
5091          * urgent. To do this requires some care. We cannot just ignore
5092          * tp->copied_seq since we would read the last urgent byte again
5093          * as data, nor can we alter copied_seq until this data arrives
5094          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5095          *
5096          * NOTE. Double Dutch. Rendering to plain English: author of comment
5097          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5098          * and expect that both A and B disappear from stream. This is _wrong_.
5099          * Though this happens in BSD with high probability, this is occasional.
5100          * Any application relying on this is buggy. Note also, that fix "works"
5101          * only in this artificial test. Insert some normal data between A and B and we will
5102          * decline of BSD again. Verdict: it is better to remove to trap
5103          * buggy users.
5104          */
5105         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5106             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5107                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5108                 tp->copied_seq++;
5109                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5110                         __skb_unlink(skb, &sk->sk_receive_queue);
5111                         __kfree_skb(skb);
5112                 }
5113         }
5114
5115         tp->urg_data = TCP_URG_NOTYET;
5116         tp->urg_seq = ptr;
5117
5118         /* Disable header prediction. */
5119         tp->pred_flags = 0;
5120 }
5121
5122 /* This is the 'fast' part of urgent handling. */
5123 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5124 {
5125         struct tcp_sock *tp = tcp_sk(sk);
5126
5127         /* Check if we get a new urgent pointer - normally not. */
5128         if (th->urg)
5129                 tcp_check_urg(sk, th);
5130
5131         /* Do we wait for any urgent data? - normally not... */
5132         if (tp->urg_data == TCP_URG_NOTYET) {
5133                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5134                           th->syn;
5135
5136                 /* Is the urgent pointer pointing into this packet? */
5137                 if (ptr < skb->len) {
5138                         u8 tmp;
5139                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5140                                 BUG();
5141                         tp->urg_data = TCP_URG_VALID | tmp;
5142                         if (!sock_flag(sk, SOCK_DEAD))
5143                                 sk->sk_data_ready(sk, 0);
5144                 }
5145         }
5146 }
5147
5148 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5149 {
5150         struct tcp_sock *tp = tcp_sk(sk);
5151         int chunk = skb->len - hlen;
5152         int err;
5153
5154         local_bh_enable();
5155         if (skb_csum_unnecessary(skb))
5156                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5157         else
5158                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5159                                                        tp->ucopy.iov);
5160
5161         if (!err) {
5162                 tp->ucopy.len -= chunk;
5163                 tp->copied_seq += chunk;
5164                 tcp_rcv_space_adjust(sk);
5165         }
5166
5167         local_bh_disable();
5168         return err;
5169 }
5170
5171 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5172                                             struct sk_buff *skb)
5173 {
5174         __sum16 result;
5175
5176         if (sock_owned_by_user(sk)) {
5177                 local_bh_enable();
5178                 result = __tcp_checksum_complete(skb);
5179                 local_bh_disable();
5180         } else {
5181                 result = __tcp_checksum_complete(skb);
5182         }
5183         return result;
5184 }
5185
5186 static inline int tcp_checksum_complete_user(struct sock *sk,
5187                                              struct sk_buff *skb)
5188 {
5189         return !skb_csum_unnecessary(skb) &&
5190                __tcp_checksum_complete_user(sk, skb);
5191 }
5192
5193 #ifdef CONFIG_NET_DMA
5194 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5195                                   int hlen)
5196 {
5197         struct tcp_sock *tp = tcp_sk(sk);
5198         int chunk = skb->len - hlen;
5199         int dma_cookie;
5200         int copied_early = 0;
5201
5202         if (tp->ucopy.wakeup)
5203                 return 0;
5204
5205         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5206                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5207
5208         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5209
5210                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5211                                                          skb, hlen,
5212                                                          tp->ucopy.iov, chunk,
5213                                                          tp->ucopy.pinned_list);
5214
5215                 if (dma_cookie < 0)
5216                         goto out;
5217
5218                 tp->ucopy.dma_cookie = dma_cookie;
5219                 copied_early = 1;
5220
5221                 tp->ucopy.len -= chunk;
5222                 tp->copied_seq += chunk;
5223                 tcp_rcv_space_adjust(sk);
5224
5225                 if ((tp->ucopy.len == 0) ||
5226                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5227                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5228                         tp->ucopy.wakeup = 1;
5229                         sk->sk_data_ready(sk, 0);
5230                 }
5231         } else if (chunk > 0) {
5232                 tp->ucopy.wakeup = 1;
5233                 sk->sk_data_ready(sk, 0);
5234         }
5235 out:
5236         return copied_early;
5237 }
5238 #endif /* CONFIG_NET_DMA */
5239
5240 /* Does PAWS and seqno based validation of an incoming segment, flags will
5241  * play significant role here.
5242  */
5243 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5244                               const struct tcphdr *th, int syn_inerr)
5245 {
5246         const u8 *hash_location;
5247         struct tcp_sock *tp = tcp_sk(sk);
5248
5249         /* RFC1323: H1. Apply PAWS check first. */
5250         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5251             tp->rx_opt.saw_tstamp &&
5252             tcp_paws_discard(sk, skb)) {
5253                 if (!th->rst) {
5254                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5255                         tcp_send_dupack(sk, skb);
5256                         goto discard;
5257                 }
5258                 /* Reset is accepted even if it did not pass PAWS. */
5259         }
5260
5261         /* Step 1: check sequence number */
5262         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5263                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5264                  * (RST) segments are validated by checking their SEQ-fields."
5265                  * And page 69: "If an incoming segment is not acceptable,
5266                  * an acknowledgment should be sent in reply (unless the RST
5267                  * bit is set, if so drop the segment and return)".
5268                  */
5269                 if (!th->rst)
5270                         tcp_send_dupack(sk, skb);
5271                 goto discard;
5272         }
5273
5274         /* Step 2: check RST bit */
5275         if (th->rst) {
5276                 tcp_reset(sk);
5277                 goto discard;
5278         }
5279
5280         /* ts_recent update must be made after we are sure that the packet
5281          * is in window.
5282          */
5283         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5284
5285         /* step 3: check security and precedence [ignored] */
5286
5287         /* step 4: Check for a SYN in window. */
5288         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5289                 if (syn_inerr)
5290                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5291                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5292                 tcp_reset(sk);
5293                 return -1;
5294         }
5295
5296         return 1;
5297
5298 discard:
5299         __kfree_skb(skb);
5300         return 0;
5301 }
5302
5303 /*
5304  *      TCP receive function for the ESTABLISHED state.
5305  *
5306  *      It is split into a fast path and a slow path. The fast path is
5307  *      disabled when:
5308  *      - A zero window was announced from us - zero window probing
5309  *        is only handled properly in the slow path.
5310  *      - Out of order segments arrived.
5311  *      - Urgent data is expected.
5312  *      - There is no buffer space left
5313  *      - Unexpected TCP flags/window values/header lengths are received
5314  *        (detected by checking the TCP header against pred_flags)
5315  *      - Data is sent in both directions. Fast path only supports pure senders
5316  *        or pure receivers (this means either the sequence number or the ack
5317  *        value must stay constant)
5318  *      - Unexpected TCP option.
5319  *
5320  *      When these conditions are not satisfied it drops into a standard
5321  *      receive procedure patterned after RFC793 to handle all cases.
5322  *      The first three cases are guaranteed by proper pred_flags setting,
5323  *      the rest is checked inline. Fast processing is turned on in
5324  *      tcp_data_queue when everything is OK.
5325  */
5326 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5327                         const struct tcphdr *th, unsigned int len)
5328 {
5329         struct tcp_sock *tp = tcp_sk(sk);
5330         int res;
5331
5332         /*
5333          *      Header prediction.
5334          *      The code loosely follows the one in the famous
5335          *      "30 instruction TCP receive" Van Jacobson mail.
5336          *
5337          *      Van's trick is to deposit buffers into socket queue
5338          *      on a device interrupt, to call tcp_recv function
5339          *      on the receive process context and checksum and copy
5340          *      the buffer to user space. smart...
5341          *
5342          *      Our current scheme is not silly either but we take the
5343          *      extra cost of the net_bh soft interrupt processing...
5344          *      We do checksum and copy also but from device to kernel.
5345          */
5346
5347         tp->rx_opt.saw_tstamp = 0;
5348
5349         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5350          *      if header_prediction is to be made
5351          *      'S' will always be tp->tcp_header_len >> 2
5352          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5353          *  turn it off (when there are holes in the receive
5354          *       space for instance)
5355          *      PSH flag is ignored.
5356          */
5357
5358         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5359             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5360             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5361                 int tcp_header_len = tp->tcp_header_len;
5362
5363                 /* Timestamp header prediction: tcp_header_len
5364                  * is automatically equal to th->doff*4 due to pred_flags
5365                  * match.
5366                  */
5367
5368                 /* Check timestamp */
5369                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5370                         /* No? Slow path! */
5371                         if (!tcp_parse_aligned_timestamp(tp, th))
5372                                 goto slow_path;
5373
5374                         /* If PAWS failed, check it more carefully in slow path */
5375                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5376                                 goto slow_path;
5377
5378                         /* DO NOT update ts_recent here, if checksum fails
5379                          * and timestamp was corrupted part, it will result
5380                          * in a hung connection since we will drop all
5381                          * future packets due to the PAWS test.
5382                          */
5383                 }
5384
5385                 if (len <= tcp_header_len) {
5386                         /* Bulk data transfer: sender */
5387                         if (len == tcp_header_len) {
5388                                 /* Predicted packet is in window by definition.
5389                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5390                                  * Hence, check seq<=rcv_wup reduces to:
5391                                  */
5392                                 if (tcp_header_len ==
5393                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5394                                     tp->rcv_nxt == tp->rcv_wup)
5395                                         tcp_store_ts_recent(tp);
5396
5397                                 /* We know that such packets are checksummed
5398                                  * on entry.
5399                                  */
5400                                 tcp_ack(sk, skb, 0);
5401                                 __kfree_skb(skb);
5402                                 tcp_data_snd_check(sk);
5403                                 return 0;
5404                         } else { /* Header too small */
5405                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5406                                 goto discard;
5407                         }
5408                 } else {
5409                         int eaten = 0;
5410                         int copied_early = 0;
5411
5412                         if (tp->copied_seq == tp->rcv_nxt &&
5413                             len - tcp_header_len <= tp->ucopy.len) {
5414 #ifdef CONFIG_NET_DMA
5415                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5416                                         copied_early = 1;
5417                                         eaten = 1;
5418                                 }
5419 #endif
5420                                 if (tp->ucopy.task == current &&
5421                                     sock_owned_by_user(sk) && !copied_early) {
5422                                         __set_current_state(TASK_RUNNING);
5423
5424                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5425                                                 eaten = 1;
5426                                 }
5427                                 if (eaten) {
5428                                         /* Predicted packet is in window by definition.
5429                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5430                                          * Hence, check seq<=rcv_wup reduces to:
5431                                          */
5432                                         if (tcp_header_len ==
5433                                             (sizeof(struct tcphdr) +
5434                                              TCPOLEN_TSTAMP_ALIGNED) &&
5435                                             tp->rcv_nxt == tp->rcv_wup)
5436                                                 tcp_store_ts_recent(tp);
5437
5438                                         tcp_rcv_rtt_measure_ts(sk, skb);
5439
5440                                         __skb_pull(skb, tcp_header_len);
5441                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5442                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5443                                 }
5444                                 if (copied_early)
5445                                         tcp_cleanup_rbuf(sk, skb->len);
5446                         }
5447                         if (!eaten) {
5448                                 if (tcp_checksum_complete_user(sk, skb))
5449                                         goto csum_error;
5450
5451                                 /* Predicted packet is in window by definition.
5452                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5453                                  * Hence, check seq<=rcv_wup reduces to:
5454                                  */
5455                                 if (tcp_header_len ==
5456                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5457                                     tp->rcv_nxt == tp->rcv_wup)
5458                                         tcp_store_ts_recent(tp);
5459
5460                                 tcp_rcv_rtt_measure_ts(sk, skb);
5461
5462                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5463                                         goto step5;
5464
5465                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5466
5467                                 /* Bulk data transfer: receiver */
5468                                 __skb_pull(skb, tcp_header_len);
5469                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5470                                 skb_set_owner_r(skb, sk);
5471                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5472                         }
5473
5474                         tcp_event_data_recv(sk, skb);
5475
5476                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5477                                 /* Well, only one small jumplet in fast path... */
5478                                 tcp_ack(sk, skb, FLAG_DATA);
5479                                 tcp_data_snd_check(sk);
5480                                 if (!inet_csk_ack_scheduled(sk))
5481                                         goto no_ack;
5482                         }
5483
5484                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5485                                 __tcp_ack_snd_check(sk, 0);
5486 no_ack:
5487 #ifdef CONFIG_NET_DMA
5488                         if (copied_early)
5489                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5490                         else
5491 #endif
5492                         if (eaten)
5493                                 __kfree_skb(skb);
5494                         else
5495                                 sk->sk_data_ready(sk, 0);
5496                         return 0;
5497                 }
5498         }
5499
5500 slow_path:
5501         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5502                 goto csum_error;
5503
5504         /*
5505          *      Standard slow path.
5506          */
5507
5508         res = tcp_validate_incoming(sk, skb, th, 1);
5509         if (res <= 0)
5510                 return -res;
5511
5512 step5:
5513         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5514                 goto discard;
5515
5516         tcp_rcv_rtt_measure_ts(sk, skb);
5517
5518         /* Process urgent data. */
5519         tcp_urg(sk, skb, th);
5520
5521         /* step 7: process the segment text */
5522         tcp_data_queue(sk, skb);
5523
5524         tcp_data_snd_check(sk);
5525         tcp_ack_snd_check(sk);
5526         return 0;
5527
5528 csum_error:
5529         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5530
5531 discard:
5532         __kfree_skb(skb);
5533         return 0;
5534 }
5535 EXPORT_SYMBOL(tcp_rcv_established);
5536
5537 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5538                                          const struct tcphdr *th, unsigned int len)
5539 {
5540         const u8 *hash_location;
5541         struct inet_connection_sock *icsk = inet_csk(sk);
5542         struct tcp_sock *tp = tcp_sk(sk);
5543         struct tcp_cookie_values *cvp = tp->cookie_values;
5544         int saved_clamp = tp->rx_opt.mss_clamp;
5545
5546         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5547
5548         if (th->ack) {
5549                 /* rfc793:
5550                  * "If the state is SYN-SENT then
5551                  *    first check the ACK bit
5552                  *      If the ACK bit is set
5553                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5554                  *        a reset (unless the RST bit is set, if so drop
5555                  *        the segment and return)"
5556                  *
5557                  *  We do not send data with SYN, so that RFC-correct
5558                  *  test reduces to:
5559                  */
5560                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5561                         goto reset_and_undo;
5562
5563                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5564                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5565                              tcp_time_stamp)) {
5566                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5567                         goto reset_and_undo;
5568                 }
5569
5570                 /* Now ACK is acceptable.
5571                  *
5572                  * "If the RST bit is set
5573                  *    If the ACK was acceptable then signal the user "error:
5574                  *    connection reset", drop the segment, enter CLOSED state,
5575                  *    delete TCB, and return."
5576                  */
5577
5578                 if (th->rst) {
5579                         tcp_reset(sk);
5580                         goto discard;
5581                 }
5582
5583                 /* rfc793:
5584                  *   "fifth, if neither of the SYN or RST bits is set then
5585                  *    drop the segment and return."
5586                  *
5587                  *    See note below!
5588                  *                                        --ANK(990513)
5589                  */
5590                 if (!th->syn)
5591                         goto discard_and_undo;
5592
5593                 /* rfc793:
5594                  *   "If the SYN bit is on ...
5595                  *    are acceptable then ...
5596                  *    (our SYN has been ACKed), change the connection
5597                  *    state to ESTABLISHED..."
5598                  */
5599
5600                 TCP_ECN_rcv_synack(tp, th);
5601
5602                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5603                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5604
5605                 /* Ok.. it's good. Set up sequence numbers and
5606                  * move to established.
5607                  */
5608                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5609                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5610
5611                 /* RFC1323: The window in SYN & SYN/ACK segments is
5612                  * never scaled.
5613                  */
5614                 tp->snd_wnd = ntohs(th->window);
5615                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5616
5617                 if (!tp->rx_opt.wscale_ok) {
5618                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5619                         tp->window_clamp = min(tp->window_clamp, 65535U);
5620                 }
5621
5622                 if (tp->rx_opt.saw_tstamp) {
5623                         tp->rx_opt.tstamp_ok       = 1;
5624                         tp->tcp_header_len =
5625                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5626                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5627                         tcp_store_ts_recent(tp);
5628                 } else {
5629                         tp->tcp_header_len = sizeof(struct tcphdr);
5630                 }
5631
5632                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5633                         tcp_enable_fack(tp);
5634
5635                 tcp_mtup_init(sk);
5636                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5637                 tcp_initialize_rcv_mss(sk);
5638
5639                 /* Remember, tcp_poll() does not lock socket!
5640                  * Change state from SYN-SENT only after copied_seq
5641                  * is initialized. */
5642                 tp->copied_seq = tp->rcv_nxt;
5643
5644                 if (cvp != NULL &&
5645                     cvp->cookie_pair_size > 0 &&
5646                     tp->rx_opt.cookie_plus > 0) {
5647                         int cookie_size = tp->rx_opt.cookie_plus
5648                                         - TCPOLEN_COOKIE_BASE;
5649                         int cookie_pair_size = cookie_size
5650                                              + cvp->cookie_desired;
5651
5652                         /* A cookie extension option was sent and returned.
5653                          * Note that each incoming SYNACK replaces the
5654                          * Responder cookie.  The initial exchange is most
5655                          * fragile, as protection against spoofing relies
5656                          * entirely upon the sequence and timestamp (above).
5657                          * This replacement strategy allows the correct pair to
5658                          * pass through, while any others will be filtered via
5659                          * Responder verification later.
5660                          */
5661                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5662                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5663                                        hash_location, cookie_size);
5664                                 cvp->cookie_pair_size = cookie_pair_size;
5665                         }
5666                 }
5667
5668                 smp_mb();
5669                 tcp_set_state(sk, TCP_ESTABLISHED);
5670
5671                 security_inet_conn_established(sk, skb);
5672
5673                 /* Make sure socket is routed, for correct metrics.  */
5674                 icsk->icsk_af_ops->rebuild_header(sk);
5675
5676                 tcp_init_metrics(sk);
5677
5678                 tcp_init_congestion_control(sk);
5679
5680                 /* Prevent spurious tcp_cwnd_restart() on first data
5681                  * packet.
5682                  */
5683                 tp->lsndtime = tcp_time_stamp;
5684
5685                 tcp_init_buffer_space(sk);
5686
5687                 if (sock_flag(sk, SOCK_KEEPOPEN))
5688                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5689
5690                 if (!tp->rx_opt.snd_wscale)
5691                         __tcp_fast_path_on(tp, tp->snd_wnd);
5692                 else
5693                         tp->pred_flags = 0;
5694
5695                 if (!sock_flag(sk, SOCK_DEAD)) {
5696                         sk->sk_state_change(sk);
5697                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5698                 }
5699
5700                 if (sk->sk_write_pending ||
5701                     icsk->icsk_accept_queue.rskq_defer_accept ||
5702                     icsk->icsk_ack.pingpong) {
5703                         /* Save one ACK. Data will be ready after
5704                          * several ticks, if write_pending is set.
5705                          *
5706                          * It may be deleted, but with this feature tcpdumps
5707                          * look so _wonderfully_ clever, that I was not able
5708                          * to stand against the temptation 8)     --ANK
5709                          */
5710                         inet_csk_schedule_ack(sk);
5711                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5712                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5713                         tcp_incr_quickack(sk);
5714                         tcp_enter_quickack_mode(sk);
5715                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5716                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5717
5718 discard:
5719                         __kfree_skb(skb);
5720                         return 0;
5721                 } else {
5722                         tcp_send_ack(sk);
5723                 }
5724                 return -1;
5725         }
5726
5727         /* No ACK in the segment */
5728
5729         if (th->rst) {
5730                 /* rfc793:
5731                  * "If the RST bit is set
5732                  *
5733                  *      Otherwise (no ACK) drop the segment and return."
5734                  */
5735
5736                 goto discard_and_undo;
5737         }
5738
5739         /* PAWS check. */
5740         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5741             tcp_paws_reject(&tp->rx_opt, 0))
5742                 goto discard_and_undo;
5743
5744         if (th->syn) {
5745                 /* We see SYN without ACK. It is attempt of
5746                  * simultaneous connect with crossed SYNs.
5747                  * Particularly, it can be connect to self.
5748                  */
5749                 tcp_set_state(sk, TCP_SYN_RECV);
5750
5751                 if (tp->rx_opt.saw_tstamp) {
5752                         tp->rx_opt.tstamp_ok = 1;
5753                         tcp_store_ts_recent(tp);
5754                         tp->tcp_header_len =
5755                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5756                 } else {
5757                         tp->tcp_header_len = sizeof(struct tcphdr);
5758                 }
5759
5760                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5761                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5762
5763                 /* RFC1323: The window in SYN & SYN/ACK segments is
5764                  * never scaled.
5765                  */
5766                 tp->snd_wnd    = ntohs(th->window);
5767                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5768                 tp->max_window = tp->snd_wnd;
5769
5770                 TCP_ECN_rcv_syn(tp, th);
5771
5772                 tcp_mtup_init(sk);
5773                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5774                 tcp_initialize_rcv_mss(sk);
5775
5776                 tcp_send_synack(sk);
5777 #if 0
5778                 /* Note, we could accept data and URG from this segment.
5779                  * There are no obstacles to make this.
5780                  *
5781                  * However, if we ignore data in ACKless segments sometimes,
5782                  * we have no reasons to accept it sometimes.
5783                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5784                  * is not flawless. So, discard packet for sanity.
5785                  * Uncomment this return to process the data.
5786                  */
5787                 return -1;
5788 #else
5789                 goto discard;
5790 #endif
5791         }
5792         /* "fifth, if neither of the SYN or RST bits is set then
5793          * drop the segment and return."
5794          */
5795
5796 discard_and_undo:
5797         tcp_clear_options(&tp->rx_opt);
5798         tp->rx_opt.mss_clamp = saved_clamp;
5799         goto discard;
5800
5801 reset_and_undo:
5802         tcp_clear_options(&tp->rx_opt);
5803         tp->rx_opt.mss_clamp = saved_clamp;
5804         return 1;
5805 }
5806
5807 /*
5808  *      This function implements the receiving procedure of RFC 793 for
5809  *      all states except ESTABLISHED and TIME_WAIT.
5810  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5811  *      address independent.
5812  */
5813
5814 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5815                           const struct tcphdr *th, unsigned int len)
5816 {
5817         struct tcp_sock *tp = tcp_sk(sk);
5818         struct inet_connection_sock *icsk = inet_csk(sk);
5819         int queued = 0;
5820         int res;
5821
5822         tp->rx_opt.saw_tstamp = 0;
5823
5824         switch (sk->sk_state) {
5825         case TCP_CLOSE:
5826                 goto discard;
5827
5828         case TCP_LISTEN:
5829                 if (th->ack)
5830                         return 1;
5831
5832                 if (th->rst)
5833                         goto discard;
5834
5835                 if (th->syn) {
5836                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5837                                 return 1;
5838
5839                         /* Now we have several options: In theory there is
5840                          * nothing else in the frame. KA9Q has an option to
5841                          * send data with the syn, BSD accepts data with the
5842                          * syn up to the [to be] advertised window and
5843                          * Solaris 2.1 gives you a protocol error. For now
5844                          * we just ignore it, that fits the spec precisely
5845                          * and avoids incompatibilities. It would be nice in
5846                          * future to drop through and process the data.
5847                          *
5848                          * Now that TTCP is starting to be used we ought to
5849                          * queue this data.
5850                          * But, this leaves one open to an easy denial of
5851                          * service attack, and SYN cookies can't defend
5852                          * against this problem. So, we drop the data
5853                          * in the interest of security over speed unless
5854                          * it's still in use.
5855                          */
5856                         kfree_skb(skb);
5857                         return 0;
5858                 }
5859                 goto discard;
5860
5861         case TCP_SYN_SENT:
5862                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5863                 if (queued >= 0)
5864                         return queued;
5865
5866                 /* Do step6 onward by hand. */
5867                 tcp_urg(sk, skb, th);
5868                 __kfree_skb(skb);
5869                 tcp_data_snd_check(sk);
5870                 return 0;
5871         }
5872
5873         res = tcp_validate_incoming(sk, skb, th, 0);
5874         if (res <= 0)
5875                 return -res;
5876
5877         /* step 5: check the ACK field */
5878         if (th->ack) {
5879                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5880
5881                 switch (sk->sk_state) {
5882                 case TCP_SYN_RECV:
5883                         if (acceptable) {
5884                                 tp->copied_seq = tp->rcv_nxt;
5885                                 smp_mb();
5886                                 tcp_set_state(sk, TCP_ESTABLISHED);
5887                                 sk->sk_state_change(sk);
5888
5889                                 /* Note, that this wakeup is only for marginal
5890                                  * crossed SYN case. Passively open sockets
5891                                  * are not waked up, because sk->sk_sleep ==
5892                                  * NULL and sk->sk_socket == NULL.
5893                                  */
5894                                 if (sk->sk_socket)
5895                                         sk_wake_async(sk,
5896                                                       SOCK_WAKE_IO, POLL_OUT);
5897
5898                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5899                                 tp->snd_wnd = ntohs(th->window) <<
5900                                               tp->rx_opt.snd_wscale;
5901                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5902
5903                                 if (tp->rx_opt.tstamp_ok)
5904                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5905
5906                                 /* Make sure socket is routed, for
5907                                  * correct metrics.
5908                                  */
5909                                 icsk->icsk_af_ops->rebuild_header(sk);
5910
5911                                 tcp_init_metrics(sk);
5912
5913                                 tcp_init_congestion_control(sk);
5914
5915                                 /* Prevent spurious tcp_cwnd_restart() on
5916                                  * first data packet.
5917                                  */
5918                                 tp->lsndtime = tcp_time_stamp;
5919
5920                                 tcp_mtup_init(sk);
5921                                 tcp_initialize_rcv_mss(sk);
5922                                 tcp_init_buffer_space(sk);
5923                                 tcp_fast_path_on(tp);
5924                         } else {
5925                                 return 1;
5926                         }
5927                         break;
5928
5929                 case TCP_FIN_WAIT1:
5930                         if (tp->snd_una == tp->write_seq) {
5931                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5932                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5933                                 dst_confirm(__sk_dst_get(sk));
5934
5935                                 if (!sock_flag(sk, SOCK_DEAD))
5936                                         /* Wake up lingering close() */
5937                                         sk->sk_state_change(sk);
5938                                 else {
5939                                         int tmo;
5940
5941                                         if (tp->linger2 < 0 ||
5942                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5943                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5944                                                 tcp_done(sk);
5945                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5946                                                 return 1;
5947                                         }
5948
5949                                         tmo = tcp_fin_time(sk);
5950                                         if (tmo > TCP_TIMEWAIT_LEN) {
5951                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5952                                         } else if (th->fin || sock_owned_by_user(sk)) {
5953                                                 /* Bad case. We could lose such FIN otherwise.
5954                                                  * It is not a big problem, but it looks confusing
5955                                                  * and not so rare event. We still can lose it now,
5956                                                  * if it spins in bh_lock_sock(), but it is really
5957                                                  * marginal case.
5958                                                  */
5959                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5960                                         } else {
5961                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5962                                                 goto discard;
5963                                         }
5964                                 }
5965                         }
5966                         break;
5967
5968                 case TCP_CLOSING:
5969                         if (tp->snd_una == tp->write_seq) {
5970                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5971                                 goto discard;
5972                         }
5973                         break;
5974
5975                 case TCP_LAST_ACK:
5976                         if (tp->snd_una == tp->write_seq) {
5977                                 tcp_update_metrics(sk);
5978                                 tcp_done(sk);
5979                                 goto discard;
5980                         }
5981                         break;
5982                 }
5983         } else
5984                 goto discard;
5985
5986         /* step 6: check the URG bit */
5987         tcp_urg(sk, skb, th);
5988
5989         /* step 7: process the segment text */
5990         switch (sk->sk_state) {
5991         case TCP_CLOSE_WAIT:
5992         case TCP_CLOSING:
5993         case TCP_LAST_ACK:
5994                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5995                         break;
5996         case TCP_FIN_WAIT1:
5997         case TCP_FIN_WAIT2:
5998                 /* RFC 793 says to queue data in these states,
5999                  * RFC 1122 says we MUST send a reset.
6000                  * BSD 4.4 also does reset.
6001                  */
6002                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6003                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6004                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6005                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6006                                 tcp_reset(sk);
6007                                 return 1;
6008                         }
6009                 }
6010                 /* Fall through */
6011         case TCP_ESTABLISHED:
6012                 tcp_data_queue(sk, skb);
6013                 queued = 1;
6014                 break;
6015         }
6016
6017         /* tcp_data could move socket to TIME-WAIT */
6018         if (sk->sk_state != TCP_CLOSE) {
6019                 tcp_data_snd_check(sk);
6020                 tcp_ack_snd_check(sk);
6021         }
6022
6023         if (!queued) {
6024 discard:
6025                 __kfree_skb(skb);
6026         }
6027         return 0;
6028 }
6029 EXPORT_SYMBOL(tcp_rcv_state_process);