TCP: fix a bug that triggers large number of TCP RST by mistake
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
109 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130         struct inet_connection_sock *icsk = inet_csk(sk);
131         const unsigned int lss = icsk->icsk_ack.last_seg_size;
132         unsigned int len;
133
134         icsk->icsk_ack.last_seg_size = 0;
135
136         /* skb->len may jitter because of SACKs, even if peer
137          * sends good full-sized frames.
138          */
139         len = skb_shinfo(skb)->gso_size ? : skb->len;
140         if (len >= icsk->icsk_ack.rcv_mss) {
141                 icsk->icsk_ack.rcv_mss = len;
142         } else {
143                 /* Otherwise, we make more careful check taking into account,
144                  * that SACKs block is variable.
145                  *
146                  * "len" is invariant segment length, including TCP header.
147                  */
148                 len += skb->data - skb_transport_header(skb);
149                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150                     /* If PSH is not set, packet should be
151                      * full sized, provided peer TCP is not badly broken.
152                      * This observation (if it is correct 8)) allows
153                      * to handle super-low mtu links fairly.
154                      */
155                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157                         /* Subtract also invariant (if peer is RFC compliant),
158                          * tcp header plus fixed timestamp option length.
159                          * Resulting "len" is MSS free of SACK jitter.
160                          */
161                         len -= tcp_sk(sk)->tcp_header_len;
162                         icsk->icsk_ack.last_seg_size = len;
163                         if (len == lss) {
164                                 icsk->icsk_ack.rcv_mss = len;
165                                 return;
166                         }
167                 }
168                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171         }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176         struct inet_connection_sock *icsk = inet_csk(sk);
177         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179         if (quickacks == 0)
180                 quickacks = 2;
181         if (quickacks > icsk->icsk_ack.quick)
182                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187         struct inet_connection_sock *icsk = inet_csk(sk);
188         tcp_incr_quickack(sk);
189         icsk->icsk_ack.pingpong = 0;
190         icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199         const struct inet_connection_sock *icsk = inet_csk(sk);
200         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205         if (tp->ecn_flags & TCP_ECN_OK)
206                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211         if (tcp_hdr(skb)->cwr)
212                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222         if (tp->ecn_flags & TCP_ECN_OK) {
223                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225                 /* Funny extension: if ECT is not set on a segment,
226                  * it is surely retransmit. It is not in ECN RFC,
227                  * but Linux follows this rule. */
228                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229                         tcp_enter_quickack_mode((struct sock *)tp);
230         }
231 }
232
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236                 tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242                 tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248                 return 1;
249         return 0;
250 }
251
252 /* Buffer size and advertised window tuning.
253  *
254  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255  */
256
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260                      sizeof(struct sk_buff);
261
262         if (sk->sk_sndbuf < 3 * sndmem) {
263                 sk->sk_sndbuf = 3 * sndmem;
264                 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265                         sk->sk_sndbuf = sysctl_tcp_wmem[2];
266         }
267 }
268
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
270  *
271  * All tcp_full_space() is split to two parts: "network" buffer, allocated
272  * forward and advertised in receiver window (tp->rcv_wnd) and
273  * "application buffer", required to isolate scheduling/application
274  * latencies from network.
275  * window_clamp is maximal advertised window. It can be less than
276  * tcp_full_space(), in this case tcp_full_space() - window_clamp
277  * is reserved for "application" buffer. The less window_clamp is
278  * the smoother our behaviour from viewpoint of network, but the lower
279  * throughput and the higher sensitivity of the connection to losses. 8)
280  *
281  * rcv_ssthresh is more strict window_clamp used at "slow start"
282  * phase to predict further behaviour of this connection.
283  * It is used for two goals:
284  * - to enforce header prediction at sender, even when application
285  *   requires some significant "application buffer". It is check #1.
286  * - to prevent pruning of receive queue because of misprediction
287  *   of receiver window. Check #2.
288  *
289  * The scheme does not work when sender sends good segments opening
290  * window and then starts to feed us spaghetti. But it should work
291  * in common situations. Otherwise, we have to rely on queue collapsing.
292  */
293
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
296 {
297         struct tcp_sock *tp = tcp_sk(sk);
298         /* Optimize this! */
299         int truesize = tcp_win_from_space(skb->truesize) >> 1;
300         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
301
302         while (tp->rcv_ssthresh <= window) {
303                 if (truesize <= skb->len)
304                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
305
306                 truesize >>= 1;
307                 window >>= 1;
308         }
309         return 0;
310 }
311
312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
313 {
314         struct tcp_sock *tp = tcp_sk(sk);
315
316         /* Check #1 */
317         if (tp->rcv_ssthresh < tp->window_clamp &&
318             (int)tp->rcv_ssthresh < tcp_space(sk) &&
319             !tcp_memory_pressure) {
320                 int incr;
321
322                 /* Check #2. Increase window, if skb with such overhead
323                  * will fit to rcvbuf in future.
324                  */
325                 if (tcp_win_from_space(skb->truesize) <= skb->len)
326                         incr = 2 * tp->advmss;
327                 else
328                         incr = __tcp_grow_window(sk, skb);
329
330                 if (incr) {
331                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332                                                tp->window_clamp);
333                         inet_csk(sk)->icsk_ack.quick |= 1;
334                 }
335         }
336 }
337
338 /* 3. Tuning rcvbuf, when connection enters established state. */
339
340 static void tcp_fixup_rcvbuf(struct sock *sk)
341 {
342         struct tcp_sock *tp = tcp_sk(sk);
343         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
344
345         /* Try to select rcvbuf so that 4 mss-sized segments
346          * will fit to window and corresponding skbs will fit to our rcvbuf.
347          * (was 3; 4 is minimum to allow fast retransmit to work.)
348          */
349         while (tcp_win_from_space(rcvmem) < tp->advmss)
350                 rcvmem += 128;
351         if (sk->sk_rcvbuf < 4 * rcvmem)
352                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
353 }
354
355 /* 4. Try to fixup all. It is made immediately after connection enters
356  *    established state.
357  */
358 static void tcp_init_buffer_space(struct sock *sk)
359 {
360         struct tcp_sock *tp = tcp_sk(sk);
361         int maxwin;
362
363         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364                 tcp_fixup_rcvbuf(sk);
365         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366                 tcp_fixup_sndbuf(sk);
367
368         tp->rcvq_space.space = tp->rcv_wnd;
369
370         maxwin = tcp_full_space(sk);
371
372         if (tp->window_clamp >= maxwin) {
373                 tp->window_clamp = maxwin;
374
375                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376                         tp->window_clamp = max(maxwin -
377                                                (maxwin >> sysctl_tcp_app_win),
378                                                4 * tp->advmss);
379         }
380
381         /* Force reservation of one segment. */
382         if (sysctl_tcp_app_win &&
383             tp->window_clamp > 2 * tp->advmss &&
384             tp->window_clamp + tp->advmss > maxwin)
385                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
386
387         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388         tp->snd_cwnd_stamp = tcp_time_stamp;
389 }
390
391 /* 5. Recalculate window clamp after socket hit its memory bounds. */
392 static void tcp_clamp_window(struct sock *sk)
393 {
394         struct tcp_sock *tp = tcp_sk(sk);
395         struct inet_connection_sock *icsk = inet_csk(sk);
396
397         icsk->icsk_ack.quick = 0;
398
399         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401             !tcp_memory_pressure &&
402             atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
403                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404                                     sysctl_tcp_rmem[2]);
405         }
406         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
407                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
408 }
409
410 /* Initialize RCV_MSS value.
411  * RCV_MSS is an our guess about MSS used by the peer.
412  * We haven't any direct information about the MSS.
413  * It's better to underestimate the RCV_MSS rather than overestimate.
414  * Overestimations make us ACKing less frequently than needed.
415  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
416  */
417 void tcp_initialize_rcv_mss(struct sock *sk)
418 {
419         struct tcp_sock *tp = tcp_sk(sk);
420         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
421
422         hint = min(hint, tp->rcv_wnd / 2);
423         hint = min(hint, TCP_MSS_DEFAULT);
424         hint = max(hint, TCP_MIN_MSS);
425
426         inet_csk(sk)->icsk_ack.rcv_mss = hint;
427 }
428 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
429
430 /* Receiver "autotuning" code.
431  *
432  * The algorithm for RTT estimation w/o timestamps is based on
433  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
434  * <http://public.lanl.gov/radiant/pubs.html#DRS>
435  *
436  * More detail on this code can be found at
437  * <http://staff.psc.edu/jheffner/>,
438  * though this reference is out of date.  A new paper
439  * is pending.
440  */
441 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
442 {
443         u32 new_sample = tp->rcv_rtt_est.rtt;
444         long m = sample;
445
446         if (m == 0)
447                 m = 1;
448
449         if (new_sample != 0) {
450                 /* If we sample in larger samples in the non-timestamp
451                  * case, we could grossly overestimate the RTT especially
452                  * with chatty applications or bulk transfer apps which
453                  * are stalled on filesystem I/O.
454                  *
455                  * Also, since we are only going for a minimum in the
456                  * non-timestamp case, we do not smooth things out
457                  * else with timestamps disabled convergence takes too
458                  * long.
459                  */
460                 if (!win_dep) {
461                         m -= (new_sample >> 3);
462                         new_sample += m;
463                 } else if (m < new_sample)
464                         new_sample = m << 3;
465         } else {
466                 /* No previous measure. */
467                 new_sample = m << 3;
468         }
469
470         if (tp->rcv_rtt_est.rtt != new_sample)
471                 tp->rcv_rtt_est.rtt = new_sample;
472 }
473
474 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
475 {
476         if (tp->rcv_rtt_est.time == 0)
477                 goto new_measure;
478         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479                 return;
480         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
481
482 new_measure:
483         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484         tp->rcv_rtt_est.time = tcp_time_stamp;
485 }
486
487 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488                                           const struct sk_buff *skb)
489 {
490         struct tcp_sock *tp = tcp_sk(sk);
491         if (tp->rx_opt.rcv_tsecr &&
492             (TCP_SKB_CB(skb)->end_seq -
493              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
494                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
495 }
496
497 /*
498  * This function should be called every time data is copied to user space.
499  * It calculates the appropriate TCP receive buffer space.
500  */
501 void tcp_rcv_space_adjust(struct sock *sk)
502 {
503         struct tcp_sock *tp = tcp_sk(sk);
504         int time;
505         int space;
506
507         if (tp->rcvq_space.time == 0)
508                 goto new_measure;
509
510         time = tcp_time_stamp - tp->rcvq_space.time;
511         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
512                 return;
513
514         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
515
516         space = max(tp->rcvq_space.space, space);
517
518         if (tp->rcvq_space.space != space) {
519                 int rcvmem;
520
521                 tp->rcvq_space.space = space;
522
523                 if (sysctl_tcp_moderate_rcvbuf &&
524                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
525                         int new_clamp = space;
526
527                         /* Receive space grows, normalize in order to
528                          * take into account packet headers and sk_buff
529                          * structure overhead.
530                          */
531                         space /= tp->advmss;
532                         if (!space)
533                                 space = 1;
534                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
535                                   16 + sizeof(struct sk_buff));
536                         while (tcp_win_from_space(rcvmem) < tp->advmss)
537                                 rcvmem += 128;
538                         space *= rcvmem;
539                         space = min(space, sysctl_tcp_rmem[2]);
540                         if (space > sk->sk_rcvbuf) {
541                                 sk->sk_rcvbuf = space;
542
543                                 /* Make the window clamp follow along.  */
544                                 tp->window_clamp = new_clamp;
545                         }
546                 }
547         }
548
549 new_measure:
550         tp->rcvq_space.seq = tp->copied_seq;
551         tp->rcvq_space.time = tcp_time_stamp;
552 }
553
554 /* There is something which you must keep in mind when you analyze the
555  * behavior of the tp->ato delayed ack timeout interval.  When a
556  * connection starts up, we want to ack as quickly as possible.  The
557  * problem is that "good" TCP's do slow start at the beginning of data
558  * transmission.  The means that until we send the first few ACK's the
559  * sender will sit on his end and only queue most of his data, because
560  * he can only send snd_cwnd unacked packets at any given time.  For
561  * each ACK we send, he increments snd_cwnd and transmits more of his
562  * queue.  -DaveM
563  */
564 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
565 {
566         struct tcp_sock *tp = tcp_sk(sk);
567         struct inet_connection_sock *icsk = inet_csk(sk);
568         u32 now;
569
570         inet_csk_schedule_ack(sk);
571
572         tcp_measure_rcv_mss(sk, skb);
573
574         tcp_rcv_rtt_measure(tp);
575
576         now = tcp_time_stamp;
577
578         if (!icsk->icsk_ack.ato) {
579                 /* The _first_ data packet received, initialize
580                  * delayed ACK engine.
581                  */
582                 tcp_incr_quickack(sk);
583                 icsk->icsk_ack.ato = TCP_ATO_MIN;
584         } else {
585                 int m = now - icsk->icsk_ack.lrcvtime;
586
587                 if (m <= TCP_ATO_MIN / 2) {
588                         /* The fastest case is the first. */
589                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590                 } else if (m < icsk->icsk_ack.ato) {
591                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
593                                 icsk->icsk_ack.ato = icsk->icsk_rto;
594                 } else if (m > icsk->icsk_rto) {
595                         /* Too long gap. Apparently sender failed to
596                          * restart window, so that we send ACKs quickly.
597                          */
598                         tcp_incr_quickack(sk);
599                         sk_mem_reclaim(sk);
600                 }
601         }
602         icsk->icsk_ack.lrcvtime = now;
603
604         TCP_ECN_check_ce(tp, skb);
605
606         if (skb->len >= 128)
607                 tcp_grow_window(sk, skb);
608 }
609
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611  * routine either comes from timestamps, or from segments that were
612  * known _not_ to have been retransmitted [see Karn/Partridge
613  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614  * piece by Van Jacobson.
615  * NOTE: the next three routines used to be one big routine.
616  * To save cycles in the RFC 1323 implementation it was better to break
617  * it up into three procedures. -- erics
618  */
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 {
621         struct tcp_sock *tp = tcp_sk(sk);
622         long m = mrtt; /* RTT */
623
624         /*      The following amusing code comes from Jacobson's
625          *      article in SIGCOMM '88.  Note that rtt and mdev
626          *      are scaled versions of rtt and mean deviation.
627          *      This is designed to be as fast as possible
628          *      m stands for "measurement".
629          *
630          *      On a 1990 paper the rto value is changed to:
631          *      RTO = rtt + 4 * mdev
632          *
633          * Funny. This algorithm seems to be very broken.
634          * These formulae increase RTO, when it should be decreased, increase
635          * too slowly, when it should be increased quickly, decrease too quickly
636          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637          * does not matter how to _calculate_ it. Seems, it was trap
638          * that VJ failed to avoid. 8)
639          */
640         if (m == 0)
641                 m = 1;
642         if (tp->srtt != 0) {
643                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
644                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
645                 if (m < 0) {
646                         m = -m;         /* m is now abs(error) */
647                         m -= (tp->mdev >> 2);   /* similar update on mdev */
648                         /* This is similar to one of Eifel findings.
649                          * Eifel blocks mdev updates when rtt decreases.
650                          * This solution is a bit different: we use finer gain
651                          * for mdev in this case (alpha*beta).
652                          * Like Eifel it also prevents growth of rto,
653                          * but also it limits too fast rto decreases,
654                          * happening in pure Eifel.
655                          */
656                         if (m > 0)
657                                 m >>= 3;
658                 } else {
659                         m -= (tp->mdev >> 2);   /* similar update on mdev */
660                 }
661                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
662                 if (tp->mdev > tp->mdev_max) {
663                         tp->mdev_max = tp->mdev;
664                         if (tp->mdev_max > tp->rttvar)
665                                 tp->rttvar = tp->mdev_max;
666                 }
667                 if (after(tp->snd_una, tp->rtt_seq)) {
668                         if (tp->mdev_max < tp->rttvar)
669                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670                         tp->rtt_seq = tp->snd_nxt;
671                         tp->mdev_max = tcp_rto_min(sk);
672                 }
673         } else {
674                 /* no previous measure. */
675                 tp->srtt = m << 3;      /* take the measured time to be rtt */
676                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
677                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678                 tp->rtt_seq = tp->snd_nxt;
679         }
680 }
681
682 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
683  * routine referred to above.
684  */
685 static inline void tcp_set_rto(struct sock *sk)
686 {
687         const struct tcp_sock *tp = tcp_sk(sk);
688         /* Old crap is replaced with new one. 8)
689          *
690          * More seriously:
691          * 1. If rtt variance happened to be less 50msec, it is hallucination.
692          *    It cannot be less due to utterly erratic ACK generation made
693          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694          *    to do with delayed acks, because at cwnd>2 true delack timeout
695          *    is invisible. Actually, Linux-2.4 also generates erratic
696          *    ACKs in some circumstances.
697          */
698         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
699
700         /* 2. Fixups made earlier cannot be right.
701          *    If we do not estimate RTO correctly without them,
702          *    all the algo is pure shit and should be replaced
703          *    with correct one. It is exactly, which we pretend to do.
704          */
705
706         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707          * guarantees that rto is higher.
708          */
709         tcp_bound_rto(sk);
710 }
711
712 /* Save metrics learned by this TCP session.
713    This function is called only, when TCP finishes successfully
714    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715  */
716 void tcp_update_metrics(struct sock *sk)
717 {
718         struct tcp_sock *tp = tcp_sk(sk);
719         struct dst_entry *dst = __sk_dst_get(sk);
720
721         if (sysctl_tcp_nometrics_save)
722                 return;
723
724         dst_confirm(dst);
725
726         if (dst && (dst->flags & DST_HOST)) {
727                 const struct inet_connection_sock *icsk = inet_csk(sk);
728                 int m;
729                 unsigned long rtt;
730
731                 if (icsk->icsk_backoff || !tp->srtt) {
732                         /* This session failed to estimate rtt. Why?
733                          * Probably, no packets returned in time.
734                          * Reset our results.
735                          */
736                         if (!(dst_metric_locked(dst, RTAX_RTT)))
737                                 dst_metric_set(dst, RTAX_RTT, 0);
738                         return;
739                 }
740
741                 rtt = dst_metric_rtt(dst, RTAX_RTT);
742                 m = rtt - tp->srtt;
743
744                 /* If newly calculated rtt larger than stored one,
745                  * store new one. Otherwise, use EWMA. Remember,
746                  * rtt overestimation is always better than underestimation.
747                  */
748                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
749                         if (m <= 0)
750                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751                         else
752                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753                 }
754
755                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756                         unsigned long var;
757                         if (m < 0)
758                                 m = -m;
759
760                         /* Scale deviation to rttvar fixed point */
761                         m >>= 1;
762                         if (m < tp->mdev)
763                                 m = tp->mdev;
764
765                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
766                         if (m >= var)
767                                 var = m;
768                         else
769                                 var -= (var - m) >> 2;
770
771                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772                 }
773
774                 if (tcp_in_initial_slowstart(tp)) {
775                         /* Slow start still did not finish. */
776                         if (dst_metric(dst, RTAX_SSTHRESH) &&
777                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
780                         if (!dst_metric_locked(dst, RTAX_CWND) &&
781                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
783                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
784                            icsk->icsk_ca_state == TCP_CA_Open) {
785                         /* Cong. avoidance phase, cwnd is reliable. */
786                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787                                 dst_metric_set(dst, RTAX_SSTHRESH,
788                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
789                         if (!dst_metric_locked(dst, RTAX_CWND))
790                                 dst_metric_set(dst, RTAX_CWND,
791                                                (dst_metric(dst, RTAX_CWND) +
792                                                 tp->snd_cwnd) >> 1);
793                 } else {
794                         /* Else slow start did not finish, cwnd is non-sense,
795                            ssthresh may be also invalid.
796                          */
797                         if (!dst_metric_locked(dst, RTAX_CWND))
798                                 dst_metric_set(dst, RTAX_CWND,
799                                                (dst_metric(dst, RTAX_CWND) +
800                                                 tp->snd_ssthresh) >> 1);
801                         if (dst_metric(dst, RTAX_SSTHRESH) &&
802                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
804                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
805                 }
806
807                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
809                             tp->reordering != sysctl_tcp_reordering)
810                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
811                 }
812         }
813 }
814
815 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
816 {
817         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
818
819         if (!cwnd)
820                 cwnd = rfc3390_bytes_to_packets(tp->mss_cache);
821         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
822 }
823
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
826 {
827         struct tcp_sock *tp = tcp_sk(sk);
828         const struct inet_connection_sock *icsk = inet_csk(sk);
829
830         tp->prior_ssthresh = 0;
831         tp->bytes_acked = 0;
832         if (icsk->icsk_ca_state < TCP_CA_CWR) {
833                 tp->undo_marker = 0;
834                 if (set_ssthresh)
835                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
836                 tp->snd_cwnd = min(tp->snd_cwnd,
837                                    tcp_packets_in_flight(tp) + 1U);
838                 tp->snd_cwnd_cnt = 0;
839                 tp->high_seq = tp->snd_nxt;
840                 tp->snd_cwnd_stamp = tcp_time_stamp;
841                 TCP_ECN_queue_cwr(tp);
842
843                 tcp_set_ca_state(sk, TCP_CA_CWR);
844         }
845 }
846
847 /*
848  * Packet counting of FACK is based on in-order assumptions, therefore TCP
849  * disables it when reordering is detected
850  */
851 static void tcp_disable_fack(struct tcp_sock *tp)
852 {
853         /* RFC3517 uses different metric in lost marker => reset on change */
854         if (tcp_is_fack(tp))
855                 tp->lost_skb_hint = NULL;
856         tp->rx_opt.sack_ok &= ~2;
857 }
858
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock *tp)
861 {
862         tp->rx_opt.sack_ok |= 4;
863 }
864
865 /* Initialize metrics on socket. */
866
867 static void tcp_init_metrics(struct sock *sk)
868 {
869         struct tcp_sock *tp = tcp_sk(sk);
870         struct dst_entry *dst = __sk_dst_get(sk);
871
872         if (dst == NULL)
873                 goto reset;
874
875         dst_confirm(dst);
876
877         if (dst_metric_locked(dst, RTAX_CWND))
878                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879         if (dst_metric(dst, RTAX_SSTHRESH)) {
880                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
883         }
884         if (dst_metric(dst, RTAX_REORDERING) &&
885             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
886                 tcp_disable_fack(tp);
887                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
888         }
889
890         if (dst_metric(dst, RTAX_RTT) == 0)
891                 goto reset;
892
893         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
894                 goto reset;
895
896         /* Initial rtt is determined from SYN,SYN-ACK.
897          * The segment is small and rtt may appear much
898          * less than real one. Use per-dst memory
899          * to make it more realistic.
900          *
901          * A bit of theory. RTT is time passed after "normal" sized packet
902          * is sent until it is ACKed. In normal circumstances sending small
903          * packets force peer to delay ACKs and calculation is correct too.
904          * The algorithm is adaptive and, provided we follow specs, it
905          * NEVER underestimate RTT. BUT! If peer tries to make some clever
906          * tricks sort of "quick acks" for time long enough to decrease RTT
907          * to low value, and then abruptly stops to do it and starts to delay
908          * ACKs, wait for troubles.
909          */
910         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
911                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
912                 tp->rtt_seq = tp->snd_nxt;
913         }
914         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
915                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
916                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
917         }
918         tcp_set_rto(sk);
919         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) {
920 reset:
921                 /* Play conservative. If timestamps are not
922                  * supported, TCP will fail to recalculate correct
923                  * rtt, if initial rto is too small. FORGET ALL AND RESET!
924                  */
925                 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
926                         tp->srtt = 0;
927                         tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
928                         inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
929                 }
930         }
931         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932         tp->snd_cwnd_stamp = tcp_time_stamp;
933 }
934
935 static void tcp_update_reordering(struct sock *sk, const int metric,
936                                   const int ts)
937 {
938         struct tcp_sock *tp = tcp_sk(sk);
939         if (metric > tp->reordering) {
940                 int mib_idx;
941
942                 tp->reordering = min(TCP_MAX_REORDERING, metric);
943
944                 /* This exciting event is worth to be remembered. 8) */
945                 if (ts)
946                         mib_idx = LINUX_MIB_TCPTSREORDER;
947                 else if (tcp_is_reno(tp))
948                         mib_idx = LINUX_MIB_TCPRENOREORDER;
949                 else if (tcp_is_fack(tp))
950                         mib_idx = LINUX_MIB_TCPFACKREORDER;
951                 else
952                         mib_idx = LINUX_MIB_TCPSACKREORDER;
953
954                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
955 #if FASTRETRANS_DEBUG > 1
956                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
957                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
958                        tp->reordering,
959                        tp->fackets_out,
960                        tp->sacked_out,
961                        tp->undo_marker ? tp->undo_retrans : 0);
962 #endif
963                 tcp_disable_fack(tp);
964         }
965 }
966
967 /* This must be called before lost_out is incremented */
968 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
969 {
970         if ((tp->retransmit_skb_hint == NULL) ||
971             before(TCP_SKB_CB(skb)->seq,
972                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
973                 tp->retransmit_skb_hint = skb;
974
975         if (!tp->lost_out ||
976             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
977                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
978 }
979
980 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
981 {
982         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
983                 tcp_verify_retransmit_hint(tp, skb);
984
985                 tp->lost_out += tcp_skb_pcount(skb);
986                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
987         }
988 }
989
990 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
991                                             struct sk_buff *skb)
992 {
993         tcp_verify_retransmit_hint(tp, skb);
994
995         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
996                 tp->lost_out += tcp_skb_pcount(skb);
997                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998         }
999 }
1000
1001 /* This procedure tags the retransmission queue when SACKs arrive.
1002  *
1003  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1004  * Packets in queue with these bits set are counted in variables
1005  * sacked_out, retrans_out and lost_out, correspondingly.
1006  *
1007  * Valid combinations are:
1008  * Tag  InFlight        Description
1009  * 0    1               - orig segment is in flight.
1010  * S    0               - nothing flies, orig reached receiver.
1011  * L    0               - nothing flies, orig lost by net.
1012  * R    2               - both orig and retransmit are in flight.
1013  * L|R  1               - orig is lost, retransmit is in flight.
1014  * S|R  1               - orig reached receiver, retrans is still in flight.
1015  * (L|S|R is logically valid, it could occur when L|R is sacked,
1016  *  but it is equivalent to plain S and code short-curcuits it to S.
1017  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1018  *
1019  * These 6 states form finite state machine, controlled by the following events:
1020  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1021  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1022  * 3. Loss detection event of one of three flavors:
1023  *      A. Scoreboard estimator decided the packet is lost.
1024  *         A'. Reno "three dupacks" marks head of queue lost.
1025  *         A''. Its FACK modfication, head until snd.fack is lost.
1026  *      B. SACK arrives sacking data transmitted after never retransmitted
1027  *         hole was sent out.
1028  *      C. SACK arrives sacking SND.NXT at the moment, when the
1029  *         segment was retransmitted.
1030  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1031  *
1032  * It is pleasant to note, that state diagram turns out to be commutative,
1033  * so that we are allowed not to be bothered by order of our actions,
1034  * when multiple events arrive simultaneously. (see the function below).
1035  *
1036  * Reordering detection.
1037  * --------------------
1038  * Reordering metric is maximal distance, which a packet can be displaced
1039  * in packet stream. With SACKs we can estimate it:
1040  *
1041  * 1. SACK fills old hole and the corresponding segment was not
1042  *    ever retransmitted -> reordering. Alas, we cannot use it
1043  *    when segment was retransmitted.
1044  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1045  *    for retransmitted and already SACKed segment -> reordering..
1046  * Both of these heuristics are not used in Loss state, when we cannot
1047  * account for retransmits accurately.
1048  *
1049  * SACK block validation.
1050  * ----------------------
1051  *
1052  * SACK block range validation checks that the received SACK block fits to
1053  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1054  * Note that SND.UNA is not included to the range though being valid because
1055  * it means that the receiver is rather inconsistent with itself reporting
1056  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1057  * perfectly valid, however, in light of RFC2018 which explicitly states
1058  * that "SACK block MUST reflect the newest segment.  Even if the newest
1059  * segment is going to be discarded ...", not that it looks very clever
1060  * in case of head skb. Due to potentional receiver driven attacks, we
1061  * choose to avoid immediate execution of a walk in write queue due to
1062  * reneging and defer head skb's loss recovery to standard loss recovery
1063  * procedure that will eventually trigger (nothing forbids us doing this).
1064  *
1065  * Implements also blockage to start_seq wrap-around. Problem lies in the
1066  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1067  * there's no guarantee that it will be before snd_nxt (n). The problem
1068  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1069  * wrap (s_w):
1070  *
1071  *         <- outs wnd ->                          <- wrapzone ->
1072  *         u     e      n                         u_w   e_w  s n_w
1073  *         |     |      |                          |     |   |  |
1074  * |<------------+------+----- TCP seqno space --------------+---------->|
1075  * ...-- <2^31 ->|                                           |<--------...
1076  * ...---- >2^31 ------>|                                    |<--------...
1077  *
1078  * Current code wouldn't be vulnerable but it's better still to discard such
1079  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1080  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1081  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1082  * equal to the ideal case (infinite seqno space without wrap caused issues).
1083  *
1084  * With D-SACK the lower bound is extended to cover sequence space below
1085  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1086  * again, D-SACK block must not to go across snd_una (for the same reason as
1087  * for the normal SACK blocks, explained above). But there all simplicity
1088  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1089  * fully below undo_marker they do not affect behavior in anyway and can
1090  * therefore be safely ignored. In rare cases (which are more or less
1091  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1092  * fragmentation and packet reordering past skb's retransmission. To consider
1093  * them correctly, the acceptable range must be extended even more though
1094  * the exact amount is rather hard to quantify. However, tp->max_window can
1095  * be used as an exaggerated estimate.
1096  */
1097 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1098                                   u32 start_seq, u32 end_seq)
1099 {
1100         /* Too far in future, or reversed (interpretation is ambiguous) */
1101         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1102                 return 0;
1103
1104         /* Nasty start_seq wrap-around check (see comments above) */
1105         if (!before(start_seq, tp->snd_nxt))
1106                 return 0;
1107
1108         /* In outstanding window? ...This is valid exit for D-SACKs too.
1109          * start_seq == snd_una is non-sensical (see comments above)
1110          */
1111         if (after(start_seq, tp->snd_una))
1112                 return 1;
1113
1114         if (!is_dsack || !tp->undo_marker)
1115                 return 0;
1116
1117         /* ...Then it's D-SACK, and must reside below snd_una completely */
1118         if (!after(end_seq, tp->snd_una))
1119                 return 0;
1120
1121         if (!before(start_seq, tp->undo_marker))
1122                 return 1;
1123
1124         /* Too old */
1125         if (!after(end_seq, tp->undo_marker))
1126                 return 0;
1127
1128         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1129          *   start_seq < undo_marker and end_seq >= undo_marker.
1130          */
1131         return !before(start_seq, end_seq - tp->max_window);
1132 }
1133
1134 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1135  * Event "C". Later note: FACK people cheated me again 8), we have to account
1136  * for reordering! Ugly, but should help.
1137  *
1138  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1139  * less than what is now known to be received by the other end (derived from
1140  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1141  * retransmitted skbs to avoid some costly processing per ACKs.
1142  */
1143 static void tcp_mark_lost_retrans(struct sock *sk)
1144 {
1145         const struct inet_connection_sock *icsk = inet_csk(sk);
1146         struct tcp_sock *tp = tcp_sk(sk);
1147         struct sk_buff *skb;
1148         int cnt = 0;
1149         u32 new_low_seq = tp->snd_nxt;
1150         u32 received_upto = tcp_highest_sack_seq(tp);
1151
1152         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1153             !after(received_upto, tp->lost_retrans_low) ||
1154             icsk->icsk_ca_state != TCP_CA_Recovery)
1155                 return;
1156
1157         tcp_for_write_queue(skb, sk) {
1158                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1159
1160                 if (skb == tcp_send_head(sk))
1161                         break;
1162                 if (cnt == tp->retrans_out)
1163                         break;
1164                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1165                         continue;
1166
1167                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1168                         continue;
1169
1170                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1171                  * constraint here (see above) but figuring out that at
1172                  * least tp->reordering SACK blocks reside between ack_seq
1173                  * and received_upto is not easy task to do cheaply with
1174                  * the available datastructures.
1175                  *
1176                  * Whether FACK should check here for tp->reordering segs
1177                  * in-between one could argue for either way (it would be
1178                  * rather simple to implement as we could count fack_count
1179                  * during the walk and do tp->fackets_out - fack_count).
1180                  */
1181                 if (after(received_upto, ack_seq)) {
1182                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183                         tp->retrans_out -= tcp_skb_pcount(skb);
1184
1185                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1186                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1187                 } else {
1188                         if (before(ack_seq, new_low_seq))
1189                                 new_low_seq = ack_seq;
1190                         cnt += tcp_skb_pcount(skb);
1191                 }
1192         }
1193
1194         if (tp->retrans_out)
1195                 tp->lost_retrans_low = new_low_seq;
1196 }
1197
1198 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1199                            struct tcp_sack_block_wire *sp, int num_sacks,
1200                            u32 prior_snd_una)
1201 {
1202         struct tcp_sock *tp = tcp_sk(sk);
1203         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1204         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1205         int dup_sack = 0;
1206
1207         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1208                 dup_sack = 1;
1209                 tcp_dsack_seen(tp);
1210                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1211         } else if (num_sacks > 1) {
1212                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1213                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1214
1215                 if (!after(end_seq_0, end_seq_1) &&
1216                     !before(start_seq_0, start_seq_1)) {
1217                         dup_sack = 1;
1218                         tcp_dsack_seen(tp);
1219                         NET_INC_STATS_BH(sock_net(sk),
1220                                         LINUX_MIB_TCPDSACKOFORECV);
1221                 }
1222         }
1223
1224         /* D-SACK for already forgotten data... Do dumb counting. */
1225         if (dup_sack &&
1226             !after(end_seq_0, prior_snd_una) &&
1227             after(end_seq_0, tp->undo_marker))
1228                 tp->undo_retrans--;
1229
1230         return dup_sack;
1231 }
1232
1233 struct tcp_sacktag_state {
1234         int reord;
1235         int fack_count;
1236         int flag;
1237 };
1238
1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1240  * the incoming SACK may not exactly match but we can find smaller MSS
1241  * aligned portion of it that matches. Therefore we might need to fragment
1242  * which may fail and creates some hassle (caller must handle error case
1243  * returns).
1244  *
1245  * FIXME: this could be merged to shift decision code
1246  */
1247 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1248                                  u32 start_seq, u32 end_seq)
1249 {
1250         int in_sack, err;
1251         unsigned int pkt_len;
1252         unsigned int mss;
1253
1254         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1255                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1256
1257         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1258             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1259                 mss = tcp_skb_mss(skb);
1260                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1261
1262                 if (!in_sack) {
1263                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1264                         if (pkt_len < mss)
1265                                 pkt_len = mss;
1266                 } else {
1267                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1268                         if (pkt_len < mss)
1269                                 return -EINVAL;
1270                 }
1271
1272                 /* Round if necessary so that SACKs cover only full MSSes
1273                  * and/or the remaining small portion (if present)
1274                  */
1275                 if (pkt_len > mss) {
1276                         unsigned int new_len = (pkt_len / mss) * mss;
1277                         if (!in_sack && new_len < pkt_len) {
1278                                 new_len += mss;
1279                                 if (new_len > skb->len)
1280                                         return 0;
1281                         }
1282                         pkt_len = new_len;
1283                 }
1284                 err = tcp_fragment(sk, skb, pkt_len, mss);
1285                 if (err < 0)
1286                         return err;
1287         }
1288
1289         return in_sack;
1290 }
1291
1292 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1293                           struct tcp_sacktag_state *state,
1294                           int dup_sack, int pcount)
1295 {
1296         struct tcp_sock *tp = tcp_sk(sk);
1297         u8 sacked = TCP_SKB_CB(skb)->sacked;
1298         int fack_count = state->fack_count;
1299
1300         /* Account D-SACK for retransmitted packet. */
1301         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1302                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1303                         tp->undo_retrans--;
1304                 if (sacked & TCPCB_SACKED_ACKED)
1305                         state->reord = min(fack_count, state->reord);
1306         }
1307
1308         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1309         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1310                 return sacked;
1311
1312         if (!(sacked & TCPCB_SACKED_ACKED)) {
1313                 if (sacked & TCPCB_SACKED_RETRANS) {
1314                         /* If the segment is not tagged as lost,
1315                          * we do not clear RETRANS, believing
1316                          * that retransmission is still in flight.
1317                          */
1318                         if (sacked & TCPCB_LOST) {
1319                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1320                                 tp->lost_out -= pcount;
1321                                 tp->retrans_out -= pcount;
1322                         }
1323                 } else {
1324                         if (!(sacked & TCPCB_RETRANS)) {
1325                                 /* New sack for not retransmitted frame,
1326                                  * which was in hole. It is reordering.
1327                                  */
1328                                 if (before(TCP_SKB_CB(skb)->seq,
1329                                            tcp_highest_sack_seq(tp)))
1330                                         state->reord = min(fack_count,
1331                                                            state->reord);
1332
1333                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1334                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1335                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1336                         }
1337
1338                         if (sacked & TCPCB_LOST) {
1339                                 sacked &= ~TCPCB_LOST;
1340                                 tp->lost_out -= pcount;
1341                         }
1342                 }
1343
1344                 sacked |= TCPCB_SACKED_ACKED;
1345                 state->flag |= FLAG_DATA_SACKED;
1346                 tp->sacked_out += pcount;
1347
1348                 fack_count += pcount;
1349
1350                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1351                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1352                     before(TCP_SKB_CB(skb)->seq,
1353                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1354                         tp->lost_cnt_hint += pcount;
1355
1356                 if (fack_count > tp->fackets_out)
1357                         tp->fackets_out = fack_count;
1358         }
1359
1360         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1361          * frames and clear it. undo_retrans is decreased above, L|R frames
1362          * are accounted above as well.
1363          */
1364         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1365                 sacked &= ~TCPCB_SACKED_RETRANS;
1366                 tp->retrans_out -= pcount;
1367         }
1368
1369         return sacked;
1370 }
1371
1372 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1373                            struct tcp_sacktag_state *state,
1374                            unsigned int pcount, int shifted, int mss,
1375                            int dup_sack)
1376 {
1377         struct tcp_sock *tp = tcp_sk(sk);
1378         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1379
1380         BUG_ON(!pcount);
1381
1382         /* Tweak before seqno plays */
1383         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1384             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1385                 tp->lost_cnt_hint += pcount;
1386
1387         TCP_SKB_CB(prev)->end_seq += shifted;
1388         TCP_SKB_CB(skb)->seq += shifted;
1389
1390         skb_shinfo(prev)->gso_segs += pcount;
1391         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1392         skb_shinfo(skb)->gso_segs -= pcount;
1393
1394         /* When we're adding to gso_segs == 1, gso_size will be zero,
1395          * in theory this shouldn't be necessary but as long as DSACK
1396          * code can come after this skb later on it's better to keep
1397          * setting gso_size to something.
1398          */
1399         if (!skb_shinfo(prev)->gso_size) {
1400                 skb_shinfo(prev)->gso_size = mss;
1401                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1402         }
1403
1404         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1405         if (skb_shinfo(skb)->gso_segs <= 1) {
1406                 skb_shinfo(skb)->gso_size = 0;
1407                 skb_shinfo(skb)->gso_type = 0;
1408         }
1409
1410         /* We discard results */
1411         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1412
1413         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1414         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1415
1416         if (skb->len > 0) {
1417                 BUG_ON(!tcp_skb_pcount(skb));
1418                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1419                 return 0;
1420         }
1421
1422         /* Whole SKB was eaten :-) */
1423
1424         if (skb == tp->retransmit_skb_hint)
1425                 tp->retransmit_skb_hint = prev;
1426         if (skb == tp->scoreboard_skb_hint)
1427                 tp->scoreboard_skb_hint = prev;
1428         if (skb == tp->lost_skb_hint) {
1429                 tp->lost_skb_hint = prev;
1430                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1431         }
1432
1433         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1434         if (skb == tcp_highest_sack(sk))
1435                 tcp_advance_highest_sack(sk, skb);
1436
1437         tcp_unlink_write_queue(skb, sk);
1438         sk_wmem_free_skb(sk, skb);
1439
1440         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1441
1442         return 1;
1443 }
1444
1445 /* I wish gso_size would have a bit more sane initialization than
1446  * something-or-zero which complicates things
1447  */
1448 static int tcp_skb_seglen(struct sk_buff *skb)
1449 {
1450         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1451 }
1452
1453 /* Shifting pages past head area doesn't work */
1454 static int skb_can_shift(struct sk_buff *skb)
1455 {
1456         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1457 }
1458
1459 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1460  * skb.
1461  */
1462 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1463                                           struct tcp_sacktag_state *state,
1464                                           u32 start_seq, u32 end_seq,
1465                                           int dup_sack)
1466 {
1467         struct tcp_sock *tp = tcp_sk(sk);
1468         struct sk_buff *prev;
1469         int mss;
1470         int pcount = 0;
1471         int len;
1472         int in_sack;
1473
1474         if (!sk_can_gso(sk))
1475                 goto fallback;
1476
1477         /* Normally R but no L won't result in plain S */
1478         if (!dup_sack &&
1479             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1480                 goto fallback;
1481         if (!skb_can_shift(skb))
1482                 goto fallback;
1483         /* This frame is about to be dropped (was ACKed). */
1484         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1485                 goto fallback;
1486
1487         /* Can only happen with delayed DSACK + discard craziness */
1488         if (unlikely(skb == tcp_write_queue_head(sk)))
1489                 goto fallback;
1490         prev = tcp_write_queue_prev(sk, skb);
1491
1492         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1493                 goto fallback;
1494
1495         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1496                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1497
1498         if (in_sack) {
1499                 len = skb->len;
1500                 pcount = tcp_skb_pcount(skb);
1501                 mss = tcp_skb_seglen(skb);
1502
1503                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1504                  * drop this restriction as unnecessary
1505                  */
1506                 if (mss != tcp_skb_seglen(prev))
1507                         goto fallback;
1508         } else {
1509                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1510                         goto noop;
1511                 /* CHECKME: This is non-MSS split case only?, this will
1512                  * cause skipped skbs due to advancing loop btw, original
1513                  * has that feature too
1514                  */
1515                 if (tcp_skb_pcount(skb) <= 1)
1516                         goto noop;
1517
1518                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1519                 if (!in_sack) {
1520                         /* TODO: head merge to next could be attempted here
1521                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1522                          * though it might not be worth of the additional hassle
1523                          *
1524                          * ...we can probably just fallback to what was done
1525                          * previously. We could try merging non-SACKed ones
1526                          * as well but it probably isn't going to buy off
1527                          * because later SACKs might again split them, and
1528                          * it would make skb timestamp tracking considerably
1529                          * harder problem.
1530                          */
1531                         goto fallback;
1532                 }
1533
1534                 len = end_seq - TCP_SKB_CB(skb)->seq;
1535                 BUG_ON(len < 0);
1536                 BUG_ON(len > skb->len);
1537
1538                 /* MSS boundaries should be honoured or else pcount will
1539                  * severely break even though it makes things bit trickier.
1540                  * Optimize common case to avoid most of the divides
1541                  */
1542                 mss = tcp_skb_mss(skb);
1543
1544                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1545                  * drop this restriction as unnecessary
1546                  */
1547                 if (mss != tcp_skb_seglen(prev))
1548                         goto fallback;
1549
1550                 if (len == mss) {
1551                         pcount = 1;
1552                 } else if (len < mss) {
1553                         goto noop;
1554                 } else {
1555                         pcount = len / mss;
1556                         len = pcount * mss;
1557                 }
1558         }
1559
1560         if (!skb_shift(prev, skb, len))
1561                 goto fallback;
1562         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1563                 goto out;
1564
1565         /* Hole filled allows collapsing with the next as well, this is very
1566          * useful when hole on every nth skb pattern happens
1567          */
1568         if (prev == tcp_write_queue_tail(sk))
1569                 goto out;
1570         skb = tcp_write_queue_next(sk, prev);
1571
1572         if (!skb_can_shift(skb) ||
1573             (skb == tcp_send_head(sk)) ||
1574             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1575             (mss != tcp_skb_seglen(skb)))
1576                 goto out;
1577
1578         len = skb->len;
1579         if (skb_shift(prev, skb, len)) {
1580                 pcount += tcp_skb_pcount(skb);
1581                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1582         }
1583
1584 out:
1585         state->fack_count += pcount;
1586         return prev;
1587
1588 noop:
1589         return skb;
1590
1591 fallback:
1592         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1593         return NULL;
1594 }
1595
1596 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1597                                         struct tcp_sack_block *next_dup,
1598                                         struct tcp_sacktag_state *state,
1599                                         u32 start_seq, u32 end_seq,
1600                                         int dup_sack_in)
1601 {
1602         struct tcp_sock *tp = tcp_sk(sk);
1603         struct sk_buff *tmp;
1604
1605         tcp_for_write_queue_from(skb, sk) {
1606                 int in_sack = 0;
1607                 int dup_sack = dup_sack_in;
1608
1609                 if (skb == tcp_send_head(sk))
1610                         break;
1611
1612                 /* queue is in-order => we can short-circuit the walk early */
1613                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1614                         break;
1615
1616                 if ((next_dup != NULL) &&
1617                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1618                         in_sack = tcp_match_skb_to_sack(sk, skb,
1619                                                         next_dup->start_seq,
1620                                                         next_dup->end_seq);
1621                         if (in_sack > 0)
1622                                 dup_sack = 1;
1623                 }
1624
1625                 /* skb reference here is a bit tricky to get right, since
1626                  * shifting can eat and free both this skb and the next,
1627                  * so not even _safe variant of the loop is enough.
1628                  */
1629                 if (in_sack <= 0) {
1630                         tmp = tcp_shift_skb_data(sk, skb, state,
1631                                                  start_seq, end_seq, dup_sack);
1632                         if (tmp != NULL) {
1633                                 if (tmp != skb) {
1634                                         skb = tmp;
1635                                         continue;
1636                                 }
1637
1638                                 in_sack = 0;
1639                         } else {
1640                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1641                                                                 start_seq,
1642                                                                 end_seq);
1643                         }
1644                 }
1645
1646                 if (unlikely(in_sack < 0))
1647                         break;
1648
1649                 if (in_sack) {
1650                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1651                                                                   state,
1652                                                                   dup_sack,
1653                                                                   tcp_skb_pcount(skb));
1654
1655                         if (!before(TCP_SKB_CB(skb)->seq,
1656                                     tcp_highest_sack_seq(tp)))
1657                                 tcp_advance_highest_sack(sk, skb);
1658                 }
1659
1660                 state->fack_count += tcp_skb_pcount(skb);
1661         }
1662         return skb;
1663 }
1664
1665 /* Avoid all extra work that is being done by sacktag while walking in
1666  * a normal way
1667  */
1668 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1669                                         struct tcp_sacktag_state *state,
1670                                         u32 skip_to_seq)
1671 {
1672         tcp_for_write_queue_from(skb, sk) {
1673                 if (skb == tcp_send_head(sk))
1674                         break;
1675
1676                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1677                         break;
1678
1679                 state->fack_count += tcp_skb_pcount(skb);
1680         }
1681         return skb;
1682 }
1683
1684 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1685                                                 struct sock *sk,
1686                                                 struct tcp_sack_block *next_dup,
1687                                                 struct tcp_sacktag_state *state,
1688                                                 u32 skip_to_seq)
1689 {
1690         if (next_dup == NULL)
1691                 return skb;
1692
1693         if (before(next_dup->start_seq, skip_to_seq)) {
1694                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1695                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1696                                        next_dup->start_seq, next_dup->end_seq,
1697                                        1);
1698         }
1699
1700         return skb;
1701 }
1702
1703 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1704 {
1705         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1706 }
1707
1708 static int
1709 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1710                         u32 prior_snd_una)
1711 {
1712         const struct inet_connection_sock *icsk = inet_csk(sk);
1713         struct tcp_sock *tp = tcp_sk(sk);
1714         unsigned char *ptr = (skb_transport_header(ack_skb) +
1715                               TCP_SKB_CB(ack_skb)->sacked);
1716         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1717         struct tcp_sack_block sp[TCP_NUM_SACKS];
1718         struct tcp_sack_block *cache;
1719         struct tcp_sacktag_state state;
1720         struct sk_buff *skb;
1721         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1722         int used_sacks;
1723         int found_dup_sack = 0;
1724         int i, j;
1725         int first_sack_index;
1726
1727         state.flag = 0;
1728         state.reord = tp->packets_out;
1729
1730         if (!tp->sacked_out) {
1731                 if (WARN_ON(tp->fackets_out))
1732                         tp->fackets_out = 0;
1733                 tcp_highest_sack_reset(sk);
1734         }
1735
1736         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1737                                          num_sacks, prior_snd_una);
1738         if (found_dup_sack)
1739                 state.flag |= FLAG_DSACKING_ACK;
1740
1741         /* Eliminate too old ACKs, but take into
1742          * account more or less fresh ones, they can
1743          * contain valid SACK info.
1744          */
1745         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1746                 return 0;
1747
1748         if (!tp->packets_out)
1749                 goto out;
1750
1751         used_sacks = 0;
1752         first_sack_index = 0;
1753         for (i = 0; i < num_sacks; i++) {
1754                 int dup_sack = !i && found_dup_sack;
1755
1756                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1757                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1758
1759                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1760                                             sp[used_sacks].start_seq,
1761                                             sp[used_sacks].end_seq)) {
1762                         int mib_idx;
1763
1764                         if (dup_sack) {
1765                                 if (!tp->undo_marker)
1766                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1767                                 else
1768                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1769                         } else {
1770                                 /* Don't count olds caused by ACK reordering */
1771                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1772                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1773                                         continue;
1774                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1775                         }
1776
1777                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1778                         if (i == 0)
1779                                 first_sack_index = -1;
1780                         continue;
1781                 }
1782
1783                 /* Ignore very old stuff early */
1784                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1785                         continue;
1786
1787                 used_sacks++;
1788         }
1789
1790         /* order SACK blocks to allow in order walk of the retrans queue */
1791         for (i = used_sacks - 1; i > 0; i--) {
1792                 for (j = 0; j < i; j++) {
1793                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1794                                 swap(sp[j], sp[j + 1]);
1795
1796                                 /* Track where the first SACK block goes to */
1797                                 if (j == first_sack_index)
1798                                         first_sack_index = j + 1;
1799                         }
1800                 }
1801         }
1802
1803         skb = tcp_write_queue_head(sk);
1804         state.fack_count = 0;
1805         i = 0;
1806
1807         if (!tp->sacked_out) {
1808                 /* It's already past, so skip checking against it */
1809                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1810         } else {
1811                 cache = tp->recv_sack_cache;
1812                 /* Skip empty blocks in at head of the cache */
1813                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1814                        !cache->end_seq)
1815                         cache++;
1816         }
1817
1818         while (i < used_sacks) {
1819                 u32 start_seq = sp[i].start_seq;
1820                 u32 end_seq = sp[i].end_seq;
1821                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1822                 struct tcp_sack_block *next_dup = NULL;
1823
1824                 if (found_dup_sack && ((i + 1) == first_sack_index))
1825                         next_dup = &sp[i + 1];
1826
1827                 /* Event "B" in the comment above. */
1828                 if (after(end_seq, tp->high_seq))
1829                         state.flag |= FLAG_DATA_LOST;
1830
1831                 /* Skip too early cached blocks */
1832                 while (tcp_sack_cache_ok(tp, cache) &&
1833                        !before(start_seq, cache->end_seq))
1834                         cache++;
1835
1836                 /* Can skip some work by looking recv_sack_cache? */
1837                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1838                     after(end_seq, cache->start_seq)) {
1839
1840                         /* Head todo? */
1841                         if (before(start_seq, cache->start_seq)) {
1842                                 skb = tcp_sacktag_skip(skb, sk, &state,
1843                                                        start_seq);
1844                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1845                                                        &state,
1846                                                        start_seq,
1847                                                        cache->start_seq,
1848                                                        dup_sack);
1849                         }
1850
1851                         /* Rest of the block already fully processed? */
1852                         if (!after(end_seq, cache->end_seq))
1853                                 goto advance_sp;
1854
1855                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1856                                                        &state,
1857                                                        cache->end_seq);
1858
1859                         /* ...tail remains todo... */
1860                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1861                                 /* ...but better entrypoint exists! */
1862                                 skb = tcp_highest_sack(sk);
1863                                 if (skb == NULL)
1864                                         break;
1865                                 state.fack_count = tp->fackets_out;
1866                                 cache++;
1867                                 goto walk;
1868                         }
1869
1870                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1871                         /* Check overlap against next cached too (past this one already) */
1872                         cache++;
1873                         continue;
1874                 }
1875
1876                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1877                         skb = tcp_highest_sack(sk);
1878                         if (skb == NULL)
1879                                 break;
1880                         state.fack_count = tp->fackets_out;
1881                 }
1882                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1883
1884 walk:
1885                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1886                                        start_seq, end_seq, dup_sack);
1887
1888 advance_sp:
1889                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1890                  * due to in-order walk
1891                  */
1892                 if (after(end_seq, tp->frto_highmark))
1893                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1894
1895                 i++;
1896         }
1897
1898         /* Clear the head of the cache sack blocks so we can skip it next time */
1899         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1900                 tp->recv_sack_cache[i].start_seq = 0;
1901                 tp->recv_sack_cache[i].end_seq = 0;
1902         }
1903         for (j = 0; j < used_sacks; j++)
1904                 tp->recv_sack_cache[i++] = sp[j];
1905
1906         tcp_mark_lost_retrans(sk);
1907
1908         tcp_verify_left_out(tp);
1909
1910         if ((state.reord < tp->fackets_out) &&
1911             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1912             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1913                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1914
1915 out:
1916
1917 #if FASTRETRANS_DEBUG > 0
1918         WARN_ON((int)tp->sacked_out < 0);
1919         WARN_ON((int)tp->lost_out < 0);
1920         WARN_ON((int)tp->retrans_out < 0);
1921         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1922 #endif
1923         return state.flag;
1924 }
1925
1926 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1927  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1928  */
1929 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1930 {
1931         u32 holes;
1932
1933         holes = max(tp->lost_out, 1U);
1934         holes = min(holes, tp->packets_out);
1935
1936         if ((tp->sacked_out + holes) > tp->packets_out) {
1937                 tp->sacked_out = tp->packets_out - holes;
1938                 return 1;
1939         }
1940         return 0;
1941 }
1942
1943 /* If we receive more dupacks than we expected counting segments
1944  * in assumption of absent reordering, interpret this as reordering.
1945  * The only another reason could be bug in receiver TCP.
1946  */
1947 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1948 {
1949         struct tcp_sock *tp = tcp_sk(sk);
1950         if (tcp_limit_reno_sacked(tp))
1951                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1952 }
1953
1954 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1955
1956 static void tcp_add_reno_sack(struct sock *sk)
1957 {
1958         struct tcp_sock *tp = tcp_sk(sk);
1959         tp->sacked_out++;
1960         tcp_check_reno_reordering(sk, 0);
1961         tcp_verify_left_out(tp);
1962 }
1963
1964 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1965
1966 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1967 {
1968         struct tcp_sock *tp = tcp_sk(sk);
1969
1970         if (acked > 0) {
1971                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1972                 if (acked - 1 >= tp->sacked_out)
1973                         tp->sacked_out = 0;
1974                 else
1975                         tp->sacked_out -= acked - 1;
1976         }
1977         tcp_check_reno_reordering(sk, acked);
1978         tcp_verify_left_out(tp);
1979 }
1980
1981 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1982 {
1983         tp->sacked_out = 0;
1984 }
1985
1986 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1987 {
1988         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1989 }
1990
1991 /* F-RTO can only be used if TCP has never retransmitted anything other than
1992  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1993  */
1994 int tcp_use_frto(struct sock *sk)
1995 {
1996         const struct tcp_sock *tp = tcp_sk(sk);
1997         const struct inet_connection_sock *icsk = inet_csk(sk);
1998         struct sk_buff *skb;
1999
2000         if (!sysctl_tcp_frto)
2001                 return 0;
2002
2003         /* MTU probe and F-RTO won't really play nicely along currently */
2004         if (icsk->icsk_mtup.probe_size)
2005                 return 0;
2006
2007         if (tcp_is_sackfrto(tp))
2008                 return 1;
2009
2010         /* Avoid expensive walking of rexmit queue if possible */
2011         if (tp->retrans_out > 1)
2012                 return 0;
2013
2014         skb = tcp_write_queue_head(sk);
2015         if (tcp_skb_is_last(sk, skb))
2016                 return 1;
2017         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2018         tcp_for_write_queue_from(skb, sk) {
2019                 if (skb == tcp_send_head(sk))
2020                         break;
2021                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2022                         return 0;
2023                 /* Short-circuit when first non-SACKed skb has been checked */
2024                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2025                         break;
2026         }
2027         return 1;
2028 }
2029
2030 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2031  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2032  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2033  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2034  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2035  * bits are handled if the Loss state is really to be entered (in
2036  * tcp_enter_frto_loss).
2037  *
2038  * Do like tcp_enter_loss() would; when RTO expires the second time it
2039  * does:
2040  *  "Reduce ssthresh if it has not yet been made inside this window."
2041  */
2042 void tcp_enter_frto(struct sock *sk)
2043 {
2044         const struct inet_connection_sock *icsk = inet_csk(sk);
2045         struct tcp_sock *tp = tcp_sk(sk);
2046         struct sk_buff *skb;
2047
2048         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2049             tp->snd_una == tp->high_seq ||
2050             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2051              !icsk->icsk_retransmits)) {
2052                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2053                 /* Our state is too optimistic in ssthresh() call because cwnd
2054                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2055                  * recovery has not yet completed. Pattern would be this: RTO,
2056                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2057                  * up here twice).
2058                  * RFC4138 should be more specific on what to do, even though
2059                  * RTO is quite unlikely to occur after the first Cumulative ACK
2060                  * due to back-off and complexity of triggering events ...
2061                  */
2062                 if (tp->frto_counter) {
2063                         u32 stored_cwnd;
2064                         stored_cwnd = tp->snd_cwnd;
2065                         tp->snd_cwnd = 2;
2066                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2067                         tp->snd_cwnd = stored_cwnd;
2068                 } else {
2069                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2070                 }
2071                 /* ... in theory, cong.control module could do "any tricks" in
2072                  * ssthresh(), which means that ca_state, lost bits and lost_out
2073                  * counter would have to be faked before the call occurs. We
2074                  * consider that too expensive, unlikely and hacky, so modules
2075                  * using these in ssthresh() must deal these incompatibility
2076                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2077                  */
2078                 tcp_ca_event(sk, CA_EVENT_FRTO);
2079         }
2080
2081         tp->undo_marker = tp->snd_una;
2082         tp->undo_retrans = 0;
2083
2084         skb = tcp_write_queue_head(sk);
2085         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2086                 tp->undo_marker = 0;
2087         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2088                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2089                 tp->retrans_out -= tcp_skb_pcount(skb);
2090         }
2091         tcp_verify_left_out(tp);
2092
2093         /* Too bad if TCP was application limited */
2094         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2095
2096         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2097          * The last condition is necessary at least in tp->frto_counter case.
2098          */
2099         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2100             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2101             after(tp->high_seq, tp->snd_una)) {
2102                 tp->frto_highmark = tp->high_seq;
2103         } else {
2104                 tp->frto_highmark = tp->snd_nxt;
2105         }
2106         tcp_set_ca_state(sk, TCP_CA_Disorder);
2107         tp->high_seq = tp->snd_nxt;
2108         tp->frto_counter = 1;
2109 }
2110
2111 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2112  * which indicates that we should follow the traditional RTO recovery,
2113  * i.e. mark everything lost and do go-back-N retransmission.
2114  */
2115 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2116 {
2117         struct tcp_sock *tp = tcp_sk(sk);
2118         struct sk_buff *skb;
2119
2120         tp->lost_out = 0;
2121         tp->retrans_out = 0;
2122         if (tcp_is_reno(tp))
2123                 tcp_reset_reno_sack(tp);
2124
2125         tcp_for_write_queue(skb, sk) {
2126                 if (skb == tcp_send_head(sk))
2127                         break;
2128
2129                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2130                 /*
2131                  * Count the retransmission made on RTO correctly (only when
2132                  * waiting for the first ACK and did not get it)...
2133                  */
2134                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2135                         /* For some reason this R-bit might get cleared? */
2136                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2137                                 tp->retrans_out += tcp_skb_pcount(skb);
2138                         /* ...enter this if branch just for the first segment */
2139                         flag |= FLAG_DATA_ACKED;
2140                 } else {
2141                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2142                                 tp->undo_marker = 0;
2143                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2144                 }
2145
2146                 /* Marking forward transmissions that were made after RTO lost
2147                  * can cause unnecessary retransmissions in some scenarios,
2148                  * SACK blocks will mitigate that in some but not in all cases.
2149                  * We used to not mark them but it was causing break-ups with
2150                  * receivers that do only in-order receival.
2151                  *
2152                  * TODO: we could detect presence of such receiver and select
2153                  * different behavior per flow.
2154                  */
2155                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2156                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2157                         tp->lost_out += tcp_skb_pcount(skb);
2158                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2159                 }
2160         }
2161         tcp_verify_left_out(tp);
2162
2163         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2164         tp->snd_cwnd_cnt = 0;
2165         tp->snd_cwnd_stamp = tcp_time_stamp;
2166         tp->frto_counter = 0;
2167         tp->bytes_acked = 0;
2168
2169         tp->reordering = min_t(unsigned int, tp->reordering,
2170                                sysctl_tcp_reordering);
2171         tcp_set_ca_state(sk, TCP_CA_Loss);
2172         tp->high_seq = tp->snd_nxt;
2173         TCP_ECN_queue_cwr(tp);
2174
2175         tcp_clear_all_retrans_hints(tp);
2176 }
2177
2178 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2179 {
2180         tp->retrans_out = 0;
2181         tp->lost_out = 0;
2182
2183         tp->undo_marker = 0;
2184         tp->undo_retrans = 0;
2185 }
2186
2187 void tcp_clear_retrans(struct tcp_sock *tp)
2188 {
2189         tcp_clear_retrans_partial(tp);
2190
2191         tp->fackets_out = 0;
2192         tp->sacked_out = 0;
2193 }
2194
2195 /* Enter Loss state. If "how" is not zero, forget all SACK information
2196  * and reset tags completely, otherwise preserve SACKs. If receiver
2197  * dropped its ofo queue, we will know this due to reneging detection.
2198  */
2199 void tcp_enter_loss(struct sock *sk, int how)
2200 {
2201         const struct inet_connection_sock *icsk = inet_csk(sk);
2202         struct tcp_sock *tp = tcp_sk(sk);
2203         struct sk_buff *skb;
2204
2205         /* Reduce ssthresh if it has not yet been made inside this window. */
2206         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2207             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2208                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2209                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2210                 tcp_ca_event(sk, CA_EVENT_LOSS);
2211         }
2212         tp->snd_cwnd       = 1;
2213         tp->snd_cwnd_cnt   = 0;
2214         tp->snd_cwnd_stamp = tcp_time_stamp;
2215
2216         tp->bytes_acked = 0;
2217         tcp_clear_retrans_partial(tp);
2218
2219         if (tcp_is_reno(tp))
2220                 tcp_reset_reno_sack(tp);
2221
2222         if (!how) {
2223                 /* Push undo marker, if it was plain RTO and nothing
2224                  * was retransmitted. */
2225                 tp->undo_marker = tp->snd_una;
2226         } else {
2227                 tp->sacked_out = 0;
2228                 tp->fackets_out = 0;
2229         }
2230         tcp_clear_all_retrans_hints(tp);
2231
2232         tcp_for_write_queue(skb, sk) {
2233                 if (skb == tcp_send_head(sk))
2234                         break;
2235
2236                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2237                         tp->undo_marker = 0;
2238                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2239                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2240                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2241                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2242                         tp->lost_out += tcp_skb_pcount(skb);
2243                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2244                 }
2245         }
2246         tcp_verify_left_out(tp);
2247
2248         tp->reordering = min_t(unsigned int, tp->reordering,
2249                                sysctl_tcp_reordering);
2250         tcp_set_ca_state(sk, TCP_CA_Loss);
2251         tp->high_seq = tp->snd_nxt;
2252         TCP_ECN_queue_cwr(tp);
2253         /* Abort F-RTO algorithm if one is in progress */
2254         tp->frto_counter = 0;
2255 }
2256
2257 /* If ACK arrived pointing to a remembered SACK, it means that our
2258  * remembered SACKs do not reflect real state of receiver i.e.
2259  * receiver _host_ is heavily congested (or buggy).
2260  *
2261  * Do processing similar to RTO timeout.
2262  */
2263 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2264 {
2265         if (flag & FLAG_SACK_RENEGING) {
2266                 struct inet_connection_sock *icsk = inet_csk(sk);
2267                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2268
2269                 tcp_enter_loss(sk, 1);
2270                 icsk->icsk_retransmits++;
2271                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2272                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2273                                           icsk->icsk_rto, TCP_RTO_MAX);
2274                 return 1;
2275         }
2276         return 0;
2277 }
2278
2279 static inline int tcp_fackets_out(struct tcp_sock *tp)
2280 {
2281         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2282 }
2283
2284 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2285  * counter when SACK is enabled (without SACK, sacked_out is used for
2286  * that purpose).
2287  *
2288  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2289  * segments up to the highest received SACK block so far and holes in
2290  * between them.
2291  *
2292  * With reordering, holes may still be in flight, so RFC3517 recovery
2293  * uses pure sacked_out (total number of SACKed segments) even though
2294  * it violates the RFC that uses duplicate ACKs, often these are equal
2295  * but when e.g. out-of-window ACKs or packet duplication occurs,
2296  * they differ. Since neither occurs due to loss, TCP should really
2297  * ignore them.
2298  */
2299 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2300 {
2301         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2302 }
2303
2304 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2305 {
2306         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2307 }
2308
2309 static inline int tcp_head_timedout(struct sock *sk)
2310 {
2311         struct tcp_sock *tp = tcp_sk(sk);
2312
2313         return tp->packets_out &&
2314                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2315 }
2316
2317 /* Linux NewReno/SACK/FACK/ECN state machine.
2318  * --------------------------------------
2319  *
2320  * "Open"       Normal state, no dubious events, fast path.
2321  * "Disorder"   In all the respects it is "Open",
2322  *              but requires a bit more attention. It is entered when
2323  *              we see some SACKs or dupacks. It is split of "Open"
2324  *              mainly to move some processing from fast path to slow one.
2325  * "CWR"        CWND was reduced due to some Congestion Notification event.
2326  *              It can be ECN, ICMP source quench, local device congestion.
2327  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2328  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2329  *
2330  * tcp_fastretrans_alert() is entered:
2331  * - each incoming ACK, if state is not "Open"
2332  * - when arrived ACK is unusual, namely:
2333  *      * SACK
2334  *      * Duplicate ACK.
2335  *      * ECN ECE.
2336  *
2337  * Counting packets in flight is pretty simple.
2338  *
2339  *      in_flight = packets_out - left_out + retrans_out
2340  *
2341  *      packets_out is SND.NXT-SND.UNA counted in packets.
2342  *
2343  *      retrans_out is number of retransmitted segments.
2344  *
2345  *      left_out is number of segments left network, but not ACKed yet.
2346  *
2347  *              left_out = sacked_out + lost_out
2348  *
2349  *     sacked_out: Packets, which arrived to receiver out of order
2350  *                 and hence not ACKed. With SACKs this number is simply
2351  *                 amount of SACKed data. Even without SACKs
2352  *                 it is easy to give pretty reliable estimate of this number,
2353  *                 counting duplicate ACKs.
2354  *
2355  *       lost_out: Packets lost by network. TCP has no explicit
2356  *                 "loss notification" feedback from network (for now).
2357  *                 It means that this number can be only _guessed_.
2358  *                 Actually, it is the heuristics to predict lossage that
2359  *                 distinguishes different algorithms.
2360  *
2361  *      F.e. after RTO, when all the queue is considered as lost,
2362  *      lost_out = packets_out and in_flight = retrans_out.
2363  *
2364  *              Essentially, we have now two algorithms counting
2365  *              lost packets.
2366  *
2367  *              FACK: It is the simplest heuristics. As soon as we decided
2368  *              that something is lost, we decide that _all_ not SACKed
2369  *              packets until the most forward SACK are lost. I.e.
2370  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2371  *              It is absolutely correct estimate, if network does not reorder
2372  *              packets. And it loses any connection to reality when reordering
2373  *              takes place. We use FACK by default until reordering
2374  *              is suspected on the path to this destination.
2375  *
2376  *              NewReno: when Recovery is entered, we assume that one segment
2377  *              is lost (classic Reno). While we are in Recovery and
2378  *              a partial ACK arrives, we assume that one more packet
2379  *              is lost (NewReno). This heuristics are the same in NewReno
2380  *              and SACK.
2381  *
2382  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2383  *  deflation etc. CWND is real congestion window, never inflated, changes
2384  *  only according to classic VJ rules.
2385  *
2386  * Really tricky (and requiring careful tuning) part of algorithm
2387  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2388  * The first determines the moment _when_ we should reduce CWND and,
2389  * hence, slow down forward transmission. In fact, it determines the moment
2390  * when we decide that hole is caused by loss, rather than by a reorder.
2391  *
2392  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2393  * holes, caused by lost packets.
2394  *
2395  * And the most logically complicated part of algorithm is undo
2396  * heuristics. We detect false retransmits due to both too early
2397  * fast retransmit (reordering) and underestimated RTO, analyzing
2398  * timestamps and D-SACKs. When we detect that some segments were
2399  * retransmitted by mistake and CWND reduction was wrong, we undo
2400  * window reduction and abort recovery phase. This logic is hidden
2401  * inside several functions named tcp_try_undo_<something>.
2402  */
2403
2404 /* This function decides, when we should leave Disordered state
2405  * and enter Recovery phase, reducing congestion window.
2406  *
2407  * Main question: may we further continue forward transmission
2408  * with the same cwnd?
2409  */
2410 static int tcp_time_to_recover(struct sock *sk)
2411 {
2412         struct tcp_sock *tp = tcp_sk(sk);
2413         __u32 packets_out;
2414
2415         /* Do not perform any recovery during F-RTO algorithm */
2416         if (tp->frto_counter)
2417                 return 0;
2418
2419         /* Trick#1: The loss is proven. */
2420         if (tp->lost_out)
2421                 return 1;
2422
2423         /* Not-A-Trick#2 : Classic rule... */
2424         if (tcp_dupack_heuristics(tp) > tp->reordering)
2425                 return 1;
2426
2427         /* Trick#3 : when we use RFC2988 timer restart, fast
2428          * retransmit can be triggered by timeout of queue head.
2429          */
2430         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2431                 return 1;
2432
2433         /* Trick#4: It is still not OK... But will it be useful to delay
2434          * recovery more?
2435          */
2436         packets_out = tp->packets_out;
2437         if (packets_out <= tp->reordering &&
2438             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2439             !tcp_may_send_now(sk)) {
2440                 /* We have nothing to send. This connection is limited
2441                  * either by receiver window or by application.
2442                  */
2443                 return 1;
2444         }
2445
2446         /* If a thin stream is detected, retransmit after first
2447          * received dupack. Employ only if SACK is supported in order
2448          * to avoid possible corner-case series of spurious retransmissions
2449          * Use only if there are no unsent data.
2450          */
2451         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2452             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2453             tcp_is_sack(tp) && !tcp_send_head(sk))
2454                 return 1;
2455
2456         return 0;
2457 }
2458
2459 /* New heuristics: it is possible only after we switched to restart timer
2460  * each time when something is ACKed. Hence, we can detect timed out packets
2461  * during fast retransmit without falling to slow start.
2462  *
2463  * Usefulness of this as is very questionable, since we should know which of
2464  * the segments is the next to timeout which is relatively expensive to find
2465  * in general case unless we add some data structure just for that. The
2466  * current approach certainly won't find the right one too often and when it
2467  * finally does find _something_ it usually marks large part of the window
2468  * right away (because a retransmission with a larger timestamp blocks the
2469  * loop from advancing). -ij
2470  */
2471 static void tcp_timeout_skbs(struct sock *sk)
2472 {
2473         struct tcp_sock *tp = tcp_sk(sk);
2474         struct sk_buff *skb;
2475
2476         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2477                 return;
2478
2479         skb = tp->scoreboard_skb_hint;
2480         if (tp->scoreboard_skb_hint == NULL)
2481                 skb = tcp_write_queue_head(sk);
2482
2483         tcp_for_write_queue_from(skb, sk) {
2484                 if (skb == tcp_send_head(sk))
2485                         break;
2486                 if (!tcp_skb_timedout(sk, skb))
2487                         break;
2488
2489                 tcp_skb_mark_lost(tp, skb);
2490         }
2491
2492         tp->scoreboard_skb_hint = skb;
2493
2494         tcp_verify_left_out(tp);
2495 }
2496
2497 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2498  * is against sacked "cnt", otherwise it's against facked "cnt"
2499  */
2500 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2501 {
2502         struct tcp_sock *tp = tcp_sk(sk);
2503         struct sk_buff *skb;
2504         int cnt, oldcnt;
2505         int err;
2506         unsigned int mss;
2507
2508         WARN_ON(packets > tp->packets_out);
2509         if (tp->lost_skb_hint) {
2510                 skb = tp->lost_skb_hint;
2511                 cnt = tp->lost_cnt_hint;
2512                 /* Head already handled? */
2513                 if (mark_head && skb != tcp_write_queue_head(sk))
2514                         return;
2515         } else {
2516                 skb = tcp_write_queue_head(sk);
2517                 cnt = 0;
2518         }
2519
2520         tcp_for_write_queue_from(skb, sk) {
2521                 if (skb == tcp_send_head(sk))
2522                         break;
2523                 /* TODO: do this better */
2524                 /* this is not the most efficient way to do this... */
2525                 tp->lost_skb_hint = skb;
2526                 tp->lost_cnt_hint = cnt;
2527
2528                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2529                         break;
2530
2531                 oldcnt = cnt;
2532                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2533                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2534                         cnt += tcp_skb_pcount(skb);
2535
2536                 if (cnt > packets) {
2537                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2538                             (oldcnt >= packets))
2539                                 break;
2540
2541                         mss = skb_shinfo(skb)->gso_size;
2542                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2543                         if (err < 0)
2544                                 break;
2545                         cnt = packets;
2546                 }
2547
2548                 tcp_skb_mark_lost(tp, skb);
2549
2550                 if (mark_head)
2551                         break;
2552         }
2553         tcp_verify_left_out(tp);
2554 }
2555
2556 /* Account newly detected lost packet(s) */
2557
2558 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2559 {
2560         struct tcp_sock *tp = tcp_sk(sk);
2561
2562         if (tcp_is_reno(tp)) {
2563                 tcp_mark_head_lost(sk, 1, 1);
2564         } else if (tcp_is_fack(tp)) {
2565                 int lost = tp->fackets_out - tp->reordering;
2566                 if (lost <= 0)
2567                         lost = 1;
2568                 tcp_mark_head_lost(sk, lost, 0);
2569         } else {
2570                 int sacked_upto = tp->sacked_out - tp->reordering;
2571                 if (sacked_upto >= 0)
2572                         tcp_mark_head_lost(sk, sacked_upto, 0);
2573                 else if (fast_rexmit)
2574                         tcp_mark_head_lost(sk, 1, 1);
2575         }
2576
2577         tcp_timeout_skbs(sk);
2578 }
2579
2580 /* CWND moderation, preventing bursts due to too big ACKs
2581  * in dubious situations.
2582  */
2583 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2584 {
2585         tp->snd_cwnd = min(tp->snd_cwnd,
2586                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2587         tp->snd_cwnd_stamp = tcp_time_stamp;
2588 }
2589
2590 /* Lower bound on congestion window is slow start threshold
2591  * unless congestion avoidance choice decides to overide it.
2592  */
2593 static inline u32 tcp_cwnd_min(const struct sock *sk)
2594 {
2595         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2596
2597         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2598 }
2599
2600 /* Decrease cwnd each second ack. */
2601 static void tcp_cwnd_down(struct sock *sk, int flag)
2602 {
2603         struct tcp_sock *tp = tcp_sk(sk);
2604         int decr = tp->snd_cwnd_cnt + 1;
2605
2606         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2607             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2608                 tp->snd_cwnd_cnt = decr & 1;
2609                 decr >>= 1;
2610
2611                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2612                         tp->snd_cwnd -= decr;
2613
2614                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2615                 tp->snd_cwnd_stamp = tcp_time_stamp;
2616         }
2617 }
2618
2619 /* Nothing was retransmitted or returned timestamp is less
2620  * than timestamp of the first retransmission.
2621  */
2622 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2623 {
2624         return !tp->retrans_stamp ||
2625                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2626                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2627 }
2628
2629 /* Undo procedures. */
2630
2631 #if FASTRETRANS_DEBUG > 1
2632 static void DBGUNDO(struct sock *sk, const char *msg)
2633 {
2634         struct tcp_sock *tp = tcp_sk(sk);
2635         struct inet_sock *inet = inet_sk(sk);
2636
2637         if (sk->sk_family == AF_INET) {
2638                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2639                        msg,
2640                        &inet->inet_daddr, ntohs(inet->inet_dport),
2641                        tp->snd_cwnd, tcp_left_out(tp),
2642                        tp->snd_ssthresh, tp->prior_ssthresh,
2643                        tp->packets_out);
2644         }
2645 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2646         else if (sk->sk_family == AF_INET6) {
2647                 struct ipv6_pinfo *np = inet6_sk(sk);
2648                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2649                        msg,
2650                        &np->daddr, ntohs(inet->inet_dport),
2651                        tp->snd_cwnd, tcp_left_out(tp),
2652                        tp->snd_ssthresh, tp->prior_ssthresh,
2653                        tp->packets_out);
2654         }
2655 #endif
2656 }
2657 #else
2658 #define DBGUNDO(x...) do { } while (0)
2659 #endif
2660
2661 static void tcp_undo_cwr(struct sock *sk, const int undo)
2662 {
2663         struct tcp_sock *tp = tcp_sk(sk);
2664
2665         if (tp->prior_ssthresh) {
2666                 const struct inet_connection_sock *icsk = inet_csk(sk);
2667
2668                 if (icsk->icsk_ca_ops->undo_cwnd)
2669                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2670                 else
2671                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2672
2673                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2674                         tp->snd_ssthresh = tp->prior_ssthresh;
2675                         TCP_ECN_withdraw_cwr(tp);
2676                 }
2677         } else {
2678                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2679         }
2680         tcp_moderate_cwnd(tp);
2681         tp->snd_cwnd_stamp = tcp_time_stamp;
2682 }
2683
2684 static inline int tcp_may_undo(struct tcp_sock *tp)
2685 {
2686         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2687 }
2688
2689 /* People celebrate: "We love our President!" */
2690 static int tcp_try_undo_recovery(struct sock *sk)
2691 {
2692         struct tcp_sock *tp = tcp_sk(sk);
2693
2694         if (tcp_may_undo(tp)) {
2695                 int mib_idx;
2696
2697                 /* Happy end! We did not retransmit anything
2698                  * or our original transmission succeeded.
2699                  */
2700                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2701                 tcp_undo_cwr(sk, 1);
2702                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2703                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2704                 else
2705                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2706
2707                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2708                 tp->undo_marker = 0;
2709         }
2710         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2711                 /* Hold old state until something *above* high_seq
2712                  * is ACKed. For Reno it is MUST to prevent false
2713                  * fast retransmits (RFC2582). SACK TCP is safe. */
2714                 tcp_moderate_cwnd(tp);
2715                 return 1;
2716         }
2717         tcp_set_ca_state(sk, TCP_CA_Open);
2718         return 0;
2719 }
2720
2721 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2722 static void tcp_try_undo_dsack(struct sock *sk)
2723 {
2724         struct tcp_sock *tp = tcp_sk(sk);
2725
2726         if (tp->undo_marker && !tp->undo_retrans) {
2727                 DBGUNDO(sk, "D-SACK");
2728                 tcp_undo_cwr(sk, 1);
2729                 tp->undo_marker = 0;
2730                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2731         }
2732 }
2733
2734 /* We can clear retrans_stamp when there are no retransmissions in the
2735  * window. It would seem that it is trivially available for us in
2736  * tp->retrans_out, however, that kind of assumptions doesn't consider
2737  * what will happen if errors occur when sending retransmission for the
2738  * second time. ...It could the that such segment has only
2739  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2740  * the head skb is enough except for some reneging corner cases that
2741  * are not worth the effort.
2742  *
2743  * Main reason for all this complexity is the fact that connection dying
2744  * time now depends on the validity of the retrans_stamp, in particular,
2745  * that successive retransmissions of a segment must not advance
2746  * retrans_stamp under any conditions.
2747  */
2748 static int tcp_any_retrans_done(struct sock *sk)
2749 {
2750         struct tcp_sock *tp = tcp_sk(sk);
2751         struct sk_buff *skb;
2752
2753         if (tp->retrans_out)
2754                 return 1;
2755
2756         skb = tcp_write_queue_head(sk);
2757         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2758                 return 1;
2759
2760         return 0;
2761 }
2762
2763 /* Undo during fast recovery after partial ACK. */
2764
2765 static int tcp_try_undo_partial(struct sock *sk, int acked)
2766 {
2767         struct tcp_sock *tp = tcp_sk(sk);
2768         /* Partial ACK arrived. Force Hoe's retransmit. */
2769         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2770
2771         if (tcp_may_undo(tp)) {
2772                 /* Plain luck! Hole if filled with delayed
2773                  * packet, rather than with a retransmit.
2774                  */
2775                 if (!tcp_any_retrans_done(sk))
2776                         tp->retrans_stamp = 0;
2777
2778                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2779
2780                 DBGUNDO(sk, "Hoe");
2781                 tcp_undo_cwr(sk, 0);
2782                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2783
2784                 /* So... Do not make Hoe's retransmit yet.
2785                  * If the first packet was delayed, the rest
2786                  * ones are most probably delayed as well.
2787                  */
2788                 failed = 0;
2789         }
2790         return failed;
2791 }
2792
2793 /* Undo during loss recovery after partial ACK. */
2794 static int tcp_try_undo_loss(struct sock *sk)
2795 {
2796         struct tcp_sock *tp = tcp_sk(sk);
2797
2798         if (tcp_may_undo(tp)) {
2799                 struct sk_buff *skb;
2800                 tcp_for_write_queue(skb, sk) {
2801                         if (skb == tcp_send_head(sk))
2802                                 break;
2803                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2804                 }
2805
2806                 tcp_clear_all_retrans_hints(tp);
2807
2808                 DBGUNDO(sk, "partial loss");
2809                 tp->lost_out = 0;
2810                 tcp_undo_cwr(sk, 1);
2811                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2812                 inet_csk(sk)->icsk_retransmits = 0;
2813                 tp->undo_marker = 0;
2814                 if (tcp_is_sack(tp))
2815                         tcp_set_ca_state(sk, TCP_CA_Open);
2816                 return 1;
2817         }
2818         return 0;
2819 }
2820
2821 static inline void tcp_complete_cwr(struct sock *sk)
2822 {
2823         struct tcp_sock *tp = tcp_sk(sk);
2824         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2825         tp->snd_cwnd_stamp = tcp_time_stamp;
2826         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2827 }
2828
2829 static void tcp_try_keep_open(struct sock *sk)
2830 {
2831         struct tcp_sock *tp = tcp_sk(sk);
2832         int state = TCP_CA_Open;
2833
2834         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2835                 state = TCP_CA_Disorder;
2836
2837         if (inet_csk(sk)->icsk_ca_state != state) {
2838                 tcp_set_ca_state(sk, state);
2839                 tp->high_seq = tp->snd_nxt;
2840         }
2841 }
2842
2843 static void tcp_try_to_open(struct sock *sk, int flag)
2844 {
2845         struct tcp_sock *tp = tcp_sk(sk);
2846
2847         tcp_verify_left_out(tp);
2848
2849         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2850                 tp->retrans_stamp = 0;
2851
2852         if (flag & FLAG_ECE)
2853                 tcp_enter_cwr(sk, 1);
2854
2855         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2856                 tcp_try_keep_open(sk);
2857                 tcp_moderate_cwnd(tp);
2858         } else {
2859                 tcp_cwnd_down(sk, flag);
2860         }
2861 }
2862
2863 static void tcp_mtup_probe_failed(struct sock *sk)
2864 {
2865         struct inet_connection_sock *icsk = inet_csk(sk);
2866
2867         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2868         icsk->icsk_mtup.probe_size = 0;
2869 }
2870
2871 static void tcp_mtup_probe_success(struct sock *sk)
2872 {
2873         struct tcp_sock *tp = tcp_sk(sk);
2874         struct inet_connection_sock *icsk = inet_csk(sk);
2875
2876         /* FIXME: breaks with very large cwnd */
2877         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2878         tp->snd_cwnd = tp->snd_cwnd *
2879                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2880                        icsk->icsk_mtup.probe_size;
2881         tp->snd_cwnd_cnt = 0;
2882         tp->snd_cwnd_stamp = tcp_time_stamp;
2883         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2884
2885         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2886         icsk->icsk_mtup.probe_size = 0;
2887         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2888 }
2889
2890 /* Do a simple retransmit without using the backoff mechanisms in
2891  * tcp_timer. This is used for path mtu discovery.
2892  * The socket is already locked here.
2893  */
2894 void tcp_simple_retransmit(struct sock *sk)
2895 {
2896         const struct inet_connection_sock *icsk = inet_csk(sk);
2897         struct tcp_sock *tp = tcp_sk(sk);
2898         struct sk_buff *skb;
2899         unsigned int mss = tcp_current_mss(sk);
2900         u32 prior_lost = tp->lost_out;
2901
2902         tcp_for_write_queue(skb, sk) {
2903                 if (skb == tcp_send_head(sk))
2904                         break;
2905                 if (tcp_skb_seglen(skb) > mss &&
2906                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2907                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2908                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2909                                 tp->retrans_out -= tcp_skb_pcount(skb);
2910                         }
2911                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2912                 }
2913         }
2914
2915         tcp_clear_retrans_hints_partial(tp);
2916
2917         if (prior_lost == tp->lost_out)
2918                 return;
2919
2920         if (tcp_is_reno(tp))
2921                 tcp_limit_reno_sacked(tp);
2922
2923         tcp_verify_left_out(tp);
2924
2925         /* Don't muck with the congestion window here.
2926          * Reason is that we do not increase amount of _data_
2927          * in network, but units changed and effective
2928          * cwnd/ssthresh really reduced now.
2929          */
2930         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2931                 tp->high_seq = tp->snd_nxt;
2932                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2933                 tp->prior_ssthresh = 0;
2934                 tp->undo_marker = 0;
2935                 tcp_set_ca_state(sk, TCP_CA_Loss);
2936         }
2937         tcp_xmit_retransmit_queue(sk);
2938 }
2939 EXPORT_SYMBOL(tcp_simple_retransmit);
2940
2941 /* Process an event, which can update packets-in-flight not trivially.
2942  * Main goal of this function is to calculate new estimate for left_out,
2943  * taking into account both packets sitting in receiver's buffer and
2944  * packets lost by network.
2945  *
2946  * Besides that it does CWND reduction, when packet loss is detected
2947  * and changes state of machine.
2948  *
2949  * It does _not_ decide what to send, it is made in function
2950  * tcp_xmit_retransmit_queue().
2951  */
2952 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2953 {
2954         struct inet_connection_sock *icsk = inet_csk(sk);
2955         struct tcp_sock *tp = tcp_sk(sk);
2956         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2957         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2958                                     (tcp_fackets_out(tp) > tp->reordering));
2959         int fast_rexmit = 0, mib_idx;
2960
2961         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2962                 tp->sacked_out = 0;
2963         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2964                 tp->fackets_out = 0;
2965
2966         /* Now state machine starts.
2967          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2968         if (flag & FLAG_ECE)
2969                 tp->prior_ssthresh = 0;
2970
2971         /* B. In all the states check for reneging SACKs. */
2972         if (tcp_check_sack_reneging(sk, flag))
2973                 return;
2974
2975         /* C. Process data loss notification, provided it is valid. */
2976         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2977             before(tp->snd_una, tp->high_seq) &&
2978             icsk->icsk_ca_state != TCP_CA_Open &&
2979             tp->fackets_out > tp->reordering) {
2980                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2981                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2982         }
2983
2984         /* D. Check consistency of the current state. */
2985         tcp_verify_left_out(tp);
2986
2987         /* E. Check state exit conditions. State can be terminated
2988          *    when high_seq is ACKed. */
2989         if (icsk->icsk_ca_state == TCP_CA_Open) {
2990                 WARN_ON(tp->retrans_out != 0);
2991                 tp->retrans_stamp = 0;
2992         } else if (!before(tp->snd_una, tp->high_seq)) {
2993                 switch (icsk->icsk_ca_state) {
2994                 case TCP_CA_Loss:
2995                         icsk->icsk_retransmits = 0;
2996                         if (tcp_try_undo_recovery(sk))
2997                                 return;
2998                         break;
2999
3000                 case TCP_CA_CWR:
3001                         /* CWR is to be held something *above* high_seq
3002                          * is ACKed for CWR bit to reach receiver. */
3003                         if (tp->snd_una != tp->high_seq) {
3004                                 tcp_complete_cwr(sk);
3005                                 tcp_set_ca_state(sk, TCP_CA_Open);
3006                         }
3007                         break;
3008
3009                 case TCP_CA_Disorder:
3010                         tcp_try_undo_dsack(sk);
3011                         if (!tp->undo_marker ||
3012                             /* For SACK case do not Open to allow to undo
3013                              * catching for all duplicate ACKs. */
3014                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3015                                 tp->undo_marker = 0;
3016                                 tcp_set_ca_state(sk, TCP_CA_Open);
3017                         }
3018                         break;
3019
3020                 case TCP_CA_Recovery:
3021                         if (tcp_is_reno(tp))
3022                                 tcp_reset_reno_sack(tp);
3023                         if (tcp_try_undo_recovery(sk))
3024                                 return;
3025                         tcp_complete_cwr(sk);
3026                         break;
3027                 }
3028         }
3029
3030         /* F. Process state. */
3031         switch (icsk->icsk_ca_state) {
3032         case TCP_CA_Recovery:
3033                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3034                         if (tcp_is_reno(tp) && is_dupack)
3035                                 tcp_add_reno_sack(sk);
3036                 } else
3037                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3038                 break;
3039         case TCP_CA_Loss:
3040                 if (flag & FLAG_DATA_ACKED)
3041                         icsk->icsk_retransmits = 0;
3042                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3043                         tcp_reset_reno_sack(tp);
3044                 if (!tcp_try_undo_loss(sk)) {
3045                         tcp_moderate_cwnd(tp);
3046                         tcp_xmit_retransmit_queue(sk);
3047                         return;
3048                 }
3049                 if (icsk->icsk_ca_state != TCP_CA_Open)
3050                         return;
3051                 /* Loss is undone; fall through to processing in Open state. */
3052         default:
3053                 if (tcp_is_reno(tp)) {
3054                         if (flag & FLAG_SND_UNA_ADVANCED)
3055                                 tcp_reset_reno_sack(tp);
3056                         if (is_dupack)
3057                                 tcp_add_reno_sack(sk);
3058                 }
3059
3060                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3061                         tcp_try_undo_dsack(sk);