eb7a8fba6f4f0d3b914356d313c1eef4624fd3dd
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_frto_response __read_mostly;
97 int sysctl_tcp_nometrics_save __read_mostly;
98
99 int sysctl_tcp_thin_dupack __read_mostly;
100
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_abc __read_mostly;
103
104 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
105 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
106 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
108 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
109 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
110 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
111 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
112 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
114 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
117 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
118 #define FLAG_UPDATE_TS_RECENT   0x4000 /* tcp_replace_ts_recent() */
119
120 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
124 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
125
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128
129 /* Adapt the MSS value used to make delayed ack decision to the
130  * real world.
131  */
132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133 {
134         struct inet_connection_sock *icsk = inet_csk(sk);
135         const unsigned int lss = icsk->icsk_ack.last_seg_size;
136         unsigned int len;
137
138         icsk->icsk_ack.last_seg_size = 0;
139
140         /* skb->len may jitter because of SACKs, even if peer
141          * sends good full-sized frames.
142          */
143         len = skb_shinfo(skb)->gso_size ? : skb->len;
144         if (len >= icsk->icsk_ack.rcv_mss) {
145                 icsk->icsk_ack.rcv_mss = len;
146         } else {
147                 /* Otherwise, we make more careful check taking into account,
148                  * that SACKs block is variable.
149                  *
150                  * "len" is invariant segment length, including TCP header.
151                  */
152                 len += skb->data - skb_transport_header(skb);
153                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154                     /* If PSH is not set, packet should be
155                      * full sized, provided peer TCP is not badly broken.
156                      * This observation (if it is correct 8)) allows
157                      * to handle super-low mtu links fairly.
158                      */
159                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161                         /* Subtract also invariant (if peer is RFC compliant),
162                          * tcp header plus fixed timestamp option length.
163                          * Resulting "len" is MSS free of SACK jitter.
164                          */
165                         len -= tcp_sk(sk)->tcp_header_len;
166                         icsk->icsk_ack.last_seg_size = len;
167                         if (len == lss) {
168                                 icsk->icsk_ack.rcv_mss = len;
169                                 return;
170                         }
171                 }
172                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175         }
176 }
177
178 static void tcp_incr_quickack(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182
183         if (quickacks == 0)
184                 quickacks = 2;
185         if (quickacks > icsk->icsk_ack.quick)
186                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187 }
188
189 static void tcp_enter_quickack_mode(struct sock *sk)
190 {
191         struct inet_connection_sock *icsk = inet_csk(sk);
192         tcp_incr_quickack(sk);
193         icsk->icsk_ack.pingpong = 0;
194         icsk->icsk_ack.ato = TCP_ATO_MIN;
195 }
196
197 /* Send ACKs quickly, if "quick" count is not exhausted
198  * and the session is not interactive.
199  */
200
201 static inline int tcp_in_quickack_mode(const struct sock *sk)
202 {
203         const struct inet_connection_sock *icsk = inet_csk(sk);
204         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
205 }
206
207 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
208 {
209         if (tp->ecn_flags & TCP_ECN_OK)
210                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
211 }
212
213 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
214 {
215         if (tcp_hdr(skb)->cwr)
216                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217 }
218
219 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
220 {
221         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223
224 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
225 {
226         if (!(tp->ecn_flags & TCP_ECN_OK))
227                 return;
228
229         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
230         case INET_ECN_NOT_ECT:
231                 /* Funny extension: if ECT is not set on a segment,
232                  * and we already seen ECT on a previous segment,
233                  * it is probably a retransmit.
234                  */
235                 if (tp->ecn_flags & TCP_ECN_SEEN)
236                         tcp_enter_quickack_mode((struct sock *)tp);
237                 break;
238         case INET_ECN_CE:
239                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240                 /* fallinto */
241         default:
242                 tp->ecn_flags |= TCP_ECN_SEEN;
243         }
244 }
245
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249                 tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255                 tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257
258 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261                 return 1;
262         return 0;
263 }
264
265 /* Buffer size and advertised window tuning.
266  *
267  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268  */
269
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273
274         sndmem *= TCP_INIT_CWND;
275         if (sk->sk_sndbuf < sndmem)
276                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280  *
281  * All tcp_full_space() is split to two parts: "network" buffer, allocated
282  * forward and advertised in receiver window (tp->rcv_wnd) and
283  * "application buffer", required to isolate scheduling/application
284  * latencies from network.
285  * window_clamp is maximal advertised window. It can be less than
286  * tcp_full_space(), in this case tcp_full_space() - window_clamp
287  * is reserved for "application" buffer. The less window_clamp is
288  * the smoother our behaviour from viewpoint of network, but the lower
289  * throughput and the higher sensitivity of the connection to losses. 8)
290  *
291  * rcv_ssthresh is more strict window_clamp used at "slow start"
292  * phase to predict further behaviour of this connection.
293  * It is used for two goals:
294  * - to enforce header prediction at sender, even when application
295  *   requires some significant "application buffer". It is check #1.
296  * - to prevent pruning of receive queue because of misprediction
297  *   of receiver window. Check #2.
298  *
299  * The scheme does not work when sender sends good segments opening
300  * window and then starts to feed us spaghetti. But it should work
301  * in common situations. Otherwise, we have to rely on queue collapsing.
302  */
303
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307         struct tcp_sock *tp = tcp_sk(sk);
308         /* Optimize this! */
309         int truesize = tcp_win_from_space(skb->truesize) >> 1;
310         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311
312         while (tp->rcv_ssthresh <= window) {
313                 if (truesize <= skb->len)
314                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315
316                 truesize >>= 1;
317                 window >>= 1;
318         }
319         return 0;
320 }
321
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324         struct tcp_sock *tp = tcp_sk(sk);
325
326         /* Check #1 */
327         if (tp->rcv_ssthresh < tp->window_clamp &&
328             (int)tp->rcv_ssthresh < tcp_space(sk) &&
329             !tcp_memory_pressure) {
330                 int incr;
331
332                 /* Check #2. Increase window, if skb with such overhead
333                  * will fit to rcvbuf in future.
334                  */
335                 if (tcp_win_from_space(skb->truesize) <= skb->len)
336                         incr = 2 * tp->advmss;
337                 else
338                         incr = __tcp_grow_window(sk, skb);
339
340                 if (incr) {
341                         incr = max_t(int, incr, 2 * skb->len);
342                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343                                                tp->window_clamp);
344                         inet_csk(sk)->icsk_ack.quick |= 1;
345                 }
346         }
347 }
348
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350
351 static void tcp_fixup_rcvbuf(struct sock *sk)
352 {
353         u32 mss = tcp_sk(sk)->advmss;
354         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
355         int rcvmem;
356
357         /* Limit to 10 segments if mss <= 1460,
358          * or 14600/mss segments, with a minimum of two segments.
359          */
360         if (mss > 1460)
361                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
362
363         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
364         while (tcp_win_from_space(rcvmem) < mss)
365                 rcvmem += 128;
366
367         rcvmem *= icwnd;
368
369         if (sk->sk_rcvbuf < rcvmem)
370                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
371 }
372
373 /* 4. Try to fixup all. It is made immediately after connection enters
374  *    established state.
375  */
376 static void tcp_init_buffer_space(struct sock *sk)
377 {
378         struct tcp_sock *tp = tcp_sk(sk);
379         int maxwin;
380
381         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
382                 tcp_fixup_rcvbuf(sk);
383         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
384                 tcp_fixup_sndbuf(sk);
385
386         tp->rcvq_space.space = tp->rcv_wnd;
387
388         maxwin = tcp_full_space(sk);
389
390         if (tp->window_clamp >= maxwin) {
391                 tp->window_clamp = maxwin;
392
393                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
394                         tp->window_clamp = max(maxwin -
395                                                (maxwin >> sysctl_tcp_app_win),
396                                                4 * tp->advmss);
397         }
398
399         /* Force reservation of one segment. */
400         if (sysctl_tcp_app_win &&
401             tp->window_clamp > 2 * tp->advmss &&
402             tp->window_clamp + tp->advmss > maxwin)
403                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
404
405         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
406         tp->snd_cwnd_stamp = tcp_time_stamp;
407 }
408
409 /* 5. Recalculate window clamp after socket hit its memory bounds. */
410 static void tcp_clamp_window(struct sock *sk)
411 {
412         struct tcp_sock *tp = tcp_sk(sk);
413         struct inet_connection_sock *icsk = inet_csk(sk);
414
415         icsk->icsk_ack.quick = 0;
416
417         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
418             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
419             !tcp_memory_pressure &&
420             atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
421                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
422                                     sysctl_tcp_rmem[2]);
423         }
424         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
425                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
426 }
427
428 /* Initialize RCV_MSS value.
429  * RCV_MSS is an our guess about MSS used by the peer.
430  * We haven't any direct information about the MSS.
431  * It's better to underestimate the RCV_MSS rather than overestimate.
432  * Overestimations make us ACKing less frequently than needed.
433  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
434  */
435 void tcp_initialize_rcv_mss(struct sock *sk)
436 {
437         const struct tcp_sock *tp = tcp_sk(sk);
438         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
439
440         hint = min(hint, tp->rcv_wnd / 2);
441         hint = min(hint, TCP_MSS_DEFAULT);
442         hint = max(hint, TCP_MIN_MSS);
443
444         inet_csk(sk)->icsk_ack.rcv_mss = hint;
445 }
446 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
447
448 /* Receiver "autotuning" code.
449  *
450  * The algorithm for RTT estimation w/o timestamps is based on
451  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
452  * <http://public.lanl.gov/radiant/pubs.html#DRS>
453  *
454  * More detail on this code can be found at
455  * <http://staff.psc.edu/jheffner/>,
456  * though this reference is out of date.  A new paper
457  * is pending.
458  */
459 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
460 {
461         u32 new_sample = tp->rcv_rtt_est.rtt;
462         long m = sample;
463
464         if (m == 0)
465                 m = 1;
466
467         if (new_sample != 0) {
468                 /* If we sample in larger samples in the non-timestamp
469                  * case, we could grossly overestimate the RTT especially
470                  * with chatty applications or bulk transfer apps which
471                  * are stalled on filesystem I/O.
472                  *
473                  * Also, since we are only going for a minimum in the
474                  * non-timestamp case, we do not smooth things out
475                  * else with timestamps disabled convergence takes too
476                  * long.
477                  */
478                 if (!win_dep) {
479                         m -= (new_sample >> 3);
480                         new_sample += m;
481                 } else {
482                         m <<= 3;
483                         if (m < new_sample)
484                                 new_sample = m;
485                 }
486         } else {
487                 /* No previous measure. */
488                 new_sample = m << 3;
489         }
490
491         if (tp->rcv_rtt_est.rtt != new_sample)
492                 tp->rcv_rtt_est.rtt = new_sample;
493 }
494
495 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
496 {
497         if (tp->rcv_rtt_est.time == 0)
498                 goto new_measure;
499         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
500                 return;
501         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
502
503 new_measure:
504         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
505         tp->rcv_rtt_est.time = tcp_time_stamp;
506 }
507
508 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
509                                           const struct sk_buff *skb)
510 {
511         struct tcp_sock *tp = tcp_sk(sk);
512         if (tp->rx_opt.rcv_tsecr &&
513             (TCP_SKB_CB(skb)->end_seq -
514              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
515                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
516 }
517
518 /*
519  * This function should be called every time data is copied to user space.
520  * It calculates the appropriate TCP receive buffer space.
521  */
522 void tcp_rcv_space_adjust(struct sock *sk)
523 {
524         struct tcp_sock *tp = tcp_sk(sk);
525         int time;
526         int space;
527
528         if (tp->rcvq_space.time == 0)
529                 goto new_measure;
530
531         time = tcp_time_stamp - tp->rcvq_space.time;
532         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
533                 return;
534
535         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
536
537         space = max(tp->rcvq_space.space, space);
538
539         if (tp->rcvq_space.space != space) {
540                 int rcvmem;
541
542                 tp->rcvq_space.space = space;
543
544                 if (sysctl_tcp_moderate_rcvbuf &&
545                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
546                         int new_clamp = space;
547
548                         /* Receive space grows, normalize in order to
549                          * take into account packet headers and sk_buff
550                          * structure overhead.
551                          */
552                         space /= tp->advmss;
553                         if (!space)
554                                 space = 1;
555                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
556                         while (tcp_win_from_space(rcvmem) < tp->advmss)
557                                 rcvmem += 128;
558                         space *= rcvmem;
559                         space = min(space, sysctl_tcp_rmem[2]);
560                         if (space > sk->sk_rcvbuf) {
561                                 sk->sk_rcvbuf = space;
562
563                                 /* Make the window clamp follow along.  */
564                                 tp->window_clamp = new_clamp;
565                         }
566                 }
567         }
568
569 new_measure:
570         tp->rcvq_space.seq = tp->copied_seq;
571         tp->rcvq_space.time = tcp_time_stamp;
572 }
573
574 /* There is something which you must keep in mind when you analyze the
575  * behavior of the tp->ato delayed ack timeout interval.  When a
576  * connection starts up, we want to ack as quickly as possible.  The
577  * problem is that "good" TCP's do slow start at the beginning of data
578  * transmission.  The means that until we send the first few ACK's the
579  * sender will sit on his end and only queue most of his data, because
580  * he can only send snd_cwnd unacked packets at any given time.  For
581  * each ACK we send, he increments snd_cwnd and transmits more of his
582  * queue.  -DaveM
583  */
584 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
585 {
586         struct tcp_sock *tp = tcp_sk(sk);
587         struct inet_connection_sock *icsk = inet_csk(sk);
588         u32 now;
589
590         inet_csk_schedule_ack(sk);
591
592         tcp_measure_rcv_mss(sk, skb);
593
594         tcp_rcv_rtt_measure(tp);
595
596         now = tcp_time_stamp;
597
598         if (!icsk->icsk_ack.ato) {
599                 /* The _first_ data packet received, initialize
600                  * delayed ACK engine.
601                  */
602                 tcp_incr_quickack(sk);
603                 icsk->icsk_ack.ato = TCP_ATO_MIN;
604         } else {
605                 int m = now - icsk->icsk_ack.lrcvtime;
606
607                 if (m <= TCP_ATO_MIN / 2) {
608                         /* The fastest case is the first. */
609                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
610                 } else if (m < icsk->icsk_ack.ato) {
611                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
612                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
613                                 icsk->icsk_ack.ato = icsk->icsk_rto;
614                 } else if (m > icsk->icsk_rto) {
615                         /* Too long gap. Apparently sender failed to
616                          * restart window, so that we send ACKs quickly.
617                          */
618                         tcp_incr_quickack(sk);
619                         sk_mem_reclaim(sk);
620                 }
621         }
622         icsk->icsk_ack.lrcvtime = now;
623
624         TCP_ECN_check_ce(tp, skb);
625
626         if (skb->len >= 128)
627                 tcp_grow_window(sk, skb);
628 }
629
630 /* Called to compute a smoothed rtt estimate. The data fed to this
631  * routine either comes from timestamps, or from segments that were
632  * known _not_ to have been retransmitted [see Karn/Partridge
633  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
634  * piece by Van Jacobson.
635  * NOTE: the next three routines used to be one big routine.
636  * To save cycles in the RFC 1323 implementation it was better to break
637  * it up into three procedures. -- erics
638  */
639 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
640 {
641         struct tcp_sock *tp = tcp_sk(sk);
642         long m = mrtt; /* RTT */
643
644         /*      The following amusing code comes from Jacobson's
645          *      article in SIGCOMM '88.  Note that rtt and mdev
646          *      are scaled versions of rtt and mean deviation.
647          *      This is designed to be as fast as possible
648          *      m stands for "measurement".
649          *
650          *      On a 1990 paper the rto value is changed to:
651          *      RTO = rtt + 4 * mdev
652          *
653          * Funny. This algorithm seems to be very broken.
654          * These formulae increase RTO, when it should be decreased, increase
655          * too slowly, when it should be increased quickly, decrease too quickly
656          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
657          * does not matter how to _calculate_ it. Seems, it was trap
658          * that VJ failed to avoid. 8)
659          */
660         if (m == 0)
661                 m = 1;
662         if (tp->srtt != 0) {
663                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
664                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
665                 if (m < 0) {
666                         m = -m;         /* m is now abs(error) */
667                         m -= (tp->mdev >> 2);   /* similar update on mdev */
668                         /* This is similar to one of Eifel findings.
669                          * Eifel blocks mdev updates when rtt decreases.
670                          * This solution is a bit different: we use finer gain
671                          * for mdev in this case (alpha*beta).
672                          * Like Eifel it also prevents growth of rto,
673                          * but also it limits too fast rto decreases,
674                          * happening in pure Eifel.
675                          */
676                         if (m > 0)
677                                 m >>= 3;
678                 } else {
679                         m -= (tp->mdev >> 2);   /* similar update on mdev */
680                 }
681                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
682                 if (tp->mdev > tp->mdev_max) {
683                         tp->mdev_max = tp->mdev;
684                         if (tp->mdev_max > tp->rttvar)
685                                 tp->rttvar = tp->mdev_max;
686                 }
687                 if (after(tp->snd_una, tp->rtt_seq)) {
688                         if (tp->mdev_max < tp->rttvar)
689                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
690                         tp->rtt_seq = tp->snd_nxt;
691                         tp->mdev_max = tcp_rto_min(sk);
692                 }
693         } else {
694                 /* no previous measure. */
695                 tp->srtt = m << 3;      /* take the measured time to be rtt */
696                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
697                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
698                 tp->rtt_seq = tp->snd_nxt;
699         }
700 }
701
702 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
703  * routine referred to above.
704  */
705 static inline void tcp_set_rto(struct sock *sk)
706 {
707         const struct tcp_sock *tp = tcp_sk(sk);
708         /* Old crap is replaced with new one. 8)
709          *
710          * More seriously:
711          * 1. If rtt variance happened to be less 50msec, it is hallucination.
712          *    It cannot be less due to utterly erratic ACK generation made
713          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
714          *    to do with delayed acks, because at cwnd>2 true delack timeout
715          *    is invisible. Actually, Linux-2.4 also generates erratic
716          *    ACKs in some circumstances.
717          */
718         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
719
720         /* 2. Fixups made earlier cannot be right.
721          *    If we do not estimate RTO correctly without them,
722          *    all the algo is pure shit and should be replaced
723          *    with correct one. It is exactly, which we pretend to do.
724          */
725
726         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
727          * guarantees that rto is higher.
728          */
729         tcp_bound_rto(sk);
730 }
731
732 /* Save metrics learned by this TCP session.
733    This function is called only, when TCP finishes successfully
734    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
735  */
736 void tcp_update_metrics(struct sock *sk)
737 {
738         struct tcp_sock *tp = tcp_sk(sk);
739         struct dst_entry *dst = __sk_dst_get(sk);
740
741         if (sysctl_tcp_nometrics_save)
742                 return;
743
744         dst_confirm(dst);
745
746         if (dst && (dst->flags & DST_HOST)) {
747                 const struct inet_connection_sock *icsk = inet_csk(sk);
748                 int m;
749                 unsigned long rtt;
750
751                 if (icsk->icsk_backoff || !tp->srtt) {
752                         /* This session failed to estimate rtt. Why?
753                          * Probably, no packets returned in time.
754                          * Reset our results.
755                          */
756                         if (!(dst_metric_locked(dst, RTAX_RTT)))
757                                 dst_metric_set(dst, RTAX_RTT, 0);
758                         return;
759                 }
760
761                 rtt = dst_metric_rtt(dst, RTAX_RTT);
762                 m = rtt - tp->srtt;
763
764                 /* If newly calculated rtt larger than stored one,
765                  * store new one. Otherwise, use EWMA. Remember,
766                  * rtt overestimation is always better than underestimation.
767                  */
768                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
769                         if (m <= 0)
770                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
771                         else
772                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
773                 }
774
775                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
776                         unsigned long var;
777                         if (m < 0)
778                                 m = -m;
779
780                         /* Scale deviation to rttvar fixed point */
781                         m >>= 1;
782                         if (m < tp->mdev)
783                                 m = tp->mdev;
784
785                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
786                         if (m >= var)
787                                 var = m;
788                         else
789                                 var -= (var - m) >> 2;
790
791                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
792                 }
793
794                 if (tcp_in_initial_slowstart(tp)) {
795                         /* Slow start still did not finish. */
796                         if (dst_metric(dst, RTAX_SSTHRESH) &&
797                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
798                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
799                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
800                         if (!dst_metric_locked(dst, RTAX_CWND) &&
801                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
802                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
803                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
804                            icsk->icsk_ca_state == TCP_CA_Open) {
805                         /* Cong. avoidance phase, cwnd is reliable. */
806                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
807                                 dst_metric_set(dst, RTAX_SSTHRESH,
808                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
809                         if (!dst_metric_locked(dst, RTAX_CWND))
810                                 dst_metric_set(dst, RTAX_CWND,
811                                                (dst_metric(dst, RTAX_CWND) +
812                                                 tp->snd_cwnd) >> 1);
813                 } else {
814                         /* Else slow start did not finish, cwnd is non-sense,
815                            ssthresh may be also invalid.
816                          */
817                         if (!dst_metric_locked(dst, RTAX_CWND))
818                                 dst_metric_set(dst, RTAX_CWND,
819                                                (dst_metric(dst, RTAX_CWND) +
820                                                 tp->snd_ssthresh) >> 1);
821                         if (dst_metric(dst, RTAX_SSTHRESH) &&
822                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
823                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
824                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
825                 }
826
827                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
828                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
829                             tp->reordering != sysctl_tcp_reordering)
830                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
831                 }
832         }
833 }
834
835 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
836 {
837         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
838
839         if (!cwnd)
840                 cwnd = TCP_INIT_CWND;
841         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
842 }
843
844 /* Set slow start threshold and cwnd not falling to slow start */
845 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
846 {
847         struct tcp_sock *tp = tcp_sk(sk);
848         const struct inet_connection_sock *icsk = inet_csk(sk);
849
850         tp->prior_ssthresh = 0;
851         tp->bytes_acked = 0;
852         if (icsk->icsk_ca_state < TCP_CA_CWR) {
853                 tp->undo_marker = 0;
854                 if (set_ssthresh)
855                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
856                 tp->snd_cwnd = min(tp->snd_cwnd,
857                                    tcp_packets_in_flight(tp) + 1U);
858                 tp->snd_cwnd_cnt = 0;
859                 tp->high_seq = tp->snd_nxt;
860                 tp->snd_cwnd_stamp = tcp_time_stamp;
861                 TCP_ECN_queue_cwr(tp);
862
863                 tcp_set_ca_state(sk, TCP_CA_CWR);
864         }
865 }
866
867 /*
868  * Packet counting of FACK is based on in-order assumptions, therefore TCP
869  * disables it when reordering is detected
870  */
871 static void tcp_disable_fack(struct tcp_sock *tp)
872 {
873         /* RFC3517 uses different metric in lost marker => reset on change */
874         if (tcp_is_fack(tp))
875                 tp->lost_skb_hint = NULL;
876         tp->rx_opt.sack_ok &= ~2;
877 }
878
879 /* Take a notice that peer is sending D-SACKs */
880 static void tcp_dsack_seen(struct tcp_sock *tp)
881 {
882         tp->rx_opt.sack_ok |= 4;
883 }
884
885 /* Initialize metrics on socket. */
886
887 static void tcp_init_metrics(struct sock *sk)
888 {
889         struct tcp_sock *tp = tcp_sk(sk);
890         struct dst_entry *dst = __sk_dst_get(sk);
891
892         if (dst == NULL)
893                 goto reset;
894
895         dst_confirm(dst);
896
897         if (dst_metric_locked(dst, RTAX_CWND))
898                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
899         if (dst_metric(dst, RTAX_SSTHRESH)) {
900                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
901                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
902                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
903         } else {
904                 /* ssthresh may have been reduced unnecessarily during.
905                  * 3WHS. Restore it back to its initial default.
906                  */
907                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
908         }
909         if (dst_metric(dst, RTAX_REORDERING) &&
910             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
911                 tcp_disable_fack(tp);
912                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
913         }
914
915         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
916                 goto reset;
917
918         /* Initial rtt is determined from SYN,SYN-ACK.
919          * The segment is small and rtt may appear much
920          * less than real one. Use per-dst memory
921          * to make it more realistic.
922          *
923          * A bit of theory. RTT is time passed after "normal" sized packet
924          * is sent until it is ACKed. In normal circumstances sending small
925          * packets force peer to delay ACKs and calculation is correct too.
926          * The algorithm is adaptive and, provided we follow specs, it
927          * NEVER underestimate RTT. BUT! If peer tries to make some clever
928          * tricks sort of "quick acks" for time long enough to decrease RTT
929          * to low value, and then abruptly stops to do it and starts to delay
930          * ACKs, wait for troubles.
931          */
932         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
933                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
934                 tp->rtt_seq = tp->snd_nxt;
935         }
936         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
937                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
938                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
939         }
940         tcp_set_rto(sk);
941 reset:
942         if (tp->srtt == 0) {
943                 /* RFC2988bis: We've failed to get a valid RTT sample from
944                  * 3WHS. This is most likely due to retransmission,
945                  * including spurious one. Reset the RTO back to 3secs
946                  * from the more aggressive 1sec to avoid more spurious
947                  * retransmission.
948                  */
949                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
950                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
951         }
952         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
953          * retransmitted. In light of RFC2988bis' more aggressive 1sec
954          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
955          * retransmission has occurred.
956          */
957         if (tp->total_retrans > 1)
958                 tp->snd_cwnd = 1;
959         else
960                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
961         tp->snd_cwnd_stamp = tcp_time_stamp;
962 }
963
964 static void tcp_update_reordering(struct sock *sk, const int metric,
965                                   const int ts)
966 {
967         struct tcp_sock *tp = tcp_sk(sk);
968         if (metric > tp->reordering) {
969                 int mib_idx;
970
971                 tp->reordering = min(TCP_MAX_REORDERING, metric);
972
973                 /* This exciting event is worth to be remembered. 8) */
974                 if (ts)
975                         mib_idx = LINUX_MIB_TCPTSREORDER;
976                 else if (tcp_is_reno(tp))
977                         mib_idx = LINUX_MIB_TCPRENOREORDER;
978                 else if (tcp_is_fack(tp))
979                         mib_idx = LINUX_MIB_TCPFACKREORDER;
980                 else
981                         mib_idx = LINUX_MIB_TCPSACKREORDER;
982
983                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
984 #if FASTRETRANS_DEBUG > 1
985                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
986                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
987                        tp->reordering,
988                        tp->fackets_out,
989                        tp->sacked_out,
990                        tp->undo_marker ? tp->undo_retrans : 0);
991 #endif
992                 tcp_disable_fack(tp);
993         }
994 }
995
996 /* This must be called before lost_out is incremented */
997 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
998 {
999         if ((tp->retransmit_skb_hint == NULL) ||
1000             before(TCP_SKB_CB(skb)->seq,
1001                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1002                 tp->retransmit_skb_hint = skb;
1003
1004         if (!tp->lost_out ||
1005             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1006                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1007 }
1008
1009 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1010 {
1011         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1012                 tcp_verify_retransmit_hint(tp, skb);
1013
1014                 tp->lost_out += tcp_skb_pcount(skb);
1015                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1016         }
1017 }
1018
1019 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1020                                             struct sk_buff *skb)
1021 {
1022         tcp_verify_retransmit_hint(tp, skb);
1023
1024         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1025                 tp->lost_out += tcp_skb_pcount(skb);
1026                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1027         }
1028 }
1029
1030 /* This procedure tags the retransmission queue when SACKs arrive.
1031  *
1032  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1033  * Packets in queue with these bits set are counted in variables
1034  * sacked_out, retrans_out and lost_out, correspondingly.
1035  *
1036  * Valid combinations are:
1037  * Tag  InFlight        Description
1038  * 0    1               - orig segment is in flight.
1039  * S    0               - nothing flies, orig reached receiver.
1040  * L    0               - nothing flies, orig lost by net.
1041  * R    2               - both orig and retransmit are in flight.
1042  * L|R  1               - orig is lost, retransmit is in flight.
1043  * S|R  1               - orig reached receiver, retrans is still in flight.
1044  * (L|S|R is logically valid, it could occur when L|R is sacked,
1045  *  but it is equivalent to plain S and code short-curcuits it to S.
1046  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1047  *
1048  * These 6 states form finite state machine, controlled by the following events:
1049  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1050  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1051  * 3. Loss detection event of one of three flavors:
1052  *      A. Scoreboard estimator decided the packet is lost.
1053  *         A'. Reno "three dupacks" marks head of queue lost.
1054  *         A''. Its FACK modfication, head until snd.fack is lost.
1055  *      B. SACK arrives sacking data transmitted after never retransmitted
1056  *         hole was sent out.
1057  *      C. SACK arrives sacking SND.NXT at the moment, when the
1058  *         segment was retransmitted.
1059  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1060  *
1061  * It is pleasant to note, that state diagram turns out to be commutative,
1062  * so that we are allowed not to be bothered by order of our actions,
1063  * when multiple events arrive simultaneously. (see the function below).
1064  *
1065  * Reordering detection.
1066  * --------------------
1067  * Reordering metric is maximal distance, which a packet can be displaced
1068  * in packet stream. With SACKs we can estimate it:
1069  *
1070  * 1. SACK fills old hole and the corresponding segment was not
1071  *    ever retransmitted -> reordering. Alas, we cannot use it
1072  *    when segment was retransmitted.
1073  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1074  *    for retransmitted and already SACKed segment -> reordering..
1075  * Both of these heuristics are not used in Loss state, when we cannot
1076  * account for retransmits accurately.
1077  *
1078  * SACK block validation.
1079  * ----------------------
1080  *
1081  * SACK block range validation checks that the received SACK block fits to
1082  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1083  * Note that SND.UNA is not included to the range though being valid because
1084  * it means that the receiver is rather inconsistent with itself reporting
1085  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1086  * perfectly valid, however, in light of RFC2018 which explicitly states
1087  * that "SACK block MUST reflect the newest segment.  Even if the newest
1088  * segment is going to be discarded ...", not that it looks very clever
1089  * in case of head skb. Due to potentional receiver driven attacks, we
1090  * choose to avoid immediate execution of a walk in write queue due to
1091  * reneging and defer head skb's loss recovery to standard loss recovery
1092  * procedure that will eventually trigger (nothing forbids us doing this).
1093  *
1094  * Implements also blockage to start_seq wrap-around. Problem lies in the
1095  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1096  * there's no guarantee that it will be before snd_nxt (n). The problem
1097  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1098  * wrap (s_w):
1099  *
1100  *         <- outs wnd ->                          <- wrapzone ->
1101  *         u     e      n                         u_w   e_w  s n_w
1102  *         |     |      |                          |     |   |  |
1103  * |<------------+------+----- TCP seqno space --------------+---------->|
1104  * ...-- <2^31 ->|                                           |<--------...
1105  * ...---- >2^31 ------>|                                    |<--------...
1106  *
1107  * Current code wouldn't be vulnerable but it's better still to discard such
1108  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1109  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1110  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1111  * equal to the ideal case (infinite seqno space without wrap caused issues).
1112  *
1113  * With D-SACK the lower bound is extended to cover sequence space below
1114  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1115  * again, D-SACK block must not to go across snd_una (for the same reason as
1116  * for the normal SACK blocks, explained above). But there all simplicity
1117  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1118  * fully below undo_marker they do not affect behavior in anyway and can
1119  * therefore be safely ignored. In rare cases (which are more or less
1120  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1121  * fragmentation and packet reordering past skb's retransmission. To consider
1122  * them correctly, the acceptable range must be extended even more though
1123  * the exact amount is rather hard to quantify. However, tp->max_window can
1124  * be used as an exaggerated estimate.
1125  */
1126 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1127                                   u32 start_seq, u32 end_seq)
1128 {
1129         /* Too far in future, or reversed (interpretation is ambiguous) */
1130         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1131                 return 0;
1132
1133         /* Nasty start_seq wrap-around check (see comments above) */
1134         if (!before(start_seq, tp->snd_nxt))
1135                 return 0;
1136
1137         /* In outstanding window? ...This is valid exit for D-SACKs too.
1138          * start_seq == snd_una is non-sensical (see comments above)
1139          */
1140         if (after(start_seq, tp->snd_una))
1141                 return 1;
1142
1143         if (!is_dsack || !tp->undo_marker)
1144                 return 0;
1145
1146         /* ...Then it's D-SACK, and must reside below snd_una completely */
1147         if (after(end_seq, tp->snd_una))
1148                 return 0;
1149
1150         if (!before(start_seq, tp->undo_marker))
1151                 return 1;
1152
1153         /* Too old */
1154         if (!after(end_seq, tp->undo_marker))
1155                 return 0;
1156
1157         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1158          *   start_seq < undo_marker and end_seq >= undo_marker.
1159          */
1160         return !before(start_seq, end_seq - tp->max_window);
1161 }
1162
1163 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1164  * Event "C". Later note: FACK people cheated me again 8), we have to account
1165  * for reordering! Ugly, but should help.
1166  *
1167  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1168  * less than what is now known to be received by the other end (derived from
1169  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1170  * retransmitted skbs to avoid some costly processing per ACKs.
1171  */
1172 static void tcp_mark_lost_retrans(struct sock *sk)
1173 {
1174         const struct inet_connection_sock *icsk = inet_csk(sk);
1175         struct tcp_sock *tp = tcp_sk(sk);
1176         struct sk_buff *skb;
1177         int cnt = 0;
1178         u32 new_low_seq = tp->snd_nxt;
1179         u32 received_upto = tcp_highest_sack_seq(tp);
1180
1181         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1182             !after(received_upto, tp->lost_retrans_low) ||
1183             icsk->icsk_ca_state != TCP_CA_Recovery)
1184                 return;
1185
1186         tcp_for_write_queue(skb, sk) {
1187                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1188
1189                 if (skb == tcp_send_head(sk))
1190                         break;
1191                 if (cnt == tp->retrans_out)
1192                         break;
1193                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1194                         continue;
1195
1196                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1197                         continue;
1198
1199                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1200                  * constraint here (see above) but figuring out that at
1201                  * least tp->reordering SACK blocks reside between ack_seq
1202                  * and received_upto is not easy task to do cheaply with
1203                  * the available datastructures.
1204                  *
1205                  * Whether FACK should check here for tp->reordering segs
1206                  * in-between one could argue for either way (it would be
1207                  * rather simple to implement as we could count fack_count
1208                  * during the walk and do tp->fackets_out - fack_count).
1209                  */
1210                 if (after(received_upto, ack_seq)) {
1211                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1212                         tp->retrans_out -= tcp_skb_pcount(skb);
1213
1214                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1215                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1216                 } else {
1217                         if (before(ack_seq, new_low_seq))
1218                                 new_low_seq = ack_seq;
1219                         cnt += tcp_skb_pcount(skb);
1220                 }
1221         }
1222
1223         if (tp->retrans_out)
1224                 tp->lost_retrans_low = new_low_seq;
1225 }
1226
1227 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1228                            struct tcp_sack_block_wire *sp, int num_sacks,
1229                            u32 prior_snd_una)
1230 {
1231         struct tcp_sock *tp = tcp_sk(sk);
1232         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1233         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1234         int dup_sack = 0;
1235
1236         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1237                 dup_sack = 1;
1238                 tcp_dsack_seen(tp);
1239                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1240         } else if (num_sacks > 1) {
1241                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1242                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1243
1244                 if (!after(end_seq_0, end_seq_1) &&
1245                     !before(start_seq_0, start_seq_1)) {
1246                         dup_sack = 1;
1247                         tcp_dsack_seen(tp);
1248                         NET_INC_STATS_BH(sock_net(sk),
1249                                         LINUX_MIB_TCPDSACKOFORECV);
1250                 }
1251         }
1252
1253         /* D-SACK for already forgotten data... Do dumb counting. */
1254         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1255             !after(end_seq_0, prior_snd_una) &&
1256             after(end_seq_0, tp->undo_marker))
1257                 tp->undo_retrans--;
1258
1259         return dup_sack;
1260 }
1261
1262 struct tcp_sacktag_state {
1263         int reord;
1264         int fack_count;
1265         int flag;
1266 };
1267
1268 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1269  * the incoming SACK may not exactly match but we can find smaller MSS
1270  * aligned portion of it that matches. Therefore we might need to fragment
1271  * which may fail and creates some hassle (caller must handle error case
1272  * returns).
1273  *
1274  * FIXME: this could be merged to shift decision code
1275  */
1276 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1277                                  u32 start_seq, u32 end_seq)
1278 {
1279         int in_sack, err;
1280         unsigned int pkt_len;
1281         unsigned int mss;
1282
1283         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1284                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1285
1286         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1287             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1288                 mss = tcp_skb_mss(skb);
1289                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1290
1291                 if (!in_sack) {
1292                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1293                         if (pkt_len < mss)
1294                                 pkt_len = mss;
1295                 } else {
1296                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1297                         if (pkt_len < mss)
1298                                 return -EINVAL;
1299                 }
1300
1301                 /* Round if necessary so that SACKs cover only full MSSes
1302                  * and/or the remaining small portion (if present)
1303                  */
1304                 if (pkt_len > mss) {
1305                         unsigned int new_len = (pkt_len / mss) * mss;
1306                         if (!in_sack && new_len < pkt_len) {
1307                                 new_len += mss;
1308                                 if (new_len >= skb->len)
1309                                         return 0;
1310                         }
1311                         pkt_len = new_len;
1312                 }
1313                 err = tcp_fragment(sk, skb, pkt_len, mss);
1314                 if (err < 0)
1315                         return err;
1316         }
1317
1318         return in_sack;
1319 }
1320
1321 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1322 static u8 tcp_sacktag_one(struct sock *sk,
1323                           struct tcp_sacktag_state *state, u8 sacked,
1324                           u32 start_seq, u32 end_seq,
1325                           int dup_sack, int pcount)
1326 {
1327         struct tcp_sock *tp = tcp_sk(sk);
1328         int fack_count = state->fack_count;
1329
1330         /* Account D-SACK for retransmitted packet. */
1331         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1332                 if (tp->undo_marker && tp->undo_retrans &&
1333                     after(end_seq, tp->undo_marker))
1334                         tp->undo_retrans--;
1335                 if (sacked & TCPCB_SACKED_ACKED)
1336                         state->reord = min(fack_count, state->reord);
1337         }
1338
1339         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1340         if (!after(end_seq, tp->snd_una))
1341                 return sacked;
1342
1343         if (!(sacked & TCPCB_SACKED_ACKED)) {
1344                 if (sacked & TCPCB_SACKED_RETRANS) {
1345                         /* If the segment is not tagged as lost,
1346                          * we do not clear RETRANS, believing
1347                          * that retransmission is still in flight.
1348                          */
1349                         if (sacked & TCPCB_LOST) {
1350                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1351                                 tp->lost_out -= pcount;
1352                                 tp->retrans_out -= pcount;
1353                         }
1354                 } else {
1355                         if (!(sacked & TCPCB_RETRANS)) {
1356                                 /* New sack for not retransmitted frame,
1357                                  * which was in hole. It is reordering.
1358                                  */
1359                                 if (before(start_seq,
1360                                            tcp_highest_sack_seq(tp)))
1361                                         state->reord = min(fack_count,
1362                                                            state->reord);
1363
1364                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1365                                 if (!after(end_seq, tp->frto_highmark))
1366                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1367                         }
1368
1369                         if (sacked & TCPCB_LOST) {
1370                                 sacked &= ~TCPCB_LOST;
1371                                 tp->lost_out -= pcount;
1372                         }
1373                 }
1374
1375                 sacked |= TCPCB_SACKED_ACKED;
1376                 state->flag |= FLAG_DATA_SACKED;
1377                 tp->sacked_out += pcount;
1378
1379                 fack_count += pcount;
1380
1381                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1382                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1383                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1384                         tp->lost_cnt_hint += pcount;
1385
1386                 if (fack_count > tp->fackets_out)
1387                         tp->fackets_out = fack_count;
1388         }
1389
1390         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1391          * frames and clear it. undo_retrans is decreased above, L|R frames
1392          * are accounted above as well.
1393          */
1394         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1395                 sacked &= ~TCPCB_SACKED_RETRANS;
1396                 tp->retrans_out -= pcount;
1397         }
1398
1399         return sacked;
1400 }
1401
1402 /* Shift newly-SACKed bytes from this skb to the immediately previous
1403  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1404  */
1405 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1406                            struct tcp_sacktag_state *state,
1407                            unsigned int pcount, int shifted, int mss,
1408                            int dup_sack)
1409 {
1410         struct tcp_sock *tp = tcp_sk(sk);
1411         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1412         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1413         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1414
1415         BUG_ON(!pcount);
1416
1417         /* Adjust counters and hints for the newly sacked sequence
1418          * range but discard the return value since prev is already
1419          * marked. We must tag the range first because the seq
1420          * advancement below implicitly advances
1421          * tcp_highest_sack_seq() when skb is highest_sack.
1422          */
1423         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1424                         start_seq, end_seq, dup_sack, pcount);
1425
1426         if (skb == tp->lost_skb_hint)
1427                 tp->lost_cnt_hint += pcount;
1428
1429         TCP_SKB_CB(prev)->end_seq += shifted;
1430         TCP_SKB_CB(skb)->seq += shifted;
1431
1432         skb_shinfo(prev)->gso_segs += pcount;
1433         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1434         skb_shinfo(skb)->gso_segs -= pcount;
1435
1436         /* When we're adding to gso_segs == 1, gso_size will be zero,
1437          * in theory this shouldn't be necessary but as long as DSACK
1438          * code can come after this skb later on it's better to keep
1439          * setting gso_size to something.
1440          */
1441         if (!skb_shinfo(prev)->gso_size) {
1442                 skb_shinfo(prev)->gso_size = mss;
1443                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1444         }
1445
1446         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1447         if (skb_shinfo(skb)->gso_segs <= 1) {
1448                 skb_shinfo(skb)->gso_size = 0;
1449                 skb_shinfo(skb)->gso_type = 0;
1450         }
1451
1452         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1453         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1454
1455         if (skb->len > 0) {
1456                 BUG_ON(!tcp_skb_pcount(skb));
1457                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1458                 return 0;
1459         }
1460
1461         /* Whole SKB was eaten :-) */
1462
1463         if (skb == tp->retransmit_skb_hint)
1464                 tp->retransmit_skb_hint = prev;
1465         if (skb == tp->scoreboard_skb_hint)
1466                 tp->scoreboard_skb_hint = prev;
1467         if (skb == tp->lost_skb_hint) {
1468                 tp->lost_skb_hint = prev;
1469                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1470         }
1471
1472         TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1473         if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1474                 TCP_SKB_CB(prev)->end_seq++;
1475
1476         if (skb == tcp_highest_sack(sk))
1477                 tcp_advance_highest_sack(sk, skb);
1478
1479         tcp_unlink_write_queue(skb, sk);
1480         sk_wmem_free_skb(sk, skb);
1481
1482         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1483
1484         return 1;
1485 }
1486
1487 /* I wish gso_size would have a bit more sane initialization than
1488  * something-or-zero which complicates things
1489  */
1490 static int tcp_skb_seglen(const struct sk_buff *skb)
1491 {
1492         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1493 }
1494
1495 /* Shifting pages past head area doesn't work */
1496 static int skb_can_shift(const struct sk_buff *skb)
1497 {
1498         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1499 }
1500
1501 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1502  * skb.
1503  */
1504 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1505                                           struct tcp_sacktag_state *state,
1506                                           u32 start_seq, u32 end_seq,
1507                                           int dup_sack)
1508 {
1509         struct tcp_sock *tp = tcp_sk(sk);
1510         struct sk_buff *prev;
1511         int mss;
1512         int pcount = 0;
1513         int len;
1514         int in_sack;
1515
1516         if (!sk_can_gso(sk))
1517                 goto fallback;
1518
1519         /* Normally R but no L won't result in plain S */
1520         if (!dup_sack &&
1521             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1522                 goto fallback;
1523         if (!skb_can_shift(skb))
1524                 goto fallback;
1525         /* This frame is about to be dropped (was ACKed). */
1526         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1527                 goto fallback;
1528
1529         /* Can only happen with delayed DSACK + discard craziness */
1530         if (unlikely(skb == tcp_write_queue_head(sk)))
1531                 goto fallback;
1532         prev = tcp_write_queue_prev(sk, skb);
1533
1534         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1535                 goto fallback;
1536
1537         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1538                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1539
1540         if (in_sack) {
1541                 len = skb->len;
1542                 pcount = tcp_skb_pcount(skb);
1543                 mss = tcp_skb_seglen(skb);
1544
1545                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1546                  * drop this restriction as unnecessary
1547                  */
1548                 if (mss != tcp_skb_seglen(prev))
1549                         goto fallback;
1550         } else {
1551                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1552                         goto noop;
1553                 /* CHECKME: This is non-MSS split case only?, this will
1554                  * cause skipped skbs due to advancing loop btw, original
1555                  * has that feature too
1556                  */
1557                 if (tcp_skb_pcount(skb) <= 1)
1558                         goto noop;
1559
1560                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1561                 if (!in_sack) {
1562                         /* TODO: head merge to next could be attempted here
1563                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1564                          * though it might not be worth of the additional hassle
1565                          *
1566                          * ...we can probably just fallback to what was done
1567                          * previously. We could try merging non-SACKed ones
1568                          * as well but it probably isn't going to buy off
1569                          * because later SACKs might again split them, and
1570                          * it would make skb timestamp tracking considerably
1571                          * harder problem.
1572                          */
1573                         goto fallback;
1574                 }
1575
1576                 len = end_seq - TCP_SKB_CB(skb)->seq;
1577                 BUG_ON(len < 0);
1578                 BUG_ON(len > skb->len);
1579
1580                 /* MSS boundaries should be honoured or else pcount will
1581                  * severely break even though it makes things bit trickier.
1582                  * Optimize common case to avoid most of the divides
1583                  */
1584                 mss = tcp_skb_mss(skb);
1585
1586                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1587                  * drop this restriction as unnecessary
1588                  */
1589                 if (mss != tcp_skb_seglen(prev))
1590                         goto fallback;
1591
1592                 if (len == mss) {
1593                         pcount = 1;
1594                 } else if (len < mss) {
1595                         goto noop;
1596                 } else {
1597                         pcount = len / mss;
1598                         len = pcount * mss;
1599                 }
1600         }
1601
1602         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1603         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1604                 goto fallback;
1605
1606         if (!skb_shift(prev, skb, len))
1607                 goto fallback;
1608         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1609                 goto out;
1610
1611         /* Hole filled allows collapsing with the next as well, this is very
1612          * useful when hole on every nth skb pattern happens
1613          */
1614         if (prev == tcp_write_queue_tail(sk))
1615                 goto out;
1616         skb = tcp_write_queue_next(sk, prev);
1617
1618         if (!skb_can_shift(skb) ||
1619             (skb == tcp_send_head(sk)) ||
1620             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1621             (mss != tcp_skb_seglen(skb)))
1622                 goto out;
1623
1624         len = skb->len;
1625         if (skb_shift(prev, skb, len)) {
1626                 pcount += tcp_skb_pcount(skb);
1627                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1628         }
1629
1630 out:
1631         state->fack_count += pcount;
1632         return prev;
1633
1634 noop:
1635         return skb;
1636
1637 fallback:
1638         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1639         return NULL;
1640 }
1641
1642 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1643                                         struct tcp_sack_block *next_dup,
1644                                         struct tcp_sacktag_state *state,
1645                                         u32 start_seq, u32 end_seq,
1646                                         int dup_sack_in)
1647 {
1648         struct tcp_sock *tp = tcp_sk(sk);
1649         struct sk_buff *tmp;
1650
1651         tcp_for_write_queue_from(skb, sk) {
1652                 int in_sack = 0;
1653                 int dup_sack = dup_sack_in;
1654
1655                 if (skb == tcp_send_head(sk))
1656                         break;
1657
1658                 /* queue is in-order => we can short-circuit the walk early */
1659                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1660                         break;
1661
1662                 if ((next_dup != NULL) &&
1663                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1664                         in_sack = tcp_match_skb_to_sack(sk, skb,
1665                                                         next_dup->start_seq,
1666                                                         next_dup->end_seq);
1667                         if (in_sack > 0)
1668                                 dup_sack = 1;
1669                 }
1670
1671                 /* skb reference here is a bit tricky to get right, since
1672                  * shifting can eat and free both this skb and the next,
1673                  * so not even _safe variant of the loop is enough.
1674                  */
1675                 if (in_sack <= 0) {
1676                         tmp = tcp_shift_skb_data(sk, skb, state,
1677                                                  start_seq, end_seq, dup_sack);
1678                         if (tmp != NULL) {
1679                                 if (tmp != skb) {
1680                                         skb = tmp;
1681                                         continue;
1682                                 }
1683
1684                                 in_sack = 0;
1685                         } else {
1686                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1687                                                                 start_seq,
1688                                                                 end_seq);
1689                         }
1690                 }
1691
1692                 if (unlikely(in_sack < 0))
1693                         break;
1694
1695                 if (in_sack) {
1696                         TCP_SKB_CB(skb)->sacked =
1697                                 tcp_sacktag_one(sk,
1698                                                 state,
1699                                                 TCP_SKB_CB(skb)->sacked,
1700                                                 TCP_SKB_CB(skb)->seq,
1701                                                 TCP_SKB_CB(skb)->end_seq,
1702                                                 dup_sack,
1703                                                 tcp_skb_pcount(skb));
1704
1705                         if (!before(TCP_SKB_CB(skb)->seq,
1706                                     tcp_highest_sack_seq(tp)))
1707                                 tcp_advance_highest_sack(sk, skb);
1708                 }
1709
1710                 state->fack_count += tcp_skb_pcount(skb);
1711         }
1712         return skb;
1713 }
1714
1715 /* Avoid all extra work that is being done by sacktag while walking in
1716  * a normal way
1717  */
1718 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1719                                         struct tcp_sacktag_state *state,
1720                                         u32 skip_to_seq)
1721 {
1722         tcp_for_write_queue_from(skb, sk) {
1723                 if (skb == tcp_send_head(sk))
1724                         break;
1725
1726                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1727                         break;
1728
1729                 state->fack_count += tcp_skb_pcount(skb);
1730         }
1731         return skb;
1732 }
1733
1734 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1735                                                 struct sock *sk,
1736                                                 struct tcp_sack_block *next_dup,
1737                                                 struct tcp_sacktag_state *state,
1738                                                 u32 skip_to_seq)
1739 {
1740         if (next_dup == NULL)
1741                 return skb;
1742
1743         if (before(next_dup->start_seq, skip_to_seq)) {
1744                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1745                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1746                                        next_dup->start_seq, next_dup->end_seq,
1747                                        1);
1748         }
1749
1750         return skb;
1751 }
1752
1753 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1754 {
1755         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1756 }
1757
1758 static int
1759 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1760                         u32 prior_snd_una)
1761 {
1762         const struct inet_connection_sock *icsk = inet_csk(sk);
1763         struct tcp_sock *tp = tcp_sk(sk);
1764         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1765                                     TCP_SKB_CB(ack_skb)->sacked);
1766         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1767         struct tcp_sack_block sp[TCP_NUM_SACKS];
1768         struct tcp_sack_block *cache;
1769         struct tcp_sacktag_state state;
1770         struct sk_buff *skb;
1771         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1772         int used_sacks;
1773         int found_dup_sack = 0;
1774         int i, j;
1775         int first_sack_index;
1776
1777         state.flag = 0;
1778         state.reord = tp->packets_out;
1779
1780         if (!tp->sacked_out) {
1781                 if (WARN_ON(tp->fackets_out))
1782                         tp->fackets_out = 0;
1783                 tcp_highest_sack_reset(sk);
1784         }
1785
1786         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1787                                          num_sacks, prior_snd_una);
1788         if (found_dup_sack)
1789                 state.flag |= FLAG_DSACKING_ACK;
1790
1791         /* Eliminate too old ACKs, but take into
1792          * account more or less fresh ones, they can
1793          * contain valid SACK info.
1794          */
1795         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1796                 return 0;
1797
1798         if (!tp->packets_out)
1799                 goto out;
1800
1801         used_sacks = 0;
1802         first_sack_index = 0;
1803         for (i = 0; i < num_sacks; i++) {
1804                 int dup_sack = !i && found_dup_sack;
1805
1806                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1807                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1808
1809                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1810                                             sp[used_sacks].start_seq,
1811                                             sp[used_sacks].end_seq)) {
1812                         int mib_idx;
1813
1814                         if (dup_sack) {
1815                                 if (!tp->undo_marker)
1816                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1817                                 else
1818                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1819                         } else {
1820                                 /* Don't count olds caused by ACK reordering */
1821                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1822                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1823                                         continue;
1824                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1825                         }
1826
1827                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1828                         if (i == 0)
1829                                 first_sack_index = -1;
1830                         continue;
1831                 }
1832
1833                 /* Ignore very old stuff early */
1834                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1835                         continue;
1836
1837                 used_sacks++;
1838         }
1839
1840         /* order SACK blocks to allow in order walk of the retrans queue */
1841         for (i = used_sacks - 1; i > 0; i--) {
1842                 for (j = 0; j < i; j++) {
1843                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1844                                 swap(sp[j], sp[j + 1]);
1845
1846                                 /* Track where the first SACK block goes to */
1847                                 if (j == first_sack_index)
1848                                         first_sack_index = j + 1;
1849                         }
1850                 }
1851         }
1852
1853         skb = tcp_write_queue_head(sk);
1854         state.fack_count = 0;
1855         i = 0;
1856
1857         if (!tp->sacked_out) {
1858                 /* It's already past, so skip checking against it */
1859                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1860         } else {
1861                 cache = tp->recv_sack_cache;
1862                 /* Skip empty blocks in at head of the cache */
1863                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1864                        !cache->end_seq)
1865                         cache++;
1866         }
1867
1868         while (i < used_sacks) {
1869                 u32 start_seq = sp[i].start_seq;
1870                 u32 end_seq = sp[i].end_seq;
1871                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1872                 struct tcp_sack_block *next_dup = NULL;
1873
1874                 if (found_dup_sack && ((i + 1) == first_sack_index))
1875                         next_dup = &sp[i + 1];
1876
1877                 /* Event "B" in the comment above. */
1878                 if (after(end_seq, tp->high_seq))
1879                         state.flag |= FLAG_DATA_LOST;
1880
1881                 /* Skip too early cached blocks */
1882                 while (tcp_sack_cache_ok(tp, cache) &&
1883                        !before(start_seq, cache->end_seq))
1884                         cache++;
1885
1886                 /* Can skip some work by looking recv_sack_cache? */
1887                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1888                     after(end_seq, cache->start_seq)) {
1889
1890                         /* Head todo? */
1891                         if (before(start_seq, cache->start_seq)) {
1892                                 skb = tcp_sacktag_skip(skb, sk, &state,
1893                                                        start_seq);
1894                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1895                                                        &state,
1896                                                        start_seq,
1897                                                        cache->start_seq,
1898                                                        dup_sack);
1899                         }
1900
1901                         /* Rest of the block already fully processed? */
1902                         if (!after(end_seq, cache->end_seq))
1903                                 goto advance_sp;
1904
1905                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1906                                                        &state,
1907                                                        cache->end_seq);
1908
1909                         /* ...tail remains todo... */
1910                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1911                                 /* ...but better entrypoint exists! */
1912                                 skb = tcp_highest_sack(sk);
1913                                 if (skb == NULL)
1914                                         break;
1915                                 state.fack_count = tp->fackets_out;
1916                                 cache++;
1917                                 goto walk;
1918                         }
1919
1920                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1921                         /* Check overlap against next cached too (past this one already) */
1922                         cache++;
1923                         continue;
1924                 }
1925
1926                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1927                         skb = tcp_highest_sack(sk);
1928                         if (skb == NULL)
1929                                 break;
1930                         state.fack_count = tp->fackets_out;
1931                 }
1932                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1933
1934 walk:
1935                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1936                                        start_seq, end_seq, dup_sack);
1937
1938 advance_sp:
1939                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1940                  * due to in-order walk
1941                  */
1942                 if (after(end_seq, tp->frto_highmark))
1943                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1944
1945                 i++;
1946         }
1947
1948         /* Clear the head of the cache sack blocks so we can skip it next time */
1949         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1950                 tp->recv_sack_cache[i].start_seq = 0;
1951                 tp->recv_sack_cache[i].end_seq = 0;
1952         }
1953         for (j = 0; j < used_sacks; j++)
1954                 tp->recv_sack_cache[i++] = sp[j];
1955
1956         tcp_mark_lost_retrans(sk);
1957
1958         tcp_verify_left_out(tp);
1959
1960         if ((state.reord < tp->fackets_out) &&
1961             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1962             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1963                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1964
1965 out:
1966
1967 #if FASTRETRANS_DEBUG > 0
1968         WARN_ON((int)tp->sacked_out < 0);
1969         WARN_ON((int)tp->lost_out < 0);
1970         WARN_ON((int)tp->retrans_out < 0);
1971         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1972 #endif
1973         return state.flag;
1974 }
1975
1976 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1977  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1978  */
1979 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1980 {
1981         u32 holes;
1982
1983         holes = max(tp->lost_out, 1U);
1984         holes = min(holes, tp->packets_out);
1985
1986         if ((tp->sacked_out + holes) > tp->packets_out) {
1987                 tp->sacked_out = tp->packets_out - holes;
1988                 return 1;
1989         }
1990         return 0;
1991 }
1992
1993 /* If we receive more dupacks than we expected counting segments
1994  * in assumption of absent reordering, interpret this as reordering.
1995  * The only another reason could be bug in receiver TCP.
1996  */
1997 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1998 {
1999         struct tcp_sock *tp = tcp_sk(sk);
2000         if (tcp_limit_reno_sacked(tp))
2001                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
2002 }
2003
2004 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2005
2006 static void tcp_add_reno_sack(struct sock *sk)
2007 {
2008         struct tcp_sock *tp = tcp_sk(sk);
2009         tp->sacked_out++;
2010         tcp_check_reno_reordering(sk, 0);
2011         tcp_verify_left_out(tp);
2012 }
2013
2014 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2015
2016 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2017 {
2018         struct tcp_sock *tp = tcp_sk(sk);
2019
2020         if (acked > 0) {
2021                 /* One ACK acked hole. The rest eat duplicate ACKs. */
2022                 if (acked - 1 >= tp->sacked_out)
2023                         tp->sacked_out = 0;
2024                 else
2025                         tp->sacked_out -= acked - 1;
2026         }
2027         tcp_check_reno_reordering(sk, acked);
2028         tcp_verify_left_out(tp);
2029 }
2030
2031 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2032 {
2033         tp->sacked_out = 0;
2034 }
2035
2036 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2037 {
2038         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2039 }
2040
2041 /* F-RTO can only be used if TCP has never retransmitted anything other than
2042  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2043  */
2044 int tcp_use_frto(struct sock *sk)
2045 {
2046         const struct tcp_sock *tp = tcp_sk(sk);
2047         const struct inet_connection_sock *icsk = inet_csk(sk);
2048         struct sk_buff *skb;
2049
2050         if (!sysctl_tcp_frto)
2051                 return 0;
2052
2053         /* MTU probe and F-RTO won't really play nicely along currently */
2054         if (icsk->icsk_mtup.probe_size)
2055                 return 0;
2056
2057         if (tcp_is_sackfrto(tp))
2058                 return 1;
2059
2060         /* Avoid expensive walking of rexmit queue if possible */
2061         if (tp->retrans_out > 1)
2062                 return 0;
2063
2064         skb = tcp_write_queue_head(sk);
2065         if (tcp_skb_is_last(sk, skb))
2066                 return 1;
2067         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2068         tcp_for_write_queue_from(skb, sk) {
2069                 if (skb == tcp_send_head(sk))
2070                         break;
2071                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2072                         return 0;
2073                 /* Short-circuit when first non-SACKed skb has been checked */
2074                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2075                         break;
2076         }
2077         return 1;
2078 }
2079
2080 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2081  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2082  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2083  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2084  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2085  * bits are handled if the Loss state is really to be entered (in
2086  * tcp_enter_frto_loss).
2087  *
2088  * Do like tcp_enter_loss() would; when RTO expires the second time it
2089  * does:
2090  *  "Reduce ssthresh if it has not yet been made inside this window."
2091  */
2092 void tcp_enter_frto(struct sock *sk)
2093 {
2094         const struct inet_connection_sock *icsk = inet_csk(sk);
2095         struct tcp_sock *tp = tcp_sk(sk);
2096         struct sk_buff *skb;
2097
2098         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2099             tp->snd_una == tp->high_seq ||
2100             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2101              !icsk->icsk_retransmits)) {
2102                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2103                 /* Our state is too optimistic in ssthresh() call because cwnd
2104                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2105                  * recovery has not yet completed. Pattern would be this: RTO,
2106                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2107                  * up here twice).
2108                  * RFC4138 should be more specific on what to do, even though
2109                  * RTO is quite unlikely to occur after the first Cumulative ACK
2110                  * due to back-off and complexity of triggering events ...
2111                  */
2112                 if (tp->frto_counter) {
2113                         u32 stored_cwnd;
2114                         stored_cwnd = tp->snd_cwnd;
2115                         tp->snd_cwnd = 2;
2116                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2117                         tp->snd_cwnd = stored_cwnd;
2118                 } else {
2119                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2120                 }
2121                 /* ... in theory, cong.control module could do "any tricks" in
2122                  * ssthresh(), which means that ca_state, lost bits and lost_out
2123                  * counter would have to be faked before the call occurs. We
2124                  * consider that too expensive, unlikely and hacky, so modules
2125                  * using these in ssthresh() must deal these incompatibility
2126                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2127                  */
2128                 tcp_ca_event(sk, CA_EVENT_FRTO);
2129         }
2130
2131         tp->undo_marker = tp->snd_una;
2132         tp->undo_retrans = 0;
2133
2134         skb = tcp_write_queue_head(sk);
2135         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2136                 tp->undo_marker = 0;
2137         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2138                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2139                 tp->retrans_out -= tcp_skb_pcount(skb);
2140         }
2141         tcp_verify_left_out(tp);
2142
2143         /* Too bad if TCP was application limited */
2144         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2145
2146         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2147          * The last condition is necessary at least in tp->frto_counter case.
2148          */
2149         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2150             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2151             after(tp->high_seq, tp->snd_una)) {
2152                 tp->frto_highmark = tp->high_seq;
2153         } else {
2154                 tp->frto_highmark = tp->snd_nxt;
2155         }
2156         tcp_set_ca_state(sk, TCP_CA_Disorder);
2157         tp->high_seq = tp->snd_nxt;
2158         tp->frto_counter = 1;
2159 }
2160
2161 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2162  * which indicates that we should follow the traditional RTO recovery,
2163  * i.e. mark everything lost and do go-back-N retransmission.
2164  */
2165 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2166 {
2167         struct tcp_sock *tp = tcp_sk(sk);
2168         struct sk_buff *skb;
2169
2170         tp->lost_out = 0;
2171         tp->retrans_out = 0;
2172         if (tcp_is_reno(tp))
2173                 tcp_reset_reno_sack(tp);
2174
2175         tcp_for_write_queue(skb, sk) {
2176                 if (skb == tcp_send_head(sk))
2177                         break;
2178
2179                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2180                 /*
2181                  * Count the retransmission made on RTO correctly (only when
2182                  * waiting for the first ACK and did not get it)...
2183                  */
2184                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2185                         /* For some reason this R-bit might get cleared? */
2186                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2187                                 tp->retrans_out += tcp_skb_pcount(skb);
2188                         /* ...enter this if branch just for the first segment */
2189                         flag |= FLAG_DATA_ACKED;
2190                 } else {
2191                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2192                                 tp->undo_marker = 0;
2193                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2194                 }
2195
2196                 /* Marking forward transmissions that were made after RTO lost
2197                  * can cause unnecessary retransmissions in some scenarios,
2198                  * SACK blocks will mitigate that in some but not in all cases.
2199                  * We used to not mark them but it was causing break-ups with
2200                  * receivers that do only in-order receival.
2201                  *
2202                  * TODO: we could detect presence of such receiver and select
2203                  * different behavior per flow.
2204                  */
2205                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2206                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2207                         tp->lost_out += tcp_skb_pcount(skb);
2208                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2209                 }
2210         }
2211         tcp_verify_left_out(tp);
2212
2213         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2214         tp->snd_cwnd_cnt = 0;
2215         tp->snd_cwnd_stamp = tcp_time_stamp;
2216         tp->frto_counter = 0;
2217         tp->bytes_acked = 0;
2218
2219         tp->reordering = min_t(unsigned int, tp->reordering,
2220                                sysctl_tcp_reordering);
2221         tcp_set_ca_state(sk, TCP_CA_Loss);
2222         tp->high_seq = tp->snd_nxt;
2223         TCP_ECN_queue_cwr(tp);
2224
2225         tcp_clear_all_retrans_hints(tp);
2226 }
2227
2228 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2229 {
2230         tp->retrans_out = 0;
2231         tp->lost_out = 0;
2232
2233         tp->undo_marker = 0;
2234         tp->undo_retrans = 0;
2235 }
2236
2237 void tcp_clear_retrans(struct tcp_sock *tp)
2238 {
2239         tcp_clear_retrans_partial(tp);
2240
2241         tp->fackets_out = 0;
2242         tp->sacked_out = 0;
2243 }
2244
2245 /* Enter Loss state. If "how" is not zero, forget all SACK information
2246  * and reset tags completely, otherwise preserve SACKs. If receiver
2247  * dropped its ofo queue, we will know this due to reneging detection.
2248  */
2249 void tcp_enter_loss(struct sock *sk, int how)
2250 {
2251         const struct inet_connection_sock *icsk = inet_csk(sk);
2252         struct tcp_sock *tp = tcp_sk(sk);
2253         struct sk_buff *skb;
2254
2255         /* Reduce ssthresh if it has not yet been made inside this window. */
2256         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2257             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2258                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2259                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2260                 tcp_ca_event(sk, CA_EVENT_LOSS);
2261         }
2262         tp->snd_cwnd       = 1;
2263         tp->snd_cwnd_cnt   = 0;
2264         tp->snd_cwnd_stamp = tcp_time_stamp;
2265
2266         tp->bytes_acked = 0;
2267         tcp_clear_retrans_partial(tp);
2268
2269         if (tcp_is_reno(tp))
2270                 tcp_reset_reno_sack(tp);
2271
2272         tp->undo_marker = tp->snd_una;
2273         if (how) {
2274                 tp->sacked_out = 0;
2275                 tp->fackets_out = 0;
2276         }
2277         tcp_clear_all_retrans_hints(tp);
2278
2279         tcp_for_write_queue(skb, sk) {
2280                 if (skb == tcp_send_head(sk))
2281                         break;
2282
2283                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2284                         tp->undo_marker = 0;
2285                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2286                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2287                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2288                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2289                         tp->lost_out += tcp_skb_pcount(skb);
2290                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2291                 }
2292         }
2293         tcp_verify_left_out(tp);
2294
2295         tp->reordering = min_t(unsigned int, tp->reordering,
2296                                sysctl_tcp_reordering);
2297         tcp_set_ca_state(sk, TCP_CA_Loss);
2298         tp->high_seq = tp->snd_nxt;
2299         TCP_ECN_queue_cwr(tp);
2300         /* Abort F-RTO algorithm if one is in progress */
2301         tp->frto_counter = 0;
2302 }
2303
2304 /* If ACK arrived pointing to a remembered SACK, it means that our
2305  * remembered SACKs do not reflect real state of receiver i.e.
2306  * receiver _host_ is heavily congested (or buggy).
2307  *
2308  * Do processing similar to RTO timeout.
2309  */
2310 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2311 {
2312         if (flag & FLAG_SACK_RENEGING) {
2313                 struct inet_connection_sock *icsk = inet_csk(sk);
2314                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2315
2316                 tcp_enter_loss(sk, 1);
2317                 icsk->icsk_retransmits++;
2318                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2319                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2320                                           icsk->icsk_rto, TCP_RTO_MAX);
2321                 return 1;
2322         }
2323         return 0;
2324 }
2325
2326 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2327 {
2328         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2329 }
2330
2331 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2332  * counter when SACK is enabled (without SACK, sacked_out is used for
2333  * that purpose).
2334  *
2335  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2336  * segments up to the highest received SACK block so far and holes in
2337  * between them.
2338  *
2339  * With reordering, holes may still be in flight, so RFC3517 recovery
2340  * uses pure sacked_out (total number of SACKed segments) even though
2341  * it violates the RFC that uses duplicate ACKs, often these are equal
2342  * but when e.g. out-of-window ACKs or packet duplication occurs,
2343  * they differ. Since neither occurs due to loss, TCP should really
2344  * ignore them.
2345  */
2346 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2347 {
2348         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2349 }
2350
2351 static inline int tcp_skb_timedout(const struct sock *sk,
2352                                    const struct sk_buff *skb)
2353 {
2354         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2355 }
2356
2357 static inline int tcp_head_timedout(const struct sock *sk)
2358 {
2359         const struct tcp_sock *tp = tcp_sk(sk);
2360
2361         return tp->packets_out &&
2362                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2363 }
2364
2365 /* Linux NewReno/SACK/FACK/ECN state machine.
2366  * --------------------------------------
2367  *
2368  * "Open"       Normal state, no dubious events, fast path.
2369  * "Disorder"   In all the respects it is "Open",
2370  *              but requires a bit more attention. It is entered when
2371  *              we see some SACKs or dupacks. It is split of "Open"
2372  *              mainly to move some processing from fast path to slow one.
2373  * "CWR"        CWND was reduced due to some Congestion Notification event.
2374  *              It can be ECN, ICMP source quench, local device congestion.
2375  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2376  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2377  *
2378  * tcp_fastretrans_alert() is entered:
2379  * - each incoming ACK, if state is not "Open"
2380  * - when arrived ACK is unusual, namely:
2381  *      * SACK
2382  *      * Duplicate ACK.
2383  *      * ECN ECE.
2384  *
2385  * Counting packets in flight is pretty simple.
2386  *
2387  *      in_flight = packets_out - left_out + retrans_out
2388  *
2389  *      packets_out is SND.NXT-SND.UNA counted in packets.
2390  *
2391  *      retrans_out is number of retransmitted segments.
2392  *
2393  *      left_out is number of segments left network, but not ACKed yet.
2394  *
2395  *              left_out = sacked_out + lost_out
2396  *
2397  *     sacked_out: Packets, which arrived to receiver out of order
2398  *                 and hence not ACKed. With SACKs this number is simply
2399  *                 amount of SACKed data. Even without SACKs
2400  *                 it is easy to give pretty reliable estimate of this number,
2401  *                 counting duplicate ACKs.
2402  *
2403  *       lost_out: Packets lost by network. TCP has no explicit
2404  *                 "loss notification" feedback from network (for now).
2405  *                 It means that this number can be only _guessed_.
2406  *                 Actually, it is the heuristics to predict lossage that
2407  *                 distinguishes different algorithms.
2408  *
2409  *      F.e. after RTO, when all the queue is considered as lost,
2410  *      lost_out = packets_out and in_flight = retrans_out.
2411  *
2412  *              Essentially, we have now two algorithms counting
2413  *              lost packets.
2414  *
2415  *              FACK: It is the simplest heuristics. As soon as we decided
2416  *              that something is lost, we decide that _all_ not SACKed
2417  *              packets until the most forward SACK are lost. I.e.
2418  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2419  *              It is absolutely correct estimate, if network does not reorder
2420  *              packets. And it loses any connection to reality when reordering
2421  *              takes place. We use FACK by default until reordering
2422  *              is suspected on the path to this destination.
2423  *
2424  *              NewReno: when Recovery is entered, we assume that one segment
2425  *              is lost (classic Reno). While we are in Recovery and
2426  *              a partial ACK arrives, we assume that one more packet
2427  *              is lost (NewReno). This heuristics are the same in NewReno
2428  *              and SACK.
2429  *
2430  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2431  *  deflation etc. CWND is real congestion window, never inflated, changes
2432  *  only according to classic VJ rules.
2433  *
2434  * Really tricky (and requiring careful tuning) part of algorithm
2435  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2436  * The first determines the moment _when_ we should reduce CWND and,
2437  * hence, slow down forward transmission. In fact, it determines the moment
2438  * when we decide that hole is caused by loss, rather than by a reorder.
2439  *
2440  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2441  * holes, caused by lost packets.
2442  *
2443  * And the most logically complicated part of algorithm is undo
2444  * heuristics. We detect false retransmits due to both too early
2445  * fast retransmit (reordering) and underestimated RTO, analyzing
2446  * timestamps and D-SACKs. When we detect that some segments were
2447  * retransmitted by mistake and CWND reduction was wrong, we undo
2448  * window reduction and abort recovery phase. This logic is hidden
2449  * inside several functions named tcp_try_undo_<something>.
2450  */
2451
2452 /* This function decides, when we should leave Disordered state
2453  * and enter Recovery phase, reducing congestion window.
2454  *
2455  * Main question: may we further continue forward transmission
2456  * with the same cwnd?
2457  */
2458 static int tcp_time_to_recover(struct sock *sk)
2459 {
2460         struct tcp_sock *tp = tcp_sk(sk);
2461         __u32 packets_out;
2462
2463         /* Do not perform any recovery during F-RTO algorithm */
2464         if (tp->frto_counter)
2465                 return 0;
2466
2467         /* Trick#1: The loss is proven. */
2468         if (tp->lost_out)
2469                 return 1;
2470
2471         /* Not-A-Trick#2 : Classic rule... */
2472         if (tcp_dupack_heuristics(tp) > tp->reordering)
2473                 return 1;
2474
2475         /* Trick#3 : when we use RFC2988 timer restart, fast
2476          * retransmit can be triggered by timeout of queue head.
2477          */
2478         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2479                 return 1;
2480
2481         /* Trick#4: It is still not OK... But will it be useful to delay
2482          * recovery more?
2483          */
2484         packets_out = tp->packets_out;
2485         if (packets_out <= tp->reordering &&
2486             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2487             !tcp_may_send_now(sk)) {
2488                 /* We have nothing to send. This connection is limited
2489                  * either by receiver window or by application.
2490                  */
2491                 return 1;
2492         }
2493
2494         /* If a thin stream is detected, retransmit after first
2495          * received dupack. Employ only if SACK is supported in order
2496          * to avoid possible corner-case series of spurious retransmissions
2497          * Use only if there are no unsent data.
2498          */
2499         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2500             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2501             tcp_is_sack(tp) && !tcp_send_head(sk))
2502                 return 1;
2503
2504         return 0;
2505 }
2506
2507 /* New heuristics: it is possible only after we switched to restart timer
2508  * each time when something is ACKed. Hence, we can detect timed out packets
2509  * during fast retransmit without falling to slow start.
2510  *
2511  * Usefulness of this as is very questionable, since we should know which of
2512  * the segments is the next to timeout which is relatively expensive to find
2513  * in general case unless we add some data structure just for that. The
2514  * current approach certainly won't find the right one too often and when it
2515  * finally does find _something_ it usually marks large part of the window
2516  * right away (because a retransmission with a larger timestamp blocks the
2517  * loop from advancing). -ij
2518  */
2519 static void tcp_timeout_skbs(struct sock *sk)
2520 {
2521         struct tcp_sock *tp = tcp_sk(sk);
2522         struct sk_buff *skb;
2523
2524         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2525                 return;
2526
2527         skb = tp->scoreboard_skb_hint;
2528         if (tp->scoreboard_skb_hint == NULL)
2529                 skb = tcp_write_queue_head(sk);
2530
2531         tcp_for_write_queue_from(skb, sk) {
2532                 if (skb == tcp_send_head(sk))
2533                         break;
2534                 if (!tcp_skb_timedout(sk, skb))
2535                         break;
2536
2537                 tcp_skb_mark_lost(tp, skb);
2538         }
2539
2540         tp->scoreboard_skb_hint = skb;
2541
2542         tcp_verify_left_out(tp);
2543 }
2544
2545 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2546  * is against sacked "cnt", otherwise it's against facked "cnt"
2547  */
2548 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2549 {
2550         struct tcp_sock *tp = tcp_sk(sk);
2551         struct sk_buff *skb;
2552         int cnt, oldcnt;
2553         int err;
2554         unsigned int mss;
2555
2556         WARN_ON(packets > tp->packets_out);
2557         if (tp->lost_skb_hint) {
2558                 skb = tp->lost_skb_hint;
2559                 cnt = tp->lost_cnt_hint;
2560                 /* Head already handled? */
2561                 if (mark_head && skb != tcp_write_queue_head(sk))
2562                         return;
2563         } else {
2564                 skb = tcp_write_queue_head(sk);
2565                 cnt = 0;
2566         }
2567
2568         tcp_for_write_queue_from(skb, sk) {
2569                 if (skb == tcp_send_head(sk))
2570                         break;
2571                 /* TODO: do this better */
2572                 /* this is not the most efficient way to do this... */
2573                 tp->lost_skb_hint = skb;
2574                 tp->lost_cnt_hint = cnt;
2575
2576                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2577                         break;
2578
2579                 oldcnt = cnt;
2580                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2581                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2582                         cnt += tcp_skb_pcount(skb);
2583
2584                 if (cnt > packets) {
2585                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2586                             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2587                             (oldcnt >= packets))
2588                                 break;
2589
2590                         mss = skb_shinfo(skb)->gso_size;
2591                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2592                         if (err < 0)
2593                                 break;
2594                         cnt = packets;
2595                 }
2596
2597                 tcp_skb_mark_lost(tp, skb);
2598
2599                 if (mark_head)
2600                         break;
2601         }
2602         tcp_verify_left_out(tp);
2603 }
2604
2605 /* Account newly detected lost packet(s) */
2606
2607 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2608 {
2609         struct tcp_sock *tp = tcp_sk(sk);
2610
2611         if (tcp_is_reno(tp)) {
2612                 tcp_mark_head_lost(sk, 1, 1);
2613         } else if (tcp_is_fack(tp)) {
2614                 int lost = tp->fackets_out - tp->reordering;
2615                 if (lost <= 0)
2616                         lost = 1;
2617                 tcp_mark_head_lost(sk, lost, 0);
2618         } else {
2619                 int sacked_upto = tp->sacked_out - tp->reordering;
2620                 if (sacked_upto >= 0)
2621                         tcp_mark_head_lost(sk, sacked_upto, 0);
2622                 else if (fast_rexmit)
2623                         tcp_mark_head_lost(sk, 1, 1);
2624         }
2625
2626         tcp_timeout_skbs(sk);
2627 }
2628
2629 /* CWND moderation, preventing bursts due to too big ACKs
2630  * in dubious situations.
2631  */
2632 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2633 {
2634         tp->snd_cwnd = min(tp->snd_cwnd,
2635                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2636         tp->snd_cwnd_stamp = tcp_time_stamp;
2637 }
2638
2639 /* Lower bound on congestion window is slow start threshold
2640  * unless congestion avoidance choice decides to overide it.
2641  */
2642 static inline u32 tcp_cwnd_min(const struct sock *sk)
2643 {
2644         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2645
2646         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2647 }
2648
2649 /* Decrease cwnd each second ack. */
2650 static void tcp_cwnd_down(struct sock *sk, int flag)
2651 {
2652         struct tcp_sock *tp = tcp_sk(sk);
2653         int decr = tp->snd_cwnd_cnt + 1;
2654
2655         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2656             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2657                 tp->snd_cwnd_cnt = decr & 1;
2658                 decr >>= 1;
2659
2660                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2661                         tp->snd_cwnd -= decr;
2662
2663                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2664                 tp->snd_cwnd_stamp = tcp_time_stamp;
2665         }
2666 }
2667
2668 /* Nothing was retransmitted or returned timestamp is less
2669  * than timestamp of the first retransmission.
2670  */
2671 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2672 {
2673         return !tp->retrans_stamp ||
2674                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2675                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2676 }
2677
2678 /* Undo procedures. */
2679
2680 #if FASTRETRANS_DEBUG > 1
2681 static void DBGUNDO(struct sock *sk, const char *msg)
2682 {
2683         struct tcp_sock *tp = tcp_sk(sk);
2684         struct inet_sock *inet = inet_sk(sk);
2685
2686         if (sk->sk_family == AF_INET) {
2687                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2688                        msg,
2689                        &inet->inet_daddr, ntohs(inet->inet_dport),
2690                        tp->snd_cwnd, tcp_left_out(tp),
2691                        tp->snd_ssthresh, tp->prior_ssthresh,
2692                        tp->packets_out);
2693         }
2694 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2695         else if (sk->sk_family == AF_INET6) {
2696                 struct ipv6_pinfo *np = inet6_sk(sk);
2697                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2698                        msg,
2699                        &np->daddr, ntohs(inet->inet_dport),
2700                        tp->snd_cwnd, tcp_left_out(tp),
2701                        tp->snd_ssthresh, tp->prior_ssthresh,
2702                        tp->packets_out);
2703         }
2704 #endif
2705 }
2706 #else
2707 #define DBGUNDO(x...) do { } while (0)
2708 #endif
2709
2710 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2711 {
2712         struct tcp_sock *tp = tcp_sk(sk);
2713
2714         if (tp->prior_ssthresh) {
2715                 const struct inet_connection_sock *icsk = inet_csk(sk);
2716
2717                 if (icsk->icsk_ca_ops->undo_cwnd)
2718                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2719                 else
2720                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2721
2722                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2723                         tp->snd_ssthresh = tp->prior_ssthresh;
2724                         TCP_ECN_withdraw_cwr(tp);
2725                 }
2726         } else {
2727                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2728         }
2729         tp->snd_cwnd_stamp = tcp_time_stamp;
2730 }
2731
2732 static inline int tcp_may_undo(const struct tcp_sock *tp)
2733 {
2734         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2735 }
2736
2737 /* People celebrate: "We love our President!" */
2738 static int tcp_try_undo_recovery(struct sock *sk)
2739 {
2740         struct tcp_sock *tp = tcp_sk(sk);
2741
2742         if (tcp_may_undo(tp)) {
2743                 int mib_idx;
2744
2745                 /* Happy end! We did not retransmit anything
2746                  * or our original transmission succeeded.
2747                  */
2748                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2749                 tcp_undo_cwr(sk, true);
2750                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2751                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2752                 else
2753                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2754
2755                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2756                 tp->undo_marker = 0;
2757         }
2758         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2759                 /* Hold old state until something *above* high_seq
2760                  * is ACKed. For Reno it is MUST to prevent false
2761                  * fast retransmits (RFC2582). SACK TCP is safe. */
2762                 tcp_moderate_cwnd(tp);
2763                 return 1;
2764         }
2765         tcp_set_ca_state(sk, TCP_CA_Open);
2766         return 0;
2767 }
2768
2769 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2770 static void tcp_try_undo_dsack(struct sock *sk)
2771 {
2772         struct tcp_sock *tp = tcp_sk(sk);
2773
2774         if (tp->undo_marker && !tp->undo_retrans) {
2775                 DBGUNDO(sk, "D-SACK");
2776                 tcp_undo_cwr(sk, true);
2777                 tp->undo_marker = 0;
2778                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2779         }
2780 }
2781
2782 /* We can clear retrans_stamp when there are no retransmissions in the
2783  * window. It would seem that it is trivially available for us in
2784  * tp->retrans_out, however, that kind of assumptions doesn't consider
2785  * what will happen if errors occur when sending retransmission for the
2786  * second time. ...It could the that such segment has only
2787  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2788  * the head skb is enough except for some reneging corner cases that
2789  * are not worth the effort.
2790  *
2791  * Main reason for all this complexity is the fact that connection dying
2792  * time now depends on the validity of the retrans_stamp, in particular,
2793  * that successive retransmissions of a segment must not advance
2794  * retrans_stamp under any conditions.
2795  */
2796 static int tcp_any_retrans_done(const struct sock *sk)
2797 {
2798         const struct tcp_sock *tp = tcp_sk(sk);
2799         struct sk_buff *skb;
2800
2801         if (tp->retrans_out)
2802                 return 1;
2803
2804         skb = tcp_write_queue_head(sk);
2805         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2806                 return 1;
2807
2808         return 0;
2809 }
2810
2811 /* Undo during fast recovery after partial ACK. */
2812
2813 static int tcp_try_undo_partial(struct sock *sk, int acked)
2814 {
2815         struct tcp_sock *tp = tcp_sk(sk);
2816         /* Partial ACK arrived. Force Hoe's retransmit. */
2817         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2818
2819         if (tcp_may_undo(tp)) {
2820                 /* Plain luck! Hole if filled with delayed
2821                  * packet, rather than with a retransmit.
2822                  */
2823                 if (!tcp_any_retrans_done(sk))
2824                         tp->retrans_stamp = 0;
2825
2826                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2827
2828                 DBGUNDO(sk, "Hoe");
2829                 tcp_undo_cwr(sk, false);
2830                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2831
2832                 /* So... Do not make Hoe's retransmit yet.
2833                  * If the first packet was delayed, the rest
2834                  * ones are most probably delayed as well.
2835                  */
2836                 failed = 0;
2837         }
2838         return failed;
2839 }
2840
2841 /* Undo during loss recovery after partial ACK. */
2842 static int tcp_try_undo_loss(struct sock *sk)
2843 {
2844         struct tcp_sock *tp = tcp_sk(sk);
2845
2846         if (tcp_may_undo(tp)) {
2847                 struct sk_buff *skb;
2848                 tcp_for_write_queue(skb, sk) {
2849                         if (skb == tcp_send_head(sk))
2850                                 break;
2851                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2852                 }
2853
2854                 tcp_clear_all_retrans_hints(tp);
2855
2856                 DBGUNDO(sk, "partial loss");
2857                 tp->lost_out = 0;
2858                 tcp_undo_cwr(sk, true);
2859                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2860                 inet_csk(sk)->icsk_retransmits = 0;
2861                 tp->undo_marker = 0;
2862                 if (tcp_is_sack(tp))
2863                         tcp_set_ca_state(sk, TCP_CA_Open);
2864                 return 1;
2865         }
2866         return 0;
2867 }
2868
2869 static inline void tcp_complete_cwr(struct sock *sk)
2870 {
2871         struct tcp_sock *tp = tcp_sk(sk);
2872
2873         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2874         if (tp->undo_marker) {
2875                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2876                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2877                         tp->snd_cwnd_stamp = tcp_time_stamp;
2878                 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2879                         /* PRR algorithm. */
2880                         tp->snd_cwnd = tp->snd_ssthresh;
2881                         tp->snd_cwnd_stamp = tcp_time_stamp;
2882                 }
2883         }
2884         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2885 }
2886
2887 static void tcp_try_keep_open(struct sock *sk)
2888 {
2889         struct tcp_sock *tp = tcp_sk(sk);
2890         int state = TCP_CA_Open;
2891
2892         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2893                 state = TCP_CA_Disorder;
2894
2895         if (inet_csk(sk)->icsk_ca_state != state) {
2896                 tcp_set_ca_state(sk, state);
2897                 tp->high_seq = tp->snd_nxt;
2898         }
2899 }
2900
2901 static void tcp_try_to_open(struct sock *sk, int flag)
2902 {
2903         struct tcp_sock *tp = tcp_sk(sk);
2904
2905         tcp_verify_left_out(tp);
2906
2907         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2908                 tp->retrans_stamp = 0;
2909
2910         if (flag & FLAG_ECE)
2911                 tcp_enter_cwr(sk, 1);
2912
2913         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2914                 tcp_try_keep_open(sk);
2915                 tcp_moderate_cwnd(tp);
2916         } else {
2917                 tcp_cwnd_down(sk, flag);
2918         }
2919 }
2920
2921 static void tcp_mtup_probe_failed(struct sock *sk)
2922 {
2923         struct inet_connection_sock *icsk = inet_csk(sk);
2924
2925         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2926         icsk->icsk_mtup.probe_size = 0;
2927 }
2928
2929 static void tcp_mtup_probe_success(struct sock *sk)
2930 {
2931         struct tcp_sock *tp = tcp_sk(sk);
2932         struct inet_connection_sock *icsk = inet_csk(sk);
2933
2934         /* FIXME: breaks with very large cwnd */
2935         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2936         tp->snd_cwnd = tp->snd_cwnd *
2937                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2938                        icsk->icsk_mtup.probe_size;
2939         tp->snd_cwnd_cnt = 0;
2940         tp->snd_cwnd_stamp = tcp_time_stamp;
2941         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2942
2943         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2944         icsk->icsk_mtup.probe_size = 0;
2945         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2946 }
2947
2948 /* Do a simple retransmit without using the backoff mechanisms in
2949  * tcp_timer. This is used for path mtu discovery.
2950  * The socket is already locked here.
2951  */
2952 void tcp_simple_retransmit(struct sock *sk)
2953 {
2954         const struct inet_connection_sock *icsk = inet_csk(sk);
2955         struct tcp_sock *tp = tcp_sk(sk);
2956         struct sk_buff *skb;
2957         unsigned int mss = tcp_current_mss(sk);
2958         u32 prior_lost = tp->lost_out;
2959
2960         tcp_for_write_queue(skb, sk) {
2961                 if (skb == tcp_send_head(sk))
2962                         break;
2963                 if (tcp_skb_seglen(skb) > mss &&
2964                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2965                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2966                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2967                                 tp->retrans_out -= tcp_skb_pcount(skb);
2968                         }
2969                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2970                 }
2971         }
2972
2973         tcp_clear_retrans_hints_partial(tp);
2974
2975         if (prior_lost == tp->lost_out)
2976                 return;
2977
2978         if (tcp_is_reno(tp))
2979                 tcp_limit_reno_sacked(tp);
2980
2981         tcp_verify_left_out(tp);
2982
2983         /* Don't muck with the congestion window here.
2984          * Reason is that we do not increase amount of _data_
2985          * in network, but units changed and effective
2986          * cwnd/ssthresh really reduced now.
2987          */
2988         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2989                 tp->high_seq = tp->snd_nxt;
2990                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2991                 tp->prior_ssthresh = 0;
2992                 tp->undo_marker = 0;
2993                 tcp_set_ca_state(sk, TCP_CA_Loss);
2994         }
2995         tcp_xmit_retransmit_queue(sk);
2996 }
2997 EXPORT_SYMBOL(tcp_simple_retransmit);
2998
2999 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
3000  * (proportional rate reduction with slow start reduction bound) as described in
3001  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3002  * It computes the number of packets to send (sndcnt) based on packets newly
3003  * delivered:
3004  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
3005  *      cwnd reductions across a full RTT.
3006  *   2) If packets in flight is lower than ssthresh (such as due to excess
3007  *      losses and/or application stalls), do not perform any further cwnd
3008  *      reductions, but instead slow start up to ssthresh.
3009  */
3010 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3011                                         int fast_rexmit, int flag)
3012 {
3013         struct tcp_sock *tp = tcp_sk(sk);
3014         int sndcnt = 0;
3015         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3016
3017         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3018                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3019                                tp->prior_cwnd - 1;
3020                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3021         } else {
3022                 sndcnt = min_t(int, delta,
3023                                max_t(int, tp->prr_delivered - tp->prr_out,
3024                                      newly_acked_sacked) + 1);
3025         }
3026
3027         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3028         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3029 }
3030
3031 /* Process an event, which can update packets-in-flight not trivially.
3032  * Main goal of this function is to calculate new estimate for left_out,
3033  * taking into account both packets sitting in receiver's buffer and
3034  * packets lost by network.
3035  *
3036  * Besides that it does CWND reduction, when packet loss is detected
3037  * and changes state of machine.
3038  *
3039  * It does _not_ decide what to send, it is made in function
3040  * tcp_xmit_retransmit_queue().
3041  */
3042 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3043                                   int newly_acked_sacked, int flag)
3044 {
3045         struct inet_connection_sock *icsk = inet_csk(sk);
3046         struct tcp_sock *tp = tcp_sk(sk);
3047         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3048         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3049                                     (tcp_fackets_out(tp) > tp->reordering));
3050         int fast_rexmit = 0, mib_idx;
3051
3052         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3053                 tp->sacked_out = 0;
3054         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3055                 tp->fackets_out = 0;
3056
3057         /* Now state machine starts.
3058          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3059         if (flag & FLAG_ECE)
3060                 tp->prior_ssthresh = 0;
3061
3062         /* B. In all the states check for reneging SACKs. */
3063         if (tcp_check_sack_reneging(sk, flag))
3064                 return;
3065
3066         /* C. Process data loss notification, provided it is valid. */
3067         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3068             before(tp->snd_una, tp->high_seq) &&
3069             icsk->icsk_ca_state != TCP_CA_Open &&
3070             tp->fackets_out > tp->reordering) {
3071                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reord