Merge branch 'fix/hda' of git://github.com/tiwai/sound
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
109 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130         struct inet_connection_sock *icsk = inet_csk(sk);
131         const unsigned int lss = icsk->icsk_ack.last_seg_size;
132         unsigned int len;
133
134         icsk->icsk_ack.last_seg_size = 0;
135
136         /* skb->len may jitter because of SACKs, even if peer
137          * sends good full-sized frames.
138          */
139         len = skb_shinfo(skb)->gso_size ? : skb->len;
140         if (len >= icsk->icsk_ack.rcv_mss) {
141                 icsk->icsk_ack.rcv_mss = len;
142         } else {
143                 /* Otherwise, we make more careful check taking into account,
144                  * that SACKs block is variable.
145                  *
146                  * "len" is invariant segment length, including TCP header.
147                  */
148                 len += skb->data - skb_transport_header(skb);
149                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150                     /* If PSH is not set, packet should be
151                      * full sized, provided peer TCP is not badly broken.
152                      * This observation (if it is correct 8)) allows
153                      * to handle super-low mtu links fairly.
154                      */
155                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157                         /* Subtract also invariant (if peer is RFC compliant),
158                          * tcp header plus fixed timestamp option length.
159                          * Resulting "len" is MSS free of SACK jitter.
160                          */
161                         len -= tcp_sk(sk)->tcp_header_len;
162                         icsk->icsk_ack.last_seg_size = len;
163                         if (len == lss) {
164                                 icsk->icsk_ack.rcv_mss = len;
165                                 return;
166                         }
167                 }
168                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171         }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176         struct inet_connection_sock *icsk = inet_csk(sk);
177         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179         if (quickacks == 0)
180                 quickacks = 2;
181         if (quickacks > icsk->icsk_ack.quick)
182                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187         struct inet_connection_sock *icsk = inet_csk(sk);
188         tcp_incr_quickack(sk);
189         icsk->icsk_ack.pingpong = 0;
190         icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199         const struct inet_connection_sock *icsk = inet_csk(sk);
200         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205         if (tp->ecn_flags & TCP_ECN_OK)
206                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211         if (tcp_hdr(skb)->cwr)
212                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222         if (tp->ecn_flags & TCP_ECN_OK) {
223                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225                 /* Funny extension: if ECT is not set on a segment,
226                  * it is surely retransmit. It is not in ECN RFC,
227                  * but Linux follows this rule. */
228                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229                         tcp_enter_quickack_mode((struct sock *)tp);
230         }
231 }
232
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236                 tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242                 tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248                 return 1;
249         return 0;
250 }
251
252 /* Buffer size and advertised window tuning.
253  *
254  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255  */
256
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260                      sizeof(struct sk_buff);
261
262         if (sk->sk_sndbuf < 3 * sndmem) {
263                 sk->sk_sndbuf = 3 * sndmem;
264                 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265                         sk->sk_sndbuf = sysctl_tcp_wmem[2];
266         }
267 }
268
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
270  *
271  * All tcp_full_space() is split to two parts: "network" buffer, allocated
272  * forward and advertised in receiver window (tp->rcv_wnd) and
273  * "application buffer", required to isolate scheduling/application
274  * latencies from network.
275  * window_clamp is maximal advertised window. It can be less than
276  * tcp_full_space(), in this case tcp_full_space() - window_clamp
277  * is reserved for "application" buffer. The less window_clamp is
278  * the smoother our behaviour from viewpoint of network, but the lower
279  * throughput and the higher sensitivity of the connection to losses. 8)
280  *
281  * rcv_ssthresh is more strict window_clamp used at "slow start"
282  * phase to predict further behaviour of this connection.
283  * It is used for two goals:
284  * - to enforce header prediction at sender, even when application
285  *   requires some significant "application buffer". It is check #1.
286  * - to prevent pruning of receive queue because of misprediction
287  *   of receiver window. Check #2.
288  *
289  * The scheme does not work when sender sends good segments opening
290  * window and then starts to feed us spaghetti. But it should work
291  * in common situations. Otherwise, we have to rely on queue collapsing.
292  */
293
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
296 {
297         struct tcp_sock *tp = tcp_sk(sk);
298         /* Optimize this! */
299         int truesize = tcp_win_from_space(skb->truesize) >> 1;
300         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
301
302         while (tp->rcv_ssthresh <= window) {
303                 if (truesize <= skb->len)
304                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
305
306                 truesize >>= 1;
307                 window >>= 1;
308         }
309         return 0;
310 }
311
312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
313 {
314         struct tcp_sock *tp = tcp_sk(sk);
315
316         /* Check #1 */
317         if (tp->rcv_ssthresh < tp->window_clamp &&
318             (int)tp->rcv_ssthresh < tcp_space(sk) &&
319             !tcp_memory_pressure) {
320                 int incr;
321
322                 /* Check #2. Increase window, if skb with such overhead
323                  * will fit to rcvbuf in future.
324                  */
325                 if (tcp_win_from_space(skb->truesize) <= skb->len)
326                         incr = 2 * tp->advmss;
327                 else
328                         incr = __tcp_grow_window(sk, skb);
329
330                 if (incr) {
331                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332                                                tp->window_clamp);
333                         inet_csk(sk)->icsk_ack.quick |= 1;
334                 }
335         }
336 }
337
338 /* 3. Tuning rcvbuf, when connection enters established state. */
339
340 static void tcp_fixup_rcvbuf(struct sock *sk)
341 {
342         struct tcp_sock *tp = tcp_sk(sk);
343         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
344
345         /* Try to select rcvbuf so that 4 mss-sized segments
346          * will fit to window and corresponding skbs will fit to our rcvbuf.
347          * (was 3; 4 is minimum to allow fast retransmit to work.)
348          */
349         while (tcp_win_from_space(rcvmem) < tp->advmss)
350                 rcvmem += 128;
351         if (sk->sk_rcvbuf < 4 * rcvmem)
352                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
353 }
354
355 /* 4. Try to fixup all. It is made immediately after connection enters
356  *    established state.
357  */
358 static void tcp_init_buffer_space(struct sock *sk)
359 {
360         struct tcp_sock *tp = tcp_sk(sk);
361         int maxwin;
362
363         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364                 tcp_fixup_rcvbuf(sk);
365         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366                 tcp_fixup_sndbuf(sk);
367
368         tp->rcvq_space.space = tp->rcv_wnd;
369
370         maxwin = tcp_full_space(sk);
371
372         if (tp->window_clamp >= maxwin) {
373                 tp->window_clamp = maxwin;
374
375                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376                         tp->window_clamp = max(maxwin -
377                                                (maxwin >> sysctl_tcp_app_win),
378                                                4 * tp->advmss);
379         }
380
381         /* Force reservation of one segment. */
382         if (sysctl_tcp_app_win &&
383             tp->window_clamp > 2 * tp->advmss &&
384             tp->window_clamp + tp->advmss > maxwin)
385                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
386
387         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388         tp->snd_cwnd_stamp = tcp_time_stamp;
389 }
390
391 /* 5. Recalculate window clamp after socket hit its memory bounds. */
392 static void tcp_clamp_window(struct sock *sk)
393 {
394         struct tcp_sock *tp = tcp_sk(sk);
395         struct inet_connection_sock *icsk = inet_csk(sk);
396
397         icsk->icsk_ack.quick = 0;
398
399         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401             !tcp_memory_pressure &&
402             atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
403                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404                                     sysctl_tcp_rmem[2]);
405         }
406         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
407                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
408 }
409
410 /* Initialize RCV_MSS value.
411  * RCV_MSS is an our guess about MSS used by the peer.
412  * We haven't any direct information about the MSS.
413  * It's better to underestimate the RCV_MSS rather than overestimate.
414  * Overestimations make us ACKing less frequently than needed.
415  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
416  */
417 void tcp_initialize_rcv_mss(struct sock *sk)
418 {
419         struct tcp_sock *tp = tcp_sk(sk);
420         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
421
422         hint = min(hint, tp->rcv_wnd / 2);
423         hint = min(hint, TCP_MSS_DEFAULT);
424         hint = max(hint, TCP_MIN_MSS);
425
426         inet_csk(sk)->icsk_ack.rcv_mss = hint;
427 }
428 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
429
430 /* Receiver "autotuning" code.
431  *
432  * The algorithm for RTT estimation w/o timestamps is based on
433  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
434  * <http://public.lanl.gov/radiant/pubs.html#DRS>
435  *
436  * More detail on this code can be found at
437  * <http://staff.psc.edu/jheffner/>,
438  * though this reference is out of date.  A new paper
439  * is pending.
440  */
441 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
442 {
443         u32 new_sample = tp->rcv_rtt_est.rtt;
444         long m = sample;
445
446         if (m == 0)
447                 m = 1;
448
449         if (new_sample != 0) {
450                 /* If we sample in larger samples in the non-timestamp
451                  * case, we could grossly overestimate the RTT especially
452                  * with chatty applications or bulk transfer apps which
453                  * are stalled on filesystem I/O.
454                  *
455                  * Also, since we are only going for a minimum in the
456                  * non-timestamp case, we do not smooth things out
457                  * else with timestamps disabled convergence takes too
458                  * long.
459                  */
460                 if (!win_dep) {
461                         m -= (new_sample >> 3);
462                         new_sample += m;
463                 } else if (m < new_sample)
464                         new_sample = m << 3;
465         } else {
466                 /* No previous measure. */
467                 new_sample = m << 3;
468         }
469
470         if (tp->rcv_rtt_est.rtt != new_sample)
471                 tp->rcv_rtt_est.rtt = new_sample;
472 }
473
474 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
475 {
476         if (tp->rcv_rtt_est.time == 0)
477                 goto new_measure;
478         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479                 return;
480         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
481
482 new_measure:
483         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484         tp->rcv_rtt_est.time = tcp_time_stamp;
485 }
486
487 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488                                           const struct sk_buff *skb)
489 {
490         struct tcp_sock *tp = tcp_sk(sk);
491         if (tp->rx_opt.rcv_tsecr &&
492             (TCP_SKB_CB(skb)->end_seq -
493              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
494                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
495 }
496
497 /*
498  * This function should be called every time data is copied to user space.
499  * It calculates the appropriate TCP receive buffer space.
500  */
501 void tcp_rcv_space_adjust(struct sock *sk)
502 {
503         struct tcp_sock *tp = tcp_sk(sk);
504         int time;
505         int space;
506
507         if (tp->rcvq_space.time == 0)
508                 goto new_measure;
509
510         time = tcp_time_stamp - tp->rcvq_space.time;
511         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
512                 return;
513
514         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
515
516         space = max(tp->rcvq_space.space, space);
517
518         if (tp->rcvq_space.space != space) {
519                 int rcvmem;
520
521                 tp->rcvq_space.space = space;
522
523                 if (sysctl_tcp_moderate_rcvbuf &&
524                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
525                         int new_clamp = space;
526
527                         /* Receive space grows, normalize in order to
528                          * take into account packet headers and sk_buff
529                          * structure overhead.
530                          */
531                         space /= tp->advmss;
532                         if (!space)
533                                 space = 1;
534                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
535                                   16 + sizeof(struct sk_buff));
536                         while (tcp_win_from_space(rcvmem) < tp->advmss)
537                                 rcvmem += 128;
538                         space *= rcvmem;
539                         space = min(space, sysctl_tcp_rmem[2]);
540                         if (space > sk->sk_rcvbuf) {
541                                 sk->sk_rcvbuf = space;
542
543                                 /* Make the window clamp follow along.  */
544                                 tp->window_clamp = new_clamp;
545                         }
546                 }
547         }
548
549 new_measure:
550         tp->rcvq_space.seq = tp->copied_seq;
551         tp->rcvq_space.time = tcp_time_stamp;
552 }
553
554 /* There is something which you must keep in mind when you analyze the
555  * behavior of the tp->ato delayed ack timeout interval.  When a
556  * connection starts up, we want to ack as quickly as possible.  The
557  * problem is that "good" TCP's do slow start at the beginning of data
558  * transmission.  The means that until we send the first few ACK's the
559  * sender will sit on his end and only queue most of his data, because
560  * he can only send snd_cwnd unacked packets at any given time.  For
561  * each ACK we send, he increments snd_cwnd and transmits more of his
562  * queue.  -DaveM
563  */
564 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
565 {
566         struct tcp_sock *tp = tcp_sk(sk);
567         struct inet_connection_sock *icsk = inet_csk(sk);
568         u32 now;
569
570         inet_csk_schedule_ack(sk);
571
572         tcp_measure_rcv_mss(sk, skb);
573
574         tcp_rcv_rtt_measure(tp);
575
576         now = tcp_time_stamp;
577
578         if (!icsk->icsk_ack.ato) {
579                 /* The _first_ data packet received, initialize
580                  * delayed ACK engine.
581                  */
582                 tcp_incr_quickack(sk);
583                 icsk->icsk_ack.ato = TCP_ATO_MIN;
584         } else {
585                 int m = now - icsk->icsk_ack.lrcvtime;
586
587                 if (m <= TCP_ATO_MIN / 2) {
588                         /* The fastest case is the first. */
589                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590                 } else if (m < icsk->icsk_ack.ato) {
591                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
593                                 icsk->icsk_ack.ato = icsk->icsk_rto;
594                 } else if (m > icsk->icsk_rto) {
595                         /* Too long gap. Apparently sender failed to
596                          * restart window, so that we send ACKs quickly.
597                          */
598                         tcp_incr_quickack(sk);
599                         sk_mem_reclaim(sk);
600                 }
601         }
602         icsk->icsk_ack.lrcvtime = now;
603
604         TCP_ECN_check_ce(tp, skb);
605
606         if (skb->len >= 128)
607                 tcp_grow_window(sk, skb);
608 }
609
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611  * routine either comes from timestamps, or from segments that were
612  * known _not_ to have been retransmitted [see Karn/Partridge
613  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614  * piece by Van Jacobson.
615  * NOTE: the next three routines used to be one big routine.
616  * To save cycles in the RFC 1323 implementation it was better to break
617  * it up into three procedures. -- erics
618  */
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 {
621         struct tcp_sock *tp = tcp_sk(sk);
622         long m = mrtt; /* RTT */
623
624         /*      The following amusing code comes from Jacobson's
625          *      article in SIGCOMM '88.  Note that rtt and mdev
626          *      are scaled versions of rtt and mean deviation.
627          *      This is designed to be as fast as possible
628          *      m stands for "measurement".
629          *
630          *      On a 1990 paper the rto value is changed to:
631          *      RTO = rtt + 4 * mdev
632          *
633          * Funny. This algorithm seems to be very broken.
634          * These formulae increase RTO, when it should be decreased, increase
635          * too slowly, when it should be increased quickly, decrease too quickly
636          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637          * does not matter how to _calculate_ it. Seems, it was trap
638          * that VJ failed to avoid. 8)
639          */
640         if (m == 0)
641                 m = 1;
642         if (tp->srtt != 0) {
643                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
644                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
645                 if (m < 0) {
646                         m = -m;         /* m is now abs(error) */
647                         m -= (tp->mdev >> 2);   /* similar update on mdev */
648                         /* This is similar to one of Eifel findings.
649                          * Eifel blocks mdev updates when rtt decreases.
650                          * This solution is a bit different: we use finer gain
651                          * for mdev in this case (alpha*beta).
652                          * Like Eifel it also prevents growth of rto,
653                          * but also it limits too fast rto decreases,
654                          * happening in pure Eifel.
655                          */
656                         if (m > 0)
657                                 m >>= 3;
658                 } else {
659                         m -= (tp->mdev >> 2);   /* similar update on mdev */
660                 }
661                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
662                 if (tp->mdev > tp->mdev_max) {
663                         tp->mdev_max = tp->mdev;
664                         if (tp->mdev_max > tp->rttvar)
665                                 tp->rttvar = tp->mdev_max;
666                 }
667                 if (after(tp->snd_una, tp->rtt_seq)) {
668                         if (tp->mdev_max < tp->rttvar)
669                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670                         tp->rtt_seq = tp->snd_nxt;
671                         tp->mdev_max = tcp_rto_min(sk);
672                 }
673         } else {
674                 /* no previous measure. */
675                 tp->srtt = m << 3;      /* take the measured time to be rtt */
676                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
677                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678                 tp->rtt_seq = tp->snd_nxt;
679         }
680 }
681
682 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
683  * routine referred to above.
684  */
685 static inline void tcp_set_rto(struct sock *sk)
686 {
687         const struct tcp_sock *tp = tcp_sk(sk);
688         /* Old crap is replaced with new one. 8)
689          *
690          * More seriously:
691          * 1. If rtt variance happened to be less 50msec, it is hallucination.
692          *    It cannot be less due to utterly erratic ACK generation made
693          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694          *    to do with delayed acks, because at cwnd>2 true delack timeout
695          *    is invisible. Actually, Linux-2.4 also generates erratic
696          *    ACKs in some circumstances.
697          */
698         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
699
700         /* 2. Fixups made earlier cannot be right.
701          *    If we do not estimate RTO correctly without them,
702          *    all the algo is pure shit and should be replaced
703          *    with correct one. It is exactly, which we pretend to do.
704          */
705
706         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707          * guarantees that rto is higher.
708          */
709         tcp_bound_rto(sk);
710 }
711
712 /* Save metrics learned by this TCP session.
713    This function is called only, when TCP finishes successfully
714    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715  */
716 void tcp_update_metrics(struct sock *sk)
717 {
718         struct tcp_sock *tp = tcp_sk(sk);
719         struct dst_entry *dst = __sk_dst_get(sk);
720
721         if (sysctl_tcp_nometrics_save)
722                 return;
723
724         dst_confirm(dst);
725
726         if (dst && (dst->flags & DST_HOST)) {
727                 const struct inet_connection_sock *icsk = inet_csk(sk);
728                 int m;
729                 unsigned long rtt;
730
731                 if (icsk->icsk_backoff || !tp->srtt) {
732                         /* This session failed to estimate rtt. Why?
733                          * Probably, no packets returned in time.
734                          * Reset our results.
735                          */
736                         if (!(dst_metric_locked(dst, RTAX_RTT)))
737                                 dst_metric_set(dst, RTAX_RTT, 0);
738                         return;
739                 }
740
741                 rtt = dst_metric_rtt(dst, RTAX_RTT);
742                 m = rtt - tp->srtt;
743
744                 /* If newly calculated rtt larger than stored one,
745                  * store new one. Otherwise, use EWMA. Remember,
746                  * rtt overestimation is always better than underestimation.
747                  */
748                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
749                         if (m <= 0)
750                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751                         else
752                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753                 }
754
755                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756                         unsigned long var;
757                         if (m < 0)
758                                 m = -m;
759
760                         /* Scale deviation to rttvar fixed point */
761                         m >>= 1;
762                         if (m < tp->mdev)
763                                 m = tp->mdev;
764
765                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
766                         if (m >= var)
767                                 var = m;
768                         else
769                                 var -= (var - m) >> 2;
770
771                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772                 }
773
774                 if (tcp_in_initial_slowstart(tp)) {
775                         /* Slow start still did not finish. */
776                         if (dst_metric(dst, RTAX_SSTHRESH) &&
777                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
780                         if (!dst_metric_locked(dst, RTAX_CWND) &&
781                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
783                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
784                            icsk->icsk_ca_state == TCP_CA_Open) {
785                         /* Cong. avoidance phase, cwnd is reliable. */
786                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787                                 dst_metric_set(dst, RTAX_SSTHRESH,
788                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
789                         if (!dst_metric_locked(dst, RTAX_CWND))
790                                 dst_metric_set(dst, RTAX_CWND,
791                                                (dst_metric(dst, RTAX_CWND) +
792                                                 tp->snd_cwnd) >> 1);
793                 } else {
794                         /* Else slow start did not finish, cwnd is non-sense,
795                            ssthresh may be also invalid.
796                          */
797                         if (!dst_metric_locked(dst, RTAX_CWND))
798                                 dst_metric_set(dst, RTAX_CWND,
799                                                (dst_metric(dst, RTAX_CWND) +
800                                                 tp->snd_ssthresh) >> 1);
801                         if (dst_metric(dst, RTAX_SSTHRESH) &&
802                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
804                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
805                 }
806
807                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
809                             tp->reordering != sysctl_tcp_reordering)
810                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
811                 }
812         }
813 }
814
815 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
816 {
817         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
818
819         if (!cwnd)
820                 cwnd = TCP_INIT_CWND;
821         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
822 }
823
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
826 {
827         struct tcp_sock *tp = tcp_sk(sk);
828         const struct inet_connection_sock *icsk = inet_csk(sk);
829
830         tp->prior_ssthresh = 0;
831         tp->bytes_acked = 0;
832         if (icsk->icsk_ca_state < TCP_CA_CWR) {
833                 tp->undo_marker = 0;
834                 if (set_ssthresh)
835                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
836                 tp->snd_cwnd = min(tp->snd_cwnd,
837                                    tcp_packets_in_flight(tp) + 1U);
838                 tp->snd_cwnd_cnt = 0;
839                 tp->high_seq = tp->snd_nxt;
840                 tp->snd_cwnd_stamp = tcp_time_stamp;
841                 TCP_ECN_queue_cwr(tp);
842
843                 tcp_set_ca_state(sk, TCP_CA_CWR);
844         }
845 }
846
847 /*
848  * Packet counting of FACK is based on in-order assumptions, therefore TCP
849  * disables it when reordering is detected
850  */
851 static void tcp_disable_fack(struct tcp_sock *tp)
852 {
853         /* RFC3517 uses different metric in lost marker => reset on change */
854         if (tcp_is_fack(tp))
855                 tp->lost_skb_hint = NULL;
856         tp->rx_opt.sack_ok &= ~2;
857 }
858
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock *tp)
861 {
862         tp->rx_opt.sack_ok |= 4;
863 }
864
865 /* Initialize metrics on socket. */
866
867 static void tcp_init_metrics(struct sock *sk)
868 {
869         struct tcp_sock *tp = tcp_sk(sk);
870         struct dst_entry *dst = __sk_dst_get(sk);
871
872         if (dst == NULL)
873                 goto reset;
874
875         dst_confirm(dst);
876
877         if (dst_metric_locked(dst, RTAX_CWND))
878                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879         if (dst_metric(dst, RTAX_SSTHRESH)) {
880                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
883         } else {
884                 /* ssthresh may have been reduced unnecessarily during.
885                  * 3WHS. Restore it back to its initial default.
886                  */
887                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
888         }
889         if (dst_metric(dst, RTAX_REORDERING) &&
890             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
891                 tcp_disable_fack(tp);
892                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
893         }
894
895         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
896                 goto reset;
897
898         /* Initial rtt is determined from SYN,SYN-ACK.
899          * The segment is small and rtt may appear much
900          * less than real one. Use per-dst memory
901          * to make it more realistic.
902          *
903          * A bit of theory. RTT is time passed after "normal" sized packet
904          * is sent until it is ACKed. In normal circumstances sending small
905          * packets force peer to delay ACKs and calculation is correct too.
906          * The algorithm is adaptive and, provided we follow specs, it
907          * NEVER underestimate RTT. BUT! If peer tries to make some clever
908          * tricks sort of "quick acks" for time long enough to decrease RTT
909          * to low value, and then abruptly stops to do it and starts to delay
910          * ACKs, wait for troubles.
911          */
912         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
913                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
914                 tp->rtt_seq = tp->snd_nxt;
915         }
916         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
917                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
918                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
919         }
920         tcp_set_rto(sk);
921 reset:
922         if (tp->srtt == 0) {
923                 /* RFC2988bis: We've failed to get a valid RTT sample from
924                  * 3WHS. This is most likely due to retransmission,
925                  * including spurious one. Reset the RTO back to 3secs
926                  * from the more aggressive 1sec to avoid more spurious
927                  * retransmission.
928                  */
929                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
930                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
931         }
932         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
933          * retransmitted. In light of RFC2988bis' more aggressive 1sec
934          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
935          * retransmission has occurred.
936          */
937         if (tp->total_retrans > 1)
938                 tp->snd_cwnd = 1;
939         else
940                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
941         tp->snd_cwnd_stamp = tcp_time_stamp;
942 }
943
944 static void tcp_update_reordering(struct sock *sk, const int metric,
945                                   const int ts)
946 {
947         struct tcp_sock *tp = tcp_sk(sk);
948         if (metric > tp->reordering) {
949                 int mib_idx;
950
951                 tp->reordering = min(TCP_MAX_REORDERING, metric);
952
953                 /* This exciting event is worth to be remembered. 8) */
954                 if (ts)
955                         mib_idx = LINUX_MIB_TCPTSREORDER;
956                 else if (tcp_is_reno(tp))
957                         mib_idx = LINUX_MIB_TCPRENOREORDER;
958                 else if (tcp_is_fack(tp))
959                         mib_idx = LINUX_MIB_TCPFACKREORDER;
960                 else
961                         mib_idx = LINUX_MIB_TCPSACKREORDER;
962
963                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
964 #if FASTRETRANS_DEBUG > 1
965                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967                        tp->reordering,
968                        tp->fackets_out,
969                        tp->sacked_out,
970                        tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972                 tcp_disable_fack(tp);
973         }
974 }
975
976 /* This must be called before lost_out is incremented */
977 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
978 {
979         if ((tp->retransmit_skb_hint == NULL) ||
980             before(TCP_SKB_CB(skb)->seq,
981                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
982                 tp->retransmit_skb_hint = skb;
983
984         if (!tp->lost_out ||
985             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
986                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
987 }
988
989 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
990 {
991         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
992                 tcp_verify_retransmit_hint(tp, skb);
993
994                 tp->lost_out += tcp_skb_pcount(skb);
995                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
996         }
997 }
998
999 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1000                                             struct sk_buff *skb)
1001 {
1002         tcp_verify_retransmit_hint(tp, skb);
1003
1004         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1005                 tp->lost_out += tcp_skb_pcount(skb);
1006                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007         }
1008 }
1009
1010 /* This procedure tags the retransmission queue when SACKs arrive.
1011  *
1012  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1013  * Packets in queue with these bits set are counted in variables
1014  * sacked_out, retrans_out and lost_out, correspondingly.
1015  *
1016  * Valid combinations are:
1017  * Tag  InFlight        Description
1018  * 0    1               - orig segment is in flight.
1019  * S    0               - nothing flies, orig reached receiver.
1020  * L    0               - nothing flies, orig lost by net.
1021  * R    2               - both orig and retransmit are in flight.
1022  * L|R  1               - orig is lost, retransmit is in flight.
1023  * S|R  1               - orig reached receiver, retrans is still in flight.
1024  * (L|S|R is logically valid, it could occur when L|R is sacked,
1025  *  but it is equivalent to plain S and code short-curcuits it to S.
1026  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1027  *
1028  * These 6 states form finite state machine, controlled by the following events:
1029  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1030  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1031  * 3. Loss detection event of one of three flavors:
1032  *      A. Scoreboard estimator decided the packet is lost.
1033  *         A'. Reno "three dupacks" marks head of queue lost.
1034  *         A''. Its FACK modfication, head until snd.fack is lost.
1035  *      B. SACK arrives sacking data transmitted after never retransmitted
1036  *         hole was sent out.
1037  *      C. SACK arrives sacking SND.NXT at the moment, when the
1038  *         segment was retransmitted.
1039  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1040  *
1041  * It is pleasant to note, that state diagram turns out to be commutative,
1042  * so that we are allowed not to be bothered by order of our actions,
1043  * when multiple events arrive simultaneously. (see the function below).
1044  *
1045  * Reordering detection.
1046  * --------------------
1047  * Reordering metric is maximal distance, which a packet can be displaced
1048  * in packet stream. With SACKs we can estimate it:
1049  *
1050  * 1. SACK fills old hole and the corresponding segment was not
1051  *    ever retransmitted -> reordering. Alas, we cannot use it
1052  *    when segment was retransmitted.
1053  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1054  *    for retransmitted and already SACKed segment -> reordering..
1055  * Both of these heuristics are not used in Loss state, when we cannot
1056  * account for retransmits accurately.
1057  *
1058  * SACK block validation.
1059  * ----------------------
1060  *
1061  * SACK block range validation checks that the received SACK block fits to
1062  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1063  * Note that SND.UNA is not included to the range though being valid because
1064  * it means that the receiver is rather inconsistent with itself reporting
1065  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1066  * perfectly valid, however, in light of RFC2018 which explicitly states
1067  * that "SACK block MUST reflect the newest segment.  Even if the newest
1068  * segment is going to be discarded ...", not that it looks very clever
1069  * in case of head skb. Due to potentional receiver driven attacks, we
1070  * choose to avoid immediate execution of a walk in write queue due to
1071  * reneging and defer head skb's loss recovery to standard loss recovery
1072  * procedure that will eventually trigger (nothing forbids us doing this).
1073  *
1074  * Implements also blockage to start_seq wrap-around. Problem lies in the
1075  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1076  * there's no guarantee that it will be before snd_nxt (n). The problem
1077  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1078  * wrap (s_w):
1079  *
1080  *         <- outs wnd ->                          <- wrapzone ->
1081  *         u     e      n                         u_w   e_w  s n_w
1082  *         |     |      |                          |     |   |  |
1083  * |<------------+------+----- TCP seqno space --------------+---------->|
1084  * ...-- <2^31 ->|                                           |<--------...
1085  * ...---- >2^31 ------>|                                    |<--------...
1086  *
1087  * Current code wouldn't be vulnerable but it's better still to discard such
1088  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1089  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1090  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1091  * equal to the ideal case (infinite seqno space without wrap caused issues).
1092  *
1093  * With D-SACK the lower bound is extended to cover sequence space below
1094  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1095  * again, D-SACK block must not to go across snd_una (for the same reason as
1096  * for the normal SACK blocks, explained above). But there all simplicity
1097  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1098  * fully below undo_marker they do not affect behavior in anyway and can
1099  * therefore be safely ignored. In rare cases (which are more or less
1100  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1101  * fragmentation and packet reordering past skb's retransmission. To consider
1102  * them correctly, the acceptable range must be extended even more though
1103  * the exact amount is rather hard to quantify. However, tp->max_window can
1104  * be used as an exaggerated estimate.
1105  */
1106 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1107                                   u32 start_seq, u32 end_seq)
1108 {
1109         /* Too far in future, or reversed (interpretation is ambiguous) */
1110         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1111                 return 0;
1112
1113         /* Nasty start_seq wrap-around check (see comments above) */
1114         if (!before(start_seq, tp->snd_nxt))
1115                 return 0;
1116
1117         /* In outstanding window? ...This is valid exit for D-SACKs too.
1118          * start_seq == snd_una is non-sensical (see comments above)
1119          */
1120         if (after(start_seq, tp->snd_una))
1121                 return 1;
1122
1123         if (!is_dsack || !tp->undo_marker)
1124                 return 0;
1125
1126         /* ...Then it's D-SACK, and must reside below snd_una completely */
1127         if (after(end_seq, tp->snd_una))
1128                 return 0;
1129
1130         if (!before(start_seq, tp->undo_marker))
1131                 return 1;
1132
1133         /* Too old */
1134         if (!after(end_seq, tp->undo_marker))
1135                 return 0;
1136
1137         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1138          *   start_seq < undo_marker and end_seq >= undo_marker.
1139          */
1140         return !before(start_seq, end_seq - tp->max_window);
1141 }
1142
1143 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1144  * Event "C". Later note: FACK people cheated me again 8), we have to account
1145  * for reordering! Ugly, but should help.
1146  *
1147  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1148  * less than what is now known to be received by the other end (derived from
1149  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1150  * retransmitted skbs to avoid some costly processing per ACKs.
1151  */
1152 static void tcp_mark_lost_retrans(struct sock *sk)
1153 {
1154         const struct inet_connection_sock *icsk = inet_csk(sk);
1155         struct tcp_sock *tp = tcp_sk(sk);
1156         struct sk_buff *skb;
1157         int cnt = 0;
1158         u32 new_low_seq = tp->snd_nxt;
1159         u32 received_upto = tcp_highest_sack_seq(tp);
1160
1161         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1162             !after(received_upto, tp->lost_retrans_low) ||
1163             icsk->icsk_ca_state != TCP_CA_Recovery)
1164                 return;
1165
1166         tcp_for_write_queue(skb, sk) {
1167                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1168
1169                 if (skb == tcp_send_head(sk))
1170                         break;
1171                 if (cnt == tp->retrans_out)
1172                         break;
1173                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1174                         continue;
1175
1176                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1177                         continue;
1178
1179                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1180                  * constraint here (see above) but figuring out that at
1181                  * least tp->reordering SACK blocks reside between ack_seq
1182                  * and received_upto is not easy task to do cheaply with
1183                  * the available datastructures.
1184                  *
1185                  * Whether FACK should check here for tp->reordering segs
1186                  * in-between one could argue for either way (it would be
1187                  * rather simple to implement as we could count fack_count
1188                  * during the walk and do tp->fackets_out - fack_count).
1189                  */
1190                 if (after(received_upto, ack_seq)) {
1191                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1192                         tp->retrans_out -= tcp_skb_pcount(skb);
1193
1194                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1195                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1196                 } else {
1197                         if (before(ack_seq, new_low_seq))
1198                                 new_low_seq = ack_seq;
1199                         cnt += tcp_skb_pcount(skb);
1200                 }
1201         }
1202
1203         if (tp->retrans_out)
1204                 tp->lost_retrans_low = new_low_seq;
1205 }
1206
1207 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1208                            struct tcp_sack_block_wire *sp, int num_sacks,
1209                            u32 prior_snd_una)
1210 {
1211         struct tcp_sock *tp = tcp_sk(sk);
1212         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1213         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1214         int dup_sack = 0;
1215
1216         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1217                 dup_sack = 1;
1218                 tcp_dsack_seen(tp);
1219                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1220         } else if (num_sacks > 1) {
1221                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1222                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1223
1224                 if (!after(end_seq_0, end_seq_1) &&
1225                     !before(start_seq_0, start_seq_1)) {
1226                         dup_sack = 1;
1227                         tcp_dsack_seen(tp);
1228                         NET_INC_STATS_BH(sock_net(sk),
1229                                         LINUX_MIB_TCPDSACKOFORECV);
1230                 }
1231         }
1232
1233         /* D-SACK for already forgotten data... Do dumb counting. */
1234         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1235             !after(end_seq_0, prior_snd_una) &&
1236             after(end_seq_0, tp->undo_marker))
1237                 tp->undo_retrans--;
1238
1239         return dup_sack;
1240 }
1241
1242 struct tcp_sacktag_state {
1243         int reord;
1244         int fack_count;
1245         int flag;
1246 };
1247
1248 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249  * the incoming SACK may not exactly match but we can find smaller MSS
1250  * aligned portion of it that matches. Therefore we might need to fragment
1251  * which may fail and creates some hassle (caller must handle error case
1252  * returns).
1253  *
1254  * FIXME: this could be merged to shift decision code
1255  */
1256 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1257                                  u32 start_seq, u32 end_seq)
1258 {
1259         int in_sack, err;
1260         unsigned int pkt_len;
1261         unsigned int mss;
1262
1263         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1264                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1265
1266         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1267             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1268                 mss = tcp_skb_mss(skb);
1269                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1270
1271                 if (!in_sack) {
1272                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1273                         if (pkt_len < mss)
1274                                 pkt_len = mss;
1275                 } else {
1276                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1277                         if (pkt_len < mss)
1278                                 return -EINVAL;
1279                 }
1280
1281                 /* Round if necessary so that SACKs cover only full MSSes
1282                  * and/or the remaining small portion (if present)
1283                  */
1284                 if (pkt_len > mss) {
1285                         unsigned int new_len = (pkt_len / mss) * mss;
1286                         if (!in_sack && new_len < pkt_len) {
1287                                 new_len += mss;
1288                                 if (new_len > skb->len)
1289                                         return 0;
1290                         }
1291                         pkt_len = new_len;
1292                 }
1293                 err = tcp_fragment(sk, skb, pkt_len, mss);
1294                 if (err < 0)
1295                         return err;
1296         }
1297
1298         return in_sack;
1299 }
1300
1301 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1302                           struct tcp_sacktag_state *state,
1303                           int dup_sack, int pcount)
1304 {
1305         struct tcp_sock *tp = tcp_sk(sk);
1306         u8 sacked = TCP_SKB_CB(skb)->sacked;
1307         int fack_count = state->fack_count;
1308
1309         /* Account D-SACK for retransmitted packet. */
1310         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1311                 if (tp->undo_marker && tp->undo_retrans &&
1312                     after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1313                         tp->undo_retrans--;
1314                 if (sacked & TCPCB_SACKED_ACKED)
1315                         state->reord = min(fack_count, state->reord);
1316         }
1317
1318         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1319         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1320                 return sacked;
1321
1322         if (!(sacked & TCPCB_SACKED_ACKED)) {
1323                 if (sacked & TCPCB_SACKED_RETRANS) {
1324                         /* If the segment is not tagged as lost,
1325                          * we do not clear RETRANS, believing
1326                          * that retransmission is still in flight.
1327                          */
1328                         if (sacked & TCPCB_LOST) {
1329                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1330                                 tp->lost_out -= pcount;
1331                                 tp->retrans_out -= pcount;
1332                         }
1333                 } else {
1334                         if (!(sacked & TCPCB_RETRANS)) {
1335                                 /* New sack for not retransmitted frame,
1336                                  * which was in hole. It is reordering.
1337                                  */
1338                                 if (before(TCP_SKB_CB(skb)->seq,
1339                                            tcp_highest_sack_seq(tp)))
1340                                         state->reord = min(fack_count,
1341                                                            state->reord);
1342
1343                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1344                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1345                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1346                         }
1347
1348                         if (sacked & TCPCB_LOST) {
1349                                 sacked &= ~TCPCB_LOST;
1350                                 tp->lost_out -= pcount;
1351                         }
1352                 }
1353
1354                 sacked |= TCPCB_SACKED_ACKED;
1355                 state->flag |= FLAG_DATA_SACKED;
1356                 tp->sacked_out += pcount;
1357
1358                 fack_count += pcount;
1359
1360                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1361                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1362                     before(TCP_SKB_CB(skb)->seq,
1363                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1364                         tp->lost_cnt_hint += pcount;
1365
1366                 if (fack_count > tp->fackets_out)
1367                         tp->fackets_out = fack_count;
1368         }
1369
1370         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1371          * frames and clear it. undo_retrans is decreased above, L|R frames
1372          * are accounted above as well.
1373          */
1374         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1375                 sacked &= ~TCPCB_SACKED_RETRANS;
1376                 tp->retrans_out -= pcount;
1377         }
1378
1379         return sacked;
1380 }
1381
1382 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1383                            struct tcp_sacktag_state *state,
1384                            unsigned int pcount, int shifted, int mss,
1385                            int dup_sack)
1386 {
1387         struct tcp_sock *tp = tcp_sk(sk);
1388         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1389
1390         BUG_ON(!pcount);
1391
1392         if (skb == tp->lost_skb_hint)
1393                 tp->lost_cnt_hint += pcount;
1394
1395         TCP_SKB_CB(prev)->end_seq += shifted;
1396         TCP_SKB_CB(skb)->seq += shifted;
1397
1398         skb_shinfo(prev)->gso_segs += pcount;
1399         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1400         skb_shinfo(skb)->gso_segs -= pcount;
1401
1402         /* When we're adding to gso_segs == 1, gso_size will be zero,
1403          * in theory this shouldn't be necessary but as long as DSACK
1404          * code can come after this skb later on it's better to keep
1405          * setting gso_size to something.
1406          */
1407         if (!skb_shinfo(prev)->gso_size) {
1408                 skb_shinfo(prev)->gso_size = mss;
1409                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1410         }
1411
1412         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1413         if (skb_shinfo(skb)->gso_segs <= 1) {
1414                 skb_shinfo(skb)->gso_size = 0;
1415                 skb_shinfo(skb)->gso_type = 0;
1416         }
1417
1418         /* We discard results */
1419         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1420
1421         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1422         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1423
1424         if (skb->len > 0) {
1425                 BUG_ON(!tcp_skb_pcount(skb));
1426                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1427                 return 0;
1428         }
1429
1430         /* Whole SKB was eaten :-) */
1431
1432         if (skb == tp->retransmit_skb_hint)
1433                 tp->retransmit_skb_hint = prev;
1434         if (skb == tp->scoreboard_skb_hint)
1435                 tp->scoreboard_skb_hint = prev;
1436         if (skb == tp->lost_skb_hint) {
1437                 tp->lost_skb_hint = prev;
1438                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1439         }
1440
1441         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1442         if (skb == tcp_highest_sack(sk))
1443                 tcp_advance_highest_sack(sk, skb);
1444
1445         tcp_unlink_write_queue(skb, sk);
1446         sk_wmem_free_skb(sk, skb);
1447
1448         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1449
1450         return 1;
1451 }
1452
1453 /* I wish gso_size would have a bit more sane initialization than
1454  * something-or-zero which complicates things
1455  */
1456 static int tcp_skb_seglen(struct sk_buff *skb)
1457 {
1458         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1459 }
1460
1461 /* Shifting pages past head area doesn't work */
1462 static int skb_can_shift(struct sk_buff *skb)
1463 {
1464         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1465 }
1466
1467 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1468  * skb.
1469  */
1470 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1471                                           struct tcp_sacktag_state *state,
1472                                           u32 start_seq, u32 end_seq,
1473                                           int dup_sack)
1474 {
1475         struct tcp_sock *tp = tcp_sk(sk);
1476         struct sk_buff *prev;
1477         int mss;
1478         int pcount = 0;
1479         int len;
1480         int in_sack;
1481
1482         if (!sk_can_gso(sk))
1483                 goto fallback;
1484
1485         /* Normally R but no L won't result in plain S */
1486         if (!dup_sack &&
1487             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1488                 goto fallback;
1489         if (!skb_can_shift(skb))
1490                 goto fallback;
1491         /* This frame is about to be dropped (was ACKed). */
1492         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1493                 goto fallback;
1494
1495         /* Can only happen with delayed DSACK + discard craziness */
1496         if (unlikely(skb == tcp_write_queue_head(sk)))
1497                 goto fallback;
1498         prev = tcp_write_queue_prev(sk, skb);
1499
1500         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1501                 goto fallback;
1502
1503         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1504                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1505
1506         if (in_sack) {
1507                 len = skb->len;
1508                 pcount = tcp_skb_pcount(skb);
1509                 mss = tcp_skb_seglen(skb);
1510
1511                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1512                  * drop this restriction as unnecessary
1513                  */
1514                 if (mss != tcp_skb_seglen(prev))
1515                         goto fallback;
1516         } else {
1517                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1518                         goto noop;
1519                 /* CHECKME: This is non-MSS split case only?, this will
1520                  * cause skipped skbs due to advancing loop btw, original
1521                  * has that feature too
1522                  */
1523                 if (tcp_skb_pcount(skb) <= 1)
1524                         goto noop;
1525
1526                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1527                 if (!in_sack) {
1528                         /* TODO: head merge to next could be attempted here
1529                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1530                          * though it might not be worth of the additional hassle
1531                          *
1532                          * ...we can probably just fallback to what was done
1533                          * previously. We could try merging non-SACKed ones
1534                          * as well but it probably isn't going to buy off
1535                          * because later SACKs might again split them, and
1536                          * it would make skb timestamp tracking considerably
1537                          * harder problem.
1538                          */
1539                         goto fallback;
1540                 }
1541
1542                 len = end_seq - TCP_SKB_CB(skb)->seq;
1543                 BUG_ON(len < 0);
1544                 BUG_ON(len > skb->len);
1545
1546                 /* MSS boundaries should be honoured or else pcount will
1547                  * severely break even though it makes things bit trickier.
1548                  * Optimize common case to avoid most of the divides
1549                  */
1550                 mss = tcp_skb_mss(skb);
1551
1552                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1553                  * drop this restriction as unnecessary
1554                  */
1555                 if (mss != tcp_skb_seglen(prev))
1556                         goto fallback;
1557
1558                 if (len == mss) {
1559                         pcount = 1;
1560                 } else if (len < mss) {
1561                         goto noop;
1562                 } else {
1563                         pcount = len / mss;
1564                         len = pcount * mss;
1565                 }
1566         }
1567
1568         if (!skb_shift(prev, skb, len))
1569                 goto fallback;
1570         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1571                 goto out;
1572
1573         /* Hole filled allows collapsing with the next as well, this is very
1574          * useful when hole on every nth skb pattern happens
1575          */
1576         if (prev == tcp_write_queue_tail(sk))
1577                 goto out;
1578         skb = tcp_write_queue_next(sk, prev);
1579
1580         if (!skb_can_shift(skb) ||
1581             (skb == tcp_send_head(sk)) ||
1582             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1583             (mss != tcp_skb_seglen(skb)))
1584                 goto out;
1585
1586         len = skb->len;
1587         if (skb_shift(prev, skb, len)) {
1588                 pcount += tcp_skb_pcount(skb);
1589                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1590         }
1591
1592 out:
1593         state->fack_count += pcount;
1594         return prev;
1595
1596 noop:
1597         return skb;
1598
1599 fallback:
1600         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1601         return NULL;
1602 }
1603
1604 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1605                                         struct tcp_sack_block *next_dup,
1606                                         struct tcp_sacktag_state *state,
1607                                         u32 start_seq, u32 end_seq,
1608                                         int dup_sack_in)
1609 {
1610         struct tcp_sock *tp = tcp_sk(sk);
1611         struct sk_buff *tmp;
1612
1613         tcp_for_write_queue_from(skb, sk) {
1614                 int in_sack = 0;
1615                 int dup_sack = dup_sack_in;
1616
1617                 if (skb == tcp_send_head(sk))
1618                         break;
1619
1620                 /* queue is in-order => we can short-circuit the walk early */
1621                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1622                         break;
1623
1624                 if ((next_dup != NULL) &&
1625                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1626                         in_sack = tcp_match_skb_to_sack(sk, skb,
1627                                                         next_dup->start_seq,
1628                                                         next_dup->end_seq);
1629                         if (in_sack > 0)
1630                                 dup_sack = 1;
1631                 }
1632
1633                 /* skb reference here is a bit tricky to get right, since
1634                  * shifting can eat and free both this skb and the next,
1635                  * so not even _safe variant of the loop is enough.
1636                  */
1637                 if (in_sack <= 0) {
1638                         tmp = tcp_shift_skb_data(sk, skb, state,
1639                                                  start_seq, end_seq, dup_sack);
1640                         if (tmp != NULL) {
1641                                 if (tmp != skb) {
1642                                         skb = tmp;
1643                                         continue;
1644                                 }
1645
1646                                 in_sack = 0;
1647                         } else {
1648                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1649                                                                 start_seq,
1650                                                                 end_seq);
1651                         }
1652                 }
1653
1654                 if (unlikely(in_sack < 0))
1655                         break;
1656
1657                 if (in_sack) {
1658                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1659                                                                   state,
1660                                                                   dup_sack,
1661                                                                   tcp_skb_pcount(skb));
1662
1663                         if (!before(TCP_SKB_CB(skb)->seq,
1664                                     tcp_highest_sack_seq(tp)))
1665                                 tcp_advance_highest_sack(sk, skb);
1666                 }
1667
1668                 state->fack_count += tcp_skb_pcount(skb);
1669         }
1670         return skb;
1671 }
1672
1673 /* Avoid all extra work that is being done by sacktag while walking in
1674  * a normal way
1675  */
1676 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1677                                         struct tcp_sacktag_state *state,
1678                                         u32 skip_to_seq)
1679 {
1680         tcp_for_write_queue_from(skb, sk) {
1681                 if (skb == tcp_send_head(sk))
1682                         break;
1683
1684                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1685                         break;
1686
1687                 state->fack_count += tcp_skb_pcount(skb);
1688         }
1689         return skb;
1690 }
1691
1692 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1693                                                 struct sock *sk,
1694                                                 struct tcp_sack_block *next_dup,
1695                                                 struct tcp_sacktag_state *state,
1696                                                 u32 skip_to_seq)
1697 {
1698         if (next_dup == NULL)
1699                 return skb;
1700
1701         if (before(next_dup->start_seq, skip_to_seq)) {
1702                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1703                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1704                                        next_dup->start_seq, next_dup->end_seq,
1705                                        1);
1706         }
1707
1708         return skb;
1709 }
1710
1711 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1712 {
1713         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1714 }
1715
1716 static int
1717 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1718                         u32 prior_snd_una)
1719 {
1720         const struct inet_connection_sock *icsk = inet_csk(sk);
1721         struct tcp_sock *tp = tcp_sk(sk);
1722         unsigned char *ptr = (skb_transport_header(ack_skb) +
1723                               TCP_SKB_CB(ack_skb)->sacked);
1724         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1725         struct tcp_sack_block sp[TCP_NUM_SACKS];
1726         struct tcp_sack_block *cache;
1727         struct tcp_sacktag_state state;
1728         struct sk_buff *skb;
1729         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1730         int used_sacks;
1731         int found_dup_sack = 0;
1732         int i, j;
1733         int first_sack_index;
1734
1735         state.flag = 0;
1736         state.reord = tp->packets_out;
1737
1738         if (!tp->sacked_out) {
1739                 if (WARN_ON(tp->fackets_out))
1740                         tp->fackets_out = 0;
1741                 tcp_highest_sack_reset(sk);
1742         }
1743
1744         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1745                                          num_sacks, prior_snd_una);
1746         if (found_dup_sack)
1747                 state.flag |= FLAG_DSACKING_ACK;
1748
1749         /* Eliminate too old ACKs, but take into
1750          * account more or less fresh ones, they can
1751          * contain valid SACK info.
1752          */
1753         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1754                 return 0;
1755
1756         if (!tp->packets_out)
1757                 goto out;
1758
1759         used_sacks = 0;
1760         first_sack_index = 0;
1761         for (i = 0; i < num_sacks; i++) {
1762                 int dup_sack = !i && found_dup_sack;
1763
1764                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1765                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1766
1767                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1768                                             sp[used_sacks].start_seq,
1769                                             sp[used_sacks].end_seq)) {
1770                         int mib_idx;
1771
1772                         if (dup_sack) {
1773                                 if (!tp->undo_marker)
1774                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1775                                 else
1776                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1777                         } else {
1778                                 /* Don't count olds caused by ACK reordering */
1779                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1780                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1781                                         continue;
1782                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1783                         }
1784
1785                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1786                         if (i == 0)
1787                                 first_sack_index = -1;
1788                         continue;
1789                 }
1790
1791                 /* Ignore very old stuff early */
1792                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1793                         continue;
1794
1795                 used_sacks++;
1796         }
1797
1798         /* order SACK blocks to allow in order walk of the retrans queue */
1799         for (i = used_sacks - 1; i > 0; i--) {
1800                 for (j = 0; j < i; j++) {
1801                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1802                                 swap(sp[j], sp[j + 1]);
1803
1804                                 /* Track where the first SACK block goes to */
1805                                 if (j == first_sack_index)
1806                                         first_sack_index = j + 1;
1807                         }
1808                 }
1809         }
1810
1811         skb = tcp_write_queue_head(sk);
1812         state.fack_count = 0;
1813         i = 0;
1814
1815         if (!tp->sacked_out) {
1816                 /* It's already past, so skip checking against it */
1817                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1818         } else {
1819                 cache = tp->recv_sack_cache;
1820                 /* Skip empty blocks in at head of the cache */
1821                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1822                        !cache->end_seq)
1823                         cache++;
1824         }
1825
1826         while (i < used_sacks) {
1827                 u32 start_seq = sp[i].start_seq;
1828                 u32 end_seq = sp[i].end_seq;
1829                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1830                 struct tcp_sack_block *next_dup = NULL;
1831
1832                 if (found_dup_sack && ((i + 1) == first_sack_index))
1833                         next_dup = &sp[i + 1];
1834
1835                 /* Event "B" in the comment above. */
1836                 if (after(end_seq, tp->high_seq))
1837                         state.flag |= FLAG_DATA_LOST;
1838
1839                 /* Skip too early cached blocks */
1840                 while (tcp_sack_cache_ok(tp, cache) &&
1841                        !before(start_seq, cache->end_seq))
1842                         cache++;
1843
1844                 /* Can skip some work by looking recv_sack_cache? */
1845                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1846                     after(end_seq, cache->start_seq)) {
1847
1848                         /* Head todo? */
1849                         if (before(start_seq, cache->start_seq)) {
1850                                 skb = tcp_sacktag_skip(skb, sk, &state,
1851                                                        start_seq);
1852                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1853                                                        &state,
1854                                                        start_seq,
1855                                                        cache->start_seq,
1856                                                        dup_sack);
1857                         }
1858
1859                         /* Rest of the block already fully processed? */
1860                         if (!after(end_seq, cache->end_seq))
1861                                 goto advance_sp;
1862
1863                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1864                                                        &state,
1865                                                        cache->end_seq);
1866
1867                         /* ...tail remains todo... */
1868                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1869                                 /* ...but better entrypoint exists! */
1870                                 skb = tcp_highest_sack(sk);
1871                                 if (skb == NULL)
1872                                         break;
1873                                 state.fack_count = tp->fackets_out;
1874                                 cache++;
1875                                 goto walk;
1876                         }
1877
1878                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1879                         /* Check overlap against next cached too (past this one already) */
1880                         cache++;
1881                         continue;
1882                 }
1883
1884                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1885                         skb = tcp_highest_sack(sk);
1886                         if (skb == NULL)
1887                                 break;
1888                         state.fack_count = tp->fackets_out;
1889                 }
1890                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1891
1892 walk:
1893                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1894                                        start_seq, end_seq, dup_sack);
1895
1896 advance_sp:
1897                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1898                  * due to in-order walk
1899                  */
1900                 if (after(end_seq, tp->frto_highmark))
1901                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1902
1903                 i++;
1904         }
1905
1906         /* Clear the head of the cache sack blocks so we can skip it next time */
1907         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1908                 tp->recv_sack_cache[i].start_seq = 0;
1909                 tp->recv_sack_cache[i].end_seq = 0;
1910         }
1911         for (j = 0; j < used_sacks; j++)
1912                 tp->recv_sack_cache[i++] = sp[j];
1913
1914         tcp_mark_lost_retrans(sk);
1915
1916         tcp_verify_left_out(tp);
1917
1918         if ((state.reord < tp->fackets_out) &&
1919             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1920             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1921                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1922
1923 out:
1924
1925 #if FASTRETRANS_DEBUG > 0
1926         WARN_ON((int)tp->sacked_out < 0);
1927         WARN_ON((int)tp->lost_out < 0);
1928         WARN_ON((int)tp->retrans_out < 0);
1929         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1930 #endif
1931         return state.flag;
1932 }
1933
1934 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1935  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1936  */
1937 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1938 {
1939         u32 holes;
1940
1941         holes = max(tp->lost_out, 1U);
1942         holes = min(holes, tp->packets_out);
1943
1944         if ((tp->sacked_out + holes) > tp->packets_out) {
1945                 tp->sacked_out = tp->packets_out - holes;
1946                 return 1;
1947         }
1948         return 0;
1949 }
1950
1951 /* If we receive more dupacks than we expected counting segments
1952  * in assumption of absent reordering, interpret this as reordering.
1953  * The only another reason could be bug in receiver TCP.
1954  */
1955 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1956 {
1957         struct tcp_sock *tp = tcp_sk(sk);
1958         if (tcp_limit_reno_sacked(tp))
1959                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1960 }
1961
1962 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1963
1964 static void tcp_add_reno_sack(struct sock *sk)
1965 {
1966         struct tcp_sock *tp = tcp_sk(sk);
1967         tp->sacked_out++;
1968         tcp_check_reno_reordering(sk, 0);
1969         tcp_verify_left_out(tp);
1970 }
1971
1972 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1973
1974 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1975 {
1976         struct tcp_sock *tp = tcp_sk(sk);
1977
1978         if (acked > 0) {
1979                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1980                 if (acked - 1 >= tp->sacked_out)
1981                         tp->sacked_out = 0;
1982                 else
1983                         tp->sacked_out -= acked - 1;
1984         }
1985         tcp_check_reno_reordering(sk, acked);
1986         tcp_verify_left_out(tp);
1987 }
1988
1989 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1990 {
1991         tp->sacked_out = 0;
1992 }
1993
1994 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1995 {
1996         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1997 }
1998
1999 /* F-RTO can only be used if TCP has never retransmitted anything other than
2000  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2001  */
2002 int tcp_use_frto(struct sock *sk)
2003 {
2004         const struct tcp_sock *tp = tcp_sk(sk);
2005         const struct inet_connection_sock *icsk = inet_csk(sk);
2006         struct sk_buff *skb;
2007
2008         if (!sysctl_tcp_frto)
2009                 return 0;
2010
2011         /* MTU probe and F-RTO won't really play nicely along currently */
2012         if (icsk->icsk_mtup.probe_size)
2013                 return 0;
2014
2015         if (tcp_is_sackfrto(tp))
2016                 return 1;
2017
2018         /* Avoid expensive walking of rexmit queue if possible */
2019         if (tp->retrans_out > 1)
2020                 return 0;
2021
2022         skb = tcp_write_queue_head(sk);
2023         if (tcp_skb_is_last(sk, skb))
2024                 return 1;
2025         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2026         tcp_for_write_queue_from(skb, sk) {
2027                 if (skb == tcp_send_head(sk))
2028                         break;
2029                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2030                         return 0;
2031                 /* Short-circuit when first non-SACKed skb has been checked */
2032                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2033                         break;
2034         }
2035         return 1;
2036 }
2037
2038 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2039  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2040  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2041  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2042  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2043  * bits are handled if the Loss state is really to be entered (in
2044  * tcp_enter_frto_loss).
2045  *
2046  * Do like tcp_enter_loss() would; when RTO expires the second time it
2047  * does:
2048  *  "Reduce ssthresh if it has not yet been made inside this window."
2049  */
2050 void tcp_enter_frto(struct sock *sk)
2051 {
2052         const struct inet_connection_sock *icsk = inet_csk(sk);
2053         struct tcp_sock *tp = tcp_sk(sk);
2054         struct sk_buff *skb;
2055
2056         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2057             tp->snd_una == tp->high_seq ||
2058             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2059              !icsk->icsk_retransmits)) {
2060                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2061                 /* Our state is too optimistic in ssthresh() call because cwnd
2062                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2063                  * recovery has not yet completed. Pattern would be this: RTO,
2064                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2065                  * up here twice).
2066                  * RFC4138 should be more specific on what to do, even though
2067                  * RTO is quite unlikely to occur after the first Cumulative ACK
2068                  * due to back-off and complexity of triggering events ...
2069                  */
2070                 if (tp->frto_counter) {
2071                         u32 stored_cwnd;
2072                         stored_cwnd = tp->snd_cwnd;
2073                         tp->snd_cwnd = 2;
2074                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2075                         tp->snd_cwnd = stored_cwnd;
2076                 } else {
2077                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2078                 }
2079                 /* ... in theory, cong.control module could do "any tricks" in
2080                  * ssthresh(), which means that ca_state, lost bits and lost_out
2081                  * counter would have to be faked before the call occurs. We
2082                  * consider that too expensive, unlikely and hacky, so modules
2083                  * using these in ssthresh() must deal these incompatibility
2084                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2085                  */
2086                 tcp_ca_event(sk, CA_EVENT_FRTO);
2087         }
2088
2089         tp->undo_marker = tp->snd_una;
2090         tp->undo_retrans = 0;
2091
2092         skb = tcp_write_queue_head(sk);
2093         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2094                 tp->undo_marker = 0;
2095         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2096                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2097                 tp->retrans_out -= tcp_skb_pcount(skb);
2098         }
2099         tcp_verify_left_out(tp);
2100
2101         /* Too bad if TCP was application limited */
2102         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2103
2104         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2105          * The last condition is necessary at least in tp->frto_counter case.
2106          */
2107         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2108             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2109             after(tp->high_seq, tp->snd_una)) {
2110                 tp->frto_highmark = tp->high_seq;
2111         } else {
2112                 tp->frto_highmark = tp->snd_nxt;
2113         }
2114         tcp_set_ca_state(sk, TCP_CA_Disorder);
2115         tp->high_seq = tp->snd_nxt;
2116         tp->frto_counter = 1;
2117 }
2118
2119 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2120  * which indicates that we should follow the traditional RTO recovery,
2121  * i.e. mark everything lost and do go-back-N retransmission.
2122  */
2123 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2124 {
2125         struct tcp_sock *tp = tcp_sk(sk);
2126         struct sk_buff *skb;
2127
2128         tp->lost_out = 0;
2129         tp->retrans_out = 0;
2130         if (tcp_is_reno(tp))
2131                 tcp_reset_reno_sack(tp);
2132
2133         tcp_for_write_queue(skb, sk) {
2134                 if (skb == tcp_send_head(sk))
2135                         break;
2136
2137                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2138                 /*
2139                  * Count the retransmission made on RTO correctly (only when
2140                  * waiting for the first ACK and did not get it)...
2141                  */
2142                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2143                         /* For some reason this R-bit might get cleared? */
2144                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2145                                 tp->retrans_out += tcp_skb_pcount(skb);
2146                         /* ...enter this if branch just for the first segment */
2147                         flag |= FLAG_DATA_ACKED;
2148                 } else {
2149                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2150                                 tp->undo_marker = 0;
2151                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2152                 }
2153
2154                 /* Marking forward transmissions that were made after RTO lost
2155                  * can cause unnecessary retransmissions in some scenarios,
2156                  * SACK blocks will mitigate that in some but not in all cases.
2157                  * We used to not mark them but it was causing break-ups with
2158                  * receivers that do only in-order receival.
2159                  *
2160                  * TODO: we could detect presence of such receiver and select
2161                  * different behavior per flow.
2162                  */
2163                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2164                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2165                         tp->lost_out += tcp_skb_pcount(skb);
2166                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2167                 }
2168         }
2169         tcp_verify_left_out(tp);
2170
2171         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2172         tp->snd_cwnd_cnt = 0;
2173         tp->snd_cwnd_stamp = tcp_time_stamp;
2174         tp->frto_counter = 0;
2175         tp->bytes_acked = 0;
2176
2177         tp->reordering = min_t(unsigned int, tp->reordering,
2178                                sysctl_tcp_reordering);
2179         tcp_set_ca_state(sk, TCP_CA_Loss);
2180         tp->high_seq = tp->snd_nxt;
2181         TCP_ECN_queue_cwr(tp);
2182
2183         tcp_clear_all_retrans_hints(tp);
2184 }
2185
2186 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2187 {
2188         tp->retrans_out = 0;
2189         tp->lost_out = 0;
2190
2191         tp->undo_marker = 0;
2192         tp->undo_retrans = 0;
2193 }
2194
2195 void tcp_clear_retrans(struct tcp_sock *tp)
2196 {
2197         tcp_clear_retrans_partial(tp);
2198
2199         tp->fackets_out = 0;
2200         tp->sacked_out = 0;
2201 }
2202
2203 /* Enter Loss state. If "how" is not zero, forget all SACK information
2204  * and reset tags completely, otherwise preserve SACKs. If receiver
2205  * dropped its ofo queue, we will know this due to reneging detection.
2206  */
2207 void tcp_enter_loss(struct sock *sk, int how)
2208 {
2209         const struct inet_connection_sock *icsk = inet_csk(sk);
2210         struct tcp_sock *tp = tcp_sk(sk);
2211         struct sk_buff *skb;
2212
2213         /* Reduce ssthresh if it has not yet been made inside this window. */
2214         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2215             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2216                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2217                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2218                 tcp_ca_event(sk, CA_EVENT_LOSS);
2219         }
2220         tp->snd_cwnd       = 1;
2221         tp->snd_cwnd_cnt   = 0;
2222         tp->snd_cwnd_stamp = tcp_time_stamp;
2223
2224         tp->bytes_acked = 0;
2225         tcp_clear_retrans_partial(tp);
2226
2227         if (tcp_is_reno(tp))
2228                 tcp_reset_reno_sack(tp);
2229
2230         if (!how) {
2231                 /* Push undo marker, if it was plain RTO and nothing
2232                  * was retransmitted. */
2233                 tp->undo_marker = tp->snd_una;
2234         } else {
2235                 tp->sacked_out = 0;
2236                 tp->fackets_out = 0;
2237         }
2238         tcp_clear_all_retrans_hints(tp);
2239
2240         tcp_for_write_queue(skb, sk) {
2241                 if (skb == tcp_send_head(sk))
2242                         break;
2243
2244                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2245                         tp->undo_marker = 0;
2246                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2247                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2248                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2249                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2250                         tp->lost_out += tcp_skb_pcount(skb);
2251                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2252                 }
2253         }
2254         tcp_verify_left_out(tp);
2255
2256         tp->reordering = min_t(unsigned int, tp->reordering,
2257                                sysctl_tcp_reordering);
2258         tcp_set_ca_state(sk, TCP_CA_Loss);
2259         tp->high_seq = tp->snd_nxt;
2260         TCP_ECN_queue_cwr(tp);
2261         /* Abort F-RTO algorithm if one is in progress */
2262         tp->frto_counter = 0;
2263 }
2264
2265 /* If ACK arrived pointing to a remembered SACK, it means that our
2266  * remembered SACKs do not reflect real state of receiver i.e.
2267  * receiver _host_ is heavily congested (or buggy).
2268  *
2269  * Do processing similar to RTO timeout.
2270  */
2271 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2272 {
2273         if (flag & FLAG_SACK_RENEGING) {
2274                 struct inet_connection_sock *icsk = inet_csk(sk);
2275                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2276
2277                 tcp_enter_loss(sk, 1);
2278                 icsk->icsk_retransmits++;
2279                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2280                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2281                                           icsk->icsk_rto, TCP_RTO_MAX);
2282                 return 1;
2283         }
2284         return 0;
2285 }
2286
2287 static inline int tcp_fackets_out(struct tcp_sock *tp)
2288 {
2289         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2290 }
2291
2292 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2293  * counter when SACK is enabled (without SACK, sacked_out is used for
2294  * that purpose).
2295  *
2296  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2297  * segments up to the highest received SACK block so far and holes in
2298  * between them.
2299  *
2300  * With reordering, holes may still be in flight, so RFC3517 recovery
2301  * uses pure sacked_out (total number of SACKed segments) even though
2302  * it violates the RFC that uses duplicate ACKs, often these are equal
2303  * but when e.g. out-of-window ACKs or packet duplication occurs,
2304  * they differ. Since neither occurs due to loss, TCP should really
2305  * ignore them.
2306  */
2307 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2308 {
2309         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2310 }
2311
2312 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2313 {
2314         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2315 }
2316
2317 static inline int tcp_head_timedout(struct sock *sk)
2318 {
2319         struct tcp_sock *tp = tcp_sk(sk);
2320
2321         return tp->packets_out &&
2322                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2323 }
2324
2325 /* Linux NewReno/SACK/FACK/ECN state machine.
2326  * --------------------------------------
2327  *
2328  * "Open"       Normal state, no dubious events, fast path.
2329  * "Disorder"   In all the respects it is "Open",
2330  *              but requires a bit more attention. It is entered when
2331  *              we see some SACKs or dupacks. It is split of "Open"
2332  *              mainly to move some processing from fast path to slow one.
2333  * "CWR"        CWND was reduced due to some Congestion Notification event.
2334  *              It can be ECN, ICMP source quench, local device congestion.
2335  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2336  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2337  *
2338  * tcp_fastretrans_alert() is entered:
2339  * - each incoming ACK, if state is not "Open"
2340  * - when arrived ACK is unusual, namely:
2341  *      * SACK
2342  *      * Duplicate ACK.
2343  *      * ECN ECE.
2344  *
2345  * Counting packets in flight is pretty simple.
2346  *
2347  *      in_flight = packets_out - left_out + retrans_out
2348  *
2349  *      packets_out is SND.NXT-SND.UNA counted in packets.
2350  *
2351  *      retrans_out is number of retransmitted segments.
2352  *
2353  *      left_out is number of segments left network, but not ACKed yet.
2354  *
2355  *              left_out = sacked_out + lost_out
2356  *
2357  *     sacked_out: Packets, which arrived to receiver out of order
2358  *                 and hence not ACKed. With SACKs this number is simply
2359  *                 amount of SACKed data. Even without SACKs
2360  *                 it is easy to give pretty reliable estimate of this number,
2361  *                 counting duplicate ACKs.
2362  *
2363  *       lost_out: Packets lost by network. TCP has no explicit
2364  *                 "loss notification" feedback from network (for now).
2365  *                 It means that this number can be only _guessed_.
2366  *                 Actually, it is the heuristics to predict lossage that
2367  *                 distinguishes different algorithms.
2368  *
2369  *      F.e. after RTO, when all the queue is considered as lost,
2370  *      lost_out = packets_out and in_flight = retrans_out.
2371  *
2372  *              Essentially, we have now two algorithms counting
2373  *              lost packets.
2374  *
2375  *              FACK: It is the simplest heuristics. As soon as we decided
2376  *              that something is lost, we decide that _all_ not SACKed
2377  *              packets until the most forward SACK are lost. I.e.
2378  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2379  *              It is absolutely correct estimate, if network does not reorder
2380  *              packets. And it loses any connection to reality when reordering
2381  *              takes place. We use FACK by default until reordering
2382  *              is suspected on the path to this destination.
2383  *
2384  *              NewReno: when Recovery is entered, we assume that one segment
2385  *              is lost (classic Reno). While we are in Recovery and
2386  *              a partial ACK arrives, we assume that one more packet
2387  *              is lost (NewReno). This heuristics are the same in NewReno
2388  *              and SACK.
2389  *
2390  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2391  *  deflation etc. CWND is real congestion window, never inflated, changes
2392  *  only according to classic VJ rules.
2393  *
2394  * Really tricky (and requiring careful tuning) part of algorithm
2395  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2396  * The first determines the moment _when_ we should reduce CWND and,
2397  * hence, slow down forward transmission. In fact, it determines the moment
2398  * when we decide that hole is caused by loss, rather than by a reorder.
2399  *
2400  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2401  * holes, caused by lost packets.
2402  *
2403  * And the most logically complicated part of algorithm is undo
2404  * heuristics. We detect false retransmits due to both too early
2405  * fast retransmit (reordering) and underestimated RTO, analyzing
2406  * timestamps and D-SACKs. When we detect that some segments were
2407  * retransmitted by mistake and CWND reduction was wrong, we undo
2408  * window reduction and abort recovery phase. This logic is hidden
2409  * inside several functions named tcp_try_undo_<something>.
2410  */
2411
2412 /* This function decides, when we should leave Disordered state
2413  * and enter Recovery phase, reducing congestion window.
2414  *
2415  * Main question: may we further continue forward transmission
2416  * with the same cwnd?
2417  */
2418 static int tcp_time_to_recover(struct sock *sk)
2419 {
2420         struct tcp_sock *tp = tcp_sk(sk);
2421         __u32 packets_out;
2422
2423         /* Do not perform any recovery during F-RTO algorithm */
2424         if (tp->frto_counter)
2425                 return 0;
2426
2427         /* Trick#1: The loss is proven. */
2428         if (tp->lost_out)
2429                 return 1;
2430
2431         /* Not-A-Trick#2 : Classic rule... */
2432         if (tcp_dupack_heuristics(tp) > tp->reordering)
2433                 return 1;
2434
2435         /* Trick#3 : when we use RFC2988 timer restart, fast
2436          * retransmit can be triggered by timeout of queue head.
2437          */
2438         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2439                 return 1;
2440
2441         /* Trick#4: It is still not OK... But will it be useful to delay
2442          * recovery more?
2443          */
2444         packets_out = tp->packets_out;
2445         if (packets_out <= tp->reordering &&
2446             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2447             !tcp_may_send_now(sk)) {
2448                 /* We have nothing to send. This connection is limited
2449                  * either by receiver window or by application.
2450                  */
2451                 return 1;
2452         }
2453
2454         /* If a thin stream is detected, retransmit after first
2455          * received dupack. Employ only if SACK is supported in order
2456          * to avoid possible corner-case series of spurious retransmissions
2457          * Use only if there are no unsent data.
2458          */
2459         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2460             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2461             tcp_is_sack(tp) && !tcp_send_head(sk))
2462                 return 1;
2463
2464         return 0;
2465 }
2466
2467 /* New heuristics: it is possible only after we switched to restart timer
2468  * each time when something is ACKed. Hence, we can detect timed out packets
2469  * during fast retransmit without falling to slow start.
2470  *
2471  * Usefulness of this as is very questionable, since we should know which of
2472  * the segments is the next to timeout which is relatively expensive to find
2473  * in general case unless we add some data structure just for that. The
2474  * current approach certainly won't find the right one too often and when it
2475  * finally does find _something_ it usually marks large part of the window
2476  * right away (because a retransmission with a larger timestamp blocks the
2477  * loop from advancing). -ij
2478  */
2479 static void tcp_timeout_skbs(struct sock *sk)
2480 {
2481         struct tcp_sock *tp = tcp_sk(sk);
2482         struct sk_buff *skb;
2483
2484         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2485                 return;
2486
2487         skb = tp->scoreboard_skb_hint;
2488         if (tp->scoreboard_skb_hint == NULL)
2489                 skb = tcp_write_queue_head(sk);
2490
2491         tcp_for_write_queue_from(skb, sk) {
2492                 if (skb == tcp_send_head(sk))
2493                         break;
2494                 if (!tcp_skb_timedout(sk, skb))
2495                         break;
2496
2497                 tcp_skb_mark_lost(tp, skb);
2498         }
2499
2500         tp->scoreboard_skb_hint = skb;
2501
2502         tcp_verify_left_out(tp);
2503 }
2504
2505 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2506  * is against sacked "cnt", otherwise it's against facked "cnt"
2507  */
2508 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2509 {
2510         struct tcp_sock *tp = tcp_sk(sk);
2511         struct sk_buff *skb;
2512         int cnt, oldcnt;
2513         int err;
2514         unsigned int mss;
2515
2516         WARN_ON(packets > tp->packets_out);
2517         if (tp->lost_skb_hint) {
2518                 skb = tp->lost_skb_hint;
2519                 cnt = tp->lost_cnt_hint;
2520                 /* Head already handled? */
2521                 if (mark_head && skb != tcp_write_queue_head(sk))
2522                         return;
2523         } else {
2524                 skb = tcp_write_queue_head(sk);
2525                 cnt = 0;
2526         }
2527
2528         tcp_for_write_queue_from(skb, sk) {
2529                 if (skb == tcp_send_head(sk))
2530                         break;
2531                 /* TODO: do this better */
2532                 /* this is not the most efficient way to do this... */
2533                 tp->lost_skb_hint = skb;
2534                 tp->lost_cnt_hint = cnt;
2535
2536                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2537                         break;
2538
2539                 oldcnt = cnt;
2540                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2541                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2542                         cnt += tcp_skb_pcount(skb);
2543
2544                 if (cnt > packets) {
2545                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2546                             (oldcnt >= packets))
2547                                 break;
2548
2549                         mss = skb_shinfo(skb)->gso_size;
2550                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2551                         if (err < 0)
2552                                 break;
2553                         cnt = packets;
2554                 }
2555
2556                 tcp_skb_mark_lost(tp, skb);
2557
2558                 if (mark_head)
2559                         break;
2560         }
2561         tcp_verify_left_out(tp);
2562 }
2563
2564 /* Account newly detected lost packet(s) */
2565
2566 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2567 {
2568         struct tcp_sock *tp = tcp_sk(sk);
2569
2570         if (tcp_is_reno(tp)) {
2571                 tcp_mark_head_lost(sk, 1, 1);
2572         } else if (tcp_is_fack(tp)) {
2573                 int lost = tp->fackets_out - tp->reordering;
2574                 if (lost <= 0)
2575                         lost = 1;
2576                 tcp_mark_head_lost(sk, lost, 0);
2577         } else {
2578                 int sacked_upto = tp->sacked_out - tp->reordering;
2579                 if (sacked_upto >= 0)
2580                         tcp_mark_head_lost(sk, sacked_upto, 0);
2581                 else if (fast_rexmit)
2582                         tcp_mark_head_lost(sk, 1, 1);
2583         }
2584
2585         tcp_timeout_skbs(sk);
2586 }
2587
2588 /* CWND moderation, preventing bursts due to too big ACKs
2589  * in dubious situations.
2590  */
2591 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2592 {
2593         tp->snd_cwnd = min(tp->snd_cwnd,
2594                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2595         tp->snd_cwnd_stamp = tcp_time_stamp;
2596 }
2597
2598 /* Lower bound on congestion window is slow start threshold
2599  * unless congestion avoidance choice decides to overide it.
2600  */
2601 static inline u32 tcp_cwnd_min(const struct sock *sk)
2602 {
2603         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2604
2605         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2606 }
2607
2608 /* Decrease cwnd each second ack. */
2609 static void tcp_cwnd_down(struct sock *sk, int flag)
2610 {
2611         struct tcp_sock *tp = tcp_sk(sk);
2612         int decr = tp->snd_cwnd_cnt + 1;
2613
2614         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2615             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2616                 tp->snd_cwnd_cnt = decr & 1;
2617                 decr >>= 1;
2618
2619                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2620                         tp->snd_cwnd -= decr;
2621
2622                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2623                 tp->snd_cwnd_stamp = tcp_time_stamp;
2624         }
2625 }
2626
2627 /* Nothing was retransmitted or returned timestamp is less
2628  * than timestamp of the first retransmission.
2629  */
2630 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2631 {
2632         return !tp->retrans_stamp ||
2633                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2634                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2635 }
2636
2637 /* Undo procedures. */
2638
2639 #if FASTRETRANS_DEBUG > 1
2640 static void DBGUNDO(struct sock *sk, const char *msg)
2641 {
2642         struct tcp_sock *tp = tcp_sk(sk);
2643         struct inet_sock *inet = inet_sk(sk);
2644
2645         if (sk->sk_family == AF_INET) {
2646                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2647                        msg,
2648                        &inet->inet_daddr, ntohs(inet->inet_dport),
2649                        tp->snd_cwnd, tcp_left_out(tp),
2650                        tp->snd_ssthresh, tp->prior_ssthresh,
2651                        tp->packets_out);
2652         }
2653 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2654         else if (sk->sk_family == AF_INET6) {
2655                 struct ipv6_pinfo *np = inet6_sk(sk);
2656                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2657                        msg,
2658                        &np->daddr, ntohs(inet->inet_dport),
2659                        tp->snd_cwnd, tcp_left_out(tp),
2660                        tp->snd_ssthresh, tp->prior_ssthresh,
2661                        tp->packets_out);
2662         }
2663 #endif
2664 }
2665 #else
2666 #define DBGUNDO(x...) do { } while (0)
2667 #endif
2668
2669 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2670 {
2671         struct tcp_sock *tp = tcp_sk(sk);
2672
2673         if (tp->prior_ssthresh) {
2674                 const struct inet_connection_sock *icsk = inet_csk(sk);
2675
2676                 if (icsk->icsk_ca_ops->undo_cwnd)
2677                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2678                 else
2679                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2680
2681                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2682                         tp->snd_ssthresh = tp->prior_ssthresh;
2683                         TCP_ECN_withdraw_cwr(tp);
2684                 }
2685         } else {
2686                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2687         }
2688         tp->snd_cwnd_stamp = tcp_time_stamp;
2689 }
2690
2691 static inline int tcp_may_undo(struct tcp_sock *tp)
2692 {
2693         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2694 }
2695
2696 /* People celebrate: "We love our President!" */
2697 static int tcp_try_undo_recovery(struct sock *sk)
2698 {
2699         struct tcp_sock *tp = tcp_sk(sk);
2700
2701         if (tcp_may_undo(tp)) {
2702                 int mib_idx;
2703
2704                 /* Happy end! We did not retransmit anything
2705                  * or our original transmission succeeded.
2706                  */
2707                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2708                 tcp_undo_cwr(sk, true);
2709                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2710                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2711                 else
2712                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2713
2714                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2715                 tp->undo_marker = 0;
2716         }
2717         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2718                 /* Hold old state until something *above* high_seq
2719                  * is ACKed. For Reno it is MUST to prevent false
2720                  * fast retransmits (RFC2582). SACK TCP is safe. */
2721                 tcp_moderate_cwnd(tp);
2722                 return 1;
2723         }
2724         tcp_set_ca_state(sk, TCP_CA_Open);
2725         return 0;
2726 }
2727
2728 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2729 static void tcp_try_undo_dsack(struct sock *sk)
2730 {
2731         struct tcp_sock *tp = tcp_sk(sk);
2732
2733         if (tp->undo_marker && !tp->undo_retrans) {
2734                 DBGUNDO(sk, "D-SACK");
2735                 tcp_undo_cwr(sk, true);
2736                 tp->undo_marker = 0;
2737                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2738         }
2739 }
2740
2741 /* We can clear retrans_stamp when there are no retransmissions in the
2742  * window. It would seem that it is trivially available for us in
2743  * tp->retrans_out, however, that kind of assumptions doesn't consider
2744  * what will happen if errors occur when sending retransmission for the
2745  * second time. ...It could the that such segment has only
2746  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2747  * the head skb is enough except for some reneging corner cases that
2748  * are not worth the effort.
2749  *
2750  * Main reason for all this complexity is the fact that connection dying
2751  * time now depends on the validity of the retrans_stamp, in particular,
2752  * that successive retransmissions of a segment must not advance
2753  * retrans_stamp under any conditions.
2754  */
2755 static int tcp_any_retrans_done(struct sock *sk)
2756 {
2757         struct tcp_sock *tp = tcp_sk(sk);
2758         struct sk_buff *skb;
2759
2760         if (tp->retrans_out)
2761                 return 1;
2762
2763         skb = tcp_write_queue_head(sk);
2764         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2765                 return 1;
2766
2767         return 0;
2768 }
2769
2770 /* Undo during fast recovery after partial ACK. */
2771
2772 static int tcp_try_undo_partial(struct sock *sk, int acked)
2773 {
2774         struct tcp_sock *tp = tcp_sk(sk);
2775         /* Partial ACK arrived. Force Hoe's retransmit. */
2776         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2777
2778         if (tcp_may_undo(tp)) {
2779                 /* Plain luck! Hole if filled with delayed
2780                  * packet, rather than with a retransmit.
2781                  */
2782                 if (!tcp_any_retrans_done(sk))
2783                         tp->retrans_stamp = 0;
2784
2785                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2786
2787                 DBGUNDO(sk, "Hoe");
2788                 tcp_undo_cwr(sk, false);
2789                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2790
2791                 /* So... Do not make Hoe's retransmit yet.
2792                  * If the first packet was delayed, the rest
2793                  * ones are most probably delayed as well.
2794                  */
2795                 failed = 0;
2796         }
2797         return failed;
2798 }
2799
2800 /* Undo during loss recovery after partial ACK. */
2801 static int tcp_try_undo_loss(struct sock *sk)
2802 {
2803         struct tcp_sock *tp = tcp_sk(sk);
2804
2805         if (tcp_may_undo(tp)) {
2806                 struct sk_buff *skb;
2807                 tcp_for_write_queue(skb, sk) {
2808                         if (skb == tcp_send_head(sk))
2809                                 break;
2810                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2811                 }
2812
2813                 tcp_clear_all_retrans_hints(tp);
2814
2815                 DBGUNDO(sk, "partial loss");
2816                 tp->lost_out = 0;
2817                 tcp_undo_cwr(sk, true);
2818                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2819                 inet_csk(sk)->icsk_retransmits = 0;
2820                 tp->undo_marker = 0;
2821                 if (tcp_is_sack(tp))
2822                         tcp_set_ca_state(sk, TCP_CA_Open);
2823                 return 1;
2824         }
2825         return 0;
2826 }
2827
2828 static inline void tcp_complete_cwr(struct sock *sk)
2829 {
2830         struct tcp_sock *tp = tcp_sk(sk);
2831         /* Do not moderate cwnd if it's already undone in cwr or recovery */
2832         if (tp->undo_marker && tp->snd_cwnd > tp->snd_ssthresh) {
2833                 tp->snd_cwnd = tp->snd_ssthresh;
2834                 tp->snd_cwnd_stamp = tcp_time_stamp;
2835         }
2836         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2837 }
2838
2839 static void tcp_try_keep_open(struct sock *sk)
2840 {
2841         struct tcp_sock *tp = tcp_sk(sk);
2842         int state = TCP_CA_Open;
2843
2844         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2845                 state = TCP_CA_Disorder;
2846
2847         if (inet_csk(sk)->icsk_ca_state != state) {
2848                 tcp_set_ca_state(sk, state);
2849                 tp->high_seq = tp->snd_nxt;
2850         }
2851 }
2852
2853 static void tcp_try_to_open(struct sock *sk, int flag)
2854 {
2855         struct tcp_sock *tp = tcp_sk(sk);
2856
2857         tcp_verify_left_out(tp);
2858
2859         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2860                 tp->retrans_stamp = 0;
2861
2862         if (flag & FLAG_ECE)
2863                 tcp_enter_cwr(sk, 1);
2864
2865         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2866                 tcp_try_keep_open(sk);
2867                 tcp_moderate_cwnd(tp);
2868         } else {
2869                 tcp_cwnd_down(sk, flag);
2870         }
2871 }
2872
2873 static void tcp_mtup_probe_failed(struct sock *sk)
2874 {
2875         struct inet_connection_sock *icsk = inet_csk(sk);
2876
2877         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2878         icsk->icsk_mtup.probe_size = 0;
2879 }
2880
2881 static void tcp_mtup_probe_success(struct sock *sk)
2882 {
2883         struct tcp_sock *tp = tcp_sk(sk);
2884         struct inet_connection_sock *icsk = inet_csk(sk);
2885
2886         /* FIXME: breaks with very large cwnd */
2887         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2888         tp->snd_cwnd = tp->snd_cwnd *
2889                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2890                        icsk->icsk_mtup.probe_size;
2891         tp->snd_cwnd_cnt = 0;
2892         tp->snd_cwnd_stamp = tcp_time_stamp;
2893         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2894
2895         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2896         icsk->icsk_mtup.probe_size = 0;
2897         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2898 }
2899
2900 /* Do a simple retransmit without using the backoff mechanisms in
2901  * tcp_timer. This is used for path mtu discovery.
2902  * The socket is already locked here.
2903  */
2904 void tcp_simple_retransmit(struct sock *sk)
2905 {
2906         const struct inet_connection_sock *icsk = inet_csk(sk);
2907         struct tcp_sock *tp = tcp_sk(sk);
2908         struct sk_buff *skb;
2909         unsigned int mss = tcp_current_mss(sk);
2910         u32 prior_lost = tp->lost_out;
2911
2912         tcp_for_write_queue(skb, sk) {
2913                 if (skb == tcp_send_head(sk))
2914                         break;
2915                 if (tcp_skb_seglen(skb) > mss &&
2916                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2917                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2918                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2919                                 tp->retrans_out -= tcp_skb_pcount(skb);
2920                         }
2921                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2922                 }
2923         }
2924
2925         tcp_clear_retrans_hints_partial(tp);
2926
2927         if (prior_lost == tp->lost_out)
2928                 return;
2929
2930         if (tcp_is_reno(tp))
2931                 tcp_limit_reno_sacked(tp);
2932
2933         tcp_verify_left_out(tp);
2934
2935         /* Don't muck with the congestion window here.
2936          * Reason is that we do not increase amount of _data_
2937          * in network, but units changed and effective
2938          * cwnd/ssthresh really reduced now.
2939          */
2940         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2941                 tp->high_seq = tp->snd_nxt;
2942                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2943                 tp->prior_ssthresh = 0;
2944                 tp->undo_marker = 0;
2945                 tcp_set_ca_state(sk, TCP_CA_Loss);
2946         }
2947         tcp_xmit_retransmit_queue(sk);
2948 }
2949 EXPORT_SYMBOL(tcp_simple_retransmit);
2950
2951 /* Process an event, which can update packets-in-flight not trivially.
2952  * Main goal of this function is to calculate new estimate for left_out,
2953  * taking into account both packets sitting in receiver's buffer and
2954  * packets lost by network.
2955  *
2956  * Besides that it does CWND reduction, when packet loss is detected
2957  * and changes state of machine.
2958  *
2959  * It does _not_ decide what to send, it is made in function
2960  * tcp_xmit_retransmit_queue().
2961  */
2962 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2963 {
2964         struct inet_connection_sock *icsk = inet_csk(sk);
2965         struct tcp_sock *tp = tcp_sk(sk);
2966         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2967         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2968                                     (tcp_fackets_out(tp) > tp->reordering));
2969         int fast_rexmit = 0, mib_idx;
2970
2971         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2972                 tp->sacked_out = 0;
2973         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2974                 tp->fackets_out = 0;
2975
2976         /* Now state machine starts.
2977          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2978         if (flag & FLAG_ECE)
2979                 tp->prior_ssthresh = 0;
2980
2981         /* B. In all the states check for reneging SACKs. */
2982         if (tcp_check_sack_reneging(sk, flag))
2983                 return;
2984
2985         /* C. Process data loss notification, provided it is valid. */
2986         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2987             before(tp->snd_una, tp->high_seq) &&
2988             icsk->icsk_ca_state != TCP_CA_Open &&
2989             tp->fackets_out > tp->reordering) {
2990                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2991                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2992         }
2993
2994         /* D. Check consistency of the current state. */
2995         tcp_verify_left_out(tp);
2996
2997         /* E. Check state exit conditions. State can be terminated
2998          *    when high_seq is ACKed. */
2999         if (icsk->icsk_ca_state == TCP_CA_Open) {
3000                 WARN_ON(tp->retrans_out != 0);
3001                 tp->retrans_stamp = 0;
3002         } else if (!before(tp->snd_una, tp->high_seq)) {
3003                 switch (icsk->icsk_ca_state) {
3004                 case TCP_CA_Loss:
3005                         icsk->icsk_retransmits = 0;
3006                         if (tcp_try_undo_recovery(sk))
3007                                 return;
3008                         break;
3009
3010                 case TCP_CA_CWR:
3011                         /* CWR is to be held something *above* high_seq
3012                          * is ACKed for CWR bit to reach receiver. */
3013                         if (tp->snd_una != tp->high_seq) {
3014                                 tcp_complete_cwr(sk);
3015                                 tcp_set_ca_state(sk, TCP_CA_Open);
3016                         }
3017                         break;
3018
3019                 case TCP_CA_Disorder:
3020                         tcp_try_undo_dsack(sk);
3021                         if (!tp->undo_marker ||
3022                             /* For SACK case do not Open to allow to undo
3023                              * catching for all duplicate ACKs. */
3024                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3025                                 tp->undo_marker = 0;
3026                                 tcp_set_ca_state(sk, TCP_CA_Open);
3027                         }
3028                         break;
3029
3030                 case TCP_CA_Recovery:
3031                         if (tcp_is_reno(tp))
3032                                 tcp_reset_reno_sack(tp);
3033                         if (tcp_try_undo_recovery(sk))
3034                                 return;
3035                         tcp_complete_cwr(sk);
3036                         break;
3037                 }
3038         }
3039
3040         /* F. Process state. */
3041         switch (icsk->icsk_ca_state) {
3042         case TCP_CA_Recovery:
3043                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3044                         if (tcp_is_reno(tp) && is_dupack)
3045                                 tcp_add_reno_sack(sk);
3046                 } else
3047                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3048                 break;
3049         case TCP_CA_Loss:
3050                 if (flag & FLAG_DATA_ACKED)
3051                         icsk->icsk_retransmits = 0;
3052                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3053                         tcp_reset_reno_sack(tp);
3054                 if (!tcp_try_undo_loss(sk)) {
3055                         tcp_moderate_cwnd(tp);
3056                         tcp_xmit_retransmit_queue(sk);
3057                         return;
3058                 }
3059                 if (icsk->icsk_ca_state != TCP_CA_Open)
3060                         return;
3061                 /* Loss is undone; fall through to processing in Open state. */
3062         default:
3063                 if (tcp_is_reno(tp)) {
3064                         if (flag & FLAG_SND_UNA_ADVANCED)
3065                                 tcp_reset_reno_sack(tp);
3066                         if (is_dupack)
3067                                 tcp_add_reno_sack(sk);
3068                 }
3069
3070                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3071                         tcp_try_undo_dsack(sk);
3072
3073                 if (!tcp_time_to_recover(sk)) {
3074                         tcp_try_to_open(sk, flag);
3075                         return;
3076                 }
3077
3078                 /* MTU probe failure: don't reduce cwnd */
3079                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3080                     icsk->icsk_mtup.probe_size &&
3081                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3082                         tcp_mtup_probe_failed(sk);
3083                         /* Restores the reduction we did in tcp_mtup_probe() */
3084                         tp->snd_cwnd++;
3085                         tcp_simple_retransmit(sk);
3086                         return;
3087                 }
3088
3089                 /* Otherwise enter Recovery state */
3090
3091                 if (tcp_is_reno(tp))
3092                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3093                 else
3094                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3095
3096                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3097
3098                 tp->high_seq = tp->snd_nxt;
3099                 tp->prior_ssthresh = 0;
3100                 tp->undo_marker = tp->snd_una;
3101                 tp->undo_retrans = tp->retrans_out;
3102
3103                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3104                         if (!(flag & FLAG_ECE))
3105                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3106                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3107                         TCP_ECN_queue_cwr(tp);
3108                 }
3109
3110                 tp->bytes_acked = 0;
3111                 tp->snd_cwnd_cnt = 0;
3112                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3113                 fast_rexmit = 1;
3114         }
3115
3116         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3117                 tcp_update_scoreboard(sk, fast_rexmit);
3118         tcp_cwnd_down(sk, flag);
3119         tcp_xmit_retransmit_queue(sk);
3120 }
3121
3122 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3123 {
3124         tcp_rtt_estimator(sk, seq_rtt);
3125         tcp_set_rto(sk);
3126         inet_csk(sk)->icsk_backoff = 0;
3127 }
3128 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3129
3130 /* Read draft-ietf-tcplw-high-performance before mucking
3131  * with this code. (Supersedes RFC1323)
3132  */
3133 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3134 {
3135         /* RTTM Rule: A TSecr value received in a segment is used to
3136          * update the averaged RTT measurement only if the segment
3137          * acknowledges some new data, i.e., only if it advances the
3138          * left edge of the send window.
3139          *
3140          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3141          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3142          *
3143          * Changed: reset backoff as soon as we see the first valid sample.
3144          * If we do not, we get strongly overestimated rto. With timestamps
3145          * samples are accepted even from very old segments: f.e., when rtt=1
3146          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3147          * answer arrives rto becomes 120 seconds! If at least one of segments
3148          * in window is lost... Voila.                          --ANK (010210)
3149          */
3150         struct tcp_sock *tp = tcp_sk(sk);
3151
3152         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3153 }
3154
3155 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3156 {
3157         /* We don't have a timestamp. Can only use
3158          * packets that are not retransmitted to determine
3159          * rtt estimates. Also, we must not reset the
3160          * backoff for rto until we get a non-retransmitted
3161          * packet. This allows us to deal with a situation
3162          * where the network delay has increased suddenly.
3163          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3164          */
3165
3166         if (flag & FLAG_RETRANS_DATA_ACKED)
3167                 return;
3168
3169         tcp_valid_rtt_meas(sk, seq_rtt);
3170 }
3171
3172 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3173                                       const s32 seq_rtt)
3174 {
3175         const struct tcp_sock *tp = tcp_sk(sk);
3176         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3177         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3178                 tcp_ack_saw_tstamp(sk, flag);
3179         else if (seq_rtt >= 0)
3180                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3181 }
3182
3183 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3184 {
3185         const struct inet_connection_sock *icsk = inet_csk(sk);
3186         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3187         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3188 }
3189
3190 /* Restart timer after forward progress on connection.
3191  * RFC2988 recommends to restart timer to now+rto.
3192  */
3193 static void tcp_rearm_rto(struct sock *sk)
3194 {
3195         struct tcp_sock *tp = tcp_sk(sk);
3196
3197         if (!tp->packets_out) {
3198                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3199         } else {
3200                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3201                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3202         }
3203 }
3204
3205 /* If we get here, the whole TSO packet has not been acked. */
3206 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3207 {
3208         struct tcp_sock *tp = tcp_sk(sk);
3209         u32 packets_acked;
3210
3211         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3212
3213         packets_acked = tcp_skb_pcount(skb);
3214         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3215                 return 0;
3216         packets_acked -= tcp_skb_pcount(skb);
3217
3218         if (packets_acked) {
3219                 BUG_ON(tcp_skb_pcount(skb) == 0);
3220                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3221         }
3222
3223         return packets_acked;
3224 }
3225
3226 /* Remove acknowledged frames from the retransmission queue. If our packet
3227  * is before the ack sequence we can discard it as it's confirmed to have
3228  * arrived at the other end.
3229  */
3230 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3231                                u32 prior_snd_una)
3232 {
3233         struct tcp_sock *tp = tcp_sk(sk);
3234         const struct inet_connection_sock *icsk = inet_csk(sk);
3235         struct sk_buff *skb;
3236         u32 now = tcp_time_stamp;
3237         int fully_acked = 1;
3238         int flag = 0;
3239         u32 pkts_acked = 0;
3240         u32 reord = tp->packets_out;
3241         u32 prior_sacked = tp->sacked_out;
3242         s32 seq_rtt = -1;
3243         s32 ca_seq_rtt = -1;
3244         ktime_t last_ackt = net_invalid_timestamp();
3245
3246         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3247                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3248                 u32 acked_pcount;
3249                 u8 sacked = scb->sacked;
3250
3251                 /* Determine how many packets and what bytes were acked, tso and else */
3252                 if (after(scb->end_seq, tp->snd_una)) {
3253                         if (tcp_skb_pcount(skb) == 1 ||
3254                             !after(tp->snd_una, scb->seq))
3255                                 break;
3256
3257                         acked_pcount = tcp_tso_acked(sk, skb);
3258                         if (!acked_pcount)
3259                                 break;
3260
3261                         fully_acked = 0;
3262                 } else {
3263                         acked_pcount = tcp_skb_pcount(skb);
3264                 }
3265
3266                 if (sacked & TCPCB_RETRANS) {
3267                         if (sacked & TCPCB_SACKED_RETRANS)
3268                                 tp->retrans_out -= acked_pcount;
3269                         flag |= FLAG_RETRANS_DATA_ACKED;
3270                         ca_seq_rtt = -1;
3271                         seq_rtt = -1;
3272                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3273                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3274                 } else {
3275                         ca_seq_rtt = now - scb->when;
3276                         last_ackt = skb->tstamp;
3277                         if (seq_rtt < 0) {
3278                                 seq_rtt = ca_seq_rtt;
3279                         }
3280                         if (!(sacked & TCPCB_SACKED_ACKED))
3281                                 reord = min(pkts_acked, reord);
3282                 }
3283
3284                 if (sacked & TCPCB_SACKED_ACKED)
3285                         tp->sacked_out -= acked_pcount;
3286                 if (sacked & TCPCB_LOST)
3287                         tp->lost_out -= acked_pcount;
3288
3289                 tp->packets_out -= acked_pcount;
3290                 pkts_acked += acked_pcount;
3291
3292                 /* Initial outgoing SYN's get put onto the write_queue
3293                  * just like anything else we transmit.  It is not
3294                  * true data, and if we misinform our callers that
3295                  * this ACK acks real data, we will erroneously exit
3296                  * connection startup slow start one packet too
3297                  * quickly.  This is severely frowned upon behavior.
3298                  */
3299                 if (!(scb->flags & TCPHDR_SYN)) {
3300                         flag |= FLAG_DATA_ACKED;
3301                 } else {
3302                         flag |= FLAG_SYN_ACKED;
3303                         tp->retrans_stamp = 0;
3304                 }
3305
3306                 if (!fully_acked)
3307                         break;
3308
3309                 tcp_unlink_write_queue(skb, sk);
3310                 sk_wmem_free_skb(sk, skb);
3311                 tp->scoreboard_skb_hint = NULL;
3312                 if (skb == tp->retransmit_skb_hint)
3313                         tp->retransmit_skb_hint = NULL;
3314                 if (skb == tp->lost_skb_hint)
3315                         tp->lost_skb_hint = NULL;
3316         }
3317
3318         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3319                 tp->snd_up = tp->snd_una;
3320
3321         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3322                 flag |= FLAG_SACK_RENEGING;
3323
3324         if (flag & FLAG_ACKED) {
3325                 const struct tcp_congestion_ops *ca_ops
3326                         = inet_csk(sk)->icsk_ca_ops;
3327
3328                 if (unlikely(icsk->icsk_mtup.probe_size &&
3329                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3330                         tcp_mtup_probe_success(sk);
3331                 }
3332
3333                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3334                 tcp_rearm_rto(sk);
3335
3336                 if (tcp_is_reno(tp)) {
3337                         tcp_remove_reno_sacks(sk, pkts_acked);
3338                 } else {
3339                         int delta;
3340
3341                         /* Non-retransmitted hole got filled? That's reordering */
3342                         if (reord < prior_fackets)
3343                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3344
3345                         delta = tcp_is_fack(tp) ? pkts_acked :
3346                                                   prior_sacked - tp->sacked_out;
3347                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3348                 }
3349
3350                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3351
3352                 if (ca_ops->pkts_acked) {
3353                         s32 rtt_us = -1;
3354
3355                         /* Is the ACK triggering packet unambiguous? */
3356                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3357                                 /* High resolution needed and available? */
3358                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3359                                     !ktime_equal(last_ackt,
3360                                                  net_invalid_timestamp()))
3361                                         rtt_us = ktime_us_delta(ktime_get_real(),
3362                                                                 last_ackt);
3363                                 else if (ca_seq_rtt >= 0)
3364                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3365                         }
3366
3367                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3368                 }
3369         }
3370
3371 #if FASTRETRANS_DEBUG > 0
3372         WARN_ON((int)tp->sacked_out < 0);
3373         WARN_ON((int)tp->lost_out < 0);
3374         WARN_ON((int)tp->retrans_out < 0);
3375         if (!tp->packets_out && tcp_is_sack(tp)) {
3376                 icsk = inet_csk(sk);
3377                 if (tp->lost_out) {
3378                         printk(KERN_DEBUG "Leak l=%u %d\n",
3379                                tp->lost_out, icsk->icsk_ca_state);
3380                         tp->lost_out = 0;
3381                 }
3382                 if (tp->sacked_out) {
3383                         printk(KERN_DEBUG "Leak s=%u %d\n",
3384                                tp->sacked_out, icsk->icsk_ca_state);
3385                         tp->sacked_out = 0;
3386                 }
3387                 if (tp->retrans_out) {
3388                         printk(KERN_DEBUG "Leak r=%u %d\n",
3389                                tp->retrans_out, icsk->icsk_ca_state);
3390                         tp->retrans_out = 0;
3391                 }
3392         }
3393 #endif
3394         return flag;
3395 }
3396
3397 static void tcp_ack_probe(struct sock *sk)
3398 {
3399         const struct tcp_sock *tp = tcp_sk(sk);
3400         struct inet_connection_sock *icsk = inet_csk(sk);
3401
3402         /* Was it a usable window open? */
3403
3404         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3405                 icsk->icsk_backoff = 0;
3406                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3407                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3408                  * This function is not for random using!
3409                  */
3410         } else {
3411                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3412                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3413                                           TCP_RTO_MAX);
3414         }
3415 }
3416
3417 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3418 {
3419         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3420                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3421 }
3422
3423 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3424 {
3425         const struct tcp_sock *tp = tcp_sk(sk);
3426         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3427                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3428 }
3429
3430 /* Check that window update is acceptable.
3431  * The function assumes that snd_una<=ack<=snd_next.
3432  */
3433 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3434                                         const u32 ack, const u32 ack_seq,
3435                                         const u32 nwin)
3436 {
3437         return  after(ack, tp->snd_una) ||
3438                 after(ack_seq, tp->snd_wl1) ||
3439                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3440 }
3441
3442 /* Update our send window.
3443  *
3444  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3445  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3446  */
3447 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3448                                  u32 ack_seq)
3449 {
3450         struct tcp_sock *tp = tcp_sk(sk);
3451         int flag = 0;
3452         u32 nwin = ntohs(tcp_hdr(skb)->window);
3453
3454         if (likely(!tcp_hdr(skb)->syn))
3455                 nwin <<= tp->rx_opt.snd_wscale;
3456
3457         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3458                 flag |= FLAG_WIN_UPDATE;
3459                 tcp_update_wl(tp, ack_seq);
3460
3461                 if (tp->snd_wnd != nwin) {
3462                         tp->snd_wnd = nwin;
3463
3464                         /* Note, it is the only place, where
3465                          * fast path is recovered for sending TCP.
3466                          */
3467                         tp->pred_flags = 0;
3468                         tcp_fast_path_check(sk);
3469
3470                         if (nwin > tp->max_window) {
3471                                 tp->max_window = nwin;
3472                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3473                         }
3474                 }
3475         }
3476
3477         tp->snd_una = ack;
3478
3479         return flag;
3480 }
3481
3482 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3483  * continue in congestion avoidance.
3484  */
3485 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3486 {
3487         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3488         tp->snd_cwnd_cnt = 0;
3489         tp->bytes_acked = 0;
3490         TCP_ECN_queue_cwr(tp);
3491         tcp_moderate_cwnd(tp);
3492 }
3493
3494 /* A conservative spurious RTO response algorithm: reduce cwnd using
3495  * rate halving and continue in congestion avoidance.
3496  */
3497 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3498 {
3499         tcp_enter_cwr(sk, 0);
3500 }
3501
3502 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3503 {
3504         if (flag & FLAG_ECE)
3505                 tcp_ratehalving_spur_to_response(sk);
3506         else
3507                 tcp_undo_cwr(sk, true);
3508 }
3509
3510 /* F-RTO spurious RTO detection algorithm (RFC4138)
3511  *
3512  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3513  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3514  * window (but not to or beyond highest sequence sent before RTO):
3515  *   On First ACK,  send two new segments out.
3516  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3517  *                  algorithm is not part of the F-RTO detection algorithm
3518  *                  given in RFC4138 but can be selected separately).
3519  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3520  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3521  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3522  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3523  *
3524  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3525  * original window even after we transmit two new data segments.
3526  *
3527  * SACK version:
3528  *   on first step, wait until first cumulative ACK arrives, then move to
3529  *   the second step. In second step, the next ACK decides.
3530  *
3531  * F-RTO is implemented (mainly) in four functions:
3532  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3533  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3534  *     called when tcp_use_frto() showed green light
3535  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3536  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3537  *     to prove that the RTO is indeed spurious. It transfers the control
3538  *     from F-RTO to the conventional RTO recovery
3539  */
3540 static int tcp_process_frto(struct sock *sk, int flag)
3541 {
3542         struct tcp_sock *tp = tcp_sk(sk);
3543
3544         tcp_verify_left_out(tp);
3545
3546         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3547         if (flag & FLAG_DATA_ACKED)
3548                 inet_csk(sk)->icsk_retransmits = 0;
3549
3550         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3551             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3552                 tp->undo_marker = 0;
3553
3554         if (!before(tp->snd_una, tp->frto_highmark)) {
3555                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3556                 return 1;
3557         }
3558
3559         if (!tcp_is_sackfrto(tp)) {
3560                 /* RFC4138 shortcoming in step 2; should also have case c):
3561                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3562                  * data, winupdate
3563                  */
3564                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3565                         return 1;
3566
3567                 if (!(flag & FLAG_DATA_ACKED)) {
3568                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3569                                             flag);
3570                         return 1;
3571                 }
3572         } else {
3573                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3574                         /* Prevent sending of new data. */
3575                         tp->snd_cwnd = min(tp->snd_cwnd,
3576                                            tcp_packets_in_flight(tp));
3577                         return 1;
3578                 }
3579
3580                 if ((tp->frto_counter >= 2) &&
3581                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3582                      ((flag & FLAG_DATA_SACKED) &&
3583                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3584                         /* RFC4138 shortcoming (see comment above) */
3585                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3586                             (flag & FLAG_NOT_DUP))
3587                                 return 1;
3588
3589                         tcp_enter_frto_loss(sk, 3, flag);
3590                         return 1;
3591                 }
3592         }
3593
3594         if (tp->frto_counter == 1) {
3595                 /* tcp_may_send_now needs to see updated state */
3596                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3597                 tp->frto_counter = 2;
3598
3599                 if (!tcp_may_send_now(sk))
3600                         tcp_enter_frto_loss(sk, 2, flag);
3601
3602                 return 1;
3603         } else {
3604                 switch (sysctl_tcp_frto_response) {
3605                 case 2:
3606                         tcp_undo_spur_to_response(sk, flag);
3607                         break;
3608                 case 1:
3609                         tcp_conservative_spur_to_response(tp);
3610                         break;
3611                 default:
3612                         tcp_ratehalving_spur_to_response(sk);
3613                         break;
3614                 }
3615                 tp->frto_counter = 0;
3616                 tp->undo_marker = 0;
3617                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3618         }
3619         return 0;
3620 }
3621
3622 /* This routine deals with incoming acks, but not outgoing ones. */
3623 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3624 {
3625         struct inet_connection_sock *icsk = inet_csk(sk);
3626         struct tcp_sock *tp = tcp_sk(sk);
3627         u32 prior_snd_una = tp->snd_una;
3628         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3629         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3630         u32 prior_in_flight;
3631         u32 prior_fackets;
3632         int prior_packets;
3633         int frto_cwnd = 0;
3634
3635         /* If the ack is older than previous acks
3636          * then we can probably ignore it.
3637          */
3638         if (before(ack, prior_snd_una))
3639                 goto old_ack;
3640
3641         /* If the ack includes data we haven't sent yet, discard
3642          * this segment (RFC793 Section 3.9).
3643          */
3644         if (after(ack, tp->snd_nxt))
3645                 goto invalid_ack;
3646
3647         if (after(ack, prior_snd_una))
3648                 flag |= FLAG_SND_UNA_ADVANCED;
3649
3650         if (sysctl_tcp_abc) {
3651                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3652                         tp->bytes_acked += ack - prior_snd_una;
3653                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3654                         /* we assume just one segment left network */
3655                         tp->bytes_acked += min(ack - prior_snd_una,
3656                                                tp->mss_cache);
3657         }
3658
3659         prior_fackets = tp->fackets_out;
3660         prior_in_flight = tcp_packets_in_flight(tp);
3661
3662         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3663                 /* Window is constant, pure forward advance.
3664                  * No more checks are required.
3665                  * Note, we use the fact that SND.UNA>=SND.WL2.
3666                  */
3667                 tcp_update_wl(tp, ack_seq);
3668                 tp->snd_una = ack;
3669                 flag |= FLAG_WIN_UPDATE;
3670
3671                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3672
3673                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3674         } else {
3675                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3676                         flag |= FLAG_DATA;
3677                 else
3678                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3679
3680                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3681
3682                 if (TCP_SKB_CB(skb)->sacked)
3683                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3684
3685                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3686                         flag |= FLAG_ECE;
3687
3688                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3689         }
3690
3691         /* We passed data and got it acked, remove any soft error
3692          * log. Something worked...
3693          */
3694         sk->sk_err_soft = 0;
3695         icsk->icsk_probes_out = 0;
3696         tp->rcv_tstamp = tcp_time_stamp;
3697         prior_packets = tp->packets_out;
3698         if (!prior_packets)
3699                 goto no_queue;
3700
3701         /* See if we can take anything off of the retransmit queue. */
3702         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3703
3704         if (tp->frto_counter)
3705                 frto_cwnd = tcp_process_frto(sk, flag);
3706         /* Guarantee sacktag reordering detection against wrap-arounds */
3707         if (before(tp->frto_highmark, tp->snd_una))
3708                 tp->frto_highmark = 0;
3709
3710         if (tcp_ack_is_dubious(sk, flag)) {
3711                 /* Advance CWND, if state allows this. */
3712                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3713                     tcp_may_raise_cwnd(sk, flag))
3714                         tcp_cong_avoid(sk, ack, prior_in_flight);
3715                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3716                                       flag);
3717         } else {
3718                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3719                         tcp_cong_avoid(sk, ack, prior_in_flight);
3720         }
3721
3722         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3723                 dst_confirm(__sk_dst_get(sk));
3724
3725         return 1;
3726
3727 no_queue:
3728         /* If this ack opens up a zero window, clear backoff.  It was
3729          * being used to time the probes, and is probably far higher than
3730          * it needs to be for normal retransmission.
3731          */
3732         if (tcp_send_head(sk))
3733                 tcp_ack_probe(sk);
3734         return 1;
3735
3736 invalid_ack:
3737         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3738         return -1;
3739
3740 old_ack:
3741         if (TCP_SKB_CB(skb)->sacked) {
3742                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3743                 if (icsk->icsk_ca_state == TCP_CA_Open)
3744                         tcp_try_keep_open(sk);
3745         }
3746
3747         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3748         return 0;
3749 }
3750
3751 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3752  * But, this can also be called on packets in the established flow when
3753  * the fast version below fails.
3754  */
3755 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3756                        u8 **hvpp, int estab)
3757 {
3758         unsigned char *ptr;
3759         struct tcphdr *th = tcp_hdr(skb);
3760         int length = (th->doff * 4) - sizeof(struct tcphdr);
3761
3762         ptr = (unsigned char *)(th + 1);
3763         opt_rx->saw_tstamp = 0;
3764
3765         while (length > 0) {
3766                 int opcode = *ptr++;
3767                 int opsize;
3768
3769                 switch (opcode) {
3770                 case TCPOPT_EOL:
3771                         return;
3772                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3773                         length--;
3774                         continue;
3775                 default:
3776                         opsize = *ptr++;
3777                         if (opsize < 2) /* "silly options" */
3778                                 return;
3779                         if (opsize > length)
3780                                 return; /* don't parse partial options */
3781                         switch (opcode) {
3782                         case TCPOPT_MSS:
3783                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3784                                         u16 in_mss = get_unaligned_be16(ptr);
3785                                         if (in_mss) {
3786                                                 if (opt_rx->user_mss &&
3787                                                     opt_rx->user_mss < in_mss)
3788                                                         in_mss = opt_rx->user_mss;
3789                                                 opt_rx->mss_clamp = in_mss;
3790                                         }
3791                                 }
3792                                 break;
3793                         case TCPOPT_WINDOW:
3794                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3795                                     !estab && sysctl_tcp_window_scaling) {
3796                                         __u8 snd_wscale = *(__u8 *)ptr;
3797                                         opt_rx->wscale_ok = 1;
3798                                         if (snd_wscale > 14) {
3799                                                 if (net_ratelimit())
3800                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3801                                                                "scaling value %d >14 received.\n",
3802                                                                snd_wscale);
3803                                                 snd_wscale = 14;
3804                                         }
3805                                         opt_rx->snd_wscale = snd_wscale;
3806                                 }
3807                                 break;
3808                         case TCPOPT_TIMESTAMP:
3809                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3810                                     ((estab && opt_rx->tstamp_ok) ||
3811                                      (!estab && sysctl_tcp_timestamps))) {
3812                                         opt_rx->saw_tstamp = 1;
3813                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3814                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3815                                 }
3816                                 break;
3817                         case TCPOPT_SACK_PERM:
3818                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3819                                     !estab && sysctl_tcp_sack) {
3820                                         opt_rx->sack_ok = 1;
3821                                         tcp_sack_reset(opt_rx);
3822                                 }
3823                                 break;
3824
3825                         case TCPOPT_SACK:
3826                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3827                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3828                                    opt_rx->sack_ok) {
3829                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3830                                 }
3831                                 break;
3832 #ifdef CONFIG_TCP_MD5SIG
3833                         case TCPOPT_MD5SIG:
3834                                 /*
3835                                  * The MD5 Hash has already been
3836                                  * checked (see tcp_v{4,6}_do_rcv()).
3837                                  */
3838                                 break;
3839 #endif
3840                         case TCPOPT_COOKIE:
3841                                 /* This option is variable length.
3842                                  */
3843                                 switch (opsize) {
3844                                 case TCPOLEN_COOKIE_BASE:
3845                                         /* not yet implemented */
3846                                         break;
3847                                 case TCPOLEN_COOKIE_PAIR:
3848                                         /* not yet implemented */
3849                                         break;
3850                                 case TCPOLEN_COOKIE_MIN+0:
3851                                 case TCPOLEN_COOKIE_MIN+2:
3852                                 case TCPOLEN_COOKIE_MIN+4:
3853                                 case TCPOLEN_COOKIE_MIN+6:
3854                                 case TCPOLEN_COOKIE_MAX:
3855                                         /* 16-bit multiple */
3856                                         opt_rx->cookie_plus = opsize;
3857                                         *hvpp = ptr;
3858                                         break;
3859                                 default:
3860                                         /* ignore option */
3861                                         break;
3862                                 }
3863                                 break;
3864                         }
3865
3866                         ptr += opsize-2;
3867                         length -= opsize;
3868                 }
3869         }
3870 }
3871 EXPORT_SYMBOL(tcp_parse_options);
3872
3873 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3874 {
3875         __be32 *ptr = (__be32 *)(th + 1);
3876
3877         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3878                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3879                 tp->rx_opt.saw_tstamp = 1;
3880                 ++ptr;
3881                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3882                 ++ptr;
3883                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3884                 return 1;
3885         }
3886         return 0;
3887 }
3888
3889 /* Fast parse options. This hopes to only see timestamps.
3890  * If it is wrong it falls back on tcp_parse_options().
3891  */
3892 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3893                                   struct tcp_sock *tp, u8 **hvpp)
3894 {
3895         /* In the spirit of fast parsing, compare doff directly to constant
3896          * values.  Because equality is used, short doff can be ignored here.
3897          */
3898         if (th->doff == (sizeof(*th) / 4)) {
3899                 tp->rx_opt.saw_tstamp = 0;
3900                 return 0;
3901         } else if (tp->rx_opt.tstamp_ok &&
3902                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3903                 if (tcp_parse_aligned_timestamp(tp, th))
3904                         return 1;
3905         }
3906         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3907         return 1;
3908 }
3909
3910 #ifdef CONFIG_TCP_MD5SIG
3911 /*
3912  * Parse MD5 Signature option
3913  */
3914 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3915 {
3916         int length = (th->doff << 2) - sizeof (*th);
3917         u8 *ptr = (u8*)(th + 1);
3918
3919         /* If the TCP option is too short, we can short cut */
3920         if (length < TCPOLEN_MD5SIG)
3921                 return NULL;
3922
3923         while (length > 0) {
3924                 int opcode = *ptr++;
3925                 int opsize;
3926
3927                 switch(opcode) {
3928                 case TCPOPT_EOL:
3929                         return NULL;
3930                 case TCPOPT_NOP:
3931                         length--;
3932                         continue;
3933                 default:
3934                         opsize = *ptr++;
3935                         if (opsize < 2 || opsize > length)
3936                                 return NULL;
3937                         if (opcode == TCPOPT_MD5SIG)
3938                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3939                 }
3940                 ptr += opsize - 2;
3941                 length -= opsize;
3942         }
3943         return NULL;
3944 }
3945 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3946 #endif
3947
3948 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3949 {
3950         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3951         tp->rx_opt.ts_recent_stamp = get_seconds();
3952 }
3953
3954 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3955 {
3956         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3957                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3958                  * extra check below makes sure this can only happen
3959                  * for pure ACK frames.  -DaveM
3960                  *
3961                  * Not only, also it occurs for expired timestamps.
3962                  */
3963
3964                 if (tcp_paws_check(&tp->rx_opt, 0))
3965                         tcp_store_ts_recent(tp);
3966         }
3967 }
3968
3969 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3970  *
3971  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3972  * it can pass through stack. So, the following predicate verifies that
3973  * this segment is not used for anything but congestion avoidance or
3974  * fast retransmit. Moreover, we even are able to eliminate most of such
3975  * second order effects, if we apply some small "replay" window (~RTO)
3976  * to timestamp space.
3977  *
3978  * All these measures still do not guarantee that we reject wrapped ACKs
3979  * on networks with high bandwidth, when sequence space is recycled fastly,
3980  * but it guarantees that such events will be very rare and do not affect
3981  * connection seriously. This doesn't look nice, but alas, PAWS is really
3982  * buggy extension.
3983  *
3984  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3985  * states that events when retransmit arrives after original data are rare.
3986  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3987  * the biggest problem on large power networks even with minor reordering.
3988  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3989  * up to bandwidth of 18Gigabit/sec. 8) ]
3990  */
3991
3992 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3993 {
3994         struct tcp_sock *tp = tcp_sk(sk);
3995         struct tcphdr *th = tcp_hdr(skb);
3996         u32 seq = TCP_SKB_CB(skb)->seq;
3997         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3998
3999         return (/* 1. Pure ACK with correct sequence number. */
4000                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4001
4002                 /* 2. ... and duplicate ACK. */
4003                 ack == tp->snd_una &&
4004
4005                 /* 3. ... and does not update window. */
4006                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4007
4008                 /* 4. ... and sits in replay window. */
4009                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4010 }
4011
4012 static inline int tcp_paws_discard(const struct sock *sk,
4013                                    const struct sk_buff *skb)
4014 {
4015         const struct tcp_sock *tp = tcp_sk(sk);
4016
4017         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4018                !tcp_disordered_ack(sk, skb);
4019 }
4020
4021 /* Check segment sequence number for validity.
4022  *
4023  * Segment controls are considered valid, if the segment
4024  * fits to the window after truncation to the window. Acceptability
4025  * of data (and SYN, FIN, of course) is checked separately.
4026  * See tcp_data_queue(), for example.
4027  *
4028  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4029  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4030  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4031  * (borrowed from freebsd)
4032  */
4033
4034 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4035 {
4036         return  !before(end_seq, tp->rcv_wup) &&
4037                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4038 }
4039
4040 /* When we get a reset we do this. */
4041 static void tcp_reset(struct sock *sk)
4042 {
4043         /* We want the right error as BSD sees it (and indeed as we do). */
4044         switch (sk->sk_state) {
4045         case TCP_SYN_SENT:
4046                 sk->sk_err = ECONNREFUSED;
4047                 break;
4048         case TCP_CLOSE_WAIT:
4049                 sk->sk_err = EPIPE;
4050                 break;
4051         case TCP_CLOSE:
4052                 return;
4053         default:
4054                 sk->sk_err = ECONNRESET;
4055         }
4056         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4057         smp_wmb();
4058
4059         if (!sock_flag(sk, SOCK_DEAD))
4060                 sk->sk_error_report(sk);
4061
4062         tcp_done(sk);
4063 }
4064
4065 /*
4066  *      Process the FIN bit. This now behaves as it is supposed to work
4067  *      and the FIN takes effect when it is validly part of sequence
4068  *      space. Not before when we get holes.
4069  *
4070  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4071  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4072  *      TIME-WAIT)
4073  *
4074  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4075  *      close and we go into CLOSING (and later onto TIME-WAIT)
4076  *
4077  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4078  */
4079 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4080 {
4081         struct tcp_sock *tp = tcp_sk(sk);
4082
4083         inet_csk_schedule_ack(sk);
4084
4085         sk->sk_shutdown |= RCV_SHUTDOWN;
4086         sock_set_flag(sk, SOCK_DONE);
4087
4088         switch (sk->sk_state) {
4089         case TCP_SYN_RECV:
4090         case TCP_ESTABLISHED:
4091                 /* Move to CLOSE_WAIT */
4092                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4093                 inet_csk(sk)->icsk_ack.pingpong = 1;
4094                 break;
4095
4096         case TCP_CLOSE_WAIT:
4097         case TCP_CLOSING:
4098                 /* Received a retransmission of the FIN, do
4099                  * nothing.
4100                  */
4101                 break;
4102         case TCP_LAST_ACK:
4103                 /* RFC793: Remain in the LAST-ACK state. */
4104                 break;
4105
4106         case TCP_FIN_WAIT1:
4107                 /* This case occurs when a simultaneous close
4108                  * happens, we must ack the received FIN and
4109                  * enter the CLOSING state.
4110                  */
4111                 tcp_send_ack(sk);
4112                 tcp_set_state(sk, TCP_CLOSING);
4113                 break;
4114         case TCP_FIN_WAIT2:
4115                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4116                 tcp_send_ack(sk);
4117                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4118                 break;
4119         default:
4120                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4121                  * cases we should never reach this piece of code.
4122                  */
4123                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4124                        __func__, sk->sk_state);
4125                 break;
4126         }
4127
4128         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4129          * Probably, we should reset in this case. For now drop them.
4130          */
4131         __skb_queue_purge(&tp->out_of_order_queue);
4132         if (tcp_is_sack(tp))
4133                 tcp_sack_reset(&tp->rx_opt);
4134         sk_mem_reclaim(sk);
4135
4136         if (!sock_flag(sk, SOCK_DEAD)) {
4137                 sk->sk_state_change(sk);
4138
4139                 /* Do not send POLL_HUP for half duplex close. */
4140                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4141                     sk->sk_state == TCP_CLOSE)
4142                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4143                 else
4144                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4145         }
4146 }
4147
4148 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4149                                   u32 end_seq)
4150 {
4151         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4152                 if (before(seq, sp->start_seq))
4153                         sp->start_seq = seq;
4154                 if (after(end_seq, sp->end_seq))
4155                         sp->end_seq = end_seq;
4156                 return 1;
4157         }
4158         return 0;
4159 }
4160
4161 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4162 {
4163         struct tcp_sock *tp = tcp_sk(sk);
4164
4165         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4166                 int mib_idx;
4167
4168                 if (before(seq, tp->rcv_nxt))
4169                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4170                 else
4171                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4172
4173                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4174
4175                 tp->rx_opt.dsack = 1;
4176                 tp->duplicate_sack[0].start_seq = seq;
4177                 tp->duplicate_sack[0].end_seq = end_seq;
4178         }
4179 }
4180
4181 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4182 {
4183         struct tcp_sock *tp = tcp_sk(sk);
4184
4185         if (!tp->rx_opt.dsack)
4186                 tcp_dsack_set(sk, seq, end_seq);
4187         else
4188                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4189 }
4190
4191 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4192 {
4193         struct tcp_sock *tp = tcp_sk(sk);
4194
4195         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4196             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4197                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4198                 tcp_enter_quickack_mode(sk);
4199
4200                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4201                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4202
4203                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4204                                 end_seq = tp->rcv_nxt;
4205                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4206                 }
4207         }
4208
4209         tcp_send_ack(sk);
4210 }
4211
4212 /* These routines update the SACK block as out-of-order packets arrive or
4213  * in-order packets close up the sequence space.
4214  */
4215 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4216 {
4217         int this_sack;
4218         struct tcp_sack_block *sp = &tp->selective_acks[0];
4219         struct tcp_sack_block *swalk = sp + 1;
4220
4221         /* See if the recent change to the first SACK eats into
4222          * or hits the sequence space of other SACK blocks, if so coalesce.
4223          */
4224         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4225                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4226                         int i;
4227
4228                         /* Zap SWALK, by moving every further SACK up by one slot.
4229                          * Decrease num_sacks.
4230                          */
4231                         tp->rx_opt.num_sacks--;
4232                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4233                                 sp[i] = sp[i + 1];
4234                         continue;
4235                 }
4236                 this_sack++, swalk++;
4237         }
4238 }
4239
4240 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4241 {
4242         struct tcp_sock *tp = tcp_sk(sk);
4243         struct tcp_sack_block *sp = &tp->selective_acks[0];
4244         int cur_sacks = tp->rx_opt.num_sacks;
4245         int this_sack;
4246
4247         if (!cur_sacks)
4248                 goto new_sack;
4249
4250         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4251                 if (tcp_sack_extend(sp, seq, end_seq)) {
4252                         /* Rotate this_sack to the first one. */
4253                         for (; this_sack > 0; this_sack--, sp--)
4254                                 swap(*sp, *(sp - 1));
4255                         if (cur_sacks > 1)
4256                                 tcp_sack_maybe_coalesce(tp);
4257                         return;
4258                 }
4259         }
4260
4261         /* Could not find an adjacent existing SACK, build a new one,
4262          * put it at the front, and shift everyone else down.  We
4263          * always know there is at least one SACK present already here.
4264          *
4265          * If the sack array is full, forget about the last one.
4266          */
4267         if (this_sack >= TCP_NUM_SACKS) {
4268                 this_sack--;
4269                 tp->rx_opt.num_sacks--;
4270                 sp--;
4271         }
4272         for (; this_sack > 0; this_sack--, sp--)
4273                 *sp = *(sp - 1);
4274
4275 new_sack:
4276         /* Build the new head SACK, and we're done. */
4277         sp->start_seq = seq;
4278         sp->end_seq = end_seq;
4279         tp->rx_opt.num_sacks++;
4280 }
4281
4282 /* RCV.NXT advances, some SACKs should be eaten. */
4283
4284 static void tcp_sack_remove(struct tcp_sock *tp)
4285 {
4286         struct tcp_sack_block *sp = &tp->selective_acks[0];
4287         int num_sacks = tp->rx_opt.num_sacks;
4288         int this_sack;
4289
4290         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4291         if (skb_queue_empty(&tp->out_of_order_queue)) {
4292                 tp->rx_opt.num_sacks = 0;
4293                 return;
4294         }
4295
4296         for (this_sack = 0; this_sack < num_sacks;) {
4297                 /* Check if the start of the sack is covered by RCV.NXT. */
4298                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4299                         int i;
4300
4301                         /* RCV.NXT must cover all the block! */
4302                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4303
4304                         /* Zap this SACK, by moving forward any other SACKS. */
4305                         for (i=this_sack+1; i < num_sacks; i++)
4306                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4307                         num_sacks--;
4308                         continue;
4309                 }
4310                 this_sack++;
4311                 sp++;
4312         }
4313         tp->rx_opt.num_sacks = num_sacks;
4314 }
4315
4316 /* This one checks to see if we can put data from the
4317  * out_of_order queue into the receive_queue.
4318  */
4319 static void tcp_ofo_queue(struct sock *sk)
4320 {
4321         struct tcp_sock *tp = tcp_sk(sk);
4322         __u32 dsack_high = tp->rcv_nxt;
4323         struct sk_buff *skb;
4324
4325         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4326                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4327                         break;
4328
4329                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4330                         __u32 dsack = dsack_high;
4331                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4332                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4333                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4334                 }
4335
4336                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4337                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4338                         __skb_unlink(skb, &tp->out_of_order_queue);
4339                         __kfree_skb(skb);
4340                         continue;
4341                 }
4342                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4343                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4344                            TCP_SKB_CB(skb)->end_seq);
4345
4346                 __skb_unlink(skb, &tp->out_of_order_queue);
4347                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4348                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4349                 if (tcp_hdr(skb)->fin)
4350                         tcp_fin(skb, sk, tcp_hdr(skb));
4351         }
4352 }
4353
4354 static int tcp_prune_ofo_queue(struct sock *sk);
4355 static int tcp_prune_queue(struct sock *sk);
4356
4357 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4358 {
4359         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4360             !sk_rmem_schedule(sk, size)) {
4361
4362                 if (tcp_prune_queue(sk) < 0)
4363                         return -1;
4364
4365                 if (!sk_rmem_schedule(sk, size)) {
4366                         if (!tcp_prune_ofo_queue(sk))
4367                                 return -1;
4368
4369                         if (!sk_rmem_schedule(sk, size))
4370                                 return -1;
4371                 }
4372         }
4373         return 0;
4374 }
4375
4376 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4377 {
4378         struct tcphdr *th = tcp_hdr(skb);
4379         struct tcp_sock *tp = tcp_sk(sk);
4380         int eaten = -1;
4381
4382         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4383                 goto drop;
4384
4385         skb_dst_drop(skb);
4386         __skb_pull(skb, th->doff * 4);
4387
4388         TCP_ECN_accept_cwr(tp, skb);
4389
4390         tp->rx_opt.dsack = 0;
4391
4392         /*  Queue data for delivery to the user.
4393          *  Packets in sequence go to the receive queue.
4394          *  Out of sequence packets to the out_of_order_queue.
4395          */
4396         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4397                 if (tcp_receive_window(tp) == 0)
4398                         goto out_of_window;
4399
4400                 /* Ok. In sequence. In window. */
4401                 if (tp->ucopy.task == current &&
4402                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4403                     sock_owned_by_user(sk) && !tp->urg_data) {
4404                         int chunk = min_t(unsigned int, skb->len,
4405                                           tp->ucopy.len);
4406
4407                         __set_current_state(TASK_RUNNING);
4408
4409                         local_bh_enable();
4410                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4411                                 tp->ucopy.len -= chunk;
4412                                 tp->copied_seq += chunk;
4413                                 eaten = (chunk == skb->len);
4414                                 tcp_rcv_space_adjust(sk);
4415                         }
4416                         local_bh_disable();
4417                 }
4418
4419                 if (eaten <= 0) {
4420 queue_and_out:
4421                         if (eaten < 0 &&
4422                             tcp_try_rmem_schedule(sk, skb->truesize))
4423                                 goto drop;
4424
4425                         skb_set_owner_r(skb, sk);
4426                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4427                 }
4428                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4429                 if (skb->len)
4430                         tcp_event_data_recv(sk, skb);
4431                 if (th->fin)
4432                         tcp_fin(skb, sk, th);
4433
4434                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4435                         tcp_ofo_queue(sk);
4436
4437                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4438                          * gap in queue is filled.
4439                          */
4440                         if (skb_queue_empty(&tp->out_of_order_queue))
4441                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4442                 }
4443
4444                 if (tp->rx_opt.num_sacks)
4445                         tcp_sack_remove(tp);
4446
4447                 tcp_fast_path_check(sk);
4448
4449                 if (eaten > 0)
4450                         __kfree_skb(skb);
4451                 else if (!sock_flag(sk, SOCK_DEAD))
4452                         sk->sk_data_ready(sk, 0);
4453                 return;
4454         }
4455
4456         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4457                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4458                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4459                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4460
4461 out_of_window:
4462                 tcp_enter_quickack_mode(sk);
4463                 inet_csk_schedule_ack(sk);
4464 drop:
4465                 __kfree_skb(skb);
4466                 return;
4467         }
4468
4469         /* Out of window. F.e. zero window probe. */
4470         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4471                 goto out_of_window;
4472
4473         tcp_enter_quickack_mode(sk);
4474
4475         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4476                 /* Partial packet, seq < rcv_next < end_seq */
4477                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4478                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4479                            TCP_SKB_CB(skb)->end_seq);
4480
4481                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4482
4483                 /* If window is closed, drop tail of packet. But after
4484                  * remembering D-SACK for its head made in previous line.
4485                  */
4486                 if (!tcp_receive_window(tp))
4487                         goto out_of_window;
4488                 goto queue_and_out;
4489         }
4490
4491         TCP_ECN_check_ce(tp, skb);
4492
4493         if (tcp_try_rmem_schedule(sk, skb->truesize))
4494                 goto drop;
4495
4496         /* Disable header prediction. */
4497         tp->pred_flags = 0;
4498         inet_csk_schedule_ack(sk);
4499
4500         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4501                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4502
4503         skb_set_owner_r(skb, sk);
4504
4505         if (!skb_peek(&tp->out_of_order_queue)) {
4506                 /* Initial out of order segment, build 1 SACK. */
4507                 if (tcp_is_sack(tp)) {
4508                         tp->rx_opt.num_sacks = 1;
4509                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4510                         tp->selective_acks[0].end_seq =
4511                                                 TCP_SKB_CB(skb)->end_seq;
4512                 }
4513                 __skb_queue_head(&tp->out_of_order_queue, skb);
4514         } else {
4515                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4516                 u32 seq = TCP_SKB_CB(skb)->seq;
4517                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4518
4519                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4520                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4521
4522                         if (!tp->rx_opt.num_sacks ||
4523                             tp->selective_acks[0].end_seq != seq)
4524                                 goto add_sack;
4525
4526                         /* Common case: data arrive in order after hole. */
4527                         tp->selective_acks[0].end_seq = end_seq;
4528                         return;
4529                 }
4530
4531                 /* Find place to insert this segment. */
4532                 while (1) {
4533                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4534                                 break;
4535                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4536                                 skb1 = NULL;
4537                                 break;
4538                         }
4539                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4540                 }
4541
4542                 /* Do skb overlap to previous one? */
4543                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4544                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4545                                 /* All the bits are present. Drop. */
4546                                 __kfree_skb(skb);
4547                                 tcp_dsack_set(sk, seq, end_seq);
4548                                 goto add_sack;
4549                         }
4550                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4551                                 /* Partial overlap. */
4552                                 tcp_dsack_set(sk, seq,
4553                                               TCP_SKB_CB(skb1)->end_seq);
4554                         } else {
4555                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4556                                                        skb1))
4557                                         skb1 = NULL;
4558                                 else
4559                                         skb1 = skb_queue_prev(
4560                                                 &tp->out_of_order_queue,
4561                                                 skb1);
4562                         }
4563                 }
4564                 if (!skb1)
4565                         __skb_queue_head(&tp->out_of_order_queue, skb);
4566                 else
4567                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4568
4569                 /* And clean segments covered by new one as whole. */
4570                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4571                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4572
4573                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4574                                 break;
4575                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4576                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4577                                                  end_seq);
4578                                 break;
4579                         }
4580                         __skb_unlink(skb1, &tp->out_of_order_queue);
4581                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4582                                          TCP_SKB_CB(skb1)->end_seq);
4583                         __kfree_skb(skb1);
4584                 }
4585
4586 add_sack:
4587                 if (tcp_is_sack(tp))
4588                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4589         }
4590 }
4591
4592 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4593                                         struct sk_buff_head *list)
4594 {
4595         struct sk_buff *next = NULL;
4596
4597         if (!skb_queue_is_last(list, skb))
4598                 next = skb_queue_next(list, skb);
4599
4600         __skb_unlink(skb, list);
4601         __kfree_skb(skb);
4602         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4603
4604         return next;
4605 }
4606
4607 /* Collapse contiguous sequence of skbs head..tail with
4608  * sequence numbers start..end.
4609  *
4610  * If tail is NULL, this means until the end of the list.
4611  *
4612  * Segments with FIN/SYN are not collapsed (only because this
4613  * simplifies code)
4614  */
4615 static void
4616 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4617              struct sk_buff *head, struct sk_buff *tail,
4618              u32 start, u32 end)
4619 {
4620         struct sk_buff *skb, *n;
4621         bool end_of_skbs;
4622
4623         /* First, check that queue is collapsible and find
4624          * the point where collapsing can be useful. */
4625         skb = head;
4626 restart:
4627         end_of_skbs = true;
4628         skb_queue_walk_from_safe(list, skb, n) {
4629                 if (skb == tail)
4630                         break;
4631                 /* No new bits? It is possible on ofo queue. */
4632                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4633                         skb = tcp_collapse_one(sk, skb, list);
4634                         if (!skb)
4635                                 break;
4636                         goto restart;
4637                 }
4638
4639                 /* The first skb to collapse is:
4640                  * - not SYN/FIN and
4641                  * - bloated or contains data before "start" or
4642                  *   overlaps to the next one.
4643                  */
4644                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4645                     (tcp_win_from_space(skb->truesize) > skb->len ||
4646                      before(TCP_SKB_CB(skb)->seq, start))) {
4647                         end_of_skbs = false;
4648                         break;
4649                 }
4650
4651                 if (!skb_queue_is_last(list, skb)) {
4652                         struct sk_buff *next = skb_queue_next(list, skb);
4653                         if (next != tail &&
4654                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4655                                 end_of_skbs = false;
4656                                 break;
4657                         }
4658                 }
4659
4660                 /* Decided to skip this, advance start seq. */
4661                 start = TCP_SKB_CB(skb)->end_seq;
4662         }
4663         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4664                 return;
4665
4666         while (before(start, end)) {
4667                 struct sk_buff *nskb;
4668                 unsigned int header = skb_headroom(skb);
4669                 int copy = SKB_MAX_ORDER(header, 0);
4670
4671                 /* Too big header? This can happen with IPv6. */
4672                 if (copy < 0)
4673                         return;
4674                 if (end - start < copy)
4675                         copy = end - start;
4676                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4677                 if (!nskb)
4678                         return;
4679
4680                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4681                 skb_set_network_header(nskb, (skb_network_header(skb) -
4682                                               skb->head));
4683                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4684                                                 skb->head));
4685                 skb_reserve(nskb, header);
4686                 memcpy(nskb->head, skb->head, header);
4687                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4688                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4689                 __skb_queue_before(list, skb, nskb);
4690                 skb_set_owner_r(nskb, sk);
4691
4692                 /* Copy data, releasing collapsed skbs. */
4693                 while (copy > 0) {
4694                         int offset = start - TCP_SKB_CB(skb)->seq;
4695                         int size = TCP_SKB_CB(skb)->end_seq - start;
4696
4697                         BUG_ON(offset < 0);
4698                         if (size > 0) {
4699                                 size = min(copy, size);
4700                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4701                                         BUG();
4702                                 TCP_SKB_CB(nskb)->end_seq += size;
4703                                 copy -= size;
4704                                 start += size;
4705                         }
4706                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4707                                 skb = tcp_collapse_one(sk, skb, list);
4708                                 if (!skb ||
4709                                     skb == tail ||
4710                                     tcp_hdr(skb)->syn ||
4711                                     tcp_hdr(skb)->fin)
4712                                         return;
4713                         }
4714                 }
4715         }
4716 }
4717
4718 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4719  * and tcp_collapse() them until all the queue is collapsed.
4720  */
4721 static void tcp_collapse_ofo_queue(struct sock *sk)
4722 {
4723         struct tcp_sock *tp = tcp_sk(sk);
4724         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4725         struct sk_buff *head;
4726         u32 start, end;
4727
4728         if (skb == NULL)
4729                 return;
4730
4731         start = TCP_SKB_CB(skb)->seq;
4732         end = TCP_SKB_CB(skb)->end_seq;
4733         head = skb;
4734
4735         for (;;) {
4736                 struct sk_buff *next = NULL;
4737
4738                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4739                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4740                 skb = next;
4741
4742                 /* Segment is terminated when we see gap or when
4743                  * we are at the end of all the queue. */
4744                 if (!skb ||
4745                     after(TCP_SKB_CB(skb)->seq, end) ||
4746                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4747                         tcp_collapse(sk, &tp->out_of_order_queue,
4748                                      head, skb, start, end);
4749                         head = skb;
4750                         if (!skb)
4751                                 break;
4752                         /* Start new segment */
4753                         start = TCP_SKB_CB(skb)->seq;
4754                         end = TCP_SKB_CB(skb)->end_seq;
4755                 } else {
4756                         if (before(TCP_SKB_CB(skb)->seq, start))
4757                                 start = TCP_SKB_CB(skb)->seq;
4758                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4759                                 end = TCP_SKB_CB(skb)->end_seq;
4760                 }
4761         }
4762 }
4763
4764 /*
4765  * Purge the out-of-order queue.
4766  * Return true if queue was pruned.
4767  */
4768 static int tcp_prune_ofo_queue(struct sock *sk)
4769 {
4770         struct tcp_sock *tp = tcp_sk(sk);
4771         int res = 0;
4772
4773         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4774                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4775                 __skb_queue_purge(&tp->out_of_order_queue);
4776
4777                 /* Reset SACK state.  A conforming SACK implementation will
4778                  * do the same at a timeout based retransmit.  When a connection
4779                  * is in a sad state like this, we care only about integrity
4780                  * of the connection not performance.
4781                  */
4782                 if (tp->rx_opt.sack_ok)
4783                         tcp_sack_reset(&tp->rx_opt);
4784                 sk_mem_reclaim(sk);
4785                 res = 1;
4786         }
4787         return res;
4788 }
4789
4790 /* Reduce allocated memory if we can, trying to get
4791  * the socket within its memory limits again.
4792  *
4793  * Return less than zero if we should start dropping frames
4794  * until the socket owning process reads some of the data
4795  * to stabilize the situation.
4796  */
4797 static int tcp_prune_queue(struct sock *sk)
4798 {
4799         struct tcp_sock *tp = tcp_sk(sk);
4800
4801         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4802
4803         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4804
4805         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4806                 tcp_clamp_window(sk);
4807         else if (tcp_memory_pressure)
4808                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4809
4810         tcp_collapse_ofo_queue(sk);
4811         if (!skb_queue_empty(&sk->sk_receive_queue))
4812                 tcp_collapse(sk, &sk->sk_receive_queue,
4813                              skb_peek(&sk->sk_receive_queue),
4814                              NULL,
4815                              tp->copied_seq, tp->rcv_nxt);
4816         sk_mem_reclaim(sk);
4817
4818         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4819                 return 0;
4820
4821         /* Collapsing did not help, destructive actions follow.
4822          * This must not ever occur. */
4823
4824         tcp_prune_ofo_queue(sk);
4825
4826         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4827                 return 0;
4828
4829         /* If we are really being abused, tell the caller to silently
4830          * drop receive data on the floor.  It will get retransmitted
4831          * and hopefully then we'll have sufficient space.
4832          */
4833         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4834
4835         /* Massive buffer overcommit. */
4836         tp->pred_flags = 0;
4837         return -1;
4838 }
4839
4840 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4841  * As additional protections, we do not touch cwnd in retransmission phases,
4842  * and if application hit its sndbuf limit recently.
4843  */
4844 void tcp_cwnd_application_limited(struct sock *sk)
4845 {
4846         struct tcp_sock *tp = tcp_sk(sk);
4847
4848         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4849             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4850                 /* Limited by application or receiver window. */
4851                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4852                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4853                 if (win_used < tp->snd_cwnd) {
4854                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4855                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4856                 }
4857                 tp->snd_cwnd_used = 0;
4858         }
4859         tp->snd_cwnd_stamp = tcp_time_stamp;
4860 }
4861
4862 static int tcp_should_expand_sndbuf(struct sock *sk)
4863 {
4864         struct tcp_sock *tp = tcp_sk(sk);
4865
4866         /* If the user specified a specific send buffer setting, do
4867          * not modify it.
4868          */
4869         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4870                 return 0;
4871
4872         /* If we are under global TCP memory pressure, do not expand.  */
4873         if (tcp_memory_pressure)
4874                 return 0;
4875
4876         /* If we are under soft global TCP memory pressure, do not expand.  */
4877         if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4878                 return 0;
4879
4880         /* If we filled the congestion window, do not expand.  */
4881         if (tp->packets_out >= tp->snd_cwnd)
4882                 return 0;
4883
4884         return 1;
4885 }
4886
4887 /* When incoming ACK allowed to free some skb from write_queue,
4888  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4889  * on the exit from tcp input handler.
4890  *
4891  * PROBLEM: sndbuf expansion does not work well with largesend.
4892  */
4893 static void tcp_new_space(struct sock *sk)
4894 {
4895         struct tcp_sock *tp = tcp_sk(sk);
4896
4897         if (tcp_should_expand_sndbuf(sk)) {
4898                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4899                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4900                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4901                                      tp->reordering + 1);
4902                 sndmem *= 2 * demanded;
4903                 if (sndmem > sk->sk_sndbuf)
4904                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4905                 tp->snd_cwnd_stamp = tcp_time_stamp;
4906         }
4907
4908         sk->sk_write_space(sk);
4909 }
4910
4911 static void tcp_check_space(struct sock *sk)
4912 {
4913         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4914                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4915                 if (sk->sk_socket &&
4916                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4917                         tcp_new_space(sk);
4918         }
4919 }
4920
4921 static inline void tcp_data_snd_check(struct sock *sk)
4922 {
4923         tcp_push_pending_frames(sk);
4924         tcp_check_space(sk);
4925 }
4926
4927 /*
4928  * Check if sending an ack is needed.
4929  */
4930 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4931 {
4932         struct tcp_sock *tp = tcp_sk(sk);
4933
4934             /* More than one full frame received... */
4935         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4936              /* ... and right edge of window advances far enough.
4937               * (tcp_recvmsg() will send ACK otherwise). Or...
4938               */
4939              __tcp_select_window(sk) >= tp->rcv_wnd) ||
4940             /* We ACK each frame or... */
4941             tcp_in_quickack_mode(sk) ||
4942             /* We have out of order data. */
4943             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4944                 /* Then ack it now */
4945                 tcp_send_ack(sk);
4946         } else {
4947                 /* Else, send delayed ack. */
4948                 tcp_send_delayed_ack(sk);
4949         }
4950 }
4951
4952 static inline void tcp_ack_snd_check(struct sock *sk)
4953 {
4954         if (!inet_csk_ack_scheduled(sk)) {
4955                 /* We sent a data segment already. */
4956                 return;
4957         }
4958         __tcp_ack_snd_check(sk, 1);
4959 }
4960
4961 /*
4962  *      This routine is only called when we have urgent data
4963  *      signaled. Its the 'slow' part of tcp_urg. It could be
4964  *      moved inline now as tcp_urg is only called from one
4965  *      place. We handle URGent data wrong. We have to - as
4966  *      BSD still doesn't use the correction from RFC961.
4967  *      For 1003.1g we should support a new option TCP_STDURG to permit
4968  *      either form (or just set the sysctl tcp_stdurg).
4969  */
4970
4971 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4972 {
4973         struct tcp_sock *tp = tcp_sk(sk);
4974         u32 ptr = ntohs(th->urg_ptr);
4975
4976         if (ptr && !sysctl_tcp_stdurg)
4977                 ptr--;
4978         ptr += ntohl(th->seq);
4979
4980         /* Ignore urgent data that we've already seen and read. */
4981         if (after(tp->copied_seq, ptr))
4982                 return;
4983
4984         /* Do not replay urg ptr.
4985          *
4986          * NOTE: interesting situation not covered by specs.
4987          * Misbehaving sender may send urg ptr, pointing to segment,
4988          * which we already have in ofo queue. We are not able to fetch
4989          * such data and will stay in TCP_URG_NOTYET until will be eaten
4990          * by recvmsg(). Seems, we are not obliged to handle such wicked
4991          * situations. But it is worth to think about possibility of some
4992          * DoSes using some hypothetical application level deadlock.
4993          */
4994         if (before(ptr, tp->rcv_nxt))
4995                 return;
4996
4997         /* Do we already have a newer (or duplicate) urgent pointer? */
4998         if (tp->urg_data && !after(ptr, tp->urg_seq))
4999                 return;
5000
5001         /* Tell the world about our new urgent pointer. */
5002         sk_send_sigurg(sk);
5003
5004         /* We may be adding urgent data when the last byte read was
5005          * urgent. To do this requires some care. We cannot just ignore
5006          * tp->copied_seq since we would read the last urgent byte again
5007          * as data, nor can we alter copied_seq until this data arrives
5008          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5009          *
5010          * NOTE. Double Dutch. Rendering to plain English: author of comment
5011          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5012          * and expect that both A and B disappear from stream. This is _wrong_.
5013          * Though this happens in BSD with high probability, this is occasional.
5014          * Any application relying on this is buggy. Note also, that fix "works"
5015          * only in this artificial test. Insert some normal data between A and B and we will
5016          * decline of BSD again. Verdict: it is better to remove to trap
5017          * buggy users.
5018          */
5019         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5020             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5021                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5022                 tp->copied_seq++;
5023                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5024                         __skb_unlink(skb, &sk->sk_receive_queue);
5025                         __kfree_skb(skb);
5026                 }
5027         }
5028
5029         tp->urg_data = TCP_URG_NOTYET;
5030         tp->urg_seq = ptr;
5031
5032         /* Disable header prediction. */
5033         tp->pred_flags = 0;
5034 }
5035
5036 /* This is the 'fast' part of urgent handling. */
5037 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5038 {
5039         struct tcp_sock *tp = tcp_sk(sk);
5040
5041         /* Check if we get a new urgent pointer - normally not. */
5042         if (th->urg)
5043                 tcp_check_urg(sk, th);
5044
5045         /* Do we wait for any urgent data? - normally not... */
5046         if (tp->urg_data == TCP_URG_NOTYET) {
5047                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5048                           th->syn;
5049
5050                 /* Is the urgent pointer pointing into this packet? */
5051                 if (ptr < skb->len) {
5052                         u8 tmp;
5053                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5054                                 BUG();
5055                         tp->urg_data = TCP_URG_VALID | tmp;
5056                         if (!sock_flag(sk, SOCK_DEAD))
5057                                 sk->sk_data_ready(sk, 0);
5058                 }
5059         }
5060 }
5061
5062 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5063 {
5064         struct tcp_sock *tp = tcp_sk(sk);
5065         int chunk = skb->len - hlen;
5066         int err;
5067
5068         local_bh_enable();
5069         if (skb_csum_unnecessary(skb))
5070                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5071         else
5072                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5073                                                        tp->ucopy.iov);
5074
5075         if (!err) {
5076                 tp->ucopy.len -= chunk;
5077                 tp->copied_seq += chunk;
5078                 tcp_rcv_space_adjust(sk);
5079         }
5080
5081         local_bh_disable();
5082         return err;
5083 }
5084
5085 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5086                                             struct sk_buff *skb)
5087 {
5088         __sum16 result;
5089
5090         if (sock_owned_by_user(sk)) {
5091                 local_bh_enable();
5092                 result = __tcp_checksum_complete(skb);
5093                 local_bh_disable();
5094         } else {
5095                 result = __tcp_checksum_complete(skb);
5096         }
5097         return result;
5098 }
5099
5100 static inline int tcp_checksum_complete_user(struct sock *sk,
5101                                              struct sk_buff *skb)
5102 {
5103         return !skb_csum_unnecessary(skb) &&
5104                __tcp_checksum_complete_user(sk, skb);
5105 }
5106
5107 #ifdef CONFIG_NET_DMA
5108 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5109                                   int hlen)
5110 {
5111         struct tcp_sock *tp = tcp_sk(sk);
5112         int chunk = skb->len - hlen;
5113         int dma_cookie;
5114         int copied_early = 0;
5115
5116         if (tp->ucopy.wakeup)
5117                 return 0;
5118
5119         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5120                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5121
5122         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5123
5124                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5125                                                          skb, hlen,
5126                                                          tp->ucopy.iov, chunk,
5127                                                          tp->ucopy.pinned_list);
5128
5129                 if (dma_cookie < 0)
5130                         goto out;
5131
5132                 tp->ucopy.dma_cookie = dma_cookie;
5133                 copied_early = 1;
5134
5135                 tp->ucopy.len -= chunk;
5136                 tp->copied_seq += chunk;
5137                 tcp_rcv_space_adjust(sk);
5138
5139                 if ((tp->ucopy.len == 0) ||
5140                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5141                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5142                         tp->ucopy.wakeup = 1;
5143                         sk->sk_data_ready(sk, 0);
5144                 }
5145         } else if (chunk > 0) {
5146                 tp->ucopy.wakeup = 1;
5147                 sk->sk_data_ready(sk, 0);
5148         }
5149 out:
5150         return copied_early;
5151 }
5152 #endif /* CONFIG_NET_DMA */
5153
5154 /* Does PAWS and seqno based validation of an incoming segment, flags will
5155  * play significant role here.
5156  */
5157 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5158                               struct tcphdr *th, int syn_inerr)
5159 {
5160         u8 *hash_location;
5161         struct tcp_sock *tp = tcp_sk(sk);
5162
5163         /* RFC1323: H1. Apply PAWS check first. */
5164         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5165             tp->rx_opt.saw_tstamp &&
5166             tcp_paws_discard(sk, skb)) {
5167                 if (!th->rst) {
5168                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5169                         tcp_send_dupack(sk, skb);
5170                         goto discard;
5171                 }
5172                 /* Reset is accepted even if it did not pass PAWS. */
5173         }
5174
5175         /* Step 1: check sequence number */
5176         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5177                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5178                  * (RST) segments are validated by checking their SEQ-fields."
5179                  * And page 69: "If an incoming segment is not acceptable,
5180                  * an acknowledgment should be sent in reply (unless the RST
5181                  * bit is set, if so drop the segment and return)".
5182                  */
5183                 if (!th->rst)
5184                         tcp_send_dupack(sk, skb);
5185                 goto discard;
5186         }
5187
5188         /* Step 2: check RST bit */
5189         if (th->rst) {
5190                 tcp_reset(sk);
5191                 goto discard;
5192         }
5193
5194         /* ts_recent update must be made after we are sure that the packet
5195          * is in window.
5196          */
5197         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5198
5199         /* step 3: check security and precedence [ignored] */
5200
5201         /* step 4: Check for a SYN in window. */
5202         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5203                 if (syn_inerr)
5204                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5205                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5206                 tcp_reset(sk);
5207                 return -1;
5208         }
5209
5210         return 1;
5211
5212 discard:
5213         __kfree_skb(skb);
5214         return 0;
5215 }
5216
5217 /*
5218  *      TCP receive function for the ESTABLISHED state.
5219  *
5220  *      It is split into a fast path and a slow path. The fast path is
5221  *      disabled when:
5222  *      - A zero window was announced from us - zero window probing
5223  *        is only handled properly in the slow path.
5224  *      - Out of order segments arrived.
5225  *      - Urgent data is expected.
5226  *      - There is no buffer space left
5227  *      - Unexpected TCP flags/window values/header lengths are received
5228  *        (detected by checking the TCP header against pred_flags)
5229  *      - Data is sent in both directions. Fast path only supports pure senders
5230  *        or pure receivers (this means either the sequence number or the ack
5231  *        value must stay constant)
5232  *      - Unexpected TCP option.
5233  *
5234  *      When these conditions are not satisfied it drops into a standard
5235  *      receive procedure patterned after RFC793 to handle all cases.
5236  *      The first three cases are guaranteed by proper pred_flags setting,
5237  *      the rest is checked inline. Fast processing is turned on in
5238  *      tcp_data_queue when everything is OK.
5239  */
5240 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5241                         struct tcphdr *th, unsigned len)
5242 {
5243         struct tcp_sock *tp = tcp_sk(sk);
5244         int res;
5245
5246         /*
5247          *      Header prediction.
5248          *      The code loosely follows the one in the famous
5249          *      "30 instruction TCP receive" Van Jacobson mail.
5250          *
5251          *      Van's trick is to deposit buffers into socket queue
5252          *      on a device interrupt, to call tcp_recv function
5253          *      on the receive process context and checksum and copy
5254          *      the buffer to user space. smart...
5255          *
5256          *      Our current scheme is not silly either but we take the
5257          *      extra cost of the net_bh soft interrupt processing...
5258          *      We do checksum and copy also but from device to kernel.
5259          */
5260
5261         tp->rx_opt.saw_tstamp = 0;
5262
5263         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5264          *      if header_prediction is to be made
5265          *      'S' will always be tp->tcp_header_len >> 2
5266          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5267          *  turn it off (when there are holes in the receive
5268          *       space for instance)
5269          *      PSH flag is ignored.
5270          */
5271
5272         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5273             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5274             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5275                 int tcp_header_len = tp->tcp_header_len;
5276
5277                 /* Timestamp header prediction: tcp_header_len
5278                  * is automatically equal to th->doff*4 due to pred_flags
5279                  * match.
5280                  */
5281
5282                 /* Check timestamp */
5283                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5284                         /* No? Slow path! */
5285                         if (!tcp_parse_aligned_timestamp(tp, th))
5286                                 goto slow_path;
5287
5288                         /* If PAWS failed, check it more carefully in slow path */
5289                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5290                                 goto slow_path;
5291
5292                         /* DO NOT update ts_recent here, if checksum fails
5293                          * and timestamp was corrupted part, it will result
5294                          * in a hung connection since we will drop all
5295                          * future packets due to the PAWS test.
5296                          */
5297                 }
5298
5299                 if (len <= tcp_header_len) {
5300                         /* Bulk data transfer: sender */
5301                         if (len == tcp_header_len) {
5302                                 /* Predicted packet is in window by definition.
5303                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5304                                  * Hence, check seq<=rcv_wup reduces to:
5305                                  */
5306                                 if (tcp_header_len ==
5307                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5308                                     tp->rcv_nxt == tp->rcv_wup)
5309                                         tcp_store_ts_recent(tp);
5310
5311                                 /* We know that such packets are checksummed
5312                                  * on entry.
5313                                  */
5314                                 tcp_ack(sk, skb, 0);
5315                                 __kfree_skb(skb);
5316                                 tcp_data_snd_check(sk);
5317                                 return 0;
5318                         } else { /* Header too small */
5319                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5320                                 goto discard;
5321                         }
5322                 } else {
5323                         int eaten = 0;
5324                         int copied_early = 0;
5325
5326                         if (tp->copied_seq == tp->rcv_nxt &&
5327                             len - tcp_header_len <= tp->ucopy.len) {
5328 #ifdef CONFIG_NET_DMA
5329                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5330                                         copied_early = 1;
5331                                         eaten = 1;
5332                                 }
5333 #endif
5334                                 if (tp->ucopy.task == current &&
5335                                     sock_owned_by_user(sk) && !copied_early) {
5336                                         __set_current_state(TASK_RUNNING);
5337
5338                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5339                                                 eaten = 1;
5340                                 }
5341                                 if (eaten) {
5342                                         /* Predicted packet is in window by definition.
5343                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5344                                          * Hence, check seq<=rcv_wup reduces to:
5345                                          */
5346                                         if (tcp_header_len ==
5347                                             (sizeof(struct tcphdr) +
5348                                              TCPOLEN_TSTAMP_ALIGNED) &&
5349                                             tp->rcv_nxt == tp->rcv_wup)
5350                                                 tcp_store_ts_recent(tp);
5351
5352                                         tcp_rcv_rtt_measure_ts(sk, skb);
5353
5354                                         __skb_pull(skb, tcp_header_len);
5355                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5356                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5357                                 }
5358                                 if (copied_early)
5359                                         tcp_cleanup_rbuf(sk, skb->len);
5360                         }
5361                         if (!eaten) {
5362                                 if (tcp_checksum_complete_user(sk, skb))
5363                                         goto csum_error;
5364
5365                                 /* Predicted packet is in window by definition.
5366                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5367                                  * Hence, check seq<=rcv_wup reduces to:
5368                                  */
5369                                 if (tcp_header_len ==
5370                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5371                                     tp->rcv_nxt == tp->rcv_wup)
5372                                         tcp_store_ts_recent(tp);
5373
5374                                 tcp_rcv_rtt_measure_ts(sk, skb);
5375
5376                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5377                                         goto step5;
5378
5379                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5380
5381                                 /* Bulk data transfer: receiver */
5382                                 __skb_pull(skb, tcp_header_len);
5383                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5384                                 skb_set_owner_r(skb, sk);
5385                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5386                         }
5387
5388                         tcp_event_data_recv(sk, skb);
5389
5390                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5391                                 /* Well, only one small jumplet in fast path... */
5392                                 tcp_ack(sk, skb, FLAG_DATA);
5393                                 tcp_data_snd_check(sk);
5394                                 if (!inet_csk_ack_scheduled(sk))
5395                                         goto no_ack;
5396                         }
5397
5398                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5399                                 __tcp_ack_snd_check(sk, 0);
5400 no_ack:
5401 #ifdef CONFIG_NET_DMA
5402                         if (copied_early)
5403                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5404                         else
5405 #endif
5406                         if (eaten)
5407                                 __kfree_skb(skb);
5408                         else
5409                                 sk->sk_data_ready(sk, 0);
5410                         return 0;
5411                 }
5412         }
5413
5414 slow_path:
5415         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5416                 goto csum_error;
5417
5418         /*
5419          *      Standard slow path.
5420          */
5421
5422         res = tcp_validate_incoming(sk, skb, th, 1);
5423         if (res <= 0)
5424                 return -res;
5425
5426 step5:
5427         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5428                 goto discard;
5429
5430         tcp_rcv_rtt_measure_ts(sk, skb);
5431
5432         /* Process urgent data. */
5433         tcp_urg(sk, skb, th);
5434
5435         /* step 7: process the segment text */
5436         tcp_data_queue(sk, skb);
5437
5438         tcp_data_snd_check(sk);
5439         tcp_ack_snd_check(sk);
5440         return 0;
5441
5442 csum_error:
5443         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5444
5445 discard:
5446         __kfree_skb(skb);
5447         return 0;
5448 }
5449 EXPORT_SYMBOL(tcp_rcv_established);
5450
5451 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5452                                          struct tcphdr *th, unsigned len)
5453 {
5454         u8 *hash_location;
5455         struct inet_connection_sock *icsk = inet_csk(sk);
5456         struct tcp_sock *tp = tcp_sk(sk);
5457         struct tcp_cookie_values *cvp = tp->cookie_values;
5458         int saved_clamp = tp->rx_opt.mss_clamp;
5459
5460         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5461
5462         if (th->ack) {
5463                 /* rfc793:
5464                  * "If the state is SYN-SENT then
5465                  *    first check the ACK bit
5466                  *      If the ACK bit is set
5467                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5468                  *        a reset (unless the RST bit is set, if so drop
5469                  *        the segment and return)"
5470                  *
5471                  *  We do not send data with SYN, so that RFC-correct
5472                  *  test reduces to:
5473                  */
5474                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5475                         goto reset_and_undo;
5476
5477                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5478                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5479                              tcp_time_stamp)) {
5480                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5481                         goto reset_and_undo;
5482                 }
5483
5484                 /* Now ACK is acceptable.
5485                  *
5486                  * "If the RST bit is set
5487                  *    If the ACK was acceptable then signal the user "error:
5488                  *    connection reset", drop the segment, enter CLOSED state,
5489                  *    delete TCB, and return."
5490                  */
5491
5492                 if (th->rst) {
5493                         tcp_reset(sk);
5494                         goto discard;
5495                 }
5496
5497                 /* rfc793:
5498                  *   "fifth, if neither of the SYN or RST bits is set then
5499                  *    drop the segment and return."
5500                  *
5501                  *    See note below!
5502                  *                                        --ANK(990513)
5503                  */
5504                 if (!th->syn)
5505                         goto discard_and_undo;
5506
5507                 /* rfc793:
5508                  *   "If the SYN bit is on ...
5509                  *    are acceptable then ...
5510                  *    (our SYN has been ACKed), change the connection
5511                  *    state to ESTABLISHED..."
5512                  */
5513
5514                 TCP_ECN_rcv_synack(tp, th);
5515
5516                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5517                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5518
5519                 /* Ok.. it's good. Set up sequence numbers and
5520                  * move to established.
5521                  */
5522                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5523                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5524
5525                 /* RFC1323: The window in SYN & SYN/ACK segments is
5526                  * never scaled.
5527                  */
5528                 tp->snd_wnd = ntohs(th->window);
5529                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5530
5531                 if (!tp->rx_opt.wscale_ok) {
5532                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5533                         tp->window_clamp = min(tp->window_clamp, 65535U);
5534                 }
5535
5536                 if (tp->rx_opt.saw_tstamp) {
5537                         tp->rx_opt.tstamp_ok       = 1;
5538                         tp->tcp_header_len =
5539                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5540                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5541                         tcp_store_ts_recent(tp);
5542                 } else {
5543                         tp->tcp_header_len = sizeof(struct tcphdr);
5544                 }
5545
5546                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5547                         tcp_enable_fack(tp);
5548
5549                 tcp_mtup_init(sk);
5550                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5551                 tcp_initialize_rcv_mss(sk);
5552
5553                 /* Remember, tcp_poll() does not lock socket!
5554                  * Change state from SYN-SENT only after copied_seq
5555                  * is initialized. */
5556                 tp->copied_seq = tp->rcv_nxt;
5557
5558                 if (cvp != NULL &&
5559                     cvp->cookie_pair_size > 0 &&
5560                     tp->rx_opt.cookie_plus > 0) {
5561                         int cookie_size = tp->rx_opt.cookie_plus
5562                                         - TCPOLEN_COOKIE_BASE;
5563                         int cookie_pair_size = cookie_size
5564                                              + cvp->cookie_desired;
5565
5566                         /* A cookie extension option was sent and returned.
5567                          * Note that each incoming SYNACK replaces the
5568                          * Responder cookie.  The initial exchange is most
5569                          * fragile, as protection against spoofing relies
5570                          * entirely upon the sequence and timestamp (above).
5571                          * This replacement strategy allows the correct pair to
5572                          * pass through, while any others will be filtered via
5573                          * Responder verification later.
5574                          */
5575                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5576                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5577                                        hash_location, cookie_size);
5578                                 cvp->cookie_pair_size = cookie_pair_size;
5579                         }
5580                 }
5581
5582                 smp_mb();
5583                 tcp_set_state(sk, TCP_ESTABLISHED);
5584
5585                 security_inet_conn_established(sk, skb);
5586
5587                 /* Make sure socket is routed, for correct metrics.  */
5588                 icsk->icsk_af_ops->rebuild_header(sk);
5589
5590                 tcp_init_metrics(sk);
5591
5592                 tcp_init_congestion_control(sk);
5593
5594                 /* Prevent spurious tcp_cwnd_restart() on first data
5595                  * packet.
5596                  */
5597                 tp->lsndtime = tcp_time_stamp;
5598
5599                 tcp_init_buffer_space(sk);
5600
5601                 if (sock_flag(sk, SOCK_KEEPOPEN))
5602                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5603
5604                 if (!tp->rx_opt.snd_wscale)
5605                         __tcp_fast_path_on(tp, tp->snd_wnd);
5606                 else
5607                         tp->pred_flags = 0;
5608
5609                 if (!sock_flag(sk, SOCK_DEAD)) {
5610                         sk->sk_state_change(sk);
5611                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5612                 }
5613
5614                 if (sk->sk_write_pending ||
5615                     icsk->icsk_accept_queue.rskq_defer_accept ||
5616                     icsk->icsk_ack.pingpong) {
5617                         /* Save one ACK. Data will be ready after
5618                          * several ticks, if write_pending is set.
5619                          *
5620                          * It may be deleted, but with this feature tcpdumps
5621                          * look so _wonderfully_ clever, that I was not able
5622                          * to stand against the temptation 8)     --ANK
5623                          */
5624                         inet_csk_schedule_ack(sk);
5625                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5626                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5627                         tcp_incr_quickack(sk);
5628                         tcp_enter_quickack_mode(sk);
5629                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5630                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5631
5632 discard:
5633                         __kfree_skb(skb);
5634                         return 0;
5635                 } else {
5636                         tcp_send_ack(sk);
5637                 }
5638                 return -1;
5639         }
5640
5641         /* No ACK in the segment */
5642
5643         if (th->rst) {
5644                 /* rfc793:
5645                  * "If the RST bit is set
5646                  *
5647                  *      Otherwise (no ACK) drop the segment and return."
5648                  */
5649
5650                 goto discard_and_undo;
5651         }
5652
5653         /* PAWS check. */
5654         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5655             tcp_paws_reject(&tp->rx_opt, 0))
5656                 goto discard_and_undo;
5657
5658         if (th->syn) {
5659                 /* We see SYN without ACK. It is attempt of
5660                  * simultaneous connect with crossed SYNs.
5661                  * Particularly, it can be connect to self.
5662                  */
5663                 tcp_set_state(sk, TCP_SYN_RECV);
5664
5665                 if (tp->rx_opt.saw_tstamp) {
5666                         tp->rx_opt.tstamp_ok = 1;
5667                         tcp_store_ts_recent(tp);
5668                         tp->tcp_header_len =
5669                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5670                 } else {
5671                         tp->tcp_header_len = sizeof(struct tcphdr);
5672                 }
5673
5674                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5675                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5676
5677                 /* RFC1323: The window in SYN & SYN/ACK segments is
5678                  * never scaled.
5679                  */
5680                 tp->snd_wnd    = ntohs(th->window);
5681                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5682                 tp->max_window = tp->snd_wnd;
5683
5684                 TCP_ECN_rcv_syn(tp, th);
5685
5686                 tcp_mtup_init(sk);
5687                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5688                 tcp_initialize_rcv_mss(sk);
5689
5690                 tcp_send_synack(sk);
5691 #if 0
5692                 /* Note, we could accept data and URG from this segment.
5693                  * There are no obstacles to make this.
5694                  *
5695                  * However, if we ignore data in ACKless segments sometimes,
5696                  * we have no reasons to accept it sometimes.
5697                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5698                  * is not flawless. So, discard packet for sanity.
5699                  * Uncomment this return to process the data.
5700                  */
5701                 return -1;
5702 #else
5703                 goto discard;
5704 #endif
5705         }
5706         /* "fifth, if neither of the SYN or RST bits is set then
5707          * drop the segment and return."
5708          */
5709
5710 discard_and_undo:
5711         tcp_clear_options(&tp->rx_opt);
5712         tp->rx_opt.mss_clamp = saved_clamp;
5713         goto discard;
5714
5715 reset_and_undo:
5716         tcp_clear_options(&tp->rx_opt);
5717         tp->rx_opt.mss_clamp = saved_clamp;
5718         return 1;
5719 }
5720
5721 /*
5722  *      This function implements the receiving procedure of RFC 793 for
5723  *      all states except ESTABLISHED and TIME_WAIT.
5724  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5725  *      address independent.
5726  */
5727
5728 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5729                           struct tcphdr *th, unsigned len)
5730 {
5731         struct tcp_sock *tp = tcp_sk(sk);
5732         struct inet_connection_sock *icsk = inet_csk(sk);
5733         int queued = 0;
5734         int res;
5735
5736         tp->rx_opt.saw_tstamp = 0;
5737
5738         switch (sk->sk_state) {
5739         case TCP_CLOSE:
5740                 goto discard;
5741
5742         case TCP_LISTEN:
5743                 if (th->ack)
5744                         return 1;
5745
5746                 if (th->rst)
5747                         goto discard;
5748
5749                 if (th->syn) {
5750                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5751                                 return 1;
5752
5753                         /* Now we have several options: In theory there is
5754                          * nothing else in the frame. KA9Q has an option to
5755                          * send data with the syn, BSD accepts data with the
5756                          * syn up to the [to be] advertised window and
5757                          * Solaris 2.1 gives you a protocol error. For now
5758                          * we just ignore it, that fits the spec precisely
5759                          * and avoids incompatibilities. It would be nice in
5760                          * future to drop through and process the data.
5761                          *
5762                          * Now that TTCP is starting to be used we ought to
5763                          * queue this data.
5764                          * But, this leaves one open to an easy denial of
5765                          * service attack, and SYN cookies can't defend
5766                          * against this problem. So, we drop the data
5767                          * in the interest of security over speed unless
5768                          * it's still in use.
5769                          */
5770                         kfree_skb(skb);
5771                         return 0;
5772                 }
5773                 goto discard;
5774
5775         case TCP_SYN_SENT:
5776                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5777                 if (queued >= 0)
5778                         return queued;
5779
5780                 /* Do step6 onward by hand. */
5781                 tcp_urg(sk, skb, th);
5782                 __kfree_skb(skb);
5783                 tcp_data_snd_check(sk);
5784                 return 0;
5785         }
5786
5787         res = tcp_validate_incoming(sk, skb, th, 0);
5788         if (res <= 0)
5789                 return -res;
5790
5791         /* step 5: check the ACK field */
5792         if (th->ack) {
5793                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5794
5795                 switch (sk->sk_state) {
5796                 case TCP_SYN_RECV:
5797                         if (acceptable) {
5798                                 tp->copied_seq = tp->rcv_nxt;
5799                                 smp_mb();
5800                                 tcp_set_state(sk, TCP_ESTABLISHED);
5801                                 sk->sk_state_change(sk);
5802
5803                                 /* Note, that this wakeup is only for marginal
5804                                  * crossed SYN case. Passively open sockets
5805                                  * are not waked up, because sk->sk_sleep ==
5806                                  * NULL and sk->sk_socket == NULL.
5807                                  */
5808                                 if (sk->sk_socket)
5809                                         sk_wake_async(sk,
5810                                                       SOCK_WAKE_IO, POLL_OUT);
5811
5812                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5813                                 tp->snd_wnd = ntohs(th->window) <<
5814                                               tp->rx_opt.snd_wscale;
5815                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5816
5817                                 if (tp->rx_opt.tstamp_ok)
5818                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5819
5820                                 /* Make sure socket is routed, for
5821                                  * correct metrics.
5822                                  */
5823                                 icsk->icsk_af_ops->rebuild_header(sk);
5824
5825                                 tcp_init_metrics(sk);
5826
5827                                 tcp_init_congestion_control(sk);
5828
5829                                 /* Prevent spurious tcp_cwnd_restart() on
5830                                  * first data packet.
5831                                  */
5832                                 tp->lsndtime = tcp_time_stamp;
5833
5834                                 tcp_mtup_init(sk);
5835                                 tcp_initialize_rcv_mss(sk);
5836                                 tcp_init_buffer_space(sk);
5837                                 tcp_fast_path_on(tp);
5838                         } else {
5839                                 return 1;
5840                         }
5841                         break;
5842
5843                 case TCP_FIN_WAIT1:
5844                         if (tp->snd_una == tp->write_seq) {
5845                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5846                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5847                                 dst_confirm(__sk_dst_get(sk));
5848
5849                                 if (!sock_flag(sk, SOCK_DEAD))
5850                                         /* Wake up lingering close() */
5851                                         sk->sk_state_change(sk);
5852                                 else {
5853                                         int tmo;
5854
5855                                         if (tp->linger2 < 0 ||
5856                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5857                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5858                                                 tcp_done(sk);
5859                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5860                                                 return 1;
5861                                         }
5862
5863                                         tmo = tcp_fin_time(sk);
5864                                         if (tmo > TCP_TIMEWAIT_LEN) {
5865                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5866                                         } else if (th->fin || sock_owned_by_user(sk)) {
5867                                                 /* Bad case. We could lose such FIN otherwise.
5868                                                  * It is not a big problem, but it looks confusing
5869                                                  * and not so rare event. We still can lose it now,
5870                                                  * if it spins in bh_lock_sock(), but it is really
5871                                                  * marginal case.
5872                                                  */
5873                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5874                                         } else {
5875                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5876                                                 goto discard;
5877                                         }
5878                                 }
5879                         }
5880                         break;
5881
5882                 case TCP_CLOSING:
5883                         if (tp->snd_una == tp->write_seq) {
5884                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5885                                 goto discard;
5886                         }
5887                         break;
5888
5889                 case TCP_LAST_ACK:
5890                         if (tp->snd_una == tp->write_seq) {
5891                                 tcp_update_metrics(sk);
5892                                 tcp_done(sk);
5893                                 goto discard;
5894                         }
5895                         break;
5896                 }
5897         } else
5898                 goto discard;
5899
5900         /* step 6: check the URG bit */
5901         tcp_urg(sk, skb, th);
5902
5903         /* step 7: process the segment text */
5904         switch (sk->sk_state) {
5905         case TCP_CLOSE_WAIT:
5906         case TCP_CLOSING:
5907         case TCP_LAST_ACK:
5908                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5909                         break;
5910         case TCP_FIN_WAIT1:
5911         case TCP_FIN_WAIT2:
5912                 /* RFC 793 says to queue data in these states,
5913                  * RFC 1122 says we MUST send a reset.
5914                  * BSD 4.4 also does reset.
5915                  */
5916                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5917                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5918                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5919                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5920                                 tcp_reset(sk);
5921                                 return 1;
5922                         }
5923                 }
5924                 /* Fall through */
5925         case TCP_ESTABLISHED:
5926                 tcp_data_queue(sk, skb);
5927                 queued = 1;
5928                 break;
5929         }
5930
5931         /* tcp_data could move socket to TIME-WAIT */
5932         if (sk->sk_state != TCP_CLOSE) {
5933                 tcp_data_snd_check(sk);
5934                 tcp_ack_snd_check(sk);
5935         }
5936
5937         if (!queued) {
5938 discard:
5939                 __kfree_skb(skb);
5940         }
5941         return 0;
5942 }
5943 EXPORT_SYMBOL(tcp_rcv_state_process);