Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-nmw
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
109 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130         struct inet_connection_sock *icsk = inet_csk(sk);
131         const unsigned int lss = icsk->icsk_ack.last_seg_size;
132         unsigned int len;
133
134         icsk->icsk_ack.last_seg_size = 0;
135
136         /* skb->len may jitter because of SACKs, even if peer
137          * sends good full-sized frames.
138          */
139         len = skb_shinfo(skb)->gso_size ? : skb->len;
140         if (len >= icsk->icsk_ack.rcv_mss) {
141                 icsk->icsk_ack.rcv_mss = len;
142         } else {
143                 /* Otherwise, we make more careful check taking into account,
144                  * that SACKs block is variable.
145                  *
146                  * "len" is invariant segment length, including TCP header.
147                  */
148                 len += skb->data - skb_transport_header(skb);
149                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150                     /* If PSH is not set, packet should be
151                      * full sized, provided peer TCP is not badly broken.
152                      * This observation (if it is correct 8)) allows
153                      * to handle super-low mtu links fairly.
154                      */
155                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157                         /* Subtract also invariant (if peer is RFC compliant),
158                          * tcp header plus fixed timestamp option length.
159                          * Resulting "len" is MSS free of SACK jitter.
160                          */
161                         len -= tcp_sk(sk)->tcp_header_len;
162                         icsk->icsk_ack.last_seg_size = len;
163                         if (len == lss) {
164                                 icsk->icsk_ack.rcv_mss = len;
165                                 return;
166                         }
167                 }
168                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171         }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176         struct inet_connection_sock *icsk = inet_csk(sk);
177         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179         if (quickacks == 0)
180                 quickacks = 2;
181         if (quickacks > icsk->icsk_ack.quick)
182                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 void tcp_enter_quickack_mode(struct sock *sk)
186 {
187         struct inet_connection_sock *icsk = inet_csk(sk);
188         tcp_incr_quickack(sk);
189         icsk->icsk_ack.pingpong = 0;
190         icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199         const struct inet_connection_sock *icsk = inet_csk(sk);
200         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205         if (tp->ecn_flags & TCP_ECN_OK)
206                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211         if (tcp_hdr(skb)->cwr)
212                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222         if (tp->ecn_flags & TCP_ECN_OK) {
223                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225                 /* Funny extension: if ECT is not set on a segment,
226                  * it is surely retransmit. It is not in ECN RFC,
227                  * but Linux follows this rule. */
228                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229                         tcp_enter_quickack_mode((struct sock *)tp);
230         }
231 }
232
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236                 tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242                 tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248                 return 1;
249         return 0;
250 }
251
252 /* Buffer size and advertised window tuning.
253  *
254  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255  */
256
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260                      sizeof(struct sk_buff);
261
262         if (sk->sk_sndbuf < 3 * sndmem)
263                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
264 }
265
266 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
267  *
268  * All tcp_full_space() is split to two parts: "network" buffer, allocated
269  * forward and advertised in receiver window (tp->rcv_wnd) and
270  * "application buffer", required to isolate scheduling/application
271  * latencies from network.
272  * window_clamp is maximal advertised window. It can be less than
273  * tcp_full_space(), in this case tcp_full_space() - window_clamp
274  * is reserved for "application" buffer. The less window_clamp is
275  * the smoother our behaviour from viewpoint of network, but the lower
276  * throughput and the higher sensitivity of the connection to losses. 8)
277  *
278  * rcv_ssthresh is more strict window_clamp used at "slow start"
279  * phase to predict further behaviour of this connection.
280  * It is used for two goals:
281  * - to enforce header prediction at sender, even when application
282  *   requires some significant "application buffer". It is check #1.
283  * - to prevent pruning of receive queue because of misprediction
284  *   of receiver window. Check #2.
285  *
286  * The scheme does not work when sender sends good segments opening
287  * window and then starts to feed us spaghetti. But it should work
288  * in common situations. Otherwise, we have to rely on queue collapsing.
289  */
290
291 /* Slow part of check#2. */
292 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
293 {
294         struct tcp_sock *tp = tcp_sk(sk);
295         /* Optimize this! */
296         int truesize = tcp_win_from_space(skb->truesize) >> 1;
297         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
298
299         while (tp->rcv_ssthresh <= window) {
300                 if (truesize <= skb->len)
301                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
302
303                 truesize >>= 1;
304                 window >>= 1;
305         }
306         return 0;
307 }
308
309 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
310 {
311         struct tcp_sock *tp = tcp_sk(sk);
312
313         /* Check #1 */
314         if (tp->rcv_ssthresh < tp->window_clamp &&
315             (int)tp->rcv_ssthresh < tcp_space(sk) &&
316             !tcp_memory_pressure) {
317                 int incr;
318
319                 /* Check #2. Increase window, if skb with such overhead
320                  * will fit to rcvbuf in future.
321                  */
322                 if (tcp_win_from_space(skb->truesize) <= skb->len)
323                         incr = 2 * tp->advmss;
324                 else
325                         incr = __tcp_grow_window(sk, skb);
326
327                 if (incr) {
328                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
329                                                tp->window_clamp);
330                         inet_csk(sk)->icsk_ack.quick |= 1;
331                 }
332         }
333 }
334
335 /* 3. Tuning rcvbuf, when connection enters established state. */
336
337 static void tcp_fixup_rcvbuf(struct sock *sk)
338 {
339         struct tcp_sock *tp = tcp_sk(sk);
340         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
341
342         /* Try to select rcvbuf so that 4 mss-sized segments
343          * will fit to window and corresponding skbs will fit to our rcvbuf.
344          * (was 3; 4 is minimum to allow fast retransmit to work.)
345          */
346         while (tcp_win_from_space(rcvmem) < tp->advmss)
347                 rcvmem += 128;
348         if (sk->sk_rcvbuf < 4 * rcvmem)
349                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
350 }
351
352 /* 4. Try to fixup all. It is made immediately after connection enters
353  *    established state.
354  */
355 static void tcp_init_buffer_space(struct sock *sk)
356 {
357         struct tcp_sock *tp = tcp_sk(sk);
358         int maxwin;
359
360         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
361                 tcp_fixup_rcvbuf(sk);
362         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
363                 tcp_fixup_sndbuf(sk);
364
365         tp->rcvq_space.space = tp->rcv_wnd;
366
367         maxwin = tcp_full_space(sk);
368
369         if (tp->window_clamp >= maxwin) {
370                 tp->window_clamp = maxwin;
371
372                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
373                         tp->window_clamp = max(maxwin -
374                                                (maxwin >> sysctl_tcp_app_win),
375                                                4 * tp->advmss);
376         }
377
378         /* Force reservation of one segment. */
379         if (sysctl_tcp_app_win &&
380             tp->window_clamp > 2 * tp->advmss &&
381             tp->window_clamp + tp->advmss > maxwin)
382                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
383
384         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
385         tp->snd_cwnd_stamp = tcp_time_stamp;
386 }
387
388 /* 5. Recalculate window clamp after socket hit its memory bounds. */
389 static void tcp_clamp_window(struct sock *sk)
390 {
391         struct tcp_sock *tp = tcp_sk(sk);
392         struct inet_connection_sock *icsk = inet_csk(sk);
393
394         icsk->icsk_ack.quick = 0;
395
396         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
397             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
398             !tcp_memory_pressure &&
399             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
400                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
401                                     sysctl_tcp_rmem[2]);
402         }
403         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
404                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
405 }
406
407 /* Initialize RCV_MSS value.
408  * RCV_MSS is an our guess about MSS used by the peer.
409  * We haven't any direct information about the MSS.
410  * It's better to underestimate the RCV_MSS rather than overestimate.
411  * Overestimations make us ACKing less frequently than needed.
412  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
413  */
414 void tcp_initialize_rcv_mss(struct sock *sk)
415 {
416         struct tcp_sock *tp = tcp_sk(sk);
417         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
418
419         hint = min(hint, tp->rcv_wnd / 2);
420         hint = min(hint, TCP_MSS_DEFAULT);
421         hint = max(hint, TCP_MIN_MSS);
422
423         inet_csk(sk)->icsk_ack.rcv_mss = hint;
424 }
425 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
426
427 /* Receiver "autotuning" code.
428  *
429  * The algorithm for RTT estimation w/o timestamps is based on
430  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
431  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
432  *
433  * More detail on this code can be found at
434  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
435  * though this reference is out of date.  A new paper
436  * is pending.
437  */
438 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
439 {
440         u32 new_sample = tp->rcv_rtt_est.rtt;
441         long m = sample;
442
443         if (m == 0)
444                 m = 1;
445
446         if (new_sample != 0) {
447                 /* If we sample in larger samples in the non-timestamp
448                  * case, we could grossly overestimate the RTT especially
449                  * with chatty applications or bulk transfer apps which
450                  * are stalled on filesystem I/O.
451                  *
452                  * Also, since we are only going for a minimum in the
453                  * non-timestamp case, we do not smooth things out
454                  * else with timestamps disabled convergence takes too
455                  * long.
456                  */
457                 if (!win_dep) {
458                         m -= (new_sample >> 3);
459                         new_sample += m;
460                 } else if (m < new_sample)
461                         new_sample = m << 3;
462         } else {
463                 /* No previous measure. */
464                 new_sample = m << 3;
465         }
466
467         if (tp->rcv_rtt_est.rtt != new_sample)
468                 tp->rcv_rtt_est.rtt = new_sample;
469 }
470
471 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
472 {
473         if (tp->rcv_rtt_est.time == 0)
474                 goto new_measure;
475         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
476                 return;
477         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
478
479 new_measure:
480         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
481         tp->rcv_rtt_est.time = tcp_time_stamp;
482 }
483
484 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
485                                           const struct sk_buff *skb)
486 {
487         struct tcp_sock *tp = tcp_sk(sk);
488         if (tp->rx_opt.rcv_tsecr &&
489             (TCP_SKB_CB(skb)->end_seq -
490              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
491                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
492 }
493
494 /*
495  * This function should be called every time data is copied to user space.
496  * It calculates the appropriate TCP receive buffer space.
497  */
498 void tcp_rcv_space_adjust(struct sock *sk)
499 {
500         struct tcp_sock *tp = tcp_sk(sk);
501         int time;
502         int space;
503
504         if (tp->rcvq_space.time == 0)
505                 goto new_measure;
506
507         time = tcp_time_stamp - tp->rcvq_space.time;
508         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
509                 return;
510
511         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
512
513         space = max(tp->rcvq_space.space, space);
514
515         if (tp->rcvq_space.space != space) {
516                 int rcvmem;
517
518                 tp->rcvq_space.space = space;
519
520                 if (sysctl_tcp_moderate_rcvbuf &&
521                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
522                         int new_clamp = space;
523
524                         /* Receive space grows, normalize in order to
525                          * take into account packet headers and sk_buff
526                          * structure overhead.
527                          */
528                         space /= tp->advmss;
529                         if (!space)
530                                 space = 1;
531                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
532                                   16 + sizeof(struct sk_buff));
533                         while (tcp_win_from_space(rcvmem) < tp->advmss)
534                                 rcvmem += 128;
535                         space *= rcvmem;
536                         space = min(space, sysctl_tcp_rmem[2]);
537                         if (space > sk->sk_rcvbuf) {
538                                 sk->sk_rcvbuf = space;
539
540                                 /* Make the window clamp follow along.  */
541                                 tp->window_clamp = new_clamp;
542                         }
543                 }
544         }
545
546 new_measure:
547         tp->rcvq_space.seq = tp->copied_seq;
548         tp->rcvq_space.time = tcp_time_stamp;
549 }
550
551 /* There is something which you must keep in mind when you analyze the
552  * behavior of the tp->ato delayed ack timeout interval.  When a
553  * connection starts up, we want to ack as quickly as possible.  The
554  * problem is that "good" TCP's do slow start at the beginning of data
555  * transmission.  The means that until we send the first few ACK's the
556  * sender will sit on his end and only queue most of his data, because
557  * he can only send snd_cwnd unacked packets at any given time.  For
558  * each ACK we send, he increments snd_cwnd and transmits more of his
559  * queue.  -DaveM
560  */
561 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
562 {
563         struct tcp_sock *tp = tcp_sk(sk);
564         struct inet_connection_sock *icsk = inet_csk(sk);
565         u32 now;
566
567         inet_csk_schedule_ack(sk);
568
569         tcp_measure_rcv_mss(sk, skb);
570
571         tcp_rcv_rtt_measure(tp);
572
573         now = tcp_time_stamp;
574
575         if (!icsk->icsk_ack.ato) {
576                 /* The _first_ data packet received, initialize
577                  * delayed ACK engine.
578                  */
579                 tcp_incr_quickack(sk);
580                 icsk->icsk_ack.ato = TCP_ATO_MIN;
581         } else {
582                 int m = now - icsk->icsk_ack.lrcvtime;
583
584                 if (m <= TCP_ATO_MIN / 2) {
585                         /* The fastest case is the first. */
586                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
587                 } else if (m < icsk->icsk_ack.ato) {
588                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
589                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
590                                 icsk->icsk_ack.ato = icsk->icsk_rto;
591                 } else if (m > icsk->icsk_rto) {
592                         /* Too long gap. Apparently sender failed to
593                          * restart window, so that we send ACKs quickly.
594                          */
595                         tcp_incr_quickack(sk);
596                         sk_mem_reclaim(sk);
597                 }
598         }
599         icsk->icsk_ack.lrcvtime = now;
600
601         TCP_ECN_check_ce(tp, skb);
602
603         if (skb->len >= 128)
604                 tcp_grow_window(sk, skb);
605 }
606
607 /* Called to compute a smoothed rtt estimate. The data fed to this
608  * routine either comes from timestamps, or from segments that were
609  * known _not_ to have been retransmitted [see Karn/Partridge
610  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
611  * piece by Van Jacobson.
612  * NOTE: the next three routines used to be one big routine.
613  * To save cycles in the RFC 1323 implementation it was better to break
614  * it up into three procedures. -- erics
615  */
616 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
617 {
618         struct tcp_sock *tp = tcp_sk(sk);
619         long m = mrtt; /* RTT */
620
621         /*      The following amusing code comes from Jacobson's
622          *      article in SIGCOMM '88.  Note that rtt and mdev
623          *      are scaled versions of rtt and mean deviation.
624          *      This is designed to be as fast as possible
625          *      m stands for "measurement".
626          *
627          *      On a 1990 paper the rto value is changed to:
628          *      RTO = rtt + 4 * mdev
629          *
630          * Funny. This algorithm seems to be very broken.
631          * These formulae increase RTO, when it should be decreased, increase
632          * too slowly, when it should be increased quickly, decrease too quickly
633          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
634          * does not matter how to _calculate_ it. Seems, it was trap
635          * that VJ failed to avoid. 8)
636          */
637         if (m == 0)
638                 m = 1;
639         if (tp->srtt != 0) {
640                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
641                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
642                 if (m < 0) {
643                         m = -m;         /* m is now abs(error) */
644                         m -= (tp->mdev >> 2);   /* similar update on mdev */
645                         /* This is similar to one of Eifel findings.
646                          * Eifel blocks mdev updates when rtt decreases.
647                          * This solution is a bit different: we use finer gain
648                          * for mdev in this case (alpha*beta).
649                          * Like Eifel it also prevents growth of rto,
650                          * but also it limits too fast rto decreases,
651                          * happening in pure Eifel.
652                          */
653                         if (m > 0)
654                                 m >>= 3;
655                 } else {
656                         m -= (tp->mdev >> 2);   /* similar update on mdev */
657                 }
658                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
659                 if (tp->mdev > tp->mdev_max) {
660                         tp->mdev_max = tp->mdev;
661                         if (tp->mdev_max > tp->rttvar)
662                                 tp->rttvar = tp->mdev_max;
663                 }
664                 if (after(tp->snd_una, tp->rtt_seq)) {
665                         if (tp->mdev_max < tp->rttvar)
666                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
667                         tp->rtt_seq = tp->snd_nxt;
668                         tp->mdev_max = tcp_rto_min(sk);
669                 }
670         } else {
671                 /* no previous measure. */
672                 tp->srtt = m << 3;      /* take the measured time to be rtt */
673                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
674                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
675                 tp->rtt_seq = tp->snd_nxt;
676         }
677 }
678
679 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
680  * routine referred to above.
681  */
682 static inline void tcp_set_rto(struct sock *sk)
683 {
684         const struct tcp_sock *tp = tcp_sk(sk);
685         /* Old crap is replaced with new one. 8)
686          *
687          * More seriously:
688          * 1. If rtt variance happened to be less 50msec, it is hallucination.
689          *    It cannot be less due to utterly erratic ACK generation made
690          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
691          *    to do with delayed acks, because at cwnd>2 true delack timeout
692          *    is invisible. Actually, Linux-2.4 also generates erratic
693          *    ACKs in some circumstances.
694          */
695         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
696
697         /* 2. Fixups made earlier cannot be right.
698          *    If we do not estimate RTO correctly without them,
699          *    all the algo is pure shit and should be replaced
700          *    with correct one. It is exactly, which we pretend to do.
701          */
702
703         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
704          * guarantees that rto is higher.
705          */
706         tcp_bound_rto(sk);
707 }
708
709 /* Save metrics learned by this TCP session.
710    This function is called only, when TCP finishes successfully
711    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
712  */
713 void tcp_update_metrics(struct sock *sk)
714 {
715         struct tcp_sock *tp = tcp_sk(sk);
716         struct dst_entry *dst = __sk_dst_get(sk);
717
718         if (sysctl_tcp_nometrics_save)
719                 return;
720
721         dst_confirm(dst);
722
723         if (dst && (dst->flags & DST_HOST)) {
724                 const struct inet_connection_sock *icsk = inet_csk(sk);
725                 int m;
726                 unsigned long rtt;
727
728                 if (icsk->icsk_backoff || !tp->srtt) {
729                         /* This session failed to estimate rtt. Why?
730                          * Probably, no packets returned in time.
731                          * Reset our results.
732                          */
733                         if (!(dst_metric_locked(dst, RTAX_RTT)))
734                                 dst->metrics[RTAX_RTT - 1] = 0;
735                         return;
736                 }
737
738                 rtt = dst_metric_rtt(dst, RTAX_RTT);
739                 m = rtt - tp->srtt;
740
741                 /* If newly calculated rtt larger than stored one,
742                  * store new one. Otherwise, use EWMA. Remember,
743                  * rtt overestimation is always better than underestimation.
744                  */
745                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
746                         if (m <= 0)
747                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
748                         else
749                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
750                 }
751
752                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
753                         unsigned long var;
754                         if (m < 0)
755                                 m = -m;
756
757                         /* Scale deviation to rttvar fixed point */
758                         m >>= 1;
759                         if (m < tp->mdev)
760                                 m = tp->mdev;
761
762                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
763                         if (m >= var)
764                                 var = m;
765                         else
766                                 var -= (var - m) >> 2;
767
768                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
769                 }
770
771                 if (tcp_in_initial_slowstart(tp)) {
772                         /* Slow start still did not finish. */
773                         if (dst_metric(dst, RTAX_SSTHRESH) &&
774                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
775                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
776                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
777                         if (!dst_metric_locked(dst, RTAX_CWND) &&
778                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
779                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
780                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
781                            icsk->icsk_ca_state == TCP_CA_Open) {
782                         /* Cong. avoidance phase, cwnd is reliable. */
783                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
784                                 dst->metrics[RTAX_SSTHRESH-1] =
785                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
786                         if (!dst_metric_locked(dst, RTAX_CWND))
787                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
788                 } else {
789                         /* Else slow start did not finish, cwnd is non-sense,
790                            ssthresh may be also invalid.
791                          */
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
794                         if (dst_metric(dst, RTAX_SSTHRESH) &&
795                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
796                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
797                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
798                 }
799
800                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
801                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
802                             tp->reordering != sysctl_tcp_reordering)
803                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
804                 }
805         }
806 }
807
808 /* Numbers are taken from RFC3390.
809  *
810  * John Heffner states:
811  *
812  *      The RFC specifies a window of no more than 4380 bytes
813  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
814  *      is a bit misleading because they use a clamp at 4380 bytes
815  *      rather than use a multiplier in the relevant range.
816  */
817 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
818 {
819         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
820
821         if (!cwnd) {
822                 if (tp->mss_cache > 1460)
823                         cwnd = 2;
824                 else
825                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
826         }
827         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
828 }
829
830 /* Set slow start threshold and cwnd not falling to slow start */
831 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
832 {
833         struct tcp_sock *tp = tcp_sk(sk);
834         const struct inet_connection_sock *icsk = inet_csk(sk);
835
836         tp->prior_ssthresh = 0;
837         tp->bytes_acked = 0;
838         if (icsk->icsk_ca_state < TCP_CA_CWR) {
839                 tp->undo_marker = 0;
840                 if (set_ssthresh)
841                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
842                 tp->snd_cwnd = min(tp->snd_cwnd,
843                                    tcp_packets_in_flight(tp) + 1U);
844                 tp->snd_cwnd_cnt = 0;
845                 tp->high_seq = tp->snd_nxt;
846                 tp->snd_cwnd_stamp = tcp_time_stamp;
847                 TCP_ECN_queue_cwr(tp);
848
849                 tcp_set_ca_state(sk, TCP_CA_CWR);
850         }
851 }
852
853 /*
854  * Packet counting of FACK is based on in-order assumptions, therefore TCP
855  * disables it when reordering is detected
856  */
857 static void tcp_disable_fack(struct tcp_sock *tp)
858 {
859         /* RFC3517 uses different metric in lost marker => reset on change */
860         if (tcp_is_fack(tp))
861                 tp->lost_skb_hint = NULL;
862         tp->rx_opt.sack_ok &= ~2;
863 }
864
865 /* Take a notice that peer is sending D-SACKs */
866 static void tcp_dsack_seen(struct tcp_sock *tp)
867 {
868         tp->rx_opt.sack_ok |= 4;
869 }
870
871 /* Initialize metrics on socket. */
872
873 static void tcp_init_metrics(struct sock *sk)
874 {
875         struct tcp_sock *tp = tcp_sk(sk);
876         struct dst_entry *dst = __sk_dst_get(sk);
877
878         if (dst == NULL)
879                 goto reset;
880
881         dst_confirm(dst);
882
883         if (dst_metric_locked(dst, RTAX_CWND))
884                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
885         if (dst_metric(dst, RTAX_SSTHRESH)) {
886                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
887                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
888                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
889         }
890         if (dst_metric(dst, RTAX_REORDERING) &&
891             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
892                 tcp_disable_fack(tp);
893                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
894         }
895
896         if (dst_metric(dst, RTAX_RTT) == 0)
897                 goto reset;
898
899         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
900                 goto reset;
901
902         /* Initial rtt is determined from SYN,SYN-ACK.
903          * The segment is small and rtt may appear much
904          * less than real one. Use per-dst memory
905          * to make it more realistic.
906          *
907          * A bit of theory. RTT is time passed after "normal" sized packet
908          * is sent until it is ACKed. In normal circumstances sending small
909          * packets force peer to delay ACKs and calculation is correct too.
910          * The algorithm is adaptive and, provided we follow specs, it
911          * NEVER underestimate RTT. BUT! If peer tries to make some clever
912          * tricks sort of "quick acks" for time long enough to decrease RTT
913          * to low value, and then abruptly stops to do it and starts to delay
914          * ACKs, wait for troubles.
915          */
916         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
917                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
918                 tp->rtt_seq = tp->snd_nxt;
919         }
920         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
921                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
922                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
923         }
924         tcp_set_rto(sk);
925         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
926                 goto reset;
927
928 cwnd:
929         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
930         tp->snd_cwnd_stamp = tcp_time_stamp;
931         return;
932
933 reset:
934         /* Play conservative. If timestamps are not
935          * supported, TCP will fail to recalculate correct
936          * rtt, if initial rto is too small. FORGET ALL AND RESET!
937          */
938         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
939                 tp->srtt = 0;
940                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
941                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
942         }
943         goto cwnd;
944 }
945
946 static void tcp_update_reordering(struct sock *sk, const int metric,
947                                   const int ts)
948 {
949         struct tcp_sock *tp = tcp_sk(sk);
950         if (metric > tp->reordering) {
951                 int mib_idx;
952
953                 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955                 /* This exciting event is worth to be remembered. 8) */
956                 if (ts)
957                         mib_idx = LINUX_MIB_TCPTSREORDER;
958                 else if (tcp_is_reno(tp))
959                         mib_idx = LINUX_MIB_TCPRENOREORDER;
960                 else if (tcp_is_fack(tp))
961                         mib_idx = LINUX_MIB_TCPFACKREORDER;
962                 else
963                         mib_idx = LINUX_MIB_TCPSACKREORDER;
964
965                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
966 #if FASTRETRANS_DEBUG > 1
967                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
968                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
969                        tp->reordering,
970                        tp->fackets_out,
971                        tp->sacked_out,
972                        tp->undo_marker ? tp->undo_retrans : 0);
973 #endif
974                 tcp_disable_fack(tp);
975         }
976 }
977
978 /* This must be called before lost_out is incremented */
979 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
980 {
981         if ((tp->retransmit_skb_hint == NULL) ||
982             before(TCP_SKB_CB(skb)->seq,
983                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
984                 tp->retransmit_skb_hint = skb;
985
986         if (!tp->lost_out ||
987             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
988                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
989 }
990
991 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
992 {
993         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994                 tcp_verify_retransmit_hint(tp, skb);
995
996                 tp->lost_out += tcp_skb_pcount(skb);
997                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998         }
999 }
1000
1001 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1002                                             struct sk_buff *skb)
1003 {
1004         tcp_verify_retransmit_hint(tp, skb);
1005
1006         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1007                 tp->lost_out += tcp_skb_pcount(skb);
1008                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1009         }
1010 }
1011
1012 /* This procedure tags the retransmission queue when SACKs arrive.
1013  *
1014  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1015  * Packets in queue with these bits set are counted in variables
1016  * sacked_out, retrans_out and lost_out, correspondingly.
1017  *
1018  * Valid combinations are:
1019  * Tag  InFlight        Description
1020  * 0    1               - orig segment is in flight.
1021  * S    0               - nothing flies, orig reached receiver.
1022  * L    0               - nothing flies, orig lost by net.
1023  * R    2               - both orig and retransmit are in flight.
1024  * L|R  1               - orig is lost, retransmit is in flight.
1025  * S|R  1               - orig reached receiver, retrans is still in flight.
1026  * (L|S|R is logically valid, it could occur when L|R is sacked,
1027  *  but it is equivalent to plain S and code short-curcuits it to S.
1028  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1029  *
1030  * These 6 states form finite state machine, controlled by the following events:
1031  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1032  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1033  * 3. Loss detection event of one of three flavors:
1034  *      A. Scoreboard estimator decided the packet is lost.
1035  *         A'. Reno "three dupacks" marks head of queue lost.
1036  *         A''. Its FACK modfication, head until snd.fack is lost.
1037  *      B. SACK arrives sacking data transmitted after never retransmitted
1038  *         hole was sent out.
1039  *      C. SACK arrives sacking SND.NXT at the moment, when the
1040  *         segment was retransmitted.
1041  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1042  *
1043  * It is pleasant to note, that state diagram turns out to be commutative,
1044  * so that we are allowed not to be bothered by order of our actions,
1045  * when multiple events arrive simultaneously. (see the function below).
1046  *
1047  * Reordering detection.
1048  * --------------------
1049  * Reordering metric is maximal distance, which a packet can be displaced
1050  * in packet stream. With SACKs we can estimate it:
1051  *
1052  * 1. SACK fills old hole and the corresponding segment was not
1053  *    ever retransmitted -> reordering. Alas, we cannot use it
1054  *    when segment was retransmitted.
1055  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1056  *    for retransmitted and already SACKed segment -> reordering..
1057  * Both of these heuristics are not used in Loss state, when we cannot
1058  * account for retransmits accurately.
1059  *
1060  * SACK block validation.
1061  * ----------------------
1062  *
1063  * SACK block range validation checks that the received SACK block fits to
1064  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1065  * Note that SND.UNA is not included to the range though being valid because
1066  * it means that the receiver is rather inconsistent with itself reporting
1067  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1068  * perfectly valid, however, in light of RFC2018 which explicitly states
1069  * that "SACK block MUST reflect the newest segment.  Even if the newest
1070  * segment is going to be discarded ...", not that it looks very clever
1071  * in case of head skb. Due to potentional receiver driven attacks, we
1072  * choose to avoid immediate execution of a walk in write queue due to
1073  * reneging and defer head skb's loss recovery to standard loss recovery
1074  * procedure that will eventually trigger (nothing forbids us doing this).
1075  *
1076  * Implements also blockage to start_seq wrap-around. Problem lies in the
1077  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1078  * there's no guarantee that it will be before snd_nxt (n). The problem
1079  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1080  * wrap (s_w):
1081  *
1082  *         <- outs wnd ->                          <- wrapzone ->
1083  *         u     e      n                         u_w   e_w  s n_w
1084  *         |     |      |                          |     |   |  |
1085  * |<------------+------+----- TCP seqno space --------------+---------->|
1086  * ...-- <2^31 ->|                                           |<--------...
1087  * ...---- >2^31 ------>|                                    |<--------...
1088  *
1089  * Current code wouldn't be vulnerable but it's better still to discard such
1090  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1091  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1092  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1093  * equal to the ideal case (infinite seqno space without wrap caused issues).
1094  *
1095  * With D-SACK the lower bound is extended to cover sequence space below
1096  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1097  * again, D-SACK block must not to go across snd_una (for the same reason as
1098  * for the normal SACK blocks, explained above). But there all simplicity
1099  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1100  * fully below undo_marker they do not affect behavior in anyway and can
1101  * therefore be safely ignored. In rare cases (which are more or less
1102  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1103  * fragmentation and packet reordering past skb's retransmission. To consider
1104  * them correctly, the acceptable range must be extended even more though
1105  * the exact amount is rather hard to quantify. However, tp->max_window can
1106  * be used as an exaggerated estimate.
1107  */
1108 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1109                                   u32 start_seq, u32 end_seq)
1110 {
1111         /* Too far in future, or reversed (interpretation is ambiguous) */
1112         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1113                 return 0;
1114
1115         /* Nasty start_seq wrap-around check (see comments above) */
1116         if (!before(start_seq, tp->snd_nxt))
1117                 return 0;
1118
1119         /* In outstanding window? ...This is valid exit for D-SACKs too.
1120          * start_seq == snd_una is non-sensical (see comments above)
1121          */
1122         if (after(start_seq, tp->snd_una))
1123                 return 1;
1124
1125         if (!is_dsack || !tp->undo_marker)
1126                 return 0;
1127
1128         /* ...Then it's D-SACK, and must reside below snd_una completely */
1129         if (!after(end_seq, tp->snd_una))
1130                 return 0;
1131
1132         if (!before(start_seq, tp->undo_marker))
1133                 return 1;
1134
1135         /* Too old */
1136         if (!after(end_seq, tp->undo_marker))
1137                 return 0;
1138
1139         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1140          *   start_seq < undo_marker and end_seq >= undo_marker.
1141          */
1142         return !before(start_seq, end_seq - tp->max_window);
1143 }
1144
1145 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1146  * Event "C". Later note: FACK people cheated me again 8), we have to account
1147  * for reordering! Ugly, but should help.
1148  *
1149  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1150  * less than what is now known to be received by the other end (derived from
1151  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1152  * retransmitted skbs to avoid some costly processing per ACKs.
1153  */
1154 static void tcp_mark_lost_retrans(struct sock *sk)
1155 {
1156         const struct inet_connection_sock *icsk = inet_csk(sk);
1157         struct tcp_sock *tp = tcp_sk(sk);
1158         struct sk_buff *skb;
1159         int cnt = 0;
1160         u32 new_low_seq = tp->snd_nxt;
1161         u32 received_upto = tcp_highest_sack_seq(tp);
1162
1163         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1164             !after(received_upto, tp->lost_retrans_low) ||
1165             icsk->icsk_ca_state != TCP_CA_Recovery)
1166                 return;
1167
1168         tcp_for_write_queue(skb, sk) {
1169                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1170
1171                 if (skb == tcp_send_head(sk))
1172                         break;
1173                 if (cnt == tp->retrans_out)
1174                         break;
1175                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1176                         continue;
1177
1178                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1179                         continue;
1180
1181                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1182                  * constraint here (see above) but figuring out that at
1183                  * least tp->reordering SACK blocks reside between ack_seq
1184                  * and received_upto is not easy task to do cheaply with
1185                  * the available datastructures.
1186                  *
1187                  * Whether FACK should check here for tp->reordering segs
1188                  * in-between one could argue for either way (it would be
1189                  * rather simple to implement as we could count fack_count
1190                  * during the walk and do tp->fackets_out - fack_count).
1191                  */
1192                 if (after(received_upto, ack_seq)) {
1193                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1194                         tp->retrans_out -= tcp_skb_pcount(skb);
1195
1196                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1197                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1198                 } else {
1199                         if (before(ack_seq, new_low_seq))
1200                                 new_low_seq = ack_seq;
1201                         cnt += tcp_skb_pcount(skb);
1202                 }
1203         }
1204
1205         if (tp->retrans_out)
1206                 tp->lost_retrans_low = new_low_seq;
1207 }
1208
1209 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1210                            struct tcp_sack_block_wire *sp, int num_sacks,
1211                            u32 prior_snd_una)
1212 {
1213         struct tcp_sock *tp = tcp_sk(sk);
1214         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1215         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1216         int dup_sack = 0;
1217
1218         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1219                 dup_sack = 1;
1220                 tcp_dsack_seen(tp);
1221                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1222         } else if (num_sacks > 1) {
1223                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1224                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1225
1226                 if (!after(end_seq_0, end_seq_1) &&
1227                     !before(start_seq_0, start_seq_1)) {
1228                         dup_sack = 1;
1229                         tcp_dsack_seen(tp);
1230                         NET_INC_STATS_BH(sock_net(sk),
1231                                         LINUX_MIB_TCPDSACKOFORECV);
1232                 }
1233         }
1234
1235         /* D-SACK for already forgotten data... Do dumb counting. */
1236         if (dup_sack &&
1237             !after(end_seq_0, prior_snd_una) &&
1238             after(end_seq_0, tp->undo_marker))
1239                 tp->undo_retrans--;
1240
1241         return dup_sack;
1242 }
1243
1244 struct tcp_sacktag_state {
1245         int reord;
1246         int fack_count;
1247         int flag;
1248 };
1249
1250 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1251  * the incoming SACK may not exactly match but we can find smaller MSS
1252  * aligned portion of it that matches. Therefore we might need to fragment
1253  * which may fail and creates some hassle (caller must handle error case
1254  * returns).
1255  *
1256  * FIXME: this could be merged to shift decision code
1257  */
1258 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1259                                  u32 start_seq, u32 end_seq)
1260 {
1261         int in_sack, err;
1262         unsigned int pkt_len;
1263         unsigned int mss;
1264
1265         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1266                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1267
1268         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1269             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1270                 mss = tcp_skb_mss(skb);
1271                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1272
1273                 if (!in_sack) {
1274                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1275                         if (pkt_len < mss)
1276                                 pkt_len = mss;
1277                 } else {
1278                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1279                         if (pkt_len < mss)
1280                                 return -EINVAL;
1281                 }
1282
1283                 /* Round if necessary so that SACKs cover only full MSSes
1284                  * and/or the remaining small portion (if present)
1285                  */
1286                 if (pkt_len > mss) {
1287                         unsigned int new_len = (pkt_len / mss) * mss;
1288                         if (!in_sack && new_len < pkt_len) {
1289                                 new_len += mss;
1290                                 if (new_len > skb->len)
1291                                         return 0;
1292                         }
1293                         pkt_len = new_len;
1294                 }
1295                 err = tcp_fragment(sk, skb, pkt_len, mss);
1296                 if (err < 0)
1297                         return err;
1298         }
1299
1300         return in_sack;
1301 }
1302
1303 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1304                           struct tcp_sacktag_state *state,
1305                           int dup_sack, int pcount)
1306 {
1307         struct tcp_sock *tp = tcp_sk(sk);
1308         u8 sacked = TCP_SKB_CB(skb)->sacked;
1309         int fack_count = state->fack_count;
1310
1311         /* Account D-SACK for retransmitted packet. */
1312         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1313                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1314                         tp->undo_retrans--;
1315                 if (sacked & TCPCB_SACKED_ACKED)
1316                         state->reord = min(fack_count, state->reord);
1317         }
1318
1319         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1320         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1321                 return sacked;
1322
1323         if (!(sacked & TCPCB_SACKED_ACKED)) {
1324                 if (sacked & TCPCB_SACKED_RETRANS) {
1325                         /* If the segment is not tagged as lost,
1326                          * we do not clear RETRANS, believing
1327                          * that retransmission is still in flight.
1328                          */
1329                         if (sacked & TCPCB_LOST) {
1330                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1331                                 tp->lost_out -= pcount;
1332                                 tp->retrans_out -= pcount;
1333                         }
1334                 } else {
1335                         if (!(sacked & TCPCB_RETRANS)) {
1336                                 /* New sack for not retransmitted frame,
1337                                  * which was in hole. It is reordering.
1338                                  */
1339                                 if (before(TCP_SKB_CB(skb)->seq,
1340                                            tcp_highest_sack_seq(tp)))
1341                                         state->reord = min(fack_count,
1342                                                            state->reord);
1343
1344                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1345                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1346                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1347                         }
1348
1349                         if (sacked & TCPCB_LOST) {
1350                                 sacked &= ~TCPCB_LOST;
1351                                 tp->lost_out -= pcount;
1352                         }
1353                 }
1354
1355                 sacked |= TCPCB_SACKED_ACKED;
1356                 state->flag |= FLAG_DATA_SACKED;
1357                 tp->sacked_out += pcount;
1358
1359                 fack_count += pcount;
1360
1361                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1362                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1363                     before(TCP_SKB_CB(skb)->seq,
1364                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1365                         tp->lost_cnt_hint += pcount;
1366
1367                 if (fack_count > tp->fackets_out)
1368                         tp->fackets_out = fack_count;
1369         }
1370
1371         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1372          * frames and clear it. undo_retrans is decreased above, L|R frames
1373          * are accounted above as well.
1374          */
1375         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1376                 sacked &= ~TCPCB_SACKED_RETRANS;
1377                 tp->retrans_out -= pcount;
1378         }
1379
1380         return sacked;
1381 }
1382
1383 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1384                            struct tcp_sacktag_state *state,
1385                            unsigned int pcount, int shifted, int mss,
1386                            int dup_sack)
1387 {
1388         struct tcp_sock *tp = tcp_sk(sk);
1389         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1390
1391         BUG_ON(!pcount);
1392
1393         /* Tweak before seqno plays */
1394         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1395             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1396                 tp->lost_cnt_hint += pcount;
1397
1398         TCP_SKB_CB(prev)->end_seq += shifted;
1399         TCP_SKB_CB(skb)->seq += shifted;
1400
1401         skb_shinfo(prev)->gso_segs += pcount;
1402         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1403         skb_shinfo(skb)->gso_segs -= pcount;
1404
1405         /* When we're adding to gso_segs == 1, gso_size will be zero,
1406          * in theory this shouldn't be necessary but as long as DSACK
1407          * code can come after this skb later on it's better to keep
1408          * setting gso_size to something.
1409          */
1410         if (!skb_shinfo(prev)->gso_size) {
1411                 skb_shinfo(prev)->gso_size = mss;
1412                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1413         }
1414
1415         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1416         if (skb_shinfo(skb)->gso_segs <= 1) {
1417                 skb_shinfo(skb)->gso_size = 0;
1418                 skb_shinfo(skb)->gso_type = 0;
1419         }
1420
1421         /* We discard results */
1422         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1423
1424         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1425         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1426
1427         if (skb->len > 0) {
1428                 BUG_ON(!tcp_skb_pcount(skb));
1429                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1430                 return 0;
1431         }
1432
1433         /* Whole SKB was eaten :-) */
1434
1435         if (skb == tp->retransmit_skb_hint)
1436                 tp->retransmit_skb_hint = prev;
1437         if (skb == tp->scoreboard_skb_hint)
1438                 tp->scoreboard_skb_hint = prev;
1439         if (skb == tp->lost_skb_hint) {
1440                 tp->lost_skb_hint = prev;
1441                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1442         }
1443
1444         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1445         if (skb == tcp_highest_sack(sk))
1446                 tcp_advance_highest_sack(sk, skb);
1447
1448         tcp_unlink_write_queue(skb, sk);
1449         sk_wmem_free_skb(sk, skb);
1450
1451         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1452
1453         return 1;
1454 }
1455
1456 /* I wish gso_size would have a bit more sane initialization than
1457  * something-or-zero which complicates things
1458  */
1459 static int tcp_skb_seglen(struct sk_buff *skb)
1460 {
1461         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1462 }
1463
1464 /* Shifting pages past head area doesn't work */
1465 static int skb_can_shift(struct sk_buff *skb)
1466 {
1467         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1468 }
1469
1470 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1471  * skb.
1472  */
1473 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1474                                           struct tcp_sacktag_state *state,
1475                                           u32 start_seq, u32 end_seq,
1476                                           int dup_sack)
1477 {
1478         struct tcp_sock *tp = tcp_sk(sk);
1479         struct sk_buff *prev;
1480         int mss;
1481         int pcount = 0;
1482         int len;
1483         int in_sack;
1484
1485         if (!sk_can_gso(sk))
1486                 goto fallback;
1487
1488         /* Normally R but no L won't result in plain S */
1489         if (!dup_sack &&
1490             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1491                 goto fallback;
1492         if (!skb_can_shift(skb))
1493                 goto fallback;
1494         /* This frame is about to be dropped (was ACKed). */
1495         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1496                 goto fallback;
1497
1498         /* Can only happen with delayed DSACK + discard craziness */
1499         if (unlikely(skb == tcp_write_queue_head(sk)))
1500                 goto fallback;
1501         prev = tcp_write_queue_prev(sk, skb);
1502
1503         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1504                 goto fallback;
1505
1506         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1507                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1508
1509         if (in_sack) {
1510                 len = skb->len;
1511                 pcount = tcp_skb_pcount(skb);
1512                 mss = tcp_skb_seglen(skb);
1513
1514                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1515                  * drop this restriction as unnecessary
1516                  */
1517                 if (mss != tcp_skb_seglen(prev))
1518                         goto fallback;
1519         } else {
1520                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1521                         goto noop;
1522                 /* CHECKME: This is non-MSS split case only?, this will
1523                  * cause skipped skbs due to advancing loop btw, original
1524                  * has that feature too
1525                  */
1526                 if (tcp_skb_pcount(skb) <= 1)
1527                         goto noop;
1528
1529                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1530                 if (!in_sack) {
1531                         /* TODO: head merge to next could be attempted here
1532                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1533                          * though it might not be worth of the additional hassle
1534                          *
1535                          * ...we can probably just fallback to what was done
1536                          * previously. We could try merging non-SACKed ones
1537                          * as well but it probably isn't going to buy off
1538                          * because later SACKs might again split them, and
1539                          * it would make skb timestamp tracking considerably
1540                          * harder problem.
1541                          */
1542                         goto fallback;
1543                 }
1544
1545                 len = end_seq - TCP_SKB_CB(skb)->seq;
1546                 BUG_ON(len < 0);
1547                 BUG_ON(len > skb->len);
1548
1549                 /* MSS boundaries should be honoured or else pcount will
1550                  * severely break even though it makes things bit trickier.
1551                  * Optimize common case to avoid most of the divides
1552                  */
1553                 mss = tcp_skb_mss(skb);
1554
1555                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1556                  * drop this restriction as unnecessary
1557                  */
1558                 if (mss != tcp_skb_seglen(prev))
1559                         goto fallback;
1560
1561                 if (len == mss) {
1562                         pcount = 1;
1563                 } else if (len < mss) {
1564                         goto noop;
1565                 } else {
1566                         pcount = len / mss;
1567                         len = pcount * mss;
1568                 }
1569         }
1570
1571         if (!skb_shift(prev, skb, len))
1572                 goto fallback;
1573         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1574                 goto out;
1575
1576         /* Hole filled allows collapsing with the next as well, this is very
1577          * useful when hole on every nth skb pattern happens
1578          */
1579         if (prev == tcp_write_queue_tail(sk))
1580                 goto out;
1581         skb = tcp_write_queue_next(sk, prev);
1582
1583         if (!skb_can_shift(skb) ||
1584             (skb == tcp_send_head(sk)) ||
1585             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1586             (mss != tcp_skb_seglen(skb)))
1587                 goto out;
1588
1589         len = skb->len;
1590         if (skb_shift(prev, skb, len)) {
1591                 pcount += tcp_skb_pcount(skb);
1592                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1593         }
1594
1595 out:
1596         state->fack_count += pcount;
1597         return prev;
1598
1599 noop:
1600         return skb;
1601
1602 fallback:
1603         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1604         return NULL;
1605 }
1606
1607 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1608                                         struct tcp_sack_block *next_dup,
1609                                         struct tcp_sacktag_state *state,
1610                                         u32 start_seq, u32 end_seq,
1611                                         int dup_sack_in)
1612 {
1613         struct tcp_sock *tp = tcp_sk(sk);
1614         struct sk_buff *tmp;
1615
1616         tcp_for_write_queue_from(skb, sk) {
1617                 int in_sack = 0;
1618                 int dup_sack = dup_sack_in;
1619
1620                 if (skb == tcp_send_head(sk))
1621                         break;
1622
1623                 /* queue is in-order => we can short-circuit the walk early */
1624                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1625                         break;
1626
1627                 if ((next_dup != NULL) &&
1628                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1629                         in_sack = tcp_match_skb_to_sack(sk, skb,
1630                                                         next_dup->start_seq,
1631                                                         next_dup->end_seq);
1632                         if (in_sack > 0)
1633                                 dup_sack = 1;
1634                 }
1635
1636                 /* skb reference here is a bit tricky to get right, since
1637                  * shifting can eat and free both this skb and the next,
1638                  * so not even _safe variant of the loop is enough.
1639                  */
1640                 if (in_sack <= 0) {
1641                         tmp = tcp_shift_skb_data(sk, skb, state,
1642                                                  start_seq, end_seq, dup_sack);
1643                         if (tmp != NULL) {
1644                                 if (tmp != skb) {
1645                                         skb = tmp;
1646                                         continue;
1647                                 }
1648
1649                                 in_sack = 0;
1650                         } else {
1651                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1652                                                                 start_seq,
1653                                                                 end_seq);
1654                         }
1655                 }
1656
1657                 if (unlikely(in_sack < 0))
1658                         break;
1659
1660                 if (in_sack) {
1661                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1662                                                                   state,
1663                                                                   dup_sack,
1664                                                                   tcp_skb_pcount(skb));
1665
1666                         if (!before(TCP_SKB_CB(skb)->seq,
1667                                     tcp_highest_sack_seq(tp)))
1668                                 tcp_advance_highest_sack(sk, skb);
1669                 }
1670
1671                 state->fack_count += tcp_skb_pcount(skb);
1672         }
1673         return skb;
1674 }
1675
1676 /* Avoid all extra work that is being done by sacktag while walking in
1677  * a normal way
1678  */
1679 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1680                                         struct tcp_sacktag_state *state,
1681                                         u32 skip_to_seq)
1682 {
1683         tcp_for_write_queue_from(skb, sk) {
1684                 if (skb == tcp_send_head(sk))
1685                         break;
1686
1687                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1688                         break;
1689
1690                 state->fack_count += tcp_skb_pcount(skb);
1691         }
1692         return skb;
1693 }
1694
1695 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1696                                                 struct sock *sk,
1697                                                 struct tcp_sack_block *next_dup,
1698                                                 struct tcp_sacktag_state *state,
1699                                                 u32 skip_to_seq)
1700 {
1701         if (next_dup == NULL)
1702                 return skb;
1703
1704         if (before(next_dup->start_seq, skip_to_seq)) {
1705                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1706                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1707                                        next_dup->start_seq, next_dup->end_seq,
1708                                        1);
1709         }
1710
1711         return skb;
1712 }
1713
1714 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1715 {
1716         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1717 }
1718
1719 static int
1720 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1721                         u32 prior_snd_una)
1722 {
1723         const struct inet_connection_sock *icsk = inet_csk(sk);
1724         struct tcp_sock *tp = tcp_sk(sk);
1725         unsigned char *ptr = (skb_transport_header(ack_skb) +
1726                               TCP_SKB_CB(ack_skb)->sacked);
1727         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1728         struct tcp_sack_block sp[TCP_NUM_SACKS];
1729         struct tcp_sack_block *cache;
1730         struct tcp_sacktag_state state;
1731         struct sk_buff *skb;
1732         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1733         int used_sacks;
1734         int found_dup_sack = 0;
1735         int i, j;
1736         int first_sack_index;
1737
1738         state.flag = 0;
1739         state.reord = tp->packets_out;
1740
1741         if (!tp->sacked_out) {
1742                 if (WARN_ON(tp->fackets_out))
1743                         tp->fackets_out = 0;
1744                 tcp_highest_sack_reset(sk);
1745         }
1746
1747         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1748                                          num_sacks, prior_snd_una);
1749         if (found_dup_sack)
1750                 state.flag |= FLAG_DSACKING_ACK;
1751
1752         /* Eliminate too old ACKs, but take into
1753          * account more or less fresh ones, they can
1754          * contain valid SACK info.
1755          */
1756         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1757                 return 0;
1758
1759         if (!tp->packets_out)
1760                 goto out;
1761
1762         used_sacks = 0;
1763         first_sack_index = 0;
1764         for (i = 0; i < num_sacks; i++) {
1765                 int dup_sack = !i && found_dup_sack;
1766
1767                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1768                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1769
1770                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1771                                             sp[used_sacks].start_seq,
1772                                             sp[used_sacks].end_seq)) {
1773                         int mib_idx;
1774
1775                         if (dup_sack) {
1776                                 if (!tp->undo_marker)
1777                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1778                                 else
1779                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1780                         } else {
1781                                 /* Don't count olds caused by ACK reordering */
1782                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1783                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1784                                         continue;
1785                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1786                         }
1787
1788                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1789                         if (i == 0)
1790                                 first_sack_index = -1;
1791                         continue;
1792                 }
1793
1794                 /* Ignore very old stuff early */
1795                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1796                         continue;
1797
1798                 used_sacks++;
1799         }
1800
1801         /* order SACK blocks to allow in order walk of the retrans queue */
1802         for (i = used_sacks - 1; i > 0; i--) {
1803                 for (j = 0; j < i; j++) {
1804                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1805                                 swap(sp[j], sp[j + 1]);
1806
1807                                 /* Track where the first SACK block goes to */
1808                                 if (j == first_sack_index)
1809                                         first_sack_index = j + 1;
1810                         }
1811                 }
1812         }
1813
1814         skb = tcp_write_queue_head(sk);
1815         state.fack_count = 0;
1816         i = 0;
1817
1818         if (!tp->sacked_out) {
1819                 /* It's already past, so skip checking against it */
1820                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1821         } else {
1822                 cache = tp->recv_sack_cache;
1823                 /* Skip empty blocks in at head of the cache */
1824                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1825                        !cache->end_seq)
1826                         cache++;
1827         }
1828
1829         while (i < used_sacks) {
1830                 u32 start_seq = sp[i].start_seq;
1831                 u32 end_seq = sp[i].end_seq;
1832                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1833                 struct tcp_sack_block *next_dup = NULL;
1834
1835                 if (found_dup_sack && ((i + 1) == first_sack_index))
1836                         next_dup = &sp[i + 1];
1837
1838                 /* Event "B" in the comment above. */
1839                 if (after(end_seq, tp->high_seq))
1840                         state.flag |= FLAG_DATA_LOST;
1841
1842                 /* Skip too early cached blocks */
1843                 while (tcp_sack_cache_ok(tp, cache) &&
1844                        !before(start_seq, cache->end_seq))
1845                         cache++;
1846
1847                 /* Can skip some work by looking recv_sack_cache? */
1848                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1849                     after(end_seq, cache->start_seq)) {
1850
1851                         /* Head todo? */
1852                         if (before(start_seq, cache->start_seq)) {
1853                                 skb = tcp_sacktag_skip(skb, sk, &state,
1854                                                        start_seq);
1855                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1856                                                        &state,
1857                                                        start_seq,
1858                                                        cache->start_seq,
1859                                                        dup_sack);
1860                         }
1861
1862                         /* Rest of the block already fully processed? */
1863                         if (!after(end_seq, cache->end_seq))
1864                                 goto advance_sp;
1865
1866                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1867                                                        &state,
1868                                                        cache->end_seq);
1869
1870                         /* ...tail remains todo... */
1871                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1872                                 /* ...but better entrypoint exists! */
1873                                 skb = tcp_highest_sack(sk);
1874                                 if (skb == NULL)
1875                                         break;
1876                                 state.fack_count = tp->fackets_out;
1877                                 cache++;
1878                                 goto walk;
1879                         }
1880
1881                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1882                         /* Check overlap against next cached too (past this one already) */
1883                         cache++;
1884                         continue;
1885                 }
1886
1887                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1888                         skb = tcp_highest_sack(sk);
1889                         if (skb == NULL)
1890                                 break;
1891                         state.fack_count = tp->fackets_out;
1892                 }
1893                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1894
1895 walk:
1896                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1897                                        start_seq, end_seq, dup_sack);
1898
1899 advance_sp:
1900                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1901                  * due to in-order walk
1902                  */
1903                 if (after(end_seq, tp->frto_highmark))
1904                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1905
1906                 i++;
1907         }
1908
1909         /* Clear the head of the cache sack blocks so we can skip it next time */
1910         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1911                 tp->recv_sack_cache[i].start_seq = 0;
1912                 tp->recv_sack_cache[i].end_seq = 0;
1913         }
1914         for (j = 0; j < used_sacks; j++)
1915                 tp->recv_sack_cache[i++] = sp[j];
1916
1917         tcp_mark_lost_retrans(sk);
1918
1919         tcp_verify_left_out(tp);
1920
1921         if ((state.reord < tp->fackets_out) &&
1922             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1923             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1924                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1925
1926 out:
1927
1928 #if FASTRETRANS_DEBUG > 0
1929         WARN_ON((int)tp->sacked_out < 0);
1930         WARN_ON((int)tp->lost_out < 0);
1931         WARN_ON((int)tp->retrans_out < 0);
1932         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1933 #endif
1934         return state.flag;
1935 }
1936
1937 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1938  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1939  */
1940 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1941 {
1942         u32 holes;
1943
1944         holes = max(tp->lost_out, 1U);
1945         holes = min(holes, tp->packets_out);
1946
1947         if ((tp->sacked_out + holes) > tp->packets_out) {
1948                 tp->sacked_out = tp->packets_out - holes;
1949                 return 1;
1950         }
1951         return 0;
1952 }
1953
1954 /* If we receive more dupacks than we expected counting segments
1955  * in assumption of absent reordering, interpret this as reordering.
1956  * The only another reason could be bug in receiver TCP.
1957  */
1958 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1959 {
1960         struct tcp_sock *tp = tcp_sk(sk);
1961         if (tcp_limit_reno_sacked(tp))
1962                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1963 }
1964
1965 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1966
1967 static void tcp_add_reno_sack(struct sock *sk)
1968 {
1969         struct tcp_sock *tp = tcp_sk(sk);
1970         tp->sacked_out++;
1971         tcp_check_reno_reordering(sk, 0);
1972         tcp_verify_left_out(tp);
1973 }
1974
1975 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1976
1977 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1978 {
1979         struct tcp_sock *tp = tcp_sk(sk);
1980
1981         if (acked > 0) {
1982                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1983                 if (acked - 1 >= tp->sacked_out)
1984                         tp->sacked_out = 0;
1985                 else
1986                         tp->sacked_out -= acked - 1;
1987         }
1988         tcp_check_reno_reordering(sk, acked);
1989         tcp_verify_left_out(tp);
1990 }
1991
1992 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1993 {
1994         tp->sacked_out = 0;
1995 }
1996
1997 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1998 {
1999         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2000 }
2001
2002 /* F-RTO can only be used if TCP has never retransmitted anything other than
2003  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2004  */
2005 int tcp_use_frto(struct sock *sk)
2006 {
2007         const struct tcp_sock *tp = tcp_sk(sk);
2008         const struct inet_connection_sock *icsk = inet_csk(sk);
2009         struct sk_buff *skb;
2010
2011         if (!sysctl_tcp_frto)
2012                 return 0;
2013
2014         /* MTU probe and F-RTO won't really play nicely along currently */
2015         if (icsk->icsk_mtup.probe_size)
2016                 return 0;
2017
2018         if (tcp_is_sackfrto(tp))
2019                 return 1;
2020
2021         /* Avoid expensive walking of rexmit queue if possible */
2022         if (tp->retrans_out > 1)
2023                 return 0;
2024
2025         skb = tcp_write_queue_head(sk);
2026         if (tcp_skb_is_last(sk, skb))
2027                 return 1;
2028         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2029         tcp_for_write_queue_from(skb, sk) {
2030                 if (skb == tcp_send_head(sk))
2031                         break;
2032                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2033                         return 0;
2034                 /* Short-circuit when first non-SACKed skb has been checked */
2035                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2036                         break;
2037         }
2038         return 1;
2039 }
2040
2041 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2042  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2043  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2044  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2045  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2046  * bits are handled if the Loss state is really to be entered (in
2047  * tcp_enter_frto_loss).
2048  *
2049  * Do like tcp_enter_loss() would; when RTO expires the second time it
2050  * does:
2051  *  "Reduce ssthresh if it has not yet been made inside this window."
2052  */
2053 void tcp_enter_frto(struct sock *sk)
2054 {
2055         const struct inet_connection_sock *icsk = inet_csk(sk);
2056         struct tcp_sock *tp = tcp_sk(sk);
2057         struct sk_buff *skb;
2058
2059         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2060             tp->snd_una == tp->high_seq ||
2061             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2062              !icsk->icsk_retransmits)) {
2063                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2064                 /* Our state is too optimistic in ssthresh() call because cwnd
2065                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2066                  * recovery has not yet completed. Pattern would be this: RTO,
2067                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2068                  * up here twice).
2069                  * RFC4138 should be more specific on what to do, even though
2070                  * RTO is quite unlikely to occur after the first Cumulative ACK
2071                  * due to back-off and complexity of triggering events ...
2072                  */
2073                 if (tp->frto_counter) {
2074                         u32 stored_cwnd;
2075                         stored_cwnd = tp->snd_cwnd;
2076                         tp->snd_cwnd = 2;
2077                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2078                         tp->snd_cwnd = stored_cwnd;
2079                 } else {
2080                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2081                 }
2082                 /* ... in theory, cong.control module could do "any tricks" in
2083                  * ssthresh(), which means that ca_state, lost bits and lost_out
2084                  * counter would have to be faked before the call occurs. We
2085                  * consider that too expensive, unlikely and hacky, so modules
2086                  * using these in ssthresh() must deal these incompatibility
2087                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2088                  */
2089                 tcp_ca_event(sk, CA_EVENT_FRTO);
2090         }
2091
2092         tp->undo_marker = tp->snd_una;
2093         tp->undo_retrans = 0;
2094
2095         skb = tcp_write_queue_head(sk);
2096         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2097                 tp->undo_marker = 0;
2098         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2099                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2100                 tp->retrans_out -= tcp_skb_pcount(skb);
2101         }
2102         tcp_verify_left_out(tp);
2103
2104         /* Too bad if TCP was application limited */
2105         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2106
2107         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2108          * The last condition is necessary at least in tp->frto_counter case.
2109          */
2110         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2111             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2112             after(tp->high_seq, tp->snd_una)) {
2113                 tp->frto_highmark = tp->high_seq;
2114         } else {
2115                 tp->frto_highmark = tp->snd_nxt;
2116         }
2117         tcp_set_ca_state(sk, TCP_CA_Disorder);
2118         tp->high_seq = tp->snd_nxt;
2119         tp->frto_counter = 1;
2120 }
2121
2122 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2123  * which indicates that we should follow the traditional RTO recovery,
2124  * i.e. mark everything lost and do go-back-N retransmission.
2125  */
2126 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2127 {
2128         struct tcp_sock *tp = tcp_sk(sk);
2129         struct sk_buff *skb;
2130
2131         tp->lost_out = 0;
2132         tp->retrans_out = 0;
2133         if (tcp_is_reno(tp))
2134                 tcp_reset_reno_sack(tp);
2135
2136         tcp_for_write_queue(skb, sk) {
2137                 if (skb == tcp_send_head(sk))
2138                         break;
2139
2140                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2141                 /*
2142                  * Count the retransmission made on RTO correctly (only when
2143                  * waiting for the first ACK and did not get it)...
2144                  */
2145                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2146                         /* For some reason this R-bit might get cleared? */
2147                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2148                                 tp->retrans_out += tcp_skb_pcount(skb);
2149                         /* ...enter this if branch just for the first segment */
2150                         flag |= FLAG_DATA_ACKED;
2151                 } else {
2152                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2153                                 tp->undo_marker = 0;
2154                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2155                 }
2156
2157                 /* Marking forward transmissions that were made after RTO lost
2158                  * can cause unnecessary retransmissions in some scenarios,
2159                  * SACK blocks will mitigate that in some but not in all cases.
2160                  * We used to not mark them but it was causing break-ups with
2161                  * receivers that do only in-order receival.
2162                  *
2163                  * TODO: we could detect presence of such receiver and select
2164                  * different behavior per flow.
2165                  */
2166                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2167                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2168                         tp->lost_out += tcp_skb_pcount(skb);
2169                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2170                 }
2171         }
2172         tcp_verify_left_out(tp);
2173
2174         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2175         tp->snd_cwnd_cnt = 0;
2176         tp->snd_cwnd_stamp = tcp_time_stamp;
2177         tp->frto_counter = 0;
2178         tp->bytes_acked = 0;
2179
2180         tp->reordering = min_t(unsigned int, tp->reordering,
2181                                sysctl_tcp_reordering);
2182         tcp_set_ca_state(sk, TCP_CA_Loss);
2183         tp->high_seq = tp->snd_nxt;
2184         TCP_ECN_queue_cwr(tp);
2185
2186         tcp_clear_all_retrans_hints(tp);
2187 }
2188
2189 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2190 {
2191         tp->retrans_out = 0;
2192         tp->lost_out = 0;
2193
2194         tp->undo_marker = 0;
2195         tp->undo_retrans = 0;
2196 }
2197
2198 void tcp_clear_retrans(struct tcp_sock *tp)
2199 {
2200         tcp_clear_retrans_partial(tp);
2201
2202         tp->fackets_out = 0;
2203         tp->sacked_out = 0;
2204 }
2205
2206 /* Enter Loss state. If "how" is not zero, forget all SACK information
2207  * and reset tags completely, otherwise preserve SACKs. If receiver
2208  * dropped its ofo queue, we will know this due to reneging detection.
2209  */
2210 void tcp_enter_loss(struct sock *sk, int how)
2211 {
2212         const struct inet_connection_sock *icsk = inet_csk(sk);
2213         struct tcp_sock *tp = tcp_sk(sk);
2214         struct sk_buff *skb;
2215
2216         /* Reduce ssthresh if it has not yet been made inside this window. */
2217         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2218             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2219                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2220                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2221                 tcp_ca_event(sk, CA_EVENT_LOSS);
2222         }
2223         tp->snd_cwnd       = 1;
2224         tp->snd_cwnd_cnt   = 0;
2225         tp->snd_cwnd_stamp = tcp_time_stamp;
2226
2227         tp->bytes_acked = 0;
2228         tcp_clear_retrans_partial(tp);
2229
2230         if (tcp_is_reno(tp))
2231                 tcp_reset_reno_sack(tp);
2232
2233         if (!how) {
2234                 /* Push undo marker, if it was plain RTO and nothing
2235                  * was retransmitted. */
2236                 tp->undo_marker = tp->snd_una;
2237         } else {
2238                 tp->sacked_out = 0;
2239                 tp->fackets_out = 0;
2240         }
2241         tcp_clear_all_retrans_hints(tp);
2242
2243         tcp_for_write_queue(skb, sk) {
2244                 if (skb == tcp_send_head(sk))
2245                         break;
2246
2247                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2248                         tp->undo_marker = 0;
2249                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2250                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2251                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2252                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2253                         tp->lost_out += tcp_skb_pcount(skb);
2254                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2255                 }
2256         }
2257         tcp_verify_left_out(tp);
2258
2259         tp->reordering = min_t(unsigned int, tp->reordering,
2260                                sysctl_tcp_reordering);
2261         tcp_set_ca_state(sk, TCP_CA_Loss);
2262         tp->high_seq = tp->snd_nxt;
2263         TCP_ECN_queue_cwr(tp);
2264         /* Abort F-RTO algorithm if one is in progress */
2265         tp->frto_counter = 0;
2266 }
2267
2268 /* If ACK arrived pointing to a remembered SACK, it means that our
2269  * remembered SACKs do not reflect real state of receiver i.e.
2270  * receiver _host_ is heavily congested (or buggy).
2271  *
2272  * Do processing similar to RTO timeout.
2273  */
2274 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2275 {
2276         if (flag & FLAG_SACK_RENEGING) {
2277                 struct inet_connection_sock *icsk = inet_csk(sk);
2278                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2279
2280                 tcp_enter_loss(sk, 1);
2281                 icsk->icsk_retransmits++;
2282                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2283                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2284                                           icsk->icsk_rto, TCP_RTO_MAX);
2285                 return 1;
2286         }
2287         return 0;
2288 }
2289
2290 static inline int tcp_fackets_out(struct tcp_sock *tp)
2291 {
2292         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2293 }
2294
2295 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2296  * counter when SACK is enabled (without SACK, sacked_out is used for
2297  * that purpose).
2298  *
2299  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2300  * segments up to the highest received SACK block so far and holes in
2301  * between them.
2302  *
2303  * With reordering, holes may still be in flight, so RFC3517 recovery
2304  * uses pure sacked_out (total number of SACKed segments) even though
2305  * it violates the RFC that uses duplicate ACKs, often these are equal
2306  * but when e.g. out-of-window ACKs or packet duplication occurs,
2307  * they differ. Since neither occurs due to loss, TCP should really
2308  * ignore them.
2309  */
2310 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2311 {
2312         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2313 }
2314
2315 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2316 {
2317         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2318 }
2319
2320 static inline int tcp_head_timedout(struct sock *sk)
2321 {
2322         struct tcp_sock *tp = tcp_sk(sk);
2323
2324         return tp->packets_out &&
2325                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2326 }
2327
2328 /* Linux NewReno/SACK/FACK/ECN state machine.
2329  * --------------------------------------
2330  *
2331  * "Open"       Normal state, no dubious events, fast path.
2332  * "Disorder"   In all the respects it is "Open",
2333  *              but requires a bit more attention. It is entered when
2334  *              we see some SACKs or dupacks. It is split of "Open"
2335  *              mainly to move some processing from fast path to slow one.
2336  * "CWR"        CWND was reduced due to some Congestion Notification event.
2337  *              It can be ECN, ICMP source quench, local device congestion.
2338  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2339  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2340  *
2341  * tcp_fastretrans_alert() is entered:
2342  * - each incoming ACK, if state is not "Open"
2343  * - when arrived ACK is unusual, namely:
2344  *      * SACK
2345  *      * Duplicate ACK.
2346  *      * ECN ECE.
2347  *
2348  * Counting packets in flight is pretty simple.
2349  *
2350  *      in_flight = packets_out - left_out + retrans_out
2351  *
2352  *      packets_out is SND.NXT-SND.UNA counted in packets.
2353  *
2354  *      retrans_out is number of retransmitted segments.
2355  *
2356  *      left_out is number of segments left network, but not ACKed yet.
2357  *
2358  *              left_out = sacked_out + lost_out
2359  *
2360  *     sacked_out: Packets, which arrived to receiver out of order
2361  *                 and hence not ACKed. With SACKs this number is simply
2362  *                 amount of SACKed data. Even without SACKs
2363  *                 it is easy to give pretty reliable estimate of this number,
2364  *                 counting duplicate ACKs.
2365  *
2366  *       lost_out: Packets lost by network. TCP has no explicit
2367  *                 "loss notification" feedback from network (for now).
2368  *                 It means that this number can be only _guessed_.
2369  *                 Actually, it is the heuristics to predict lossage that
2370  *                 distinguishes different algorithms.
2371  *
2372  *      F.e. after RTO, when all the queue is considered as lost,
2373  *      lost_out = packets_out and in_flight = retrans_out.
2374  *
2375  *              Essentially, we have now two algorithms counting
2376  *              lost packets.
2377  *
2378  *              FACK: It is the simplest heuristics. As soon as we decided
2379  *              that something is lost, we decide that _all_ not SACKed
2380  *              packets until the most forward SACK are lost. I.e.
2381  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2382  *              It is absolutely correct estimate, if network does not reorder
2383  *              packets. And it loses any connection to reality when reordering
2384  *              takes place. We use FACK by default until reordering
2385  *              is suspected on the path to this destination.
2386  *
2387  *              NewReno: when Recovery is entered, we assume that one segment
2388  *              is lost (classic Reno). While we are in Recovery and
2389  *              a partial ACK arrives, we assume that one more packet
2390  *              is lost (NewReno). This heuristics are the same in NewReno
2391  *              and SACK.
2392  *
2393  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2394  *  deflation etc. CWND is real congestion window, never inflated, changes
2395  *  only according to classic VJ rules.
2396  *
2397  * Really tricky (and requiring careful tuning) part of algorithm
2398  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2399  * The first determines the moment _when_ we should reduce CWND and,
2400  * hence, slow down forward transmission. In fact, it determines the moment
2401  * when we decide that hole is caused by loss, rather than by a reorder.
2402  *
2403  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2404  * holes, caused by lost packets.
2405  *
2406  * And the most logically complicated part of algorithm is undo
2407  * heuristics. We detect false retransmits due to both too early
2408  * fast retransmit (reordering) and underestimated RTO, analyzing
2409  * timestamps and D-SACKs. When we detect that some segments were
2410  * retransmitted by mistake and CWND reduction was wrong, we undo
2411  * window reduction and abort recovery phase. This logic is hidden
2412  * inside several functions named tcp_try_undo_<something>.
2413  */
2414
2415 /* This function decides, when we should leave Disordered state
2416  * and enter Recovery phase, reducing congestion window.
2417  *
2418  * Main question: may we further continue forward transmission
2419  * with the same cwnd?
2420  */
2421 static int tcp_time_to_recover(struct sock *sk)
2422 {
2423         struct tcp_sock *tp = tcp_sk(sk);
2424         __u32 packets_out;
2425
2426         /* Do not perform any recovery during F-RTO algorithm */
2427         if (tp->frto_counter)
2428                 return 0;
2429
2430         /* Trick#1: The loss is proven. */
2431         if (tp->lost_out)
2432                 return 1;
2433
2434         /* Not-A-Trick#2 : Classic rule... */
2435         if (tcp_dupack_heuristics(tp) > tp->reordering)
2436                 return 1;
2437
2438         /* Trick#3 : when we use RFC2988 timer restart, fast
2439          * retransmit can be triggered by timeout of queue head.
2440          */
2441         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2442                 return 1;
2443
2444         /* Trick#4: It is still not OK... But will it be useful to delay
2445          * recovery more?
2446          */
2447         packets_out = tp->packets_out;
2448         if (packets_out <= tp->reordering &&
2449             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2450             !tcp_may_send_now(sk)) {
2451                 /* We have nothing to send. This connection is limited
2452                  * either by receiver window or by application.
2453                  */
2454                 return 1;
2455         }
2456
2457         /* If a thin stream is detected, retransmit after first
2458          * received dupack. Employ only if SACK is supported in order
2459          * to avoid possible corner-case series of spurious retransmissions
2460          * Use only if there are no unsent data.
2461          */
2462         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2463             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2464             tcp_is_sack(tp) && !tcp_send_head(sk))
2465                 return 1;
2466
2467         return 0;
2468 }
2469
2470 /* New heuristics: it is possible only after we switched to restart timer
2471  * each time when something is ACKed. Hence, we can detect timed out packets
2472  * during fast retransmit without falling to slow start.
2473  *
2474  * Usefulness of this as is very questionable, since we should know which of
2475  * the segments is the next to timeout which is relatively expensive to find
2476  * in general case unless we add some data structure just for that. The
2477  * current approach certainly won't find the right one too often and when it
2478  * finally does find _something_ it usually marks large part of the window
2479  * right away (because a retransmission with a larger timestamp blocks the
2480  * loop from advancing). -ij
2481  */
2482 static void tcp_timeout_skbs(struct sock *sk)
2483 {
2484         struct tcp_sock *tp = tcp_sk(sk);
2485         struct sk_buff *skb;
2486
2487         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2488                 return;
2489
2490         skb = tp->scoreboard_skb_hint;
2491         if (tp->scoreboard_skb_hint == NULL)
2492                 skb = tcp_write_queue_head(sk);
2493
2494         tcp_for_write_queue_from(skb, sk) {
2495                 if (skb == tcp_send_head(sk))
2496                         break;
2497                 if (!tcp_skb_timedout(sk, skb))
2498                         break;
2499
2500                 tcp_skb_mark_lost(tp, skb);
2501         }
2502
2503         tp->scoreboard_skb_hint = skb;
2504
2505         tcp_verify_left_out(tp);
2506 }
2507
2508 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2509  * is against sacked "cnt", otherwise it's against facked "cnt"
2510  */
2511 static void tcp_mark_head_lost(struct sock *sk, int packets)
2512 {
2513         struct tcp_sock *tp = tcp_sk(sk);
2514         struct sk_buff *skb;
2515         int cnt, oldcnt;
2516         int err;
2517         unsigned int mss;
2518
2519         if (packets == 0)
2520                 return;
2521
2522         WARN_ON(packets > tp->packets_out);
2523         if (tp->lost_skb_hint) {
2524                 skb = tp->lost_skb_hint;
2525                 cnt = tp->lost_cnt_hint;
2526         } else {
2527                 skb = tcp_write_queue_head(sk);
2528                 cnt = 0;
2529         }
2530
2531         tcp_for_write_queue_from(skb, sk) {
2532                 if (skb == tcp_send_head(sk))
2533                         break;
2534                 /* TODO: do this better */
2535                 /* this is not the most efficient way to do this... */
2536                 tp->lost_skb_hint = skb;
2537                 tp->lost_cnt_hint = cnt;
2538
2539                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2540                         break;
2541
2542                 oldcnt = cnt;
2543                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2544                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2545                         cnt += tcp_skb_pcount(skb);
2546
2547                 if (cnt > packets) {
2548                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2549                             (oldcnt >= packets))
2550                                 break;
2551
2552                         mss = skb_shinfo(skb)->gso_size;
2553                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2554                         if (err < 0)
2555                                 break;
2556                         cnt = packets;
2557                 }
2558
2559                 tcp_skb_mark_lost(tp, skb);
2560         }
2561         tcp_verify_left_out(tp);
2562 }
2563
2564 /* Account newly detected lost packet(s) */
2565
2566 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2567 {
2568         struct tcp_sock *tp = tcp_sk(sk);
2569
2570         if (tcp_is_reno(tp)) {
2571                 tcp_mark_head_lost(sk, 1);
2572         } else if (tcp_is_fack(tp)) {
2573                 int lost = tp->fackets_out - tp->reordering;
2574                 if (lost <= 0)
2575                         lost = 1;
2576                 tcp_mark_head_lost(sk, lost);
2577         } else {
2578                 int sacked_upto = tp->sacked_out - tp->reordering;
2579                 if (sacked_upto < fast_rexmit)
2580                         sacked_upto = fast_rexmit;
2581                 tcp_mark_head_lost(sk, sacked_upto);
2582         }
2583
2584         tcp_timeout_skbs(sk);
2585 }
2586
2587 /* CWND moderation, preventing bursts due to too big ACKs
2588  * in dubious situations.
2589  */
2590 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2591 {
2592         tp->snd_cwnd = min(tp->snd_cwnd,
2593                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2594         tp->snd_cwnd_stamp = tcp_time_stamp;
2595 }
2596
2597 /* Lower bound on congestion window is slow start threshold
2598  * unless congestion avoidance choice decides to overide it.
2599  */
2600 static inline u32 tcp_cwnd_min(const struct sock *sk)
2601 {
2602         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2603
2604         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2605 }
2606
2607 /* Decrease cwnd each second ack. */
2608 static void tcp_cwnd_down(struct sock *sk, int flag)
2609 {
2610         struct tcp_sock *tp = tcp_sk(sk);
2611         int decr = tp->snd_cwnd_cnt + 1;
2612
2613         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2614             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2615                 tp->snd_cwnd_cnt = decr & 1;
2616                 decr >>= 1;
2617
2618                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2619                         tp->snd_cwnd -= decr;
2620
2621                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2622                 tp->snd_cwnd_stamp = tcp_time_stamp;
2623         }
2624 }
2625
2626 /* Nothing was retransmitted or returned timestamp is less
2627  * than timestamp of the first retransmission.
2628  */
2629 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2630 {
2631         return !tp->retrans_stamp ||
2632                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2633                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2634 }
2635
2636 /* Undo procedures. */
2637
2638 #if FASTRETRANS_DEBUG > 1
2639 static void DBGUNDO(struct sock *sk, const char *msg)
2640 {
2641         struct tcp_sock *tp = tcp_sk(sk);
2642         struct inet_sock *inet = inet_sk(sk);
2643
2644         if (sk->sk_family == AF_INET) {
2645                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2646                        msg,
2647                        &inet->inet_daddr, ntohs(inet->inet_dport),
2648                        tp->snd_cwnd, tcp_left_out(tp),
2649                        tp->snd_ssthresh, tp->prior_ssthresh,
2650                        tp->packets_out);
2651         }
2652 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2653         else if (sk->sk_family == AF_INET6) {
2654                 struct ipv6_pinfo *np = inet6_sk(sk);
2655                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2656                        msg,
2657                        &np->daddr, ntohs(inet->inet_dport),
2658                        tp->snd_cwnd, tcp_left_out(tp),
2659                        tp->snd_ssthresh, tp->prior_ssthresh,
2660                        tp->packets_out);
2661         }
2662 #endif
2663 }
2664 #else
2665 #define DBGUNDO(x...) do { } while (0)
2666 #endif
2667
2668 static void tcp_undo_cwr(struct sock *sk, const int undo)
2669 {
2670         struct tcp_sock *tp = tcp_sk(sk);
2671
2672         if (tp->prior_ssthresh) {
2673                 const struct inet_connection_sock *icsk = inet_csk(sk);
2674
2675                 if (icsk->icsk_ca_ops->undo_cwnd)
2676                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2677                 else
2678                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2679
2680                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2681                         tp->snd_ssthresh = tp->prior_ssthresh;
2682                         TCP_ECN_withdraw_cwr(tp);
2683                 }
2684         } else {
2685                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2686         }
2687         tcp_moderate_cwnd(tp);
2688         tp->snd_cwnd_stamp = tcp_time_stamp;
2689 }
2690
2691 static inline int tcp_may_undo(struct tcp_sock *tp)
2692 {
2693         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2694 }
2695
2696 /* People celebrate: "We love our President!" */
2697 static int tcp_try_undo_recovery(struct sock *sk)
2698 {
2699         struct tcp_sock *tp = tcp_sk(sk);
2700
2701         if (tcp_may_undo(tp)) {
2702                 int mib_idx;
2703
2704                 /* Happy end! We did not retransmit anything
2705                  * or our original transmission succeeded.
2706                  */
2707                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2708                 tcp_undo_cwr(sk, 1);
2709                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2710                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2711                 else
2712                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2713
2714                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2715                 tp->undo_marker = 0;
2716         }
2717         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2718                 /* Hold old state until something *above* high_seq
2719                  * is ACKed. For Reno it is MUST to prevent false
2720                  * fast retransmits (RFC2582). SACK TCP is safe. */
2721                 tcp_moderate_cwnd(tp);
2722                 return 1;
2723         }
2724         tcp_set_ca_state(sk, TCP_CA_Open);
2725         return 0;
2726 }
2727
2728 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2729 static void tcp_try_undo_dsack(struct sock *sk)
2730 {
2731         struct tcp_sock *tp = tcp_sk(sk);
2732
2733         if (tp->undo_marker && !tp->undo_retrans) {
2734                 DBGUNDO(sk, "D-SACK");
2735                 tcp_undo_cwr(sk, 1);
2736                 tp->undo_marker = 0;
2737                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2738         }
2739 }
2740
2741 /* We can clear retrans_stamp when there are no retransmissions in the
2742  * window. It would seem that it is trivially available for us in
2743  * tp->retrans_out, however, that kind of assumptions doesn't consider
2744  * what will happen if errors occur when sending retransmission for the
2745  * second time. ...It could the that such segment has only
2746  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2747  * the head skb is enough except for some reneging corner cases that
2748  * are not worth the effort.
2749  *
2750  * Main reason for all this complexity is the fact that connection dying
2751  * time now depends on the validity of the retrans_stamp, in particular,
2752  * that successive retransmissions of a segment must not advance
2753  * retrans_stamp under any conditions.
2754  */
2755 static int tcp_any_retrans_done(struct sock *sk)
2756 {
2757         struct tcp_sock *tp = tcp_sk(sk);
2758         struct sk_buff *skb;
2759
2760         if (tp->retrans_out)
2761                 return 1;
2762
2763         skb = tcp_write_queue_head(sk);
2764         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2765                 return 1;
2766
2767         return 0;
2768 }
2769
2770 /* Undo during fast recovery after partial ACK. */
2771
2772 static int tcp_try_undo_partial(struct sock *sk, int acked)
2773 {
2774         struct tcp_sock *tp = tcp_sk(sk);
2775         /* Partial ACK arrived. Force Hoe's retransmit. */
2776         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2777
2778         if (tcp_may_undo(tp)) {
2779                 /* Plain luck! Hole if filled with delayed
2780                  * packet, rather than with a retransmit.
2781                  */
2782                 if (!tcp_any_retrans_done(sk))
2783                         tp->retrans_stamp = 0;
2784
2785                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2786
2787                 DBGUNDO(sk, "Hoe");
2788                 tcp_undo_cwr(sk, 0);
2789                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2790
2791                 /* So... Do not make Hoe's retransmit yet.
2792                  * If the first packet was delayed, the rest
2793                  * ones are most probably delayed as well.
2794                  */
2795                 failed = 0;
2796         }
2797         return failed;
2798 }
2799
2800 /* Undo during loss recovery after partial ACK. */
2801 static int tcp_try_undo_loss(struct sock *sk)
2802 {
2803         struct tcp_sock *tp = tcp_sk(sk);
2804
2805         if (tcp_may_undo(tp)) {
2806                 struct sk_buff *skb;
2807                 tcp_for_write_queue(skb, sk) {
2808                         if (skb == tcp_send_head(sk))
2809                                 break;
2810                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2811                 }
2812
2813                 tcp_clear_all_retrans_hints(tp);
2814
2815                 DBGUNDO(sk, "partial loss");
2816                 tp->lost_out = 0;
2817                 tcp_undo_cwr(sk, 1);
2818                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2819                 inet_csk(sk)->icsk_retransmits = 0;
2820                 tp->undo_marker = 0;
2821                 if (tcp_is_sack(tp))
2822                         tcp_set_ca_state(sk, TCP_CA_Open);
2823                 return 1;
2824         }
2825         return 0;
2826 }
2827
2828 static inline void tcp_complete_cwr(struct sock *sk)
2829 {
2830         struct tcp_sock *tp = tcp_sk(sk);
2831         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2832         tp->snd_cwnd_stamp = tcp_time_stamp;
2833         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2834 }
2835
2836 static void tcp_try_keep_open(struct sock *sk)
2837 {
2838         struct tcp_sock *tp = tcp_sk(sk);
2839         int state = TCP_CA_Open;
2840
2841         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2842                 state = TCP_CA_Disorder;
2843
2844         if (inet_csk(sk)->icsk_ca_state != state) {
2845                 tcp_set_ca_state(sk, state);
2846                 tp->high_seq = tp->snd_nxt;
2847         }
2848 }
2849
2850 static void tcp_try_to_open(struct sock *sk, int flag)
2851 {
2852         struct tcp_sock *tp = tcp_sk(sk);
2853
2854         tcp_verify_left_out(tp);
2855
2856         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2857                 tp->retrans_stamp = 0;
2858
2859         if (flag & FLAG_ECE)
2860                 tcp_enter_cwr(sk, 1);
2861
2862         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2863                 tcp_try_keep_open(sk);
2864                 tcp_moderate_cwnd(tp);
2865         } else {
2866                 tcp_cwnd_down(sk, flag);
2867         }
2868 }
2869
2870 static void tcp_mtup_probe_failed(struct sock *sk)
2871 {
2872         struct inet_connection_sock *icsk = inet_csk(sk);
2873
2874         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2875         icsk->icsk_mtup.probe_size = 0;
2876 }
2877
2878 static void tcp_mtup_probe_success(struct sock *sk)
2879 {
2880         struct tcp_sock *tp = tcp_sk(sk);
2881         struct inet_connection_sock *icsk = inet_csk(sk);
2882
2883         /* FIXME: breaks with very large cwnd */
2884         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2885         tp->snd_cwnd = tp->snd_cwnd *
2886                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2887                        icsk->icsk_mtup.probe_size;
2888         tp->snd_cwnd_cnt = 0;
2889         tp->snd_cwnd_stamp = tcp_time_stamp;
2890         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2891
2892         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2893         icsk->icsk_mtup.probe_size = 0;
2894         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2895 }
2896
2897 /* Do a simple retransmit without using the backoff mechanisms in
2898  * tcp_timer. This is used for path mtu discovery.
2899  * The socket is already locked here.
2900  */
2901 void tcp_simple_retransmit(struct sock *sk)
2902 {
2903         const struct inet_connection_sock *icsk = inet_csk(sk);
2904         struct tcp_sock *tp = tcp_sk(sk);
2905         struct sk_buff *skb;
2906         unsigned int mss = tcp_current_mss(sk);
2907         u32 prior_lost = tp->lost_out;
2908
2909         tcp_for_write_queue(skb, sk) {
2910                 if (skb == tcp_send_head(sk))
2911                         break;
2912                 if (tcp_skb_seglen(skb) > mss &&
2913                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2914                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2915                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2916                                 tp->retrans_out -= tcp_skb_pcount(skb);
2917                         }
2918                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2919                 }
2920         }
2921
2922         tcp_clear_retrans_hints_partial(tp);
2923
2924         if (prior_lost == tp->lost_out)
2925                 return;
2926
2927         if (tcp_is_reno(tp))
2928                 tcp_limit_reno_sacked(tp);
2929
2930         tcp_verify_left_out(tp);
2931
2932         /* Don't muck with the congestion window here.
2933          * Reason is that we do not increase amount of _data_
2934          * in network, but units changed and effective
2935          * cwnd/ssthresh really reduced now.
2936          */
2937         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2938                 tp->high_seq = tp->snd_nxt;
2939                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2940                 tp->prior_ssthresh = 0;
2941                 tp->undo_marker = 0;
2942                 tcp_set_ca_state(sk, TCP_CA_Loss);
2943         }
2944         tcp_xmit_retransmit_queue(sk);
2945 }
2946 EXPORT_SYMBOL(tcp_simple_retransmit);
2947
2948 /* Process an event, which can update packets-in-flight not trivially.
2949  * Main goal of this function is to calculate new estimate for left_out,
2950  * taking into account both packets sitting in receiver's buffer and
2951  * packets lost by network.
2952  *
2953  * Besides that it does CWND reduction, when packet loss is detected
2954  * and changes state of machine.
2955  *
2956  * It does _not_ decide what to send, it is made in function
2957  * tcp_xmit_retransmit_queue().
2958  */
2959 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2960 {
2961         struct inet_connection_sock *icsk = inet_csk(sk);
2962         struct tcp_sock *tp = tcp_sk(sk);
2963         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2964         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2965                                     (tcp_fackets_out(tp) > tp->reordering));
2966         int fast_rexmit = 0, mib_idx;
2967
2968         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2969                 tp->sacked_out = 0;
2970         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2971                 tp->fackets_out = 0;
2972
2973         /* Now state machine starts.
2974          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2975         if (flag & FLAG_ECE)
2976                 tp->prior_ssthresh = 0;
2977
2978         /* B. In all the states check for reneging SACKs. */
2979         if (tcp_check_sack_reneging(sk, flag))
2980                 return;
2981
2982         /* C. Process data loss notification, provided it is valid. */
2983         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2984             before(tp->snd_una, tp->high_seq) &&
2985             icsk->icsk_ca_state != TCP_CA_Open &&
2986             tp->fackets_out > tp->reordering) {
2987                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2988                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2989         }
2990
2991         /* D. Check consistency of the current state. */
2992         tcp_verify_left_out(tp);
2993
2994         /* E. Check state exit conditions. State can be terminated
2995          *    when high_seq is ACKed. */
2996         if (icsk->icsk_ca_state == TCP_CA_Open) {
2997                 WARN_ON(tp->retrans_out != 0);
2998                 tp->retrans_stamp = 0;
2999         } else if (!before(tp->snd_una, tp->high_seq)) {
3000                 switch (icsk->icsk_ca_state) {
3001                 case TCP_CA_Loss:
3002                         icsk->icsk_retransmits = 0;
3003                         if (tcp_try_undo_recovery(sk))
3004                                 return;
3005                         break;
3006
3007                 case TCP_CA_CWR:
3008                         /* CWR is to be held something *above* high_seq
3009                          * is ACKed for CWR bit to reach receiver. */
3010                         if (tp->snd_una != tp->high_seq) {
3011                                 tcp_complete_cwr(sk);
3012                                 tcp_set_ca_state(sk, TCP_CA_Open);
3013                         }
3014                         break;
3015
3016                 case TCP_CA_Disorder:
3017                         tcp_try_undo_dsack(sk);
3018                         if (!tp->undo_marker ||
3019                             /* For SACK case do not Open to allow to undo
3020                              * catching for all duplicate ACKs. */
3021                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3022                                 tp->undo_marker = 0;
3023                                 tcp_set_ca_state(sk, TCP_CA_Open);
3024                         }
3025                         break;
3026
3027                 case TCP_CA_Recovery:
3028                         if (tcp_is_reno(tp))
3029                                 tcp_reset_reno_sack(tp);
3030                         if (tcp_try_undo_recovery(sk))
3031                                 return;
3032                         tcp_complete_cwr(sk);
3033                         break;
3034                 }
3035         }
3036
3037         /* F. Process state. */
3038         switch (icsk->icsk_ca_state) {
3039         case TCP_CA_Recovery:
3040                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3041                         if (tcp_is_reno(tp) && is_dupack)
3042                                 tcp_add_reno_sack(sk);
3043                 } else
3044                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3045                 break;
3046         case TCP_CA_Loss:
3047                 if (flag & FLAG_DATA_ACKED)
3048                         icsk->icsk_retransmits = 0;
3049                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3050                         tcp_reset_reno_sack(tp);
3051                 if (!tcp_try_undo_loss(sk)) {
3052                         tcp_moderate_cwnd(tp);
3053                         tcp_xmit_retransmit_queue(sk);
3054                         return;
3055                 }
3056                 if (icsk->icsk_ca_state != TCP_CA_Open)
3057                         return;
3058                 /* Loss is undone; fall through to processing in Open state. */
3059         default:
3060                 if (tcp_is_reno(tp)) {
3061                         if (flag & FLAG_SND_UNA_ADVANCED)
3062                                 tcp_reset_reno_sack(tp);
3063                         if (is_dupack)
3064                                 tcp_add_reno_sack(sk);
3065                 }
3066
3067                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3068                         tcp_try_undo_dsack(sk);
3069
3070                 if (!tcp_time_to_recover(sk)) {
3071                         tcp_try_to_open(sk, flag);
3072                         return;
3073                 }
3074
3075                 /* MTU probe failure: don't reduce cwnd */
3076                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3077                     icsk->icsk_mtup.probe_size &&
3078                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3079                         tcp_mtup_probe_failed(sk);
3080                         /* Restores the reduction we did in tcp_mtup_probe() */
3081                         tp->snd_cwnd++;
3082                         tcp_simple_retransmit(sk);
3083                         return;
3084                 }
3085
3086                 /* Otherwise enter Recovery state */
3087
3088                 if (tcp_is_reno(tp))
3089                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3090                 else
3091                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3092
3093                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3094
3095                 tp->high_seq = tp->snd_nxt;
3096                 tp->prior_ssthresh = 0;
3097                 tp->undo_marker = tp->snd_una;
3098                 tp->undo_retrans = tp->retrans_out;
3099
3100                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3101                         if (!(flag & FLAG_ECE))
3102                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3103                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3104                         TCP_ECN_queue_cwr(tp);
3105                 }
3106
3107                 tp->bytes_acked = 0;
3108                 tp->snd_cwnd_cnt = 0;
3109                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3110                 fast_rexmit = 1;
3111         }
3112
3113         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3114                 tcp_update_scoreboard(sk, fast_rexmit);
3115         tcp_cwnd_down(sk, flag);
3116         tcp_xmit_retransmit_queue(sk);
3117 }
3118
3119 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3120 {
3121         tcp_rtt_estimator(sk, seq_rtt);
3122         tcp_set_rto(sk);
3123         inet_csk(sk)->icsk_backoff = 0;
3124 }
3125
3126 /* Read draft-ietf-tcplw-high-performance before mucking
3127  * with this code. (Supersedes RFC1323)
3128  */
3129 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3130 {
3131         /* RTTM Rule: A TSecr value received in a segment is used to
3132          * update the averaged RTT measurement only if the segment
3133          * acknowledges some new data, i.e., only if it advances the
3134          * left edge of the send window.
3135          *
3136          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3137          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3138          *
3139          * Changed: reset backoff as soon as we see the first valid sample.
3140          * If we do not, we get strongly overestimated rto. With timestamps
3141          * samples are accepted even from very old segments: f.e., when rtt=1
3142          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3143          * answer arrives rto becomes 120 seconds! If at least one of segments
3144          * in window is lost... Voila.                          --ANK (010210)
3145          */
3146         struct tcp_sock *tp = tcp_sk(sk);
3147
3148         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3149 }
3150
3151 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3152 {
3153         /* We don't have a timestamp. Can only use
3154          * packets that are not retransmitted to determine
3155          * rtt estimates. Also, we must not reset the
3156          * backoff for rto until we get a non-retransmitted
3157          * packet. This allows us to deal with a situation
3158          * where the network delay has increased suddenly.
3159          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3160          */
3161
3162         if (flag & FLAG_RETRANS_DATA_ACKED)
3163                 return;
3164
3165         tcp_valid_rtt_meas(sk, seq_rtt);
3166 }
3167
3168 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3169                                       const s32 seq_rtt)
3170 {
3171         const struct tcp_sock *tp = tcp_sk(sk);
3172         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3173         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3174                 tcp_ack_saw_tstamp(sk, flag);
3175         else if (seq_rtt >= 0)
3176                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3177 }
3178
3179 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3180 {
3181         const struct inet_connection_sock *icsk = inet_csk(sk);
3182         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3183         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3184 }
3185
3186 /* Restart timer after forward progress on connection.
3187  * RFC2988 recommends to restart timer to now+rto.
3188  */
3189 static void tcp_rearm_rto(struct sock *sk)
3190 {
3191         struct tcp_sock *tp = tcp_sk(sk);
3192
3193         if (!tp->packets_out) {
3194                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3195         } else {
3196                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3197                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3198         }
3199 }
3200
3201 /* If we get here, the whole TSO packet has not been acked. */
3202 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3203 {
3204         struct tcp_sock *tp = tcp_sk(sk);
3205         u32 packets_acked;
3206
3207         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3208
3209         packets_acked = tcp_skb_pcount(skb);
3210         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3211                 return 0;
3212         packets_acked -= tcp_skb_pcount(skb);
3213
3214         if (packets_acked) {
3215                 BUG_ON(tcp_skb_pcount(skb) == 0);
3216                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3217         }
3218
3219         return packets_acked;
3220 }
3221
3222 /* Remove acknowledged frames from the retransmission queue. If our packet
3223  * is before the ack sequence we can discard it as it's confirmed to have
3224  * arrived at the other end.
3225  */
3226 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3227                                u32 prior_snd_una)
3228 {
3229         struct tcp_sock *tp = tcp_sk(sk);
3230         const struct inet_connection_sock *icsk = inet_csk(sk);
3231         struct sk_buff *skb;
3232         u32 now = tcp_time_stamp;
3233         int fully_acked = 1;
3234         int flag = 0;
3235         u32 pkts_acked = 0;
3236         u32 reord = tp->packets_out;
3237         u32 prior_sacked = tp->sacked_out;
3238         s32 seq_rtt = -1;
3239         s32 ca_seq_rtt = -1;
3240         ktime_t last_ackt = net_invalid_timestamp();
3241
3242         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3243                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3244                 u32 acked_pcount;
3245                 u8 sacked = scb->sacked;
3246
3247                 /* Determine how many packets and what bytes were acked, tso and else */
3248                 if (after(scb->end_seq, tp->snd_una)) {
3249                         if (tcp_skb_pcount(skb) == 1 ||
3250                             !after(tp->snd_una, scb->seq))
3251                                 break;
3252
3253                         acked_pcount = tcp_tso_acked(sk, skb);
3254                         if (!acked_pcount)
3255                                 break;
3256
3257                         fully_acked = 0;
3258                 } else {
3259                         acked_pcount = tcp_skb_pcount(skb);
3260                 }
3261
3262                 if (sacked & TCPCB_RETRANS) {
3263                         if (sacked & TCPCB_SACKED_RETRANS)
3264                                 tp->retrans_out -= acked_pcount;
3265                         flag |= FLAG_RETRANS_DATA_ACKED;
3266                         ca_seq_rtt = -1;
3267                         seq_rtt = -1;
3268                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3269                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3270                 } else {
3271                         ca_seq_rtt = now - scb->when;
3272                         last_ackt = skb->tstamp;
3273                         if (seq_rtt < 0) {
3274                                 seq_rtt = ca_seq_rtt;
3275                         }
3276                         if (!(sacked & TCPCB_SACKED_ACKED))
3277                                 reord = min(pkts_acked, reord);
3278                 }
3279
3280                 if (sacked & TCPCB_SACKED_ACKED)
3281                         tp->sacked_out -= acked_pcount;
3282                 if (sacked & TCPCB_LOST)
3283                         tp->lost_out -= acked_pcount;
3284
3285                 tp->packets_out -= acked_pcount;
3286                 pkts_acked += acked_pcount;
3287
3288                 /* Initial outgoing SYN's get put onto the write_queue
3289                  * just like anything else we transmit.  It is not
3290                  * true data, and if we misinform our callers that
3291                  * this ACK acks real data, we will erroneously exit
3292                  * connection startup slow start one packet too
3293                  * quickly.  This is severely frowned upon behavior.
3294                  */
3295                 if (!(scb->flags & TCPHDR_SYN)) {
3296                         flag |= FLAG_DATA_ACKED;
3297                 } else {
3298                         flag |= FLAG_SYN_ACKED;
3299                         tp->retrans_stamp = 0;
3300                 }
3301
3302                 if (!fully_acked)
3303                         break;
3304
3305                 tcp_unlink_write_queue(skb, sk);
3306                 sk_wmem_free_skb(sk, skb);
3307                 tp->scoreboard_skb_hint = NULL;
3308                 if (skb == tp->retransmit_skb_hint)
3309                         tp->retransmit_skb_hint = NULL;
3310                 if (skb == tp->lost_skb_hint)
3311                         tp->lost_skb_hint = NULL;
3312         }
3313
3314         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3315                 tp->snd_up = tp->snd_una;
3316
3317         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3318                 flag |= FLAG_SACK_RENEGING;
3319
3320         if (flag & FLAG_ACKED) {
3321                 const struct tcp_congestion_ops *ca_ops
3322                         = inet_csk(sk)->icsk_ca_ops;
3323
3324                 if (unlikely(icsk->icsk_mtup.probe_size &&
3325                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3326                         tcp_mtup_probe_success(sk);
3327                 }
3328
3329                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3330                 tcp_rearm_rto(sk);
3331
3332                 if (tcp_is_reno(tp)) {
3333                         tcp_remove_reno_sacks(sk, pkts_acked);
3334                 } else {
3335                         int delta;
3336
3337                         /* Non-retransmitted hole got filled? That's reordering */
3338                         if (reord < prior_fackets)
3339                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3340
3341                         delta = tcp_is_fack(tp) ? pkts_acked :
3342                                                   prior_sacked - tp->sacked_out;
3343                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3344                 }
3345
3346                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3347
3348                 if (ca_ops->pkts_acked) {
3349                         s32 rtt_us = -1;
3350
3351                         /* Is the ACK triggering packet unambiguous? */
3352                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3353                                 /* High resolution needed and available? */
3354                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3355                                     !ktime_equal(last_ackt,
3356                                                  net_invalid_timestamp()))
3357                                         rtt_us = ktime_us_delta(ktime_get_real(),
3358                                                                 last_ackt);
3359                                 else if (ca_seq_rtt > 0)
3360                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3361                         }
3362
3363                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3364                 }
3365         }
3366
3367 #if FASTRETRANS_DEBUG > 0
3368         WARN_ON((int)tp->sacked_out < 0);
3369         WARN_ON((int)tp->lost_out < 0);
3370         WARN_ON((int)tp->retrans_out < 0);
3371         if (!tp->packets_out && tcp_is_sack(tp)) {
3372                 icsk = inet_csk(sk);
3373                 if (tp->lost_out) {
3374                         printk(KERN_DEBUG "Leak l=%u %d\n",
3375                                tp->lost_out, icsk->icsk_ca_state);
3376                         tp->lost_out = 0;
3377                 }
3378                 if (tp->sacked_out) {
3379                         printk(KERN_DEBUG "Leak s=%u %d\n",
3380                                tp->sacked_out, icsk->icsk_ca_state);
3381                         tp->sacked_out = 0;
3382                 }
3383                 if (tp->retrans_out) {
3384                         printk(KERN_DEBUG "Leak r=%u %d\n",
3385                                tp->retrans_out, icsk->icsk_ca_state);
3386                         tp->retrans_out = 0;
3387                 }
3388         }
3389 #endif
3390         return flag;
3391 }
3392
3393 static void tcp_ack_probe(struct sock *sk)
3394 {
3395         const struct tcp_sock *tp = tcp_sk(sk);
3396         struct inet_connection_sock *icsk = inet_csk(sk);
3397
3398         /* Was it a usable window open? */
3399
3400         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3401                 icsk->icsk_backoff = 0;
3402                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3403                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3404                  * This function is not for random using!
3405                  */
3406         } else {
3407                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3408                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3409                                           TCP_RTO_MAX);
3410         }
3411 }
3412
3413 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3414 {
3415         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3416                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3417 }
3418
3419 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3420 {
3421         const struct tcp_sock *tp = tcp_sk(sk);
3422         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3423                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3424 }
3425
3426 /* Check that window update is acceptable.
3427  * The function assumes that snd_una<=ack<=snd_next.
3428  */
3429 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3430                                         const u32 ack, const u32 ack_seq,
3431                                         const u32 nwin)
3432 {
3433         return (after(ack, tp->snd_una) ||
3434                 after(ack_seq, tp->snd_wl1) ||
3435                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3436 }
3437
3438 /* Update our send window.
3439  *
3440  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3441  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3442  */
3443 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3444                                  u32 ack_seq)
3445 {
3446         struct tcp_sock *tp = tcp_sk(sk);
3447         int flag = 0;
3448         u32 nwin = ntohs(tcp_hdr(skb)->window);
3449
3450         if (likely(!tcp_hdr(skb)->syn))
3451                 nwin <<= tp->rx_opt.snd_wscale;
3452
3453         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3454                 flag |= FLAG_WIN_UPDATE;
3455                 tcp_update_wl(tp, ack_seq);
3456
3457                 if (tp->snd_wnd != nwin) {
3458                         tp->snd_wnd = nwin;
3459
3460                         /* Note, it is the only place, where
3461                          * fast path is recovered for sending TCP.
3462                          */
3463                         tp->pred_flags = 0;
3464                         tcp_fast_path_check(sk);
3465
3466                         if (nwin > tp->max_window) {
3467                                 tp->max_window = nwin;
3468                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3469                         }
3470                 }
3471         }
3472
3473         tp->snd_una = ack;
3474
3475         return flag;
3476 }
3477
3478 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3479  * continue in congestion avoidance.
3480  */
3481 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3482 {
3483         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3484         tp->snd_cwnd_cnt = 0;
3485         tp->bytes_acked = 0;
3486         TCP_ECN_queue_cwr(tp);
3487         tcp_moderate_cwnd(tp);
3488 }
3489
3490 /* A conservative spurious RTO response algorithm: reduce cwnd using
3491  * rate halving and continue in congestion avoidance.
3492  */
3493 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3494 {
3495         tcp_enter_cwr(sk, 0);
3496 }
3497
3498 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3499 {
3500         if (flag & FLAG_ECE)
3501                 tcp_ratehalving_spur_to_response(sk);
3502         else
3503                 tcp_undo_cwr(sk, 1);
3504 }
3505
3506 /* F-RTO spurious RTO detection algorithm (RFC4138)
3507  *
3508  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3509  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3510  * window (but not to or beyond highest sequence sent before RTO):
3511  *   On First ACK,  send two new segments out.
3512  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3513  *                  algorithm is not part of the F-RTO detection algorithm
3514  *                  given in RFC4138 but can be selected separately).
3515  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3516  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3517  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3518  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3519  *
3520  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3521  * original window even after we transmit two new data segments.
3522  *
3523  * SACK version:
3524  *   on first step, wait until first cumulative ACK arrives, then move to
3525  *   the second step. In second step, the next ACK decides.
3526  *
3527  * F-RTO is implemented (mainly) in four functions:
3528  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3529  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3530  *     called when tcp_use_frto() showed green light
3531  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3532  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3533  *     to prove that the RTO is indeed spurious. It transfers the control
3534  *     from F-RTO to the conventional RTO recovery
3535  */
3536 static int tcp_process_frto(struct sock *sk, int flag)
3537 {
3538         struct tcp_sock *tp = tcp_sk(sk);
3539
3540         tcp_verify_left_out(tp);
3541
3542         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3543         if (flag & FLAG_DATA_ACKED)
3544                 inet_csk(sk)->icsk_retransmits = 0;
3545
3546         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3547             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3548                 tp->undo_marker = 0;
3549
3550         if (!before(tp->snd_una, tp->frto_highmark)) {
3551                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3552                 return 1;
3553         }
3554
3555         if (!tcp_is_sackfrto(tp)) {
3556                 /* RFC4138 shortcoming in step 2; should also have case c):
3557                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3558                  * data, winupdate
3559                  */
3560                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3561                         return 1;
3562
3563                 if (!(flag & FLAG_DATA_ACKED)) {
3564                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3565                                             flag);
3566                         return 1;
3567                 }
3568         } else {
3569                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3570                         /* Prevent sending of new data. */
3571                         tp->snd_cwnd = min(tp->snd_cwnd,
3572                                            tcp_packets_in_flight(tp));
3573                         return 1;
3574                 }
3575
3576                 if ((tp->frto_counter >= 2) &&
3577                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3578                      ((flag & FLAG_DATA_SACKED) &&
3579                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3580                         /* RFC4138 shortcoming (see comment above) */
3581                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3582                             (flag & FLAG_NOT_DUP))
3583                                 return 1;
3584
3585                         tcp_enter_frto_loss(sk, 3, flag);
3586                         return 1;
3587                 }
3588         }
3589
3590         if (tp->frto_counter == 1) {
3591                 /* tcp_may_send_now needs to see updated state */
3592                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3593                 tp->frto_counter = 2;
3594
3595                 if (!tcp_may_send_now(sk))
3596                         tcp_enter_frto_loss(sk, 2, flag);
3597
3598                 return 1;
3599         } else {
3600                 switch (sysctl_tcp_frto_response) {
3601                 case 2:
3602                         tcp_undo_spur_to_response(sk, flag);
3603                         break;
3604                 case 1:
3605                         tcp_conservative_spur_to_response(tp);
3606                         break;
3607                 default:
3608                         tcp_ratehalving_spur_to_response(sk);
3609                         break;
3610                 }
3611                 tp->frto_counter = 0;
3612                 tp->undo_marker = 0;
3613                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3614         }
3615         return 0;
3616 }
3617
3618 /* This routine deals with incoming acks, but not outgoing ones. */
3619 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3620 {
3621         struct inet_connection_sock *icsk = inet_csk(sk);
3622         struct tcp_sock *tp = tcp_sk(sk);
3623         u32 prior_snd_una = tp->snd_una;
3624         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3625         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3626         u32 prior_in_flight;
3627         u32 prior_fackets;
3628         int prior_packets;
3629         int frto_cwnd = 0;
3630
3631         /* If the ack is older than previous acks
3632          * then we can probably ignore it.
3633          */
3634         if (before(ack, prior_snd_una))
3635                 goto old_ack;
3636
3637         /* If the ack includes data we haven't sent yet, discard
3638          * this segment (RFC793 Section 3.9).
3639          */
3640         if (after(ack, tp->snd_nxt))
3641                 goto invalid_ack;
3642
3643         if (after(ack, prior_snd_una))
3644                 flag |= FLAG_SND_UNA_ADVANCED;
3645
3646         if (sysctl_tcp_abc) {
3647                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3648                         tp->bytes_acked += ack - prior_snd_una;
3649                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3650                         /* we assume just one segment left network */
3651                         tp->bytes_acked += min(ack - prior_snd_una,
3652                                                tp->mss_cache);
3653         }
3654
3655         prior_fackets = tp->fackets_out;
3656         prior_in_flight = tcp_packets_in_flight(tp);
3657
3658         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3659                 /* Window is constant, pure forward advance.
3660                  * No more checks are required.
3661                  * Note, we use the fact that SND.UNA>=SND.WL2.
3662                  */
3663                 tcp_update_wl(tp, ack_seq);
3664                 tp->snd_una = ack;
3665                 flag |= FLAG_WIN_UPDATE;
3666
3667                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3668
3669                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3670         } else {
3671                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3672                         flag |= FLAG_DATA;
3673                 else
3674                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3675
3676                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3677
3678                 if (TCP_SKB_CB(skb)->sacked)
3679                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3680
3681                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3682                         flag |= FLAG_ECE;
3683
3684                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3685         }
3686
3687         /* We passed data and got it acked, remove any soft error
3688          * log. Something worked...
3689          */
3690         sk->sk_err_soft = 0;
3691         icsk->icsk_probes_out = 0;
3692         tp->rcv_tstamp = tcp_time_stamp;
3693         prior_packets = tp->packets_out;
3694         if (!prior_packets)
3695                 goto no_queue;
3696
3697         /* See if we can take anything off of the retransmit queue. */
3698         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3699
3700         if (tp->frto_counter)
3701                 frto_cwnd = tcp_process_frto(sk, flag);
3702         /* Guarantee sacktag reordering detection against wrap-arounds */
3703         if (before(tp->frto_highmark, tp->snd_una))
3704                 tp->frto_highmark = 0;
3705
3706         if (tcp_ack_is_dubious(sk, flag)) {
3707                 /* Advance CWND, if state allows this. */
3708                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3709                     tcp_may_raise_cwnd(sk, flag))
3710                         tcp_cong_avoid(sk, ack, prior_in_flight);
3711                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3712                                       flag);
3713         } else {
3714                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3715                         tcp_cong_avoid(sk, ack, prior_in_flight);
3716         }
3717
3718         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3719                 dst_confirm(__sk_dst_get(sk));
3720
3721         return 1;
3722
3723 no_queue:
3724         /* If this ack opens up a zero window, clear backoff.  It was
3725          * being used to time the probes, and is probably far higher than
3726          * it needs to be for normal retransmission.
3727          */
3728         if (tcp_send_head(sk))
3729                 tcp_ack_probe(sk);
3730         return 1;
3731
3732 invalid_ack:
3733         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3734         return -1;
3735
3736 old_ack:
3737         if (TCP_SKB_CB(skb)->sacked) {
3738                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3739                 if (icsk->icsk_ca_state == TCP_CA_Open)
3740                         tcp_try_keep_open(sk);
3741         }
3742
3743         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3744         return 0;
3745 }
3746
3747 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3748  * But, this can also be called on packets in the established flow when
3749  * the fast version below fails.
3750  */
3751 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3752                        u8 **hvpp, int estab)
3753 {
3754         unsigned char *ptr;
3755         struct tcphdr *th = tcp_hdr(skb);
3756         int length = (th->doff * 4) - sizeof(struct tcphdr);
3757
3758         ptr = (unsigned char *)(th + 1);
3759         opt_rx->saw_tstamp = 0;
3760
3761         while (length > 0) {
3762                 int opcode = *ptr++;
3763                 int opsize;
3764
3765                 switch (opcode) {
3766                 case TCPOPT_EOL:
3767                         return;
3768                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3769                         length--;
3770                         continue;
3771                 default:
3772                         opsize = *ptr++;
3773                         if (opsize < 2) /* "silly options" */
3774                                 return;
3775                         if (opsize > length)
3776                                 return; /* don't parse partial options */
3777                         switch (opcode) {
3778                         case TCPOPT_MSS:
3779                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3780                                         u16 in_mss = get_unaligned_be16(ptr);
3781                                         if (in_mss) {
3782                                                 if (opt_rx->user_mss &&
3783                                                     opt_rx->user_mss < in_mss)
3784                                                         in_mss = opt_rx->user_mss;
3785                                                 opt_rx->mss_clamp = in_mss;
3786                                         }
3787                                 }
3788                                 break;
3789                         case TCPOPT_WINDOW:
3790                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3791                                     !estab && sysctl_tcp_window_scaling) {
3792                                         __u8 snd_wscale = *(__u8 *)ptr;
3793                                         opt_rx->wscale_ok = 1;
3794                                         if (snd_wscale > 14) {
3795                                                 if (net_ratelimit())
3796                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3797                                                                "scaling value %d >14 received.\n",
3798                                                                snd_wscale);
3799                                                 snd_wscale = 14;
3800                                         }
3801                                         opt_rx->snd_wscale = snd_wscale;
3802                                 }
3803                                 break;
3804                         case TCPOPT_TIMESTAMP:
3805                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3806                                     ((estab && opt_rx->tstamp_ok) ||
3807                                      (!estab && sysctl_tcp_timestamps))) {
3808                                         opt_rx->saw_tstamp = 1;
3809                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3810                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3811                                 }
3812                                 break;
3813                         case TCPOPT_SACK_PERM:
3814                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3815                                     !estab && sysctl_tcp_sack) {
3816                                         opt_rx->sack_ok = 1;
3817                                         tcp_sack_reset(opt_rx);
3818                                 }
3819                                 break;
3820
3821                         case TCPOPT_SACK:
3822                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3823                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3824                                    opt_rx->sack_ok) {
3825                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3826                                 }
3827                                 break;
3828 #ifdef CONFIG_TCP_MD5SIG
3829                         case TCPOPT_MD5SIG:
3830                                 /*
3831                                  * The MD5 Hash has already been
3832                                  * checked (see tcp_v{4,6}_do_rcv()).
3833                                  */
3834                                 break;
3835 #endif
3836                         case TCPOPT_COOKIE:
3837                                 /* This option is variable length.
3838                                  */
3839                                 switch (opsize) {
3840                                 case TCPOLEN_COOKIE_BASE:
3841                                         /* not yet implemented */
3842                                         break;
3843                                 case TCPOLEN_COOKIE_PAIR:
3844                                         /* not yet implemented */
3845                                         break;
3846                                 case TCPOLEN_COOKIE_MIN+0:
3847                                 case TCPOLEN_COOKIE_MIN+2:
3848                                 case TCPOLEN_COOKIE_MIN+4:
3849                                 case TCPOLEN_COOKIE_MIN+6:
3850                                 case TCPOLEN_COOKIE_MAX:
3851                                         /* 16-bit multiple */
3852                                         opt_rx->cookie_plus = opsize;
3853                                         *hvpp = ptr;
3854                                         break;
3855                                 default:
3856                                         /* ignore option */
3857                                         break;
3858                                 }
3859                                 break;
3860                         }
3861
3862                         ptr += opsize-2;
3863                         length -= opsize;
3864                 }
3865         }
3866 }
3867 EXPORT_SYMBOL(tcp_parse_options);
3868
3869 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3870 {
3871         __be32 *ptr = (__be32 *)(th + 1);
3872
3873         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3874                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3875                 tp->rx_opt.saw_tstamp = 1;
3876                 ++ptr;
3877                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3878                 ++ptr;
3879                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3880                 return 1;
3881         }
3882         return 0;
3883 }
3884
3885 /* Fast parse options. This hopes to only see timestamps.
3886  * If it is wrong it falls back on tcp_parse_options().
3887  */
3888 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3889                                   struct tcp_sock *tp, u8 **hvpp)
3890 {
3891         /* In the spirit of fast parsing, compare doff directly to constant
3892          * values.  Because equality is used, short doff can be ignored here.
3893          */
3894         if (th->doff == (sizeof(*th) / 4)) {
3895                 tp->rx_opt.saw_tstamp = 0;
3896                 return 0;
3897         } else if (tp->rx_opt.tstamp_ok &&
3898                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3899                 if (tcp_parse_aligned_timestamp(tp, th))
3900                         return 1;
3901         }
3902         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3903         return 1;
3904 }
3905
3906 #ifdef CONFIG_TCP_MD5SIG
3907 /*
3908  * Parse MD5 Signature option
3909  */
3910 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3911 {
3912         int length = (th->doff << 2) - sizeof (*th);
3913         u8 *ptr = (u8*)(th + 1);
3914
3915         /* If the TCP option is too short, we can short cut */
3916         if (length < TCPOLEN_MD5SIG)
3917                 return NULL;
3918
3919         while (length > 0) {
3920                 int opcode = *ptr++;
3921                 int opsize;
3922
3923                 switch(opcode) {
3924                 case TCPOPT_EOL:
3925                         return NULL;
3926                 case TCPOPT_NOP:
3927                         length--;
3928                         continue;
3929                 default:
3930                         opsize = *ptr++;
3931                         if (opsize < 2 || opsize > length)
3932                                 return NULL;
3933                         if (opcode == TCPOPT_MD5SIG)
3934                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3935                 }
3936                 ptr += opsize - 2;
3937                 length -= opsize;
3938         }
3939         return NULL;
3940 }
3941 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3942 #endif
3943
3944 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3945 {
3946         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3947         tp->rx_opt.ts_recent_stamp = get_seconds();
3948 }
3949
3950 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3951 {
3952         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3953                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3954                  * extra check below makes sure this can only happen
3955                  * for pure ACK frames.  -DaveM
3956                  *
3957                  * Not only, also it occurs for expired timestamps.
3958                  */
3959
3960                 if (tcp_paws_check(&tp->rx_opt, 0))
3961                         tcp_store_ts_recent(tp);
3962         }
3963 }
3964
3965 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3966  *
3967  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3968  * it can pass through stack. So, the following predicate verifies that
3969  * this segment is not used for anything but congestion avoidance or
3970  * fast retransmit. Moreover, we even are able to eliminate most of such
3971  * second order effects, if we apply some small "replay" window (~RTO)
3972  * to timestamp space.
3973  *
3974  * All these measures still do not guarantee that we reject wrapped ACKs
3975  * on networks with high bandwidth, when sequence space is recycled fastly,
3976  * but it guarantees that such events will be very rare and do not affect
3977  * connection seriously. This doesn't look nice, but alas, PAWS is really
3978  * buggy extension.
3979  *
3980  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3981  * states that events when retransmit arrives after original data are rare.
3982  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3983  * the biggest problem on large power networks even with minor reordering.
3984  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3985  * up to bandwidth of 18Gigabit/sec. 8) ]
3986  */
3987
3988 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3989 {
3990         struct tcp_sock *tp = tcp_sk(sk);
3991         struct tcphdr *th = tcp_hdr(skb);
3992         u32 seq = TCP_SKB_CB(skb)->seq;
3993         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3994
3995         return (/* 1. Pure ACK with correct sequence number. */
3996                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3997
3998                 /* 2. ... and duplicate ACK. */
3999                 ack == tp->snd_una &&
4000
4001                 /* 3. ... and does not update window. */
4002                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4003
4004                 /* 4. ... and sits in replay window. */
4005                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4006 }
4007
4008 static inline int tcp_paws_discard(const struct sock *sk,
4009                                    const struct sk_buff *skb)
4010 {
4011         const struct tcp_sock *tp = tcp_sk(sk);
4012
4013         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4014                !tcp_disordered_ack(sk, skb);
4015 }
4016
4017 /* Check segment sequence number for validity.
4018  *
4019  * Segment controls are considered valid, if the segment
4020  * fits to the window after truncation to the window. Acceptability
4021  * of data (and SYN, FIN, of course) is checked separately.
4022  * See tcp_data_queue(), for example.
4023  *
4024  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4025  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4026  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4027  * (borrowed from freebsd)
4028  */
4029
4030 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4031 {
4032         return  !before(end_seq, tp->rcv_wup) &&
4033                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4034 }
4035
4036 /* When we get a reset we do this. */
4037 static void tcp_reset(struct sock *sk)
4038 {
4039         /* We want the right error as BSD sees it (and indeed as we do). */
4040         switch (sk->sk_state) {
4041         case TCP_SYN_SENT:
4042                 sk->sk_err = ECONNREFUSED;
4043                 break;
4044         case TCP_CLOSE_WAIT:
4045                 sk->sk_err = EPIPE;
4046                 break;
4047         case TCP_CLOSE:
4048                 return;
4049         default:
4050                 sk->sk_err = ECONNRESET;
4051         }
4052         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4053         smp_wmb();
4054
4055         if (!sock_flag(sk, SOCK_DEAD))
4056                 sk->sk_error_report(sk);
4057
4058         tcp_done(sk);
4059 }
4060
4061 /*
4062  *      Process the FIN bit. This now behaves as it is supposed to work
4063  *      and the FIN takes effect when it is validly part of sequence
4064  *      space. Not before when we get holes.
4065  *
4066  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4067  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4068  *      TIME-WAIT)
4069  *
4070  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4071  *      close and we go into CLOSING (and later onto TIME-WAIT)
4072  *
4073  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4074  */
4075 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4076 {
4077         struct tcp_sock *tp = tcp_sk(sk);
4078
4079         inet_csk_schedule_ack(sk);
4080
4081         sk->sk_shutdown |= RCV_SHUTDOWN;
4082         sock_set_flag(sk, SOCK_DONE);
4083
4084         switch (sk->sk_state) {
4085         case TCP_SYN_RECV:
4086         case TCP_ESTABLISHED:
4087                 /* Move to CLOSE_WAIT */
4088                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4089                 inet_csk(sk)->icsk_ack.pingpong = 1;
4090                 break;
4091
4092         case TCP_CLOSE_WAIT:
4093         case TCP_CLOSING:
4094                 /* Received a retransmission of the FIN, do
4095                  * nothing.
4096                  */
4097                 break;
4098         case TCP_LAST_ACK:
4099                 /* RFC793: Remain in the LAST-ACK state. */
4100                 break;
4101
4102         case TCP_FIN_WAIT1:
4103                 /* This case occurs when a simultaneous close
4104                  * happens, we must ack the received FIN and
4105                  * enter the CLOSING state.
4106                  */
4107                 tcp_send_ack(sk);
4108                 tcp_set_state(sk, TCP_CLOSING);
4109                 break;
4110         case TCP_FIN_WAIT2:
4111                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4112                 tcp_send_ack(sk);
4113                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4114                 break;
4115         default:
4116                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4117                  * cases we should never reach this piece of code.
4118                  */
4119                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4120                        __func__, sk->sk_state);
4121                 break;
4122         }
4123
4124         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4125          * Probably, we should reset in this case. For now drop them.
4126          */
4127         __skb_queue_purge(&tp->out_of_order_queue);
4128         if (tcp_is_sack(tp))
4129                 tcp_sack_reset(&tp->rx_opt);
4130         sk_mem_reclaim(sk);
4131
4132         if (!sock_flag(sk, SOCK_DEAD)) {
4133                 sk->sk_state_change(sk);
4134
4135                 /* Do not send POLL_HUP for half duplex close. */
4136                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4137                     sk->sk_state == TCP_CLOSE)
4138                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4139                 else
4140                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4141         }
4142 }
4143
4144 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4145                                   u32 end_seq)
4146 {
4147         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4148                 if (before(seq, sp->start_seq))
4149                         sp->start_seq = seq;
4150                 if (after(end_seq, sp->end_seq))
4151                         sp->end_seq = end_seq;
4152                 return 1;
4153         }
4154         return 0;
4155 }
4156
4157 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4158 {
4159         struct tcp_sock *tp = tcp_sk(sk);
4160
4161         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4162                 int mib_idx;
4163
4164                 if (before(seq, tp->rcv_nxt))
4165                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4166                 else
4167                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4168
4169                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4170
4171                 tp->rx_opt.dsack = 1;
4172                 tp->duplicate_sack[0].start_seq = seq;
4173                 tp->duplicate_sack[0].end_seq = end_seq;
4174         }
4175 }
4176
4177 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4178 {
4179         struct tcp_sock *tp = tcp_sk(sk);
4180
4181         if (!tp->rx_opt.dsack)
4182                 tcp_dsack_set(sk, seq, end_seq);
4183         else
4184                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4185 }
4186
4187 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4188 {
4189         struct tcp_sock *tp = tcp_sk(sk);
4190
4191         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4192             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4193                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4194                 tcp_enter_quickack_mode(sk);
4195
4196                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4197                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4198
4199                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4200                                 end_seq = tp->rcv_nxt;
4201                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4202                 }
4203         }
4204
4205         tcp_send_ack(sk);
4206 }
4207
4208 /* These routines update the SACK block as out-of-order packets arrive or
4209  * in-order packets close up the sequence space.
4210  */
4211 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4212 {
4213         int this_sack;
4214         struct tcp_sack_block *sp = &tp->selective_acks[0];
4215         struct tcp_sack_block *swalk = sp + 1;
4216
4217         /* See if the recent change to the first SACK eats into
4218          * or hits the sequence space of other SACK blocks, if so coalesce.
4219          */
4220         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4221                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4222                         int i;
4223
4224                         /* Zap SWALK, by moving every further SACK up by one slot.
4225                          * Decrease num_sacks.
4226                          */
4227                         tp->rx_opt.num_sacks--;
4228                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4229                                 sp[i] = sp[i + 1];
4230                         continue;
4231                 }
4232                 this_sack++, swalk++;
4233         }
4234 }
4235
4236 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4237 {
4238         struct tcp_sock *tp = tcp_sk(sk);
4239         struct tcp_sack_block *sp = &tp->selective_acks[0];
4240         int cur_sacks = tp->rx_opt.num_sacks;
4241         int this_sack;
4242
4243         if (!cur_sacks)
4244                 goto new_sack;
4245
4246         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4247                 if (tcp_sack_extend(sp, seq, end_seq)) {
4248                         /* Rotate this_sack to the first one. */
4249                         for (; this_sack > 0; this_sack--, sp--)
4250                                 swap(*sp, *(sp - 1));
4251                         if (cur_sacks > 1)
4252                                 tcp_sack_maybe_coalesce(tp);
4253                         return;
4254                 }
4255         }
4256
4257         /* Could not find an adjacent existing SACK, build a new one,
4258          * put it at the front, and shift everyone else down.  We
4259          * always know there is at least one SACK present already here.
4260          *
4261          * If the sack array is full, forget about the last one.
4262          */
4263         if (this_sack >= TCP_NUM_SACKS) {
4264                 this_sack--;
4265                 tp->rx_opt.num_sacks--;
4266                 sp--;
4267         }
4268         for (; this_sack > 0; this_sack--, sp--)
4269                 *sp = *(sp - 1);
4270
4271 new_sack:
4272         /* Build the new head SACK, and we're done. */
4273         sp->start_seq = seq;
4274         sp->end_seq = end_seq;
4275         tp->rx_opt.num_sacks++;
4276 }
4277
4278 /* RCV.NXT advances, some SACKs should be eaten. */
4279
4280 static void tcp_sack_remove(struct tcp_sock *tp)
4281 {
4282         struct tcp_sack_block *sp = &tp->selective_acks[0];
4283         int num_sacks = tp->rx_opt.num_sacks;
4284         int this_sack;
4285
4286         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4287         if (skb_queue_empty(&tp->out_of_order_queue)) {
4288                 tp->rx_opt.num_sacks = 0;
4289                 return;
4290         }
4291
4292         for (this_sack = 0; this_sack < num_sacks;) {
4293                 /* Check if the start of the sack is covered by RCV.NXT. */
4294                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4295                         int i;
4296
4297                         /* RCV.NXT must cover all the block! */
4298                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4299
4300                         /* Zap this SACK, by moving forward any other SACKS. */
4301                         for (i=this_sack+1; i < num_sacks; i++)
4302                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4303                         num_sacks--;
4304                         continue;
4305                 }
4306                 this_sack++;
4307                 sp++;
4308         }
4309         tp->rx_opt.num_sacks = num_sacks;
4310 }
4311
4312 /* This one checks to see if we can put data from the
4313  * out_of_order queue into the receive_queue.
4314  */
4315 static void tcp_ofo_queue(struct sock *sk)
4316 {
4317         struct tcp_sock *tp = tcp_sk(sk);
4318         __u32 dsack_high = tp->rcv_nxt;
4319         struct sk_buff *skb;
4320
4321         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4322                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4323                         break;
4324
4325                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4326                         __u32 dsack = dsack_high;
4327                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4328                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4329                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4330                 }
4331
4332                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4333                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4334                         __skb_unlink(skb, &tp->out_of_order_queue);
4335                         __kfree_skb(skb);
4336                         continue;
4337                 }
4338                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4339                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4340                            TCP_SKB_CB(skb)->end_seq);
4341
4342                 __skb_unlink(skb, &tp->out_of_order_queue);
4343                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4344                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4345                 if (tcp_hdr(skb)->fin)
4346                         tcp_fin(skb, sk, tcp_hdr(skb));
4347         }
4348 }
4349
4350 static int tcp_prune_ofo_queue(struct sock *sk);
4351 static int tcp_prune_queue(struct sock *sk);
4352
4353 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4354 {
4355         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4356             !sk_rmem_schedule(sk, size)) {
4357
4358                 if (tcp_prune_queue(sk) < 0)
4359                         return -1;
4360
4361                 if (!sk_rmem_schedule(sk, size)) {
4362                         if (!tcp_prune_ofo_queue(sk))
4363                                 return -1;
4364
4365                         if (!sk_rmem_schedule(sk, size))
4366                                 return -1;
4367                 }
4368         }
4369         return 0;
4370 }
4371
4372 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4373 {
4374         struct tcphdr *th = tcp_hdr(skb);
4375         struct tcp_sock *tp = tcp_sk(sk);
4376         int eaten = -1;
4377
4378         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4379                 goto drop;
4380
4381         skb_dst_drop(skb);
4382         __skb_pull(skb, th->doff * 4);
4383
4384         TCP_ECN_accept_cwr(tp, skb);
4385
4386         tp->rx_opt.dsack = 0;
4387
4388         /*  Queue data for delivery to the user.
4389          *  Packets in sequence go to the receive queue.
4390          *  Out of sequence packets to the out_of_order_queue.
4391          */
4392         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4393                 if (tcp_receive_window(tp) == 0)
4394                         goto out_of_window;
4395
4396                 /* Ok. In sequence. In window. */
4397                 if (tp->ucopy.task == current &&
4398                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4399                     sock_owned_by_user(sk) && !tp->urg_data) {
4400                         int chunk = min_t(unsigned int, skb->len,
4401                                           tp->ucopy.len);
4402
4403                         __set_current_state(TASK_RUNNING);
4404
4405                         local_bh_enable();
4406                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4407                                 tp->ucopy.len -= chunk;
4408                                 tp->copied_seq += chunk;
4409                                 eaten = (chunk == skb->len && !th->fin);
4410                                 tcp_rcv_space_adjust(sk);
4411                         }
4412                         local_bh_disable();
4413                 }
4414
4415                 if (eaten <= 0) {
4416 queue_and_out:
4417                         if (eaten < 0 &&
4418                             tcp_try_rmem_schedule(sk, skb->truesize))
4419                                 goto drop;
4420
4421                         skb_set_owner_r(skb, sk);
4422                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4423                 }
4424                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4425                 if (skb->len)
4426                         tcp_event_data_recv(sk, skb);
4427                 if (th->fin)
4428                         tcp_fin(skb, sk, th);
4429
4430                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4431                         tcp_ofo_queue(sk);
4432
4433                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4434                          * gap in queue is filled.
4435                          */
4436                         if (skb_queue_empty(&tp->out_of_order_queue))
4437                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4438                 }
4439
4440                 if (tp->rx_opt.num_sacks)
4441                         tcp_sack_remove(tp);
4442
4443                 tcp_fast_path_check(sk);
4444
4445                 if (eaten > 0)
4446                         __kfree_skb(skb);
4447                 else if (!sock_flag(sk, SOCK_DEAD))
4448                         sk->sk_data_ready(sk, 0);
4449                 return;
4450         }
4451
4452         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4453                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4454                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4455                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4456
4457 out_of_window:
4458                 tcp_enter_quickack_mode(sk);
4459                 inet_csk_schedule_ack(sk);
4460 drop:
4461                 __kfree_skb(skb);
4462                 return;
4463         }
4464
4465         /* Out of window. F.e. zero window probe. */
4466         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4467                 goto out_of_window;
4468
4469         tcp_enter_quickack_mode(sk);
4470
4471         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4472                 /* Partial packet, seq < rcv_next < end_seq */
4473                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4474                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4475                            TCP_SKB_CB(skb)->end_seq);
4476
4477                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4478
4479                 /* If window is closed, drop tail of packet. But after
4480                  * remembering D-SACK for its head made in previous line.
4481                  */
4482                 if (!tcp_receive_window(tp))
4483                         goto out_of_window;
4484                 goto queue_and_out;
4485         }
4486
4487         TCP_ECN_check_ce(tp, skb);
4488
4489         if (tcp_try_rmem_schedule(sk, skb->truesize))
4490                 goto drop;
4491
4492         /* Disable header prediction. */
4493         tp->pred_flags = 0;
4494         inet_csk_schedule_ack(sk);
4495
4496         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4497                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4498
4499         skb_set_owner_r(skb, sk);
4500
4501         if (!skb_peek(&tp->out_of_order_queue)) {
4502                 /* Initial out of order segment, build 1 SACK. */
4503                 if (tcp_is_sack(tp)) {
4504                         tp->rx_opt.num_sacks = 1;
4505                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4506                         tp->selective_acks[0].end_seq =
4507                                                 TCP_SKB_CB(skb)->end_seq;
4508                 }
4509                 __skb_queue_head(&tp->out_of_order_queue, skb);
4510         } else {
4511                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4512                 u32 seq = TCP_SKB_CB(skb)->seq;
4513                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4514
4515                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4516                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4517
4518                         if (!tp->rx_opt.num_sacks ||
4519                             tp->selective_acks[0].end_seq != seq)
4520                                 goto add_sack;
4521
4522                         /* Common case: data arrive in order after hole. */
4523                         tp->selective_acks[0].end_seq = end_seq;
4524                         return;
4525                 }
4526
4527                 /* Find place to insert this segment. */
4528                 while (1) {
4529                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4530                                 break;
4531                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4532                                 skb1 = NULL;
4533                                 break;
4534                         }
4535                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4536                 }
4537
4538                 /* Do skb overlap to previous one? */
4539                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4540                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4541                                 /* All the bits are present. Drop. */
4542                                 __kfree_skb(skb);
4543                                 tcp_dsack_set(sk, seq, end_seq);
4544                                 goto add_sack;
4545                         }
4546                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4547                                 /* Partial overlap. */
4548                                 tcp_dsack_set(sk, seq,
4549                                               TCP_SKB_CB(skb1)->end_seq);
4550                         } else {
4551                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4552                                                        skb1))
4553                                         skb1 = NULL;
4554                                 else
4555                                         skb1 = skb_queue_prev(
4556                                                 &tp->out_of_order_queue,
4557                                                 skb1);
4558                         }
4559                 }
4560                 if (!skb1)
4561                         __skb_queue_head(&tp->out_of_order_queue, skb);
4562                 else
4563                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4564
4565                 /* And clean segments covered by new one as whole. */
4566                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4567                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4568
4569                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4570                                 break;
4571                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4572                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4573                                                  end_seq);
4574                                 break;
4575                         }
4576                         __skb_unlink(skb1, &tp->out_of_order_queue);
4577                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4578                                          TCP_SKB_CB(skb1)->end_seq);
4579                         __kfree_skb(skb1);
4580                 }
4581
4582 add_sack:
4583                 if (tcp_is_sack(tp))
4584                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4585         }
4586 }
4587
4588 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4589                                         struct sk_buff_head *list)
4590 {
4591         struct sk_buff *next = NULL;
4592
4593         if (!skb_queue_is_last(list, skb))
4594                 next = skb_queue_next(list, skb);
4595
4596         __skb_unlink(skb, list);
4597         __kfree_skb(skb);
4598         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4599
4600         return next;
4601 }
4602
4603 /* Collapse contiguous sequence of skbs head..tail with
4604  * sequence numbers start..end.
4605  *
4606  * If tail is NULL, this means until the end of the list.
4607  *
4608  * Segments with FIN/SYN are not collapsed (only because this
4609  * simplifies code)
4610  */
4611 static void
4612 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4613              struct sk_buff *head, struct sk_buff *tail,
4614              u32 start, u32 end)
4615 {
4616         struct sk_buff *skb, *n;
4617         bool end_of_skbs;
4618
4619         /* First, check that queue is collapsible and find
4620          * the point where collapsing can be useful. */
4621         skb = head;
4622 restart:
4623         end_of_skbs = true;
4624         skb_queue_walk_from_safe(list, skb, n) {
4625                 if (skb == tail)
4626                         break;
4627                 /* No new bits? It is possible on ofo queue. */
4628                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4629                         skb = tcp_collapse_one(sk, skb, list);
4630                         if (!skb)
4631                                 break;
4632                         goto restart;
4633                 }
4634
4635                 /* The first skb to collapse is:
4636                  * - not SYN/FIN and
4637                  * - bloated or contains data before "start" or
4638                  *   overlaps to the next one.
4639                  */
4640                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4641                     (tcp_win_from_space(skb->truesize) > skb->len ||
4642                      before(TCP_SKB_CB(skb)->seq, start))) {
4643                         end_of_skbs = false;
4644                         break;
4645                 }
4646
4647                 if (!skb_queue_is_last(list, skb)) {
4648                         struct sk_buff *next = skb_queue_next(list, skb);
4649                         if (next != tail &&
4650                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4651                                 end_of_skbs = false;
4652                                 break;
4653                         }
4654                 }
4655
4656                 /* Decided to skip this, advance start seq. */
4657                 start = TCP_SKB_CB(skb)->end_seq;
4658         }
4659         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4660                 return;
4661
4662         while (before(start, end)) {
4663                 struct sk_buff *nskb;
4664                 unsigned int header = skb_headroom(skb);
4665                 int copy = SKB_MAX_ORDER(header, 0);
4666
4667                 /* Too big header? This can happen with IPv6. */
4668                 if (copy < 0)
4669                         return;
4670                 if (end - start < copy)
4671                         copy = end - start;
4672                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4673                 if (!nskb)
4674                         return;
4675
4676                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4677                 skb_set_network_header(nskb, (skb_network_header(skb) -
4678                                               skb->head));
4679                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4680                                                 skb->head));
4681                 skb_reserve(nskb, header);
4682                 memcpy(nskb->head, skb->head, header);
4683                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4684                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4685                 __skb_queue_before(list, skb, nskb);
4686                 skb_set_owner_r(nskb, sk);
4687
4688                 /* Copy data, releasing collapsed skbs. */
4689                 while (copy > 0) {
4690                         int offset = start - TCP_SKB_CB(skb)->seq;
4691                         int size = TCP_SKB_CB(skb)->end_seq - start;
4692
4693                         BUG_ON(offset < 0);
4694                         if (size > 0) {
4695                                 size = min(copy, size);
4696                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4697                                         BUG();
4698                                 TCP_SKB_CB(nskb)->end_seq += size;
4699                                 copy -= size;
4700                                 start += size;
4701                         }
4702                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4703                                 skb = tcp_collapse_one(sk, skb, list);
4704                                 if (!skb ||
4705                                     skb == tail ||
4706                                     tcp_hdr(skb)->syn ||
4707                                     tcp_hdr(skb)->fin)
4708                                         return;
4709                         }
4710                 }
4711         }
4712 }
4713
4714 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4715  * and tcp_collapse() them until all the queue is collapsed.
4716  */
4717 static void tcp_collapse_ofo_queue(struct sock *sk)
4718 {
4719         struct tcp_sock *tp = tcp_sk(sk);
4720         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4721         struct sk_buff *head;
4722         u32 start, end;
4723
4724         if (skb == NULL)
4725                 return;
4726
4727         start = TCP_SKB_CB(skb)->seq;
4728         end = TCP_SKB_CB(skb)->end_seq;
4729         head = skb;
4730
4731         for (;;) {
4732                 struct sk_buff *next = NULL;
4733
4734                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4735                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4736                 skb = next;
4737
4738                 /* Segment is terminated when we see gap or when
4739                  * we are at the end of all the queue. */
4740                 if (!skb ||
4741                     after(TCP_SKB_CB(skb)->seq, end) ||
4742                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4743                         tcp_collapse(sk, &tp->out_of_order_queue,
4744                                      head, skb, start, end);
4745                         head = skb;
4746                         if (!skb)
4747                                 break;
4748                         /* Start new segment */
4749                         start = TCP_SKB_CB(skb)->seq;
4750                         end = TCP_SKB_CB(skb)->end_seq;
4751                 } else {
4752                         if (before(TCP_SKB_CB(skb)->seq, start))
4753                                 start = TCP_SKB_CB(skb)->seq;
4754                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4755                                 end = TCP_SKB_CB(skb)->end_seq;
4756                 }
4757         }
4758 }
4759
4760 /*
4761  * Purge the out-of-order queue.
4762  * Return true if queue was pruned.
4763  */
4764 static int tcp_prune_ofo_queue(struct sock *sk)
4765 {
4766         struct tcp_sock *tp = tcp_sk(sk);
4767         int res = 0;
4768
4769         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4770                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4771                 __skb_queue_purge(&tp->out_of_order_queue);
4772
4773                 /* Reset SACK state.  A conforming SACK implementation will
4774                  * do the same at a timeout based retransmit.  When a connection
4775                  * is in a sad state like this, we care only about integrity
4776                  * of the connection not performance.
4777                  */
4778                 if (tp->rx_opt.sack_ok)
4779                         tcp_sack_reset(&tp->rx_opt);
4780                 sk_mem_reclaim(sk);
4781                 res = 1;
4782         }
4783         return res;
4784 }
4785
4786 /* Reduce allocated memory if we can, trying to get
4787  * the socket within its memory limits again.
4788  *
4789  * Return less than zero if we should start dropping frames
4790  * until the socket owning process reads some of the data
4791  * to stabilize the situation.
4792  */
4793 static int tcp_prune_queue(struct sock *sk)
4794 {
4795         struct tcp_sock *tp = tcp_sk(sk);
4796
4797         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4798
4799         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4800
4801         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4802                 tcp_clamp_window(sk);
4803         else if (tcp_memory_pressure)
4804                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4805
4806         tcp_collapse_ofo_queue(sk);
4807         if (!skb_queue_empty(&sk->sk_receive_queue))
4808                 tcp_collapse(sk, &sk->sk_receive_queue,
4809                              skb_peek(&sk->sk_receive_queue),
4810                              NULL,
4811                              tp->copied_seq, tp->rcv_nxt);
4812         sk_mem_reclaim(sk);
4813
4814         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4815                 return 0;
4816
4817         /* Collapsing did not help, destructive actions follow.
4818          * This must not ever occur. */
4819
4820         tcp_prune_ofo_queue(sk);
4821
4822         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4823                 return 0;
4824
4825         /* If we are really being abused, tell the caller to silently
4826          * drop receive data on the floor.  It will get retransmitted
4827          * and hopefully then we'll have sufficient space.
4828          */
4829         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4830
4831         /* Massive buffer overcommit. */
4832         tp->pred_flags = 0;
4833         return -1;
4834 }
4835
4836 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4837  * As additional protections, we do not touch cwnd in retransmission phases,
4838  * and if application hit its sndbuf limit recently.
4839  */
4840 void tcp_cwnd_application_limited(struct sock *sk)
4841 {
4842         struct tcp_sock *tp = tcp_sk(sk);
4843
4844         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4845             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4846                 /* Limited by application or receiver window. */
4847                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4848                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4849                 if (win_used < tp->snd_cwnd) {
4850                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4851                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4852                 }
4853                 tp->snd_cwnd_used = 0;
4854         }
4855         tp->snd_cwnd_stamp = tcp_time_stamp;
4856 }
4857
4858 static int tcp_should_expand_sndbuf(struct sock *sk)
4859 {
4860         struct tcp_sock *tp = tcp_sk(sk);
4861
4862         /* If the user specified a specific send buffer setting, do
4863          * not modify it.
4864          */
4865         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4866                 return 0;
4867
4868         /* If we are under global TCP memory pressure, do not expand.  */
4869         if (tcp_memory_pressure)
4870                 return 0;
4871
4872         /* If we are under soft global TCP memory pressure, do not expand.  */
4873         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4874                 return 0;
4875
4876         /* If we filled the congestion window, do not expand.  */
4877         if (tp->packets_out >= tp->snd_cwnd)
4878                 return 0;
4879
4880         return 1;
4881 }
4882
4883 /* When incoming ACK allowed to free some skb from write_queue,
4884  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4885  * on the exit from tcp input handler.
4886  *
4887  * PROBLEM: sndbuf expansion does not work well with largesend.
4888  */
4889 static void tcp_new_space(struct sock *sk)
4890 {
4891         struct tcp_sock *tp = tcp_sk(sk);
4892
4893         if (tcp_should_expand_sndbuf(sk)) {
4894                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4895                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4896                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4897                                      tp->reordering + 1);
4898                 sndmem *= 2 * demanded;
4899                 if (sndmem > sk->sk_sndbuf)
4900                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4901                 tp->snd_cwnd_stamp = tcp_time_stamp;
4902         }
4903
4904         sk->sk_write_space(sk);
4905 }
4906
4907 static void tcp_check_space(struct sock *sk)
4908 {
4909         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4910                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4911                 if (sk->sk_socket &&
4912                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4913                         tcp_new_space(sk);
4914         }
4915 }
4916
4917 static inline void tcp_data_snd_check(struct sock *sk)
4918 {
4919         tcp_push_pending_frames(sk);
4920         tcp_check_space(sk);
4921 }
4922
4923 /*
4924  * Check if sending an ack is needed.
4925  */
4926 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4927 {
4928         struct tcp_sock *tp = tcp_sk(sk);
4929
4930             /* More than one full frame received... */
4931         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4932              /* ... and right edge of window advances far enough.
4933               * (tcp_recvmsg() will send ACK otherwise). Or...
4934               */
4935              __tcp_select_window(sk) >= tp->rcv_wnd) ||
4936             /* We ACK each frame or... */
4937             tcp_in_quickack_mode(sk) ||
4938             /* We have out of order data. */
4939             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4940                 /* Then ack it now */
4941                 tcp_send_ack(sk);
4942         } else {
4943                 /* Else, send delayed ack. */
4944                 tcp_send_delayed_ack(sk);
4945         }
4946 }
4947
4948 static inline void tcp_ack_snd_check(struct sock *sk)
4949 {
4950         if (!inet_csk_ack_scheduled(sk)) {
4951                 /* We sent a data segment already. */
4952                 return;
4953         }
4954         __tcp_ack_snd_check(sk, 1);
4955 }
4956
4957 /*
4958  *      This routine is only called when we have urgent data
4959  *      signaled. Its the 'slow' part of tcp_urg. It could be
4960  *      moved inline now as tcp_urg is only called from one
4961  *      place. We handle URGent data wrong. We have to - as
4962  *      BSD still doesn't use the correction from RFC961.
4963  *      For 1003.1g we should support a new option TCP_STDURG to permit
4964  *      either form (or just set the sysctl tcp_stdurg).
4965  */
4966
4967 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4968 {
4969         struct tcp_sock *tp = tcp_sk(sk);
4970         u32 ptr = ntohs(th->urg_ptr);
4971
4972         if (ptr && !sysctl_tcp_stdurg)
4973                 ptr--;
4974         ptr += ntohl(th->seq);
4975
4976         /* Ignore urgent data that we've already seen and read. */
4977         if (after(tp->copied_seq, ptr))
4978                 return;
4979
4980         /* Do not replay urg ptr.
4981          *
4982          * NOTE: interesting situation not covered by specs.
4983          * Misbehaving sender may send urg ptr, pointing to segment,
4984          * which we already have in ofo queue. We are not able to fetch
4985          * such data and will stay in TCP_URG_NOTYET until will be eaten
4986          * by recvmsg(). Seems, we are not obliged to handle such wicked
4987          * situations. But it is worth to think about possibility of some
4988          * DoSes using some hypothetical application level deadlock.
4989          */
4990         if (before(ptr, tp->rcv_nxt))
4991                 return;
4992
4993         /* Do we already have a newer (or duplicate) urgent pointer? */
4994         if (tp->urg_data && !after(ptr, tp->urg_seq))
4995                 return;
4996
4997         /* Tell the world about our new urgent pointer. */
4998         sk_send_sigurg(sk);
4999
5000         /* We may be adding urgent data when the last byte read was
5001          * urgent. To do this requires some care. We cannot just ignore
5002          * tp->copied_seq since we would read the last urgent byte again
5003          * as data, nor can we alter copied_seq until this data arrives
5004          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5005          *
5006          * NOTE. Double Dutch. Rendering to plain English: author of comment
5007          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5008          * and expect that both A and B disappear from stream. This is _wrong_.
5009          * Though this happens in BSD with high probability, this is occasional.
5010          * Any application relying on this is buggy. Note also, that fix "works"
5011          * only in this artificial test. Insert some normal data between A and B and we will
5012          * decline of BSD again. Verdict: it is better to remove to trap
5013          * buggy users.
5014          */
5015         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5016             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5017                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5018                 tp->copied_seq++;
5019                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5020                         __skb_unlink(skb, &sk->sk_receive_queue);
5021                         __kfree_skb(skb);
5022                 }
5023         }
5024
5025         tp->urg_data = TCP_URG_NOTYET;
5026         tp->urg_seq = ptr;
5027
5028         /* Disable header prediction. */
5029         tp->pred_flags = 0;
5030 }
5031
5032 /* This is the 'fast' part of urgent handling. */
5033 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5034 {
5035         struct tcp_sock *tp = tcp_sk(sk);
5036
5037         /* Check if we get a new urgent pointer - normally not. */
5038         if (th->urg)
5039                 tcp_check_urg(sk, th);
5040
5041         /* Do we wait for any urgent data? - normally not... */
5042         if (tp->urg_data == TCP_URG_NOTYET) {
5043                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5044                           th->syn;
5045
5046                 /* Is the urgent pointer pointing into this packet? */
5047                 if (ptr < skb->len) {
5048                         u8 tmp;
5049                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5050                                 BUG();
5051                         tp->urg_data = TCP_URG_VALID | tmp;
5052                         if (!sock_flag(sk, SOCK_DEAD))
5053                                 sk->sk_data_ready(sk, 0);
5054                 }
5055         }
5056 }
5057
5058 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5059 {
5060         struct tcp_sock *tp = tcp_sk(sk);
5061         int chunk = skb->len - hlen;
5062         int err;
5063
5064         local_bh_enable();
5065         if (skb_csum_unnecessary(skb))
5066                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5067         else
5068                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5069                                                        tp->ucopy.iov);
5070
5071         if (!err) {
5072                 tp->ucopy.len -= chunk;
5073                 tp->copied_seq += chunk;
5074                 tcp_rcv_space_adjust(sk);
5075         }
5076
5077         local_bh_disable();
5078         return err;
5079 }
5080
5081 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5082                                             struct sk_buff *skb)
5083 {
5084         __sum16 result;
5085
5086         if (sock_owned_by_user(sk)) {
5087                 local_bh_enable();
5088                 result = __tcp_checksum_complete(skb);
5089                 local_bh_disable();
5090         } else {
5091                 result = __tcp_checksum_complete(skb);
5092         }
5093         return result;
5094 }
5095
5096 static inline int tcp_checksum_complete_user(struct sock *sk,
5097                                              struct sk_buff *skb)
5098 {
5099         return !skb_csum_unnecessary(skb) &&
5100                __tcp_checksum_complete_user(sk, skb);
5101 }
5102
5103 #ifdef CONFIG_NET_DMA
5104 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5105                                   int hlen)
5106 {
5107         struct tcp_sock *tp = tcp_sk(sk);
5108         int chunk = skb->len - hlen;
5109         int dma_cookie;
5110         int copied_early = 0;
5111
5112         if (tp->ucopy.wakeup)
5113                 return 0;
5114
5115         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5116                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5117
5118         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5119
5120                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5121                                                          skb, hlen,
5122                                                          tp->ucopy.iov, chunk,
5123                                                          tp->ucopy.pinned_list);
5124
5125                 if (dma_cookie < 0)
5126                         goto out;
5127
5128                 tp->ucopy.dma_cookie = dma_cookie;
5129                 copied_early = 1;
5130
5131                 tp->ucopy.len -= chunk;
5132                 tp->copied_seq += chunk;
5133                 tcp_rcv_space_adjust(sk);
5134
5135                 if ((tp->ucopy.len == 0) ||
5136                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5137                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5138                         tp->ucopy.wakeup = 1;
5139                         sk->sk_data_ready(sk, 0);
5140                 }
5141         } else if (chunk > 0) {
5142                 tp->ucopy.wakeup = 1;
5143                 sk->sk_data_ready(sk, 0);
5144         }
5145 out:
5146         return copied_early;
5147 }
5148 #endif /* CONFIG_NET_DMA */
5149
5150 /* Does PAWS and seqno based validation of an incoming segment, flags will
5151  * play significant role here.
5152  */
5153 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5154                               struct tcphdr *th, int syn_inerr)
5155 {
5156         u8 *hash_location;
5157         struct tcp_sock *tp = tcp_sk(sk);
5158
5159         /* RFC1323: H1. Apply PAWS check first. */
5160         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5161             tp->rx_opt.saw_tstamp &&
5162             tcp_paws_discard(sk, skb)) {
5163                 if (!th->rst) {
5164                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5165                         tcp_send_dupack(sk, skb);
5166                         goto discard;
5167                 }
5168                 /* Reset is accepted even if it did not pass PAWS. */
5169         }
5170
5171         /* Step 1: check sequence number */
5172         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5173                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5174                  * (RST) segments are validated by checking their SEQ-fields."
5175                  * And page 69: "If an incoming segment is not acceptable,
5176                  * an acknowledgment should be sent in reply (unless the RST
5177                  * bit is set, if so drop the segment and return)".
5178                  */
5179                 if (!th->rst)
5180                         tcp_send_dupack(sk, skb);
5181                 goto discard;
5182         }
5183
5184         /* Step 2: check RST bit */
5185         if (th->rst) {
5186                 tcp_reset(sk);
5187                 goto discard;
5188         }
5189
5190         /* ts_recent update must be made after we are sure that the packet
5191          * is in window.
5192          */
5193         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5194
5195         /* step 3: check security and precedence [ignored] */
5196
5197         /* step 4: Check for a SYN in window. */
5198         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5199                 if (syn_inerr)
5200                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5201                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5202                 tcp_reset(sk);
5203                 return -1;
5204         }
5205
5206         return 1;
5207
5208 discard:
5209         __kfree_skb(skb);
5210         return 0;
5211 }
5212
5213 /*
5214  *      TCP receive function for the ESTABLISHED state.
5215  *
5216  *      It is split into a fast path and a slow path. The fast path is
5217  *      disabled when:
5218  *      - A zero window was announced from us - zero window probing
5219  *        is only handled properly in the slow path.
5220  *      - Out of order segments arrived.
5221  *      - Urgent data is expected.
5222  *      - There is no buffer space left
5223  *      - Unexpected TCP flags/window values/header lengths are received
5224  *        (detected by checking the TCP header against pred_flags)
5225  *      - Data is sent in both directions. Fast path only supports pure senders
5226  *        or pure receivers (this means either the sequence number or the ack
5227  *        value must stay constant)
5228  *      - Unexpected TCP option.
5229  *
5230  *      When these conditions are not satisfied it drops into a standard
5231  *      receive procedure patterned after RFC793 to handle all cases.
5232  *      The first three cases are guaranteed by proper pred_flags setting,
5233  *      the rest is checked inline. Fast processing is turned on in
5234  *      tcp_data_queue when everything is OK.
5235  */
5236 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5237                         struct tcphdr *th, unsigned len)
5238 {
5239         struct tcp_sock *tp = tcp_sk(sk);
5240         int res;
5241
5242         /*
5243          *      Header prediction.
5244          *      The code loosely follows the one in the famous
5245          *      "30 instruction TCP receive" Van Jacobson mail.
5246          *
5247          *      Van's trick is to deposit buffers into socket queue
5248          *      on a device interrupt, to call tcp_recv function
5249          *      on the receive process context and checksum and copy
5250          *      the buffer to user space. smart...
5251          *
5252          *      Our current scheme is not silly either but we take the
5253          *      extra cost of the net_bh soft interrupt processing...
5254          *      We do checksum and copy also but from device to kernel.
5255          */
5256
5257         tp->rx_opt.saw_tstamp = 0;
5258
5259         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5260          *      if header_prediction is to be made
5261          *      'S' will always be tp->tcp_header_len >> 2
5262          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5263          *  turn it off (when there are holes in the receive
5264          *       space for instance)
5265          *      PSH flag is ignored.
5266          */
5267
5268         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5269             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5270             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5271                 int tcp_header_len = tp->tcp_header_len;
5272
5273                 /* Timestamp header prediction: tcp_header_len
5274                  * is automatically equal to th->doff*4 due to pred_flags
5275                  * match.
5276                  */
5277
5278                 /* Check timestamp */
5279                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5280                         /* No? Slow path! */
5281                         if (!tcp_parse_aligned_timestamp(tp, th))
5282                                 goto slow_path;
5283
5284                         /* If PAWS failed, check it more carefully in slow path */
5285                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5286                                 goto slow_path;
5287
5288                         /* DO NOT update ts_recent here, if checksum fails
5289                          * and timestamp was corrupted part, it will result
5290                          * in a hung connection since we will drop all
5291                          * future packets due to the PAWS test.
5292                          */
5293                 }
5294
5295                 if (len <= tcp_header_len) {
5296                         /* Bulk data transfer: sender */
5297                         if (len == tcp_header_len) {
5298                                 /* Predicted packet is in window by definition.
5299                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5300                                  * Hence, check seq<=rcv_wup reduces to:
5301                                  */
5302                                 if (tcp_header_len ==
5303                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5304                                     tp->rcv_nxt == tp->rcv_wup)
5305                                         tcp_store_ts_recent(tp);
5306
5307                                 /* We know that such packets are checksummed
5308                                  * on entry.
5309                                  */
5310                                 tcp_ack(sk, skb, 0);
5311                                 __kfree_skb(skb);
5312                                 tcp_data_snd_check(sk);
5313                                 return 0;
5314                         } else { /* Header too small */
5315                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5316                                 goto discard;
5317                         }
5318                 } else {
5319                         int eaten = 0;
5320                         int copied_early = 0;
5321
5322                         if (tp->copied_seq == tp->rcv_nxt &&
5323                             len - tcp_header_len <= tp->ucopy.len) {
5324 #ifdef CONFIG_NET_DMA
5325                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5326                                         copied_early = 1;
5327                                         eaten = 1;
5328                                 }
5329 #endif
5330                                 if (tp->ucopy.task == current &&
5331                                     sock_owned_by_user(sk) && !copied_early) {
5332                                         __set_current_state(TASK_RUNNING);
5333
5334                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5335                                                 eaten = 1;
5336                                 }
5337                                 if (eaten) {
5338                                         /* Predicted packet is in window by definition.
5339                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5340                                          * Hence, check seq<=rcv_wup reduces to:
5341                                          */
5342                                         if (tcp_header_len ==
5343                                             (sizeof(struct tcphdr) +
5344                                              TCPOLEN_TSTAMP_ALIGNED) &&
5345                                             tp->rcv_nxt == tp->rcv_wup)
5346                                                 tcp_store_ts_recent(tp);
5347
5348                                         tcp_rcv_rtt_measure_ts(sk, skb);
5349
5350                                         __skb_pull(skb, tcp_header_len);
5351                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5352                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5353                                 }
5354                                 if (copied_early)
5355                                         tcp_cleanup_rbuf(sk, skb->len);
5356                         }
5357                         if (!eaten) {
5358                                 if (tcp_checksum_complete_user(sk, skb))
5359                                         goto csum_error;
5360
5361                                 /* Predicted packet is in window by definition.
5362                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5363                                  * Hence, check seq<=rcv_wup reduces to:
5364                                  */
5365                                 if (tcp_header_len ==
5366                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5367                                     tp->rcv_nxt == tp->rcv_wup)
5368                                         tcp_store_ts_recent(tp);
5369
5370                                 tcp_rcv_rtt_measure_ts(sk, skb);
5371
5372                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5373                                         goto step5;
5374
5375                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5376
5377                                 /* Bulk data transfer: receiver */
5378                                 __skb_pull(skb, tcp_header_len);
5379                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5380                                 skb_set_owner_r(skb, sk);
5381                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5382                         }
5383
5384                         tcp_event_data_recv(sk, skb);
5385
5386                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5387                                 /* Well, only one small jumplet in fast path... */
5388                                 tcp_ack(sk, skb, FLAG_DATA);
5389                                 tcp_data_snd_check(sk);
5390                                 if (!inet_csk_ack_scheduled(sk))
5391                                         goto no_ack;
5392                         }
5393
5394                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5395                                 __tcp_ack_snd_check(sk, 0);
5396 no_ack:
5397 #ifdef CONFIG_NET_DMA
5398                         if (copied_early)
5399                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5400                         else
5401 #endif
5402                         if (eaten)
5403                                 __kfree_skb(skb);
5404                         else
5405                                 sk->sk_data_ready(sk, 0);
5406                         return 0;
5407                 }
5408         }
5409
5410 slow_path:
5411         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5412                 goto csum_error;
5413
5414         /*
5415          *      Standard slow path.
5416          */
5417
5418         res = tcp_validate_incoming(sk, skb, th, 1);
5419         if (res <= 0)
5420                 return -res;
5421
5422 step5:
5423         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5424                 goto discard;
5425
5426         tcp_rcv_rtt_measure_ts(sk, skb);
5427
5428         /* Process urgent data. */
5429         tcp_urg(sk, skb, th);
5430
5431         /* step 7: process the segment text */
5432         tcp_data_queue(sk, skb);
5433
5434         tcp_data_snd_check(sk);
5435         tcp_ack_snd_check(sk);
5436         return 0;
5437
5438 csum_error:
5439         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5440
5441 discard:
5442         __kfree_skb(skb);
5443         return 0;
5444 }
5445 EXPORT_SYMBOL(tcp_rcv_established);
5446
5447 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5448                                          struct tcphdr *th, unsigned len)
5449 {
5450         u8 *hash_location;
5451         struct inet_connection_sock *icsk = inet_csk(sk);
5452         struct tcp_sock *tp = tcp_sk(sk);
5453         struct tcp_cookie_values *cvp = tp->cookie_values;
5454         int saved_clamp = tp->rx_opt.mss_clamp;
5455
5456         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5457
5458         if (th->ack) {
5459                 /* rfc793:
5460                  * "If the state is SYN-SENT then
5461                  *    first check the ACK bit
5462                  *      If the ACK bit is set
5463                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5464                  *        a reset (unless the RST bit is set, if so drop
5465                  *        the segment and return)"
5466                  *
5467                  *  We do not send data with SYN, so that RFC-correct
5468                  *  test reduces to:
5469                  */
5470                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5471                         goto reset_and_undo;
5472
5473                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5474                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5475                              tcp_time_stamp)) {
5476                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5477                         goto reset_and_undo;
5478                 }
5479
5480                 /* Now ACK is acceptable.
5481                  *
5482                  * "If the RST bit is set
5483                  *    If the ACK was acceptable then signal the user "error:
5484                  *    connection reset", drop the segment, enter CLOSED state,
5485                  *    delete TCB, and return."
5486                  */
5487
5488                 if (th->rst) {
5489                         tcp_reset(sk);
5490                         goto discard;
5491                 }
5492
5493                 /* rfc793:
5494                  *   "fifth, if neither of the SYN or RST bits is set then
5495                  *    drop the segment and return."
5496                  *
5497                  *    See note below!
5498                  *                                        --ANK(990513)
5499                  */
5500                 if (!th->syn)
5501                         goto discard_and_undo;
5502
5503                 /* rfc793:
5504                  *   "If the SYN bit is on ...
5505                  *    are acceptable then ...
5506                  *    (our SYN has been ACKed), change the connection
5507                  *    state to ESTABLISHED..."
5508                  */
5509
5510                 TCP_ECN_rcv_synack(tp, th);
5511
5512                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5513                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5514
5515                 /* Ok.. it's good. Set up sequence numbers and
5516                  * move to established.
5517                  */
5518                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5519                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5520
5521                 /* RFC1323: The window in SYN & SYN/ACK segments is
5522                  * never scaled.
5523                  */
5524                 tp->snd_wnd = ntohs(th->window);
5525                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5526
5527                 if (!tp->rx_opt.wscale_ok) {
5528                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5529                         tp->window_clamp = min(tp->window_clamp, 65535U);
5530                 }
5531
5532                 if (tp->rx_opt.saw_tstamp) {
5533                         tp->rx_opt.tstamp_ok       = 1;
5534                         tp->tcp_header_len =
5535                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5536                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5537                         tcp_store_ts_recent(tp);
5538                 } else {
5539                         tp->tcp_header_len = sizeof(struct tcphdr);
5540                 }
5541
5542                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5543                         tcp_enable_fack(tp);
5544
5545                 tcp_mtup_init(sk);
5546                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5547                 tcp_initialize_rcv_mss(sk);
5548
5549                 /* Remember, tcp_poll() does not lock socket!
5550                  * Change state from SYN-SENT only after copied_seq
5551                  * is initialized. */
5552                 tp->copied_seq = tp->rcv_nxt;
5553
5554                 if (cvp != NULL &&
5555                     cvp->cookie_pair_size > 0 &&
5556                     tp->rx_opt.cookie_plus > 0) {
5557                         int cookie_size = tp->rx_opt.cookie_plus
5558                                         - TCPOLEN_COOKIE_BASE;
5559                         int cookie_pair_size = cookie_size
5560                                              + cvp->cookie_desired;
5561
5562                         /* A cookie extension option was sent and returned.
5563                          * Note that each incoming SYNACK replaces the
5564                          * Responder cookie.  The initial exchange is most
5565                          * fragile, as protection against spoofing relies
5566                          * entirely upon the sequence and timestamp (above).
5567                          * This replacement strategy allows the correct pair to
5568                          * pass through, while any others will be filtered via
5569                          * Responder verification later.
5570                          */
5571                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5572                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5573                                        hash_location, cookie_size);
5574                                 cvp->cookie_pair_size = cookie_pair_size;
5575                         }
5576                 }
5577
5578                 smp_mb();
5579                 tcp_set_state(sk, TCP_ESTABLISHED);
5580
5581                 security_inet_conn_established(sk, skb);
5582
5583                 /* Make sure socket is routed, for correct metrics.  */
5584                 icsk->icsk_af_ops->rebuild_header(sk);
5585
5586                 tcp_init_metrics(sk);
5587
5588                 tcp_init_congestion_control(sk);
5589
5590                 /* Prevent spurious tcp_cwnd_restart() on first data
5591                  * packet.
5592                  */
5593                 tp->lsndtime = tcp_time_stamp;
5594
5595                 tcp_init_buffer_space(sk);
5596
5597                 if (sock_flag(sk, SOCK_KEEPOPEN))
5598                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5599
5600                 if (!tp->rx_opt.snd_wscale)
5601                         __tcp_fast_path_on(tp, tp->snd_wnd);
5602                 else
5603                         tp->pred_flags = 0;
5604
5605                 if (!sock_flag(sk, SOCK_DEAD)) {
5606                         sk->sk_state_change(sk);
5607                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5608                 }
5609
5610                 if (sk->sk_write_pending ||
5611                     icsk->icsk_accept_queue.rskq_defer_accept ||
5612                     icsk->icsk_ack.pingpong) {
5613                         /* Save one ACK. Data will be ready after
5614                          * several ticks, if write_pending is set.
5615                          *
5616                          * It may be deleted, but with this feature tcpdumps
5617                          * look so _wonderfully_ clever, that I was not able
5618                          * to stand against the temptation 8)     --ANK
5619                          */
5620                         inet_csk_schedule_ack(sk);
5621                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5622                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5623                         tcp_incr_quickack(sk);
5624                         tcp_enter_quickack_mode(sk);
5625                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5626                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5627
5628 discard:
5629                         __kfree_skb(skb);
5630                         return 0;
5631                 } else {
5632                         tcp_send_ack(sk);
5633                 }
5634                 return -1;
5635         }
5636
5637         /* No ACK in the segment */
5638
5639         if (th->rst) {
5640                 /* rfc793:
5641                  * "If the RST bit is set
5642                  *
5643                  *      Otherwise (no ACK) drop the segment and return."
5644                  */
5645
5646                 goto discard_and_undo;
5647         }
5648
5649         /* PAWS check. */
5650         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5651             tcp_paws_reject(&tp->rx_opt, 0))
5652                 goto discard_and_undo;
5653
5654         if (th->syn) {
5655                 /* We see SYN without ACK. It is attempt of
5656                  * simultaneous connect with crossed SYNs.
5657                  * Particularly, it can be connect to self.
5658                  */
5659                 tcp_set_state(sk, TCP_SYN_RECV);
5660
5661                 if (tp->rx_opt.saw_tstamp) {
5662                         tp->rx_opt.tstamp_ok = 1;
5663                         tcp_store_ts_recent(tp);
5664                         tp->tcp_header_len =
5665                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5666                 } else {
5667                         tp->tcp_header_len = sizeof(struct tcphdr);
5668                 }
5669
5670                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5671                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5672
5673                 /* RFC1323: The window in SYN & SYN/ACK segments is
5674                  * never scaled.
5675                  */
5676                 tp->snd_wnd    = ntohs(th->window);
5677                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5678                 tp->max_window = tp->snd_wnd;
5679
5680                 TCP_ECN_rcv_syn(tp, th);
5681
5682                 tcp_mtup_init(sk);
5683                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5684                 tcp_initialize_rcv_mss(sk);
5685
5686                 tcp_send_synack(sk);
5687 #if 0
5688                 /* Note, we could accept data and URG from this segment.
5689                  * There are no obstacles to make this.
5690                  *
5691                  * However, if we ignore data in ACKless segments sometimes,
5692                  * we have no reasons to accept it sometimes.
5693                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5694                  * is not flawless. So, discard packet for sanity.
5695                  * Uncomment this return to process the data.
5696                  */
5697                 return -1;
5698 #else
5699                 goto discard;
5700 #endif
5701         }
5702         /* "fifth, if neither of the SYN or RST bits is set then
5703          * drop the segment and return."
5704          */
5705
5706 discard_and_undo:
5707         tcp_clear_options(&tp->rx_opt);
5708         tp->rx_opt.mss_clamp = saved_clamp;
5709         goto discard;
5710
5711 reset_and_undo:
5712         tcp_clear_options(&tp->rx_opt);
5713         tp->rx_opt.mss_clamp = saved_clamp;
5714         return 1;
5715 }
5716
5717 /*
5718  *      This function implements the receiving procedure of RFC 793 for
5719  *      all states except ESTABLISHED and TIME_WAIT.
5720  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5721  *      address independent.
5722  */
5723
5724 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5725                           struct tcphdr *th, unsigned len)
5726 {
5727         struct tcp_sock *tp = tcp_sk(sk);
5728         struct inet_connection_sock *icsk = inet_csk(sk);
5729         int queued = 0;
5730         int res;
5731
5732         tp->rx_opt.saw_tstamp = 0;
5733
5734         switch (sk->sk_state) {
5735         case TCP_CLOSE:
5736                 goto discard;
5737
5738         case TCP_LISTEN:
5739                 if (th->ack)
5740                         return 1;
5741
5742                 if (th->rst)
5743                         goto discard;
5744
5745                 if (th->syn) {
5746                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5747                                 return 1;
5748
5749                         /* Now we have several options: In theory there is
5750                          * nothing else in the frame. KA9Q has an option to
5751                          * send data with the syn, BSD accepts data with the
5752                          * syn up to the [to be] advertised window and
5753                          * Solaris 2.1 gives you a protocol error. For now
5754                          * we just ignore it, that fits the spec precisely
5755                          * and avoids incompatibilities. It would be nice in
5756                          * future to drop through and process the data.
5757                          *
5758                          * Now that TTCP is starting to be used we ought to
5759                          * queue this data.
5760                          * But, this leaves one open to an easy denial of
5761                          * service attack, and SYN cookies can't defend
5762                          * against this problem. So, we drop the data
5763                          * in the interest of security over speed unless
5764                          * it's still in use.
5765                          */
5766                         kfree_skb(skb);
5767                         return 0;
5768                 }
5769                 goto discard;
5770
5771         case TCP_SYN_SENT:
5772                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5773                 if (queued >= 0)
5774                         return queued;
5775
5776                 /* Do step6 onward by hand. */
5777                 tcp_urg(sk, skb, th);
5778                 __kfree_skb(skb);
5779                 tcp_data_snd_check(sk);
5780                 return 0;
5781         }
5782
5783         res = tcp_validate_incoming(sk, skb, th, 0);
5784         if (res <= 0)
5785                 return -res;
5786
5787         /* step 5: check the ACK field */
5788         if (th->ack) {
5789                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5790
5791                 switch (sk->sk_state) {
5792                 case TCP_SYN_RECV:
5793                         if (acceptable) {
5794                                 tp->copied_seq = tp->rcv_nxt;
5795                                 smp_mb();
5796                                 tcp_set_state(sk, TCP_ESTABLISHED);
5797                                 sk->sk_state_change(sk);
5798
5799                                 /* Note, that this wakeup is only for marginal
5800                                  * crossed SYN case. Passively open sockets
5801                                  * are not waked up, because sk->sk_sleep ==
5802                                  * NULL and sk->sk_socket == NULL.
5803                                  */
5804                                 if (sk->sk_socket)
5805                                         sk_wake_async(sk,
5806                                                       SOCK_WAKE_IO, POLL_OUT);
5807
5808                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5809                                 tp->snd_wnd = ntohs(th->window) <<
5810                                               tp->rx_opt.snd_wscale;
5811                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5812
5813                                 /* tcp_ack considers this ACK as duplicate
5814                                  * and does not calculate rtt.
5815                                  * Force it here.
5816                                  */
5817                                 tcp_ack_update_rtt(sk, 0, 0);
5818
5819                                 if (tp->rx_opt.tstamp_ok)
5820                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5821
5822                                 /* Make sure socket is routed, for
5823                                  * correct metrics.
5824                                  */
5825                                 icsk->icsk_af_ops->rebuild_header(sk);
5826
5827                                 tcp_init_metrics(sk);
5828
5829                                 tcp_init_congestion_control(sk);
5830
5831                                 /* Prevent spurious tcp_cwnd_restart() on
5832                                  * first data packet.
5833                                  */
5834                                 tp->lsndtime = tcp_time_stamp;
5835
5836                                 tcp_mtup_init(sk);
5837                                 tcp_initialize_rcv_mss(sk);
5838                                 tcp_init_buffer_space(sk);
5839                                 tcp_fast_path_on(tp);
5840                         } else {
5841                                 return 1;
5842                         }
5843                         break;
5844
5845                 case TCP_FIN_WAIT1:
5846                         if (tp->snd_una == tp->write_seq) {
5847                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5848                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5849                                 dst_confirm(__sk_dst_get(sk));
5850
5851                                 if (!sock_flag(sk, SOCK_DEAD))
5852                                         /* Wake up lingering close() */
5853                                         sk->sk_state_change(sk);
5854                                 else {
5855                                         int tmo;
5856
5857                                         if (tp->linger2 < 0 ||
5858                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5859                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5860                                                 tcp_done(sk);
5861                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5862                                                 return 1;
5863                                         }
5864
5865                                         tmo = tcp_fin_time(sk);
5866                                         if (tmo > TCP_TIMEWAIT_LEN) {
5867                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5868                                         } else if (th->fin || sock_owned_by_user(sk)) {
5869                                                 /* Bad case. We could lose such FIN otherwise.
5870                                                  * It is not a big problem, but it looks confusing
5871                                                  * and not so rare event. We still can lose it now,
5872                                                  * if it spins in bh_lock_sock(), but it is really
5873                                                  * marginal case.
5874                                                  */
5875                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5876                                         } else {
5877                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5878                                                 goto discard;
5879                                         }
5880                                 }
5881                         }
5882                         break;
5883
5884                 case TCP_CLOSING:
5885                         if (tp->snd_una == tp->write_seq) {
5886                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5887                                 goto discard;
5888                         }
5889                         break;
5890
5891                 case TCP_LAST_ACK:
5892                         if (tp->snd_una == tp->write_seq) {
5893                                 tcp_update_metrics(sk);
5894                                 tcp_done(sk);
5895                                 goto discard;
5896                         }
5897                         break;
5898                 }
5899         } else
5900                 goto discard;
5901
5902         /* step 6: check the URG bit */
5903         tcp_urg(sk, skb, th);
5904
5905         /* step 7: process the segment text */
5906         switch (sk->sk_state) {
5907         case TCP_CLOSE_WAIT:
5908         case TCP_CLOSING:
5909         case TCP_LAST_ACK:
5910                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5911                         break;
5912         case TCP_FIN_WAIT1:
5913         case TCP_FIN_WAIT2:
5914                 /* RFC 793 says to queue data in these states,
5915                  * RFC 1122 says we MUST send a reset.
5916                  * BSD 4.4 also does reset.
5917                  */
5918                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5919                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5920                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5921                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5922                                 tcp_reset(sk);
5923                                 return 1;
5924                         }
5925                 }
5926                 /* Fall through */
5927         case TCP_ESTABLISHED:
5928                 tcp_data_queue(sk, skb);
5929                 queued = 1;
5930                 break;
5931         }
5932
5933         /* tcp_data could move socket to TIME-WAIT */
5934         if (sk->sk_state != TCP_CLOSE) {
5935                 tcp_data_snd_check(sk);
5936                 tcp_ack_snd_check(sk);
5937         }
5938
5939         if (!queued) {
5940 discard:
5941                 __kfree_skb(skb);
5942         }
5943         return 0;
5944 }
5945 EXPORT_SYMBOL(tcp_rcv_state_process);