2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 EXPORT_SYMBOL(sysctl_tcp_reordering);
85 int sysctl_tcp_dsack __read_mostly = 1;
86 int sysctl_tcp_app_win __read_mostly = 31;
87 int sysctl_tcp_adv_win_scale __read_mostly = 1;
88 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 100;
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
98 int sysctl_tcp_thin_dupack __read_mostly;
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
109 #define FLAG_ECE 0x40 /* ECE in this ACK */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 /* Adapt the MSS value used to make delayed ack decision to the
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 icsk->icsk_ack.last_seg_size = 0;
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
139 len = skb_shinfo(skb)->gso_size ? : skb->len;
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
146 * "len" is invariant segment length, including TCP header.
148 len += skb->data - skb_transport_header(skb);
149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
164 icsk->icsk_ack.rcv_mss = len;
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
174 static void tcp_incr_quickack(struct sock *sk)
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 static void tcp_enter_quickack_mode(struct sock *sk)
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static inline bool tcp_in_quickack_mode(const struct sock *sk)
199 const struct inet_connection_sock *icsk = inet_csk(sk);
201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
206 if (tp->ecn_flags & TCP_ECN_OK)
207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
212 if (tcp_hdr(skb)->cwr)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
223 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
224 case INET_ECN_NOT_ECT:
225 /* Funny extension: if ECT is not set on a segment,
226 * and we already seen ECT on a previous segment,
227 * it is probably a retransmit.
229 if (tp->ecn_flags & TCP_ECN_SEEN)
230 tcp_enter_quickack_mode((struct sock *)tp);
233 if (tcp_ca_needs_ecn((struct sock *)tp))
234 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
236 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
237 /* Better not delay acks, sender can have a very low cwnd */
238 tcp_enter_quickack_mode((struct sock *)tp);
239 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 tp->ecn_flags |= TCP_ECN_SEEN;
244 if (tcp_ca_needs_ecn((struct sock *)tp))
245 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
246 tp->ecn_flags |= TCP_ECN_SEEN;
251 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
253 if (tp->ecn_flags & TCP_ECN_OK)
254 __tcp_ecn_check_ce(tp, skb);
257 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
259 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
260 tp->ecn_flags &= ~TCP_ECN_OK;
263 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
265 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
266 tp->ecn_flags &= ~TCP_ECN_OK;
269 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
271 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
276 /* Buffer size and advertised window tuning.
278 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
281 static void tcp_sndbuf_expand(struct sock *sk)
283 const struct tcp_sock *tp = tcp_sk(sk);
287 /* Worst case is non GSO/TSO : each frame consumes one skb
288 * and skb->head is kmalloced using power of two area of memory
290 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
292 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
294 per_mss = roundup_pow_of_two(per_mss) +
295 SKB_DATA_ALIGN(sizeof(struct sk_buff));
297 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
298 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
300 /* Fast Recovery (RFC 5681 3.2) :
301 * Cubic needs 1.7 factor, rounded to 2 to include
302 * extra cushion (application might react slowly to POLLOUT)
304 sndmem = 2 * nr_segs * per_mss;
306 if (sk->sk_sndbuf < sndmem)
307 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
310 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
312 * All tcp_full_space() is split to two parts: "network" buffer, allocated
313 * forward and advertised in receiver window (tp->rcv_wnd) and
314 * "application buffer", required to isolate scheduling/application
315 * latencies from network.
316 * window_clamp is maximal advertised window. It can be less than
317 * tcp_full_space(), in this case tcp_full_space() - window_clamp
318 * is reserved for "application" buffer. The less window_clamp is
319 * the smoother our behaviour from viewpoint of network, but the lower
320 * throughput and the higher sensitivity of the connection to losses. 8)
322 * rcv_ssthresh is more strict window_clamp used at "slow start"
323 * phase to predict further behaviour of this connection.
324 * It is used for two goals:
325 * - to enforce header prediction at sender, even when application
326 * requires some significant "application buffer". It is check #1.
327 * - to prevent pruning of receive queue because of misprediction
328 * of receiver window. Check #2.
330 * The scheme does not work when sender sends good segments opening
331 * window and then starts to feed us spaghetti. But it should work
332 * in common situations. Otherwise, we have to rely on queue collapsing.
335 /* Slow part of check#2. */
336 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
338 struct tcp_sock *tp = tcp_sk(sk);
340 int truesize = tcp_win_from_space(skb->truesize) >> 1;
341 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
343 while (tp->rcv_ssthresh <= window) {
344 if (truesize <= skb->len)
345 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
353 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
355 struct tcp_sock *tp = tcp_sk(sk);
358 if (tp->rcv_ssthresh < tp->window_clamp &&
359 (int)tp->rcv_ssthresh < tcp_space(sk) &&
360 !sk_under_memory_pressure(sk)) {
363 /* Check #2. Increase window, if skb with such overhead
364 * will fit to rcvbuf in future.
366 if (tcp_win_from_space(skb->truesize) <= skb->len)
367 incr = 2 * tp->advmss;
369 incr = __tcp_grow_window(sk, skb);
372 incr = max_t(int, incr, 2 * skb->len);
373 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
375 inet_csk(sk)->icsk_ack.quick |= 1;
380 /* 3. Tuning rcvbuf, when connection enters established state. */
381 static void tcp_fixup_rcvbuf(struct sock *sk)
383 u32 mss = tcp_sk(sk)->advmss;
386 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
387 tcp_default_init_rwnd(mss);
389 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
390 * Allow enough cushion so that sender is not limited by our window
392 if (sysctl_tcp_moderate_rcvbuf)
395 if (sk->sk_rcvbuf < rcvmem)
396 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
399 /* 4. Try to fixup all. It is made immediately after connection enters
402 void tcp_init_buffer_space(struct sock *sk)
404 struct tcp_sock *tp = tcp_sk(sk);
407 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
408 tcp_fixup_rcvbuf(sk);
409 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
410 tcp_sndbuf_expand(sk);
412 tp->rcvq_space.space = tp->rcv_wnd;
413 tp->rcvq_space.time = tcp_time_stamp;
414 tp->rcvq_space.seq = tp->copied_seq;
416 maxwin = tcp_full_space(sk);
418 if (tp->window_clamp >= maxwin) {
419 tp->window_clamp = maxwin;
421 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
422 tp->window_clamp = max(maxwin -
423 (maxwin >> sysctl_tcp_app_win),
427 /* Force reservation of one segment. */
428 if (sysctl_tcp_app_win &&
429 tp->window_clamp > 2 * tp->advmss &&
430 tp->window_clamp + tp->advmss > maxwin)
431 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
433 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
434 tp->snd_cwnd_stamp = tcp_time_stamp;
437 /* 5. Recalculate window clamp after socket hit its memory bounds. */
438 static void tcp_clamp_window(struct sock *sk)
440 struct tcp_sock *tp = tcp_sk(sk);
441 struct inet_connection_sock *icsk = inet_csk(sk);
443 icsk->icsk_ack.quick = 0;
445 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
446 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
447 !sk_under_memory_pressure(sk) &&
448 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
449 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
452 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
453 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
456 /* Initialize RCV_MSS value.
457 * RCV_MSS is an our guess about MSS used by the peer.
458 * We haven't any direct information about the MSS.
459 * It's better to underestimate the RCV_MSS rather than overestimate.
460 * Overestimations make us ACKing less frequently than needed.
461 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
463 void tcp_initialize_rcv_mss(struct sock *sk)
465 const struct tcp_sock *tp = tcp_sk(sk);
466 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
468 hint = min(hint, tp->rcv_wnd / 2);
469 hint = min(hint, TCP_MSS_DEFAULT);
470 hint = max(hint, TCP_MIN_MSS);
472 inet_csk(sk)->icsk_ack.rcv_mss = hint;
474 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
476 /* Receiver "autotuning" code.
478 * The algorithm for RTT estimation w/o timestamps is based on
479 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
480 * <http://public.lanl.gov/radiant/pubs.html#DRS>
482 * More detail on this code can be found at
483 * <http://staff.psc.edu/jheffner/>,
484 * though this reference is out of date. A new paper
487 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
489 u32 new_sample = tp->rcv_rtt_est.rtt;
495 if (new_sample != 0) {
496 /* If we sample in larger samples in the non-timestamp
497 * case, we could grossly overestimate the RTT especially
498 * with chatty applications or bulk transfer apps which
499 * are stalled on filesystem I/O.
501 * Also, since we are only going for a minimum in the
502 * non-timestamp case, we do not smooth things out
503 * else with timestamps disabled convergence takes too
507 m -= (new_sample >> 3);
515 /* No previous measure. */
519 if (tp->rcv_rtt_est.rtt != new_sample)
520 tp->rcv_rtt_est.rtt = new_sample;
523 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
525 if (tp->rcv_rtt_est.time == 0)
527 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
529 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
532 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
533 tp->rcv_rtt_est.time = tcp_time_stamp;
536 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
537 const struct sk_buff *skb)
539 struct tcp_sock *tp = tcp_sk(sk);
540 if (tp->rx_opt.rcv_tsecr &&
541 (TCP_SKB_CB(skb)->end_seq -
542 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
543 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
547 * This function should be called every time data is copied to user space.
548 * It calculates the appropriate TCP receive buffer space.
550 void tcp_rcv_space_adjust(struct sock *sk)
552 struct tcp_sock *tp = tcp_sk(sk);
556 time = tcp_time_stamp - tp->rcvq_space.time;
557 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
560 /* Number of bytes copied to user in last RTT */
561 copied = tp->copied_seq - tp->rcvq_space.seq;
562 if (copied <= tp->rcvq_space.space)
566 * copied = bytes received in previous RTT, our base window
567 * To cope with packet losses, we need a 2x factor
568 * To cope with slow start, and sender growing its cwin by 100 %
569 * every RTT, we need a 4x factor, because the ACK we are sending
570 * now is for the next RTT, not the current one :
571 * <prev RTT . ><current RTT .. ><next RTT .... >
574 if (sysctl_tcp_moderate_rcvbuf &&
575 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
576 int rcvwin, rcvmem, rcvbuf;
578 /* minimal window to cope with packet losses, assuming
579 * steady state. Add some cushion because of small variations.
581 rcvwin = (copied << 1) + 16 * tp->advmss;
583 /* If rate increased by 25%,
584 * assume slow start, rcvwin = 3 * copied
585 * If rate increased by 50%,
586 * assume sender can use 2x growth, rcvwin = 4 * copied
589 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
591 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
594 rcvwin += (rcvwin >> 1);
597 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
598 while (tcp_win_from_space(rcvmem) < tp->advmss)
601 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
602 if (rcvbuf > sk->sk_rcvbuf) {
603 sk->sk_rcvbuf = rcvbuf;
605 /* Make the window clamp follow along. */
606 tp->window_clamp = rcvwin;
609 tp->rcvq_space.space = copied;
612 tp->rcvq_space.seq = tp->copied_seq;
613 tp->rcvq_space.time = tcp_time_stamp;
616 /* There is something which you must keep in mind when you analyze the
617 * behavior of the tp->ato delayed ack timeout interval. When a
618 * connection starts up, we want to ack as quickly as possible. The
619 * problem is that "good" TCP's do slow start at the beginning of data
620 * transmission. The means that until we send the first few ACK's the
621 * sender will sit on his end and only queue most of his data, because
622 * he can only send snd_cwnd unacked packets at any given time. For
623 * each ACK we send, he increments snd_cwnd and transmits more of his
626 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
628 struct tcp_sock *tp = tcp_sk(sk);
629 struct inet_connection_sock *icsk = inet_csk(sk);
632 inet_csk_schedule_ack(sk);
634 tcp_measure_rcv_mss(sk, skb);
636 tcp_rcv_rtt_measure(tp);
638 now = tcp_time_stamp;
640 if (!icsk->icsk_ack.ato) {
641 /* The _first_ data packet received, initialize
642 * delayed ACK engine.
644 tcp_incr_quickack(sk);
645 icsk->icsk_ack.ato = TCP_ATO_MIN;
647 int m = now - icsk->icsk_ack.lrcvtime;
649 if (m <= TCP_ATO_MIN / 2) {
650 /* The fastest case is the first. */
651 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
652 } else if (m < icsk->icsk_ack.ato) {
653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
654 if (icsk->icsk_ack.ato > icsk->icsk_rto)
655 icsk->icsk_ack.ato = icsk->icsk_rto;
656 } else if (m > icsk->icsk_rto) {
657 /* Too long gap. Apparently sender failed to
658 * restart window, so that we send ACKs quickly.
660 tcp_incr_quickack(sk);
664 icsk->icsk_ack.lrcvtime = now;
666 tcp_ecn_check_ce(tp, skb);
669 tcp_grow_window(sk, skb);
672 /* Called to compute a smoothed rtt estimate. The data fed to this
673 * routine either comes from timestamps, or from segments that were
674 * known _not_ to have been retransmitted [see Karn/Partridge
675 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
676 * piece by Van Jacobson.
677 * NOTE: the next three routines used to be one big routine.
678 * To save cycles in the RFC 1323 implementation it was better to break
679 * it up into three procedures. -- erics
681 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
683 struct tcp_sock *tp = tcp_sk(sk);
684 long m = mrtt_us; /* RTT */
685 u32 srtt = tp->srtt_us;
687 /* The following amusing code comes from Jacobson's
688 * article in SIGCOMM '88. Note that rtt and mdev
689 * are scaled versions of rtt and mean deviation.
690 * This is designed to be as fast as possible
691 * m stands for "measurement".
693 * On a 1990 paper the rto value is changed to:
694 * RTO = rtt + 4 * mdev
696 * Funny. This algorithm seems to be very broken.
697 * These formulae increase RTO, when it should be decreased, increase
698 * too slowly, when it should be increased quickly, decrease too quickly
699 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
700 * does not matter how to _calculate_ it. Seems, it was trap
701 * that VJ failed to avoid. 8)
704 m -= (srtt >> 3); /* m is now error in rtt est */
705 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
707 m = -m; /* m is now abs(error) */
708 m -= (tp->mdev_us >> 2); /* similar update on mdev */
709 /* This is similar to one of Eifel findings.
710 * Eifel blocks mdev updates when rtt decreases.
711 * This solution is a bit different: we use finer gain
712 * for mdev in this case (alpha*beta).
713 * Like Eifel it also prevents growth of rto,
714 * but also it limits too fast rto decreases,
715 * happening in pure Eifel.
720 m -= (tp->mdev_us >> 2); /* similar update on mdev */
722 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
723 if (tp->mdev_us > tp->mdev_max_us) {
724 tp->mdev_max_us = tp->mdev_us;
725 if (tp->mdev_max_us > tp->rttvar_us)
726 tp->rttvar_us = tp->mdev_max_us;
728 if (after(tp->snd_una, tp->rtt_seq)) {
729 if (tp->mdev_max_us < tp->rttvar_us)
730 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
731 tp->rtt_seq = tp->snd_nxt;
732 tp->mdev_max_us = tcp_rto_min_us(sk);
735 /* no previous measure. */
736 srtt = m << 3; /* take the measured time to be rtt */
737 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
738 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
739 tp->mdev_max_us = tp->rttvar_us;
740 tp->rtt_seq = tp->snd_nxt;
742 tp->srtt_us = max(1U, srtt);
745 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
746 * Note: TCP stack does not yet implement pacing.
747 * FQ packet scheduler can be used to implement cheap but effective
748 * TCP pacing, to smooth the burst on large writes when packets
749 * in flight is significantly lower than cwnd (or rwin)
751 static void tcp_update_pacing_rate(struct sock *sk)
753 const struct tcp_sock *tp = tcp_sk(sk);
756 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
757 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
759 rate *= max(tp->snd_cwnd, tp->packets_out);
761 if (likely(tp->srtt_us))
762 do_div(rate, tp->srtt_us);
764 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
765 * without any lock. We want to make sure compiler wont store
766 * intermediate values in this location.
768 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
769 sk->sk_max_pacing_rate);
772 /* Calculate rto without backoff. This is the second half of Van Jacobson's
773 * routine referred to above.
775 static void tcp_set_rto(struct sock *sk)
777 const struct tcp_sock *tp = tcp_sk(sk);
778 /* Old crap is replaced with new one. 8)
781 * 1. If rtt variance happened to be less 50msec, it is hallucination.
782 * It cannot be less due to utterly erratic ACK generation made
783 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
784 * to do with delayed acks, because at cwnd>2 true delack timeout
785 * is invisible. Actually, Linux-2.4 also generates erratic
786 * ACKs in some circumstances.
788 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
790 /* 2. Fixups made earlier cannot be right.
791 * If we do not estimate RTO correctly without them,
792 * all the algo is pure shit and should be replaced
793 * with correct one. It is exactly, which we pretend to do.
796 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
797 * guarantees that rto is higher.
802 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
804 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
807 cwnd = TCP_INIT_CWND;
808 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
812 * Packet counting of FACK is based on in-order assumptions, therefore TCP
813 * disables it when reordering is detected
815 void tcp_disable_fack(struct tcp_sock *tp)
817 /* RFC3517 uses different metric in lost marker => reset on change */
819 tp->lost_skb_hint = NULL;
820 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
823 /* Take a notice that peer is sending D-SACKs */
824 static void tcp_dsack_seen(struct tcp_sock *tp)
826 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
829 static void tcp_update_reordering(struct sock *sk, const int metric,
832 struct tcp_sock *tp = tcp_sk(sk);
833 if (metric > tp->reordering) {
836 tp->reordering = min(TCP_MAX_REORDERING, metric);
838 /* This exciting event is worth to be remembered. 8) */
840 mib_idx = LINUX_MIB_TCPTSREORDER;
841 else if (tcp_is_reno(tp))
842 mib_idx = LINUX_MIB_TCPRENOREORDER;
843 else if (tcp_is_fack(tp))
844 mib_idx = LINUX_MIB_TCPFACKREORDER;
846 mib_idx = LINUX_MIB_TCPSACKREORDER;
848 NET_INC_STATS_BH(sock_net(sk), mib_idx);
849 #if FASTRETRANS_DEBUG > 1
850 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
851 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
855 tp->undo_marker ? tp->undo_retrans : 0);
857 tcp_disable_fack(tp);
861 tcp_disable_early_retrans(tp);
864 /* This must be called before lost_out is incremented */
865 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
867 if ((tp->retransmit_skb_hint == NULL) ||
868 before(TCP_SKB_CB(skb)->seq,
869 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
870 tp->retransmit_skb_hint = skb;
873 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
874 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
877 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
879 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
880 tcp_verify_retransmit_hint(tp, skb);
882 tp->lost_out += tcp_skb_pcount(skb);
883 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
887 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
890 tcp_verify_retransmit_hint(tp, skb);
892 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
893 tp->lost_out += tcp_skb_pcount(skb);
894 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
898 /* This procedure tags the retransmission queue when SACKs arrive.
900 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
901 * Packets in queue with these bits set are counted in variables
902 * sacked_out, retrans_out and lost_out, correspondingly.
904 * Valid combinations are:
905 * Tag InFlight Description
906 * 0 1 - orig segment is in flight.
907 * S 0 - nothing flies, orig reached receiver.
908 * L 0 - nothing flies, orig lost by net.
909 * R 2 - both orig and retransmit are in flight.
910 * L|R 1 - orig is lost, retransmit is in flight.
911 * S|R 1 - orig reached receiver, retrans is still in flight.
912 * (L|S|R is logically valid, it could occur when L|R is sacked,
913 * but it is equivalent to plain S and code short-curcuits it to S.
914 * L|S is logically invalid, it would mean -1 packet in flight 8))
916 * These 6 states form finite state machine, controlled by the following events:
917 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
918 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
919 * 3. Loss detection event of two flavors:
920 * A. Scoreboard estimator decided the packet is lost.
921 * A'. Reno "three dupacks" marks head of queue lost.
922 * A''. Its FACK modification, head until snd.fack is lost.
923 * B. SACK arrives sacking SND.NXT at the moment, when the
924 * segment was retransmitted.
925 * 4. D-SACK added new rule: D-SACK changes any tag to S.
927 * It is pleasant to note, that state diagram turns out to be commutative,
928 * so that we are allowed not to be bothered by order of our actions,
929 * when multiple events arrive simultaneously. (see the function below).
931 * Reordering detection.
932 * --------------------
933 * Reordering metric is maximal distance, which a packet can be displaced
934 * in packet stream. With SACKs we can estimate it:
936 * 1. SACK fills old hole and the corresponding segment was not
937 * ever retransmitted -> reordering. Alas, we cannot use it
938 * when segment was retransmitted.
939 * 2. The last flaw is solved with D-SACK. D-SACK arrives
940 * for retransmitted and already SACKed segment -> reordering..
941 * Both of these heuristics are not used in Loss state, when we cannot
942 * account for retransmits accurately.
944 * SACK block validation.
945 * ----------------------
947 * SACK block range validation checks that the received SACK block fits to
948 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
949 * Note that SND.UNA is not included to the range though being valid because
950 * it means that the receiver is rather inconsistent with itself reporting
951 * SACK reneging when it should advance SND.UNA. Such SACK block this is
952 * perfectly valid, however, in light of RFC2018 which explicitly states
953 * that "SACK block MUST reflect the newest segment. Even if the newest
954 * segment is going to be discarded ...", not that it looks very clever
955 * in case of head skb. Due to potentional receiver driven attacks, we
956 * choose to avoid immediate execution of a walk in write queue due to
957 * reneging and defer head skb's loss recovery to standard loss recovery
958 * procedure that will eventually trigger (nothing forbids us doing this).
960 * Implements also blockage to start_seq wrap-around. Problem lies in the
961 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
962 * there's no guarantee that it will be before snd_nxt (n). The problem
963 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
966 * <- outs wnd -> <- wrapzone ->
967 * u e n u_w e_w s n_w
969 * |<------------+------+----- TCP seqno space --------------+---------->|
970 * ...-- <2^31 ->| |<--------...
971 * ...---- >2^31 ------>| |<--------...
973 * Current code wouldn't be vulnerable but it's better still to discard such
974 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
975 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
976 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
977 * equal to the ideal case (infinite seqno space without wrap caused issues).
979 * With D-SACK the lower bound is extended to cover sequence space below
980 * SND.UNA down to undo_marker, which is the last point of interest. Yet
981 * again, D-SACK block must not to go across snd_una (for the same reason as
982 * for the normal SACK blocks, explained above). But there all simplicity
983 * ends, TCP might receive valid D-SACKs below that. As long as they reside
984 * fully below undo_marker they do not affect behavior in anyway and can
985 * therefore be safely ignored. In rare cases (which are more or less
986 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
987 * fragmentation and packet reordering past skb's retransmission. To consider
988 * them correctly, the acceptable range must be extended even more though
989 * the exact amount is rather hard to quantify. However, tp->max_window can
990 * be used as an exaggerated estimate.
992 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
993 u32 start_seq, u32 end_seq)
995 /* Too far in future, or reversed (interpretation is ambiguous) */
996 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
999 /* Nasty start_seq wrap-around check (see comments above) */
1000 if (!before(start_seq, tp->snd_nxt))
1003 /* In outstanding window? ...This is valid exit for D-SACKs too.
1004 * start_seq == snd_una is non-sensical (see comments above)
1006 if (after(start_seq, tp->snd_una))
1009 if (!is_dsack || !tp->undo_marker)
1012 /* ...Then it's D-SACK, and must reside below snd_una completely */
1013 if (after(end_seq, tp->snd_una))
1016 if (!before(start_seq, tp->undo_marker))
1020 if (!after(end_seq, tp->undo_marker))
1023 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1024 * start_seq < undo_marker and end_seq >= undo_marker.
1026 return !before(start_seq, end_seq - tp->max_window);
1029 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1030 * Event "B". Later note: FACK people cheated me again 8), we have to account
1031 * for reordering! Ugly, but should help.
1033 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1034 * less than what is now known to be received by the other end (derived from
1035 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1036 * retransmitted skbs to avoid some costly processing per ACKs.
1038 static void tcp_mark_lost_retrans(struct sock *sk)
1040 const struct inet_connection_sock *icsk = inet_csk(sk);
1041 struct tcp_sock *tp = tcp_sk(sk);
1042 struct sk_buff *skb;
1044 u32 new_low_seq = tp->snd_nxt;
1045 u32 received_upto = tcp_highest_sack_seq(tp);
1047 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1048 !after(received_upto, tp->lost_retrans_low) ||
1049 icsk->icsk_ca_state != TCP_CA_Recovery)
1052 tcp_for_write_queue(skb, sk) {
1053 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1055 if (skb == tcp_send_head(sk))
1057 if (cnt == tp->retrans_out)
1059 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1062 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1065 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1066 * constraint here (see above) but figuring out that at
1067 * least tp->reordering SACK blocks reside between ack_seq
1068 * and received_upto is not easy task to do cheaply with
1069 * the available datastructures.
1071 * Whether FACK should check here for tp->reordering segs
1072 * in-between one could argue for either way (it would be
1073 * rather simple to implement as we could count fack_count
1074 * during the walk and do tp->fackets_out - fack_count).
1076 if (after(received_upto, ack_seq)) {
1077 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1078 tp->retrans_out -= tcp_skb_pcount(skb);
1080 tcp_skb_mark_lost_uncond_verify(tp, skb);
1081 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1083 if (before(ack_seq, new_low_seq))
1084 new_low_seq = ack_seq;
1085 cnt += tcp_skb_pcount(skb);
1089 if (tp->retrans_out)
1090 tp->lost_retrans_low = new_low_seq;
1093 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1094 struct tcp_sack_block_wire *sp, int num_sacks,
1097 struct tcp_sock *tp = tcp_sk(sk);
1098 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1099 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1100 bool dup_sack = false;
1102 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1106 } else if (num_sacks > 1) {
1107 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1108 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1110 if (!after(end_seq_0, end_seq_1) &&
1111 !before(start_seq_0, start_seq_1)) {
1114 NET_INC_STATS_BH(sock_net(sk),
1115 LINUX_MIB_TCPDSACKOFORECV);
1119 /* D-SACK for already forgotten data... Do dumb counting. */
1120 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1121 !after(end_seq_0, prior_snd_una) &&
1122 after(end_seq_0, tp->undo_marker))
1128 struct tcp_sacktag_state {
1131 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1135 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1136 * the incoming SACK may not exactly match but we can find smaller MSS
1137 * aligned portion of it that matches. Therefore we might need to fragment
1138 * which may fail and creates some hassle (caller must handle error case
1141 * FIXME: this could be merged to shift decision code
1143 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1144 u32 start_seq, u32 end_seq)
1148 unsigned int pkt_len;
1151 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1152 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1154 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1155 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1156 mss = tcp_skb_mss(skb);
1157 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1160 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1164 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1169 /* Round if necessary so that SACKs cover only full MSSes
1170 * and/or the remaining small portion (if present)
1172 if (pkt_len > mss) {
1173 unsigned int new_len = (pkt_len / mss) * mss;
1174 if (!in_sack && new_len < pkt_len) {
1176 if (new_len >= skb->len)
1181 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1189 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1190 static u8 tcp_sacktag_one(struct sock *sk,
1191 struct tcp_sacktag_state *state, u8 sacked,
1192 u32 start_seq, u32 end_seq,
1193 int dup_sack, int pcount,
1194 const struct skb_mstamp *xmit_time)
1196 struct tcp_sock *tp = tcp_sk(sk);
1197 int fack_count = state->fack_count;
1199 /* Account D-SACK for retransmitted packet. */
1200 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1201 if (tp->undo_marker && tp->undo_retrans > 0 &&
1202 after(end_seq, tp->undo_marker))
1204 if (sacked & TCPCB_SACKED_ACKED)
1205 state->reord = min(fack_count, state->reord);
1208 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1209 if (!after(end_seq, tp->snd_una))
1212 if (!(sacked & TCPCB_SACKED_ACKED)) {
1213 if (sacked & TCPCB_SACKED_RETRANS) {
1214 /* If the segment is not tagged as lost,
1215 * we do not clear RETRANS, believing
1216 * that retransmission is still in flight.
1218 if (sacked & TCPCB_LOST) {
1219 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1220 tp->lost_out -= pcount;
1221 tp->retrans_out -= pcount;
1224 if (!(sacked & TCPCB_RETRANS)) {
1225 /* New sack for not retransmitted frame,
1226 * which was in hole. It is reordering.
1228 if (before(start_seq,
1229 tcp_highest_sack_seq(tp)))
1230 state->reord = min(fack_count,
1232 if (!after(end_seq, tp->high_seq))
1233 state->flag |= FLAG_ORIG_SACK_ACKED;
1234 /* Pick the earliest sequence sacked for RTT */
1235 if (state->rtt_us < 0) {
1236 struct skb_mstamp now;
1238 skb_mstamp_get(&now);
1239 state->rtt_us = skb_mstamp_us_delta(&now,
1244 if (sacked & TCPCB_LOST) {
1245 sacked &= ~TCPCB_LOST;
1246 tp->lost_out -= pcount;
1250 sacked |= TCPCB_SACKED_ACKED;
1251 state->flag |= FLAG_DATA_SACKED;
1252 tp->sacked_out += pcount;
1254 fack_count += pcount;
1256 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1257 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1258 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1259 tp->lost_cnt_hint += pcount;
1261 if (fack_count > tp->fackets_out)
1262 tp->fackets_out = fack_count;
1265 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1266 * frames and clear it. undo_retrans is decreased above, L|R frames
1267 * are accounted above as well.
1269 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1270 sacked &= ~TCPCB_SACKED_RETRANS;
1271 tp->retrans_out -= pcount;
1277 /* Shift newly-SACKed bytes from this skb to the immediately previous
1278 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1280 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1281 struct tcp_sacktag_state *state,
1282 unsigned int pcount, int shifted, int mss,
1285 struct tcp_sock *tp = tcp_sk(sk);
1286 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1287 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1288 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1292 /* Adjust counters and hints for the newly sacked sequence
1293 * range but discard the return value since prev is already
1294 * marked. We must tag the range first because the seq
1295 * advancement below implicitly advances
1296 * tcp_highest_sack_seq() when skb is highest_sack.
1298 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1299 start_seq, end_seq, dup_sack, pcount,
1302 if (skb == tp->lost_skb_hint)
1303 tp->lost_cnt_hint += pcount;
1305 TCP_SKB_CB(prev)->end_seq += shifted;
1306 TCP_SKB_CB(skb)->seq += shifted;
1308 tcp_skb_pcount_add(prev, pcount);
1309 BUG_ON(tcp_skb_pcount(skb) < pcount);
1310 tcp_skb_pcount_add(skb, -pcount);
1312 /* When we're adding to gso_segs == 1, gso_size will be zero,
1313 * in theory this shouldn't be necessary but as long as DSACK
1314 * code can come after this skb later on it's better to keep
1315 * setting gso_size to something.
1317 if (!skb_shinfo(prev)->gso_size) {
1318 skb_shinfo(prev)->gso_size = mss;
1319 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1322 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1323 if (tcp_skb_pcount(skb) <= 1) {
1324 skb_shinfo(skb)->gso_size = 0;
1325 skb_shinfo(skb)->gso_type = 0;
1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1332 BUG_ON(!tcp_skb_pcount(skb));
1333 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1337 /* Whole SKB was eaten :-) */
1339 if (skb == tp->retransmit_skb_hint)
1340 tp->retransmit_skb_hint = prev;
1341 if (skb == tp->lost_skb_hint) {
1342 tp->lost_skb_hint = prev;
1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1347 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1348 TCP_SKB_CB(prev)->end_seq++;
1350 if (skb == tcp_highest_sack(sk))
1351 tcp_advance_highest_sack(sk, skb);
1353 tcp_unlink_write_queue(skb, sk);
1354 sk_wmem_free_skb(sk, skb);
1356 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1361 /* I wish gso_size would have a bit more sane initialization than
1362 * something-or-zero which complicates things
1364 static int tcp_skb_seglen(const struct sk_buff *skb)
1366 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369 /* Shifting pages past head area doesn't work */
1370 static int skb_can_shift(const struct sk_buff *skb)
1372 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1378 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1379 struct tcp_sacktag_state *state,
1380 u32 start_seq, u32 end_seq,
1383 struct tcp_sock *tp = tcp_sk(sk);
1384 struct sk_buff *prev;
1390 if (!sk_can_gso(sk))
1393 /* Normally R but no L won't result in plain S */
1395 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1397 if (!skb_can_shift(skb))
1399 /* This frame is about to be dropped (was ACKed). */
1400 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1403 /* Can only happen with delayed DSACK + discard craziness */
1404 if (unlikely(skb == tcp_write_queue_head(sk)))
1406 prev = tcp_write_queue_prev(sk, skb);
1408 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1411 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1412 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1416 pcount = tcp_skb_pcount(skb);
1417 mss = tcp_skb_seglen(skb);
1419 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1420 * drop this restriction as unnecessary
1422 if (mss != tcp_skb_seglen(prev))
1425 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1427 /* CHECKME: This is non-MSS split case only?, this will
1428 * cause skipped skbs due to advancing loop btw, original
1429 * has that feature too
1431 if (tcp_skb_pcount(skb) <= 1)
1434 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1436 /* TODO: head merge to next could be attempted here
1437 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1438 * though it might not be worth of the additional hassle
1440 * ...we can probably just fallback to what was done
1441 * previously. We could try merging non-SACKed ones
1442 * as well but it probably isn't going to buy off
1443 * because later SACKs might again split them, and
1444 * it would make skb timestamp tracking considerably
1450 len = end_seq - TCP_SKB_CB(skb)->seq;
1452 BUG_ON(len > skb->len);
1454 /* MSS boundaries should be honoured or else pcount will
1455 * severely break even though it makes things bit trickier.
1456 * Optimize common case to avoid most of the divides
1458 mss = tcp_skb_mss(skb);
1460 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1461 * drop this restriction as unnecessary
1463 if (mss != tcp_skb_seglen(prev))
1468 } else if (len < mss) {
1476 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1477 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1480 if (!skb_shift(prev, skb, len))
1482 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1485 /* Hole filled allows collapsing with the next as well, this is very
1486 * useful when hole on every nth skb pattern happens
1488 if (prev == tcp_write_queue_tail(sk))
1490 skb = tcp_write_queue_next(sk, prev);
1492 if (!skb_can_shift(skb) ||
1493 (skb == tcp_send_head(sk)) ||
1494 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1495 (mss != tcp_skb_seglen(skb)))
1499 if (skb_shift(prev, skb, len)) {
1500 pcount += tcp_skb_pcount(skb);
1501 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1505 state->fack_count += pcount;
1512 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1516 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1517 struct tcp_sack_block *next_dup,
1518 struct tcp_sacktag_state *state,
1519 u32 start_seq, u32 end_seq,
1522 struct tcp_sock *tp = tcp_sk(sk);
1523 struct sk_buff *tmp;
1525 tcp_for_write_queue_from(skb, sk) {
1527 bool dup_sack = dup_sack_in;
1529 if (skb == tcp_send_head(sk))
1532 /* queue is in-order => we can short-circuit the walk early */
1533 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1536 if ((next_dup != NULL) &&
1537 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1538 in_sack = tcp_match_skb_to_sack(sk, skb,
1539 next_dup->start_seq,
1545 /* skb reference here is a bit tricky to get right, since
1546 * shifting can eat and free both this skb and the next,
1547 * so not even _safe variant of the loop is enough.
1550 tmp = tcp_shift_skb_data(sk, skb, state,
1551 start_seq, end_seq, dup_sack);
1560 in_sack = tcp_match_skb_to_sack(sk, skb,
1566 if (unlikely(in_sack < 0))
1570 TCP_SKB_CB(skb)->sacked =
1573 TCP_SKB_CB(skb)->sacked,
1574 TCP_SKB_CB(skb)->seq,
1575 TCP_SKB_CB(skb)->end_seq,
1577 tcp_skb_pcount(skb),
1580 if (!before(TCP_SKB_CB(skb)->seq,
1581 tcp_highest_sack_seq(tp)))
1582 tcp_advance_highest_sack(sk, skb);
1585 state->fack_count += tcp_skb_pcount(skb);
1590 /* Avoid all extra work that is being done by sacktag while walking in
1593 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1594 struct tcp_sacktag_state *state,
1597 tcp_for_write_queue_from(skb, sk) {
1598 if (skb == tcp_send_head(sk))
1601 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1604 state->fack_count += tcp_skb_pcount(skb);
1609 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1611 struct tcp_sack_block *next_dup,
1612 struct tcp_sacktag_state *state,
1615 if (next_dup == NULL)
1618 if (before(next_dup->start_seq, skip_to_seq)) {
1619 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1620 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1621 next_dup->start_seq, next_dup->end_seq,
1628 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1630 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1634 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1635 u32 prior_snd_una, long *sack_rtt_us)
1637 struct tcp_sock *tp = tcp_sk(sk);
1638 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1639 TCP_SKB_CB(ack_skb)->sacked);
1640 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1641 struct tcp_sack_block sp[TCP_NUM_SACKS];
1642 struct tcp_sack_block *cache;
1643 struct tcp_sacktag_state state;
1644 struct sk_buff *skb;
1645 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1647 bool found_dup_sack = false;
1649 int first_sack_index;
1652 state.reord = tp->packets_out;
1655 if (!tp->sacked_out) {
1656 if (WARN_ON(tp->fackets_out))
1657 tp->fackets_out = 0;
1658 tcp_highest_sack_reset(sk);
1661 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1662 num_sacks, prior_snd_una);
1664 state.flag |= FLAG_DSACKING_ACK;
1666 /* Eliminate too old ACKs, but take into
1667 * account more or less fresh ones, they can
1668 * contain valid SACK info.
1670 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1673 if (!tp->packets_out)
1677 first_sack_index = 0;
1678 for (i = 0; i < num_sacks; i++) {
1679 bool dup_sack = !i && found_dup_sack;
1681 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1682 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1684 if (!tcp_is_sackblock_valid(tp, dup_sack,
1685 sp[used_sacks].start_seq,
1686 sp[used_sacks].end_seq)) {
1690 if (!tp->undo_marker)
1691 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1695 /* Don't count olds caused by ACK reordering */
1696 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1697 !after(sp[used_sacks].end_seq, tp->snd_una))
1699 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1702 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1704 first_sack_index = -1;
1708 /* Ignore very old stuff early */
1709 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1715 /* order SACK blocks to allow in order walk of the retrans queue */
1716 for (i = used_sacks - 1; i > 0; i--) {
1717 for (j = 0; j < i; j++) {
1718 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1719 swap(sp[j], sp[j + 1]);
1721 /* Track where the first SACK block goes to */
1722 if (j == first_sack_index)
1723 first_sack_index = j + 1;
1728 skb = tcp_write_queue_head(sk);
1729 state.fack_count = 0;
1732 if (!tp->sacked_out) {
1733 /* It's already past, so skip checking against it */
1734 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1736 cache = tp->recv_sack_cache;
1737 /* Skip empty blocks in at head of the cache */
1738 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1743 while (i < used_sacks) {
1744 u32 start_seq = sp[i].start_seq;
1745 u32 end_seq = sp[i].end_seq;
1746 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1747 struct tcp_sack_block *next_dup = NULL;
1749 if (found_dup_sack && ((i + 1) == first_sack_index))
1750 next_dup = &sp[i + 1];
1752 /* Skip too early cached blocks */
1753 while (tcp_sack_cache_ok(tp, cache) &&
1754 !before(start_seq, cache->end_seq))
1757 /* Can skip some work by looking recv_sack_cache? */
1758 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1759 after(end_seq, cache->start_seq)) {
1762 if (before(start_seq, cache->start_seq)) {
1763 skb = tcp_sacktag_skip(skb, sk, &state,
1765 skb = tcp_sacktag_walk(skb, sk, next_dup,
1772 /* Rest of the block already fully processed? */
1773 if (!after(end_seq, cache->end_seq))
1776 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1780 /* ...tail remains todo... */
1781 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1782 /* ...but better entrypoint exists! */
1783 skb = tcp_highest_sack(sk);
1786 state.fack_count = tp->fackets_out;
1791 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1792 /* Check overlap against next cached too (past this one already) */
1797 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1798 skb = tcp_highest_sack(sk);
1801 state.fack_count = tp->fackets_out;
1803 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1806 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1807 start_seq, end_seq, dup_sack);
1813 /* Clear the head of the cache sack blocks so we can skip it next time */
1814 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1815 tp->recv_sack_cache[i].start_seq = 0;
1816 tp->recv_sack_cache[i].end_seq = 0;
1818 for (j = 0; j < used_sacks; j++)
1819 tp->recv_sack_cache[i++] = sp[j];
1821 tcp_mark_lost_retrans(sk);
1823 tcp_verify_left_out(tp);
1825 if ((state.reord < tp->fackets_out) &&
1826 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1827 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1831 #if FASTRETRANS_DEBUG > 0
1832 WARN_ON((int)tp->sacked_out < 0);
1833 WARN_ON((int)tp->lost_out < 0);
1834 WARN_ON((int)tp->retrans_out < 0);
1835 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1837 *sack_rtt_us = state.rtt_us;
1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1842 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1848 holes = max(tp->lost_out, 1U);
1849 holes = min(holes, tp->packets_out);
1851 if ((tp->sacked_out + holes) > tp->packets_out) {
1852 tp->sacked_out = tp->packets_out - holes;
1858 /* If we receive more dupacks than we expected counting segments
1859 * in assumption of absent reordering, interpret this as reordering.
1860 * The only another reason could be bug in receiver TCP.
1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1864 struct tcp_sock *tp = tcp_sk(sk);
1865 if (tcp_limit_reno_sacked(tp))
1866 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1871 static void tcp_add_reno_sack(struct sock *sk)
1873 struct tcp_sock *tp = tcp_sk(sk);
1875 tcp_check_reno_reordering(sk, 0);
1876 tcp_verify_left_out(tp);
1879 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1881 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1883 struct tcp_sock *tp = tcp_sk(sk);
1886 /* One ACK acked hole. The rest eat duplicate ACKs. */
1887 if (acked - 1 >= tp->sacked_out)
1890 tp->sacked_out -= acked - 1;
1892 tcp_check_reno_reordering(sk, acked);
1893 tcp_verify_left_out(tp);
1896 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1901 void tcp_clear_retrans(struct tcp_sock *tp)
1903 tp->retrans_out = 0;
1905 tp->undo_marker = 0;
1906 tp->undo_retrans = -1;
1907 tp->fackets_out = 0;
1911 static inline void tcp_init_undo(struct tcp_sock *tp)
1913 tp->undo_marker = tp->snd_una;
1914 /* Retransmission still in flight may cause DSACKs later. */
1915 tp->undo_retrans = tp->retrans_out ? : -1;
1918 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1919 * and reset tags completely, otherwise preserve SACKs. If receiver
1920 * dropped its ofo queue, we will know this due to reneging detection.
1922 void tcp_enter_loss(struct sock *sk)
1924 const struct inet_connection_sock *icsk = inet_csk(sk);
1925 struct tcp_sock *tp = tcp_sk(sk);
1926 struct sk_buff *skb;
1927 bool new_recovery = false;
1928 bool is_reneg; /* is receiver reneging on SACKs? */
1930 /* Reduce ssthresh if it has not yet been made inside this window. */
1931 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1932 !after(tp->high_seq, tp->snd_una) ||
1933 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1934 new_recovery = true;
1935 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1936 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1937 tcp_ca_event(sk, CA_EVENT_LOSS);
1941 tp->snd_cwnd_cnt = 0;
1942 tp->snd_cwnd_stamp = tcp_time_stamp;
1944 tp->retrans_out = 0;
1947 if (tcp_is_reno(tp))
1948 tcp_reset_reno_sack(tp);
1950 skb = tcp_write_queue_head(sk);
1951 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1953 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1955 tp->fackets_out = 0;
1957 tcp_clear_all_retrans_hints(tp);
1959 tcp_for_write_queue(skb, sk) {
1960 if (skb == tcp_send_head(sk))
1963 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1964 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1965 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1966 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1967 tp->lost_out += tcp_skb_pcount(skb);
1968 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1971 tcp_verify_left_out(tp);
1973 /* Timeout in disordered state after receiving substantial DUPACKs
1974 * suggests that the degree of reordering is over-estimated.
1976 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1977 tp->sacked_out >= sysctl_tcp_reordering)
1978 tp->reordering = min_t(unsigned int, tp->reordering,
1979 sysctl_tcp_reordering);
1980 tcp_set_ca_state(sk, TCP_CA_Loss);
1981 tp->high_seq = tp->snd_nxt;
1982 tcp_ecn_queue_cwr(tp);
1984 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1985 * loss recovery is underway except recurring timeout(s) on
1986 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1988 tp->frto = sysctl_tcp_frto &&
1989 (new_recovery || icsk->icsk_retransmits) &&
1990 !inet_csk(sk)->icsk_mtup.probe_size;
1993 /* If ACK arrived pointing to a remembered SACK, it means that our
1994 * remembered SACKs do not reflect real state of receiver i.e.
1995 * receiver _host_ is heavily congested (or buggy).
1997 * To avoid big spurious retransmission bursts due to transient SACK
1998 * scoreboard oddities that look like reneging, we give the receiver a
1999 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2000 * restore sanity to the SACK scoreboard. If the apparent reneging
2001 * persists until this RTO then we'll clear the SACK scoreboard.
2003 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2005 if (flag & FLAG_SACK_RENEGING) {
2006 struct tcp_sock *tp = tcp_sk(sk);
2007 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2008 msecs_to_jiffies(10));
2010 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2011 delay, TCP_RTO_MAX);
2017 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2019 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2022 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2023 * counter when SACK is enabled (without SACK, sacked_out is used for
2026 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2027 * segments up to the highest received SACK block so far and holes in
2030 * With reordering, holes may still be in flight, so RFC3517 recovery
2031 * uses pure sacked_out (total number of SACKed segments) even though
2032 * it violates the RFC that uses duplicate ACKs, often these are equal
2033 * but when e.g. out-of-window ACKs or packet duplication occurs,
2034 * they differ. Since neither occurs due to loss, TCP should really
2037 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2039 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2042 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2044 struct tcp_sock *tp = tcp_sk(sk);
2045 unsigned long delay;
2047 /* Delay early retransmit and entering fast recovery for
2048 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2049 * available, or RTO is scheduled to fire first.
2051 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2052 (flag & FLAG_ECE) || !tp->srtt_us)
2055 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2056 msecs_to_jiffies(2));
2058 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2061 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2066 /* Linux NewReno/SACK/FACK/ECN state machine.
2067 * --------------------------------------
2069 * "Open" Normal state, no dubious events, fast path.
2070 * "Disorder" In all the respects it is "Open",
2071 * but requires a bit more attention. It is entered when
2072 * we see some SACKs or dupacks. It is split of "Open"
2073 * mainly to move some processing from fast path to slow one.
2074 * "CWR" CWND was reduced due to some Congestion Notification event.
2075 * It can be ECN, ICMP source quench, local device congestion.
2076 * "Recovery" CWND was reduced, we are fast-retransmitting.
2077 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2079 * tcp_fastretrans_alert() is entered:
2080 * - each incoming ACK, if state is not "Open"
2081 * - when arrived ACK is unusual, namely:
2086 * Counting packets in flight is pretty simple.
2088 * in_flight = packets_out - left_out + retrans_out
2090 * packets_out is SND.NXT-SND.UNA counted in packets.
2092 * retrans_out is number of retransmitted segments.
2094 * left_out is number of segments left network, but not ACKed yet.
2096 * left_out = sacked_out + lost_out
2098 * sacked_out: Packets, which arrived to receiver out of order
2099 * and hence not ACKed. With SACKs this number is simply
2100 * amount of SACKed data. Even without SACKs
2101 * it is easy to give pretty reliable estimate of this number,
2102 * counting duplicate ACKs.
2104 * lost_out: Packets lost by network. TCP has no explicit
2105 * "loss notification" feedback from network (for now).
2106 * It means that this number can be only _guessed_.
2107 * Actually, it is the heuristics to predict lossage that
2108 * distinguishes different algorithms.
2110 * F.e. after RTO, when all the queue is considered as lost,
2111 * lost_out = packets_out and in_flight = retrans_out.
2113 * Essentially, we have now two algorithms counting
2116 * FACK: It is the simplest heuristics. As soon as we decided
2117 * that something is lost, we decide that _all_ not SACKed
2118 * packets until the most forward SACK are lost. I.e.
2119 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2120 * It is absolutely correct estimate, if network does not reorder
2121 * packets. And it loses any connection to reality when reordering
2122 * takes place. We use FACK by default until reordering
2123 * is suspected on the path to this destination.
2125 * NewReno: when Recovery is entered, we assume that one segment
2126 * is lost (classic Reno). While we are in Recovery and
2127 * a partial ACK arrives, we assume that one more packet
2128 * is lost (NewReno). This heuristics are the same in NewReno
2131 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2132 * deflation etc. CWND is real congestion window, never inflated, changes
2133 * only according to classic VJ rules.
2135 * Really tricky (and requiring careful tuning) part of algorithm
2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137 * The first determines the moment _when_ we should reduce CWND and,
2138 * hence, slow down forward transmission. In fact, it determines the moment
2139 * when we decide that hole is caused by loss, rather than by a reorder.
2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142 * holes, caused by lost packets.
2144 * And the most logically complicated part of algorithm is undo
2145 * heuristics. We detect false retransmits due to both too early
2146 * fast retransmit (reordering) and underestimated RTO, analyzing
2147 * timestamps and D-SACKs. When we detect that some segments were
2148 * retransmitted by mistake and CWND reduction was wrong, we undo
2149 * window reduction and abort recovery phase. This logic is hidden
2150 * inside several functions named tcp_try_undo_<something>.
2153 /* This function decides, when we should leave Disordered state
2154 * and enter Recovery phase, reducing congestion window.
2156 * Main question: may we further continue forward transmission
2157 * with the same cwnd?
2159 static bool tcp_time_to_recover(struct sock *sk, int flag)
2161 struct tcp_sock *tp = tcp_sk(sk);
2164 /* Trick#1: The loss is proven. */
2168 /* Not-A-Trick#2 : Classic rule... */
2169 if (tcp_dupack_heuristics(tp) > tp->reordering)
2172 /* Trick#4: It is still not OK... But will it be useful to delay
2175 packets_out = tp->packets_out;
2176 if (packets_out <= tp->reordering &&
2177 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2178 !tcp_may_send_now(sk)) {
2179 /* We have nothing to send. This connection is limited
2180 * either by receiver window or by application.
2185 /* If a thin stream is detected, retransmit after first
2186 * received dupack. Employ only if SACK is supported in order
2187 * to avoid possible corner-case series of spurious retransmissions
2188 * Use only if there are no unsent data.
2190 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2191 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2192 tcp_is_sack(tp) && !tcp_send_head(sk))
2195 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2196 * retransmissions due to small network reorderings, we implement
2197 * Mitigation A.3 in the RFC and delay the retransmission for a short
2198 * interval if appropriate.
2200 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2201 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2202 !tcp_may_send_now(sk))
2203 return !tcp_pause_early_retransmit(sk, flag);
2208 /* Detect loss in event "A" above by marking head of queue up as lost.
2209 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2210 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2211 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2212 * the maximum SACKed segments to pass before reaching this limit.
2214 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2216 struct tcp_sock *tp = tcp_sk(sk);
2217 struct sk_buff *skb;
2221 /* Use SACK to deduce losses of new sequences sent during recovery */
2222 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2224 WARN_ON(packets > tp->packets_out);
2225 if (tp->lost_skb_hint) {
2226 skb = tp->lost_skb_hint;
2227 cnt = tp->lost_cnt_hint;
2228 /* Head already handled? */
2229 if (mark_head && skb != tcp_write_queue_head(sk))
2232 skb = tcp_write_queue_head(sk);
2236 tcp_for_write_queue_from(skb, sk) {
2237 if (skb == tcp_send_head(sk))
2239 /* TODO: do this better */
2240 /* this is not the most efficient way to do this... */
2241 tp->lost_skb_hint = skb;
2242 tp->lost_cnt_hint = cnt;
2244 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2248 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2249 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2250 cnt += tcp_skb_pcount(skb);
2252 if (cnt > packets) {
2253 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2254 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2255 (oldcnt >= packets))
2258 mss = skb_shinfo(skb)->gso_size;
2259 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2266 tcp_skb_mark_lost(tp, skb);
2271 tcp_verify_left_out(tp);
2274 /* Account newly detected lost packet(s) */
2276 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2278 struct tcp_sock *tp = tcp_sk(sk);
2280 if (tcp_is_reno(tp)) {
2281 tcp_mark_head_lost(sk, 1, 1);
2282 } else if (tcp_is_fack(tp)) {
2283 int lost = tp->fackets_out - tp->reordering;
2286 tcp_mark_head_lost(sk, lost, 0);
2288 int sacked_upto = tp->sacked_out - tp->reordering;
2289 if (sacked_upto >= 0)
2290 tcp_mark_head_lost(sk, sacked_upto, 0);
2291 else if (fast_rexmit)
2292 tcp_mark_head_lost(sk, 1, 1);
2296 /* CWND moderation, preventing bursts due to too big ACKs
2297 * in dubious situations.
2299 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2301 tp->snd_cwnd = min(tp->snd_cwnd,
2302 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2303 tp->snd_cwnd_stamp = tcp_time_stamp;
2306 /* Nothing was retransmitted or returned timestamp is less
2307 * than timestamp of the first retransmission.
2309 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2311 return !tp->retrans_stamp ||
2312 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2313 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2316 /* Undo procedures. */
2318 #if FASTRETRANS_DEBUG > 1
2319 static void DBGUNDO(struct sock *sk, const char *msg)
2321 struct tcp_sock *tp = tcp_sk(sk);
2322 struct inet_sock *inet = inet_sk(sk);
2324 if (sk->sk_family == AF_INET) {
2325 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2327 &inet->inet_daddr, ntohs(inet->inet_dport),
2328 tp->snd_cwnd, tcp_left_out(tp),
2329 tp->snd_ssthresh, tp->prior_ssthresh,
2332 #if IS_ENABLED(CONFIG_IPV6)
2333 else if (sk->sk_family == AF_INET6) {
2334 struct ipv6_pinfo *np = inet6_sk(sk);
2335 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2337 &np->daddr, ntohs(inet->inet_dport),
2338 tp->snd_cwnd, tcp_left_out(tp),
2339 tp->snd_ssthresh, tp->prior_ssthresh,
2345 #define DBGUNDO(x...) do { } while (0)
2348 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2350 struct tcp_sock *tp = tcp_sk(sk);
2353 struct sk_buff *skb;
2355 tcp_for_write_queue(skb, sk) {
2356 if (skb == tcp_send_head(sk))
2358 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2361 tcp_clear_all_retrans_hints(tp);
2364 if (tp->prior_ssthresh) {
2365 const struct inet_connection_sock *icsk = inet_csk(sk);
2367 if (icsk->icsk_ca_ops->undo_cwnd)
2368 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2370 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2372 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2373 tp->snd_ssthresh = tp->prior_ssthresh;
2374 tcp_ecn_withdraw_cwr(tp);
2377 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2379 tp->snd_cwnd_stamp = tcp_time_stamp;
2380 tp->undo_marker = 0;
2383 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2385 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2388 /* People celebrate: "We love our President!" */
2389 static bool tcp_try_undo_recovery(struct sock *sk)
2391 struct tcp_sock *tp = tcp_sk(sk);
2393 if (tcp_may_undo(tp)) {
2396 /* Happy end! We did not retransmit anything
2397 * or our original transmission succeeded.
2399 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2400 tcp_undo_cwnd_reduction(sk, false);
2401 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2402 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2404 mib_idx = LINUX_MIB_TCPFULLUNDO;
2406 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2408 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2409 /* Hold old state until something *above* high_seq
2410 * is ACKed. For Reno it is MUST to prevent false
2411 * fast retransmits (RFC2582). SACK TCP is safe. */
2412 tcp_moderate_cwnd(tp);
2415 tcp_set_ca_state(sk, TCP_CA_Open);
2419 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2420 static bool tcp_try_undo_dsack(struct sock *sk)
2422 struct tcp_sock *tp = tcp_sk(sk);
2424 if (tp->undo_marker && !tp->undo_retrans) {
2425 DBGUNDO(sk, "D-SACK");
2426 tcp_undo_cwnd_reduction(sk, false);
2427 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2433 /* We can clear retrans_stamp when there are no retransmissions in the
2434 * window. It would seem that it is trivially available for us in
2435 * tp->retrans_out, however, that kind of assumptions doesn't consider
2436 * what will happen if errors occur when sending retransmission for the
2437 * second time. ...It could the that such segment has only
2438 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2439 * the head skb is enough except for some reneging corner cases that
2440 * are not worth the effort.
2442 * Main reason for all this complexity is the fact that connection dying
2443 * time now depends on the validity of the retrans_stamp, in particular,
2444 * that successive retransmissions of a segment must not advance
2445 * retrans_stamp under any conditions.
2447 static bool tcp_any_retrans_done(const struct sock *sk)
2449 const struct tcp_sock *tp = tcp_sk(sk);
2450 struct sk_buff *skb;
2452 if (tp->retrans_out)
2455 skb = tcp_write_queue_head(sk);
2456 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2462 /* Undo during loss recovery after partial ACK or using F-RTO. */
2463 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2465 struct tcp_sock *tp = tcp_sk(sk);
2467 if (frto_undo || tcp_may_undo(tp)) {
2468 tcp_undo_cwnd_reduction(sk, true);
2470 DBGUNDO(sk, "partial loss");
2471 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2473 NET_INC_STATS_BH(sock_net(sk),
2474 LINUX_MIB_TCPSPURIOUSRTOS);
2475 inet_csk(sk)->icsk_retransmits = 0;
2476 if (frto_undo || tcp_is_sack(tp))
2477 tcp_set_ca_state(sk, TCP_CA_Open);
2483 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2484 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2485 * It computes the number of packets to send (sndcnt) based on packets newly
2487 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2488 * cwnd reductions across a full RTT.
2489 * 2) If packets in flight is lower than ssthresh (such as due to excess
2490 * losses and/or application stalls), do not perform any further cwnd
2491 * reductions, but instead slow start up to ssthresh.
2493 static void tcp_init_cwnd_reduction(struct sock *sk)
2495 struct tcp_sock *tp = tcp_sk(sk);
2497 tp->high_seq = tp->snd_nxt;
2498 tp->tlp_high_seq = 0;
2499 tp->snd_cwnd_cnt = 0;
2500 tp->prior_cwnd = tp->snd_cwnd;
2501 tp->prr_delivered = 0;
2503 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2504 tcp_ecn_queue_cwr(tp);
2507 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2510 struct tcp_sock *tp = tcp_sk(sk);
2512 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2513 int newly_acked_sacked = prior_unsacked -
2514 (tp->packets_out - tp->sacked_out);
2516 tp->prr_delivered += newly_acked_sacked;
2517 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2518 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2520 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2522 sndcnt = min_t(int, delta,
2523 max_t(int, tp->prr_delivered - tp->prr_out,
2524 newly_acked_sacked) + 1);
2527 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2528 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2531 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2533 struct tcp_sock *tp = tcp_sk(sk);
2535 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2536 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2537 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2538 tp->snd_cwnd = tp->snd_ssthresh;
2539 tp->snd_cwnd_stamp = tcp_time_stamp;
2541 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2544 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2545 void tcp_enter_cwr(struct sock *sk)
2547 struct tcp_sock *tp = tcp_sk(sk);
2549 tp->prior_ssthresh = 0;
2550 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2551 tp->undo_marker = 0;
2552 tcp_init_cwnd_reduction(sk);
2553 tcp_set_ca_state(sk, TCP_CA_CWR);
2557 static void tcp_try_keep_open(struct sock *sk)
2559 struct tcp_sock *tp = tcp_sk(sk);
2560 int state = TCP_CA_Open;
2562 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2563 state = TCP_CA_Disorder;
2565 if (inet_csk(sk)->icsk_ca_state != state) {
2566 tcp_set_ca_state(sk, state);
2567 tp->high_seq = tp->snd_nxt;
2571 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2573 struct tcp_sock *tp = tcp_sk(sk);
2575 tcp_verify_left_out(tp);
2577 if (!tcp_any_retrans_done(sk))
2578 tp->retrans_stamp = 0;
2580 if (flag & FLAG_ECE)
2583 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2584 tcp_try_keep_open(sk);
2586 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2590 static void tcp_mtup_probe_failed(struct sock *sk)
2592 struct inet_connection_sock *icsk = inet_csk(sk);
2594 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2595 icsk->icsk_mtup.probe_size = 0;
2598 static void tcp_mtup_probe_success(struct sock *sk)
2600 struct tcp_sock *tp = tcp_sk(sk);
2601 struct inet_connection_sock *icsk = inet_csk(sk);
2603 /* FIXME: breaks with very large cwnd */
2604 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2605 tp->snd_cwnd = tp->snd_cwnd *
2606 tcp_mss_to_mtu(sk, tp->mss_cache) /
2607 icsk->icsk_mtup.probe_size;
2608 tp->snd_cwnd_cnt = 0;
2609 tp->snd_cwnd_stamp = tcp_time_stamp;
2610 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2612 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2613 icsk->icsk_mtup.probe_size = 0;
2614 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2617 /* Do a simple retransmit without using the backoff mechanisms in
2618 * tcp_timer. This is used for path mtu discovery.
2619 * The socket is already locked here.
2621 void tcp_simple_retransmit(struct sock *sk)
2623 const struct inet_connection_sock *icsk = inet_csk(sk);
2624 struct tcp_sock *tp = tcp_sk(sk);
2625 struct sk_buff *skb;
2626 unsigned int mss = tcp_current_mss(sk);
2627 u32 prior_lost = tp->lost_out;
2629 tcp_for_write_queue(skb, sk) {
2630 if (skb == tcp_send_head(sk))
2632 if (tcp_skb_seglen(skb) > mss &&
2633 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2634 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2635 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2636 tp->retrans_out -= tcp_skb_pcount(skb);
2638 tcp_skb_mark_lost_uncond_verify(tp, skb);
2642 tcp_clear_retrans_hints_partial(tp);
2644 if (prior_lost == tp->lost_out)
2647 if (tcp_is_reno(tp))
2648 tcp_limit_reno_sacked(tp);
2650 tcp_verify_left_out(tp);
2652 /* Don't muck with the congestion window here.
2653 * Reason is that we do not increase amount of _data_
2654 * in network, but units changed and effective
2655 * cwnd/ssthresh really reduced now.
2657 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2658 tp->high_seq = tp->snd_nxt;
2659 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2660 tp->prior_ssthresh = 0;
2661 tp->undo_marker = 0;
2662 tcp_set_ca_state(sk, TCP_CA_Loss);
2664 tcp_xmit_retransmit_queue(sk);
2666 EXPORT_SYMBOL(tcp_simple_retransmit);
2668 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2670 struct tcp_sock *tp = tcp_sk(sk);
2673 if (tcp_is_reno(tp))
2674 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2676 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2678 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2680 tp->prior_ssthresh = 0;
2683 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2685 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2686 tcp_init_cwnd_reduction(sk);
2688 tcp_set_ca_state(sk, TCP_CA_Recovery);
2691 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2692 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2694 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2696 struct tcp_sock *tp = tcp_sk(sk);
2697 bool recovered = !before(tp->snd_una, tp->high_seq);
2699 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2700 /* Step 3.b. A timeout is spurious if not all data are
2701 * lost, i.e., never-retransmitted data are (s)acked.
2703 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2706 if (after(tp->snd_nxt, tp->high_seq) &&
2707 (flag & FLAG_DATA_SACKED || is_dupack)) {
2708 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2709 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2710 tp->high_seq = tp->snd_nxt;
2711 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2713 if (after(tp->snd_nxt, tp->high_seq))
2714 return; /* Step 2.b */
2720 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2721 tcp_try_undo_recovery(sk);
2724 if (tcp_is_reno(tp)) {
2725 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2726 * delivered. Lower inflight to clock out (re)tranmissions.
2728 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2729 tcp_add_reno_sack(sk);
2730 else if (flag & FLAG_SND_UNA_ADVANCED)
2731 tcp_reset_reno_sack(tp);
2733 if (tcp_try_undo_loss(sk, false))
2735 tcp_xmit_retransmit_queue(sk);
2738 /* Undo during fast recovery after partial ACK. */
2739 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2740 const int prior_unsacked)
2742 struct tcp_sock *tp = tcp_sk(sk);
2744 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2745 /* Plain luck! Hole if filled with delayed
2746 * packet, rather than with a retransmit.
2748 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2750 /* We are getting evidence that the reordering degree is higher
2751 * than we realized. If there are no retransmits out then we
2752 * can undo. Otherwise we clock out new packets but do not
2753 * mark more packets lost or retransmit more.
2755 if (tp->retrans_out) {
2756 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2760 if (!tcp_any_retrans_done(sk))
2761 tp->retrans_stamp = 0;
2763 DBGUNDO(sk, "partial recovery");
2764 tcp_undo_cwnd_reduction(sk, true);
2765 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2766 tcp_try_keep_open(sk);
2772 /* Process an event, which can update packets-in-flight not trivially.
2773 * Main goal of this function is to calculate new estimate for left_out,
2774 * taking into account both packets sitting in receiver's buffer and
2775 * packets lost by network.
2777 * Besides that it does CWND reduction, when packet loss is detected
2778 * and changes state of machine.
2780 * It does _not_ decide what to send, it is made in function
2781 * tcp_xmit_retransmit_queue().
2783 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2784 const int prior_unsacked,
2785 bool is_dupack, int flag)
2787 struct inet_connection_sock *icsk = inet_csk(sk);
2788 struct tcp_sock *tp = tcp_sk(sk);
2789 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2790 (tcp_fackets_out(tp) > tp->reordering));
2791 int fast_rexmit = 0;
2793 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2795 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2796 tp->fackets_out = 0;
2798 /* Now state machine starts.
2799 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2800 if (flag & FLAG_ECE)
2801 tp->prior_ssthresh = 0;
2803 /* B. In all the states check for reneging SACKs. */
2804 if (tcp_check_sack_reneging(sk, flag))
2807 /* C. Check consistency of the current state. */
2808 tcp_verify_left_out(tp);
2810 /* D. Check state exit conditions. State can be terminated
2811 * when high_seq is ACKed. */
2812 if (icsk->icsk_ca_state == TCP_CA_Open) {
2813 WARN_ON(tp->retrans_out != 0);
2814 tp->retrans_stamp = 0;
2815 } else if (!before(tp->snd_una, tp->high_seq)) {
2816 switch (icsk->icsk_ca_state) {
2818 /* CWR is to be held something *above* high_seq
2819 * is ACKed for CWR bit to reach receiver. */
2820 if (tp->snd_una != tp->high_seq) {
2821 tcp_end_cwnd_reduction(sk);
2822 tcp_set_ca_state(sk, TCP_CA_Open);
2826 case TCP_CA_Recovery:
2827 if (tcp_is_reno(tp))
2828 tcp_reset_reno_sack(tp);
2829 if (tcp_try_undo_recovery(sk))
2831 tcp_end_cwnd_reduction(sk);
2836 /* E. Process state. */
2837 switch (icsk->icsk_ca_state) {
2838 case TCP_CA_Recovery:
2839 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2840 if (tcp_is_reno(tp) && is_dupack)
2841 tcp_add_reno_sack(sk);
2843 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2845 /* Partial ACK arrived. Force fast retransmit. */
2846 do_lost = tcp_is_reno(tp) ||
2847 tcp_fackets_out(tp) > tp->reordering;
2849 if (tcp_try_undo_dsack(sk)) {
2850 tcp_try_keep_open(sk);
2855 tcp_process_loss(sk, flag, is_dupack);
2856 if (icsk->icsk_ca_state != TCP_CA_Open)
2858 /* Fall through to processing in Open state. */
2860 if (tcp_is_reno(tp)) {
2861 if (flag & FLAG_SND_UNA_ADVANCED)
2862 tcp_reset_reno_sack(tp);
2864 tcp_add_reno_sack(sk);
2867 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2868 tcp_try_undo_dsack(sk);
2870 if (!tcp_time_to_recover(sk, flag)) {
2871 tcp_try_to_open(sk, flag, prior_unsacked);
2875 /* MTU probe failure: don't reduce cwnd */
2876 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2877 icsk->icsk_mtup.probe_size &&
2878 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2879 tcp_mtup_probe_failed(sk);
2880 /* Restores the reduction we did in tcp_mtup_probe() */
2882 tcp_simple_retransmit(sk);
2886 /* Otherwise enter Recovery state */
2887 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2892 tcp_update_scoreboard(sk, fast_rexmit);
2893 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2894 tcp_xmit_retransmit_queue(sk);
2897 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2898 long seq_rtt_us, long sack_rtt_us)
2900 const struct tcp_sock *tp = tcp_sk(sk);
2902 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2903 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2904 * Karn's algorithm forbids taking RTT if some retransmitted data
2905 * is acked (RFC6298).
2907 if (flag & FLAG_RETRANS_DATA_ACKED)
2911 seq_rtt_us = sack_rtt_us;
2913 /* RTTM Rule: A TSecr value received in a segment is used to
2914 * update the averaged RTT measurement only if the segment
2915 * acknowledges some new data, i.e., only if it advances the
2916 * left edge of the send window.
2917 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2919 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2921 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2926 tcp_rtt_estimator(sk, seq_rtt_us);
2929 /* RFC6298: only reset backoff on valid RTT measurement. */
2930 inet_csk(sk)->icsk_backoff = 0;
2934 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2935 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2937 struct tcp_sock *tp = tcp_sk(sk);
2938 long seq_rtt_us = -1L;
2940 if (synack_stamp && !tp->total_retrans)
2941 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2943 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2944 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2947 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2950 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2952 const struct inet_connection_sock *icsk = inet_csk(sk);
2954 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2955 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2958 /* Restart timer after forward progress on connection.
2959 * RFC2988 recommends to restart timer to now+rto.
2961 void tcp_rearm_rto(struct sock *sk)
2963 const struct inet_connection_sock *icsk = inet_csk(sk);
2964 struct tcp_sock *tp = tcp_sk(sk);
2966 /* If the retrans timer is currently being used by Fast Open
2967 * for SYN-ACK retrans purpose, stay put.
2969 if (tp->fastopen_rsk)
2972 if (!tp->packets_out) {
2973 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2975 u32 rto = inet_csk(sk)->icsk_rto;
2976 /* Offset the time elapsed after installing regular RTO */
2977 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2978 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2979 struct sk_buff *skb = tcp_write_queue_head(sk);
2980 const u32 rto_time_stamp =
2981 tcp_skb_timestamp(skb) + rto;
2982 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2983 /* delta may not be positive if the socket is locked
2984 * when the retrans timer fires and is rescheduled.
2989 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2994 /* This function is called when the delayed ER timer fires. TCP enters
2995 * fast recovery and performs fast-retransmit.
2997 void tcp_resume_early_retransmit(struct sock *sk)
2999 struct tcp_sock *tp = tcp_sk(sk);
3003 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3004 if (!tp->do_early_retrans)
3007 tcp_enter_recovery(sk, false);
3008 tcp_update_scoreboard(sk, 1);
3009 tcp_xmit_retransmit_queue(sk);
3012 /* If we get here, the whole TSO packet has not been acked. */
3013 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3015 struct tcp_sock *tp = tcp_sk(sk);
3018 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3020 packets_acked = tcp_skb_pcount(skb);
3021 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3023 packets_acked -= tcp_skb_pcount(skb);
3025 if (packets_acked) {
3026 BUG_ON(tcp_skb_pcount(skb) == 0);
3027 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3030 return packets_acked;
3033 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3036 const struct skb_shared_info *shinfo;
3038 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3039 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3042 shinfo = skb_shinfo(skb);
3043 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3044 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3045 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3048 /* Remove acknowledged frames from the retransmission queue. If our packet
3049 * is before the ack sequence we can discard it as it's confirmed to have
3050 * arrived at the other end.
3052 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3053 u32 prior_snd_una, long sack_rtt_us)
3055 const struct inet_connection_sock *icsk = inet_csk(sk);
3056 struct skb_mstamp first_ackt, last_ackt, now;
3057 struct tcp_sock *tp = tcp_sk(sk);
3058 u32 prior_sacked = tp->sacked_out;
3059 u32 reord = tp->packets_out;
3060 bool fully_acked = true;
3061 long ca_seq_rtt_us = -1L;
3062 long seq_rtt_us = -1L;
3063 struct sk_buff *skb;
3070 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3071 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3072 u8 sacked = scb->sacked;
3075 tcp_ack_tstamp(sk, skb, prior_snd_una);