drivers/net/wan/farsync.c: add missing iounmap
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 2;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_frto_response __read_mostly;
96 int sysctl_tcp_nometrics_save __read_mostly;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_abc __read_mostly;
102
103 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
104 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
105 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
107 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
108 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
109 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
110 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
116
117 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125
126 /* Adapt the MSS value used to make delayed ack decision to the
127  * real world.
128  */
129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131         struct inet_connection_sock *icsk = inet_csk(sk);
132         const unsigned int lss = icsk->icsk_ack.last_seg_size;
133         unsigned int len;
134
135         icsk->icsk_ack.last_seg_size = 0;
136
137         /* skb->len may jitter because of SACKs, even if peer
138          * sends good full-sized frames.
139          */
140         len = skb_shinfo(skb)->gso_size ? : skb->len;
141         if (len >= icsk->icsk_ack.rcv_mss) {
142                 icsk->icsk_ack.rcv_mss = len;
143         } else {
144                 /* Otherwise, we make more careful check taking into account,
145                  * that SACKs block is variable.
146                  *
147                  * "len" is invariant segment length, including TCP header.
148                  */
149                 len += skb->data - skb_transport_header(skb);
150                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151                     /* If PSH is not set, packet should be
152                      * full sized, provided peer TCP is not badly broken.
153                      * This observation (if it is correct 8)) allows
154                      * to handle super-low mtu links fairly.
155                      */
156                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158                         /* Subtract also invariant (if peer is RFC compliant),
159                          * tcp header plus fixed timestamp option length.
160                          * Resulting "len" is MSS free of SACK jitter.
161                          */
162                         len -= tcp_sk(sk)->tcp_header_len;
163                         icsk->icsk_ack.last_seg_size = len;
164                         if (len == lss) {
165                                 icsk->icsk_ack.rcv_mss = len;
166                                 return;
167                         }
168                 }
169                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172         }
173 }
174
175 static void tcp_incr_quickack(struct sock *sk)
176 {
177         struct inet_connection_sock *icsk = inet_csk(sk);
178         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179
180         if (quickacks == 0)
181                 quickacks = 2;
182         if (quickacks > icsk->icsk_ack.quick)
183                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185
186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188         struct inet_connection_sock *icsk = inet_csk(sk);
189         tcp_incr_quickack(sk);
190         icsk->icsk_ack.pingpong = 0;
191         icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193
194 /* Send ACKs quickly, if "quick" count is not exhausted
195  * and the session is not interactive.
196  */
197
198 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 {
200         const struct inet_connection_sock *icsk = inet_csk(sk);
201         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 }
203
204 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 {
206         if (tp->ecn_flags & TCP_ECN_OK)
207                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 }
209
210 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 {
212         if (tcp_hdr(skb)->cwr)
213                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 {
218         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220
221 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 {
223         if (!(tp->ecn_flags & TCP_ECN_OK))
224                 return;
225
226         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227         case INET_ECN_NOT_ECT:
228                 /* Funny extension: if ECT is not set on a segment,
229                  * and we already seen ECT on a previous segment,
230                  * it is probably a retransmit.
231                  */
232                 if (tp->ecn_flags & TCP_ECN_SEEN)
233                         tcp_enter_quickack_mode((struct sock *)tp);
234                 break;
235         case INET_ECN_CE:
236                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
237                 /* fallinto */
238         default:
239                 tp->ecn_flags |= TCP_ECN_SEEN;
240         }
241 }
242
243 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
244 {
245         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
246                 tp->ecn_flags &= ~TCP_ECN_OK;
247 }
248
249 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
250 {
251         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
252                 tp->ecn_flags &= ~TCP_ECN_OK;
253 }
254
255 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
256 {
257         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
258                 return 1;
259         return 0;
260 }
261
262 /* Buffer size and advertised window tuning.
263  *
264  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265  */
266
267 static void tcp_fixup_sndbuf(struct sock *sk)
268 {
269         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
270
271         sndmem *= TCP_INIT_CWND;
272         if (sk->sk_sndbuf < sndmem)
273                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
274 }
275
276 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
277  *
278  * All tcp_full_space() is split to two parts: "network" buffer, allocated
279  * forward and advertised in receiver window (tp->rcv_wnd) and
280  * "application buffer", required to isolate scheduling/application
281  * latencies from network.
282  * window_clamp is maximal advertised window. It can be less than
283  * tcp_full_space(), in this case tcp_full_space() - window_clamp
284  * is reserved for "application" buffer. The less window_clamp is
285  * the smoother our behaviour from viewpoint of network, but the lower
286  * throughput and the higher sensitivity of the connection to losses. 8)
287  *
288  * rcv_ssthresh is more strict window_clamp used at "slow start"
289  * phase to predict further behaviour of this connection.
290  * It is used for two goals:
291  * - to enforce header prediction at sender, even when application
292  *   requires some significant "application buffer". It is check #1.
293  * - to prevent pruning of receive queue because of misprediction
294  *   of receiver window. Check #2.
295  *
296  * The scheme does not work when sender sends good segments opening
297  * window and then starts to feed us spaghetti. But it should work
298  * in common situations. Otherwise, we have to rely on queue collapsing.
299  */
300
301 /* Slow part of check#2. */
302 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305         /* Optimize this! */
306         int truesize = tcp_win_from_space(skb->truesize) >> 1;
307         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
308
309         while (tp->rcv_ssthresh <= window) {
310                 if (truesize <= skb->len)
311                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
312
313                 truesize >>= 1;
314                 window >>= 1;
315         }
316         return 0;
317 }
318
319 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
320 {
321         struct tcp_sock *tp = tcp_sk(sk);
322
323         /* Check #1 */
324         if (tp->rcv_ssthresh < tp->window_clamp &&
325             (int)tp->rcv_ssthresh < tcp_space(sk) &&
326             !sk_under_memory_pressure(sk)) {
327                 int incr;
328
329                 /* Check #2. Increase window, if skb with such overhead
330                  * will fit to rcvbuf in future.
331                  */
332                 if (tcp_win_from_space(skb->truesize) <= skb->len)
333                         incr = 2 * tp->advmss;
334                 else
335                         incr = __tcp_grow_window(sk, skb);
336
337                 if (incr) {
338                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
339                                                tp->window_clamp);
340                         inet_csk(sk)->icsk_ack.quick |= 1;
341                 }
342         }
343 }
344
345 /* 3. Tuning rcvbuf, when connection enters established state. */
346
347 static void tcp_fixup_rcvbuf(struct sock *sk)
348 {
349         u32 mss = tcp_sk(sk)->advmss;
350         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
351         int rcvmem;
352
353         /* Limit to 10 segments if mss <= 1460,
354          * or 14600/mss segments, with a minimum of two segments.
355          */
356         if (mss > 1460)
357                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
358
359         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
360         while (tcp_win_from_space(rcvmem) < mss)
361                 rcvmem += 128;
362
363         rcvmem *= icwnd;
364
365         if (sk->sk_rcvbuf < rcvmem)
366                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
367 }
368
369 /* 4. Try to fixup all. It is made immediately after connection enters
370  *    established state.
371  */
372 static void tcp_init_buffer_space(struct sock *sk)
373 {
374         struct tcp_sock *tp = tcp_sk(sk);
375         int maxwin;
376
377         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
378                 tcp_fixup_rcvbuf(sk);
379         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
380                 tcp_fixup_sndbuf(sk);
381
382         tp->rcvq_space.space = tp->rcv_wnd;
383
384         maxwin = tcp_full_space(sk);
385
386         if (tp->window_clamp >= maxwin) {
387                 tp->window_clamp = maxwin;
388
389                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
390                         tp->window_clamp = max(maxwin -
391                                                (maxwin >> sysctl_tcp_app_win),
392                                                4 * tp->advmss);
393         }
394
395         /* Force reservation of one segment. */
396         if (sysctl_tcp_app_win &&
397             tp->window_clamp > 2 * tp->advmss &&
398             tp->window_clamp + tp->advmss > maxwin)
399                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
400
401         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
402         tp->snd_cwnd_stamp = tcp_time_stamp;
403 }
404
405 /* 5. Recalculate window clamp after socket hit its memory bounds. */
406 static void tcp_clamp_window(struct sock *sk)
407 {
408         struct tcp_sock *tp = tcp_sk(sk);
409         struct inet_connection_sock *icsk = inet_csk(sk);
410
411         icsk->icsk_ack.quick = 0;
412
413         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
414             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
415             !sk_under_memory_pressure(sk) &&
416             sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
417                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
418                                     sysctl_tcp_rmem[2]);
419         }
420         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
421                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
422 }
423
424 /* Initialize RCV_MSS value.
425  * RCV_MSS is an our guess about MSS used by the peer.
426  * We haven't any direct information about the MSS.
427  * It's better to underestimate the RCV_MSS rather than overestimate.
428  * Overestimations make us ACKing less frequently than needed.
429  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
430  */
431 void tcp_initialize_rcv_mss(struct sock *sk)
432 {
433         const struct tcp_sock *tp = tcp_sk(sk);
434         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
435
436         hint = min(hint, tp->rcv_wnd / 2);
437         hint = min(hint, TCP_MSS_DEFAULT);
438         hint = max(hint, TCP_MIN_MSS);
439
440         inet_csk(sk)->icsk_ack.rcv_mss = hint;
441 }
442 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
443
444 /* Receiver "autotuning" code.
445  *
446  * The algorithm for RTT estimation w/o timestamps is based on
447  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
448  * <http://public.lanl.gov/radiant/pubs.html#DRS>
449  *
450  * More detail on this code can be found at
451  * <http://staff.psc.edu/jheffner/>,
452  * though this reference is out of date.  A new paper
453  * is pending.
454  */
455 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
456 {
457         u32 new_sample = tp->rcv_rtt_est.rtt;
458         long m = sample;
459
460         if (m == 0)
461                 m = 1;
462
463         if (new_sample != 0) {
464                 /* If we sample in larger samples in the non-timestamp
465                  * case, we could grossly overestimate the RTT especially
466                  * with chatty applications or bulk transfer apps which
467                  * are stalled on filesystem I/O.
468                  *
469                  * Also, since we are only going for a minimum in the
470                  * non-timestamp case, we do not smooth things out
471                  * else with timestamps disabled convergence takes too
472                  * long.
473                  */
474                 if (!win_dep) {
475                         m -= (new_sample >> 3);
476                         new_sample += m;
477                 } else {
478                         m <<= 3;
479                         if (m < new_sample)
480                                 new_sample = m;
481                 }
482         } else {
483                 /* No previous measure. */
484                 new_sample = m << 3;
485         }
486
487         if (tp->rcv_rtt_est.rtt != new_sample)
488                 tp->rcv_rtt_est.rtt = new_sample;
489 }
490
491 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
492 {
493         if (tp->rcv_rtt_est.time == 0)
494                 goto new_measure;
495         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
496                 return;
497         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
498
499 new_measure:
500         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
501         tp->rcv_rtt_est.time = tcp_time_stamp;
502 }
503
504 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
505                                           const struct sk_buff *skb)
506 {
507         struct tcp_sock *tp = tcp_sk(sk);
508         if (tp->rx_opt.rcv_tsecr &&
509             (TCP_SKB_CB(skb)->end_seq -
510              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
511                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
512 }
513
514 /*
515  * This function should be called every time data is copied to user space.
516  * It calculates the appropriate TCP receive buffer space.
517  */
518 void tcp_rcv_space_adjust(struct sock *sk)
519 {
520         struct tcp_sock *tp = tcp_sk(sk);
521         int time;
522         int space;
523
524         if (tp->rcvq_space.time == 0)
525                 goto new_measure;
526
527         time = tcp_time_stamp - tp->rcvq_space.time;
528         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
529                 return;
530
531         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
532
533         space = max(tp->rcvq_space.space, space);
534
535         if (tp->rcvq_space.space != space) {
536                 int rcvmem;
537
538                 tp->rcvq_space.space = space;
539
540                 if (sysctl_tcp_moderate_rcvbuf &&
541                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
542                         int new_clamp = space;
543
544                         /* Receive space grows, normalize in order to
545                          * take into account packet headers and sk_buff
546                          * structure overhead.
547                          */
548                         space /= tp->advmss;
549                         if (!space)
550                                 space = 1;
551                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
552                         while (tcp_win_from_space(rcvmem) < tp->advmss)
553                                 rcvmem += 128;
554                         space *= rcvmem;
555                         space = min(space, sysctl_tcp_rmem[2]);
556                         if (space > sk->sk_rcvbuf) {
557                                 sk->sk_rcvbuf = space;
558
559                                 /* Make the window clamp follow along.  */
560                                 tp->window_clamp = new_clamp;
561                         }
562                 }
563         }
564
565 new_measure:
566         tp->rcvq_space.seq = tp->copied_seq;
567         tp->rcvq_space.time = tcp_time_stamp;
568 }
569
570 /* There is something which you must keep in mind when you analyze the
571  * behavior of the tp->ato delayed ack timeout interval.  When a
572  * connection starts up, we want to ack as quickly as possible.  The
573  * problem is that "good" TCP's do slow start at the beginning of data
574  * transmission.  The means that until we send the first few ACK's the
575  * sender will sit on his end and only queue most of his data, because
576  * he can only send snd_cwnd unacked packets at any given time.  For
577  * each ACK we send, he increments snd_cwnd and transmits more of his
578  * queue.  -DaveM
579  */
580 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
581 {
582         struct tcp_sock *tp = tcp_sk(sk);
583         struct inet_connection_sock *icsk = inet_csk(sk);
584         u32 now;
585
586         inet_csk_schedule_ack(sk);
587
588         tcp_measure_rcv_mss(sk, skb);
589
590         tcp_rcv_rtt_measure(tp);
591
592         now = tcp_time_stamp;
593
594         if (!icsk->icsk_ack.ato) {
595                 /* The _first_ data packet received, initialize
596                  * delayed ACK engine.
597                  */
598                 tcp_incr_quickack(sk);
599                 icsk->icsk_ack.ato = TCP_ATO_MIN;
600         } else {
601                 int m = now - icsk->icsk_ack.lrcvtime;
602
603                 if (m <= TCP_ATO_MIN / 2) {
604                         /* The fastest case is the first. */
605                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
606                 } else if (m < icsk->icsk_ack.ato) {
607                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
608                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
609                                 icsk->icsk_ack.ato = icsk->icsk_rto;
610                 } else if (m > icsk->icsk_rto) {
611                         /* Too long gap. Apparently sender failed to
612                          * restart window, so that we send ACKs quickly.
613                          */
614                         tcp_incr_quickack(sk);
615                         sk_mem_reclaim(sk);
616                 }
617         }
618         icsk->icsk_ack.lrcvtime = now;
619
620         TCP_ECN_check_ce(tp, skb);
621
622         if (skb->len >= 128)
623                 tcp_grow_window(sk, skb);
624 }
625
626 /* Called to compute a smoothed rtt estimate. The data fed to this
627  * routine either comes from timestamps, or from segments that were
628  * known _not_ to have been retransmitted [see Karn/Partridge
629  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
630  * piece by Van Jacobson.
631  * NOTE: the next three routines used to be one big routine.
632  * To save cycles in the RFC 1323 implementation it was better to break
633  * it up into three procedures. -- erics
634  */
635 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
636 {
637         struct tcp_sock *tp = tcp_sk(sk);
638         long m = mrtt; /* RTT */
639
640         /*      The following amusing code comes from Jacobson's
641          *      article in SIGCOMM '88.  Note that rtt and mdev
642          *      are scaled versions of rtt and mean deviation.
643          *      This is designed to be as fast as possible
644          *      m stands for "measurement".
645          *
646          *      On a 1990 paper the rto value is changed to:
647          *      RTO = rtt + 4 * mdev
648          *
649          * Funny. This algorithm seems to be very broken.
650          * These formulae increase RTO, when it should be decreased, increase
651          * too slowly, when it should be increased quickly, decrease too quickly
652          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
653          * does not matter how to _calculate_ it. Seems, it was trap
654          * that VJ failed to avoid. 8)
655          */
656         if (m == 0)
657                 m = 1;
658         if (tp->srtt != 0) {
659                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
660                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
661                 if (m < 0) {
662                         m = -m;         /* m is now abs(error) */
663                         m -= (tp->mdev >> 2);   /* similar update on mdev */
664                         /* This is similar to one of Eifel findings.
665                          * Eifel blocks mdev updates when rtt decreases.
666                          * This solution is a bit different: we use finer gain
667                          * for mdev in this case (alpha*beta).
668                          * Like Eifel it also prevents growth of rto,
669                          * but also it limits too fast rto decreases,
670                          * happening in pure Eifel.
671                          */
672                         if (m > 0)
673                                 m >>= 3;
674                 } else {
675                         m -= (tp->mdev >> 2);   /* similar update on mdev */
676                 }
677                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
678                 if (tp->mdev > tp->mdev_max) {
679                         tp->mdev_max = tp->mdev;
680                         if (tp->mdev_max > tp->rttvar)
681                                 tp->rttvar = tp->mdev_max;
682                 }
683                 if (after(tp->snd_una, tp->rtt_seq)) {
684                         if (tp->mdev_max < tp->rttvar)
685                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
686                         tp->rtt_seq = tp->snd_nxt;
687                         tp->mdev_max = tcp_rto_min(sk);
688                 }
689         } else {
690                 /* no previous measure. */
691                 tp->srtt = m << 3;      /* take the measured time to be rtt */
692                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
693                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
694                 tp->rtt_seq = tp->snd_nxt;
695         }
696 }
697
698 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
699  * routine referred to above.
700  */
701 static inline void tcp_set_rto(struct sock *sk)
702 {
703         const struct tcp_sock *tp = tcp_sk(sk);
704         /* Old crap is replaced with new one. 8)
705          *
706          * More seriously:
707          * 1. If rtt variance happened to be less 50msec, it is hallucination.
708          *    It cannot be less due to utterly erratic ACK generation made
709          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
710          *    to do with delayed acks, because at cwnd>2 true delack timeout
711          *    is invisible. Actually, Linux-2.4 also generates erratic
712          *    ACKs in some circumstances.
713          */
714         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
715
716         /* 2. Fixups made earlier cannot be right.
717          *    If we do not estimate RTO correctly without them,
718          *    all the algo is pure shit and should be replaced
719          *    with correct one. It is exactly, which we pretend to do.
720          */
721
722         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
723          * guarantees that rto is higher.
724          */
725         tcp_bound_rto(sk);
726 }
727
728 /* Save metrics learned by this TCP session.
729    This function is called only, when TCP finishes successfully
730    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
731  */
732 void tcp_update_metrics(struct sock *sk)
733 {
734         struct tcp_sock *tp = tcp_sk(sk);
735         struct dst_entry *dst = __sk_dst_get(sk);
736
737         if (sysctl_tcp_nometrics_save)
738                 return;
739
740         dst_confirm(dst);
741
742         if (dst && (dst->flags & DST_HOST)) {
743                 const struct inet_connection_sock *icsk = inet_csk(sk);
744                 int m;
745                 unsigned long rtt;
746
747                 if (icsk->icsk_backoff || !tp->srtt) {
748                         /* This session failed to estimate rtt. Why?
749                          * Probably, no packets returned in time.
750                          * Reset our results.
751                          */
752                         if (!(dst_metric_locked(dst, RTAX_RTT)))
753                                 dst_metric_set(dst, RTAX_RTT, 0);
754                         return;
755                 }
756
757                 rtt = dst_metric_rtt(dst, RTAX_RTT);
758                 m = rtt - tp->srtt;
759
760                 /* If newly calculated rtt larger than stored one,
761                  * store new one. Otherwise, use EWMA. Remember,
762                  * rtt overestimation is always better than underestimation.
763                  */
764                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
765                         if (m <= 0)
766                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
767                         else
768                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
769                 }
770
771                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
772                         unsigned long var;
773                         if (m < 0)
774                                 m = -m;
775
776                         /* Scale deviation to rttvar fixed point */
777                         m >>= 1;
778                         if (m < tp->mdev)
779                                 m = tp->mdev;
780
781                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
782                         if (m >= var)
783                                 var = m;
784                         else
785                                 var -= (var - m) >> 2;
786
787                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
788                 }
789
790                 if (tcp_in_initial_slowstart(tp)) {
791                         /* Slow start still did not finish. */
792                         if (dst_metric(dst, RTAX_SSTHRESH) &&
793                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
794                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
795                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
796                         if (!dst_metric_locked(dst, RTAX_CWND) &&
797                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
798                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
799                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
800                            icsk->icsk_ca_state == TCP_CA_Open) {
801                         /* Cong. avoidance phase, cwnd is reliable. */
802                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
803                                 dst_metric_set(dst, RTAX_SSTHRESH,
804                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
805                         if (!dst_metric_locked(dst, RTAX_CWND))
806                                 dst_metric_set(dst, RTAX_CWND,
807                                                (dst_metric(dst, RTAX_CWND) +
808                                                 tp->snd_cwnd) >> 1);
809                 } else {
810                         /* Else slow start did not finish, cwnd is non-sense,
811                            ssthresh may be also invalid.
812                          */
813                         if (!dst_metric_locked(dst, RTAX_CWND))
814                                 dst_metric_set(dst, RTAX_CWND,
815                                                (dst_metric(dst, RTAX_CWND) +
816                                                 tp->snd_ssthresh) >> 1);
817                         if (dst_metric(dst, RTAX_SSTHRESH) &&
818                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
819                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
820                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
821                 }
822
823                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
824                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
825                             tp->reordering != sysctl_tcp_reordering)
826                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
827                 }
828         }
829 }
830
831 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
832 {
833         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
834
835         if (!cwnd)
836                 cwnd = TCP_INIT_CWND;
837         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
838 }
839
840 /* Set slow start threshold and cwnd not falling to slow start */
841 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
842 {
843         struct tcp_sock *tp = tcp_sk(sk);
844         const struct inet_connection_sock *icsk = inet_csk(sk);
845
846         tp->prior_ssthresh = 0;
847         tp->bytes_acked = 0;
848         if (icsk->icsk_ca_state < TCP_CA_CWR) {
849                 tp->undo_marker = 0;
850                 if (set_ssthresh)
851                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
852                 tp->snd_cwnd = min(tp->snd_cwnd,
853                                    tcp_packets_in_flight(tp) + 1U);
854                 tp->snd_cwnd_cnt = 0;
855                 tp->high_seq = tp->snd_nxt;
856                 tp->snd_cwnd_stamp = tcp_time_stamp;
857                 TCP_ECN_queue_cwr(tp);
858
859                 tcp_set_ca_state(sk, TCP_CA_CWR);
860         }
861 }
862
863 /*
864  * Packet counting of FACK is based on in-order assumptions, therefore TCP
865  * disables it when reordering is detected
866  */
867 static void tcp_disable_fack(struct tcp_sock *tp)
868 {
869         /* RFC3517 uses different metric in lost marker => reset on change */
870         if (tcp_is_fack(tp))
871                 tp->lost_skb_hint = NULL;
872         tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
873 }
874
875 /* Take a notice that peer is sending D-SACKs */
876 static void tcp_dsack_seen(struct tcp_sock *tp)
877 {
878         tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
879 }
880
881 /* Initialize metrics on socket. */
882
883 static void tcp_init_metrics(struct sock *sk)
884 {
885         struct tcp_sock *tp = tcp_sk(sk);
886         struct dst_entry *dst = __sk_dst_get(sk);
887
888         if (dst == NULL)
889                 goto reset;
890
891         dst_confirm(dst);
892
893         if (dst_metric_locked(dst, RTAX_CWND))
894                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
895         if (dst_metric(dst, RTAX_SSTHRESH)) {
896                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
897                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
898                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
899         } else {
900                 /* ssthresh may have been reduced unnecessarily during.
901                  * 3WHS. Restore it back to its initial default.
902                  */
903                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
904         }
905         if (dst_metric(dst, RTAX_REORDERING) &&
906             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
907                 tcp_disable_fack(tp);
908                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
909         }
910
911         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
912                 goto reset;
913
914         /* Initial rtt is determined from SYN,SYN-ACK.
915          * The segment is small and rtt may appear much
916          * less than real one. Use per-dst memory
917          * to make it more realistic.
918          *
919          * A bit of theory. RTT is time passed after "normal" sized packet
920          * is sent until it is ACKed. In normal circumstances sending small
921          * packets force peer to delay ACKs and calculation is correct too.
922          * The algorithm is adaptive and, provided we follow specs, it
923          * NEVER underestimate RTT. BUT! If peer tries to make some clever
924          * tricks sort of "quick acks" for time long enough to decrease RTT
925          * to low value, and then abruptly stops to do it and starts to delay
926          * ACKs, wait for troubles.
927          */
928         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
929                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
930                 tp->rtt_seq = tp->snd_nxt;
931         }
932         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
933                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
934                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
935         }
936         tcp_set_rto(sk);
937 reset:
938         if (tp->srtt == 0) {
939                 /* RFC2988bis: We've failed to get a valid RTT sample from
940                  * 3WHS. This is most likely due to retransmission,
941                  * including spurious one. Reset the RTO back to 3secs
942                  * from the more aggressive 1sec to avoid more spurious
943                  * retransmission.
944                  */
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
947         }
948         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
949          * retransmitted. In light of RFC2988bis' more aggressive 1sec
950          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
951          * retransmission has occurred.
952          */
953         if (tp->total_retrans > 1)
954                 tp->snd_cwnd = 1;
955         else
956                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
957         tp->snd_cwnd_stamp = tcp_time_stamp;
958 }
959
960 static void tcp_update_reordering(struct sock *sk, const int metric,
961                                   const int ts)
962 {
963         struct tcp_sock *tp = tcp_sk(sk);
964         if (metric > tp->reordering) {
965                 int mib_idx;
966
967                 tp->reordering = min(TCP_MAX_REORDERING, metric);
968
969                 /* This exciting event is worth to be remembered. 8) */
970                 if (ts)
971                         mib_idx = LINUX_MIB_TCPTSREORDER;
972                 else if (tcp_is_reno(tp))
973                         mib_idx = LINUX_MIB_TCPRENOREORDER;
974                 else if (tcp_is_fack(tp))
975                         mib_idx = LINUX_MIB_TCPFACKREORDER;
976                 else
977                         mib_idx = LINUX_MIB_TCPSACKREORDER;
978
979                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
980 #if FASTRETRANS_DEBUG > 1
981                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
982                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
983                        tp->reordering,
984                        tp->fackets_out,
985                        tp->sacked_out,
986                        tp->undo_marker ? tp->undo_retrans : 0);
987 #endif
988                 tcp_disable_fack(tp);
989         }
990 }
991
992 /* This must be called before lost_out is incremented */
993 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
994 {
995         if ((tp->retransmit_skb_hint == NULL) ||
996             before(TCP_SKB_CB(skb)->seq,
997                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
998                 tp->retransmit_skb_hint = skb;
999
1000         if (!tp->lost_out ||
1001             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1002                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1003 }
1004
1005 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1006 {
1007         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1008                 tcp_verify_retransmit_hint(tp, skb);
1009
1010                 tp->lost_out += tcp_skb_pcount(skb);
1011                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1012         }
1013 }
1014
1015 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1016                                             struct sk_buff *skb)
1017 {
1018         tcp_verify_retransmit_hint(tp, skb);
1019
1020         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1021                 tp->lost_out += tcp_skb_pcount(skb);
1022                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1023         }
1024 }
1025
1026 /* This procedure tags the retransmission queue when SACKs arrive.
1027  *
1028  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1029  * Packets in queue with these bits set are counted in variables
1030  * sacked_out, retrans_out and lost_out, correspondingly.
1031  *
1032  * Valid combinations are:
1033  * Tag  InFlight        Description
1034  * 0    1               - orig segment is in flight.
1035  * S    0               - nothing flies, orig reached receiver.
1036  * L    0               - nothing flies, orig lost by net.
1037  * R    2               - both orig and retransmit are in flight.
1038  * L|R  1               - orig is lost, retransmit is in flight.
1039  * S|R  1               - orig reached receiver, retrans is still in flight.
1040  * (L|S|R is logically valid, it could occur when L|R is sacked,
1041  *  but it is equivalent to plain S and code short-curcuits it to S.
1042  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1043  *
1044  * These 6 states form finite state machine, controlled by the following events:
1045  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1046  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1047  * 3. Loss detection event of two flavors:
1048  *      A. Scoreboard estimator decided the packet is lost.
1049  *         A'. Reno "three dupacks" marks head of queue lost.
1050  *         A''. Its FACK modification, head until snd.fack is lost.
1051  *      B. SACK arrives sacking SND.NXT at the moment, when the
1052  *         segment was retransmitted.
1053  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1054  *
1055  * It is pleasant to note, that state diagram turns out to be commutative,
1056  * so that we are allowed not to be bothered by order of our actions,
1057  * when multiple events arrive simultaneously. (see the function below).
1058  *
1059  * Reordering detection.
1060  * --------------------
1061  * Reordering metric is maximal distance, which a packet can be displaced
1062  * in packet stream. With SACKs we can estimate it:
1063  *
1064  * 1. SACK fills old hole and the corresponding segment was not
1065  *    ever retransmitted -> reordering. Alas, we cannot use it
1066  *    when segment was retransmitted.
1067  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1068  *    for retransmitted and already SACKed segment -> reordering..
1069  * Both of these heuristics are not used in Loss state, when we cannot
1070  * account for retransmits accurately.
1071  *
1072  * SACK block validation.
1073  * ----------------------
1074  *
1075  * SACK block range validation checks that the received SACK block fits to
1076  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1077  * Note that SND.UNA is not included to the range though being valid because
1078  * it means that the receiver is rather inconsistent with itself reporting
1079  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1080  * perfectly valid, however, in light of RFC2018 which explicitly states
1081  * that "SACK block MUST reflect the newest segment.  Even if the newest
1082  * segment is going to be discarded ...", not that it looks very clever
1083  * in case of head skb. Due to potentional receiver driven attacks, we
1084  * choose to avoid immediate execution of a walk in write queue due to
1085  * reneging and defer head skb's loss recovery to standard loss recovery
1086  * procedure that will eventually trigger (nothing forbids us doing this).
1087  *
1088  * Implements also blockage to start_seq wrap-around. Problem lies in the
1089  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1090  * there's no guarantee that it will be before snd_nxt (n). The problem
1091  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1092  * wrap (s_w):
1093  *
1094  *         <- outs wnd ->                          <- wrapzone ->
1095  *         u     e      n                         u_w   e_w  s n_w
1096  *         |     |      |                          |     |   |  |
1097  * |<------------+------+----- TCP seqno space --------------+---------->|
1098  * ...-- <2^31 ->|                                           |<--------...
1099  * ...---- >2^31 ------>|                                    |<--------...
1100  *
1101  * Current code wouldn't be vulnerable but it's better still to discard such
1102  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1103  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1104  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1105  * equal to the ideal case (infinite seqno space without wrap caused issues).
1106  *
1107  * With D-SACK the lower bound is extended to cover sequence space below
1108  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1109  * again, D-SACK block must not to go across snd_una (for the same reason as
1110  * for the normal SACK blocks, explained above). But there all simplicity
1111  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1112  * fully below undo_marker they do not affect behavior in anyway and can
1113  * therefore be safely ignored. In rare cases (which are more or less
1114  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1115  * fragmentation and packet reordering past skb's retransmission. To consider
1116  * them correctly, the acceptable range must be extended even more though
1117  * the exact amount is rather hard to quantify. However, tp->max_window can
1118  * be used as an exaggerated estimate.
1119  */
1120 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1121                                   u32 start_seq, u32 end_seq)
1122 {
1123         /* Too far in future, or reversed (interpretation is ambiguous) */
1124         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1125                 return 0;
1126
1127         /* Nasty start_seq wrap-around check (see comments above) */
1128         if (!before(start_seq, tp->snd_nxt))
1129                 return 0;
1130
1131         /* In outstanding window? ...This is valid exit for D-SACKs too.
1132          * start_seq == snd_una is non-sensical (see comments above)
1133          */
1134         if (after(start_seq, tp->snd_una))
1135                 return 1;
1136
1137         if (!is_dsack || !tp->undo_marker)
1138                 return 0;
1139
1140         /* ...Then it's D-SACK, and must reside below snd_una completely */
1141         if (after(end_seq, tp->snd_una))
1142                 return 0;
1143
1144         if (!before(start_seq, tp->undo_marker))
1145                 return 1;
1146
1147         /* Too old */
1148         if (!after(end_seq, tp->undo_marker))
1149                 return 0;
1150
1151         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1152          *   start_seq < undo_marker and end_seq >= undo_marker.
1153          */
1154         return !before(start_seq, end_seq - tp->max_window);
1155 }
1156
1157 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1158  * Event "B". Later note: FACK people cheated me again 8), we have to account
1159  * for reordering! Ugly, but should help.
1160  *
1161  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1162  * less than what is now known to be received by the other end (derived from
1163  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1164  * retransmitted skbs to avoid some costly processing per ACKs.
1165  */
1166 static void tcp_mark_lost_retrans(struct sock *sk)
1167 {
1168         const struct inet_connection_sock *icsk = inet_csk(sk);
1169         struct tcp_sock *tp = tcp_sk(sk);
1170         struct sk_buff *skb;
1171         int cnt = 0;
1172         u32 new_low_seq = tp->snd_nxt;
1173         u32 received_upto = tcp_highest_sack_seq(tp);
1174
1175         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1176             !after(received_upto, tp->lost_retrans_low) ||
1177             icsk->icsk_ca_state != TCP_CA_Recovery)
1178                 return;
1179
1180         tcp_for_write_queue(skb, sk) {
1181                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1182
1183                 if (skb == tcp_send_head(sk))
1184                         break;
1185                 if (cnt == tp->retrans_out)
1186                         break;
1187                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1188                         continue;
1189
1190                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1191                         continue;
1192
1193                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1194                  * constraint here (see above) but figuring out that at
1195                  * least tp->reordering SACK blocks reside between ack_seq
1196                  * and received_upto is not easy task to do cheaply with
1197                  * the available datastructures.
1198                  *
1199                  * Whether FACK should check here for tp->reordering segs
1200                  * in-between one could argue for either way (it would be
1201                  * rather simple to implement as we could count fack_count
1202                  * during the walk and do tp->fackets_out - fack_count).
1203                  */
1204                 if (after(received_upto, ack_seq)) {
1205                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1206                         tp->retrans_out -= tcp_skb_pcount(skb);
1207
1208                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1209                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1210                 } else {
1211                         if (before(ack_seq, new_low_seq))
1212                                 new_low_seq = ack_seq;
1213                         cnt += tcp_skb_pcount(skb);
1214                 }
1215         }
1216
1217         if (tp->retrans_out)
1218                 tp->lost_retrans_low = new_low_seq;
1219 }
1220
1221 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1222                            struct tcp_sack_block_wire *sp, int num_sacks,
1223                            u32 prior_snd_una)
1224 {
1225         struct tcp_sock *tp = tcp_sk(sk);
1226         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1227         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1228         int dup_sack = 0;
1229
1230         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1231                 dup_sack = 1;
1232                 tcp_dsack_seen(tp);
1233                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1234         } else if (num_sacks > 1) {
1235                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1236                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1237
1238                 if (!after(end_seq_0, end_seq_1) &&
1239                     !before(start_seq_0, start_seq_1)) {
1240                         dup_sack = 1;
1241                         tcp_dsack_seen(tp);
1242                         NET_INC_STATS_BH(sock_net(sk),
1243                                         LINUX_MIB_TCPDSACKOFORECV);
1244                 }
1245         }
1246
1247         /* D-SACK for already forgotten data... Do dumb counting. */
1248         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1249             !after(end_seq_0, prior_snd_una) &&
1250             after(end_seq_0, tp->undo_marker))
1251                 tp->undo_retrans--;
1252
1253         return dup_sack;
1254 }
1255
1256 struct tcp_sacktag_state {
1257         int reord;
1258         int fack_count;
1259         int flag;
1260 };
1261
1262 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1263  * the incoming SACK may not exactly match but we can find smaller MSS
1264  * aligned portion of it that matches. Therefore we might need to fragment
1265  * which may fail and creates some hassle (caller must handle error case
1266  * returns).
1267  *
1268  * FIXME: this could be merged to shift decision code
1269  */
1270 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1271                                  u32 start_seq, u32 end_seq)
1272 {
1273         int in_sack, err;
1274         unsigned int pkt_len;
1275         unsigned int mss;
1276
1277         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1278                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1279
1280         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1281             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1282                 mss = tcp_skb_mss(skb);
1283                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1284
1285                 if (!in_sack) {
1286                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1287                         if (pkt_len < mss)
1288                                 pkt_len = mss;
1289                 } else {
1290                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1291                         if (pkt_len < mss)
1292                                 return -EINVAL;
1293                 }
1294
1295                 /* Round if necessary so that SACKs cover only full MSSes
1296                  * and/or the remaining small portion (if present)
1297                  */
1298                 if (pkt_len > mss) {
1299                         unsigned int new_len = (pkt_len / mss) * mss;
1300                         if (!in_sack && new_len < pkt_len) {
1301                                 new_len += mss;
1302                                 if (new_len > skb->len)
1303                                         return 0;
1304                         }
1305                         pkt_len = new_len;
1306                 }
1307                 err = tcp_fragment(sk, skb, pkt_len, mss);
1308                 if (err < 0)
1309                         return err;
1310         }
1311
1312         return in_sack;
1313 }
1314
1315 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1316 static u8 tcp_sacktag_one(struct sock *sk,
1317                           struct tcp_sacktag_state *state, u8 sacked,
1318                           u32 start_seq, u32 end_seq,
1319                           int dup_sack, int pcount)
1320 {
1321         struct tcp_sock *tp = tcp_sk(sk);
1322         int fack_count = state->fack_count;
1323
1324         /* Account D-SACK for retransmitted packet. */
1325         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1326                 if (tp->undo_marker && tp->undo_retrans &&
1327                     after(end_seq, tp->undo_marker))
1328                         tp->undo_retrans--;
1329                 if (sacked & TCPCB_SACKED_ACKED)
1330                         state->reord = min(fack_count, state->reord);
1331         }
1332
1333         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1334         if (!after(end_seq, tp->snd_una))
1335                 return sacked;
1336
1337         if (!(sacked & TCPCB_SACKED_ACKED)) {
1338                 if (sacked & TCPCB_SACKED_RETRANS) {
1339                         /* If the segment is not tagged as lost,
1340                          * we do not clear RETRANS, believing
1341                          * that retransmission is still in flight.
1342                          */
1343                         if (sacked & TCPCB_LOST) {
1344                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1345                                 tp->lost_out -= pcount;
1346                                 tp->retrans_out -= pcount;
1347                         }
1348                 } else {
1349                         if (!(sacked & TCPCB_RETRANS)) {
1350                                 /* New sack for not retransmitted frame,
1351                                  * which was in hole. It is reordering.
1352                                  */
1353                                 if (before(start_seq,
1354                                            tcp_highest_sack_seq(tp)))
1355                                         state->reord = min(fack_count,
1356                                                            state->reord);
1357
1358                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1359                                 if (!after(end_seq, tp->frto_highmark))
1360                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1361                         }
1362
1363                         if (sacked & TCPCB_LOST) {
1364                                 sacked &= ~TCPCB_LOST;
1365                                 tp->lost_out -= pcount;
1366                         }
1367                 }
1368
1369                 sacked |= TCPCB_SACKED_ACKED;
1370                 state->flag |= FLAG_DATA_SACKED;
1371                 tp->sacked_out += pcount;
1372
1373                 fack_count += pcount;
1374
1375                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1376                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1377                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1378                         tp->lost_cnt_hint += pcount;
1379
1380                 if (fack_count > tp->fackets_out)
1381                         tp->fackets_out = fack_count;
1382         }
1383
1384         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1385          * frames and clear it. undo_retrans is decreased above, L|R frames
1386          * are accounted above as well.
1387          */
1388         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1389                 sacked &= ~TCPCB_SACKED_RETRANS;
1390                 tp->retrans_out -= pcount;
1391         }
1392
1393         return sacked;
1394 }
1395
1396 /* Shift newly-SACKed bytes from this skb to the immediately previous
1397  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1398  */
1399 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1400                            struct tcp_sacktag_state *state,
1401                            unsigned int pcount, int shifted, int mss,
1402                            int dup_sack)
1403 {
1404         struct tcp_sock *tp = tcp_sk(sk);
1405         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1406         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1407         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1408
1409         BUG_ON(!pcount);
1410
1411         /* Adjust counters and hints for the newly sacked sequence
1412          * range but discard the return value since prev is already
1413          * marked. We must tag the range first because the seq
1414          * advancement below implicitly advances
1415          * tcp_highest_sack_seq() when skb is highest_sack.
1416          */
1417         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1418                         start_seq, end_seq, dup_sack, pcount);
1419
1420         if (skb == tp->lost_skb_hint)
1421                 tp->lost_cnt_hint += pcount;
1422
1423         TCP_SKB_CB(prev)->end_seq += shifted;
1424         TCP_SKB_CB(skb)->seq += shifted;
1425
1426         skb_shinfo(prev)->gso_segs += pcount;
1427         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1428         skb_shinfo(skb)->gso_segs -= pcount;
1429
1430         /* When we're adding to gso_segs == 1, gso_size will be zero,
1431          * in theory this shouldn't be necessary but as long as DSACK
1432          * code can come after this skb later on it's better to keep
1433          * setting gso_size to something.
1434          */
1435         if (!skb_shinfo(prev)->gso_size) {
1436                 skb_shinfo(prev)->gso_size = mss;
1437                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1438         }
1439
1440         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1441         if (skb_shinfo(skb)->gso_segs <= 1) {
1442                 skb_shinfo(skb)->gso_size = 0;
1443                 skb_shinfo(skb)->gso_type = 0;
1444         }
1445
1446         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1447         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1448
1449         if (skb->len > 0) {
1450                 BUG_ON(!tcp_skb_pcount(skb));
1451                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1452                 return 0;
1453         }
1454
1455         /* Whole SKB was eaten :-) */
1456
1457         if (skb == tp->retransmit_skb_hint)
1458                 tp->retransmit_skb_hint = prev;
1459         if (skb == tp->scoreboard_skb_hint)
1460                 tp->scoreboard_skb_hint = prev;
1461         if (skb == tp->lost_skb_hint) {
1462                 tp->lost_skb_hint = prev;
1463                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1464         }
1465
1466         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1467         if (skb == tcp_highest_sack(sk))
1468                 tcp_advance_highest_sack(sk, skb);
1469
1470         tcp_unlink_write_queue(skb, sk);
1471         sk_wmem_free_skb(sk, skb);
1472
1473         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1474
1475         return 1;
1476 }
1477
1478 /* I wish gso_size would have a bit more sane initialization than
1479  * something-or-zero which complicates things
1480  */
1481 static int tcp_skb_seglen(const struct sk_buff *skb)
1482 {
1483         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1484 }
1485
1486 /* Shifting pages past head area doesn't work */
1487 static int skb_can_shift(const struct sk_buff *skb)
1488 {
1489         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1490 }
1491
1492 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1493  * skb.
1494  */
1495 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1496                                           struct tcp_sacktag_state *state,
1497                                           u32 start_seq, u32 end_seq,
1498                                           int dup_sack)
1499 {
1500         struct tcp_sock *tp = tcp_sk(sk);
1501         struct sk_buff *prev;
1502         int mss;
1503         int pcount = 0;
1504         int len;
1505         int in_sack;
1506
1507         if (!sk_can_gso(sk))
1508                 goto fallback;
1509
1510         /* Normally R but no L won't result in plain S */
1511         if (!dup_sack &&
1512             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1513                 goto fallback;
1514         if (!skb_can_shift(skb))
1515                 goto fallback;
1516         /* This frame is about to be dropped (was ACKed). */
1517         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1518                 goto fallback;
1519
1520         /* Can only happen with delayed DSACK + discard craziness */
1521         if (unlikely(skb == tcp_write_queue_head(sk)))
1522                 goto fallback;
1523         prev = tcp_write_queue_prev(sk, skb);
1524
1525         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1526                 goto fallback;
1527
1528         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1529                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1530
1531         if (in_sack) {
1532                 len = skb->len;
1533                 pcount = tcp_skb_pcount(skb);
1534                 mss = tcp_skb_seglen(skb);
1535
1536                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1537                  * drop this restriction as unnecessary
1538                  */
1539                 if (mss != tcp_skb_seglen(prev))
1540                         goto fallback;
1541         } else {
1542                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1543                         goto noop;
1544                 /* CHECKME: This is non-MSS split case only?, this will
1545                  * cause skipped skbs due to advancing loop btw, original
1546                  * has that feature too
1547                  */
1548                 if (tcp_skb_pcount(skb) <= 1)
1549                         goto noop;
1550
1551                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1552                 if (!in_sack) {
1553                         /* TODO: head merge to next could be attempted here
1554                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1555                          * though it might not be worth of the additional hassle
1556                          *
1557                          * ...we can probably just fallback to what was done
1558                          * previously. We could try merging non-SACKed ones
1559                          * as well but it probably isn't going to buy off
1560                          * because later SACKs might again split them, and
1561                          * it would make skb timestamp tracking considerably
1562                          * harder problem.
1563                          */
1564                         goto fallback;
1565                 }
1566
1567                 len = end_seq - TCP_SKB_CB(skb)->seq;
1568                 BUG_ON(len < 0);
1569                 BUG_ON(len > skb->len);
1570
1571                 /* MSS boundaries should be honoured or else pcount will
1572                  * severely break even though it makes things bit trickier.
1573                  * Optimize common case to avoid most of the divides
1574                  */
1575                 mss = tcp_skb_mss(skb);
1576
1577                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1578                  * drop this restriction as unnecessary
1579                  */
1580                 if (mss != tcp_skb_seglen(prev))
1581                         goto fallback;
1582
1583                 if (len == mss) {
1584                         pcount = 1;
1585                 } else if (len < mss) {
1586                         goto noop;
1587                 } else {
1588                         pcount = len / mss;
1589                         len = pcount * mss;
1590                 }
1591         }
1592
1593         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1594         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1595                 goto fallback;
1596
1597         if (!skb_shift(prev, skb, len))
1598                 goto fallback;
1599         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1600                 goto out;
1601
1602         /* Hole filled allows collapsing with the next as well, this is very
1603          * useful when hole on every nth skb pattern happens
1604          */
1605         if (prev == tcp_write_queue_tail(sk))
1606                 goto out;
1607         skb = tcp_write_queue_next(sk, prev);
1608
1609         if (!skb_can_shift(skb) ||
1610             (skb == tcp_send_head(sk)) ||
1611             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1612             (mss != tcp_skb_seglen(skb)))
1613                 goto out;
1614
1615         len = skb->len;
1616         if (skb_shift(prev, skb, len)) {
1617                 pcount += tcp_skb_pcount(skb);
1618                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1619         }
1620
1621 out:
1622         state->fack_count += pcount;
1623         return prev;
1624
1625 noop:
1626         return skb;
1627
1628 fallback:
1629         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1630         return NULL;
1631 }
1632
1633 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1634                                         struct tcp_sack_block *next_dup,
1635                                         struct tcp_sacktag_state *state,
1636                                         u32 start_seq, u32 end_seq,
1637                                         int dup_sack_in)
1638 {
1639         struct tcp_sock *tp = tcp_sk(sk);
1640         struct sk_buff *tmp;
1641
1642         tcp_for_write_queue_from(skb, sk) {
1643                 int in_sack = 0;
1644                 int dup_sack = dup_sack_in;
1645
1646                 if (skb == tcp_send_head(sk))
1647                         break;
1648
1649                 /* queue is in-order => we can short-circuit the walk early */
1650                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1651                         break;
1652
1653                 if ((next_dup != NULL) &&
1654                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1655                         in_sack = tcp_match_skb_to_sack(sk, skb,
1656                                                         next_dup->start_seq,
1657                                                         next_dup->end_seq);
1658                         if (in_sack > 0)
1659                                 dup_sack = 1;
1660                 }
1661
1662                 /* skb reference here is a bit tricky to get right, since
1663                  * shifting can eat and free both this skb and the next,
1664                  * so not even _safe variant of the loop is enough.
1665                  */
1666                 if (in_sack <= 0) {
1667                         tmp = tcp_shift_skb_data(sk, skb, state,
1668                                                  start_seq, end_seq, dup_sack);
1669                         if (tmp != NULL) {
1670                                 if (tmp != skb) {
1671                                         skb = tmp;
1672                                         continue;
1673                                 }
1674
1675                                 in_sack = 0;
1676                         } else {
1677                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1678                                                                 start_seq,
1679                                                                 end_seq);
1680                         }
1681                 }
1682
1683                 if (unlikely(in_sack < 0))
1684                         break;
1685
1686                 if (in_sack) {
1687                         TCP_SKB_CB(skb)->sacked =
1688                                 tcp_sacktag_one(sk,
1689                                                 state,
1690                                                 TCP_SKB_CB(skb)->sacked,
1691                                                 TCP_SKB_CB(skb)->seq,
1692                                                 TCP_SKB_CB(skb)->end_seq,
1693                                                 dup_sack,
1694                                                 tcp_skb_pcount(skb));
1695
1696                         if (!before(TCP_SKB_CB(skb)->seq,
1697                                     tcp_highest_sack_seq(tp)))
1698                                 tcp_advance_highest_sack(sk, skb);
1699                 }
1700
1701                 state->fack_count += tcp_skb_pcount(skb);
1702         }
1703         return skb;
1704 }
1705
1706 /* Avoid all extra work that is being done by sacktag while walking in
1707  * a normal way
1708  */
1709 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1710                                         struct tcp_sacktag_state *state,
1711                                         u32 skip_to_seq)
1712 {
1713         tcp_for_write_queue_from(skb, sk) {
1714                 if (skb == tcp_send_head(sk))
1715                         break;
1716
1717                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1718                         break;
1719
1720                 state->fack_count += tcp_skb_pcount(skb);
1721         }
1722         return skb;
1723 }
1724
1725 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1726                                                 struct sock *sk,
1727                                                 struct tcp_sack_block *next_dup,
1728                                                 struct tcp_sacktag_state *state,
1729                                                 u32 skip_to_seq)
1730 {
1731         if (next_dup == NULL)
1732                 return skb;
1733
1734         if (before(next_dup->start_seq, skip_to_seq)) {
1735                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1736                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1737                                        next_dup->start_seq, next_dup->end_seq,
1738                                        1);
1739         }
1740
1741         return skb;
1742 }
1743
1744 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1745 {
1746         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1747 }
1748
1749 static int
1750 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1751                         u32 prior_snd_una)
1752 {
1753         const struct inet_connection_sock *icsk = inet_csk(sk);
1754         struct tcp_sock *tp = tcp_sk(sk);
1755         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1756                                     TCP_SKB_CB(ack_skb)->sacked);
1757         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1758         struct tcp_sack_block sp[TCP_NUM_SACKS];
1759         struct tcp_sack_block *cache;
1760         struct tcp_sacktag_state state;
1761         struct sk_buff *skb;
1762         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1763         int used_sacks;
1764         int found_dup_sack = 0;
1765         int i, j;
1766         int first_sack_index;
1767
1768         state.flag = 0;
1769         state.reord = tp->packets_out;
1770
1771         if (!tp->sacked_out) {
1772                 if (WARN_ON(tp->fackets_out))
1773                         tp->fackets_out = 0;
1774                 tcp_highest_sack_reset(sk);
1775         }
1776
1777         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1778                                          num_sacks, prior_snd_una);
1779         if (found_dup_sack)
1780                 state.flag |= FLAG_DSACKING_ACK;
1781
1782         /* Eliminate too old ACKs, but take into
1783          * account more or less fresh ones, they can
1784          * contain valid SACK info.
1785          */
1786         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1787                 return 0;
1788
1789         if (!tp->packets_out)
1790                 goto out;
1791
1792         used_sacks = 0;
1793         first_sack_index = 0;
1794         for (i = 0; i < num_sacks; i++) {
1795                 int dup_sack = !i && found_dup_sack;
1796
1797                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1798                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1799
1800                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1801                                             sp[used_sacks].start_seq,
1802                                             sp[used_sacks].end_seq)) {
1803                         int mib_idx;
1804
1805                         if (dup_sack) {
1806                                 if (!tp->undo_marker)
1807                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1808                                 else
1809                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1810                         } else {
1811                                 /* Don't count olds caused by ACK reordering */
1812                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1813                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1814                                         continue;
1815                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1816                         }
1817
1818                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1819                         if (i == 0)
1820                                 first_sack_index = -1;
1821                         continue;
1822                 }
1823
1824                 /* Ignore very old stuff early */
1825                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1826                         continue;
1827
1828                 used_sacks++;
1829         }
1830
1831         /* order SACK blocks to allow in order walk of the retrans queue */
1832         for (i = used_sacks - 1; i > 0; i--) {
1833                 for (j = 0; j < i; j++) {
1834                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1835                                 swap(sp[j], sp[j + 1]);
1836
1837                                 /* Track where the first SACK block goes to */
1838                                 if (j == first_sack_index)
1839                                         first_sack_index = j + 1;
1840                         }
1841                 }
1842         }
1843
1844         skb = tcp_write_queue_head(sk);
1845         state.fack_count = 0;
1846         i = 0;
1847
1848         if (!tp->sacked_out) {
1849                 /* It's already past, so skip checking against it */
1850                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1851         } else {
1852                 cache = tp->recv_sack_cache;
1853                 /* Skip empty blocks in at head of the cache */
1854                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1855                        !cache->end_seq)
1856                         cache++;
1857         }
1858
1859         while (i < used_sacks) {
1860                 u32 start_seq = sp[i].start_seq;
1861                 u32 end_seq = sp[i].end_seq;
1862                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1863                 struct tcp_sack_block *next_dup = NULL;
1864
1865                 if (found_dup_sack && ((i + 1) == first_sack_index))
1866                         next_dup = &sp[i + 1];
1867
1868                 /* Skip too early cached blocks */
1869                 while (tcp_sack_cache_ok(tp, cache) &&
1870                        !before(start_seq, cache->end_seq))
1871                         cache++;
1872
1873                 /* Can skip some work by looking recv_sack_cache? */
1874                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1875                     after(end_seq, cache->start_seq)) {
1876
1877                         /* Head todo? */
1878                         if (before(start_seq, cache->start_seq)) {
1879                                 skb = tcp_sacktag_skip(skb, sk, &state,
1880                                                        start_seq);
1881                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1882                                                        &state,
1883                                                        start_seq,
1884                                                        cache->start_seq,
1885                                                        dup_sack);
1886                         }
1887
1888                         /* Rest of the block already fully processed? */
1889                         if (!after(end_seq, cache->end_seq))
1890                                 goto advance_sp;
1891
1892                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1893                                                        &state,
1894                                                        cache->end_seq);
1895
1896                         /* ...tail remains todo... */
1897                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1898                                 /* ...but better entrypoint exists! */
1899                                 skb = tcp_highest_sack(sk);
1900                                 if (skb == NULL)
1901                                         break;
1902                                 state.fack_count = tp->fackets_out;
1903                                 cache++;
1904                                 goto walk;
1905                         }
1906
1907                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1908                         /* Check overlap against next cached too (past this one already) */
1909                         cache++;
1910                         continue;
1911                 }
1912
1913                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1914                         skb = tcp_highest_sack(sk);
1915                         if (skb == NULL)
1916                                 break;
1917                         state.fack_count = tp->fackets_out;
1918                 }
1919                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1920
1921 walk:
1922                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1923                                        start_seq, end_seq, dup_sack);
1924
1925 advance_sp:
1926                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1927                  * due to in-order walk
1928                  */
1929                 if (after(end_seq, tp->frto_highmark))
1930                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1931
1932                 i++;
1933         }
1934
1935         /* Clear the head of the cache sack blocks so we can skip it next time */
1936         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1937                 tp->recv_sack_cache[i].start_seq = 0;
1938                 tp->recv_sack_cache[i].end_seq = 0;
1939         }
1940         for (j = 0; j < used_sacks; j++)
1941                 tp->recv_sack_cache[i++] = sp[j];
1942
1943         tcp_mark_lost_retrans(sk);
1944
1945         tcp_verify_left_out(tp);
1946
1947         if ((state.reord < tp->fackets_out) &&
1948             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1949             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1950                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1951
1952 out:
1953
1954 #if FASTRETRANS_DEBUG > 0
1955         WARN_ON((int)tp->sacked_out < 0);
1956         WARN_ON((int)tp->lost_out < 0);
1957         WARN_ON((int)tp->retrans_out < 0);
1958         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1959 #endif
1960         return state.flag;
1961 }
1962
1963 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1964  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1965  */
1966 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1967 {
1968         u32 holes;
1969
1970         holes = max(tp->lost_out, 1U);
1971         holes = min(holes, tp->packets_out);
1972
1973         if ((tp->sacked_out + holes) > tp->packets_out) {
1974                 tp->sacked_out = tp->packets_out - holes;
1975                 return 1;
1976         }
1977         return 0;
1978 }
1979
1980 /* If we receive more dupacks than we expected counting segments
1981  * in assumption of absent reordering, interpret this as reordering.
1982  * The only another reason could be bug in receiver TCP.
1983  */
1984 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1985 {
1986         struct tcp_sock *tp = tcp_sk(sk);
1987         if (tcp_limit_reno_sacked(tp))
1988                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1989 }
1990
1991 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1992
1993 static void tcp_add_reno_sack(struct sock *sk)
1994 {
1995         struct tcp_sock *tp = tcp_sk(sk);
1996         tp->sacked_out++;
1997         tcp_check_reno_reordering(sk, 0);
1998         tcp_verify_left_out(tp);
1999 }
2000
2001 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2002
2003 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2004 {
2005         struct tcp_sock *tp = tcp_sk(sk);
2006
2007         if (acked > 0) {
2008                 /* One ACK acked hole. The rest eat duplicate ACKs. */
2009                 if (acked - 1 >= tp->sacked_out)
2010                         tp->sacked_out = 0;
2011                 else
2012                         tp->sacked_out -= acked - 1;
2013         }
2014         tcp_check_reno_reordering(sk, acked);
2015         tcp_verify_left_out(tp);
2016 }
2017
2018 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2019 {
2020         tp->sacked_out = 0;
2021 }
2022
2023 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2024 {
2025         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2026 }
2027
2028 /* F-RTO can only be used if TCP has never retransmitted anything other than
2029  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2030  */
2031 int tcp_use_frto(struct sock *sk)
2032 {
2033         const struct tcp_sock *tp = tcp_sk(sk);
2034         const struct inet_connection_sock *icsk = inet_csk(sk);
2035         struct sk_buff *skb;
2036
2037         if (!sysctl_tcp_frto)
2038                 return 0;
2039
2040         /* MTU probe and F-RTO won't really play nicely along currently */
2041         if (icsk->icsk_mtup.probe_size)
2042                 return 0;
2043
2044         if (tcp_is_sackfrto(tp))
2045                 return 1;
2046
2047         /* Avoid expensive walking of rexmit queue if possible */
2048         if (tp->retrans_out > 1)
2049                 return 0;
2050
2051         skb = tcp_write_queue_head(sk);
2052         if (tcp_skb_is_last(sk, skb))
2053                 return 1;
2054         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2055         tcp_for_write_queue_from(skb, sk) {
2056                 if (skb == tcp_send_head(sk))
2057                         break;
2058                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2059                         return 0;
2060                 /* Short-circuit when first non-SACKed skb has been checked */
2061                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2062                         break;
2063         }
2064         return 1;
2065 }
2066
2067 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2068  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2069  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2070  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2071  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2072  * bits are handled if the Loss state is really to be entered (in
2073  * tcp_enter_frto_loss).
2074  *
2075  * Do like tcp_enter_loss() would; when RTO expires the second time it
2076  * does:
2077  *  "Reduce ssthresh if it has not yet been made inside this window."
2078  */
2079 void tcp_enter_frto(struct sock *sk)
2080 {
2081         const struct inet_connection_sock *icsk = inet_csk(sk);
2082         struct tcp_sock *tp = tcp_sk(sk);
2083         struct sk_buff *skb;
2084
2085         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2086             tp->snd_una == tp->high_seq ||
2087             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2088              !icsk->icsk_retransmits)) {
2089                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2090                 /* Our state is too optimistic in ssthresh() call because cwnd
2091                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2092                  * recovery has not yet completed. Pattern would be this: RTO,
2093                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2094                  * up here twice).
2095                  * RFC4138 should be more specific on what to do, even though
2096                  * RTO is quite unlikely to occur after the first Cumulative ACK
2097                  * due to back-off and complexity of triggering events ...
2098                  */
2099                 if (tp->frto_counter) {
2100                         u32 stored_cwnd;
2101                         stored_cwnd = tp->snd_cwnd;
2102                         tp->snd_cwnd = 2;
2103                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2104                         tp->snd_cwnd = stored_cwnd;
2105                 } else {
2106                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2107                 }
2108                 /* ... in theory, cong.control module could do "any tricks" in
2109                  * ssthresh(), which means that ca_state, lost bits and lost_out
2110                  * counter would have to be faked before the call occurs. We
2111                  * consider that too expensive, unlikely and hacky, so modules
2112                  * using these in ssthresh() must deal these incompatibility
2113                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2114                  */
2115                 tcp_ca_event(sk, CA_EVENT_FRTO);
2116         }
2117
2118         tp->undo_marker = tp->snd_una;
2119         tp->undo_retrans = 0;
2120
2121         skb = tcp_write_queue_head(sk);
2122         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2123                 tp->undo_marker = 0;
2124         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2125                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2126                 tp->retrans_out -= tcp_skb_pcount(skb);
2127         }
2128         tcp_verify_left_out(tp);
2129
2130         /* Too bad if TCP was application limited */
2131         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2132
2133         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2134          * The last condition is necessary at least in tp->frto_counter case.
2135          */
2136         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2137             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2138             after(tp->high_seq, tp->snd_una)) {
2139                 tp->frto_highmark = tp->high_seq;
2140         } else {
2141                 tp->frto_highmark = tp->snd_nxt;
2142         }
2143         tcp_set_ca_state(sk, TCP_CA_Disorder);
2144         tp->high_seq = tp->snd_nxt;
2145         tp->frto_counter = 1;
2146 }
2147
2148 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2149  * which indicates that we should follow the traditional RTO recovery,
2150  * i.e. mark everything lost and do go-back-N retransmission.
2151  */
2152 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2153 {
2154         struct tcp_sock *tp = tcp_sk(sk);
2155         struct sk_buff *skb;
2156
2157         tp->lost_out = 0;
2158         tp->retrans_out = 0;
2159         if (tcp_is_reno(tp))
2160                 tcp_reset_reno_sack(tp);
2161
2162         tcp_for_write_queue(skb, sk) {
2163                 if (skb == tcp_send_head(sk))
2164                         break;
2165
2166                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2167                 /*
2168                  * Count the retransmission made on RTO correctly (only when
2169                  * waiting for the first ACK and did not get it)...
2170                  */
2171                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2172                         /* For some reason this R-bit might get cleared? */
2173                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2174                                 tp->retrans_out += tcp_skb_pcount(skb);
2175                         /* ...enter this if branch just for the first segment */
2176                         flag |= FLAG_DATA_ACKED;
2177                 } else {
2178                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2179                                 tp->undo_marker = 0;
2180                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2181                 }
2182
2183                 /* Marking forward transmissions that were made after RTO lost
2184                  * can cause unnecessary retransmissions in some scenarios,
2185                  * SACK blocks will mitigate that in some but not in all cases.
2186                  * We used to not mark them but it was causing break-ups with
2187                  * receivers that do only in-order receival.
2188                  *
2189                  * TODO: we could detect presence of such receiver and select
2190                  * different behavior per flow.
2191                  */
2192                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2193                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2194                         tp->lost_out += tcp_skb_pcount(skb);
2195                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2196                 }
2197         }
2198         tcp_verify_left_out(tp);
2199
2200         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2201         tp->snd_cwnd_cnt = 0;
2202         tp->snd_cwnd_stamp = tcp_time_stamp;
2203         tp->frto_counter = 0;
2204         tp->bytes_acked = 0;
2205
2206         tp->reordering = min_t(unsigned int, tp->reordering,
2207                                sysctl_tcp_reordering);
2208         tcp_set_ca_state(sk, TCP_CA_Loss);
2209         tp->high_seq = tp->snd_nxt;
2210         TCP_ECN_queue_cwr(tp);
2211
2212         tcp_clear_all_retrans_hints(tp);
2213 }
2214
2215 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2216 {
2217         tp->retrans_out = 0;
2218         tp->lost_out = 0;
2219
2220         tp->undo_marker = 0;
2221         tp->undo_retrans = 0;
2222 }
2223
2224 void tcp_clear_retrans(struct tcp_sock *tp)
2225 {
2226         tcp_clear_retrans_partial(tp);
2227
2228         tp->fackets_out = 0;
2229         tp->sacked_out = 0;
2230 }
2231
2232 /* Enter Loss state. If "how" is not zero, forget all SACK information
2233  * and reset tags completely, otherwise preserve SACKs. If receiver
2234  * dropped its ofo queue, we will know this due to reneging detection.
2235  */
2236 void tcp_enter_loss(struct sock *sk, int how)
2237 {
2238         const struct inet_connection_sock *icsk = inet_csk(sk);
2239         struct tcp_sock *tp = tcp_sk(sk);
2240         struct sk_buff *skb;
2241
2242         /* Reduce ssthresh if it has not yet been made inside this window. */
2243         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2244             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2245                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2246                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2247                 tcp_ca_event(sk, CA_EVENT_LOSS);
2248         }
2249         tp->snd_cwnd       = 1;
2250         tp->snd_cwnd_cnt   = 0;
2251         tp->snd_cwnd_stamp = tcp_time_stamp;
2252
2253         tp->bytes_acked = 0;
2254         tcp_clear_retrans_partial(tp);
2255
2256         if (tcp_is_reno(tp))
2257                 tcp_reset_reno_sack(tp);
2258
2259         if (!how) {
2260                 /* Push undo marker, if it was plain RTO and nothing
2261                  * was retransmitted. */
2262                 tp->undo_marker = tp->snd_una;
2263         } else {
2264                 tp->sacked_out = 0;
2265                 tp->fackets_out = 0;
2266         }
2267         tcp_clear_all_retrans_hints(tp);
2268
2269         tcp_for_write_queue(skb, sk) {
2270                 if (skb == tcp_send_head(sk))
2271                         break;
2272
2273                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2274                         tp->undo_marker = 0;
2275                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2276                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2277                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2278                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2279                         tp->lost_out += tcp_skb_pcount(skb);
2280                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2281                 }
2282         }
2283         tcp_verify_left_out(tp);
2284
2285         tp->reordering = min_t(unsigned int, tp->reordering,
2286                                sysctl_tcp_reordering);
2287         tcp_set_ca_state(sk, TCP_CA_Loss);
2288         tp->high_seq = tp->snd_nxt;
2289         TCP_ECN_queue_cwr(tp);
2290         /* Abort F-RTO algorithm if one is in progress */
2291         tp->frto_counter = 0;
2292 }
2293
2294 /* If ACK arrived pointing to a remembered SACK, it means that our
2295  * remembered SACKs do not reflect real state of receiver i.e.
2296  * receiver _host_ is heavily congested (or buggy).
2297  *
2298  * Do processing similar to RTO timeout.
2299  */
2300 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2301 {
2302         if (flag & FLAG_SACK_RENEGING) {
2303                 struct inet_connection_sock *icsk = inet_csk(sk);
2304                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2305
2306                 tcp_enter_loss(sk, 1);
2307                 icsk->icsk_retransmits++;
2308                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2309                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2310                                           icsk->icsk_rto, TCP_RTO_MAX);
2311                 return 1;
2312         }
2313         return 0;
2314 }
2315
2316 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2317 {
2318         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2319 }
2320
2321 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2322  * counter when SACK is enabled (without SACK, sacked_out is used for
2323  * that purpose).
2324  *
2325  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2326  * segments up to the highest received SACK block so far and holes in
2327  * between them.
2328  *
2329  * With reordering, holes may still be in flight, so RFC3517 recovery
2330  * uses pure sacked_out (total number of SACKed segments) even though
2331  * it violates the RFC that uses duplicate ACKs, often these are equal
2332  * but when e.g. out-of-window ACKs or packet duplication occurs,
2333  * they differ. Since neither occurs due to loss, TCP should really
2334  * ignore them.
2335  */
2336 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2337 {
2338         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2339 }
2340
2341 static inline int tcp_skb_timedout(const struct sock *sk,
2342                                    const struct sk_buff *skb)
2343 {
2344         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2345 }
2346
2347 static inline int tcp_head_timedout(const struct sock *sk)
2348 {
2349         const struct tcp_sock *tp = tcp_sk(sk);
2350
2351         return tp->packets_out &&
2352                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2353 }
2354
2355 /* Linux NewReno/SACK/FACK/ECN state machine.
2356  * --------------------------------------
2357  *
2358  * "Open"       Normal state, no dubious events, fast path.
2359  * "Disorder"   In all the respects it is "Open",
2360  *              but requires a bit more attention. It is entered when
2361  *              we see some SACKs or dupacks. It is split of "Open"
2362  *              mainly to move some processing from fast path to slow one.
2363  * "CWR"        CWND was reduced due to some Congestion Notification event.
2364  *              It can be ECN, ICMP source quench, local device congestion.
2365  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2366  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2367  *
2368  * tcp_fastretrans_alert() is entered:
2369  * - each incoming ACK, if state is not "Open"
2370  * - when arrived ACK is unusual, namely:
2371  *      * SACK
2372  *      * Duplicate ACK.
2373  *      * ECN ECE.
2374  *
2375  * Counting packets in flight is pretty simple.
2376  *
2377  *      in_flight = packets_out - left_out + retrans_out
2378  *
2379  *      packets_out is SND.NXT-SND.UNA counted in packets.
2380  *
2381  *      retrans_out is number of retransmitted segments.
2382  *
2383  *      left_out is number of segments left network, but not ACKed yet.
2384  *
2385  *              left_out = sacked_out + lost_out
2386  *
2387  *     sacked_out: Packets, which arrived to receiver out of order
2388  *                 and hence not ACKed. With SACKs this number is simply
2389  *                 amount of SACKed data. Even without SACKs
2390  *                 it is easy to give pretty reliable estimate of this number,
2391  *                 counting duplicate ACKs.
2392  *
2393  *       lost_out: Packets lost by network. TCP has no explicit
2394  *                 "loss notification" feedback from network (for now).
2395  *                 It means that this number can be only _guessed_.
2396  *                 Actually, it is the heuristics to predict lossage that
2397  *                 distinguishes different algorithms.
2398  *
2399  *      F.e. after RTO, when all the queue is considered as lost,
2400  *      lost_out = packets_out and in_flight = retrans_out.
2401  *
2402  *              Essentially, we have now two algorithms counting
2403  *              lost packets.
2404  *
2405  *              FACK: It is the simplest heuristics. As soon as we decided
2406  *              that something is lost, we decide that _all_ not SACKed
2407  *              packets until the most forward SACK are lost. I.e.
2408  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2409  *              It is absolutely correct estimate, if network does not reorder
2410  *              packets. And it loses any connection to reality when reordering
2411  *              takes place. We use FACK by default until reordering
2412  *              is suspected on the path to this destination.
2413  *
2414  *              NewReno: when Recovery is entered, we assume that one segment
2415  *              is lost (classic Reno). While we are in Recovery and
2416  *              a partial ACK arrives, we assume that one more packet
2417  *              is lost (NewReno). This heuristics are the same in NewReno
2418  *              and SACK.
2419  *
2420  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2421  *  deflation etc. CWND is real congestion window, never inflated, changes
2422  *  only according to classic VJ rules.
2423  *
2424  * Really tricky (and requiring careful tuning) part of algorithm
2425  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2426  * The first determines the moment _when_ we should reduce CWND and,
2427  * hence, slow down forward transmission. In fact, it determines the moment
2428  * when we decide that hole is caused by loss, rather than by a reorder.
2429  *
2430  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2431  * holes, caused by lost packets.
2432  *
2433  * And the most logically complicated part of algorithm is undo
2434  * heuristics. We detect false retransmits due to both too early
2435  * fast retransmit (reordering) and underestimated RTO, analyzing
2436  * timestamps and D-SACKs. When we detect that some segments were
2437  * retransmitted by mistake and CWND reduction was wrong, we undo
2438  * window reduction and abort recovery phase. This logic is hidden
2439  * inside several functions named tcp_try_undo_<something>.
2440  */
2441
2442 /* This function decides, when we should leave Disordered state
2443  * and enter Recovery phase, reducing congestion window.
2444  *
2445  * Main question: may we further continue forward transmission
2446  * with the same cwnd?
2447  */
2448 static int tcp_time_to_recover(struct sock *sk)
2449 {
2450         struct tcp_sock *tp = tcp_sk(sk);
2451         __u32 packets_out;
2452
2453         /* Do not perform any recovery during F-RTO algorithm */
2454         if (tp->frto_counter)
2455                 return 0;
2456
2457         /* Trick#1: The loss is proven. */
2458         if (tp->lost_out)
2459                 return 1;
2460
2461         /* Not-A-Trick#2 : Classic rule... */
2462         if (tcp_dupack_heuristics(tp) > tp->reordering)
2463                 return 1;
2464
2465         /* Trick#3 : when we use RFC2988 timer restart, fast
2466          * retransmit can be triggered by timeout of queue head.
2467          */
2468         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2469                 return 1;
2470
2471         /* Trick#4: It is still not OK... But will it be useful to delay
2472          * recovery more?
2473          */
2474         packets_out = tp->packets_out;
2475         if (packets_out <= tp->reordering &&
2476             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2477             !tcp_may_send_now(sk)) {
2478                 /* We have nothing to send. This connection is limited
2479                  * either by receiver window or by application.
2480                  */
2481                 return 1;
2482         }
2483
2484         /* If a thin stream is detected, retransmit after first
2485          * received dupack. Employ only if SACK is supported in order
2486          * to avoid possible corner-case series of spurious retransmissions
2487          * Use only if there are no unsent data.
2488          */
2489         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2490             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2491             tcp_is_sack(tp) && !tcp_send_head(sk))
2492                 return 1;
2493
2494         return 0;
2495 }
2496
2497 /* New heuristics: it is possible only after we switched to restart timer
2498  * each time when something is ACKed. Hence, we can detect timed out packets
2499  * during fast retransmit without falling to slow start.
2500  *
2501  * Usefulness of this as is very questionable, since we should know which of
2502  * the segments is the next to timeout which is relatively expensive to find
2503  * in general case unless we add some data structure just for that. The
2504  * current approach certainly won't find the right one too often and when it
2505  * finally does find _something_ it usually marks large part of the window
2506  * right away (because a retransmission with a larger timestamp blocks the
2507  * loop from advancing). -ij
2508  */
2509 static void tcp_timeout_skbs(struct sock *sk)
2510 {
2511         struct tcp_sock *tp = tcp_sk(sk);
2512         struct sk_buff *skb;
2513
2514         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2515                 return;
2516
2517         skb = tp->scoreboard_skb_hint;
2518         if (tp->scoreboard_skb_hint == NULL)
2519                 skb = tcp_write_queue_head(sk);
2520
2521         tcp_for_write_queue_from(skb, sk) {
2522                 if (skb == tcp_send_head(sk))
2523                         break;
2524                 if (!tcp_skb_timedout(sk, skb))
2525                         break;
2526
2527                 tcp_skb_mark_lost(tp, skb);
2528         }
2529
2530         tp->scoreboard_skb_hint = skb;
2531
2532         tcp_verify_left_out(tp);
2533 }
2534
2535 /* Detect loss in event "A" above by marking head of queue up as lost.
2536  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2537  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2538  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2539  * the maximum SACKed segments to pass before reaching this limit.
2540  */
2541 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2542 {
2543         struct tcp_sock *tp = tcp_sk(sk);
2544         struct sk_buff *skb;
2545         int cnt, oldcnt;
2546         int err;
2547         unsigned int mss;
2548         /* Use SACK to deduce losses of new sequences sent during recovery */
2549         const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2550
2551         WARN_ON(packets > tp->packets_out);
2552         if (tp->lost_skb_hint) {
2553                 skb = tp->lost_skb_hint;
2554                 cnt = tp->lost_cnt_hint;
2555                 /* Head already handled? */
2556                 if (mark_head && skb != tcp_write_queue_head(sk))
2557                         return;
2558         } else {
2559                 skb = tcp_write_queue_head(sk);
2560                 cnt = 0;
2561         }
2562
2563         tcp_for_write_queue_from(skb, sk) {
2564                 if (skb == tcp_send_head(sk))
2565                         break;
2566                 /* TODO: do this better */
2567                 /* this is not the most efficient way to do this... */
2568                 tp->lost_skb_hint = skb;
2569                 tp->lost_cnt_hint = cnt;
2570
2571                 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2572                         break;
2573
2574                 oldcnt = cnt;
2575                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2576                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2577                         cnt += tcp_skb_pcount(skb);
2578
2579                 if (cnt > packets) {
2580                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2581                             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2582                             (oldcnt >= packets))
2583                                 break;
2584
2585                         mss = skb_shinfo(skb)->gso_size;
2586                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2587                         if (err < 0)
2588                                 break;
2589                         cnt = packets;
2590                 }
2591
2592                 tcp_skb_mark_lost(tp, skb);
2593
2594                 if (mark_head)
2595                         break;
2596         }
2597         tcp_verify_left_out(tp);
2598 }
2599
2600 /* Account newly detected lost packet(s) */
2601
2602 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2603 {
2604         struct tcp_sock *tp = tcp_sk(sk);
2605
2606         if (tcp_is_reno(tp)) {
2607                 tcp_mark_head_lost(sk, 1, 1);
2608         } else if (tcp_is_fack(tp)) {
2609                 int lost = tp->fackets_out - tp->reordering;
2610                 if (lost <= 0)
2611                         lost = 1;
2612                 tcp_mark_head_lost(sk, lost, 0);
2613         } else {
2614                 int sacked_upto = tp->sacked_out - tp->reordering;
2615                 if (sacked_upto >= 0)
2616                         tcp_mark_head_lost(sk, sacked_upto, 0);
2617                 else if (fast_rexmit)
2618                         tcp_mark_head_lost(sk, 1, 1);
2619         }
2620
2621         tcp_timeout_skbs(sk);
2622 }
2623
2624 /* CWND moderation, preventing bursts due to too big ACKs
2625  * in dubious situations.
2626  */
2627 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2628 {
2629         tp->snd_cwnd = min(tp->snd_cwnd,
2630                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2631         tp->snd_cwnd_stamp = tcp_time_stamp;
2632 }
2633
2634 /* Lower bound on congestion window is slow start threshold
2635  * unless congestion avoidance choice decides to overide it.
2636  */
2637 static inline u32 tcp_cwnd_min(const struct sock *sk)
2638 {
2639         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2640
2641         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2642 }
2643
2644 /* Decrease cwnd each second ack. */
2645 static void tcp_cwnd_down(struct sock *sk, int flag)
2646 {
2647         struct tcp_sock *tp = tcp_sk(sk);
2648         int decr = tp->snd_cwnd_cnt + 1;
2649
2650         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2651             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2652                 tp->snd_cwnd_cnt = decr & 1;
2653                 decr >>= 1;
2654
2655                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2656                         tp->snd_cwnd -= decr;
2657
2658                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2659                 tp->snd_cwnd_stamp = tcp_time_stamp;
2660         }
2661 }
2662
2663 /* Nothing was retransmitted or returned timestamp is less
2664  * than timestamp of the first retransmission.
2665  */
2666 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2667 {
2668         return !tp->retrans_stamp ||
2669                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2670                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2671 }
2672
2673 /* Undo procedures. */
2674
2675 #if FASTRETRANS_DEBUG > 1
2676 static void DBGUNDO(struct sock *sk, const char *msg)
2677 {
2678         struct tcp_sock *tp = tcp_sk(sk);
2679         struct inet_sock *inet = inet_sk(sk);
2680
2681         if (sk->sk_family == AF_INET) {
2682                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2683                        msg,
2684                        &inet->inet_daddr, ntohs(inet->inet_dport),
2685                        tp->snd_cwnd, tcp_left_out(tp),
2686                        tp->snd_ssthresh, tp->prior_ssthresh,
2687                        tp->packets_out);
2688         }
2689 #if IS_ENABLED(CONFIG_IPV6)
2690         else if (sk->sk_family == AF_INET6) {
2691                 struct ipv6_pinfo *np = inet6_sk(sk);
2692                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2693                        msg,
2694                        &np->daddr, ntohs(inet->inet_dport),
2695                        tp->snd_cwnd, tcp_left_out(tp),
2696                        tp->snd_ssthresh, tp->prior_ssthresh,
2697                        tp->packets_out);
2698         }
2699 #endif
2700 }
2701 #else
2702 #define DBGUNDO(x...) do { } while (0)
2703 #endif
2704
2705 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2706 {
2707         struct tcp_sock *tp = tcp_sk(sk);
2708
2709         if (tp->prior_ssthresh) {
2710                 const struct inet_connection_sock *icsk = inet_csk(sk);
2711
2712                 if (icsk->icsk_ca_ops->undo_cwnd)
2713                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2714                 else
2715                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2716
2717                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2718                         tp->snd_ssthresh = tp->prior_ssthresh;
2719                         TCP_ECN_withdraw_cwr(tp);
2720                 }
2721         } else {
2722                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2723         }
2724         tp->snd_cwnd_stamp = tcp_time_stamp;
2725 }
2726
2727 static inline int tcp_may_undo(const struct tcp_sock *tp)
2728 {
2729         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2730 }
2731
2732 /* People celebrate: "We love our President!" */
2733 static int tcp_try_undo_recovery(struct sock *sk)
2734 {
2735         struct tcp_sock *tp = tcp_sk(sk);
2736
2737         if (tcp_may_undo(tp)) {
2738                 int mib_idx;
2739
2740                 /* Happy end! We did not retransmit anything
2741                  * or our original transmission succeeded.
2742                  */
2743                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2744                 tcp_undo_cwr(sk, true);
2745                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2746                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2747                 else
2748                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2749
2750                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2751                 tp->undo_marker = 0;
2752         }
2753         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2754                 /* Hold old state until something *above* high_seq
2755                  * is ACKed. For Reno it is MUST to prevent false
2756                  * fast retransmits (RFC2582). SACK TCP is safe. */
2757                 tcp_moderate_cwnd(tp);
2758                 return 1;
2759         }
2760         tcp_set_ca_state(sk, TCP_CA_Open);
2761         return 0;
2762 }
2763
2764 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2765 static void tcp_try_undo_dsack(struct sock *sk)
2766 {
2767         struct tcp_sock *tp = tcp_sk(sk);
2768
2769         if (tp->undo_marker && !tp->undo_retrans) {
2770                 DBGUNDO(sk, "D-SACK");
2771                 tcp_undo_cwr(sk, true);
2772                 tp->undo_marker = 0;
2773                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2774         }
2775 }
2776
2777 /* We can clear retrans_stamp when there are no retransmissions in the
2778  * window. It would seem that it is trivially available for us in
2779  * tp->retrans_out, however, that kind of assumptions doesn't consider
2780  * what will happen if errors occur when sending retransmission for the
2781  * second time. ...It could the that such segment has only
2782  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2783  * the head skb is enough except for some reneging corner cases that
2784  * are not worth the effort.
2785  *
2786  * Main reason for all this complexity is the fact that connection dying
2787  * time now depends on the validity of the retrans_stamp, in particular,
2788  * that successive retransmissions of a segment must not advance
2789  * retrans_stamp under any conditions.
2790  */
2791 static int tcp_any_retrans_done(const struct sock *sk)
2792 {
2793         const struct tcp_sock *tp = tcp_sk(sk);
2794         struct sk_buff *skb;
2795
2796         if (tp->retrans_out)
2797                 return 1;
2798
2799         skb = tcp_write_queue_head(sk);
2800         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2801                 return 1;
2802
2803         return 0;
2804 }
2805
2806 /* Undo during fast recovery after partial ACK. */
2807
2808 static int tcp_try_undo_partial(struct sock *sk, int acked)
2809 {
2810         struct tcp_sock *tp = tcp_sk(sk);
2811         /* Partial ACK arrived. Force Hoe's retransmit. */
2812         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2813
2814         if (tcp_may_undo(tp)) {
2815                 /* Plain luck! Hole if filled with delayed
2816                  * packet, rather than with a retransmit.
2817                  */
2818                 if (!tcp_any_retrans_done(sk))
2819                         tp->retrans_stamp = 0;
2820
2821                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2822
2823                 DBGUNDO(sk, "Hoe");
2824                 tcp_undo_cwr(sk, false);
2825                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2826
2827                 /* So... Do not make Hoe's retransmit yet.
2828                  * If the first packet was delayed, the rest
2829                  * ones are most probably delayed as well.
2830                  */
2831                 failed = 0;
2832         }
2833         return failed;
2834 }
2835
2836 /* Undo during loss recovery after partial ACK. */
2837 static int tcp_try_undo_loss(struct sock *sk)
2838 {
2839         struct tcp_sock *tp = tcp_sk(sk);
2840
2841         if (tcp_may_undo(tp)) {
2842                 struct sk_buff *skb;
2843                 tcp_for_write_queue(skb, sk) {
2844                         if (skb == tcp_send_head(sk))
2845                                 break;
2846                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2847                 }
2848
2849                 tcp_clear_all_retrans_hints(tp);
2850
2851                 DBGUNDO(sk, "partial loss");
2852                 tp->lost_out = 0;
2853                 tcp_undo_cwr(sk, true);
2854                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2855                 inet_csk(sk)->icsk_retransmits = 0;
2856                 tp->undo_marker = 0;
2857                 if (tcp_is_sack(tp))
2858                         tcp_set_ca_state(sk, TCP_CA_Open);
2859                 return 1;
2860         }
2861         return 0;
2862 }
2863
2864 static inline void tcp_complete_cwr(struct sock *sk)
2865 {
2866         struct tcp_sock *tp = tcp_sk(sk);
2867
2868         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2869         if (tp->undo_marker) {
2870                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2871                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2872                 else /* PRR */
2873                         tp->snd_cwnd = tp->snd_ssthresh;
2874                 tp->snd_cwnd_stamp = tcp_time_stamp;
2875         }
2876         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2877 }
2878
2879 static void tcp_try_keep_open(struct sock *sk)
2880 {
2881         struct tcp_sock *tp = tcp_sk(sk);
2882         int state = TCP_CA_Open;
2883
2884         if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2885                 state = TCP_CA_Disorder;
2886
2887         if (inet_csk(sk)->icsk_ca_state != state) {
2888                 tcp_set_ca_state(sk, state);
2889                 tp->high_seq = tp->snd_nxt;
2890         }
2891 }
2892
2893 static void tcp_try_to_open(struct sock *sk, int flag)
2894 {
2895         struct tcp_sock *tp = tcp_sk(sk);
2896
2897         tcp_verify_left_out(tp);
2898
2899         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2900                 tp->retrans_stamp = 0;
2901
2902         if (flag & FLAG_ECE)
2903                 tcp_enter_cwr(sk, 1);
2904
2905         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2906                 tcp_try_keep_open(sk);
2907                 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2908                         tcp_moderate_cwnd(tp);
2909         } else {
2910                 tcp_cwnd_down(sk, flag);
2911         }
2912 }
2913
2914 static void tcp_mtup_probe_failed(struct sock *sk)
2915 {
2916         struct inet_connection_sock *icsk = inet_csk(sk);
2917
2918         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2919         icsk->icsk_mtup.probe_size = 0;
2920 }
2921
2922 static void tcp_mtup_probe_success(struct sock *sk)
2923 {
2924         struct tcp_sock *tp = tcp_sk(sk);
2925         struct inet_connection_sock *icsk = inet_csk(sk);
2926
2927         /* FIXME: breaks with very large cwnd */
2928         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2929         tp->snd_cwnd = tp->snd_cwnd *
2930                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2931                        icsk->icsk_mtup.probe_size;
2932         tp->snd_cwnd_cnt = 0;
2933         tp->snd_cwnd_stamp = tcp_time_stamp;
2934         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2935
2936         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2937         icsk->icsk_mtup.probe_size = 0;
2938         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2939 }
2940
2941 /* Do a simple retransmit without using the backoff mechanisms in
2942  * tcp_timer. This is used for path mtu discovery.
2943  * The socket is already locked here.
2944  */
2945 void tcp_simple_retransmit(struct sock *sk)
2946 {
2947         const struct inet_connection_sock *icsk = inet_csk(sk);
2948         struct tcp_sock *tp = tcp_sk(sk);
2949         struct sk_buff *skb;
2950         unsigned int mss = tcp_current_mss(sk);
2951         u32 prior_lost = tp->lost_out;
2952
2953         tcp_for_write_queue(skb, sk) {
2954                 if (skb == tcp_send_head(sk))
2955                         break;
2956                 if (tcp_skb_seglen(skb) > mss &&
2957                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2958                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2959                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2960                                 tp->retrans_out -= tcp_skb_pcount(skb);
2961                         }
2962                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2963                 }
2964         }
2965
2966         tcp_clear_retrans_hints_partial(tp);
2967
2968         if (prior_lost == tp->lost_out)
2969                 return;
2970
2971         if (tcp_is_reno(tp))
2972                 tcp_limit_reno_sacked(tp);
2973
2974         tcp_verify_left_out(tp);
2975
2976         /* Don't muck with the congestion window here.
2977          * Reason is that we do not increase amount of _data_
2978          * in network, but units changed and effective
2979          * cwnd/ssthresh really reduced now.
2980          */
2981         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2982                 tp->high_seq = tp->snd_nxt;
2983                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2984                 tp->prior_ssthresh = 0;
2985                 tp->undo_marker = 0;
2986                 tcp_set_ca_state(sk, TCP_CA_Loss);
2987         }
2988         tcp_xmit_retransmit_queue(sk);
2989 }
2990 EXPORT_SYMBOL(tcp_simple_retransmit);
2991
2992 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2993  * (proportional rate reduction with slow start reduction bound) as described in
2994  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2995  * It computes the number of packets to send (sndcnt) based on packets newly
2996  * delivered:
2997  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2998  *      cwnd reductions across a full RTT.
2999  *   2) If packets in flight is lower than ssthresh (such as due to excess
3000  *      losses and/or application stalls), do not perform any further cwnd
3001  *      reductions, but instead slow start up to ssthresh.
3002  */
3003 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3004                                         int fast_rexmit, int flag)
3005 {
3006         struct tcp_sock *tp = tcp_sk(sk);
3007         int sndcnt = 0;
3008         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3009
3010         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3011                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3012                                tp->prior_cwnd - 1;
3013                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3014         } else {
3015                 sndcnt = min_t(int, delta,
3016                                max_t(int, tp->prr_delivered - tp->prr_out,
3017                                      newly_acked_sacked) + 1);
3018         }
3019
3020         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3021         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3022 }
3023
3024 /* Process an event, which can update packets-in-flight not trivially.
3025  * Main goal of this function is to calculate new estimate for left_out,
3026  * taking into account both packets sitting in receiver's buffer and
3027  * packets lost by network.
3028  *
3029  * Besides that it does CWND reduction, when packet loss is detected
3030  * and changes state of machine.
3031  *
3032  * It does _not_ decide what to send, it is made in function
3033  * tcp_xmit_retransmit_queue().
3034  */
3035 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3036                                   int newly_acked_sacked, bool is_dupack,
3037                                   int flag)
3038 {
3039         struct inet_connection_sock *icsk = inet_csk(sk);
3040         struct tcp_sock *tp = tcp_sk(sk);
3041         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3042                                     (tcp_fackets_out(tp) > tp->reordering));
3043         int fast_rexmit = 0, mib_idx;
3044
3045         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3046                 tp->sacked_out = 0;
3047         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3048                 tp->fackets_out = 0;
3049
3050         /* Now state machine starts.
3051          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3052         if (flag & FLAG_ECE)
3053                 tp->prior_ssthresh = 0;
3054
3055         /* B. In all the states check for reneging SACKs. */
3056         if (tcp_check_sack_reneging(sk, flag))
3057                 return;
3058
3059         /* C. Check consistency of the current state. */
3060         tcp_verify_left_out(tp);
3061
3062         /* D. Check state exit conditions. State can be terminated
3063          *    when high_seq is ACKed. */
3064         if (icsk->icsk_ca_state == TCP_CA_Open) {
3065                 WARN_ON(tp->retrans_out != 0);
3066                 tp->retrans_stamp = 0;
3067         } else if (!before(tp->snd_una, tp->high_seq)) {
3068                 switch (icsk->icsk_ca_state) {
3069                 case TCP_CA_Loss:
3070                         icsk->icsk_retransmits = 0;
3071                         if (tcp_try_undo_recovery(sk))
3072                                 return;
3073                         break;
3074
3075                 case TCP_CA_CWR:
3076                         /* CWR is to be held something *above* high_seq
3077                          * is ACKed for CWR bit to reach receiver. */
3078                         if (tp->snd_una != tp->high_seq) {
3079                                 tcp_complete_cwr(sk);
3080                                 tcp_set_ca_state(sk, TCP_CA_Open);
3081                         }
3082                         break;
3083
3084                 case TCP_CA_Recovery:
3085                         if (tcp_is_reno(tp))
3086                                 tcp_reset_reno_sack(tp);
3087                         if (tcp_try_undo_recovery(sk))
3088                                 return;
3089                         tcp_complete_cwr(sk);
3090                         break;
3091                 }
3092         }
3093
3094         /* E. Process state. */
3095         switch (icsk->icsk_ca_state) {
3096         case TCP_CA_Recovery:
3097                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3098                         if (tcp_is_reno(tp) && is_dupack)
3099                                 tcp_add_reno_sack(sk);
3100                 } else
3101                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3102                 break;
3103         case TCP_CA_Loss:
3104                 if (flag & FLAG_DATA_ACKED)
3105                         icsk->icsk_retransmits = 0;
3106                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3107                         tcp_reset_reno_sack(tp);
3108                 if (!tcp_try_undo_loss(sk)) {
3109                         tcp_moderate_cwnd(tp);
3110                         tcp_xmit_retransmit_queue(sk);
3111                         return;
3112                 }
3113                 if (icsk->icsk_ca_state != TCP_CA_Open)
3114                         return;
3115                 /* Loss is undone; fall through to processing in Open state. */
3116         default:
3117                 if (tcp_is_reno(tp)) {
3118                         if (flag & FLAG_SND_UNA_ADVANCED)
3119                                 tcp_reset_reno_sack(tp);
3120                         if (is_dupack)
3121                                 tcp_add_reno_sack(sk);
3122                 }
3123
3124                 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3125                         tcp_try_undo_dsack(sk);
3126
3127                 if (!tcp_time_to_recover(sk)) {
3128                         tcp_try_to_open(sk, flag);
3129                         return;
3130                 }
3131
3132                 /* MTU probe failure: don't reduce cwnd */
3133                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3134                     icsk->icsk_mtup.probe_size &&
3135                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3136                         tcp_mtup_probe_failed(sk);
3137                         /* Restores the reduction we did in tcp_mtup_probe() */
3138                         tp->snd_cwnd++;
3139                         tcp_simple_retransmit(sk);
3140                         return;
3141                 }
3142
3143                 /* Otherwise enter Recovery state */
3144
3145                 if (tcp_is_reno(tp))
3146                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3147                 else
3148                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3149
3150                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3151
3152                 tp->high_seq = tp->snd_nxt;
3153                 tp->prior_ssthresh = 0;
3154                 tp->undo_marker = tp->snd_una;
3155                 tp->undo_retrans = tp->retrans_out;
3156
3157                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3158                         if (!(flag & FLAG_ECE))
3159                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3160                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3161                         TCP_ECN_queue_cwr(tp);
3162                 }
3163
3164                 tp->bytes_acked = 0;
3165                 tp->snd_cwnd_cnt = 0;
3166                 tp->prior_cwnd = tp->snd_cwnd;
3167                 tp->prr_delivered = 0;
3168                 tp->prr_out = 0;
3169                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3170                 fast_rexmit = 1;
3171         }
3172
3173         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3174                 tcp_update_scoreboard(sk, fast_rexmit);
3175         tp->prr_delivered += newly_acked_sacked;
3176         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3177         tcp_xmit_retransmit_queue(sk);
3178 }
3179
3180 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3181 {
3182         tcp_rtt_estimator(sk, seq_rtt);
3183         tcp_set_rto(sk);
3184         inet_csk(sk)->icsk_backoff = 0;
3185 }
3186 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3187
3188 /* Read draft-ietf-tcplw-high-performance before mucking
3189  * with this code. (Supersedes RFC1323)
3190  */
3191 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3192 {
3193         /* RTTM Rule: A TSecr value received in a segment is used to
3194          * update the averaged RTT measurement only if the segment
3195          * acknowledges some new data, i.e., only if it advances the
3196          * left edge of the send window.
3197          *
3198          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3199          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3200          *
3201          * Changed: reset backoff as soon as we see the first valid sample.
3202          * If we do not, we get strongly overestimated rto. With timestamps
3203          * samples are accepted even from very old segments: f.e., when rtt=1
3204          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3205          * answer arrives rto becomes 120 seconds! If at least one of segments
3206          * in window is lost... Voila.                          --ANK (010210)
3207          */
3208         struct tcp_sock *tp = tcp_sk(sk);
3209
3210         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3211 }
3212
3213 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3214 {
3215         /* We don't have a timestamp. Can only use
3216          * packets that are not retransmitted to determine
3217          * rtt estimates. Also, we must not reset the
3218          * backoff for rto until we get a non-retransmitted
3219          * packet. This allows us to deal with a situation
3220          * where the network delay has increased suddenly.
3221          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3222          */
3223
3224         if (flag & FLAG_RETRANS_DATA_ACKED)
3225                 return;
3226
3227         tcp_valid_rtt_meas(sk, seq_rtt);
3228 }
3229
3230 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3231                                       const s32 seq_rtt)
3232 {
3233         const struct tcp_sock *tp = tcp_sk(sk);
3234         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3235         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3236                 tcp_ack_saw_tstamp(sk, flag);
3237         else if (seq_rtt >= 0)
3238                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3239 }
3240
3241 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3242 {
3243         const struct inet_connection_sock *icsk = inet_csk(sk);
3244         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3245         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3246 }
3247
3248 /* Restart timer after forward progress on connection.
3249  * RFC2988 recommends to restart timer to now+rto.
3250  */
3251 static void tcp_rearm_rto(struct sock *sk)
3252 {
3253         const struct tcp_sock *tp = tcp_sk(sk);
3254
3255         if (!tp->packets_out) {
3256                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3257         } else {
3258                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3259                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3260         }
3261 }
3262
3263 /* If we get here, the whole TSO packet has not been acked. */
3264 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3265 {
3266         struct tcp_sock *tp = tcp_sk(sk);
3267         u32 packets_acked;
3268
3269         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3270
3271         packets_acked = tcp_skb_pcount(skb);
3272         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3273                 return 0;
3274         packets_acked -= tcp_skb_pcount(skb);
3275
3276         if (packets_acked) {
3277                 BUG_ON(tcp_skb_pcount(skb) == 0);
3278                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3279         }
3280
3281         return packets_acked;
3282 }
3283
3284 /* Remove acknowledged frames from the retransmission queue. If our packet
3285  * is before the ack sequence we can discard it as it's confirmed to have
3286  * arrived at the other end.
3287  */
3288 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3289                                u32 prior_snd_una)
3290 {
3291         struct tcp_sock *tp = tcp_sk(sk);
3292         const struct inet_connection_sock *icsk = inet_csk(sk);
3293         struct sk_buff *skb;
3294         u32 now = tcp_time_stamp;
3295         int fully_acked = 1;
3296         int flag = 0;
3297         u32 pkts_acked = 0;
3298         u32 reord = tp->packets_out;
3299         u32 prior_sacked = tp->sacked_out;
3300         s32 seq_rtt = -1;
3301         s32 ca_seq_rtt = -1;
3302         ktime_t last_ackt = net_invalid_timestamp();
3303
3304         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3305                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3306                 u32 acked_pcount;
3307                 u8 sacked = scb->sacked;
3308
3309                 /* Determine how many packets and what bytes were acked, tso and else */
3310                 if (after(scb->end_seq, tp->snd_una)) {
3311                         if (tcp_skb_pcount(skb) == 1 ||
3312                             !after(tp->snd_una, scb->seq))
3313                                 break;
3314
3315                         acked_pcount = tcp_tso_acked(sk, skb);
3316                         if (!acked_pcount)
3317                                 break;
3318
3319                         fully_acked = 0;
3320                 } else {
3321                         acked_pcount = tcp_skb_pcount(skb);
3322                 }
3323
3324                 if (sacked & TCPCB_RETRANS) {
3325                         if (sacked & TCPCB_SACKED_RETRANS)
3326                                 tp->retrans_out -= acked_pcount;
3327                         flag |= FLAG_RETRANS_DATA_ACKED;
3328                         ca_seq_rtt = -1;
3329                         seq_rtt = -1;
3330                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3331                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3332                 } else {
3333                         ca_seq_rtt = now - scb->when;
3334                         last_ackt = skb->tstamp;
3335                         if (seq_rtt < 0) {
3336                                 seq_rtt = ca_seq_rtt;
3337                         }
3338                         if (!(sacked & TCPCB_SACKED_ACKED))
3339                                 reord = min(pkts_acked, reord);
3340                 }
3341
3342                 if (sacked & TCPCB_SACKED_ACKED)
3343                         tp->sacked_out -= acked_pcount;
3344                 if (sacked & TCPCB_LOST)
3345                         tp->lost_out -= acked_pcount;
3346
3347                 tp->packets_out -= acked_pcount;
3348                 pkts_acked += acked_pcount;
3349
3350                 /* Initial outgoing SYN's get put onto the write_queue
3351                  * just like anything else we transmit.  It is not
3352                  * true data, and if we misinform our callers that
3353                  * this ACK acks real data, we will erroneously exit
3354                  * connection startup slow start one packet too
3355                  * quickly.  This is severely frowned upon behavior.
3356                  */
3357                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3358                         flag |= FLAG_DATA_ACKED;
3359                 } else {
3360                         flag |= FLAG_SYN_ACKED;
3361                         tp->retrans_stamp = 0;
3362                 }
3363
3364                 if (!fully_acked)
3365                         break;
3366
3367                 tcp_unlink_write_queue(skb, sk);
3368                 sk_wmem_free_skb(sk, skb);
3369                 tp->scoreboard_skb_hint = NULL;
3370                 if (skb == tp->retransmit_skb_hint)
3371                         tp->retransmit_skb_hint = NULL;
3372                 if (skb == tp->lost_skb_hint)
3373                         tp->lost_skb_hint = NULL;
3374         }
3375
3376         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3377                 tp->snd_up = tp->snd_una;
3378
3379         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3380                 flag |= FLAG_SACK_RENEGING;
3381
3382         if (flag & FLAG_ACKED) {
3383                 const struct tcp_congestion_ops *ca_ops
3384                         = inet_csk(sk)->icsk_ca_ops;
3385
3386                 if (unlikely(icsk->icsk_mtup.probe_size &&
3387                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3388                         tcp_mtup_probe_success(sk);
3389                 }
3390
3391                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3392                 tcp_rearm_rto(sk);
3393
3394                 if (tcp_is_reno(tp)) {
3395                         tcp_remove_reno_sacks(sk, pkts_acked);
3396                 } else {
3397                         int delta;
3398
3399                         /* Non-retransmitted hole got filled? That's reordering */
3400                         if (reord < prior_fackets)
3401                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3402
3403                         delta = tcp_is_fack(tp) ? pkts_acked :
3404                                                   prior_sacked - tp->sacked_out;
3405                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3406                 }
3407
3408                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3409
3410                 if (ca_ops->pkts_acked) {
3411                         s32 rtt_us = -1;
3412
3413                         /* Is the ACK triggering packet unambiguous? */
3414                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3415                                 /* High resolution needed and available? */
3416                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3417                                     !ktime_equal(last_ackt,
3418                                                  net_invalid_timestamp()))
3419                                         rtt_us = ktime_us_delta(ktime_get_real(),
3420                                                                 last_ackt);
3421                                 else if (ca_seq_rtt >= 0)
3422                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3423                         }
3424
3425                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3426                 }
3427         }
3428
3429 #if FASTRETRANS_DEBUG > 0
3430         WARN_ON((int)tp->sacked_out < 0);
3431         WARN_ON((int)tp->lost_out < 0);
3432         WARN_ON((int)tp->retrans_out < 0);
3433         if (!tp->packets_out && tcp_is_sack(tp)) {
3434                 icsk = inet_csk(sk);
3435                 if (tp->lost_out) {
3436                         printk(KERN_DEBUG "Leak l=%u %d\n",
3437                                tp->lost_out, icsk->icsk_ca_state);
3438                         tp->lost_out = 0;
3439                 }
3440                 if (tp->sacked_out) {
3441                         printk(KERN_DEBUG "Leak s=%u %d\n",
3442                                tp->sacked_out, icsk->icsk_ca_state);
3443                         tp->sacked_out = 0;
3444                 }
3445                 if (tp->retrans_out) {
3446                         printk(KERN_DEBUG "Leak r=%u %d\n",
3447                                tp->retrans_out, icsk->icsk_ca_state);
3448                         tp->retrans_out = 0;
3449                 }
3450         }
3451 #endif
3452         return flag;
3453 }
3454
3455 static void tcp_ack_probe(struct sock *sk)
3456 {
3457         const struct tcp_sock *tp = tcp_sk(sk);
3458         struct inet_connection_sock *icsk = inet_csk(sk);
3459
3460         /* Was it a usable window open? */
3461
3462         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3463                 icsk->icsk_backoff = 0;
3464                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3465                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3466                  * This function is not for random using!
3467                  */
3468         } else {
3469                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3470                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3471                                           TCP_RTO_MAX);
3472         }
3473 }
3474
3475 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3476 {
3477         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3478                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3479 }
3480
3481 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3482 {
3483         const struct tcp_sock *tp = tcp_sk(sk);
3484         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3485                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3486 }
3487
3488 /* Check that window update is acceptable.
3489  * The function assumes that snd_una<=ack<=snd_next.
3490  */
3491 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3492                                         const u32 ack, const u32 ack_seq,
3493                                         const u32 nwin)
3494 {
3495         return  after(ack, tp->snd_una) ||
3496                 after(ack_seq, tp->snd_wl1) ||
3497                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3498 }
3499
3500 /* Update our send window.
3501  *
3502  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3503  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3504  */
3505 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3506                                  u32 ack_seq)
3507 {
3508         struct tcp_sock *tp = tcp_sk(sk);
3509         int flag = 0;
3510         u32 nwin = ntohs(tcp_hdr(skb)->window);
3511
3512         if (likely(!tcp_hdr(skb)->syn))
3513                 nwin <<= tp->rx_opt.snd_wscale;
3514
3515         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3516                 flag |= FLAG_WIN_UPDATE;
3517                 tcp_update_wl(tp, ack_seq);
3518
3519                 if (tp->snd_wnd != nwin) {
3520                         tp->snd_wnd = nwin;
3521
3522                         /* Note, it is the only place, where
3523                          * fast path is recovered for sending TCP.
3524                          */
3525                         tp->pred_flags = 0;
3526                         tcp_fast_path_check(sk);
3527
3528                         if (nwin > tp->max_window) {
3529                                 tp->max_window = nwin;
3530                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3531                         }
3532                 }
3533         }
3534
3535         tp->snd_una = ack;
3536
3537         return flag;
3538 }
3539
3540 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3541  * continue in congestion avoidance.
3542  */
3543 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3544 {
3545         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3546         tp->snd_cwnd_cnt = 0;
3547         tp->bytes_acked = 0;
3548         TCP_ECN_queue_cwr(tp);
3549         tcp_moderate_cwnd(tp);
3550 }
3551
3552 /* A conservative spurious RTO response algorithm: reduce cwnd using
3553  * rate halving and continue in congestion avoidance.
3554  */
3555 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3556 {
3557         tcp_enter_cwr(sk, 0);
3558 }
3559
3560 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3561 {
3562         if (flag & FLAG_ECE)
3563                 tcp_ratehalving_spur_to_response(sk);
3564         else
3565                 tcp_undo_cwr(sk, true);
3566 }
3567
3568 /* F-RTO spurious RTO detection algorithm (RFC4138)
3569  *
3570  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3571  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3572  * window (but not to or beyond highest sequence sent before RTO):
3573  *   On First ACK,  send two new segments out.
3574  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3575  *                  algorithm is not part of the F-RTO detection algorithm
3576  *                  given in RFC4138 but can be selected separately).
3577  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3578  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3579  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3580  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3581  *
3582  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3583  * original window even after we transmit two new data segments.
3584  *
3585  * SACK version:
3586  *   on first step, wait until first cumulative ACK arrives, then move to
3587  *   the second step. In second step, the next ACK decides.
3588  *
3589  * F-RTO is implemented (mainly) in four functions:
3590  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3591  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3592  *     called when tcp_use_frto() showed green light
3593  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3594  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3595  *     to prove that the RTO is indeed spurious. It transfers the control
3596  *     from F-RTO to the conventional RTO recovery
3597  */
3598 static int tcp_process_frto(struct sock *sk, int flag)
3599 {
3600         struct tcp_sock *tp = tcp_sk(sk);
3601
3602         tcp_verify_left_out(tp);
3603
3604         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3605         if (flag & FLAG_DATA_ACKED)
3606                 inet_csk(sk)->icsk_retransmits = 0;
3607
3608         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3609             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3610                 tp->undo_marker = 0;
3611
3612         if (!before(tp->snd_una, tp->frto_highmark)) {
3613                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3614                 return 1;
3615         }
3616
3617         if (!tcp_is_sackfrto(tp)) {
3618                 /* RFC4138 shortcoming in step 2; should also have case c):
3619                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3620                  * data, winupdate
3621                  */
3622                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3623                         return 1;
3624
3625                 if (!(flag & FLAG_DATA_ACKED)) {
3626                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3627                                             flag);
3628                         return 1;
3629                 }
3630         } else {
3631                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3632                         /* Prevent sending of new data. */
3633                         tp->snd_cwnd = min(tp->snd_cwnd,
3634                                            tcp_packets_in_flight(tp));
3635                         return 1;
3636                 }
3637
3638                 if ((tp->frto_counter >= 2) &&
3639                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3640                      ((flag & FLAG_DATA_SACKED) &&
3641                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3642                         /* RFC4138 shortcoming (see comment above) */
3643                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3644                             (flag & FLAG_NOT_DUP))
3645                                 return 1;
3646
3647                         tcp_enter_frto_loss(sk, 3, flag);
3648                         return 1;
3649                 }
3650         }
3651
3652         if (tp->frto_counter == 1) {
3653                 /* tcp_may_send_now needs to see updated state */
3654                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3655                 tp->frto_counter = 2;
3656
3657                 if (!tcp_may_send_now(sk))
3658                         tcp_enter_frto_loss(sk, 2, flag);
3659
3660                 return 1;
3661         } else {
3662                 switch (sysctl_tcp_frto_response) {
3663                 case 2:
3664                         tcp_undo_spur_to_response(sk, flag);
3665                         break;
3666                 case 1:
3667                         tcp_conservative_spur_to_response(tp);
3668                         break;
3669                 default:
3670                         tcp_ratehalving_spur_to_response(sk);
3671                         break;
3672                 }
3673                 tp->frto_counter = 0;
3674                 tp->undo_marker = 0;
3675                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3676         }
3677         return 0;
3678 }
3679
3680 /* This routine deals with incoming acks, but not outgoing ones. */
3681 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3682 {
3683         struct inet_connection_sock *icsk = inet_csk(sk);
3684         struct tcp_sock *tp = tcp_sk(sk);
3685         u32 prior_snd_una = tp->snd_una;
3686         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3687         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3688         bool is_dupack = false;
3689         u32 prior_in_flight;
3690         u32 prior_fackets;
3691         int prior_packets;
3692         int prior_sacked = tp->sacked_out;
3693         int pkts_acked = 0;
3694         int newly_acked_sacked = 0;
3695         int frto_cwnd = 0;
3696
3697         /* If the ack is older than previous acks
3698          * then we can probably ignore it.
3699          */
3700         if (before(ack, prior_snd_una))
3701                 goto old_ack;
3702
3703         /* If the ack includes data we haven't sent yet, discard
3704          * this segment (RFC793 Section 3.9).
3705          */
3706         if (after(ack, tp->snd_nxt))
3707                 goto invalid_ack;
3708
3709         if (after(ack, prior_snd_una))
3710                 flag |= FLAG_SND_UNA_ADVANCED;
3711
3712         if (sysctl_tcp_abc) {
3713                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3714                         tp->bytes_acked += ack - prior_snd_una;
3715                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3716                         /* we assume just one segment left network */
3717                         tp->bytes_acked += min(ack - prior_snd_una,
3718                                                tp->mss_cache);
3719         }
3720
3721         prior_fackets = tp->fackets_out;
3722         prior_in_flight = tcp_packets_in_flight(tp);
3723
3724         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3725                 /* Window is constant, pure forward advance.
3726                  * No more checks are required.
3727                  * Note, we use the fact that SND.UNA>=SND.WL2.
3728                  */
3729                 tcp_update_wl(tp, ack_seq);
3730                 tp->snd_una = ack;
3731                 flag |= FLAG_WIN_UPDATE;
3732
3733                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3734
3735                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3736         } else {
3737                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3738                         flag |= FLAG_DATA;
3739                 else
3740                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3741
3742                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3743
3744                 if (TCP_SKB_CB(skb)->sacked)
3745                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3746
3747                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3748                         flag |= FLAG_ECE;
3749
3750                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3751         }
3752
3753         /* We passed data and got it acked, remove any soft error
3754          * log. Something worked...
3755          */
3756         sk->sk_err_soft = 0;
3757         icsk->icsk_probes_out = 0;
3758         tp->rcv_tstamp = tcp_time_stamp;
3759         prior_packets = tp->packets_out;
3760         if (!prior_packets)
3761                 goto no_queue;
3762
3763         /* See if we can take anything off of the retransmit queue. */
3764         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3765
3766         pkts_acked = prior_packets - tp->packets_out;
3767         newly_acked_sacked = (prior_packets - prior_sacked) -
3768                              (tp->packets_out - tp->sacked_out);
3769
3770         if (tp->frto_counter)
3771                 frto_cwnd = tcp_process_frto(sk, flag);
3772         /* Guarantee sacktag reordering detection against wrap-arounds */
3773         if (before(tp->frto_highmark, tp->snd_una))
3774                 tp->frto_highmark = 0;
3775
3776         if (tcp_ack_is_dubious(sk, flag)) {
3777                 /* Advance CWND, if state allows this. */
3778                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3779                     tcp_may_raise_cwnd(sk, flag))
3780                         tcp_cong_avoid(sk, ack, prior_in_flight);
3781                 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3782                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3783                                       is_dupack, flag);
3784         } else {
3785                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3786                         tcp_cong_avoid(sk, ack, prior_in_flight);
3787         }
3788
3789         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3790                 dst_confirm(__sk_dst_get(sk));
3791
3792         return 1;
3793
3794 no_queue:
3795         /* If data was DSACKed, see if we can undo a cwnd reduction. */
3796         if (flag & FLAG_DSACKING_ACK)
3797                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3798                                       is_dupack, flag);
3799         /* If this ack opens up a zero window, clear backoff.  It was
3800          * being used to time the probes, and is probably far higher than
3801          * it needs to be for normal retransmission.
3802          */
3803         if (tcp_send_head(sk))
3804                 tcp_ack_probe(sk);
3805         return 1;
3806
3807 invalid_ack:
3808         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3809         return -1;
3810
3811 old_ack:
3812         /* If data was SACKed, tag it and see if we should send more data.
3813          * If data was DSACKed, see if we can undo a cwnd reduction.
3814          */
3815         if (TCP_SKB_CB(skb)->sacked) {
3816                 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3817                 newly_acked_sacked = tp->sacked_out - prior_sacked;
3818                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3819                                       is_dupack, flag);
3820         }
3821
3822         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3823         return 0;
3824 }
3825
3826 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3827  * But, this can also be called on packets in the established flow when
3828  * the fast version below fails.
3829  */
3830 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3831                        const u8 **hvpp, int estab)
3832 {
3833         const unsigned char *ptr;
3834         const struct tcphdr *th = tcp_hdr(skb);
3835         int length = (th->doff * 4) - sizeof(struct tcphdr);
3836
3837         ptr = (const unsigned char *)(th + 1);
3838         opt_rx->saw_tstamp = 0;
3839
3840         while (length > 0) {
3841                 int opcode = *ptr++;
3842                 int opsize;
3843
3844                 switch (opcode) {
3845                 case TCPOPT_EOL:
3846                         return;
3847                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3848                         length--;
3849                         continue;
3850                 default:
3851                         opsize = *ptr++;
3852                         if (opsize < 2) /* "silly options" */
3853                                 return;
3854                         if (opsize > length)
3855                                 return; /* don't parse partial options */
3856                         switch (opcode) {
3857                         case TCPOPT_MSS:
3858                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3859                                         u16 in_mss = get_unaligned_be16(ptr);
3860                                         if (in_mss) {
3861                                                 if (opt_rx->user_mss &&
3862                                                     opt_rx->user_mss < in_mss)
3863                                                         in_mss = opt_rx->user_mss;
3864                                                 opt_rx->mss_clamp = in_mss;
3865                                         }
3866                                 }
3867                                 break;
3868                         case TCPOPT_WINDOW:
3869                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3870                                     !estab && sysctl_tcp_window_scaling) {
3871                                         __u8 snd_wscale = *(__u8 *)ptr;
3872                                         opt_rx->wscale_ok = 1;
3873                                         if (snd_wscale > 14) {
3874                                                 if (net_ratelimit())
3875                                                         pr_info("%s: Illegal window scaling value %d >14 received\n",
3876                                                                 __func__,
3877                                                                 snd_wscale);
3878                                                 snd_wscale = 14;
3879                                         }
3880                                         opt_rx->snd_wscale = snd_wscale;
3881                                 }
3882                                 break;
3883                         case TCPOPT_TIMESTAMP:
3884                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3885                                     ((estab && opt_rx->tstamp_ok) ||
3886                                      (!estab && sysctl_tcp_timestamps))) {
3887                                         opt_rx->saw_tstamp = 1;
3888                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3889                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3890                                 }
3891                                 break;
3892                         case TCPOPT_SACK_PERM:
3893                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3894                                     !estab && sysctl_tcp_sack) {
3895                                         opt_rx->sack_ok = TCP_SACK_SEEN;
3896                                         tcp_sack_reset(opt_rx);
3897                                 }
3898                                 break;
3899
3900                         case TCPOPT_SACK:
3901                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3902                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3903                                    opt_rx->sack_ok) {
3904                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3905                                 }
3906                                 break;
3907 #ifdef CONFIG_TCP_MD5SIG
3908                         case TCPOPT_MD5SIG:
3909                                 /*
3910                                  * The MD5 Hash has already been
3911                                  * checked (see tcp_v{4,6}_do_rcv()).
3912                                  */
3913                                 break;
3914 #endif
3915                         case TCPOPT_COOKIE:
3916                                 /* This option is variable length.
3917                                  */
3918                                 switch (opsize) {
3919                                 case TCPOLEN_COOKIE_BASE:
3920                                         /* not yet implemented */
3921                                         break;
3922                                 case TCPOLEN_COOKIE_PAIR:
3923                                         /* not yet implemented */
3924                                         break;
3925                                 case TCPOLEN_COOKIE_MIN+0:
3926                                 case TCPOLEN_COOKIE_MIN+2:
3927                                 case TCPOLEN_COOKIE_MIN+4:
3928                                 case TCPOLEN_COOKIE_MIN+6:
3929                                 case TCPOLEN_COOKIE_MAX:
3930                                         /* 16-bit multiple */
3931                                         opt_rx->cookie_plus = opsize;
3932                                         *hvpp = ptr;
3933                                         break;
3934                                 default:
3935                                         /* ignore option */
3936                                         break;
3937                                 }
3938                                 break;
3939                         }
3940
3941                         ptr += opsize-2;
3942                         length -= opsize;
3943                 }
3944         }
3945 }
3946 EXPORT_SYMBOL(tcp_parse_options);
3947
3948 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3949 {
3950         const __be32 *ptr = (const __be32 *)(th + 1);
3951
3952         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3953                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3954                 tp->rx_opt.saw_tstamp = 1;
3955                 ++ptr;
3956                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3957                 ++ptr;
3958                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3959                 return 1;
3960         }
3961         return 0;
3962 }
3963
3964 /* Fast parse options. This hopes to only see timestamps.
3965  * If it is wrong it falls back on tcp_parse_options().
3966  */
3967 static int tcp_fast_parse_options(const struct sk_buff *skb,
3968                                   const struct tcphdr *th,
3969                                   struct tcp_sock *tp, const u8 **hvpp)
3970 {
3971         /* In the spirit of fast parsing, compare doff directly to constant
3972          * values.  Because equality is used, short doff can be ignored here.
3973          */
3974         if (th->doff == (sizeof(*th) / 4)) {
3975                 tp->rx_opt.saw_tstamp = 0;
3976                 return 0;
3977         } else if (tp->rx_opt.tstamp_ok &&
3978                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3979                 if (tcp_parse_aligned_timestamp(tp, th))
3980                         return 1;
3981         }
3982         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3983         return 1;
3984 }
3985
3986 #ifdef CONFIG_TCP_MD5SIG
3987 /*
3988  * Parse MD5 Signature option
3989  */
3990 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3991 {
3992         int length = (th->doff << 2) - sizeof(*th);
3993         const u8 *ptr = (const u8 *)(th + 1);
3994
3995         /* If the TCP option is too short, we can short cut */
3996         if (length < TCPOLEN_MD5SIG)
3997                 return NULL;
3998
3999         while (length > 0) {
4000                 int opcode = *ptr++;
4001                 int opsize;
4002
4003                 switch(opcode) {
4004                 case TCPOPT_EOL:
4005                         return NULL;
4006                 case TCPOPT_NOP:
4007                         length--;
4008                         continue;
4009                 default:
4010                         opsize = *ptr++;
4011                         if (opsize < 2 || opsize > length)
4012                                 return NULL;
4013                         if (opcode == TCPOPT_MD5SIG)
4014                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4015                 }
4016                 ptr += opsize - 2;
4017                 length -= opsize;
4018         }
4019         return NULL;
4020 }
4021 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4022 #endif
4023
4024 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4025 {
4026         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4027         tp->rx_opt.ts_recent_stamp = get_seconds();
4028 }
4029
4030 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4031 {
4032         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4033                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4034                  * extra check below makes sure this can only happen
4035                  * for pure ACK frames.  -DaveM
4036                  *
4037                  * Not only, also it occurs for expired timestamps.
4038                  */
4039
4040                 if (tcp_paws_check(&tp->rx_opt, 0))
4041                         tcp_store_ts_recent(tp);
4042         }
4043 }
4044
4045 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4046  *
4047  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4048  * it can pass through stack. So, the following predicate verifies that
4049  * this segment is not used for anything but congestion avoidance or
4050  * fast retransmit. Moreover, we even are able to eliminate most of such
4051  * second order effects, if we apply some small "replay" window (~RTO)
4052  * to timestamp space.
4053  *
4054  * All these measures still do not guarantee that we reject wrapped ACKs
4055  * on networks with high bandwidth, when sequence space is recycled fastly,
4056  * but it guarantees that such events will be very rare and do not affect
4057  * connection seriously. This doesn't look nice, but alas, PAWS is really
4058  * buggy extension.
4059  *
4060  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4061  * states that events when retransmit arrives after original data are rare.
4062  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4063  * the biggest problem on large power networks even with minor reordering.
4064  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4065  * up to bandwidth of 18Gigabit/sec. 8) ]
4066  */
4067
4068 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4069 {
4070         const struct tcp_sock *tp = tcp_sk(sk);
4071         const struct tcphdr *th = tcp_hdr(skb);
4072         u32 seq = TCP_SKB_CB(skb)->seq;
4073         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4074
4075         return (/* 1. Pure ACK with correct sequence number. */
4076                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4077
4078                 /* 2. ... and duplicate ACK. */
4079                 ack == tp->snd_una &&
4080
4081                 /* 3. ... and does not update window. */
4082                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4083
4084                 /* 4. ... and sits in replay window. */
4085                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4086 }
4087
4088 static inline int tcp_paws_discard(const struct sock *sk,
4089                                    const struct sk_buff *skb)
4090 {
4091         const struct tcp_sock *tp = tcp_sk(sk);
4092
4093         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4094                !tcp_disordered_ack(sk, skb);
4095 }
4096
4097 /* Check segment sequence number for validity.
4098  *
4099  * Segment controls are considered valid, if the segment
4100  * fits to the window after truncation to the window. Acceptability
4101  * of data (and SYN, FIN, of course) is checked separately.
4102  * See tcp_data_queue(), for example.
4103  *
4104  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4105  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4106  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4107  * (borrowed from freebsd)
4108  */
4109
4110 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4111 {
4112         return  !before(end_seq, tp->rcv_wup) &&
4113                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4114 }
4115
4116 /* When we get a reset we do this. */
4117 static void tcp_reset(struct sock *sk)
4118 {
4119         /* We want the right error as BSD sees it (and indeed as we do). */
4120         switch (sk->sk_state) {
4121         case TCP_SYN_SENT:
4122                 sk->sk_err = ECONNREFUSED;
4123                 break;
4124         case TCP_CLOSE_WAIT:
4125                 sk->sk_err = EPIPE;
4126                 break;
4127         case TCP_CLOSE:
4128                 return;
4129         default:
4130                 sk->sk_err = ECONNRESET;
4131         }
4132         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4133         smp_wmb();
4134
4135         if (!sock_flag(sk, SOCK_DEAD))
4136                 sk->sk_error_report(sk);
4137
4138         tcp_done(sk);
4139 }
4140
4141 /*
4142  *      Process the FIN bit. This now behaves as it is supposed to work
4143  *      and the FIN takes effect when it is validly part of sequence
4144  *      space. Not before when we get holes.
4145  *
4146  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4147  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4148  *      TIME-WAIT)
4149  *
4150  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4151  *      close and we go into CLOSING (and later onto TIME-WAIT)
4152  *
4153  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4154  */
4155 static void tcp_fin(struct sock *sk)
4156 {
4157         struct tcp_sock *tp = tcp_sk(sk);
4158
4159         inet_csk_schedule_ack(sk);
4160
4161         sk->sk_shutdown |= RCV_SHUTDOWN;
4162         sock_set_flag(sk, SOCK_DONE);
4163
4164         switch (sk->sk_state) {
4165         case TCP_SYN_RECV:
4166         case TCP_ESTABLISHED:
4167                 /* Move to CLOSE_WAIT */
4168                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4169                 inet_csk(sk)->icsk_ack.pingpong = 1;
4170                 break;
4171
4172         case TCP_CLOSE_WAIT:
4173         case TCP_CLOSING:
4174                 /* Received a retransmission of the FIN, do
4175                  * nothing.
4176                  */
4177                 break;
4178         case TCP_LAST_ACK:
4179                 /* RFC793: Remain in the LAST-ACK state. */
4180                 break;
4181
4182         case TCP_FIN_WAIT1:
4183                 /* This case occurs when a simultaneous close
4184                  * happens, we must ack the received FIN and
4185                  * enter the CLOSING state.
4186                  */
4187                 tcp_send_ack(sk);
4188                 tcp_set_state(sk, TCP_CLOSING);
4189                 break;
4190         case TCP_FIN_WAIT2:
4191                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4192                 tcp_send_ack(sk);
4193                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4194                 break;
4195         default:
4196                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4197                  * cases we should never reach this piece of code.
4198                  */
4199                 pr_err("%s: Impossible, sk->sk_state=%d\n",
4200                        __func__, sk->sk_state);
4201                 break;
4202         }
4203
4204         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4205          * Probably, we should reset in this case. For now drop them.
4206          */
4207         __skb_queue_purge(&tp->out_of_order_queue);
4208         if (tcp_is_sack(tp))
4209                 tcp_sack_reset(&tp->rx_opt);
4210         sk_mem_reclaim(sk);
4211
4212         if (!sock_flag(sk, SOCK_DEAD)) {
4213                 sk->sk_state_change(sk);
4214
4215                 /* Do not send POLL_HUP for half duplex close. */
4216                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4217                     sk->sk_state == TCP_CLOSE)
4218                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4219                 else
4220                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4221         }
4222 }
4223
4224 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4225                                   u32 end_seq)
4226 {
4227         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4228                 if (before(seq, sp->start_seq))
4229                         sp->start_seq = seq;
4230                 if (after(end_seq, sp->end_seq))
4231                         sp->end_seq = end_seq;
4232                 return 1;
4233         }
4234         return 0;
4235 }
4236
4237 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4238 {
4239         struct tcp_sock *tp = tcp_sk(sk);
4240
4241         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4242                 int mib_idx;
4243
4244                 if (before(seq, tp->rcv_nxt))
4245                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4246                 else
4247                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4248
4249                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4250
4251                 tp->rx_opt.dsack = 1;
4252                 tp->duplicate_sack[0].start_seq = seq;
4253                 tp->duplicate_sack[0].end_seq = end_seq;
4254         }
4255 }
4256
4257 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4258 {
4259         struct tcp_sock *tp = tcp_sk(sk);
4260
4261         if (!tp->rx_opt.dsack)
4262                 tcp_dsack_set(sk, seq, end_seq);
4263         else
4264                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4265 }
4266
4267 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4268 {
4269         struct tcp_sock *tp = tcp_sk(sk);
4270
4271         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4272             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4273                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4274                 tcp_enter_quickack_mode(sk);
4275
4276                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4277                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4278
4279                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4280                                 end_seq = tp->rcv_nxt;
4281                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4282                 }
4283         }
4284
4285         tcp_send_ack(sk);
4286 }
4287
4288 /* These routines update the SACK block as out-of-order packets arrive or
4289  * in-order packets close up the sequence space.
4290  */
4291 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4292 {
4293         int this_sack;
4294         struct tcp_sack_block *sp = &tp->selective_acks[0];
4295         struct tcp_sack_block *swalk = sp + 1;
4296
4297         /* See if the recent change to the first SACK eats into
4298          * or hits the sequence space of other SACK blocks, if so coalesce.
4299          */
4300         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4301                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4302                         int i;
4303
4304                         /* Zap SWALK, by moving every further SACK up by one slot.
4305                          * Decrease num_sacks.
4306                          */
4307                         tp->rx_opt.num_sacks--;
4308                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4309                                 sp[i] = sp[i + 1];
4310                         continue;
4311                 }
4312                 this_sack++, swalk++;
4313         }
4314 }
4315
4316 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4317 {
4318         struct tcp_sock *tp = tcp_sk(sk);
4319         struct tcp_sack_block *sp = &tp->selective_acks[0];
4320         int cur_sacks = tp->rx_opt.num_sacks;
4321         int this_sack;
4322
4323         if (!cur_sacks)
4324                 goto new_sack;
4325
4326         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4327                 if (tcp_sack_extend(sp, seq, end_seq)) {
4328                         /* Rotate this_sack to the first one. */
4329                         for (; this_sack > 0; this_sack--, sp--)
4330                                 swap(*sp, *(sp - 1));
4331                         if (cur_sacks > 1)
4332                                 tcp_sack_maybe_coalesce(tp);
4333                         return;
4334                 }
4335         }
4336
4337         /* Could not find an adjacent existing SACK, build a new one,
4338          * put it at the front, and shift everyone else down.  We
4339          * always know there is at least one SACK present already here.
4340          *
4341          * If the sack array is full, forget about the last one.
4342          */
4343         if (this_sack >= TCP_NUM_SACKS) {
4344                 this_sack--;
4345                 tp->rx_opt.num_sacks--;
4346                 sp--;
4347         }
4348         for (; this_sack > 0; this_sack--, sp--)
4349                 *sp = *(sp - 1);
4350
4351 new_sack:
4352         /* Build the new head SACK, and we're done. */
4353         sp->start_seq = seq;
4354         sp->end_seq = end_seq;
4355         tp->rx_opt.num_sacks++;
4356 }
4357
4358 /* RCV.NXT advances, some SACKs should be eaten. */
4359
4360 static void tcp_sack_remove(struct tcp_sock *tp)
4361 {
4362         struct tcp_sack_block *sp = &tp->selective_acks[0];
4363         int num_sacks = tp->rx_opt.num_sacks;
4364         int this_sack;
4365
4366         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4367         if (skb_queue_empty(&tp->out_of_order_queue)) {
4368                 tp->rx_opt.num_sacks = 0;
4369                 return;
4370         }
4371
4372         for (this_sack = 0; this_sack < num_sacks;) {
4373                 /* Check if the start of the sack is covered by RCV.NXT. */
4374                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4375                         int i;
4376
4377                         /* RCV.NXT must cover all the block! */
4378                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4379
4380                         /* Zap this SACK, by moving forward any other SACKS. */
4381                         for (i=this_sack+1; i < num_sacks; i++)
4382                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4383                         num_sacks--;
4384                         continue;
4385                 }
4386                 this_sack++;
4387                 sp++;
4388         }
4389         tp->rx_opt.num_sacks = num_sacks;
4390 }
4391
4392 /* This one checks to see if we can put data from the
4393  * out_of_order queue into the receive_queue.
4394  */
4395 static void tcp_ofo_queue(struct sock *sk)
4396 {
4397         struct tcp_sock *tp = tcp_sk(sk);
4398         __u32 dsack_high = tp->rcv_nxt;
4399         struct sk_buff *skb;
4400
4401         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4402                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4403                         break;
4404
4405                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4406                         __u32 dsack = dsack_high;
4407                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4408                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4409                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4410                 }
4411
4412                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4413                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4414                         __skb_unlink(skb, &tp->out_of_order_queue);
4415                         __kfree_skb(skb);
4416                         continue;
4417                 }
4418                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4419                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4420                            TCP_SKB_CB(skb)->end_seq);
4421
4422                 __skb_unlink(skb, &tp->out_of_order_queue);
4423                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4424                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4425                 if (tcp_hdr(skb)->fin)
4426                         tcp_fin(sk);
4427         }
4428 }
4429
4430 static int tcp_prune_ofo_queue(struct sock *sk);
4431 static int tcp_prune_queue(struct sock *sk);
4432
4433 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4434 {
4435         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4436             !sk_rmem_schedule(sk, size)) {
4437
4438                 if (tcp_prune_queue(sk) < 0)
4439                         return -1;
4440
4441                 if (!sk_rmem_schedule(sk, size)) {
4442                         if (!tcp_prune_ofo_queue(sk))
4443                                 return -1;
4444
4445                         if (!sk_rmem_schedule(sk, size))
4446                                 return -1;
4447                 }
4448         }
4449         return 0;
4450 }
4451
4452 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4453 {
4454         struct tcp_sock *tp = tcp_sk(sk);
4455         struct sk_buff *skb1;
4456         u32 seq, end_seq;
4457
4458         TCP_ECN_check_ce(tp, skb);
4459
4460         if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4461                 /* TODO: should increment a counter */
4462                 __kfree_skb(skb);
4463                 return;
4464         }
4465
4466         /* Disable header prediction. */
4467         tp->pred_flags = 0;
4468         inet_csk_schedule_ack(sk);
4469
4470         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4471                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4472
4473         skb1 = skb_peek_tail(&tp->out_of_order_queue);
4474         if (!skb1) {
4475                 /* Initial out of order segment, build 1 SACK. */
4476                 if (tcp_is_sack(tp)) {
4477                         tp->rx_opt.num_sacks = 1;
4478                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4479                         tp->selective_acks[0].end_seq =
4480                                                 TCP_SKB_CB(skb)->end_seq;
4481                 }
4482                 __skb_queue_head(&tp->out_of_order_queue, skb);
4483                 goto end;
4484         }
4485
4486         seq = TCP_SKB_CB(skb)->seq;
4487         end_seq = TCP_SKB_CB(skb)->end_seq;
4488
4489         if (seq == TCP_SKB_CB(skb1)->end_seq) {
4490                 /* Packets in ofo can stay in queue a long time.
4491                  * Better try to coalesce them right now
4492                  * to avoid future tcp_collapse_ofo_queue(),
4493                  * probably the most expensive function in tcp stack.
4494                  */
4495                 if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
4496                         NET_INC_STATS_BH(sock_net(sk),
4497                                          LINUX_MIB_TCPRCVCOALESCE);
4498                         BUG_ON(skb_copy_bits(skb, 0,
4499                                              skb_put(skb1, skb->len),
4500                                              skb->len));
4501                         TCP_SKB_CB(skb1)->end_seq = end_seq;
4502                         TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
4503                         __kfree_skb(skb);
4504                         skb = NULL;
4505                 } else {
4506                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4507                 }
4508
4509                 if (!tp->rx_opt.num_sacks ||
4510                     tp->selective_acks[0].end_seq != seq)
4511                         goto add_sack;
4512
4513                 /* Common case: data arrive in order after hole. */
4514                 tp->selective_acks[0].end_seq = end_seq;
4515                 goto end;
4516         }
4517
4518         /* Find place to insert this segment. */
4519         while (1) {
4520                 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4521                         break;
4522                 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4523                         skb1 = NULL;
4524                         break;
4525                 }
4526                 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4527         }
4528
4529         /* Do skb overlap to previous one? */
4530         if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4531                 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4532                         /* All the bits are present. Drop. */
4533                         __kfree_skb(skb);
4534                         skb = NULL;
4535                         tcp_dsack_set(sk, seq, end_seq);
4536                         goto add_sack;
4537                 }
4538                 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4539                         /* Partial overlap. */
4540                         tcp_dsack_set(sk, seq,
4541                                       TCP_SKB_CB(skb1)->end_seq);
4542                 } else {
4543                         if (skb_queue_is_first(&tp->out_of_order_queue,
4544                                                skb1))
4545                                 skb1 = NULL;
4546                         else
4547                                 skb1 = skb_queue_prev(
4548                                         &tp->out_of_order_queue,
4549                                         skb1);
4550                 }
4551         }
4552         if (!skb1)
4553                 __skb_queue_head(&tp->out_of_order_queue, skb);
4554         else
4555                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4556
4557         /* And clean segments covered by new one as whole. */
4558         while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4559                 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4560
4561                 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4562                         break;
4563                 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4564                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4565                                          end_seq);
4566                         break;
4567                 }
4568                 __skb_unlink(skb1, &tp->out_of_order_queue);
4569                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4570                                  TCP_SKB_CB(skb1)->end_seq);
4571                 __kfree_skb(skb1);
4572         }
4573
4574 add_sack:
4575         if (tcp_is_sack(tp))
4576                 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4577 end:
4578         if (skb)
4579                 skb_set_owner_r(skb, sk);
4580 }
4581
4582
4583 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4584 {
4585         const struct tcphdr *th = tcp_hdr(skb);
4586         struct tcp_sock *tp = tcp_sk(sk);
4587         int eaten = -1;
4588
4589         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4590                 goto drop;
4591
4592         skb_dst_drop(skb);
4593         __skb_pull(skb, th->doff * 4);
4594
4595         TCP_ECN_accept_cwr(tp, skb);
4596
4597         tp->rx_opt.dsack = 0;
4598
4599         /*  Queue data for delivery to the user.
4600          *  Packets in sequence go to the receive queue.
4601          *  Out of sequence packets to the out_of_order_queue.
4602          */
4603         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4604                 if (tcp_receive_window(tp) == 0)
4605                         goto out_of_window;
4606
4607                 /* Ok. In sequence. In window. */
4608                 if (tp->ucopy.task == current &&
4609                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4610                     sock_owned_by_user(sk) && !tp->urg_data) {
4611                         int chunk = min_t(unsigned int, skb->len,
4612                                           tp->ucopy.len);
4613
4614                         __set_current_state(TASK_RUNNING);
4615
4616                         local_bh_enable();
4617                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4618                                 tp->ucopy.len -= chunk;
4619                                 tp->copied_seq += chunk;
4620                                 eaten = (chunk == skb->len);
4621                                 tcp_rcv_space_adjust(sk);
4622                         }
4623                         local_bh_disable();
4624                 }
4625
4626                 if (eaten <= 0) {
4627 queue_and_out:
4628                         if (eaten < 0 &&
4629                             tcp_try_rmem_schedule(sk, skb->truesize))
4630                                 goto drop;
4631
4632                         skb_set_owner_r(skb, sk);
4633                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4634                 }
4635                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4636                 if (skb->len)
4637                         tcp_event_data_recv(sk, skb);
4638                 if (th->fin)
4639                         tcp_fin(sk);
4640
4641                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4642                         tcp_ofo_queue(sk);
4643
4644                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4645                          * gap in queue is filled.
4646                          */
4647                         if (skb_queue_empty(&tp->out_of_order_queue))
4648                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4649                 }
4650
4651                 if (tp->rx_opt.num_sacks)
4652                         tcp_sack_remove(tp);
4653
4654                 tcp_fast_path_check(sk);
4655
4656                 if (eaten > 0)
4657                         __kfree_skb(skb);
4658                 else if (!sock_flag(sk, SOCK_DEAD))
4659                         sk->sk_data_ready(sk, 0);
4660                 return;
4661         }
4662
4663         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4664                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4665                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4666                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4667
4668 out_of_window:
4669                 tcp_enter_quickack_mode(sk);
4670                 inet_csk_schedule_ack(sk);
4671 drop:
4672                 __kfree_skb(skb);
4673                 return;
4674         }
4675
4676         /* Out of window. F.e. zero window probe. */
4677         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4678                 goto out_of_window;
4679
4680         tcp_enter_quickack_mode(sk);
4681
4682         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4683                 /* Partial packet, seq < rcv_next < end_seq */
4684                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4685                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4686                            TCP_SKB_CB(skb)->end_seq);
4687
4688                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4689
4690                 /* If window is closed, drop tail of packet. But after
4691                  * remembering D-SACK for its head made in previous line.
4692                  */
4693                 if (!tcp_receive_window(tp))
4694                         goto out_of_window;
4695                 goto queue_and_out;
4696         }
4697
4698         tcp_data_queue_ofo(sk, skb);
4699 }
4700
4701 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4702                                         struct sk_buff_head *list)
4703 {
4704         struct sk_buff *next = NULL;
4705
4706         if (!skb_queue_is_last(list, skb))
4707                 next = skb_queue_next(list, skb);
4708
4709         __skb_unlink(skb, list);
4710         __kfree_skb(skb);
4711         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4712
4713         return next;
4714 }
4715
4716 /* Collapse contiguous sequence of skbs head..tail with
4717  * sequence numbers start..end.
4718  *
4719  * If tail is NULL, this means until the end of the list.
4720  *
4721  * Segments with FIN/SYN are not collapsed (only because this
4722  * simplifies code)
4723  */
4724 static void
4725 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4726              struct sk_buff *head, struct sk_buff *tail,
4727              u32 start, u32 end)
4728 {
4729         struct sk_buff *skb, *n;
4730         bool end_of_skbs;
4731
4732         /* First, check that queue is collapsible and find
4733          * the point where collapsing can be useful. */
4734         skb = head;
4735 restart:
4736         end_of_skbs = true;
4737         skb_queue_walk_from_safe(list, skb, n) {
4738                 if (skb == tail)
4739                         break;
4740                 /* No new bits? It is possible on ofo queue. */
4741                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4742                         skb = tcp_collapse_one(sk, skb, list);
4743                         if (!skb)
4744                                 break;
4745                         goto restart;
4746                 }
4747
4748                 /* The first skb to collapse is:
4749                  * - not SYN/FIN and
4750                  * - bloated or contains data before "start" or
4751                  *   overlaps to the next one.
4752                  */
4753                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4754                     (tcp_win_from_space(skb->truesize) > skb->len ||
4755                      before(TCP_SKB_CB(skb)->seq, start))) {
4756                         end_of_skbs = false;
4757                         break;
4758                 }
4759
4760                 if (!skb_queue_is_last(list, skb)) {
4761                         struct sk_buff *next = skb_queue_next(list, skb);
4762                         if (next != tail &&
4763                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4764                                 end_of_skbs = false;
4765                                 break;
4766                         }
4767                 }
4768
4769                 /* Decided to skip this, advance start seq. */
4770                 start = TCP_SKB_CB(skb)->end_seq;
4771         }
4772         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4773                 return;
4774
4775         while (before(start, end)) {
4776                 struct sk_buff *nskb;
4777                 unsigned int header = skb_headroom(skb);
4778                 int copy = SKB_MAX_ORDER(header, 0);
4779
4780                 /* Too big header? This can happen with IPv6. */
4781                 if (copy < 0)
4782                         return;
4783                 if (end - start < copy)
4784                         copy = end - start;
4785                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4786                 if (!nskb)
4787                         return;
4788
4789                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4790                 skb_set_network_header(nskb, (skb_network_header(skb) -
4791                                               skb->head));
4792                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4793                                                 skb->head));
4794                 skb_reserve(nskb, header);
4795                 memcpy(nskb->head, skb->head, header);
4796                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4797                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4798                 __skb_queue_before(list, skb, nskb);
4799                 skb_set_owner_r(nskb, sk);
4800
4801                 /* Copy data, releasing collapsed skbs. */
4802                 while (copy > 0) {
4803                         int offset = start - TCP_SKB_CB(skb)->seq;
4804                         int size = TCP_SKB_CB(skb)->end_seq - start;
4805
4806                         BUG_ON(offset < 0);
4807                         if (size > 0) {
4808                                 size = min(copy, size);
4809                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4810                                         BUG();
4811                                 TCP_SKB_CB(nskb)->end_seq += size;
4812                                 copy -= size;
4813                                 start += size;
4814                         }
4815                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4816                                 skb = tcp_collapse_one(sk, skb, list);
4817                                 if (!skb ||
4818                                     skb == tail ||
4819                                     tcp_hdr(skb)->syn ||
4820                                     tcp_hdr(skb)->fin)
4821                                         return;
4822                         }
4823                 }
4824         }
4825 }
4826
4827 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4828  * and tcp_collapse() them until all the queue is collapsed.
4829  */
4830 static void tcp_collapse_ofo_queue(struct sock *sk)
4831 {
4832         struct tcp_sock *tp = tcp_sk(sk);
4833         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4834         struct sk_buff *head;
4835         u32 start, end;
4836
4837         if (skb == NULL)
4838                 return;
4839
4840         start = TCP_SKB_CB(skb)->seq;
4841         end = TCP_SKB_CB(skb)->end_seq;
4842         head = skb;
4843
4844         for (;;) {
4845                 struct sk_buff *next = NULL;
4846
4847                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4848                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4849                 skb = next;
4850
4851                 /* Segment is terminated when we see gap or when
4852                  * we are at the end of all the queue. */
4853                 if (!skb ||
4854                     after(TCP_SKB_CB(skb)->seq, end) ||
4855                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4856                         tcp_collapse(sk, &tp->out_of_order_queue,
4857                                      head, skb, start, end);
4858                         head = skb;
4859                         if (!skb)
4860                                 break;
4861                         /* Start new segment */
4862                         start = TCP_SKB_CB(skb)->seq;
4863                         end = TCP_SKB_CB(skb)->end_seq;
4864                 } else {
4865                         if (before(TCP_SKB_CB(skb)->seq, start))
4866                                 start = TCP_SKB_CB(skb)->seq;
4867                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4868                                 end = TCP_SKB_CB(skb)->end_seq;
4869                 }
4870         }
4871 }
4872
4873 /*
4874  * Purge the out-of-order queue.
4875  * Return true if queue was pruned.
4876  */
4877 static int tcp_prune_ofo_queue(struct sock *sk)
4878 {
4879         struct tcp_sock *tp = tcp_sk(sk);
4880         int res = 0;
4881
4882         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4883                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4884                 __skb_queue_purge(&tp->out_of_order_queue);
4885
4886                 /* Reset SACK state.  A conforming SACK implementation will
4887                  * do the same at a timeout based retransmit.  When a connection
4888                  * is in a sad state like this, we care only about integrity
4889                  * of the connection not performance.
4890                  */
4891                 if (tp->rx_opt.sack_ok)
4892                         tcp_sack_reset(&tp->rx_opt);
4893                 sk_mem_reclaim(sk);
4894                 res = 1;
4895         }
4896         return res;
4897 }
4898
4899 /* Reduce allocated memory if we can, trying to get
4900  * the socket within its memory limits again.
4901  *
4902  * Return less than zero if we should start dropping frames
4903  * until the socket owning process reads some of the data
4904  * to stabilize the situation.
4905  */
4906 static int tcp_prune_queue(struct sock *sk)
4907 {
4908         struct tcp_sock *tp = tcp_sk(sk);
4909
4910         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4911
4912         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4913
4914         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4915                 tcp_clamp_window(sk);
4916         else if (sk_under_memory_pressure(sk))
4917                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4918
4919         tcp_collapse_ofo_queue(sk);
4920         if (!skb_queue_empty(&sk->sk_receive_queue))
4921                 tcp_collapse(sk, &sk->sk_receive_queue,
4922                              skb_peek(&sk->sk_receive_queue),
4923                              NULL,
4924                              tp->copied_seq, tp->rcv_nxt);
4925         sk_mem_reclaim(sk);
4926
4927         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4928                 return 0;
4929
4930         /* Collapsing did not help, destructive actions follow.
4931          * This must not ever occur. */
4932
4933         tcp_prune_ofo_queue(sk);
4934
4935         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4936                 return 0;
4937
4938         /* If we are really being abused, tell the caller to silently
4939          * drop receive data on the floor.  It will get retransmitted
4940          * and hopefully then we'll have sufficient space.
4941          */
4942         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4943
4944         /* Massive buffer overcommit. */
4945         tp->pred_flags = 0;
4946         return -1;
4947 }
4948
4949 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4950  * As additional protections, we do not touch cwnd in retransmission phases,
4951  * and if application hit its sndbuf limit recently.
4952  */
4953 void tcp_cwnd_application_limited(struct sock *sk)
4954 {
4955         struct tcp_sock *tp = tcp_sk(sk);
4956
4957         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4958             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4959                 /* Limited by application or receiver window. */
4960                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4961                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4962                 if (win_used < tp->snd_cwnd) {
4963                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4964                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4965                 }
4966                 tp->snd_cwnd_used = 0;
4967         }
4968         tp->snd_cwnd_stamp = tcp_time_stamp;
4969 }
4970
4971 static int tcp_should_expand_sndbuf(const struct sock *sk)
4972 {
4973         const struct tcp_sock *tp = tcp_sk(sk);
4974
4975         /* If the user specified a specific send buffer setting, do
4976          * not modify it.
4977          */
4978         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4979                 return 0;
4980
4981         /* If we are under global TCP memory pressure, do not expand.  */
4982         if (sk_under_memory_pressure(sk))
4983                 return 0;
4984
4985         /* If we are under soft global TCP memory pressure, do not expand.  */
4986         if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4987                 return 0;
4988
4989         /* If we filled the congestion window, do not expand.  */
4990         if (tp->packets_out >= tp->snd_cwnd)
4991                 return 0;
4992
4993         return 1;
4994 }
4995
4996 /* When incoming ACK allowed to free some skb from write_queue,
4997  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4998  * on the exit from tcp input handler.
4999  *
5000  * PROBLEM: sndbuf expansion does not work well with largesend.
5001  */
5002 static void tcp_new_space(struct sock *sk)
5003 {
5004         struct tcp_sock *tp = tcp_sk(sk);
5005
5006         if (tcp_should_expand_sndbuf(sk)) {
5007                 int sndmem = SKB_TRUESIZE(max_t(u32,
5008                                                 tp->rx_opt.mss_clamp,
5009                                                 tp->mss_cache) +
5010                                           MAX_TCP_HEADER);
5011                 int demanded = max_t(unsigned int, tp->snd_cwnd,
5012                                      tp->reordering + 1);
5013                 sndmem *= 2 * demanded;
5014                 if (sndmem > sk->sk_sndbuf)
5015                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5016                 tp->snd_cwnd_stamp = tcp_time_stamp;
5017         }
5018
5019         sk->sk_write_space(sk);
5020 }
5021
5022 static void tcp_check_space(struct sock *sk)
5023 {
5024         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5025                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5026                 if (sk->sk_socket &&
5027                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5028                         tcp_new_space(sk);
5029         }
5030 }
5031
5032 static inline void tcp_data_snd_check(struct sock *sk)
5033 {
5034         tcp_push_pending_frames(sk);
5035         tcp_check_space(sk);
5036 }
5037
5038 /*
5039  * Check if sending an ack is needed.
5040  */
5041 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5042 {
5043         struct tcp_sock *tp = tcp_sk(sk);
5044
5045             /* More than one full frame received... */
5046         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5047              /* ... and right edge of window advances far enough.
5048               * (tcp_recvmsg() will send ACK otherwise). Or...
5049               */
5050              __tcp_select_window(sk) >= tp->rcv_wnd) ||
5051             /* We ACK each frame or... */
5052             tcp_in_quickack_mode(sk) ||
5053             /* We have out of order data. */
5054             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5055                 /* Then ack it now */
5056                 tcp_send_ack(sk);
5057         } else {
5058                 /* Else, send delayed ack. */
5059                 tcp_send_delayed_ack(sk);
5060         }
5061 }
5062
5063 static inline void tcp_ack_snd_check(struct sock *sk)
5064 {
5065         if (!inet_csk_ack_scheduled(sk)) {
5066                 /* We sent a data segment already. */
5067                 return;
5068         }
5069         __tcp_ack_snd_check(sk, 1);
5070 }
5071
5072 /*
5073  *      This routine is only called when we have urgent data
5074  *      signaled. Its the 'slow' part of tcp_urg. It could be
5075  *      moved inline now as tcp_urg is only called from one
5076  *      place. We handle URGent data wrong. We have to - as
5077  *      BSD still doesn't use the correction from RFC961.
5078  *      For 1003.1g we should support a new option TCP_STDURG to permit
5079  *      either form (or just set the sysctl tcp_stdurg).
5080  */
5081
5082 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5083 {
5084         struct tcp_sock *tp = tcp_sk(sk);
5085         u32 ptr = ntohs(th->urg_ptr);
5086
5087         if (ptr && !sysctl_tcp_stdurg)
5088                 ptr--;
5089         ptr += ntohl(th->seq);
5090
5091         /* Ignore urgent data that we've already seen and read. */
5092         if (after(tp->copied_seq, ptr))
5093                 return;
5094
5095         /* Do not replay urg ptr.
5096          *
5097          * NOTE: interesting situation not covered by specs.
5098          * Misbehaving sender may send urg ptr, pointing to segment,
5099          * which we already have in ofo queue. We are not able to fetch
5100          * such data and will stay in TCP_URG_NOTYET until will be eaten
5101          * by recvmsg(). Seems, we are not obliged to handle such wicked
5102          * situations. But it is worth to think about possibility of some
5103          * DoSes using some hypothetical application level deadlock.
5104          */
5105         if (before(ptr, tp->rcv_nxt))
5106                 return;
5107
5108         /* Do we already have a newer (or duplicate) urgent pointer? */
5109         if (tp->urg_data && !after(ptr, tp->urg_seq))
5110                 return;
5111
5112         /* Tell the world about our new urgent pointer. */
5113         sk_send_sigurg(sk);
5114
5115         /* We may be adding urgent data when the last byte read was
5116          * urgent. To do this requires some care. We cannot just ignore
5117          * tp->copied_seq since we would read the last urgent byte again
5118          * as data, nor can we alter copied_seq until this data arrives
5119          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5120          *
5121          * NOTE. Double Dutch. Rendering to plain English: author of comment
5122          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5123          * and expect that both A and B disappear from stream. This is _wrong_.
5124          * Though this happens in BSD with high probability, this is occasional.
5125          * Any application relying on this is buggy. Note also, that fix "works"
5126          * only in this artificial test. Insert some normal data between A and B and we will
5127          * decline of BSD again. Verdict: it is better to remove to trap
5128          * buggy users.
5129          */
5130         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5131             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5132                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5133                 tp->copied_seq++;
5134                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5135                         __skb_unlink(skb, &sk->sk_receive_queue);
5136                         __kfree_skb(skb);
5137                 }
5138         }
5139
5140         tp->urg_data = TCP_URG_NOTYET;
5141         tp->urg_seq = ptr;
5142
5143         /* Disable header prediction. */
5144         tp->pred_flags = 0;
5145 }
5146
5147 /* This is the 'fast' part of urgent handling. */
5148 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5149 {
5150         struct tcp_sock *tp = tcp_sk(sk);
5151
5152         /* Check if we get a new urgent pointer - normally not. */
5153         if (th->urg)
5154                 tcp_check_urg(sk, th);
5155
5156         /* Do we wait for any urgent data? - normally not... */
5157         if (tp->urg_data == TCP_URG_NOTYET) {
5158                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5159                           th->syn;
5160
5161                 /* Is the urgent pointer pointing into this packet? */
5162                 if (ptr < skb->len) {
5163                         u8 tmp;
5164                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5165                                 BUG();
5166                         tp->urg_data = TCP_URG_VALID | tmp;
5167                         if (!sock_flag(sk, SOCK_DEAD))
5168                                 sk->sk_data_ready(sk, 0);
5169                 }
5170         }
5171 }
5172
5173 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5174 {
5175         struct tcp_sock *tp = tcp_sk(sk);
5176         int chunk = skb->len - hlen;
5177         int err;
5178
5179         local_bh_enable();
5180         if (skb_csum_unnecessary(skb))
5181                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5182         else
5183                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5184                                                        tp->ucopy.iov);
5185
5186         if (!err) {
5187                 tp->ucopy.len -= chunk;
5188                 tp->copied_seq += chunk;
5189                 tcp_rcv_space_adjust(sk);
5190         }
5191
5192         local_bh_disable();
5193         return err;
5194 }
5195
5196 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5197                                             struct sk_buff *skb)
5198 {
5199         __sum16 result;
5200
5201         if (sock_owned_by_user(sk)) {
5202                 local_bh_enable();
5203                 result = __tcp_checksum_complete(skb);
5204                 local_bh_disable();
5205         } else {
5206                 result = __tcp_checksum_complete(skb);
5207         }
5208         return result;
5209 }
5210
5211 static inline int tcp_checksum_complete_user(struct sock *sk,
5212                                              struct sk_buff *skb)
5213 {
5214         return !skb_csum_unnecessary(skb) &&
5215                __tcp_checksum_complete_user(sk, skb);
5216 }
5217
5218 #ifdef CONFIG_NET_DMA
5219 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5220                                   int hlen)
5221 {
5222         struct tcp_sock *tp = tcp_sk(sk);
5223         int chunk = skb->len - hlen;
5224         int dma_cookie;
5225         int copied_early = 0;
5226
5227         if (tp->ucopy.wakeup)
5228                 return 0;
5229
5230         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5231                 tp->ucopy.dma_chan = net_dma_find_channel();
5232
5233         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5234
5235                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5236                                                          skb, hlen,
5237                                                          tp->ucopy.iov, chunk,
5238                                                          tp->ucopy.pinned_list);
5239
5240                 if (dma_cookie < 0)
5241                         goto out;
5242
5243                 tp->ucopy.dma_cookie = dma_cookie;
5244                 copied_early = 1;
5245
5246                 tp->ucopy.len -= chunk;
5247                 tp->copied_seq += chunk;
5248                 tcp_rcv_space_adjust(sk);
5249
5250                 if ((tp->ucopy.len == 0) ||
5251                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5252                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5253                         tp->ucopy.wakeup = 1;
5254                         sk->sk_data_ready(sk, 0);
5255                 }
5256         } else if (chunk > 0) {
5257                 tp->ucopy.wakeup = 1;
5258                 sk->sk_data_ready(sk, 0);
5259         }
5260 out:
5261         return copied_early;
5262 }
5263 #endif /* CONFIG_NET_DMA */
5264
5265 /* Does PAWS and seqno based validation of an incoming segment, flags will
5266  * play significant role here.
5267  */
5268 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5269                               const struct tcphdr *th, int syn_inerr)
5270 {
5271         const u8 *hash_location;
5272         struct tcp_sock *tp = tcp_sk(sk);
5273
5274         /* RFC1323: H1. Apply PAWS check first. */
5275         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5276             tp->rx_opt.saw_tstamp &&
5277             tcp_paws_discard(sk, skb)) {
5278                 if (!th->rst) {
5279                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5280                         tcp_send_dupack(sk, skb);
5281                         goto discard;
5282                 }
5283                 /* Reset is accepted even if it did not pass PAWS. */
5284         }
5285
5286         /* Step 1: check sequence number */
5287         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5288                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5289                  * (RST) segments are validated by checking their SEQ-fields."
5290                  * And page 69: "If an incoming segment is not acceptable,
5291                  * an acknowledgment should be sent in reply (unless the RST
5292                  * bit is set, if so drop the segment and return)".
5293                  */
5294                 if (!th->rst)
5295                         tcp_send_dupack(sk, skb);
5296                 goto discard;
5297         }
5298
5299         /* Step 2: check RST bit */
5300         if (th->rst) {
5301                 tcp_reset(sk);
5302                 goto discard;
5303         }
5304
5305         /* ts_recent update must be made after we are sure that the packet
5306          * is in window.
5307          */
5308         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5309
5310         /* step 3: check security and precedence [ignored] */
5311
5312         /* step 4: Check for a SYN in window. */
5313         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5314                 if (syn_inerr)
5315                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5316                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5317                 tcp_reset(sk);
5318                 return -1;
5319         }
5320
5321         return 1;
5322
5323 discard:
5324         __kfree_skb(skb);
5325         return 0;
5326 }
5327
5328 /*
5329  *      TCP receive function for the ESTABLISHED state.
5330  *
5331  *      It is split into a fast path and a slow path. The fast path is
5332  *      disabled when:
5333  *      - A zero window was announced from us - zero window probing
5334  *        is only handled properly in the slow path.
5335  *      - Out of order segments arrived.
5336  *      - Urgent data is expected.
5337  *      - There is no buffer space left
5338  *      - Unexpected TCP flags/window values/header lengths are received
5339  *        (detected by checking the TCP header against pred_flags)
5340  *      - Data is sent in both directions. Fast path only supports pure senders
5341  *        or pure receivers (this means either the sequence number or the ack
5342  *        value must stay constant)
5343  *      - Unexpected TCP option.
5344  *
5345  *      When these conditions are not satisfied it drops into a standard
5346  *      receive procedure patterned after RFC793 to handle all cases.
5347  *      The first three cases are guaranteed by proper pred_flags setting,
5348  *      the rest is checked inline. Fast processing is turned on in
5349  *      tcp_data_queue when everything is OK.
5350  */
5351 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5352                         const struct tcphdr *th, unsigned int len)
5353 {
5354         struct tcp_sock *tp = tcp_sk(sk);
5355         int res;
5356
5357         /*
5358          *      Header prediction.
5359          *      The code loosely follows the one in the famous
5360          *      "30 instruction TCP receive" Van Jacobson mail.
5361          *
5362          *      Van's trick is to deposit buffers into socket queue
5363          *      on a device interrupt, to call tcp_recv function
5364          *      on the receive process context and checksum and copy
5365          *      the buffer to user space. smart...
5366          *
5367          *      Our current scheme is not silly either but we take the
5368          *      extra cost of the net_bh soft interrupt processing...
5369          *      We do checksum and copy also but from device to kernel.
5370          */
5371
5372         tp->rx_opt.saw_tstamp = 0;
5373
5374         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5375          *      if header_prediction is to be made
5376          *      'S' will always be tp->tcp_header_len >> 2
5377          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5378          *  turn it off (when there are holes in the receive
5379          *       space for instance)
5380          *      PSH flag is ignored.
5381          */
5382
5383         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5384             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5385             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5386                 int tcp_header_len = tp->tcp_header_len;
5387
5388                 /* Timestamp header prediction: tcp_header_len
5389                  * is automatically equal to th->doff*4 due to pred_flags
5390                  * match.
5391                  */
5392
5393                 /* Check timestamp */
5394                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5395                         /* No? Slow path! */
5396                         if (!tcp_parse_aligned_timestamp(tp, th))
5397                                 goto slow_path;
5398
5399                         /* If PAWS failed, check it more carefully in slow path */
5400                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5401                                 goto slow_path;
5402
5403                         /* DO NOT update ts_recent here, if checksum fails
5404                          * and timestamp was corrupted part, it will result
5405                          * in a hung connection since we will drop all
5406                          * future packets due to the PAWS test.
5407                          */
5408                 }
5409
5410                 if (len <= tcp_header_len) {
5411                         /* Bulk data transfer: sender */
5412                         if (len == tcp_header_len) {
5413                                 /* Predicted packet is in window by definition.
5414                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5415                                  * Hence, check seq<=rcv_wup reduces to:
5416                                  */
5417                                 if (tcp_header_len ==
5418                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5419                                     tp->rcv_nxt == tp->rcv_wup)
5420                                         tcp_store_ts_recent(tp);
5421
5422                                 /* We know that such packets are checksummed
5423                                  * on entry.
5424                                  */
5425                                 tcp_ack(sk, skb, 0);
5426                                 __kfree_skb(skb);
5427                                 tcp_data_snd_check(sk);
5428                                 return 0;
5429                         } else { /* Header too small */
5430                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5431                                 goto discard;
5432                         }
5433                 } else {
5434                         int eaten = 0;
5435                         int copied_early = 0;
5436
5437                         if (tp->copied_seq == tp->rcv_nxt &&
5438                             len - tcp_header_len <= tp->ucopy.len) {
5439 #ifdef CONFIG_NET_DMA
5440                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5441                                         copied_early = 1;
5442                                         eaten = 1;
5443                                 }
5444 #endif
5445                                 if (tp->ucopy.task == current &&
5446                                     sock_owned_by_user(sk) && !copied_early) {
5447                                         __set_current_state(TASK_RUNNING);
5448
5449                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5450                                                 eaten = 1;
5451                                 }
5452                                 if (eaten) {
5453                                         /* Predicted packet is in window by definition.
5454                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5455                                          * Hence, check seq<=rcv_wup reduces to:
5456                                          */
5457                                         if (tcp_header_len ==
5458                                             (sizeof(struct tcphdr) +
5459                                              TCPOLEN_TSTAMP_ALIGNED) &&
5460                                             tp->rcv_nxt == tp->rcv_wup)
5461                                                 tcp_store_ts_recent(tp);
5462
5463                                         tcp_rcv_rtt_measure_ts(sk, skb);
5464
5465                                         __skb_pull(skb, tcp_header_len);
5466                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5467                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5468                                 }
5469                                 if (copied_early)
5470                                         tcp_cleanup_rbuf(sk, skb->len);
5471                         }
5472                         if (!eaten) {
5473                                 if (tcp_checksum_complete_user(sk, skb))
5474                                         goto csum_error;
5475
5476                                 /* Predicted packet is in window by definition.
5477                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5478                                  * Hence, check seq<=rcv_wup reduces to:
5479                                  */
5480                                 if (tcp_header_len ==
5481                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5482                                     tp->rcv_nxt == tp->rcv_wup)
5483                                         tcp_store_ts_recent(tp);
5484
5485                                 tcp_rcv_rtt_measure_ts(sk, skb);
5486
5487                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5488                                         goto step5;
5489
5490                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5491
5492                                 /* Bulk data transfer: receiver */
5493                                 __skb_pull(skb, tcp_header_len);
5494                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5495                                 skb_set_owner_r(skb, sk);
5496                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5497                         }
5498
5499                         tcp_event_data_recv(sk, skb);
5500
5501                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5502                                 /* Well, only one small jumplet in fast path... */
5503                                 tcp_ack(sk, skb, FLAG_DATA);
5504                                 tcp_data_snd_check(sk);
5505                                 if (!inet_csk_ack_scheduled(sk))
5506                                         goto no_ack;
5507                         }
5508
5509                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5510                                 __tcp_ack_snd_check(sk, 0);
5511 no_ack:
5512 #ifdef CONFIG_NET_DMA
5513                         if (copied_early)
5514                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5515                         else
5516 #endif
5517                         if (eaten)
5518                                 __kfree_skb(skb);
5519                         else
5520                                 sk->sk_data_ready(sk, 0);
5521                         return 0;
5522                 }
5523         }
5524
5525 slow_path:
5526         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5527                 goto csum_error;
5528
5529         /*
5530          *      Standard slow path.
5531          */
5532
5533         res = tcp_validate_incoming(sk, skb, th, 1);
5534         if (res <= 0)
5535                 return -res;
5536
5537 step5:
5538         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5539                 goto discard;
5540
5541         tcp_rcv_rtt_measure_ts(sk, skb);
5542
5543         /* Process urgent data. */
5544         tcp_urg(sk, skb, th);
5545
5546         /* step 7: process the segment text */
5547         tcp_data_queue(sk, skb);
5548
5549         tcp_data_snd_check(sk);
5550         tcp_ack_snd_check(sk);
5551         return 0;
5552
5553 csum_error:
5554         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5555
5556 discard:
5557         __kfree_skb(skb);
5558         return 0;
5559 }
5560 EXPORT_SYMBOL(tcp_rcv_established);
5561
5562 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5563                                          const struct tcphdr *th, unsigned int len)
5564 {
5565         const u8 *hash_location;
5566         struct inet_connection_sock *icsk = inet_csk(sk);
5567         struct tcp_sock *tp = tcp_sk(sk);
5568         struct tcp_cookie_values *cvp = tp->cookie_values;
5569         int saved_clamp = tp->rx_opt.mss_clamp;
5570
5571         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5572
5573         if (th->ack) {
5574                 /* rfc793:
5575                  * "If the state is SYN-SENT then
5576                  *    first check the ACK bit
5577                  *      If the ACK bit is set
5578                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5579                  *        a reset (unless the RST bit is set, if so drop
5580                  *        the segment and return)"
5581                  *
5582                  *  We do not send data with SYN, so that RFC-correct
5583                  *  test reduces to:
5584                  */
5585                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5586                         goto reset_and_undo;
5587
5588                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5589                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5590                              tcp_time_stamp)) {
5591                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5592                         goto reset_and_undo;
5593                 }
5594
5595                 /* Now ACK is acceptable.
5596                  *
5597                  * "If the RST bit is set
5598                  *    If the ACK was acceptable then signal the user "error:
5599                  *    connection reset", drop the segment, enter CLOSED state,
5600                  *    delete TCB, and return."
5601                  */
5602
5603                 if (th->rst) {
5604                         tcp_reset(sk);
5605                         goto discard;
5606                 }
5607
5608                 /* rfc793:
5609                  *   "fifth, if neither of the SYN or RST bits is set then
5610                  *    drop the segment and return."
5611                  *
5612                  *    See note below!
5613                  *                                        --ANK(990513)
5614                  */
5615                 if (!th->syn)
5616                         goto discard_and_undo;
5617
5618                 /* rfc793:
5619                  *   "If the SYN bit is on ...
5620                  *    are acceptable then ...
5621                  *    (our SYN has been ACKed), change the connection
5622                  *    state to ESTABLISHED..."
5623                  */
5624
5625                 TCP_ECN_rcv_synack(tp, th);
5626
5627                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5628                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5629
5630                 /* Ok.. it's good. Set up sequence numbers and
5631                  * move to established.
5632                  */
5633                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5634                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5635
5636                 /* RFC1323: The window in SYN & SYN/ACK segments is
5637                  * never scaled.
5638                  */
5639                 tp->snd_wnd = ntohs(th->window);
5640                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5641
5642                 if (!tp->rx_opt.wscale_ok) {
5643                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5644                         tp->window_clamp = min(tp->window_clamp, 65535U);
5645                 }
5646
5647                 if (tp->rx_opt.saw_tstamp) {
5648                         tp->rx_opt.tstamp_ok       = 1;
5649                         tp->tcp_header_len =
5650                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5651                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5652                         tcp_store_ts_recent(tp);
5653                 } else {
5654                         tp->tcp_header_len = sizeof(struct tcphdr);
5655                 }
5656
5657                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5658                         tcp_enable_fack(tp);
5659
5660                 tcp_mtup_init(sk);
5661                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5662                 tcp_initialize_rcv_mss(sk);
5663
5664                 /* Remember, tcp_poll() does not lock socket!
5665                  * Change state from SYN-SENT only after copied_seq
5666                  * is initialized. */
5667                 tp->copied_seq = tp->rcv_nxt;
5668
5669                 if (cvp != NULL &&
5670                     cvp->cookie_pair_size > 0 &&
5671                     tp->rx_opt.cookie_plus > 0) {
5672                         int cookie_size = tp->rx_opt.cookie_plus
5673                                         - TCPOLEN_COOKIE_BASE;
5674                         int cookie_pair_size = cookie_size
5675                                              + cvp->cookie_desired;
5676
5677                         /* A cookie extension option was sent and returned.
5678                          * Note that each incoming SYNACK replaces the
5679                          * Responder cookie.  The initial exchange is most
5680                          * fragile, as protection against spoofing relies
5681                          * entirely upon the sequence and timestamp (above).
5682                          * This replacement strategy allows the correct pair to
5683                          * pass through, while any others will be filtered via
5684                          * Responder verification later.
5685                          */
5686                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5687                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5688                                        hash_location, cookie_size);
5689                                 cvp->cookie_pair_size = cookie_pair_size;
5690                         }
5691                 }
5692
5693                 smp_mb();
5694                 tcp_set_state(sk, TCP_ESTABLISHED);
5695
5696                 security_inet_conn_established(sk, skb);
5697
5698                 /* Make sure socket is routed, for correct metrics.  */
5699                 icsk->icsk_af_ops->rebuild_header(sk);
5700
5701                 tcp_init_metrics(sk);
5702
5703                 tcp_init_congestion_control(sk);
5704
5705                 /* Prevent spurious tcp_cwnd_restart() on first data
5706                  * packet.
5707                  */
5708                 tp->lsndtime = tcp_time_stamp;
5709
5710                 tcp_init_buffer_space(sk);
5711
5712                 if (sock_flag(sk, SOCK_KEEPOPEN))
5713                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5714
5715                 if (!tp->rx_opt.snd_wscale)
5716                         __tcp_fast_path_on(tp, tp->snd_wnd);
5717                 else
5718                         tp->pred_flags = 0;
5719
5720                 if (!sock_flag(sk, SOCK_DEAD)) {
5721                         sk->sk_state_change(sk);
5722                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5723                 }
5724
5725                 if (sk->sk_write_pending ||
5726                     icsk->icsk_accept_queue.rskq_defer_accept ||
5727                     icsk->icsk_ack.pingpong) {
5728                         /* Save one ACK. Data will be ready after
5729                          * several ticks, if write_pending is set.
5730                          *
5731                          * It may be deleted, but with this feature tcpdumps
5732                          * look so _wonderfully_ clever, that I was not able
5733                          * to stand against the temptation 8)     --ANK
5734                          */
5735                         inet_csk_schedule_ack(sk);
5736                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5737                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5738                         tcp_incr_quickack(sk);
5739                         tcp_enter_quickack_mode(sk);
5740                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5741                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5742
5743 discard:
5744                         __kfree_skb(skb);
5745                         return 0;
5746                 } else {
5747                         tcp_send_ack(sk);
5748                 }
5749                 return -1;
5750         }
5751
5752         /* No ACK in the segment */
5753
5754         if (th->rst) {
5755                 /* rfc793:
5756                  * "If the RST bit is set
5757                  *
5758                  *      Otherwise (no ACK) drop the segment and return."
5759                  */
5760
5761                 goto discard_and_undo;
5762         }
5763
5764         /* PAWS check. */
5765         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5766             tcp_paws_reject(&tp->rx_opt, 0))
5767                 goto discard_and_undo;
5768
5769         if (th->syn) {
5770                 /* We see SYN without ACK. It is attempt of
5771                  * simultaneous connect with crossed SYNs.
5772                  * Particularly, it can be connect to self.
5773                  */
5774                 tcp_set_state(sk, TCP_SYN_RECV);
5775
5776                 if (tp->rx_opt.saw_tstamp) {
5777                         tp->rx_opt.tstamp_ok = 1;
5778                         tcp_store_ts_recent(tp);
5779                         tp->tcp_header_len =
5780                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5781                 } else {
5782                         tp->tcp_header_len = sizeof(struct tcphdr);
5783                 }
5784
5785                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5786                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5787
5788                 /* RFC1323: The window in SYN & SYN/ACK segments is
5789                  * never scaled.
5790                  */
5791                 tp->snd_wnd    = ntohs(th->window);
5792                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5793                 tp->max_window = tp->snd_wnd;
5794
5795                 TCP_ECN_rcv_syn(tp, th);
5796
5797                 tcp_mtup_init(sk);
5798                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5799                 tcp_initialize_rcv_mss(sk);
5800
5801                 tcp_send_synack(sk);
5802 #if 0
5803                 /* Note, we could accept data and URG from this segment.
5804                  * There are no obstacles to make this.
5805                  *
5806                  * However, if we ignore data in ACKless segments sometimes,
5807                  * we have no reasons to accept it sometimes.
5808                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5809                  * is not flawless. So, discard packet for sanity.
5810                  * Uncomment this return to process the data.
5811                  */
5812                 return -1;
5813 #else
5814                 goto discard;
5815 #endif
5816         }
5817         /* "fifth, if neither of the SYN or RST bits is set then
5818          * drop the segment and return."
5819          */
5820
5821 discard_and_undo:
5822         tcp_clear_options(&tp->rx_opt);
5823         tp->rx_opt.mss_clamp = saved_clamp;
5824         goto discard;
5825
5826 reset_and_undo:
5827         tcp_clear_options(&tp->rx_opt);
5828         tp->rx_opt.mss_clamp = saved_clamp;
5829         return 1;
5830 }
5831
5832 /*
5833  *      This function implements the receiving procedure of RFC 793 for
5834  *      all states except ESTABLISHED and TIME_WAIT.
5835  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5836  *      address independent.
5837  */
5838
5839 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5840                           const struct tcphdr *th, unsigned int len)
5841 {
5842         struct tcp_sock *tp = tcp_sk(sk);
5843         struct inet_connection_sock *icsk = inet_csk(sk);
5844         int queued = 0;
5845         int res;
5846
5847         tp->rx_opt.saw_tstamp = 0;
5848
5849         switch (sk->sk_state) {
5850         case TCP_CLOSE:
5851                 goto discard;
5852
5853         case TCP_LISTEN:
5854                 if (th->ack)
5855                         return 1;
5856
5857                 if (th->rst)
5858                         goto discard;
5859
5860                 if (th->syn) {
5861                         if (th->fin)
5862                                 goto discard;
5863                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5864                                 return 1;
5865
5866                         /* Now we have several options: In theory there is
5867                          * nothing else in the frame. KA9Q has an option to
5868                          * send data with the syn, BSD accepts data with the
5869                          * syn up to the [to be] advertised window and
5870                          * Solaris 2.1 gives you a protocol error. For now
5871                          * we just ignore it, that fits the spec precisely
5872                          * and avoids incompatibilities. It would be nice in
5873                          * future to drop through and process the data.
5874                          *
5875                          * Now that TTCP is starting to be used we ought to
5876                          * queue this data.
5877                          * But, this leaves one open to an easy denial of
5878                          * service attack, and SYN cookies can't defend
5879                          * against this problem. So, we drop the data
5880                          * in the interest of security over speed unless
5881                          * it's still in use.
5882                          */
5883                         kfree_skb(skb);
5884                         return 0;
5885                 }
5886                 goto discard;
5887
5888         case TCP_SYN_SENT:
5889                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5890                 if (queued >= 0)
5891                         return queued;
5892
5893                 /* Do step6 onward by hand. */
5894                 tcp_urg(sk, skb, th);
5895                 __kfree_skb(skb);
5896                 tcp_data_snd_check(sk);
5897                 return 0;
5898         }
5899
5900         res = tcp_validate_incoming(sk, skb, th, 0);
5901         if (res <= 0)
5902                 return -res;
5903
5904         /* step 5: check the ACK field */
5905         if (th->ack) {
5906                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5907
5908                 switch (sk->sk_state) {
5909                 case TCP_SYN_RECV:
5910                         if (acceptable) {
5911                                 tp->copied_seq = tp->rcv_nxt;
5912                                 smp_mb();
5913                                 tcp_set_state(sk, TCP_ESTABLISHED);
5914                                 sk->sk_state_change(sk);
5915
5916                                 /* Note, that this wakeup is only for marginal
5917                                  * crossed SYN case. Passively open sockets
5918                                  * are not waked up, because sk->sk_sleep ==
5919                                  * NULL and sk->sk_socket == NULL.
5920                                  */
5921                                 if (sk->sk_socket)
5922                                         sk_wake_async(sk,
5923                                                       SOCK_WAKE_IO, POLL_OUT);
5924
5925                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5926                                 tp->snd_wnd = ntohs(th->window) <<
5927                                               tp->rx_opt.snd_wscale;
5928                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5929
5930                                 if (tp->rx_opt.tstamp_ok)
5931                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5932
5933                                 /* Make sure socket is routed, for
5934                                  * correct metrics.
5935                                  */
5936                                 icsk->icsk_af_ops->rebuild_header(sk);
5937
5938                                 tcp_init_metrics(sk);
5939
5940                                 tcp_init_congestion_control(sk);
5941
5942                                 /* Prevent spurious tcp_cwnd_restart() on
5943                                  * first data packet.
5944                                  */
5945                                 tp->lsndtime = tcp_time_stamp;
5946
5947                                 tcp_mtup_init(sk);
5948                                 tcp_initialize_rcv_mss(sk);
5949                                 tcp_init_buffer_space(sk);
5950                                 tcp_fast_path_on(tp);
5951                         } else {
5952                                 return 1;
5953                         }
5954                         break;
5955
5956                 case TCP_FIN_WAIT1:
5957                         if (tp->snd_una == tp->write_seq) {
5958                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5959                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5960                                 dst_confirm(__sk_dst_get(sk));
5961
5962                                 if (!sock_flag(sk, SOCK_DEAD))
5963                                         /* Wake up lingering close() */
5964                                         sk->sk_state_change(sk);
5965                                 else {
5966                                         int tmo;
5967
5968                                         if (tp->linger2 < 0 ||
5969                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5970                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5971                                                 tcp_done(sk);
5972                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5973                                                 return 1;
5974                                         }
5975
5976                                         tmo = tcp_fin_time(sk);
5977                                         if (tmo > TCP_TIMEWAIT_LEN) {
5978                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5979                                         } else if (th->fin || sock_owned_by_user(sk)) {
5980                                                 /* Bad case. We could lose such FIN otherwise.
5981                                                  * It is not a big problem, but it looks confusing
5982                                                  * and not so rare event. We still can lose it now,
5983                                                  * if it spins in bh_lock_sock(), but it is really
5984                                                  * marginal case.
5985                                                  */
5986                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5987                                         } else {
5988                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5989                                                 goto discard;
5990                                         }
5991                                 }
5992                         }
5993                         break;
5994
5995                 case TCP_CLOSING:
5996                         if (tp->snd_una == tp->write_seq) {
5997                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5998                                 goto discard;
5999                         }
6000                         break;
6001
6002                 case TCP_LAST_ACK:
6003                         if (tp->snd_una == tp->write_seq) {
6004                                 tcp_update_metrics(sk);
6005                                 tcp_done(sk);
6006                                 goto discard;
6007                         }
6008                         break;
6009                 }
6010         } else
6011                 goto discard;
6012
6013         /* step 6: check the URG bit */
6014         tcp_urg(sk, skb, th);
6015
6016         /* step 7: process the segment text */
6017         switch (sk->sk_state) {
6018         case TCP_CLOSE_WAIT:
6019         case TCP_CLOSING:
6020         case TCP_LAST_ACK:
6021                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6022                         break;
6023         case TCP_FIN_WAIT1:
6024         case TCP_FIN_WAIT2:
6025                 /* RFC 793 says to queue data in these states,
6026                  * RFC 1122 says we MUST send a reset.
6027                  * BSD 4.4 also does reset.
6028                  */
6029                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6030                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6031                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6032                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6033                                 tcp_reset(sk);
6034                                 return 1;
6035                         }
6036                 }
6037                 /* Fall through */
6038         case TCP_ESTABLISHED:
6039                 tcp_data_queue(sk, skb);
6040                 queued = 1;
6041                 break;
6042         }
6043
6044         /* tcp_data could move socket to TIME-WAIT */
6045         if (sk->sk_state != TCP_CLOSE) {
6046                 tcp_data_snd_check(sk);
6047                 tcp_ack_snd_check(sk);
6048         }
6049
6050         if (!queued) {
6051 discard:
6052                 __kfree_skb(skb);
6053         }
6054         return 0;
6055 }
6056 EXPORT_SYMBOL(tcp_rcv_state_process);