3c8e297e2c39c6f66b0d4ffb2e8d5b2c5b9d3b0c
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732                 unsigned long rtt;
733
734                 if (icsk->icsk_backoff || !tp->srtt) {
735                         /* This session failed to estimate rtt. Why?
736                          * Probably, no packets returned in time.
737                          * Reset our results.
738                          */
739                         if (!(dst_metric_locked(dst, RTAX_RTT)))
740                                 dst->metrics[RTAX_RTT - 1] = 0;
741                         return;
742                 }
743
744                 rtt = dst_metric_rtt(dst, RTAX_RTT);
745                 m = rtt - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754                         else
755                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         unsigned long var;
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
769                         if (m >= var)
770                                 var = m;
771                         else
772                                 var -= (var - m) >> 2;
773
774                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775                 }
776
777                 if (tp->snd_ssthresh >= 0xFFFF) {
778                         /* Slow start still did not finish. */
779                         if (dst_metric(dst, RTAX_SSTHRESH) &&
780                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783                         if (!dst_metric_locked(dst, RTAX_CWND) &&
784                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787                            icsk->icsk_ca_state == TCP_CA_Open) {
788                         /* Cong. avoidance phase, cwnd is reliable. */
789                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790                                 dst->metrics[RTAX_SSTHRESH-1] =
791                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794                 } else {
795                         /* Else slow start did not finish, cwnd is non-sense,
796                            ssthresh may be also invalid.
797                          */
798                         if (!dst_metric_locked(dst, RTAX_CWND))
799                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800                         if (dst_metric(dst, RTAX_SSTHRESH) &&
801                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804                 }
805
806                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808                             tp->reordering != sysctl_tcp_reordering)
809                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810                 }
811         }
812 }
813
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *      The RFC specifies a window of no more than 4380 bytes
819  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *      is a bit misleading because they use a clamp at 4380 bytes
821  *      rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827         if (!cwnd) {
828                 if (tp->mss_cache > 1460)
829                         cwnd = 2;
830                 else
831                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832         }
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         }
896         if (dst_metric(dst, RTAX_REORDERING) &&
897             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898                 tcp_disable_fack(tp);
899                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900         }
901
902         if (dst_metric(dst, RTAX_RTT) == 0)
903                 goto reset;
904
905         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906                 goto reset;
907
908         /* Initial rtt is determined from SYN,SYN-ACK.
909          * The segment is small and rtt may appear much
910          * less than real one. Use per-dst memory
911          * to make it more realistic.
912          *
913          * A bit of theory. RTT is time passed after "normal" sized packet
914          * is sent until it is ACKed. In normal circumstances sending small
915          * packets force peer to delay ACKs and calculation is correct too.
916          * The algorithm is adaptive and, provided we follow specs, it
917          * NEVER underestimate RTT. BUT! If peer tries to make some clever
918          * tricks sort of "quick acks" for time long enough to decrease RTT
919          * to low value, and then abruptly stops to do it and starts to delay
920          * ACKs, wait for troubles.
921          */
922         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924                 tp->rtt_seq = tp->snd_nxt;
925         }
926         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929         }
930         tcp_set_rto(sk);
931         tcp_bound_rto(sk);
932         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933                 goto reset;
934         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935         tp->snd_cwnd_stamp = tcp_time_stamp;
936         return;
937
938 reset:
939         /* Play conservative. If timestamps are not
940          * supported, TCP will fail to recalculate correct
941          * rtt, if initial rto is too small. FORGET ALL AND RESET!
942          */
943         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944                 tp->srtt = 0;
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947         }
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951                                   const int ts)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         if (metric > tp->reordering) {
955                 int mib_idx;
956
957                 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959                 /* This exciting event is worth to be remembered. 8) */
960                 if (ts)
961                         mib_idx = LINUX_MIB_TCPTSREORDER;
962                 else if (tcp_is_reno(tp))
963                         mib_idx = LINUX_MIB_TCPRENOREORDER;
964                 else if (tcp_is_fack(tp))
965                         mib_idx = LINUX_MIB_TCPFACKREORDER;
966                 else
967                         mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973                        tp->reordering,
974                        tp->fackets_out,
975                        tp->sacked_out,
976                        tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978                 tcp_disable_fack(tp);
979         }
980 }
981
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985         if ((tp->retransmit_skb_hint == NULL) ||
986             before(TCP_SKB_CB(skb)->seq,
987                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988                 tp->retransmit_skb_hint = skb;
989
990         if (!tp->lost_out ||
991             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998                 tcp_verify_retransmit_hint(tp, skb);
999
1000                 tp->lost_out += tcp_skb_pcount(skb);
1001                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002         }
1003 }
1004
1005 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006                                             struct sk_buff *skb)
1007 {
1008         tcp_verify_retransmit_hint(tp, skb);
1009
1010         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011                 tp->lost_out += tcp_skb_pcount(skb);
1012                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013         }
1014 }
1015
1016 /* This procedure tags the retransmission queue when SACKs arrive.
1017  *
1018  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019  * Packets in queue with these bits set are counted in variables
1020  * sacked_out, retrans_out and lost_out, correspondingly.
1021  *
1022  * Valid combinations are:
1023  * Tag  InFlight        Description
1024  * 0    1               - orig segment is in flight.
1025  * S    0               - nothing flies, orig reached receiver.
1026  * L    0               - nothing flies, orig lost by net.
1027  * R    2               - both orig and retransmit are in flight.
1028  * L|R  1               - orig is lost, retransmit is in flight.
1029  * S|R  1               - orig reached receiver, retrans is still in flight.
1030  * (L|S|R is logically valid, it could occur when L|R is sacked,
1031  *  but it is equivalent to plain S and code short-curcuits it to S.
1032  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1033  *
1034  * These 6 states form finite state machine, controlled by the following events:
1035  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037  * 3. Loss detection event of one of three flavors:
1038  *      A. Scoreboard estimator decided the packet is lost.
1039  *         A'. Reno "three dupacks" marks head of queue lost.
1040  *         A''. Its FACK modfication, head until snd.fack is lost.
1041  *      B. SACK arrives sacking data transmitted after never retransmitted
1042  *         hole was sent out.
1043  *      C. SACK arrives sacking SND.NXT at the moment, when the
1044  *         segment was retransmitted.
1045  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046  *
1047  * It is pleasant to note, that state diagram turns out to be commutative,
1048  * so that we are allowed not to be bothered by order of our actions,
1049  * when multiple events arrive simultaneously. (see the function below).
1050  *
1051  * Reordering detection.
1052  * --------------------
1053  * Reordering metric is maximal distance, which a packet can be displaced
1054  * in packet stream. With SACKs we can estimate it:
1055  *
1056  * 1. SACK fills old hole and the corresponding segment was not
1057  *    ever retransmitted -> reordering. Alas, we cannot use it
1058  *    when segment was retransmitted.
1059  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060  *    for retransmitted and already SACKed segment -> reordering..
1061  * Both of these heuristics are not used in Loss state, when we cannot
1062  * account for retransmits accurately.
1063  *
1064  * SACK block validation.
1065  * ----------------------
1066  *
1067  * SACK block range validation checks that the received SACK block fits to
1068  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069  * Note that SND.UNA is not included to the range though being valid because
1070  * it means that the receiver is rather inconsistent with itself reporting
1071  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072  * perfectly valid, however, in light of RFC2018 which explicitly states
1073  * that "SACK block MUST reflect the newest segment.  Even if the newest
1074  * segment is going to be discarded ...", not that it looks very clever
1075  * in case of head skb. Due to potentional receiver driven attacks, we
1076  * choose to avoid immediate execution of a walk in write queue due to
1077  * reneging and defer head skb's loss recovery to standard loss recovery
1078  * procedure that will eventually trigger (nothing forbids us doing this).
1079  *
1080  * Implements also blockage to start_seq wrap-around. Problem lies in the
1081  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082  * there's no guarantee that it will be before snd_nxt (n). The problem
1083  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084  * wrap (s_w):
1085  *
1086  *         <- outs wnd ->                          <- wrapzone ->
1087  *         u     e      n                         u_w   e_w  s n_w
1088  *         |     |      |                          |     |   |  |
1089  * |<------------+------+----- TCP seqno space --------------+---------->|
1090  * ...-- <2^31 ->|                                           |<--------...
1091  * ...---- >2^31 ------>|                                    |<--------...
1092  *
1093  * Current code wouldn't be vulnerable but it's better still to discard such
1094  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097  * equal to the ideal case (infinite seqno space without wrap caused issues).
1098  *
1099  * With D-SACK the lower bound is extended to cover sequence space below
1100  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101  * again, D-SACK block must not to go across snd_una (for the same reason as
1102  * for the normal SACK blocks, explained above). But there all simplicity
1103  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104  * fully below undo_marker they do not affect behavior in anyway and can
1105  * therefore be safely ignored. In rare cases (which are more or less
1106  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107  * fragmentation and packet reordering past skb's retransmission. To consider
1108  * them correctly, the acceptable range must be extended even more though
1109  * the exact amount is rather hard to quantify. However, tp->max_window can
1110  * be used as an exaggerated estimate.
1111  */
1112 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113                                   u32 start_seq, u32 end_seq)
1114 {
1115         /* Too far in future, or reversed (interpretation is ambiguous) */
1116         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117                 return 0;
1118
1119         /* Nasty start_seq wrap-around check (see comments above) */
1120         if (!before(start_seq, tp->snd_nxt))
1121                 return 0;
1122
1123         /* In outstanding window? ...This is valid exit for D-SACKs too.
1124          * start_seq == snd_una is non-sensical (see comments above)
1125          */
1126         if (after(start_seq, tp->snd_una))
1127                 return 1;
1128
1129         if (!is_dsack || !tp->undo_marker)
1130                 return 0;
1131
1132         /* ...Then it's D-SACK, and must reside below snd_una completely */
1133         if (!after(end_seq, tp->snd_una))
1134                 return 0;
1135
1136         if (!before(start_seq, tp->undo_marker))
1137                 return 1;
1138
1139         /* Too old */
1140         if (!after(end_seq, tp->undo_marker))
1141                 return 0;
1142
1143         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1144          *   start_seq < undo_marker and end_seq >= undo_marker.
1145          */
1146         return !before(start_seq, end_seq - tp->max_window);
1147 }
1148
1149 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150  * Event "C". Later note: FACK people cheated me again 8), we have to account
1151  * for reordering! Ugly, but should help.
1152  *
1153  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154  * less than what is now known to be received by the other end (derived from
1155  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156  * retransmitted skbs to avoid some costly processing per ACKs.
1157  */
1158 static void tcp_mark_lost_retrans(struct sock *sk)
1159 {
1160         const struct inet_connection_sock *icsk = inet_csk(sk);
1161         struct tcp_sock *tp = tcp_sk(sk);
1162         struct sk_buff *skb;
1163         int cnt = 0;
1164         u32 new_low_seq = tp->snd_nxt;
1165         u32 received_upto = tcp_highest_sack_seq(tp);
1166
1167         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168             !after(received_upto, tp->lost_retrans_low) ||
1169             icsk->icsk_ca_state != TCP_CA_Recovery)
1170                 return;
1171
1172         tcp_for_write_queue(skb, sk) {
1173                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174
1175                 if (skb == tcp_send_head(sk))
1176                         break;
1177                 if (cnt == tp->retrans_out)
1178                         break;
1179                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180                         continue;
1181
1182                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183                         continue;
1184
1185                 if (after(received_upto, ack_seq) &&
1186                     (tcp_is_fack(tp) ||
1187                      !before(received_upto,
1188                              ack_seq + tp->reordering * tp->mss_cache))) {
1189                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190                         tp->retrans_out -= tcp_skb_pcount(skb);
1191
1192                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1193                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194                 } else {
1195                         if (before(ack_seq, new_low_seq))
1196                                 new_low_seq = ack_seq;
1197                         cnt += tcp_skb_pcount(skb);
1198                 }
1199         }
1200
1201         if (tp->retrans_out)
1202                 tp->lost_retrans_low = new_low_seq;
1203 }
1204
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206                            struct tcp_sack_block_wire *sp, int num_sacks,
1207                            u32 prior_snd_una)
1208 {
1209         struct tcp_sock *tp = tcp_sk(sk);
1210         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212         int dup_sack = 0;
1213
1214         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215                 dup_sack = 1;
1216                 tcp_dsack_seen(tp);
1217                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218         } else if (num_sacks > 1) {
1219                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221
1222                 if (!after(end_seq_0, end_seq_1) &&
1223                     !before(start_seq_0, start_seq_1)) {
1224                         dup_sack = 1;
1225                         tcp_dsack_seen(tp);
1226                         NET_INC_STATS_BH(sock_net(sk),
1227                                         LINUX_MIB_TCPDSACKOFORECV);
1228                 }
1229         }
1230
1231         /* D-SACK for already forgotten data... Do dumb counting. */
1232         if (dup_sack &&
1233             !after(end_seq_0, prior_snd_una) &&
1234             after(end_seq_0, tp->undo_marker))
1235                 tp->undo_retrans--;
1236
1237         return dup_sack;
1238 }
1239
1240 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1241  * the incoming SACK may not exactly match but we can find smaller MSS
1242  * aligned portion of it that matches. Therefore we might need to fragment
1243  * which may fail and creates some hassle (caller must handle error case
1244  * returns).
1245  */
1246 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1247                                  u32 start_seq, u32 end_seq)
1248 {
1249         int in_sack, err;
1250         unsigned int pkt_len;
1251         unsigned int mss;
1252
1253         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1254                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1255
1256         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1257             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1258                 mss = tcp_skb_mss(skb);
1259                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1260
1261                 if (!in_sack) {
1262                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1263                         if (pkt_len < mss)
1264                                 pkt_len = mss;
1265                 } else {
1266                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1267                         if (pkt_len < mss)
1268                                 return -EINVAL;
1269                 }
1270
1271                 /* Round if necessary so that SACKs cover only full MSSes
1272                  * and/or the remaining small portion (if present)
1273                  */
1274                 if (pkt_len > mss) {
1275                         unsigned int new_len = (pkt_len / mss) * mss;
1276                         if (!in_sack && new_len < pkt_len) {
1277                                 new_len += mss;
1278                                 if (new_len > skb->len)
1279                                         return 0;
1280                         }
1281                         pkt_len = new_len;
1282                 }
1283                 err = tcp_fragment(sk, skb, pkt_len, mss);
1284                 if (err < 0)
1285                         return err;
1286         }
1287
1288         return in_sack;
1289 }
1290
1291 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1292                            int *reord, int dup_sack, int fack_count,
1293                            u8 *sackedto, int pcount)
1294 {
1295         struct tcp_sock *tp = tcp_sk(sk);
1296         u8 sacked = TCP_SKB_CB(skb)->sacked;
1297         int flag = 0;
1298
1299         /* Account D-SACK for retransmitted packet. */
1300         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1301                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1302                         tp->undo_retrans--;
1303                 if (sacked & TCPCB_SACKED_ACKED)
1304                         *reord = min(fack_count, *reord);
1305         }
1306
1307         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1308         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1309                 return flag;
1310
1311         if (!(sacked & TCPCB_SACKED_ACKED)) {
1312                 if (sacked & TCPCB_SACKED_RETRANS) {
1313                         /* If the segment is not tagged as lost,
1314                          * we do not clear RETRANS, believing
1315                          * that retransmission is still in flight.
1316                          */
1317                         if (sacked & TCPCB_LOST) {
1318                                 *sackedto &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1319                                 tp->lost_out -= pcount;
1320                                 tp->retrans_out -= pcount;
1321                         }
1322                 } else {
1323                         if (!(sacked & TCPCB_RETRANS)) {
1324                                 /* New sack for not retransmitted frame,
1325                                  * which was in hole. It is reordering.
1326                                  */
1327                                 if (before(TCP_SKB_CB(skb)->seq,
1328                                            tcp_highest_sack_seq(tp)))
1329                                         *reord = min(fack_count, *reord);
1330
1331                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1332                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1333                                         flag |= FLAG_ONLY_ORIG_SACKED;
1334                         }
1335
1336                         if (sacked & TCPCB_LOST) {
1337                                 *sackedto &= ~TCPCB_LOST;
1338                                 tp->lost_out -= pcount;
1339                         }
1340                 }
1341
1342                 *sackedto |= TCPCB_SACKED_ACKED;
1343                 flag |= FLAG_DATA_SACKED;
1344                 tp->sacked_out += pcount;
1345
1346                 fack_count += pcount;
1347
1348                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1349                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1350                     before(TCP_SKB_CB(skb)->seq,
1351                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1352                         tp->lost_cnt_hint += pcount;
1353
1354                 if (fack_count > tp->fackets_out)
1355                         tp->fackets_out = fack_count;
1356
1357                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1358                         tcp_advance_highest_sack(sk, skb);
1359         }
1360
1361         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1362          * frames and clear it. undo_retrans is decreased above, L|R frames
1363          * are accounted above as well.
1364          */
1365         if (dup_sack && (*sackedto & TCPCB_SACKED_RETRANS)) {
1366                 *sackedto &= ~TCPCB_SACKED_RETRANS;
1367                 tp->retrans_out -= pcount;
1368         }
1369
1370         return flag;
1371 }
1372
1373 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1374                                         struct tcp_sack_block *next_dup,
1375                                         u32 start_seq, u32 end_seq,
1376                                         int dup_sack_in, int *fack_count,
1377                                         int *reord, int *flag)
1378 {
1379         tcp_for_write_queue_from(skb, sk) {
1380                 int in_sack = 0;
1381                 int dup_sack = dup_sack_in;
1382
1383                 if (skb == tcp_send_head(sk))
1384                         break;
1385
1386                 /* queue is in-order => we can short-circuit the walk early */
1387                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1388                         break;
1389
1390                 if ((next_dup != NULL) &&
1391                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1392                         in_sack = tcp_match_skb_to_sack(sk, skb,
1393                                                         next_dup->start_seq,
1394                                                         next_dup->end_seq);
1395                         if (in_sack > 0)
1396                                 dup_sack = 1;
1397                 }
1398
1399                 if (in_sack <= 0)
1400                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1401                                                         end_seq);
1402                 if (unlikely(in_sack < 0))
1403                         break;
1404
1405                 if (in_sack)
1406                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1407                                                  *fack_count,
1408                                                  &(TCP_SKB_CB(skb)->sacked),
1409                                                  tcp_skb_pcount(skb));
1410
1411                 *fack_count += tcp_skb_pcount(skb);
1412         }
1413         return skb;
1414 }
1415
1416 /* Avoid all extra work that is being done by sacktag while walking in
1417  * a normal way
1418  */
1419 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1420                                         u32 skip_to_seq, int *fack_count)
1421 {
1422         tcp_for_write_queue_from(skb, sk) {
1423                 if (skb == tcp_send_head(sk))
1424                         break;
1425
1426                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1427                         break;
1428
1429                 *fack_count += tcp_skb_pcount(skb);
1430         }
1431         return skb;
1432 }
1433
1434 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1435                                                 struct sock *sk,
1436                                                 struct tcp_sack_block *next_dup,
1437                                                 u32 skip_to_seq,
1438                                                 int *fack_count, int *reord,
1439                                                 int *flag)
1440 {
1441         if (next_dup == NULL)
1442                 return skb;
1443
1444         if (before(next_dup->start_seq, skip_to_seq)) {
1445                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1446                 skb = tcp_sacktag_walk(skb, sk, NULL,
1447                                      next_dup->start_seq, next_dup->end_seq,
1448                                      1, fack_count, reord, flag);
1449         }
1450
1451         return skb;
1452 }
1453
1454 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1455 {
1456         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1457 }
1458
1459 static int
1460 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1461                         u32 prior_snd_una)
1462 {
1463         const struct inet_connection_sock *icsk = inet_csk(sk);
1464         struct tcp_sock *tp = tcp_sk(sk);
1465         unsigned char *ptr = (skb_transport_header(ack_skb) +
1466                               TCP_SKB_CB(ack_skb)->sacked);
1467         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1468         struct tcp_sack_block sp[TCP_NUM_SACKS];
1469         struct tcp_sack_block *cache;
1470         struct sk_buff *skb;
1471         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1472         int used_sacks;
1473         int reord = tp->packets_out;
1474         int flag = 0;
1475         int found_dup_sack = 0;
1476         int fack_count;
1477         int i, j;
1478         int first_sack_index;
1479
1480         if (!tp->sacked_out) {
1481                 if (WARN_ON(tp->fackets_out))
1482                         tp->fackets_out = 0;
1483                 tcp_highest_sack_reset(sk);
1484         }
1485
1486         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1487                                          num_sacks, prior_snd_una);
1488         if (found_dup_sack)
1489                 flag |= FLAG_DSACKING_ACK;
1490
1491         /* Eliminate too old ACKs, but take into
1492          * account more or less fresh ones, they can
1493          * contain valid SACK info.
1494          */
1495         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1496                 return 0;
1497
1498         if (!tp->packets_out)
1499                 goto out;
1500
1501         used_sacks = 0;
1502         first_sack_index = 0;
1503         for (i = 0; i < num_sacks; i++) {
1504                 int dup_sack = !i && found_dup_sack;
1505
1506                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1507                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1508
1509                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1510                                             sp[used_sacks].start_seq,
1511                                             sp[used_sacks].end_seq)) {
1512                         int mib_idx;
1513
1514                         if (dup_sack) {
1515                                 if (!tp->undo_marker)
1516                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1517                                 else
1518                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1519                         } else {
1520                                 /* Don't count olds caused by ACK reordering */
1521                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1522                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1523                                         continue;
1524                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1525                         }
1526
1527                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1528                         if (i == 0)
1529                                 first_sack_index = -1;
1530                         continue;
1531                 }
1532
1533                 /* Ignore very old stuff early */
1534                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1535                         continue;
1536
1537                 used_sacks++;
1538         }
1539
1540         /* order SACK blocks to allow in order walk of the retrans queue */
1541         for (i = used_sacks - 1; i > 0; i--) {
1542                 for (j = 0; j < i; j++) {
1543                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1544                                 struct tcp_sack_block tmp;
1545
1546                                 tmp = sp[j];
1547                                 sp[j] = sp[j + 1];
1548                                 sp[j + 1] = tmp;
1549
1550                                 /* Track where the first SACK block goes to */
1551                                 if (j == first_sack_index)
1552                                         first_sack_index = j + 1;
1553                         }
1554                 }
1555         }
1556
1557         skb = tcp_write_queue_head(sk);
1558         fack_count = 0;
1559         i = 0;
1560
1561         if (!tp->sacked_out) {
1562                 /* It's already past, so skip checking against it */
1563                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1564         } else {
1565                 cache = tp->recv_sack_cache;
1566                 /* Skip empty blocks in at head of the cache */
1567                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1568                        !cache->end_seq)
1569                         cache++;
1570         }
1571
1572         while (i < used_sacks) {
1573                 u32 start_seq = sp[i].start_seq;
1574                 u32 end_seq = sp[i].end_seq;
1575                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1576                 struct tcp_sack_block *next_dup = NULL;
1577
1578                 if (found_dup_sack && ((i + 1) == first_sack_index))
1579                         next_dup = &sp[i + 1];
1580
1581                 /* Event "B" in the comment above. */
1582                 if (after(end_seq, tp->high_seq))
1583                         flag |= FLAG_DATA_LOST;
1584
1585                 /* Skip too early cached blocks */
1586                 while (tcp_sack_cache_ok(tp, cache) &&
1587                        !before(start_seq, cache->end_seq))
1588                         cache++;
1589
1590                 /* Can skip some work by looking recv_sack_cache? */
1591                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1592                     after(end_seq, cache->start_seq)) {
1593
1594                         /* Head todo? */
1595                         if (before(start_seq, cache->start_seq)) {
1596                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1597                                                        &fack_count);
1598                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1599                                                        start_seq,
1600                                                        cache->start_seq,
1601                                                        dup_sack, &fack_count,
1602                                                        &reord, &flag);
1603                         }
1604
1605                         /* Rest of the block already fully processed? */
1606                         if (!after(end_seq, cache->end_seq))
1607                                 goto advance_sp;
1608
1609                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1610                                                        cache->end_seq,
1611                                                        &fack_count, &reord,
1612                                                        &flag);
1613
1614                         /* ...tail remains todo... */
1615                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1616                                 /* ...but better entrypoint exists! */
1617                                 skb = tcp_highest_sack(sk);
1618                                 if (skb == NULL)
1619                                         break;
1620                                 fack_count = tp->fackets_out;
1621                                 cache++;
1622                                 goto walk;
1623                         }
1624
1625                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1626                                                &fack_count);
1627                         /* Check overlap against next cached too (past this one already) */
1628                         cache++;
1629                         continue;
1630                 }
1631
1632                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1633                         skb = tcp_highest_sack(sk);
1634                         if (skb == NULL)
1635                                 break;
1636                         fack_count = tp->fackets_out;
1637                 }
1638                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1639
1640 walk:
1641                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1642                                        dup_sack, &fack_count, &reord, &flag);
1643
1644 advance_sp:
1645                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1646                  * due to in-order walk
1647                  */
1648                 if (after(end_seq, tp->frto_highmark))
1649                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1650
1651                 i++;
1652         }
1653
1654         /* Clear the head of the cache sack blocks so we can skip it next time */
1655         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1656                 tp->recv_sack_cache[i].start_seq = 0;
1657                 tp->recv_sack_cache[i].end_seq = 0;
1658         }
1659         for (j = 0; j < used_sacks; j++)
1660                 tp->recv_sack_cache[i++] = sp[j];
1661
1662         tcp_mark_lost_retrans(sk);
1663
1664         tcp_verify_left_out(tp);
1665
1666         if ((reord < tp->fackets_out) &&
1667             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1668             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1669                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1670
1671 out:
1672
1673 #if FASTRETRANS_DEBUG > 0
1674         WARN_ON((int)tp->sacked_out < 0);
1675         WARN_ON((int)tp->lost_out < 0);
1676         WARN_ON((int)tp->retrans_out < 0);
1677         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1678 #endif
1679         return flag;
1680 }
1681
1682 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1683  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1684  */
1685 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1686 {
1687         u32 holes;
1688
1689         holes = max(tp->lost_out, 1U);
1690         holes = min(holes, tp->packets_out);
1691
1692         if ((tp->sacked_out + holes) > tp->packets_out) {
1693                 tp->sacked_out = tp->packets_out - holes;
1694                 return 1;
1695         }
1696         return 0;
1697 }
1698
1699 /* If we receive more dupacks than we expected counting segments
1700  * in assumption of absent reordering, interpret this as reordering.
1701  * The only another reason could be bug in receiver TCP.
1702  */
1703 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1704 {
1705         struct tcp_sock *tp = tcp_sk(sk);
1706         if (tcp_limit_reno_sacked(tp))
1707                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1708 }
1709
1710 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1711
1712 static void tcp_add_reno_sack(struct sock *sk)
1713 {
1714         struct tcp_sock *tp = tcp_sk(sk);
1715         tp->sacked_out++;
1716         tcp_check_reno_reordering(sk, 0);
1717         tcp_verify_left_out(tp);
1718 }
1719
1720 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1721
1722 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1723 {
1724         struct tcp_sock *tp = tcp_sk(sk);
1725
1726         if (acked > 0) {
1727                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1728                 if (acked - 1 >= tp->sacked_out)
1729                         tp->sacked_out = 0;
1730                 else
1731                         tp->sacked_out -= acked - 1;
1732         }
1733         tcp_check_reno_reordering(sk, acked);
1734         tcp_verify_left_out(tp);
1735 }
1736
1737 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1738 {
1739         tp->sacked_out = 0;
1740 }
1741
1742 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1743 {
1744         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1745 }
1746
1747 /* F-RTO can only be used if TCP has never retransmitted anything other than
1748  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1749  */
1750 int tcp_use_frto(struct sock *sk)
1751 {
1752         const struct tcp_sock *tp = tcp_sk(sk);
1753         const struct inet_connection_sock *icsk = inet_csk(sk);
1754         struct sk_buff *skb;
1755
1756         if (!sysctl_tcp_frto)
1757                 return 0;
1758
1759         /* MTU probe and F-RTO won't really play nicely along currently */
1760         if (icsk->icsk_mtup.probe_size)
1761                 return 0;
1762
1763         if (tcp_is_sackfrto(tp))
1764                 return 1;
1765
1766         /* Avoid expensive walking of rexmit queue if possible */
1767         if (tp->retrans_out > 1)
1768                 return 0;
1769
1770         skb = tcp_write_queue_head(sk);
1771         if (tcp_skb_is_last(sk, skb))
1772                 return 1;
1773         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1774         tcp_for_write_queue_from(skb, sk) {
1775                 if (skb == tcp_send_head(sk))
1776                         break;
1777                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1778                         return 0;
1779                 /* Short-circuit when first non-SACKed skb has been checked */
1780                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1781                         break;
1782         }
1783         return 1;
1784 }
1785
1786 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1787  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1788  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1789  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1790  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1791  * bits are handled if the Loss state is really to be entered (in
1792  * tcp_enter_frto_loss).
1793  *
1794  * Do like tcp_enter_loss() would; when RTO expires the second time it
1795  * does:
1796  *  "Reduce ssthresh if it has not yet been made inside this window."
1797  */
1798 void tcp_enter_frto(struct sock *sk)
1799 {
1800         const struct inet_connection_sock *icsk = inet_csk(sk);
1801         struct tcp_sock *tp = tcp_sk(sk);
1802         struct sk_buff *skb;
1803
1804         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1805             tp->snd_una == tp->high_seq ||
1806             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1807              !icsk->icsk_retransmits)) {
1808                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1809                 /* Our state is too optimistic in ssthresh() call because cwnd
1810                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1811                  * recovery has not yet completed. Pattern would be this: RTO,
1812                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1813                  * up here twice).
1814                  * RFC4138 should be more specific on what to do, even though
1815                  * RTO is quite unlikely to occur after the first Cumulative ACK
1816                  * due to back-off and complexity of triggering events ...
1817                  */
1818                 if (tp->frto_counter) {
1819                         u32 stored_cwnd;
1820                         stored_cwnd = tp->snd_cwnd;
1821                         tp->snd_cwnd = 2;
1822                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1823                         tp->snd_cwnd = stored_cwnd;
1824                 } else {
1825                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1826                 }
1827                 /* ... in theory, cong.control module could do "any tricks" in
1828                  * ssthresh(), which means that ca_state, lost bits and lost_out
1829                  * counter would have to be faked before the call occurs. We
1830                  * consider that too expensive, unlikely and hacky, so modules
1831                  * using these in ssthresh() must deal these incompatibility
1832                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1833                  */
1834                 tcp_ca_event(sk, CA_EVENT_FRTO);
1835         }
1836
1837         tp->undo_marker = tp->snd_una;
1838         tp->undo_retrans = 0;
1839
1840         skb = tcp_write_queue_head(sk);
1841         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1842                 tp->undo_marker = 0;
1843         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1844                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1845                 tp->retrans_out -= tcp_skb_pcount(skb);
1846         }
1847         tcp_verify_left_out(tp);
1848
1849         /* Too bad if TCP was application limited */
1850         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1851
1852         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1853          * The last condition is necessary at least in tp->frto_counter case.
1854          */
1855         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1856             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1857             after(tp->high_seq, tp->snd_una)) {
1858                 tp->frto_highmark = tp->high_seq;
1859         } else {
1860                 tp->frto_highmark = tp->snd_nxt;
1861         }
1862         tcp_set_ca_state(sk, TCP_CA_Disorder);
1863         tp->high_seq = tp->snd_nxt;
1864         tp->frto_counter = 1;
1865 }
1866
1867 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1868  * which indicates that we should follow the traditional RTO recovery,
1869  * i.e. mark everything lost and do go-back-N retransmission.
1870  */
1871 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1872 {
1873         struct tcp_sock *tp = tcp_sk(sk);
1874         struct sk_buff *skb;
1875
1876         tp->lost_out = 0;
1877         tp->retrans_out = 0;
1878         if (tcp_is_reno(tp))
1879                 tcp_reset_reno_sack(tp);
1880
1881         tcp_for_write_queue(skb, sk) {
1882                 if (skb == tcp_send_head(sk))
1883                         break;
1884
1885                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1886                 /*
1887                  * Count the retransmission made on RTO correctly (only when
1888                  * waiting for the first ACK and did not get it)...
1889                  */
1890                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1891                         /* For some reason this R-bit might get cleared? */
1892                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1893                                 tp->retrans_out += tcp_skb_pcount(skb);
1894                         /* ...enter this if branch just for the first segment */
1895                         flag |= FLAG_DATA_ACKED;
1896                 } else {
1897                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1898                                 tp->undo_marker = 0;
1899                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1900                 }
1901
1902                 /* Marking forward transmissions that were made after RTO lost
1903                  * can cause unnecessary retransmissions in some scenarios,
1904                  * SACK blocks will mitigate that in some but not in all cases.
1905                  * We used to not mark them but it was causing break-ups with
1906                  * receivers that do only in-order receival.
1907                  *
1908                  * TODO: we could detect presence of such receiver and select
1909                  * different behavior per flow.
1910                  */
1911                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1912                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1913                         tp->lost_out += tcp_skb_pcount(skb);
1914                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1915                 }
1916         }
1917         tcp_verify_left_out(tp);
1918
1919         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1920         tp->snd_cwnd_cnt = 0;
1921         tp->snd_cwnd_stamp = tcp_time_stamp;
1922         tp->frto_counter = 0;
1923         tp->bytes_acked = 0;
1924
1925         tp->reordering = min_t(unsigned int, tp->reordering,
1926                                sysctl_tcp_reordering);
1927         tcp_set_ca_state(sk, TCP_CA_Loss);
1928         tp->high_seq = tp->snd_nxt;
1929         TCP_ECN_queue_cwr(tp);
1930
1931         tcp_clear_all_retrans_hints(tp);
1932 }
1933
1934 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1935 {
1936         tp->retrans_out = 0;
1937         tp->lost_out = 0;
1938
1939         tp->undo_marker = 0;
1940         tp->undo_retrans = 0;
1941 }
1942
1943 void tcp_clear_retrans(struct tcp_sock *tp)
1944 {
1945         tcp_clear_retrans_partial(tp);
1946
1947         tp->fackets_out = 0;
1948         tp->sacked_out = 0;
1949 }
1950
1951 /* Enter Loss state. If "how" is not zero, forget all SACK information
1952  * and reset tags completely, otherwise preserve SACKs. If receiver
1953  * dropped its ofo queue, we will know this due to reneging detection.
1954  */
1955 void tcp_enter_loss(struct sock *sk, int how)
1956 {
1957         const struct inet_connection_sock *icsk = inet_csk(sk);
1958         struct tcp_sock *tp = tcp_sk(sk);
1959         struct sk_buff *skb;
1960
1961         /* Reduce ssthresh if it has not yet been made inside this window. */
1962         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1963             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1964                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1965                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1966                 tcp_ca_event(sk, CA_EVENT_LOSS);
1967         }
1968         tp->snd_cwnd       = 1;
1969         tp->snd_cwnd_cnt   = 0;
1970         tp->snd_cwnd_stamp = tcp_time_stamp;
1971
1972         tp->bytes_acked = 0;
1973         tcp_clear_retrans_partial(tp);
1974
1975         if (tcp_is_reno(tp))
1976                 tcp_reset_reno_sack(tp);
1977
1978         if (!how) {
1979                 /* Push undo marker, if it was plain RTO and nothing
1980                  * was retransmitted. */
1981                 tp->undo_marker = tp->snd_una;
1982         } else {
1983                 tp->sacked_out = 0;
1984                 tp->fackets_out = 0;
1985         }
1986         tcp_clear_all_retrans_hints(tp);
1987
1988         tcp_for_write_queue(skb, sk) {
1989                 if (skb == tcp_send_head(sk))
1990                         break;
1991
1992                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1993                         tp->undo_marker = 0;
1994                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1995                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1996                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1997                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1998                         tp->lost_out += tcp_skb_pcount(skb);
1999                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2000                 }
2001         }
2002         tcp_verify_left_out(tp);
2003
2004         tp->reordering = min_t(unsigned int, tp->reordering,
2005                                sysctl_tcp_reordering);
2006         tcp_set_ca_state(sk, TCP_CA_Loss);
2007         tp->high_seq = tp->snd_nxt;
2008         TCP_ECN_queue_cwr(tp);
2009         /* Abort F-RTO algorithm if one is in progress */
2010         tp->frto_counter = 0;
2011 }
2012
2013 /* If ACK arrived pointing to a remembered SACK, it means that our
2014  * remembered SACKs do not reflect real state of receiver i.e.
2015  * receiver _host_ is heavily congested (or buggy).
2016  *
2017  * Do processing similar to RTO timeout.
2018  */
2019 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2020 {
2021         if (flag & FLAG_SACK_RENEGING) {
2022                 struct inet_connection_sock *icsk = inet_csk(sk);
2023                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2024
2025                 tcp_enter_loss(sk, 1);
2026                 icsk->icsk_retransmits++;
2027                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2028                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2029                                           icsk->icsk_rto, TCP_RTO_MAX);
2030                 return 1;
2031         }
2032         return 0;
2033 }
2034
2035 static inline int tcp_fackets_out(struct tcp_sock *tp)
2036 {
2037         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2038 }
2039
2040 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2041  * counter when SACK is enabled (without SACK, sacked_out is used for
2042  * that purpose).
2043  *
2044  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2045  * segments up to the highest received SACK block so far and holes in
2046  * between them.
2047  *
2048  * With reordering, holes may still be in flight, so RFC3517 recovery
2049  * uses pure sacked_out (total number of SACKed segments) even though
2050  * it violates the RFC that uses duplicate ACKs, often these are equal
2051  * but when e.g. out-of-window ACKs or packet duplication occurs,
2052  * they differ. Since neither occurs due to loss, TCP should really
2053  * ignore them.
2054  */
2055 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2056 {
2057         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2058 }
2059
2060 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2061 {
2062         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2063 }
2064
2065 static inline int tcp_head_timedout(struct sock *sk)
2066 {
2067         struct tcp_sock *tp = tcp_sk(sk);
2068
2069         return tp->packets_out &&
2070                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2071 }
2072
2073 /* Linux NewReno/SACK/FACK/ECN state machine.
2074  * --------------------------------------
2075  *
2076  * "Open"       Normal state, no dubious events, fast path.
2077  * "Disorder"   In all the respects it is "Open",
2078  *              but requires a bit more attention. It is entered when
2079  *              we see some SACKs or dupacks. It is split of "Open"
2080  *              mainly to move some processing from fast path to slow one.
2081  * "CWR"        CWND was reduced due to some Congestion Notification event.
2082  *              It can be ECN, ICMP source quench, local device congestion.
2083  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2084  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2085  *
2086  * tcp_fastretrans_alert() is entered:
2087  * - each incoming ACK, if state is not "Open"
2088  * - when arrived ACK is unusual, namely:
2089  *      * SACK
2090  *      * Duplicate ACK.
2091  *      * ECN ECE.
2092  *
2093  * Counting packets in flight is pretty simple.
2094  *
2095  *      in_flight = packets_out - left_out + retrans_out
2096  *
2097  *      packets_out is SND.NXT-SND.UNA counted in packets.
2098  *
2099  *      retrans_out is number of retransmitted segments.
2100  *
2101  *      left_out is number of segments left network, but not ACKed yet.
2102  *
2103  *              left_out = sacked_out + lost_out
2104  *
2105  *     sacked_out: Packets, which arrived to receiver out of order
2106  *                 and hence not ACKed. With SACKs this number is simply
2107  *                 amount of SACKed data. Even without SACKs
2108  *                 it is easy to give pretty reliable estimate of this number,
2109  *                 counting duplicate ACKs.
2110  *
2111  *       lost_out: Packets lost by network. TCP has no explicit
2112  *                 "loss notification" feedback from network (for now).
2113  *                 It means that this number can be only _guessed_.
2114  *                 Actually, it is the heuristics to predict lossage that
2115  *                 distinguishes different algorithms.
2116  *
2117  *      F.e. after RTO, when all the queue is considered as lost,
2118  *      lost_out = packets_out and in_flight = retrans_out.
2119  *
2120  *              Essentially, we have now two algorithms counting
2121  *              lost packets.
2122  *
2123  *              FACK: It is the simplest heuristics. As soon as we decided
2124  *              that something is lost, we decide that _all_ not SACKed
2125  *              packets until the most forward SACK are lost. I.e.
2126  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2127  *              It is absolutely correct estimate, if network does not reorder
2128  *              packets. And it loses any connection to reality when reordering
2129  *              takes place. We use FACK by default until reordering
2130  *              is suspected on the path to this destination.
2131  *
2132  *              NewReno: when Recovery is entered, we assume that one segment
2133  *              is lost (classic Reno). While we are in Recovery and
2134  *              a partial ACK arrives, we assume that one more packet
2135  *              is lost (NewReno). This heuristics are the same in NewReno
2136  *              and SACK.
2137  *
2138  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2139  *  deflation etc. CWND is real congestion window, never inflated, changes
2140  *  only according to classic VJ rules.
2141  *
2142  * Really tricky (and requiring careful tuning) part of algorithm
2143  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2144  * The first determines the moment _when_ we should reduce CWND and,
2145  * hence, slow down forward transmission. In fact, it determines the moment
2146  * when we decide that hole is caused by loss, rather than by a reorder.
2147  *
2148  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2149  * holes, caused by lost packets.
2150  *
2151  * And the most logically complicated part of algorithm is undo
2152  * heuristics. We detect false retransmits due to both too early
2153  * fast retransmit (reordering) and underestimated RTO, analyzing
2154  * timestamps and D-SACKs. When we detect that some segments were
2155  * retransmitted by mistake and CWND reduction was wrong, we undo
2156  * window reduction and abort recovery phase. This logic is hidden
2157  * inside several functions named tcp_try_undo_<something>.
2158  */
2159
2160 /* This function decides, when we should leave Disordered state
2161  * and enter Recovery phase, reducing congestion window.
2162  *
2163  * Main question: may we further continue forward transmission
2164  * with the same cwnd?
2165  */
2166 static int tcp_time_to_recover(struct sock *sk)
2167 {
2168         struct tcp_sock *tp = tcp_sk(sk);
2169         __u32 packets_out;
2170
2171         /* Do not perform any recovery during F-RTO algorithm */
2172         if (tp->frto_counter)
2173                 return 0;
2174
2175         /* Trick#1: The loss is proven. */
2176         if (tp->lost_out)
2177                 return 1;
2178
2179         /* Not-A-Trick#2 : Classic rule... */
2180         if (tcp_dupack_heurestics(tp) > tp->reordering)
2181                 return 1;
2182
2183         /* Trick#3 : when we use RFC2988 timer restart, fast
2184          * retransmit can be triggered by timeout of queue head.
2185          */
2186         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2187                 return 1;
2188
2189         /* Trick#4: It is still not OK... But will it be useful to delay
2190          * recovery more?
2191          */
2192         packets_out = tp->packets_out;
2193         if (packets_out <= tp->reordering &&
2194             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2195             !tcp_may_send_now(sk)) {
2196                 /* We have nothing to send. This connection is limited
2197                  * either by receiver window or by application.
2198                  */
2199                 return 1;
2200         }
2201
2202         return 0;
2203 }
2204
2205 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2206  * is against sacked "cnt", otherwise it's against facked "cnt"
2207  */
2208 static void tcp_mark_head_lost(struct sock *sk, int packets)
2209 {
2210         struct tcp_sock *tp = tcp_sk(sk);
2211         struct sk_buff *skb;
2212         int cnt, oldcnt;
2213         int err;
2214         unsigned int mss;
2215
2216         WARN_ON(packets > tp->packets_out);
2217         if (tp->lost_skb_hint) {
2218                 skb = tp->lost_skb_hint;
2219                 cnt = tp->lost_cnt_hint;
2220         } else {
2221                 skb = tcp_write_queue_head(sk);
2222                 cnt = 0;
2223         }
2224
2225         tcp_for_write_queue_from(skb, sk) {
2226                 if (skb == tcp_send_head(sk))
2227                         break;
2228                 /* TODO: do this better */
2229                 /* this is not the most efficient way to do this... */
2230                 tp->lost_skb_hint = skb;
2231                 tp->lost_cnt_hint = cnt;
2232
2233                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2234                         break;
2235
2236                 oldcnt = cnt;
2237                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2238                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2239                         cnt += tcp_skb_pcount(skb);
2240
2241                 if (cnt > packets) {
2242                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2243                                 break;
2244
2245                         mss = skb_shinfo(skb)->gso_size;
2246                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2247                         if (err < 0)
2248                                 break;
2249                         cnt = packets;
2250                 }
2251
2252                 tcp_skb_mark_lost(tp, skb);
2253         }
2254         tcp_verify_left_out(tp);
2255 }
2256
2257 /* Account newly detected lost packet(s) */
2258
2259 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2260 {
2261         struct tcp_sock *tp = tcp_sk(sk);
2262
2263         if (tcp_is_reno(tp)) {
2264                 tcp_mark_head_lost(sk, 1);
2265         } else if (tcp_is_fack(tp)) {
2266                 int lost = tp->fackets_out - tp->reordering;
2267                 if (lost <= 0)
2268                         lost = 1;
2269                 tcp_mark_head_lost(sk, lost);
2270         } else {
2271                 int sacked_upto = tp->sacked_out - tp->reordering;
2272                 if (sacked_upto < fast_rexmit)
2273                         sacked_upto = fast_rexmit;
2274                 tcp_mark_head_lost(sk, sacked_upto);
2275         }
2276
2277         /* New heuristics: it is possible only after we switched
2278          * to restart timer each time when something is ACKed.
2279          * Hence, we can detect timed out packets during fast
2280          * retransmit without falling to slow start.
2281          */
2282         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2283                 struct sk_buff *skb;
2284
2285                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2286                         : tcp_write_queue_head(sk);
2287
2288                 tcp_for_write_queue_from(skb, sk) {
2289                         if (skb == tcp_send_head(sk))
2290                                 break;
2291                         if (!tcp_skb_timedout(sk, skb))
2292                                 break;
2293
2294                         tcp_skb_mark_lost(tp, skb);
2295                 }
2296
2297                 tp->scoreboard_skb_hint = skb;
2298
2299                 tcp_verify_left_out(tp);
2300         }
2301 }
2302
2303 /* CWND moderation, preventing bursts due to too big ACKs
2304  * in dubious situations.
2305  */
2306 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2307 {
2308         tp->snd_cwnd = min(tp->snd_cwnd,
2309                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2310         tp->snd_cwnd_stamp = tcp_time_stamp;
2311 }
2312
2313 /* Lower bound on congestion window is slow start threshold
2314  * unless congestion avoidance choice decides to overide it.
2315  */
2316 static inline u32 tcp_cwnd_min(const struct sock *sk)
2317 {
2318         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2319
2320         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2321 }
2322
2323 /* Decrease cwnd each second ack. */
2324 static void tcp_cwnd_down(struct sock *sk, int flag)
2325 {
2326         struct tcp_sock *tp = tcp_sk(sk);
2327         int decr = tp->snd_cwnd_cnt + 1;
2328
2329         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2330             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2331                 tp->snd_cwnd_cnt = decr & 1;
2332                 decr >>= 1;
2333
2334                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2335                         tp->snd_cwnd -= decr;
2336
2337                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2338                 tp->snd_cwnd_stamp = tcp_time_stamp;
2339         }
2340 }
2341
2342 /* Nothing was retransmitted or returned timestamp is less
2343  * than timestamp of the first retransmission.
2344  */
2345 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2346 {
2347         return !tp->retrans_stamp ||
2348                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2349                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2350 }
2351
2352 /* Undo procedures. */
2353
2354 #if FASTRETRANS_DEBUG > 1
2355 static void DBGUNDO(struct sock *sk, const char *msg)
2356 {
2357         struct tcp_sock *tp = tcp_sk(sk);
2358         struct inet_sock *inet = inet_sk(sk);
2359
2360         if (sk->sk_family == AF_INET) {
2361                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2362                        msg,
2363                        &inet->daddr, ntohs(inet->dport),
2364                        tp->snd_cwnd, tcp_left_out(tp),
2365                        tp->snd_ssthresh, tp->prior_ssthresh,
2366                        tp->packets_out);
2367         }
2368 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2369         else if (sk->sk_family == AF_INET6) {
2370                 struct ipv6_pinfo *np = inet6_sk(sk);
2371                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2372                        msg,
2373                        &np->daddr, ntohs(inet->dport),
2374                        tp->snd_cwnd, tcp_left_out(tp),
2375                        tp->snd_ssthresh, tp->prior_ssthresh,
2376                        tp->packets_out);
2377         }
2378 #endif
2379 }
2380 #else
2381 #define DBGUNDO(x...) do { } while (0)
2382 #endif
2383
2384 static void tcp_undo_cwr(struct sock *sk, const int undo)
2385 {
2386         struct tcp_sock *tp = tcp_sk(sk);
2387
2388         if (tp->prior_ssthresh) {
2389                 const struct inet_connection_sock *icsk = inet_csk(sk);
2390
2391                 if (icsk->icsk_ca_ops->undo_cwnd)
2392                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2393                 else
2394                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2395
2396                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2397                         tp->snd_ssthresh = tp->prior_ssthresh;
2398                         TCP_ECN_withdraw_cwr(tp);
2399                 }
2400         } else {
2401                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2402         }
2403         tcp_moderate_cwnd(tp);
2404         tp->snd_cwnd_stamp = tcp_time_stamp;
2405 }
2406
2407 static inline int tcp_may_undo(struct tcp_sock *tp)
2408 {
2409         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2410 }
2411
2412 /* People celebrate: "We love our President!" */
2413 static int tcp_try_undo_recovery(struct sock *sk)
2414 {
2415         struct tcp_sock *tp = tcp_sk(sk);
2416
2417         if (tcp_may_undo(tp)) {
2418                 int mib_idx;
2419
2420                 /* Happy end! We did not retransmit anything
2421                  * or our original transmission succeeded.
2422                  */
2423                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2424                 tcp_undo_cwr(sk, 1);
2425                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2426                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2427                 else
2428                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2429
2430                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2431                 tp->undo_marker = 0;
2432         }
2433         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2434                 /* Hold old state until something *above* high_seq
2435                  * is ACKed. For Reno it is MUST to prevent false
2436                  * fast retransmits (RFC2582). SACK TCP is safe. */
2437                 tcp_moderate_cwnd(tp);
2438                 return 1;
2439         }
2440         tcp_set_ca_state(sk, TCP_CA_Open);
2441         return 0;
2442 }
2443
2444 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2445 static void tcp_try_undo_dsack(struct sock *sk)
2446 {
2447         struct tcp_sock *tp = tcp_sk(sk);
2448
2449         if (tp->undo_marker && !tp->undo_retrans) {
2450                 DBGUNDO(sk, "D-SACK");
2451                 tcp_undo_cwr(sk, 1);
2452                 tp->undo_marker = 0;
2453                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2454         }
2455 }
2456
2457 /* Undo during fast recovery after partial ACK. */
2458
2459 static int tcp_try_undo_partial(struct sock *sk, int acked)
2460 {
2461         struct tcp_sock *tp = tcp_sk(sk);
2462         /* Partial ACK arrived. Force Hoe's retransmit. */
2463         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2464
2465         if (tcp_may_undo(tp)) {
2466                 /* Plain luck! Hole if filled with delayed
2467                  * packet, rather than with a retransmit.
2468                  */
2469                 if (tp->retrans_out == 0)
2470                         tp->retrans_stamp = 0;
2471
2472                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2473
2474                 DBGUNDO(sk, "Hoe");
2475                 tcp_undo_cwr(sk, 0);
2476                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2477
2478                 /* So... Do not make Hoe's retransmit yet.
2479                  * If the first packet was delayed, the rest
2480                  * ones are most probably delayed as well.
2481                  */
2482                 failed = 0;
2483         }
2484         return failed;
2485 }
2486
2487 /* Undo during loss recovery after partial ACK. */
2488 static int tcp_try_undo_loss(struct sock *sk)
2489 {
2490         struct tcp_sock *tp = tcp_sk(sk);
2491
2492         if (tcp_may_undo(tp)) {
2493                 struct sk_buff *skb;
2494                 tcp_for_write_queue(skb, sk) {
2495                         if (skb == tcp_send_head(sk))
2496                                 break;
2497                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2498                 }
2499
2500                 tcp_clear_all_retrans_hints(tp);
2501
2502                 DBGUNDO(sk, "partial loss");
2503                 tp->lost_out = 0;
2504                 tcp_undo_cwr(sk, 1);
2505                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2506                 inet_csk(sk)->icsk_retransmits = 0;
2507                 tp->undo_marker = 0;
2508                 if (tcp_is_sack(tp))
2509                         tcp_set_ca_state(sk, TCP_CA_Open);
2510                 return 1;
2511         }
2512         return 0;
2513 }
2514
2515 static inline void tcp_complete_cwr(struct sock *sk)
2516 {
2517         struct tcp_sock *tp = tcp_sk(sk);
2518         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2519         tp->snd_cwnd_stamp = tcp_time_stamp;
2520         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2521 }
2522
2523 static void tcp_try_keep_open(struct sock *sk)
2524 {
2525         struct tcp_sock *tp = tcp_sk(sk);
2526         int state = TCP_CA_Open;
2527
2528         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2529                 state = TCP_CA_Disorder;
2530
2531         if (inet_csk(sk)->icsk_ca_state != state) {
2532                 tcp_set_ca_state(sk, state);
2533                 tp->high_seq = tp->snd_nxt;
2534         }
2535 }
2536
2537 static void tcp_try_to_open(struct sock *sk, int flag)
2538 {
2539         struct tcp_sock *tp = tcp_sk(sk);
2540
2541         tcp_verify_left_out(tp);
2542
2543         if (!tp->frto_counter && tp->retrans_out == 0)
2544                 tp->retrans_stamp = 0;
2545
2546         if (flag & FLAG_ECE)
2547                 tcp_enter_cwr(sk, 1);
2548
2549         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2550                 tcp_try_keep_open(sk);
2551                 tcp_moderate_cwnd(tp);
2552         } else {
2553                 tcp_cwnd_down(sk, flag);
2554         }
2555 }
2556
2557 static void tcp_mtup_probe_failed(struct sock *sk)
2558 {
2559         struct inet_connection_sock *icsk = inet_csk(sk);
2560
2561         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2562         icsk->icsk_mtup.probe_size = 0;
2563 }
2564
2565 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2566 {
2567         struct tcp_sock *tp = tcp_sk(sk);
2568         struct inet_connection_sock *icsk = inet_csk(sk);
2569
2570         /* FIXME: breaks with very large cwnd */
2571         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2572         tp->snd_cwnd = tp->snd_cwnd *
2573                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2574                        icsk->icsk_mtup.probe_size;
2575         tp->snd_cwnd_cnt = 0;
2576         tp->snd_cwnd_stamp = tcp_time_stamp;
2577         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2578
2579         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2580         icsk->icsk_mtup.probe_size = 0;
2581         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2582 }
2583
2584 /* Do a simple retransmit without using the backoff mechanisms in
2585  * tcp_timer. This is used for path mtu discovery.
2586  * The socket is already locked here.
2587  */
2588 void tcp_simple_retransmit(struct sock *sk)
2589 {
2590         const struct inet_connection_sock *icsk = inet_csk(sk);
2591         struct tcp_sock *tp = tcp_sk(sk);
2592         struct sk_buff *skb;
2593         unsigned int mss = tcp_current_mss(sk, 0);
2594         u32 prior_lost = tp->lost_out;
2595
2596         tcp_for_write_queue(skb, sk) {
2597                 if (skb == tcp_send_head(sk))
2598                         break;
2599                 if (skb->len > mss &&
2600                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2601                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2602                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2603                                 tp->retrans_out -= tcp_skb_pcount(skb);
2604                         }
2605                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2606                 }
2607         }
2608
2609         tcp_clear_retrans_hints_partial(tp);
2610
2611         if (prior_lost == tp->lost_out)
2612                 return;
2613
2614         if (tcp_is_reno(tp))
2615                 tcp_limit_reno_sacked(tp);
2616
2617         tcp_verify_left_out(tp);
2618
2619         /* Don't muck with the congestion window here.
2620          * Reason is that we do not increase amount of _data_
2621          * in network, but units changed and effective
2622          * cwnd/ssthresh really reduced now.
2623          */
2624         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2625                 tp->high_seq = tp->snd_nxt;
2626                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2627                 tp->prior_ssthresh = 0;
2628                 tp->undo_marker = 0;
2629                 tcp_set_ca_state(sk, TCP_CA_Loss);
2630         }
2631         tcp_xmit_retransmit_queue(sk);
2632 }
2633
2634 /* Process an event, which can update packets-in-flight not trivially.
2635  * Main goal of this function is to calculate new estimate for left_out,
2636  * taking into account both packets sitting in receiver's buffer and
2637  * packets lost by network.
2638  *
2639  * Besides that it does CWND reduction, when packet loss is detected
2640  * and changes state of machine.
2641  *
2642  * It does _not_ decide what to send, it is made in function
2643  * tcp_xmit_retransmit_queue().
2644  */
2645 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2646 {
2647         struct inet_connection_sock *icsk = inet_csk(sk);
2648         struct tcp_sock *tp = tcp_sk(sk);
2649         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2650         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2651                                     (tcp_fackets_out(tp) > tp->reordering));
2652         int fast_rexmit = 0, mib_idx;
2653
2654         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2655                 tp->sacked_out = 0;
2656         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2657                 tp->fackets_out = 0;
2658
2659         /* Now state machine starts.
2660          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2661         if (flag & FLAG_ECE)
2662                 tp->prior_ssthresh = 0;
2663
2664         /* B. In all the states check for reneging SACKs. */
2665         if (tcp_check_sack_reneging(sk, flag))
2666                 return;
2667
2668         /* C. Process data loss notification, provided it is valid. */
2669         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2670             before(tp->snd_una, tp->high_seq) &&
2671             icsk->icsk_ca_state != TCP_CA_Open &&
2672             tp->fackets_out > tp->reordering) {
2673                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2674                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2675         }
2676
2677         /* D. Check consistency of the current state. */
2678         tcp_verify_left_out(tp);
2679
2680         /* E. Check state exit conditions. State can be terminated
2681          *    when high_seq is ACKed. */
2682         if (icsk->icsk_ca_state == TCP_CA_Open) {
2683                 WARN_ON(tp->retrans_out != 0);
2684                 tp->retrans_stamp = 0;
2685         } else if (!before(tp->snd_una, tp->high_seq)) {
2686                 switch (icsk->icsk_ca_state) {
2687                 case TCP_CA_Loss:
2688                         icsk->icsk_retransmits = 0;
2689                         if (tcp_try_undo_recovery(sk))
2690                                 return;
2691                         break;
2692
2693                 case TCP_CA_CWR:
2694                         /* CWR is to be held something *above* high_seq
2695                          * is ACKed for CWR bit to reach receiver. */
2696                         if (tp->snd_una != tp->high_seq) {
2697                                 tcp_complete_cwr(sk);
2698                                 tcp_set_ca_state(sk, TCP_CA_Open);
2699                         }
2700                         break;
2701
2702                 case TCP_CA_Disorder:
2703                         tcp_try_undo_dsack(sk);
2704                         if (!tp->undo_marker ||
2705                             /* For SACK case do not Open to allow to undo
2706                              * catching for all duplicate ACKs. */
2707                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2708                                 tp->undo_marker = 0;
2709                                 tcp_set_ca_state(sk, TCP_CA_Open);
2710                         }
2711                         break;
2712
2713                 case TCP_CA_Recovery:
2714                         if (tcp_is_reno(tp))
2715                                 tcp_reset_reno_sack(tp);
2716                         if (tcp_try_undo_recovery(sk))
2717                                 return;
2718                         tcp_complete_cwr(sk);
2719                         break;
2720                 }
2721         }
2722
2723         /* F. Process state. */
2724         switch (icsk->icsk_ca_state) {
2725         case TCP_CA_Recovery:
2726                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2727                         if (tcp_is_reno(tp) && is_dupack)
2728                                 tcp_add_reno_sack(sk);
2729                 } else
2730                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2731                 break;
2732         case TCP_CA_Loss:
2733                 if (flag & FLAG_DATA_ACKED)
2734                         icsk->icsk_retransmits = 0;
2735                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2736                         tcp_reset_reno_sack(tp);
2737                 if (!tcp_try_undo_loss(sk)) {
2738                         tcp_moderate_cwnd(tp);
2739                         tcp_xmit_retransmit_queue(sk);
2740                         return;
2741                 }
2742                 if (icsk->icsk_ca_state != TCP_CA_Open)
2743                         return;
2744                 /* Loss is undone; fall through to processing in Open state. */
2745         default:
2746                 if (tcp_is_reno(tp)) {
2747                         if (flag & FLAG_SND_UNA_ADVANCED)
2748                                 tcp_reset_reno_sack(tp);
2749                         if (is_dupack)
2750                                 tcp_add_reno_sack(sk);
2751                 }
2752
2753                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2754                         tcp_try_undo_dsack(sk);
2755
2756                 if (!tcp_time_to_recover(sk)) {
2757                         tcp_try_to_open(sk, flag);
2758                         return;
2759                 }
2760
2761                 /* MTU probe failure: don't reduce cwnd */
2762                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2763                     icsk->icsk_mtup.probe_size &&
2764                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2765                         tcp_mtup_probe_failed(sk);
2766                         /* Restores the reduction we did in tcp_mtup_probe() */
2767                         tp->snd_cwnd++;
2768                         tcp_simple_retransmit(sk);
2769                         return;
2770                 }
2771
2772                 /* Otherwise enter Recovery state */
2773
2774                 if (tcp_is_reno(tp))
2775                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
2776                 else
2777                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2778
2779                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2780
2781                 tp->high_seq = tp->snd_nxt;
2782                 tp->prior_ssthresh = 0;
2783                 tp->undo_marker = tp->snd_una;
2784                 tp->undo_retrans = tp->retrans_out;
2785
2786                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2787                         if (!(flag & FLAG_ECE))
2788                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2789                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2790                         TCP_ECN_queue_cwr(tp);
2791                 }
2792
2793                 tp->bytes_acked = 0;
2794                 tp->snd_cwnd_cnt = 0;
2795                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2796                 fast_rexmit = 1;
2797         }
2798
2799         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2800                 tcp_update_scoreboard(sk, fast_rexmit);
2801         tcp_cwnd_down(sk, flag);
2802         tcp_xmit_retransmit_queue(sk);
2803 }
2804
2805 /* Read draft-ietf-tcplw-high-performance before mucking
2806  * with this code. (Supersedes RFC1323)
2807  */
2808 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2809 {
2810         /* RTTM Rule: A TSecr value received in a segment is used to
2811          * update the averaged RTT measurement only if the segment
2812          * acknowledges some new data, i.e., only if it advances the
2813          * left edge of the send window.
2814          *
2815          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2816          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2817          *
2818          * Changed: reset backoff as soon as we see the first valid sample.
2819          * If we do not, we get strongly overestimated rto. With timestamps
2820          * samples are accepted even from very old segments: f.e., when rtt=1
2821          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2822          * answer arrives rto becomes 120 seconds! If at least one of segments
2823          * in window is lost... Voila.                          --ANK (010210)
2824          */
2825         struct tcp_sock *tp = tcp_sk(sk);
2826         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2827         tcp_rtt_estimator(sk, seq_rtt);
2828         tcp_set_rto(sk);
2829         inet_csk(sk)->icsk_backoff = 0;
2830         tcp_bound_rto(sk);
2831 }
2832
2833 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2834 {
2835         /* We don't have a timestamp. Can only use
2836          * packets that are not retransmitted to determine
2837          * rtt estimates. Also, we must not reset the
2838          * backoff for rto until we get a non-retransmitted
2839          * packet. This allows us to deal with a situation
2840          * where the network delay has increased suddenly.
2841          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2842          */
2843
2844         if (flag & FLAG_RETRANS_DATA_ACKED)
2845                 return;
2846
2847         tcp_rtt_estimator(sk, seq_rtt);
2848         tcp_set_rto(sk);
2849         inet_csk(sk)->icsk_backoff = 0;
2850         tcp_bound_rto(sk);
2851 }
2852
2853 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2854                                       const s32 seq_rtt)
2855 {
2856         const struct tcp_sock *tp = tcp_sk(sk);
2857         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2858         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2859                 tcp_ack_saw_tstamp(sk, flag);
2860         else if (seq_rtt >= 0)
2861                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2862 }
2863
2864 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2865 {
2866         const struct inet_connection_sock *icsk = inet_csk(sk);
2867         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2868         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2869 }
2870
2871 /* Restart timer after forward progress on connection.
2872  * RFC2988 recommends to restart timer to now+rto.
2873  */
2874 static void tcp_rearm_rto(struct sock *sk)
2875 {
2876         struct tcp_sock *tp = tcp_sk(sk);
2877
2878         if (!tp->packets_out) {
2879                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2880         } else {
2881                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2882                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2883         }
2884 }
2885
2886 /* If we get here, the whole TSO packet has not been acked. */
2887 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2888 {
2889         struct tcp_sock *tp = tcp_sk(sk);
2890         u32 packets_acked;
2891
2892         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2893
2894         packets_acked = tcp_skb_pcount(skb);
2895         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2896                 return 0;
2897         packets_acked -= tcp_skb_pcount(skb);
2898
2899         if (packets_acked) {
2900                 BUG_ON(tcp_skb_pcount(skb) == 0);
2901                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2902         }
2903
2904         return packets_acked;
2905 }
2906
2907 /* Remove acknowledged frames from the retransmission queue. If our packet
2908  * is before the ack sequence we can discard it as it's confirmed to have
2909  * arrived at the other end.
2910  */
2911 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2912                                u32 prior_snd_una)
2913 {
2914         struct tcp_sock *tp = tcp_sk(sk);
2915         const struct inet_connection_sock *icsk = inet_csk(sk);
2916         struct sk_buff *skb;
2917         u32 now = tcp_time_stamp;
2918         int fully_acked = 1;
2919         int flag = 0;
2920         u32 pkts_acked = 0;
2921         u32 reord = tp->packets_out;
2922         u32 prior_sacked = tp->sacked_out;
2923         s32 seq_rtt = -1;
2924         s32 ca_seq_rtt = -1;
2925         ktime_t last_ackt = net_invalid_timestamp();
2926
2927         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2928                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2929                 u32 end_seq;
2930                 u32 acked_pcount;
2931                 u8 sacked = scb->sacked;
2932
2933                 /* Determine how many packets and what bytes were acked, tso and else */
2934                 if (after(scb->end_seq, tp->snd_una)) {
2935                         if (tcp_skb_pcount(skb) == 1 ||
2936                             !after(tp->snd_una, scb->seq))
2937                                 break;
2938
2939                         acked_pcount = tcp_tso_acked(sk, skb);
2940                         if (!acked_pcount)
2941                                 break;
2942
2943                         fully_acked = 0;
2944                         end_seq = tp->snd_una;
2945                 } else {
2946                         acked_pcount = tcp_skb_pcount(skb);
2947                         end_seq = scb->end_seq;
2948                 }
2949
2950                 /* MTU probing checks */
2951                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2952                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2953                         tcp_mtup_probe_success(sk, skb);
2954                 }
2955
2956                 if (sacked & TCPCB_RETRANS) {
2957                         if (sacked & TCPCB_SACKED_RETRANS)
2958                                 tp->retrans_out -= acked_pcount;
2959                         flag |= FLAG_RETRANS_DATA_ACKED;
2960                         ca_seq_rtt = -1;
2961                         seq_rtt = -1;
2962                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2963                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2964                 } else {
2965                         ca_seq_rtt = now - scb->when;
2966                         last_ackt = skb->tstamp;
2967                         if (seq_rtt < 0) {
2968                                 seq_rtt = ca_seq_rtt;
2969                         }
2970                         if (!(sacked & TCPCB_SACKED_ACKED))
2971                                 reord = min(pkts_acked, reord);
2972                 }
2973
2974                 if (sacked & TCPCB_SACKED_ACKED)
2975                         tp->sacked_out -= acked_pcount;
2976                 if (sacked & TCPCB_LOST)
2977                         tp->lost_out -= acked_pcount;
2978
2979                 tp->packets_out -= acked_pcount;
2980                 pkts_acked += acked_pcount;
2981
2982                 /* Initial outgoing SYN's get put onto the write_queue
2983                  * just like anything else we transmit.  It is not
2984                  * true data, and if we misinform our callers that
2985                  * this ACK acks real data, we will erroneously exit
2986                  * connection startup slow start one packet too
2987                  * quickly.  This is severely frowned upon behavior.
2988                  */
2989                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2990                         flag |= FLAG_DATA_ACKED;
2991                 } else {
2992                         flag |= FLAG_SYN_ACKED;
2993                         tp->retrans_stamp = 0;
2994                 }
2995
2996                 if (!fully_acked)
2997                         break;
2998
2999                 tcp_unlink_write_queue(skb, sk);
3000                 sk_wmem_free_skb(sk, skb);
3001                 tp->scoreboard_skb_hint = NULL;
3002                 if (skb == tp->retransmit_skb_hint)
3003                         tp->retransmit_skb_hint = NULL;
3004                 if (skb == tp->lost_skb_hint)
3005                         tp->lost_skb_hint = NULL;
3006         }
3007
3008         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3009                 tp->snd_up = tp->snd_una;
3010
3011         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3012                 flag |= FLAG_SACK_RENEGING;
3013
3014         if (flag & FLAG_ACKED) {
3015                 const struct tcp_congestion_ops *ca_ops
3016                         = inet_csk(sk)->icsk_ca_ops;
3017
3018                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3019                 tcp_rearm_rto(sk);
3020
3021                 if (tcp_is_reno(tp)) {
3022                         tcp_remove_reno_sacks(sk, pkts_acked);
3023                 } else {
3024                         /* Non-retransmitted hole got filled? That's reordering */
3025                         if (reord < prior_fackets)
3026                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3027
3028                         /* No need to care for underflows here because
3029                          * the lost_skb_hint gets NULLed if we're past it
3030                          * (or something non-trivial happened)
3031                          */
3032                         if (tcp_is_fack(tp))
3033                                 tp->lost_cnt_hint -= pkts_acked;
3034                         else
3035                                 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3036                 }
3037
3038                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3039
3040                 if (ca_ops->pkts_acked) {
3041                         s32 rtt_us = -1;
3042
3043                         /* Is the ACK triggering packet unambiguous? */
3044                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3045                                 /* High resolution needed and available? */
3046                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3047                                     !ktime_equal(last_ackt,
3048                                                  net_invalid_timestamp()))
3049                                         rtt_us = ktime_us_delta(ktime_get_real(),
3050                                                                 last_ackt);
3051                                 else if (ca_seq_rtt > 0)
3052                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3053                         }
3054
3055                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3056                 }
3057         }
3058
3059 #if FASTRETRANS_DEBUG > 0
3060         WARN_ON((int)tp->sacked_out < 0);
3061         WARN_ON((int)tp->lost_out < 0);
3062         WARN_ON((int)tp->retrans_out < 0);
3063         if (!tp->packets_out && tcp_is_sack(tp)) {
3064                 icsk = inet_csk(sk);
3065                 if (tp->lost_out) {
3066                         printk(KERN_DEBUG "Leak l=%u %d\n",
3067                                tp->lost_out, icsk->icsk_ca_state);
3068                         tp->lost_out = 0;
3069                 }
3070                 if (tp->sacked_out) {
3071                         printk(KERN_DEBUG "Leak s=%u %d\n",
3072                                tp->sacked_out, icsk->icsk_ca_state);
3073                         tp->sacked_out = 0;
3074                 }
3075                 if (tp->retrans_out) {
3076                         printk(KERN_DEBUG "Leak r=%u %d\n",
3077                                tp->retrans_out, icsk->icsk_ca_state);
3078                         tp->retrans_out = 0;
3079                 }
3080         }
3081 #endif
3082         return flag;
3083 }
3084
3085 static void tcp_ack_probe(struct sock *sk)
3086 {
3087         const struct tcp_sock *tp = tcp_sk(sk);
3088         struct inet_connection_sock *icsk = inet_csk(sk);
3089
3090         /* Was it a usable window open? */
3091
3092         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3093                 icsk->icsk_backoff = 0;
3094                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3095                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3096                  * This function is not for random using!
3097                  */
3098         } else {
3099                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3100                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3101                                           TCP_RTO_MAX);
3102         }
3103 }
3104
3105 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3106 {
3107         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3108                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3109 }
3110
3111 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3112 {
3113         const struct tcp_sock *tp = tcp_sk(sk);
3114         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3115                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3116 }
3117
3118 /* Check that window update is acceptable.
3119  * The function assumes that snd_una<=ack<=snd_next.
3120  */
3121 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3122                                         const u32 ack, const u32 ack_seq,
3123                                         const u32 nwin)
3124 {
3125         return (after(ack, tp->snd_una) ||
3126                 after(ack_seq, tp->snd_wl1) ||
3127                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3128 }
3129
3130 /* Update our send window.
3131  *
3132  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3133  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3134  */
3135 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3136                                  u32 ack_seq)
3137 {
3138         struct tcp_sock *tp = tcp_sk(sk);
3139         int flag = 0;
3140         u32 nwin = ntohs(tcp_hdr(skb)->window);
3141
3142         if (likely(!tcp_hdr(skb)->syn))
3143                 nwin <<= tp->rx_opt.snd_wscale;
3144
3145         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3146                 flag |= FLAG_WIN_UPDATE;
3147                 tcp_update_wl(tp, ack, ack_seq);
3148
3149                 if (tp->snd_wnd != nwin) {
3150                         tp->snd_wnd = nwin;
3151
3152                         /* Note, it is the only place, where
3153                          * fast path is recovered for sending TCP.
3154                          */
3155                         tp->pred_flags = 0;
3156                         tcp_fast_path_check(sk);
3157
3158                         if (nwin > tp->max_window) {
3159                                 tp->max_window = nwin;
3160                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3161                         }
3162                 }
3163         }
3164
3165         tp->snd_una = ack;
3166
3167         return flag;
3168 }
3169
3170 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3171  * continue in congestion avoidance.
3172  */
3173 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3174 {
3175         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3176         tp->snd_cwnd_cnt = 0;
3177         tp->bytes_acked = 0;
3178         TCP_ECN_queue_cwr(tp);
3179         tcp_moderate_cwnd(tp);
3180 }
3181
3182 /* A conservative spurious RTO response algorithm: reduce cwnd using
3183  * rate halving and continue in congestion avoidance.
3184  */
3185 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3186 {
3187         tcp_enter_cwr(sk, 0);
3188 }
3189
3190 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3191 {
3192         if (flag & FLAG_ECE)
3193                 tcp_ratehalving_spur_to_response(sk);
3194         else
3195                 tcp_undo_cwr(sk, 1);
3196 }
3197
3198 /* F-RTO spurious RTO detection algorithm (RFC4138)
3199  *
3200  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3201  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3202  * window (but not to or beyond highest sequence sent before RTO):
3203  *   On First ACK,  send two new segments out.
3204  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3205  *                  algorithm is not part of the F-RTO detection algorithm
3206  *                  given in RFC4138 but can be selected separately).
3207  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3208  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3209  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3210  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3211  *
3212  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3213  * original window even after we transmit two new data segments.
3214  *
3215  * SACK version:
3216  *   on first step, wait until first cumulative ACK arrives, then move to
3217  *   the second step. In second step, the next ACK decides.
3218  *
3219  * F-RTO is implemented (mainly) in four functions:
3220  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3221  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3222  *     called when tcp_use_frto() showed green light
3223  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3224  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3225  *     to prove that the RTO is indeed spurious. It transfers the control
3226  *     from F-RTO to the conventional RTO recovery
3227  */
3228 static int tcp_process_frto(struct sock *sk, int flag)
3229 {
3230         struct tcp_sock *tp = tcp_sk(sk);
3231
3232         tcp_verify_left_out(tp);
3233
3234         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3235         if (flag & FLAG_DATA_ACKED)
3236                 inet_csk(sk)->icsk_retransmits = 0;
3237
3238         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3239             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3240                 tp->undo_marker = 0;
3241
3242         if (!before(tp->snd_una, tp->frto_highmark)) {
3243                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3244                 return 1;
3245         }
3246
3247         if (!tcp_is_sackfrto(tp)) {
3248                 /* RFC4138 shortcoming in step 2; should also have case c):
3249                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3250                  * data, winupdate
3251                  */
3252                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3253                         return 1;
3254
3255                 if (!(flag & FLAG_DATA_ACKED)) {
3256                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3257                                             flag);
3258                         return 1;
3259                 }
3260         } else {
3261                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3262                         /* Prevent sending of new data. */
3263                         tp->snd_cwnd = min(tp->snd_cwnd,
3264                                            tcp_packets_in_flight(tp));
3265                         return 1;
3266                 }
3267
3268                 if ((tp->frto_counter >= 2) &&
3269                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3270                      ((flag & FLAG_DATA_SACKED) &&
3271                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3272                         /* RFC4138 shortcoming (see comment above) */
3273                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3274                             (flag & FLAG_NOT_DUP))
3275                                 return 1;
3276
3277                         tcp_enter_frto_loss(sk, 3, flag);
3278                         return 1;
3279                 }
3280         }
3281
3282         if (tp->frto_counter == 1) {
3283                 /* tcp_may_send_now needs to see updated state */
3284                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3285                 tp->frto_counter = 2;
3286
3287                 if (!tcp_may_send_now(sk))
3288                         tcp_enter_frto_loss(sk, 2, flag);
3289
3290                 return 1;
3291         } else {
3292                 switch (sysctl_tcp_frto_response) {
3293                 case 2:
3294                         tcp_undo_spur_to_response(sk, flag);
3295                         break;
3296                 case 1:
3297                         tcp_conservative_spur_to_response(tp);
3298                         break;
3299                 default:
3300                         tcp_ratehalving_spur_to_response(sk);
3301                         break;
3302                 }
3303                 tp->frto_counter = 0;
3304                 tp->undo_marker = 0;
3305                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3306         }
3307         return 0;
3308 }
3309
3310 /* This routine deals with incoming acks, but not outgoing ones. */
3311 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3312 {
3313         struct inet_connection_sock *icsk = inet_csk(sk);
3314         struct tcp_sock *tp = tcp_sk(sk);
3315         u32 prior_snd_una = tp->snd_una;
3316         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3317         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3318         u32 prior_in_flight;
3319         u32 prior_fackets;
3320         int prior_packets;
3321         int frto_cwnd = 0;
3322
3323         /* If the ack is newer than sent or older than previous acks
3324          * then we can probably ignore it.
3325          */
3326         if (after(ack, tp->snd_nxt))
3327                 goto uninteresting_ack;
3328
3329         if (before(ack, prior_snd_una))
3330                 goto old_ack;
3331
3332         if (after(ack, prior_snd_una))
3333                 flag |= FLAG_SND_UNA_ADVANCED;
3334
3335         if (sysctl_tcp_abc) {
3336                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3337                         tp->bytes_acked += ack - prior_snd_una;
3338                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3339                         /* we assume just one segment left network */
3340                         tp->bytes_acked += min(ack - prior_snd_una,
3341                                                tp->mss_cache);
3342         }
3343
3344         prior_fackets = tp->fackets_out;
3345         prior_in_flight = tcp_packets_in_flight(tp);
3346
3347         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3348                 /* Window is constant, pure forward advance.
3349                  * No more checks are required.
3350                  * Note, we use the fact that SND.UNA>=SND.WL2.
3351                  */
3352                 tcp_update_wl(tp, ack, ack_seq);
3353                 tp->snd_una = ack;
3354                 flag |= FLAG_WIN_UPDATE;
3355
3356                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3357
3358                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3359         } else {
3360                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3361                         flag |= FLAG_DATA;
3362                 else
3363                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3364
3365                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3366
3367                 if (TCP_SKB_CB(skb)->sacked)
3368                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3369
3370                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3371                         flag |= FLAG_ECE;
3372
3373                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3374         }
3375
3376         /* We passed data and got it acked, remove any soft error
3377          * log. Something worked...
3378          */
3379         sk->sk_err_soft = 0;
3380         icsk->icsk_probes_out = 0;
3381         tp->rcv_tstamp = tcp_time_stamp;
3382         prior_packets = tp->packets_out;
3383         if (!prior_packets)
3384                 goto no_queue;
3385
3386         /* See if we can take anything off of the retransmit queue. */
3387         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3388
3389         if (tp->frto_counter)
3390                 frto_cwnd = tcp_process_frto(sk, flag);
3391         /* Guarantee sacktag reordering detection against wrap-arounds */
3392         if (before(tp->frto_highmark, tp->snd_una))
3393                 tp->frto_highmark = 0;
3394
3395         if (tcp_ack_is_dubious(sk, flag)) {
3396                 /* Advance CWND, if state allows this. */
3397                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3398                     tcp_may_raise_cwnd(sk, flag))
3399                         tcp_cong_avoid(sk, ack, prior_in_flight);
3400                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3401                                       flag);
3402         } else {
3403                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3404                         tcp_cong_avoid(sk, ack, prior_in_flight);
3405         }
3406
3407         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3408                 dst_confirm(sk->sk_dst_cache);
3409
3410         return 1;
3411
3412 no_queue:
3413         /* If this ack opens up a zero window, clear backoff.  It was
3414          * being used to time the probes, and is probably far higher than
3415          * it needs to be for normal retransmission.
3416          */
3417         if (tcp_send_head(sk))
3418                 tcp_ack_probe(sk);
3419         return 1;
3420
3421 old_ack:
3422         if (TCP_SKB_CB(skb)->sacked) {
3423                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3424                 if (icsk->icsk_ca_state == TCP_CA_Open)
3425                         tcp_try_keep_open(sk);
3426         }
3427
3428 uninteresting_ack:
3429         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3430         return 0;
3431 }
3432
3433 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3434  * But, this can also be called on packets in the established flow when
3435  * the fast version below fails.
3436  */
3437 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3438                        int estab)
3439 {
3440         unsigned char *ptr;
3441         struct tcphdr *th = tcp_hdr(skb);
3442         int length = (th->doff * 4) - sizeof(struct tcphdr);
3443
3444         ptr = (unsigned char *)(th + 1);
3445         opt_rx->saw_tstamp = 0;
3446
3447         while (length > 0) {
3448                 int opcode = *ptr++;
3449                 int opsize;
3450
3451                 switch (opcode) {
3452                 case TCPOPT_EOL:
3453                         return;
3454                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3455                         length--;
3456                         continue;
3457                 default:
3458                         opsize = *ptr++;
3459                         if (opsize < 2) /* "silly options" */
3460                                 return;
3461                         if (opsize > length)
3462                                 return; /* don't parse partial options */
3463                         switch (opcode) {
3464                         case TCPOPT_MSS:
3465                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3466                                         u16 in_mss = get_unaligned_be16(ptr);
3467                                         if (in_mss) {
3468                                                 if (opt_rx->user_mss &&
3469                                                     opt_rx->user_mss < in_mss)
3470                                                         in_mss = opt_rx->user_mss;
3471                                                 opt_rx->mss_clamp = in_mss;
3472                                         }
3473                                 }
3474                                 break;
3475                         case TCPOPT_WINDOW:
3476                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3477                                     !estab && sysctl_tcp_window_scaling) {
3478                                         __u8 snd_wscale = *(__u8 *)ptr;
3479                                         opt_rx->wscale_ok = 1;
3480                                         if (snd_wscale > 14) {
3481                                                 if (net_ratelimit())
3482                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3483                                                                "scaling value %d >14 received.\n",
3484                                                                snd_wscale);
3485                                                 snd_wscale = 14;
3486                                         }
3487                                         opt_rx->snd_wscale = snd_wscale;
3488                                 }
3489                                 break;
3490                         case TCPOPT_TIMESTAMP:
3491                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3492                                     ((estab && opt_rx->tstamp_ok) ||
3493                                      (!estab && sysctl_tcp_timestamps))) {
3494                                         opt_rx->saw_tstamp = 1;
3495                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3496                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3497                                 }
3498                                 break;
3499                         case TCPOPT_SACK_PERM:
3500                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3501                                     !estab && sysctl_tcp_sack) {
3502                                         opt_rx->sack_ok = 1;
3503                                         tcp_sack_reset(opt_rx);
3504                                 }
3505                                 break;
3506
3507                         case TCPOPT_SACK:
3508                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3509                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3510                                    opt_rx->sack_ok) {
3511                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3512                                 }
3513                                 break;
3514 #ifdef CONFIG_TCP_MD5SIG
3515                         case TCPOPT_MD5SIG:
3516                                 /*
3517                                  * The MD5 Hash has already been
3518                                  * checked (see tcp_v{4,6}_do_rcv()).
3519                                  */
3520                                 break;
3521 #endif
3522                         }
3523
3524                         ptr += opsize-2;
3525                         length -= opsize;
3526                 }
3527         }
3528 }
3529
3530 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3531 {
3532         __be32 *ptr = (__be32 *)(th + 1);
3533
3534         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3535                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3536                 tp->rx_opt.saw_tstamp = 1;
3537                 ++ptr;
3538                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3539                 ++ptr;
3540                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3541                 return 1;
3542         }
3543         return 0;
3544 }
3545
3546 /* Fast parse options. This hopes to only see timestamps.
3547  * If it is wrong it falls back on tcp_parse_options().
3548  */
3549 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3550                                   struct tcp_sock *tp)
3551 {
3552         if (th->doff == sizeof(struct tcphdr) >> 2) {
3553                 tp->rx_opt.saw_tstamp = 0;
3554                 return 0;
3555         } else if (tp->rx_opt.tstamp_ok &&
3556                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3557                 if (tcp_parse_aligned_timestamp(tp, th))
3558                         return 1;
3559         }
3560         tcp_parse_options(skb, &tp->rx_opt, 1);
3561         return 1;
3562 }
3563
3564 #ifdef CONFIG_TCP_MD5SIG
3565 /*
3566  * Parse MD5 Signature option
3567  */
3568 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3569 {
3570         int length = (th->doff << 2) - sizeof (*th);
3571         u8 *ptr = (u8*)(th + 1);
3572
3573         /* If the TCP option is too short, we can short cut */
3574         if (length < TCPOLEN_MD5SIG)
3575                 return NULL;
3576
3577         while (length > 0) {
3578                 int opcode = *ptr++;
3579                 int opsize;
3580
3581                 switch(opcode) {
3582                 case TCPOPT_EOL:
3583                         return NULL;
3584                 case TCPOPT_NOP:
3585                         length--;
3586                         continue;
3587                 default:
3588                         opsize = *ptr++;
3589                         if (opsize < 2 || opsize > length)
3590                                 return NULL;
3591                         if (opcode == TCPOPT_MD5SIG)
3592                                 return ptr;
3593                 }
3594                 ptr += opsize - 2;
3595                 length -= opsize;
3596         }
3597         return NULL;
3598 }
3599 #endif
3600
3601 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3602 {
3603         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3604         tp->rx_opt.ts_recent_stamp = get_seconds();
3605 }
3606
3607 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3608 {
3609         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3610                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3611                  * extra check below makes sure this can only happen
3612                  * for pure ACK frames.  -DaveM
3613                  *
3614                  * Not only, also it occurs for expired timestamps.
3615                  */
3616
3617                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3618                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3619                         tcp_store_ts_recent(tp);
3620         }
3621 }
3622
3623 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3624  *
3625  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3626  * it can pass through stack. So, the following predicate verifies that
3627  * this segment is not used for anything but congestion avoidance or
3628  * fast retransmit. Moreover, we even are able to eliminate most of such
3629  * second order effects, if we apply some small "replay" window (~RTO)
3630  * to timestamp space.
3631  *
3632  * All these measures still do not guarantee that we reject wrapped ACKs
3633  * on networks with high bandwidth, when sequence space is recycled fastly,
3634  * but it guarantees that such events will be very rare and do not affect
3635  * connection seriously. This doesn't look nice, but alas, PAWS is really
3636  * buggy extension.
3637  *
3638  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3639  * states that events when retransmit arrives after original data are rare.
3640  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3641  * the biggest problem on large power networks even with minor reordering.
3642  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3643  * up to bandwidth of 18Gigabit/sec. 8) ]
3644  */
3645
3646 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3647 {
3648         struct tcp_sock *tp = tcp_sk(sk);
3649         struct tcphdr *th = tcp_hdr(skb);
3650         u32 seq = TCP_SKB_CB(skb)->seq;
3651         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3652
3653         return (/* 1. Pure ACK with correct sequence number. */
3654                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3655
3656                 /* 2. ... and duplicate ACK. */
3657                 ack == tp->snd_una &&
3658
3659                 /* 3. ... and does not update window. */
3660                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3661
3662                 /* 4. ... and sits in replay window. */
3663                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3664 }
3665
3666 static inline int tcp_paws_discard(const struct sock *sk,
3667                                    const struct sk_buff *skb)
3668 {
3669         const struct tcp_sock *tp = tcp_sk(sk);
3670         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3671                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3672                 !tcp_disordered_ack(sk, skb));
3673 }
3674
3675 /* Check segment sequence number for validity.
3676  *
3677  * Segment controls are considered valid, if the segment
3678  * fits to the window after truncation to the window. Acceptability
3679  * of data (and SYN, FIN, of course) is checked separately.
3680  * See tcp_data_queue(), for example.
3681  *
3682  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3683  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3684  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3685  * (borrowed from freebsd)
3686  */
3687
3688 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3689 {
3690         return  !before(end_seq, tp->rcv_wup) &&
3691                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3692 }
3693
3694 /* When we get a reset we do this. */
3695 static void tcp_reset(struct sock *sk)
3696 {
3697         /* We want the right error as BSD sees it (and indeed as we do). */
3698         switch (sk->sk_state) {
3699         case TCP_SYN_SENT:
3700                 sk->sk_err = ECONNREFUSED;
3701                 break;
3702         case TCP_CLOSE_WAIT:
3703                 sk->sk_err = EPIPE;
3704                 break;
3705         case TCP_CLOSE:
3706                 return;
3707         default:
3708                 sk->sk_err = ECONNRESET;
3709         }
3710
3711         if (!sock_flag(sk, SOCK_DEAD))
3712                 sk->sk_error_report(sk);
3713
3714         tcp_done(sk);
3715 }
3716
3717 /*
3718  *      Process the FIN bit. This now behaves as it is supposed to work
3719  *      and the FIN takes effect when it is validly part of sequence
3720  *      space. Not before when we get holes.
3721  *
3722  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3723  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3724  *      TIME-WAIT)
3725  *
3726  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3727  *      close and we go into CLOSING (and later onto TIME-WAIT)
3728  *
3729  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3730  */
3731 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3732 {
3733         struct tcp_sock *tp = tcp_sk(sk);
3734
3735         inet_csk_schedule_ack(sk);
3736
3737         sk->sk_shutdown |= RCV_SHUTDOWN;
3738         sock_set_flag(sk, SOCK_DONE);
3739
3740         switch (sk->sk_state) {
3741         case TCP_SYN_RECV:
3742         case TCP_ESTABLISHED:
3743                 /* Move to CLOSE_WAIT */
3744                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3745                 inet_csk(sk)->icsk_ack.pingpong = 1;
3746                 break;
3747
3748         case TCP_CLOSE_WAIT:
3749         case TCP_CLOSING:
3750                 /* Received a retransmission of the FIN, do
3751                  * nothing.
3752                  */
3753                 break;
3754         case TCP_LAST_ACK:
3755                 /* RFC793: Remain in the LAST-ACK state. */
3756                 break;
3757
3758         case TCP_FIN_WAIT1:
3759                 /* This case occurs when a simultaneous close
3760                  * happens, we must ack the received FIN and
3761                  * enter the CLOSING state.
3762                  */
3763                 tcp_send_ack(sk);
3764                 tcp_set_state(sk, TCP_CLOSING);
3765                 break;
3766         case TCP_FIN_WAIT2:
3767                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3768                 tcp_send_ack(sk);
3769                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3770                 break;
3771         default:
3772                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3773                  * cases we should never reach this piece of code.
3774                  */
3775                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3776                        __func__, sk->sk_state);
3777                 break;
3778         }
3779
3780         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3781          * Probably, we should reset in this case. For now drop them.
3782          */
3783         __skb_queue_purge(&tp->out_of_order_queue);
3784         if (tcp_is_sack(tp))
3785                 tcp_sack_reset(&tp->rx_opt);
3786         sk_mem_reclaim(sk);
3787
3788         if (!sock_flag(sk, SOCK_DEAD)) {
3789                 sk->sk_state_change(sk);
3790
3791                 /* Do not send POLL_HUP for half duplex close. */
3792                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3793                     sk->sk_state == TCP_CLOSE)
3794                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3795                 else
3796                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3797         }
3798 }
3799
3800 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3801                                   u32 end_seq)
3802 {
3803         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3804                 if (before(seq, sp->start_seq))
3805                         sp->start_seq = seq;
3806                 if (after(end_seq, sp->end_seq))
3807                         sp->end_seq = end_seq;
3808                 return 1;
3809         }
3810         return 0;
3811 }
3812
3813 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3814 {
3815         struct tcp_sock *tp = tcp_sk(sk);
3816
3817         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3818                 int mib_idx;
3819
3820                 if (before(seq, tp->rcv_nxt))
3821                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3822                 else
3823                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3824
3825                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3826
3827                 tp->rx_opt.dsack = 1;
3828                 tp->duplicate_sack[0].start_seq = seq;
3829                 tp->duplicate_sack[0].end_seq = end_seq;
3830                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3831         }
3832 }
3833
3834 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3835 {
3836         struct tcp_sock *tp = tcp_sk(sk);
3837
3838         if (!tp->rx_opt.dsack)
3839                 tcp_dsack_set(sk, seq, end_seq);
3840         else
3841                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3842 }
3843
3844 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3845 {
3846         struct tcp_sock *tp = tcp_sk(sk);
3847
3848         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3849             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3850                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3851                 tcp_enter_quickack_mode(sk);
3852
3853                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3854                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3855
3856                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3857                                 end_seq = tp->rcv_nxt;
3858                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3859                 }
3860         }
3861
3862         tcp_send_ack(sk);
3863 }
3864
3865 /* These routines update the SACK block as out-of-order packets arrive or
3866  * in-order packets close up the sequence space.
3867  */
3868 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3869 {
3870         int this_sack;
3871         struct tcp_sack_block *sp = &tp->selective_acks[0];
3872         struct tcp_sack_block *swalk = sp + 1;
3873
3874         /* See if the recent change to the first SACK eats into
3875          * or hits the sequence space of other SACK blocks, if so coalesce.
3876          */
3877         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3878                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3879                         int i;
3880
3881                         /* Zap SWALK, by moving every further SACK up by one slot.
3882                          * Decrease num_sacks.
3883                          */
3884                         tp->rx_opt.num_sacks--;
3885                         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3886                                                tp->rx_opt.dsack;
3887                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3888                                 sp[i] = sp[i + 1];
3889                         continue;
3890                 }
3891                 this_sack++, swalk++;
3892         }
3893 }
3894
3895 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3896                                  struct tcp_sack_block *sack2)
3897 {
3898         __u32 tmp;
3899
3900         tmp = sack1->start_seq;
3901         sack1->start_seq = sack2->start_seq;
3902         sack2->start_seq = tmp;
3903
3904         tmp = sack1->end_seq;
3905         sack1->end_seq = sack2->end_seq;
3906         sack2->end_seq = tmp;
3907 }
3908
3909 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3910 {
3911         struct tcp_sock *tp = tcp_sk(sk);
3912         struct tcp_sack_block *sp = &tp->selective_acks[0];
3913         int cur_sacks = tp->rx_opt.num_sacks;
3914         int this_sack;
3915
3916         if (!cur_sacks)
3917                 goto new_sack;
3918
3919         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3920                 if (tcp_sack_extend(sp, seq, end_seq)) {
3921                         /* Rotate this_sack to the first one. */
3922                         for (; this_sack > 0; this_sack--, sp--)
3923                                 tcp_sack_swap(sp, sp - 1);
3924                         if (cur_sacks > 1)
3925                                 tcp_sack_maybe_coalesce(tp);
3926                         return;
3927                 }
3928         }
3929
3930         /* Could not find an adjacent existing SACK, build a new one,
3931          * put it at the front, and shift everyone else down.  We
3932          * always know there is at least one SACK present already here.
3933          *
3934          * If the sack array is full, forget about the last one.
3935          */
3936         if (this_sack >= TCP_NUM_SACKS) {
3937                 this_sack--;
3938                 tp->rx_opt.num_sacks--;
3939                 sp--;
3940         }
3941         for (; this_sack > 0; this_sack--, sp--)
3942                 *sp = *(sp - 1);
3943
3944 new_sack:
3945         /* Build the new head SACK, and we're done. */
3946         sp->start_seq = seq;
3947         sp->end_seq = end_seq;
3948         tp->rx_opt.num_sacks++;
3949         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3950 }
3951
3952 /* RCV.NXT advances, some SACKs should be eaten. */
3953
3954 static void tcp_sack_remove(struct tcp_sock *tp)
3955 {
3956         struct tcp_sack_block *sp = &tp->selective_acks[0];
3957         int num_sacks = tp->rx_opt.num_sacks;
3958         int this_sack;
3959
3960         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3961         if (skb_queue_empty(&tp->out_of_order_queue)) {
3962                 tp->rx_opt.num_sacks = 0;
3963                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3964                 return;
3965         }
3966
3967         for (this_sack = 0; this_sack < num_sacks;) {
3968                 /* Check if the start of the sack is covered by RCV.NXT. */
3969                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3970                         int i;
3971
3972                         /* RCV.NXT must cover all the block! */
3973                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3974
3975                         /* Zap this SACK, by moving forward any other SACKS. */
3976                         for (i=this_sack+1; i < num_sacks; i++)
3977                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3978                         num_sacks--;
3979                         continue;
3980                 }
3981                 this_sack++;
3982                 sp++;
3983         }
3984         if (num_sacks != tp->rx_opt.num_sacks) {
3985                 tp->rx_opt.num_sacks = num_sacks;
3986                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3987                                        tp->rx_opt.dsack;
3988         }
3989 }
3990
3991 /* This one checks to see if we can put data from the
3992  * out_of_order queue into the receive_queue.
3993  */
3994 static void tcp_ofo_queue(struct sock *sk)
3995 {
3996         struct tcp_sock *tp = tcp_sk(sk);
3997         __u32 dsack_high = tp->rcv_nxt;
3998         struct sk_buff *skb;
3999
4000         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4001                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4002                         break;
4003
4004                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4005                         __u32 dsack = dsack_high;
4006                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4007                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4008                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4009                 }
4010
4011                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4012                         SOCK_DEBUG(sk, "ofo packet was already received \n");
4013                         __skb_unlink(skb, &tp->out_of_order_queue);
4014                         __kfree_skb(skb);
4015                         continue;
4016                 }
4017                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4018                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4019                            TCP_SKB_CB(skb)->end_seq);
4020
4021                 __skb_unlink(skb, &tp->out_of_order_queue);
4022                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4023                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4024                 if (tcp_hdr(skb)->fin)
4025                         tcp_fin(skb, sk, tcp_hdr(skb));
4026         }
4027 }
4028
4029 static int tcp_prune_ofo_queue(struct sock *sk);
4030 static int tcp_prune_queue(struct sock *sk);
4031
4032 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4033 {
4034         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4035             !sk_rmem_schedule(sk, size)) {
4036
4037                 if (tcp_prune_queue(sk) < 0)
4038                         return -1;
4039
4040                 if (!sk_rmem_schedule(sk, size)) {
4041                         if (!tcp_prune_ofo_queue(sk))
4042                                 return -1;
4043
4044                         if (!sk_rmem_schedule(sk, size))
4045                                 return -1;
4046                 }
4047         }
4048         return 0;
4049 }
4050
4051 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4052 {
4053         struct tcphdr *th = tcp_hdr(skb);
4054         struct tcp_sock *tp = tcp_sk(sk);
4055         int eaten = -1;
4056
4057         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4058                 goto drop;
4059
4060         __skb_pull(skb, th->doff * 4);
4061
4062         TCP_ECN_accept_cwr(tp, skb);
4063
4064         if (tp->rx_opt.dsack) {
4065                 tp->rx_opt.dsack = 0;
4066                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4067         }
4068
4069         /*  Queue data for delivery to the user.
4070          *  Packets in sequence go to the receive queue.
4071          *  Out of sequence packets to the out_of_order_queue.
4072          */
4073         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4074                 if (tcp_receive_window(tp) == 0)
4075                         goto out_of_window;
4076
4077                 /* Ok. In sequence. In window. */
4078                 if (tp->ucopy.task == current &&
4079                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4080                     sock_owned_by_user(sk) && !tp->urg_data) {
4081                         int chunk = min_t(unsigned int, skb->len,
4082                                           tp->ucopy.len);
4083
4084                         __set_current_state(TASK_RUNNING);
4085
4086                         local_bh_enable();
4087                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4088                                 tp->ucopy.len -= chunk;
4089                                 tp->copied_seq += chunk;
4090                                 eaten = (chunk == skb->len && !th->fin);
4091                                 tcp_rcv_space_adjust(sk);
4092                         }
4093                         local_bh_disable();
4094                 }
4095
4096                 if (eaten <= 0) {
4097 queue_and_out:
4098                         if (eaten < 0 &&
4099                             tcp_try_rmem_schedule(sk, skb->truesize))
4100                                 goto drop;
4101
4102                         skb_set_owner_r(skb, sk);
4103                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4104                 }
4105                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4106                 if (skb->len)
4107                         tcp_event_data_recv(sk, skb);
4108                 if (th->fin)
4109                         tcp_fin(skb, sk, th);
4110
4111                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4112                         tcp_ofo_queue(sk);
4113
4114                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4115                          * gap in queue is filled.
4116                          */
4117                         if (skb_queue_empty(&tp->out_of_order_queue))
4118                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4119                 }
4120
4121                 if (tp->rx_opt.num_sacks)
4122                         tcp_sack_remove(tp);
4123
4124                 tcp_fast_path_check(sk);
4125
4126                 if (eaten > 0)
4127                         __kfree_skb(skb);
4128                 else if (!sock_flag(sk, SOCK_DEAD))
4129                         sk->sk_data_ready(sk, 0);
4130                 return;
4131         }
4132
4133         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4134                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4135                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4136                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4137
4138 out_of_window:
4139                 tcp_enter_quickack_mode(sk);
4140                 inet_csk_schedule_ack(sk);
4141 drop:
4142                 __kfree_skb(skb);
4143                 return;
4144         }
4145
4146         /* Out of window. F.e. zero window probe. */
4147         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4148                 goto out_of_window;
4149
4150         tcp_enter_quickack_mode(sk);
4151
4152         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4153                 /* Partial packet, seq < rcv_next < end_seq */
4154                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4155                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4156                            TCP_SKB_CB(skb)->end_seq);
4157
4158                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4159
4160                 /* If window is closed, drop tail of packet. But after
4161                  * remembering D-SACK for its head made in previous line.
4162                  */
4163                 if (!tcp_receive_window(tp))
4164                         goto out_of_window;
4165                 goto queue_and_out;
4166         }
4167
4168         TCP_ECN_check_ce(tp, skb);
4169
4170         if (tcp_try_rmem_schedule(sk, skb->truesize))
4171                 goto drop;
4172
4173         /* Disable header prediction. */
4174         tp->pred_flags = 0;
4175         inet_csk_schedule_ack(sk);
4176
4177         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4178                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4179
4180         skb_set_owner_r(skb, sk);
4181
4182         if (!skb_peek(&tp->out_of_order_queue)) {
4183                 /* Initial out of order segment, build 1 SACK. */
4184                 if (tcp_is_sack(tp)) {
4185                         tp->rx_opt.num_sacks = 1;
4186                         tp->rx_opt.dsack     = 0;
4187                         tp->rx_opt.eff_sacks = 1;
4188                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4189                         tp->selective_acks[0].end_seq =
4190                                                 TCP_SKB_CB(skb)->end_seq;
4191                 }
4192                 __skb_queue_head(&tp->out_of_order_queue, skb);
4193         } else {
4194                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4195                 u32 seq = TCP_SKB_CB(skb)->seq;
4196                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4197
4198                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4199                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4200
4201                         if (!tp->rx_opt.num_sacks ||
4202                             tp->selective_acks[0].end_seq != seq)
4203                                 goto add_sack;
4204
4205                         /* Common case: data arrive in order after hole. */
4206                         tp->selective_acks[0].end_seq = end_seq;
4207                         return;
4208                 }
4209
4210                 /* Find place to insert this segment. */
4211                 do {
4212                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4213                                 break;
4214                 } while ((skb1 = skb1->prev) !=
4215                          (struct sk_buff *)&tp->out_of_order_queue);
4216
4217                 /* Do skb overlap to previous one? */
4218                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4219                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4220                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4221                                 /* All the bits are present. Drop. */
4222                                 __kfree_skb(skb);
4223                                 tcp_dsack_set(sk, seq, end_seq);
4224                                 goto add_sack;
4225                         }
4226                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4227                                 /* Partial overlap. */
4228                                 tcp_dsack_set(sk, seq,
4229                                               TCP_SKB_CB(skb1)->end_seq);
4230                         } else {
4231                                 skb1 = skb1->prev;
4232                         }
4233                 }
4234                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4235
4236                 /* And clean segments covered by new one as whole. */
4237                 while ((skb1 = skb->next) !=
4238                        (struct sk_buff *)&tp->out_of_order_queue &&
4239                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4240                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4241                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4242                                                  end_seq);
4243                                 break;
4244                         }
4245                         __skb_unlink(skb1, &tp->out_of_order_queue);
4246                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4247                                          TCP_SKB_CB(skb1)->end_seq);
4248                         __kfree_skb(skb1);
4249                 }
4250
4251 add_sack:
4252                 if (tcp_is_sack(tp))
4253                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4254         }
4255 }
4256
4257 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4258                                         struct sk_buff_head *list)
4259 {
4260         struct sk_buff *next = skb->next;
4261
4262         __skb_unlink(skb, list);
4263         __kfree_skb(skb);
4264         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4265
4266         return next;
4267 }
4268
4269 /* Collapse contiguous sequence of skbs head..tail with
4270  * sequence numbers start..end.
4271  * Segments with FIN/SYN are not collapsed (only because this
4272  * simplifies code)
4273  */
4274 static void
4275 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4276              struct sk_buff *head, struct sk_buff *tail,
4277              u32 start, u32 end)
4278 {
4279         struct sk_buff *skb;
4280
4281         /* First, check that queue is collapsible and find
4282          * the point where collapsing can be useful. */
4283         for (skb = head; skb != tail;) {
4284                 /* No new bits? It is possible on ofo queue. */
4285                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4286                         skb = tcp_collapse_one(sk, skb, list);
4287                         continue;
4288                 }
4289
4290                 /* The first skb to collapse is:
4291                  * - not SYN/FIN and
4292                  * - bloated or contains data before "start" or
4293                  *   overlaps to the next one.
4294                  */
4295                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4296                     (tcp_win_from_space(skb->truesize) > skb->len ||
4297                      before(TCP_SKB_CB(skb)->seq, start) ||
4298                      (skb->next != tail &&
4299                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4300                         break;
4301
4302                 /* Decided to skip this, advance start seq. */
4303                 start = TCP_SKB_CB(skb)->end_seq;
4304                 skb = skb->next;
4305         }
4306         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4307                 return;
4308
4309         while (before(start, end)) {
4310                 struct sk_buff *nskb;
4311                 unsigned int header = skb_headroom(skb);
4312                 int copy = SKB_MAX_ORDER(header, 0);
4313
4314                 /* Too big header? This can happen with IPv6. */
4315                 if (copy < 0)
4316                         return;
4317                 if (end - start < copy)
4318                         copy = end - start;
4319                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4320                 if (!nskb)
4321                         return;
4322
4323                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4324                 skb_set_network_header(nskb, (skb_network_header(skb) -
4325                                               skb->head));
4326                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4327                                                 skb->head));
4328                 skb_reserve(nskb, header);
4329                 memcpy(nskb->head, skb->head, header);
4330                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4331                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4332                 __skb_queue_before(list, skb, nskb);
4333                 skb_set_owner_r(nskb, sk);
4334
4335                 /* Copy data, releasing collapsed skbs. */
4336                 while (copy > 0) {
4337                         int offset = start - TCP_SKB_CB(skb)->seq;
4338                         int size = TCP_SKB_CB(skb)->end_seq - start;
4339
4340                         BUG_ON(offset < 0);
4341                         if (size > 0) {
4342                                 size = min(copy, size);
4343                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4344                                         BUG();
4345                                 TCP_SKB_CB(nskb)->end_seq += size;
4346                                 copy -= size;
4347                                 start += size;
4348                         }
4349                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4350                                 skb = tcp_collapse_one(sk, skb, list);
4351                                 if (skb == tail ||
4352                                     tcp_hdr(skb)->syn ||
4353                                     tcp_hdr(skb)->fin)
4354                                         return;
4355                         }
4356                 }
4357         }
4358 }
4359
4360 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4361  * and tcp_collapse() them until all the queue is collapsed.
4362  */
4363 static void tcp_collapse_ofo_queue(struct sock *sk)
4364 {
4365         struct tcp_sock *tp = tcp_sk(sk);
4366         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4367         struct sk_buff *head;
4368         u32 start, end;
4369
4370         if (skb == NULL)
4371                 return;
4372
4373         start = TCP_SKB_CB(skb)->seq;
4374         end = TCP_SKB_CB(skb)->end_seq;
4375         head = skb;
4376
4377         for (;;) {
4378                 skb = skb->next;
4379
4380                 /* Segment is terminated when we see gap or when
4381                  * we are at the end of all the queue. */
4382                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4383                     after(TCP_SKB_CB(skb)->seq, end) ||
4384                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4385                         tcp_collapse(sk, &tp->out_of_order_queue,
4386                                      head, skb, start, end);
4387                         head = skb;
4388                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4389                                 break;
4390                         /* Start new segment */
4391                         start = TCP_SKB_CB(skb)->seq;
4392                         end = TCP_SKB_CB(skb)->end_seq;
4393                 } else {
4394                         if (before(TCP_SKB_CB(skb)->seq, start))
4395                                 start = TCP_SKB_CB(skb)->seq;
4396                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4397                                 end = TCP_SKB_CB(skb)->end_seq;
4398                 }
4399         }
4400 }
4401
4402 /*
4403  * Purge the out-of-order queue.
4404  * Return true if queue was pruned.
4405  */
4406 static int tcp_prune_ofo_queue(struct sock *sk)
4407 {
4408         struct tcp_sock *tp = tcp_sk(sk);
4409         int res = 0;
4410
4411         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4412                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4413                 __skb_queue_purge(&tp->out_of_order_queue);
4414
4415                 /* Reset SACK state.  A conforming SACK implementation will
4416                  * do the same at a timeout based retransmit.  When a connection
4417                  * is in a sad state like this, we care only about integrity
4418                  * of the connection not performance.
4419                  */
4420                 if (tp->rx_opt.sack_ok)
4421                         tcp_sack_reset(&tp->rx_opt);
4422                 sk_mem_reclaim(sk);
4423                 res = 1;
4424         }
4425         return res;
4426 }
4427
4428 /* Reduce allocated memory if we can, trying to get
4429  * the socket within its memory limits again.
4430  *
4431  * Return less than zero if we should start dropping frames
4432  * until the socket owning process reads some of the data
4433  * to stabilize the situation.
4434  */
4435 static int tcp_prune_queue(struct sock *sk)
4436 {
4437         struct tcp_sock *tp = tcp_sk(sk);
4438
4439         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4440
4441         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4442
4443         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4444                 tcp_clamp_window(sk);
4445         else if (tcp_memory_pressure)
4446                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4447
4448         tcp_collapse_ofo_queue(sk);
4449         tcp_collapse(sk, &sk->sk_receive_queue,
4450                      sk->sk_receive_queue.next,
4451                      (struct sk_buff *)&sk->sk_receive_queue,
4452                      tp->copied_seq, tp->rcv_nxt);
4453         sk_mem_reclaim(sk);
4454
4455         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4456                 return 0;
4457
4458         /* Collapsing did not help, destructive actions follow.
4459          * This must not ever occur. */
4460
4461         tcp_prune_ofo_queue(sk);
4462
4463         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4464                 return 0;
4465
4466         /* If we are really being abused, tell the caller to silently
4467          * drop receive data on the floor.  It will get retransmitted
4468          * and hopefully then we'll have sufficient space.
4469          */
4470         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4471
4472         /* Massive buffer overcommit. */
4473         tp->pred_flags = 0;
4474         return -1;
4475 }
4476
4477 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4478  * As additional protections, we do not touch cwnd in retransmission phases,
4479  * and if application hit its sndbuf limit recently.
4480  */
4481 void tcp_cwnd_application_limited(struct sock *sk)
4482 {
4483         struct tcp_sock *tp = tcp_sk(sk);
4484
4485         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4486             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4487                 /* Limited by application or receiver window. */
4488                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4489                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4490                 if (win_used < tp->snd_cwnd) {
4491                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4492                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4493                 }
4494                 tp->snd_cwnd_used = 0;
4495         }
4496         tp->snd_cwnd_stamp = tcp_time_stamp;
4497 }
4498
4499 static int tcp_should_expand_sndbuf(struct sock *sk)
4500 {
4501         struct tcp_sock *tp = tcp_sk(sk);
4502
4503         /* If the user specified a specific send buffer setting, do
4504          * not modify it.
4505          */
4506         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4507                 return 0;
4508
4509         /* If we are under global TCP memory pressure, do not expand.  */
4510         if (tcp_memory_pressure)
4511                 return 0;
4512
4513         /* If we are under soft global TCP memory pressure, do not expand.  */
4514         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4515                 return 0;
4516
4517         /* If we filled the congestion window, do not expand.  */
4518         if (tp->packets_out >= tp->snd_cwnd)
4519                 return 0;
4520
4521         return 1;
4522 }
4523
4524 /* When incoming ACK allowed to free some skb from write_queue,
4525  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4526  * on the exit from tcp input handler.
4527  *
4528  * PROBLEM: sndbuf expansion does not work well with largesend.
4529  */
4530 static void tcp_new_space(struct sock *sk)
4531 {
4532         struct tcp_sock *tp = tcp_sk(sk);
4533
4534         if (tcp_should_expand_sndbuf(sk)) {
4535                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4536                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4537                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4538                                      tp->reordering + 1);
4539                 sndmem *= 2 * demanded;
4540                 if (sndmem > sk->sk_sndbuf)
4541                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4542                 tp->snd_cwnd_stamp = tcp_time_stamp;
4543         }
4544
4545         sk->sk_write_space(sk);
4546 }
4547
4548 static void tcp_check_space(struct sock *sk)
4549 {
4550         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4551                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4552                 if (sk->sk_socket &&
4553                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4554                         tcp_new_space(sk);
4555         }
4556 }
4557
4558 static inline void tcp_data_snd_check(struct sock *sk)
4559 {
4560         tcp_push_pending_frames(sk);
4561         tcp_check_space(sk);
4562 }
4563
4564 /*
4565  * Check if sending an ack is needed.
4566  */
4567 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4568 {
4569         struct tcp_sock *tp = tcp_sk(sk);
4570
4571             /* More than one full frame received... */
4572         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4573              /* ... and right edge of window advances far enough.
4574               * (tcp_recvmsg() will send ACK otherwise). Or...
4575               */
4576              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4577             /* We ACK each frame or... */
4578             tcp_in_quickack_mode(sk) ||
4579             /* We have out of order data. */
4580             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4581                 /* Then ack it now */
4582                 tcp_send_ack(sk);
4583         } else {
4584                 /* Else, send delayed ack. */
4585                 tcp_send_delayed_ack(sk);
4586         }
4587 }
4588
4589 static inline void tcp_ack_snd_check(struct sock *sk)
4590 {
4591         if (!inet_csk_ack_scheduled(sk)) {
4592                 /* We sent a data segment already. */
4593                 return;
4594         }
4595         __tcp_ack_snd_check(sk, 1);
4596 }
4597
4598 /*
4599  *      This routine is only called when we have urgent data
4600  *      signaled. Its the 'slow' part of tcp_urg. It could be
4601  *      moved inline now as tcp_urg is only called from one
4602  *      place. We handle URGent data wrong. We have to - as
4603  *      BSD still doesn't use the correction from RFC961.
4604  *      For 1003.1g we should support a new option TCP_STDURG to permit
4605  *      either form (or just set the sysctl tcp_stdurg).
4606  */
4607
4608 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4609 {
4610         struct tcp_sock *tp = tcp_sk(sk);
4611         u32 ptr = ntohs(th->urg_ptr);
4612
4613         if (ptr && !sysctl_tcp_stdurg)
4614                 ptr--;
4615         ptr += ntohl(th->seq);
4616
4617         /* Ignore urgent data that we've already seen and read. */
4618         if (after(tp->copied_seq, ptr))
4619                 return;
4620
4621         /* Do not replay urg ptr.
4622          *
4623          * NOTE: interesting situation not covered by specs.
4624          * Misbehaving sender may send urg ptr, pointing to segment,
4625          * which we already have in ofo queue. We are not able to fetch
4626          * such data and will stay in TCP_URG_NOTYET until will be eaten
4627          * by recvmsg(). Seems, we are not obliged to handle such wicked
4628          * situations. But it is worth to think about possibility of some
4629          * DoSes using some hypothetical application level deadlock.
4630          */
4631         if (before(ptr, tp->rcv_nxt))
4632                 return;
4633
4634         /* Do we already have a newer (or duplicate) urgent pointer? */
4635         if (tp->urg_data && !after(ptr, tp->urg_seq))
4636                 return;
4637
4638         /* Tell the world about our new urgent pointer. */
4639         sk_send_sigurg(sk);
4640
4641         /* We may be adding urgent data when the last byte read was
4642          * urgent. To do this requires some care. We cannot just ignore
4643          * tp->copied_seq since we would read the last urgent byte again
4644          * as data, nor can we alter copied_seq until this data arrives
4645          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4646          *
4647          * NOTE. Double Dutch. Rendering to plain English: author of comment
4648          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4649          * and expect that both A and B disappear from stream. This is _wrong_.
4650          * Though this happens in BSD with high probability, this is occasional.
4651          * Any application relying on this is buggy. Note also, that fix "works"
4652          * only in this artificial test. Insert some normal data between A and B and we will
4653          * decline of BSD again. Verdict: it is better to remove to trap
4654          * buggy users.
4655          */
4656         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4657             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4658                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4659                 tp->copied_seq++;
4660                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4661                         __skb_unlink(skb, &sk->sk_receive_queue);
4662                         __kfree_skb(skb);
4663                 }
4664         }
4665
4666         tp->urg_data = TCP_URG_NOTYET;
4667         tp->urg_seq = ptr;
4668
4669         /* Disable header prediction. */
4670         tp->pred_flags = 0;
4671 }
4672
4673 /* This is the 'fast' part of urgent handling. */
4674 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4675 {
4676         struct tcp_sock *tp = tcp_sk(sk);
4677
4678         /* Check if we get a new urgent pointer - normally not. */
4679         if (th->urg)
4680                 tcp_check_urg(sk, th);
4681
4682         /* Do we wait for any urgent data? - normally not... */
4683         if (tp->urg_data == TCP_URG_NOTYET) {
4684                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4685                           th->syn;
4686
4687                 /* Is the urgent pointer pointing into this packet? */
4688                 if (ptr < skb->len) {
4689                         u8 tmp;
4690                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4691                                 BUG();
4692                         tp->urg_data = TCP_URG_VALID | tmp;
4693                         if (!sock_flag(sk, SOCK_DEAD))
4694                                 sk->sk_data_ready(sk, 0);
4695                 }
4696         }
4697 }
4698
4699 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4700 {
4701         struct tcp_sock *tp = tcp_sk(sk);
4702         int chunk = skb->len - hlen;
4703         int err;
4704
4705         local_bh_enable();
4706         if (skb_csum_unnecessary(skb))
4707                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4708         else
4709                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4710                                                        tp->ucopy.iov);
4711
4712         if (!err) {
4713                 tp->ucopy.len -= chunk;
4714                 tp->copied_seq += chunk;
4715                 tcp_rcv_space_adjust(sk);
4716         }
4717
4718         local_bh_disable();
4719         return err;
4720 }
4721
4722 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4723                                             struct sk_buff *skb)
4724 {
4725         __sum16 result;
4726
4727         if (sock_owned_by_user(sk)) {
4728                 local_bh_enable();
4729                 result = __tcp_checksum_complete(skb);
4730                 local_bh_disable();
4731         } else {
4732                 result = __tcp_checksum_complete(skb);
4733         }
4734         return result;
4735 }
4736
4737 static inline int tcp_checksum_complete_user(struct sock *sk,
4738                                              struct sk_buff *skb)
4739 {
4740         return !skb_csum_unnecessary(skb) &&
4741                __tcp_checksum_complete_user(sk, skb);
4742 }
4743
4744 #ifdef CONFIG_NET_DMA
4745 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4746                                   int hlen)
4747 {
4748         struct tcp_sock *tp = tcp_sk(sk);
4749         int chunk = skb->len - hlen;
4750         int dma_cookie;
4751         int copied_early = 0;
4752
4753         if (tp->ucopy.wakeup)
4754                 return 0;
4755
4756         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4757                 tp->ucopy.dma_chan = get_softnet_dma();
4758
4759         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4760
4761                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4762                                                          skb, hlen,
4763                                                          tp->ucopy.iov, chunk,
4764                                                          tp->ucopy.pinned_list);
4765
4766                 if (dma_cookie < 0)
4767                         goto out;
4768
4769                 tp->ucopy.dma_cookie = dma_cookie;
4770                 copied_early = 1;
4771
4772                 tp->ucopy.len -= chunk;
4773                 tp->copied_seq += chunk;
4774                 tcp_rcv_space_adjust(sk);
4775
4776                 if ((tp->ucopy.len == 0) ||
4777                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4778                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4779                         tp->ucopy.wakeup = 1;
4780                         sk->sk_data_ready(sk, 0);
4781                 }
4782         } else if (chunk > 0) {
4783                 tp->ucopy.wakeup = 1;
4784                 sk->sk_data_ready(sk, 0);
4785         }
4786 out:
4787         return copied_early;
4788 }
4789 #endif /* CONFIG_NET_DMA */
4790
4791 /* Does PAWS and seqno based validation of an incoming segment, flags will
4792  * play significant role here.
4793  */
4794 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4795                               struct tcphdr *th, int syn_inerr)
4796 {
4797         struct tcp_sock *tp = tcp_sk(sk);
4798
4799         /* RFC1323: H1. Apply PAWS check first. */
4800         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4801             tcp_paws_discard(sk, skb)) {
4802                 if (!th->rst) {
4803                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4804                         tcp_send_dupack(sk, skb);
4805                         goto discard;
4806                 }
4807                 /* Reset is accepted even if it did not pass PAWS. */
4808         }
4809
4810         /* Step 1: check sequence number */
4811         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4812                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4813                  * (RST) segments are validated by checking their SEQ-fields."
4814                  * And page 69: "If an incoming segment is not acceptable,
4815                  * an acknowledgment should be sent in reply (unless the RST
4816                  * bit is set, if so drop the segment and return)".
4817                  */
4818                 if (!th->rst)
4819                         tcp_send_dupack(sk, skb);
4820                 goto discard;
4821         }
4822
4823         /* Step 2: check RST bit */
4824         if (th->rst) {
4825                 tcp_reset(sk);
4826                 goto discard;
4827         }
4828
4829         /* ts_recent update must be made after we are sure that the packet
4830          * is in window.
4831          */
4832         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4833
4834         /* step 3: check security and precedence [ignored] */
4835
4836         /* step 4: Check for a SYN in window. */
4837         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4838                 if (syn_inerr)
4839                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4840                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4841                 tcp_reset(sk);
4842                 return -1;
4843         }
4844
4845         return 1;
4846
4847 discard:
4848         __kfree_skb(skb);
4849         return 0;
4850 }
4851
4852 /*
4853  *      TCP receive function for the ESTABLISHED state.
4854  *
4855  *      It is split into a fast path and a slow path. The fast path is
4856  *      disabled when:
4857  *      - A zero window was announced from us - zero window probing
4858  *        is only handled properly in the slow path.
4859  *      - Out of order segments arrived.
4860  *      - Urgent data is expected.
4861  *      - There is no buffer space left
4862  *      - Unexpected TCP flags/window values/header lengths are received
4863  *        (detected by checking the TCP header against pred_flags)
4864  *      - Data is sent in both directions. Fast path only supports pure senders
4865  *        or pure receivers (this means either the sequence number or the ack
4866  *        value must stay constant)
4867  *      - Unexpected TCP option.
4868  *
4869  *      When these conditions are not satisfied it drops into a standard
4870  *      receive procedure patterned after RFC793 to handle all cases.
4871  *      The first three cases are guaranteed by proper pred_flags setting,
4872  *      the rest is checked inline. Fast processing is turned on in
4873  *      tcp_data_queue when everything is OK.
4874  */
4875 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4876                         struct tcphdr *th, unsigned len)
4877 {
4878         struct tcp_sock *tp = tcp_sk(sk);
4879         int res;
4880
4881         /*
4882          *      Header prediction.
4883          *      The code loosely follows the one in the famous
4884          *      "30 instruction TCP receive" Van Jacobson mail.
4885          *
4886          *      Van's trick is to deposit buffers into socket queue
4887          *      on a device interrupt, to call tcp_recv function
4888          *      on the receive process context and checksum and copy
4889          *      the buffer to user space. smart...
4890          *
4891          *      Our current scheme is not silly either but we take the
4892          *      extra cost of the net_bh soft interrupt processing...
4893          *      We do checksum and copy also but from device to kernel.
4894          */
4895
4896         tp->rx_opt.saw_tstamp = 0;
4897
4898         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4899          *      if header_prediction is to be made
4900          *      'S' will always be tp->tcp_header_len >> 2
4901          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4902          *  turn it off (when there are holes in the receive
4903          *       space for instance)
4904          *      PSH flag is ignored.
4905          */
4906
4907         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4908             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4909                 int tcp_header_len = tp->tcp_header_len;
4910
4911                 /* Timestamp header prediction: tcp_header_len
4912                  * is automatically equal to th->doff*4 due to pred_flags
4913                  * match.
4914                  */
4915
4916                 /* Check timestamp */
4917                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4918                         /* No? Slow path! */
4919                         if (!tcp_parse_aligned_timestamp(tp, th))
4920                                 goto slow_path;
4921
4922                         /* If PAWS failed, check it more carefully in slow path */
4923                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4924                                 goto slow_path;
4925
4926                         /* DO NOT update ts_recent here, if checksum fails
4927                          * and timestamp was corrupted part, it will result
4928                          * in a hung connection since we will drop all
4929                          * future packets due to the PAWS test.
4930                          */
4931                 }
4932
4933                 if (len <= tcp_header_len) {
4934                         /* Bulk data transfer: sender */
4935                         if (len == tcp_header_len) {
4936                                 /* Predicted packet is in window by definition.
4937                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4938                                  * Hence, check seq<=rcv_wup reduces to:
4939                                  */
4940                                 if (tcp_header_len ==
4941                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4942                                     tp->rcv_nxt == tp->rcv_wup)
4943                                         tcp_store_ts_recent(tp);
4944
4945                                 /* We know that such packets are checksummed
4946                                  * on entry.
4947                                  */
4948                                 tcp_ack(sk, skb, 0);
4949                                 __kfree_skb(skb);
4950                                 tcp_data_snd_check(sk);
4951                                 return 0;
4952                         } else { /* Header too small */
4953                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4954                                 goto discard;
4955                         }
4956                 } else {
4957                         int eaten = 0;
4958                         int copied_early = 0;
4959
4960                         if (tp->copied_seq == tp->rcv_nxt &&
4961                             len - tcp_header_len <= tp->ucopy.len) {
4962 #ifdef CONFIG_NET_DMA
4963                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4964                                         copied_early = 1;
4965                                         eaten = 1;
4966                                 }
4967 #endif
4968                                 if (tp->ucopy.task == current &&
4969                                     sock_owned_by_user(sk) && !copied_early) {
4970                                         __set_current_state(TASK_RUNNING);
4971
4972                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4973                                                 eaten = 1;
4974                                 }
4975                                 if (eaten) {
4976                                         /* Predicted packet is in window by definition.
4977                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4978                                          * Hence, check seq<=rcv_wup reduces to:
4979                                          */
4980                                         if (tcp_header_len ==
4981                                             (sizeof(struct tcphdr) +
4982                                              TCPOLEN_TSTAMP_ALIGNED) &&
4983                                             tp->rcv_nxt == tp->rcv_wup)
4984                                                 tcp_store_ts_recent(tp);
4985
4986                                         tcp_rcv_rtt_measure_ts(sk, skb);
4987
4988                                         __skb_pull(skb, tcp_header_len);
4989                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4990                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4991                                 }
4992                                 if (copied_early)
4993                                         tcp_cleanup_rbuf(sk, skb->len);
4994                         }
4995                         if (!eaten) {
4996                                 if (tcp_checksum_complete_user(sk, skb))
4997                                         goto csum_error;
4998
4999                                 /* Predicted packet is in window by definition.
5000                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5001                                  * Hence, check seq<=rcv_wup reduces to:
5002                                  */
5003                                 if (tcp_header_len ==
5004                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5005                                     tp->rcv_nxt == tp->rcv_wup)
5006                                         tcp_store_ts_recent(tp);
5007
5008                                 tcp_rcv_rtt_measure_ts(sk, skb);
5009
5010                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5011                                         goto step5;
5012
5013                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5014
5015                                 /* Bulk data transfer: receiver */
5016                                 __skb_pull(skb, tcp_header_len);
5017                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5018                                 skb_set_owner_r(skb, sk);
5019                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5020                         }
5021
5022                         tcp_event_data_recv(sk, skb);
5023
5024                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5025                                 /* Well, only one small jumplet in fast path... */
5026                                 tcp_ack(sk, skb, FLAG_DATA);
5027                                 tcp_data_snd_check(sk);
5028                                 if (!inet_csk_ack_scheduled(sk))
5029                                         goto no_ack;
5030                         }
5031
5032                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5033                                 __tcp_ack_snd_check(sk, 0);
5034 no_ack:
5035 #ifdef CONFIG_NET_DMA
5036                         if (copied_early)
5037                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5038                         else
5039 #endif
5040                         if (eaten)
5041                                 __kfree_skb(skb);
5042                         else
5043                                 sk->sk_data_ready(sk, 0);
5044                         return 0;
5045                 }
5046         }
5047
5048 slow_path:
5049         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5050                 goto csum_error;
5051
5052         /*
5053          *      Standard slow path.
5054          */
5055
5056         res = tcp_validate_incoming(sk, skb, th, 1);
5057         if (res <= 0)
5058                 return -res;
5059
5060 step5:
5061         if (th->ack)
5062                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5063
5064         tcp_rcv_rtt_measure_ts(sk, skb);
5065
5066         /* Process urgent data. */
5067         tcp_urg(sk, skb, th);
5068
5069         /* step 7: process the segment text */
5070         tcp_data_queue(sk, skb);
5071
5072         tcp_data_snd_check(sk);
5073         tcp_ack_snd_check(sk);
5074         return 0;
5075
5076 csum_error:
5077         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5078
5079 discard:
5080         __kfree_skb(skb);
5081         return 0;
5082 }
5083
5084 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5085                                          struct tcphdr *th, unsigned len)
5086 {
5087         struct tcp_sock *tp = tcp_sk(sk);
5088         struct inet_connection_sock *icsk = inet_csk(sk);
5089         int saved_clamp = tp->rx_opt.mss_clamp;
5090
5091         tcp_parse_options(skb, &tp->rx_opt, 0);
5092
5093         if (th->ack) {
5094                 /* rfc793:
5095                  * "If the state is SYN-SENT then
5096                  *    first check the ACK bit
5097                  *      If the ACK bit is set
5098                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5099                  *        a reset (unless the RST bit is set, if so drop
5100                  *        the segment and return)"
5101                  *
5102                  *  We do not send data with SYN, so that RFC-correct
5103                  *  test reduces to:
5104                  */
5105                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5106                         goto reset_and_undo;
5107
5108                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5109                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5110                              tcp_time_stamp)) {
5111                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5112                         goto reset_and_undo;
5113                 }
5114
5115                 /* Now ACK is acceptable.
5116                  *
5117                  * "If the RST bit is set
5118                  *    If the ACK was acceptable then signal the user "error:
5119                  *    connection reset", drop the segment, enter CLOSED state,
5120                  *    delete TCB, and return."
5121                  */
5122
5123                 if (th->rst) {
5124                         tcp_reset(sk);
5125                         goto discard;
5126                 }
5127
5128                 /* rfc793:
5129                  *   "fifth, if neither of the SYN or RST bits is set then
5130                  *    drop the segment and return."
5131                  *
5132                  *    See note below!
5133                  *                                        --ANK(990513)
5134                  */
5135                 if (!th->syn)
5136                         goto discard_and_undo;
5137
5138                 /* rfc793:
5139                  *   "If the SYN bit is on ...
5140                  *    are acceptable then ...
5141                  *    (our SYN has been ACKed), change the connection
5142                  *    state to ESTABLISHED..."
5143                  */
5144
5145                 TCP_ECN_rcv_synack(tp, th);
5146
5147                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5148                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5149
5150                 /* Ok.. it's good. Set up sequence numbers and
5151                  * move to established.
5152                  */
5153                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5154                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5155
5156                 /* RFC1323: The window in SYN & SYN/ACK segments is
5157                  * never scaled.
5158                  */
5159                 tp->snd_wnd = ntohs(th->window);
5160                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5161
5162                 if (!tp->rx_opt.wscale_ok) {
5163                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5164                         tp->window_clamp = min(tp->window_clamp, 65535U);
5165                 }
5166
5167                 if (tp->rx_opt.saw_tstamp) {
5168                         tp->rx_opt.tstamp_ok       = 1;
5169                         tp->tcp_header_len =
5170                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5171                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5172                         tcp_store_ts_recent(tp);
5173                 } else {
5174                         tp->tcp_header_len = sizeof(struct tcphdr);
5175                 }
5176
5177                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5178                         tcp_enable_fack(tp);
5179
5180                 tcp_mtup_init(sk);
5181                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5182                 tcp_initialize_rcv_mss(sk);
5183
5184                 /* Remember, tcp_poll() does not lock socket!
5185                  * Change state from SYN-SENT only after copied_seq
5186                  * is initialized. */
5187                 tp->copied_seq = tp->rcv_nxt;
5188                 smp_mb();
5189                 tcp_set_state(sk, TCP_ESTABLISHED);
5190
5191                 security_inet_conn_established(sk, skb);
5192
5193                 /* Make sure socket is routed, for correct metrics.  */
5194                 icsk->icsk_af_ops->rebuild_header(sk);
5195
5196                 tcp_init_metrics(sk);
5197
5198                 tcp_init_congestion_control(sk);
5199
5200                 /* Prevent spurious tcp_cwnd_restart() on first data
5201                  * packet.
5202                  */
5203                 tp->lsndtime = tcp_time_stamp;
5204
5205                 tcp_init_buffer_space(sk);
5206
5207                 if (sock_flag(sk, SOCK_KEEPOPEN))
5208                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5209
5210                 if (!tp->rx_opt.snd_wscale)
5211                         __tcp_fast_path_on(tp, tp->snd_wnd);
5212                 else
5213                         tp->pred_flags = 0;
5214
5215                 if (!sock_flag(sk, SOCK_DEAD)) {
5216                         sk->sk_state_change(sk);
5217                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5218                 }
5219
5220                 if (sk->sk_write_pending ||
5221                     icsk->icsk_accept_queue.rskq_defer_accept ||
5222                     icsk->icsk_ack.pingpong) {
5223                         /* Save one ACK. Data will be ready after
5224                          * several ticks, if write_pending is set.
5225                          *
5226                          * It may be deleted, but with this feature tcpdumps
5227                          * look so _wonderfully_ clever, that I was not able
5228                          * to stand against the temptation 8)     --ANK
5229                          */
5230                         inet_csk_schedule_ack(sk);
5231                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5232                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5233                         tcp_incr_quickack(sk);
5234                         tcp_enter_quickack_mode(sk);
5235                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5236                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5237
5238 discard:
5239                         __kfree_skb(skb);
5240                         return 0;
5241                 } else {
5242                         tcp_send_ack(sk);
5243                 }
5244                 return -1;
5245         }
5246
5247         /* No ACK in the segment */
5248
5249         if (th->rst) {
5250                 /* rfc793:
5251                  * "If the RST bit is set
5252                  *
5253                  *      Otherwise (no ACK) drop the segment and return."
5254                  */
5255
5256                 goto discard_and_undo;
5257         }
5258
5259         /* PAWS check. */
5260         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5261             tcp_paws_check(&tp->rx_opt, 0))
5262                 goto discard_and_undo;
5263
5264         if (th->syn) {
5265                 /* We see SYN without ACK. It is attempt of
5266                  * simultaneous connect with crossed SYNs.
5267                  * Particularly, it can be connect to self.
5268                  */
5269                 tcp_set_state(sk, TCP_SYN_RECV);
5270
5271                 if (tp->rx_opt.saw_tstamp) {
5272                         tp->rx_opt.tstamp_ok = 1;
5273                         tcp_store_ts_recent(tp);
5274                         tp->tcp_header_len =
5275                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5276                 } else {
5277                         tp->tcp_header_len = sizeof(struct tcphdr);
5278                 }
5279
5280                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5281                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5282
5283                 /* RFC1323: The window in SYN & SYN/ACK segments is
5284                  * never scaled.
5285                  */
5286                 tp->snd_wnd    = ntohs(th->window);
5287                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5288                 tp->max_window = tp->snd_wnd;
5289
5290                 TCP_ECN_rcv_syn(tp, th);
5291
5292                 tcp_mtup_init(sk);
5293                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5294                 tcp_initialize_rcv_mss(sk);
5295
5296                 tcp_send_synack(sk);
5297 #if 0
5298                 /* Note, we could accept data and URG from this segment.
5299                  * There are no obstacles to make this.
5300                  *
5301                  * However, if we ignore data in ACKless segments sometimes,
5302                  * we have no reasons to accept it sometimes.
5303                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5304                  * is not flawless. So, discard packet for sanity.
5305                  * Uncomment this return to process the data.
5306                  */
5307                 return -1;
5308 #else
5309                 goto discard;
5310 #endif
5311         }
5312         /* "fifth, if neither of the SYN or RST bits is set then
5313          * drop the segment and return."
5314          */
5315
5316 discard_and_undo:
5317         tcp_clear_options(&tp->rx_opt);
5318         tp->rx_opt.mss_clamp = saved_clamp;
5319         goto discard;
5320
5321 reset_and_undo:
5322         tcp_clear_options(&tp->rx_opt);
5323         tp->rx_opt.mss_clamp = saved_clamp;
5324         return 1;
5325 }
5326
5327 /*
5328  *      This function implements the receiving procedure of RFC 793 for
5329  *      all states except ESTABLISHED and TIME_WAIT.
5330  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5331  *      address independent.
5332  */
5333
5334 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5335                           struct tcphdr *th, unsigned len)
5336 {
5337         struct tcp_sock *tp = tcp_sk(sk);
5338         struct inet_connection_sock *icsk = inet_csk(sk);
5339         int queued = 0;
5340         int res;
5341
5342         tp->rx_opt.saw_tstamp = 0;
5343
5344         switch (sk->sk_state) {
5345         case TCP_CLOSE:
5346                 goto discard;
5347
5348         case TCP_LISTEN:
5349                 if (th->ack)
5350                         return 1;
5351
5352                 if (th->rst)
5353                         goto discard;
5354
5355                 if (th->syn) {
5356                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5357                                 return 1;
5358
5359                         /* Now we have several options: In theory there is
5360                          * nothing else in the frame. KA9Q has an option to
5361                          * send data with the syn, BSD accepts data with the
5362                          * syn up to the [to be] advertised window and
5363                          * Solaris 2.1 gives you a protocol error. For now
5364                          * we just ignore it, that fits the spec precisely
5365                          * and avoids incompatibilities. It would be nice in
5366                          * future to drop through and process the data.
5367                          *
5368                          * Now that TTCP is starting to be used we ought to
5369                          * queue this data.
5370                          * But, this leaves one open to an easy denial of
5371                          * service attack, and SYN cookies can't defend
5372                          * against this problem. So, we drop the data
5373                          * in the interest of security over speed unless
5374                          * it's still in use.
5375                          */
5376                         kfree_skb(skb);
5377                         return 0;
5378                 }
5379                 goto discard;
5380
5381         case TCP_SYN_SENT:
5382                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5383                 if (queued >= 0)
5384                         return queued;
5385
5386                 /* Do step6 onward by hand. */
5387                 tcp_urg(sk, skb, th);
5388                 __kfree_skb(skb);
5389                 tcp_data_snd_check(sk);
5390                 return 0;
5391         }
5392
5393         res = tcp_validate_incoming(sk, skb, th, 0);
5394         if (res <= 0)
5395                 return -res;
5396
5397         /* step 5: check the ACK field */
5398         if (th->ack) {
5399                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5400
5401                 switch (sk->sk_state) {
5402                 case TCP_SYN_RECV:
5403                         if (acceptable) {
5404                                 tp->copied_seq = tp->rcv_nxt;
5405                                 smp_mb();
5406                                 tcp_set_state(sk, TCP_ESTABLISHED);
5407                                 sk->sk_state_change(sk);
5408
5409                                 /* Note, that this wakeup is only for marginal
5410                                  * crossed SYN case. Passively open sockets
5411                                  * are not waked up, because sk->sk_sleep ==
5412                                  * NULL and sk->sk_socket == NULL.
5413                                  */
5414                                 if (sk->sk_socket)
5415                                         sk_wake_async(sk,
5416                                                       SOCK_WAKE_IO, POLL_OUT);
5417
5418                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5419                                 tp->snd_wnd = ntohs(th->window) <<
5420                                               tp->rx_opt.snd_wscale;
5421                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5422                                             TCP_SKB_CB(skb)->seq);
5423
5424                                 /* tcp_ack considers this ACK as duplicate
5425                                  * and does not calculate rtt.
5426                                  * Fix it at least with timestamps.
5427                                  */
5428                                 if (tp->rx_opt.saw_tstamp &&
5429                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5430                                         tcp_ack_saw_tstamp(sk, 0);
5431
5432                                 if (tp->rx_opt.tstamp_ok)
5433                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5434
5435                                 /* Make sure socket is routed, for
5436                                  * correct metrics.
5437                                  */
5438                                 icsk->icsk_af_ops->rebuild_header(sk);
5439
5440                                 tcp_init_metrics(sk);
5441
5442                                 tcp_init_congestion_control(sk);
5443
5444                                 /* Prevent spurious tcp_cwnd_restart() on
5445                                  * first data packet.
5446                                  */
5447                                 tp->lsndtime = tcp_time_stamp;
5448
5449                                 tcp_mtup_init(sk);
5450                                 tcp_initialize_rcv_mss(sk);
5451                                 tcp_init_buffer_space(sk);
5452                                 tcp_fast_path_on(tp);
5453                         } else {
5454                                 return 1;
5455                         }
5456                         break;
5457
5458                 case TCP_FIN_WAIT1:
5459                         if (tp->snd_una == tp->write_seq) {
5460                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5461                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5462                                 dst_confirm(sk->sk_dst_cache);
5463
5464                                 if (!sock_flag(sk, SOCK_DEAD))
5465                                         /* Wake up lingering close() */
5466                                         sk->sk_state_change(sk);
5467                                 else {
5468                                         int tmo;
5469
5470                                         if (tp->linger2 < 0 ||
5471                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5472                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5473                                                 tcp_done(sk);
5474                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5475                                                 return 1;
5476                                         }
5477
5478                                         tmo = tcp_fin_time(sk);
5479                                         if (tmo > TCP_TIMEWAIT_LEN) {
5480                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5481                                         } else if (th->fin || sock_owned_by_user(sk)) {
5482                                                 /* Bad case. We could lose such FIN otherwise.
5483                                                  * It is not a big problem, but it looks confusing
5484                                                  * and not so rare event. We still can lose it now,
5485                                                  * if it spins in bh_lock_sock(), but it is really
5486                                                  * marginal case.
5487                                                  */
5488                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5489                                         } else {
5490                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5491                                                 goto discard;
5492                                         }
5493                                 }
5494                         }
5495                         break;
5496
5497                 case TCP_CLOSING:
5498                         if (tp->snd_una == tp->write_seq) {
5499                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5500                                 goto discard;
5501                         }
5502                         break;
5503
5504                 case TCP_LAST_ACK:
5505                         if (tp->snd_una == tp->write_seq) {
5506                                 tcp_update_metrics(sk);
5507                                 tcp_done(sk);
5508                                 goto discard;
5509                         }
5510                         break;
5511                 }
5512         } else
5513                 goto discard;
5514
5515         /* step 6: check the URG bit */
5516         tcp_urg(sk, skb, th);
5517
5518         /* step 7: process the segment text */
5519         switch (sk->sk_state) {
5520         case TCP_CLOSE_WAIT:
5521         case TCP_CLOSING:
5522         case TCP_LAST_ACK:
5523                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5524                         break;
5525         case TCP_FIN_WAIT1:
5526         case TCP_FIN_WAIT2:
5527                 /* RFC 793 says to queue data in these states,
5528                  * RFC 1122 says we MUST send a reset.
5529                  * BSD 4.4 also does reset.
5530                  */
5531                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5532                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5533                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5534                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5535                                 tcp_reset(sk);
5536                                 return 1;
5537                         }
5538                 }
5539                 /* Fall through */
5540         case TCP_ESTABLISHED:
5541                 tcp_data_queue(sk, skb);
5542                 queued = 1;
5543                 break;
5544         }
5545
5546         /* tcp_data could move socket to TIME-WAIT */
5547         if (sk->sk_state != TCP_CLOSE) {
5548                 tcp_data_snd_check(sk);
5549                 tcp_ack_snd_check(sk);
5550         }
5551
5552         if (!queued) {
5553 discard:
5554                 __kfree_skb(skb);
5555         }
5556         return 0;
5557 }
5558
5559 EXPORT_SYMBOL(sysctl_tcp_ecn);
5560 EXPORT_SYMBOL(sysctl_tcp_reordering);
5561 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5562 EXPORT_SYMBOL(tcp_parse_options);
5563 #ifdef CONFIG_TCP_MD5SIG
5564 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5565 #endif
5566 EXPORT_SYMBOL(tcp_rcv_established);
5567 EXPORT_SYMBOL(tcp_rcv_state_process);
5568 EXPORT_SYMBOL(tcp_initialize_rcv_mss);