2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
133 #include "net-sysfs.h"
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
169 seqcount_t devnet_rename_seq;
171 static inline void dev_base_seq_inc(struct net *net)
173 while (++net->dev_base_seq == 0);
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
188 static inline void rps_lock(struct softnet_data *sd)
191 spin_lock(&sd->input_pkt_queue.lock);
195 static inline void rps_unlock(struct softnet_data *sd)
198 spin_unlock(&sd->input_pkt_queue.lock);
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
205 struct net *net = dev_net(dev);
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
216 dev_base_seq_inc(net);
221 /* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
224 static void unlist_netdevice(struct net_device *dev)
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
235 dev_base_seq_inc(dev_net(dev));
242 static RAW_NOTIFIER_HEAD(netdev_chain);
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
252 #ifdef CONFIG_LOCKDEP
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
274 static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 /*******************************************************************************
336 Protocol management and registration routines
338 *******************************************************************************/
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
358 if (pt->type == htons(ETH_P_ALL))
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
377 void dev_add_pack(struct packet_type *pt)
379 struct list_head *head = ptype_head(pt);
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
385 EXPORT_SYMBOL(dev_add_pack);
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
400 void __dev_remove_pack(struct packet_type *pt)
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
405 spin_lock(&ptype_lock);
407 list_for_each_entry(pt1, head, list) {
409 list_del_rcu(&pt->list);
414 pr_warn("dev_remove_pack: %p not found\n", pt);
416 spin_unlock(&ptype_lock);
418 EXPORT_SYMBOL(__dev_remove_pack);
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
429 * This call sleeps to guarantee that no CPU is looking at the packet
432 void dev_remove_pack(struct packet_type *pt)
434 __dev_remove_pack(pt);
438 EXPORT_SYMBOL(dev_remove_pack);
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
453 void dev_add_offload(struct packet_offload *po)
455 struct list_head *head = &offload_base;
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
461 EXPORT_SYMBOL(dev_add_offload);
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
476 void __dev_remove_offload(struct packet_offload *po)
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
481 spin_lock(&offload_lock);
483 list_for_each_entry(po1, head, list) {
485 list_del_rcu(&po->list);
490 pr_warn("dev_remove_offload: %p not found\n", po);
492 spin_unlock(&offload_lock);
494 EXPORT_SYMBOL(__dev_remove_offload);
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
505 * This call sleeps to guarantee that no CPU is looking at the packet
508 void dev_remove_offload(struct packet_offload *po)
510 __dev_remove_offload(po);
514 EXPORT_SYMBOL(dev_remove_offload);
516 /******************************************************************************
518 Device Boot-time Settings Routines
520 *******************************************************************************/
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
536 struct netdev_boot_setup *s;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
561 int netdev_boot_setup_check(struct net_device *dev)
563 struct netdev_boot_setup *s = dev_boot_setup;
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
578 EXPORT_SYMBOL(netdev_boot_setup_check);
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
591 unsigned long netdev_boot_base(const char *prefix, int unit)
593 const struct netdev_boot_setup *s = dev_boot_setup;
597 sprintf(name, "%s%d", prefix, unit);
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
603 if (__dev_get_by_name(&init_net, name))
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
613 * Saves at boot time configured settings for any netdevice.
615 int __init netdev_boot_setup(char *str)
620 str = get_options(str, ARRAY_SIZE(ints), ints);
625 memset(&map, 0, sizeof(map));
629 map.base_addr = ints[2];
631 map.mem_start = ints[3];
633 map.mem_end = ints[4];
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
639 __setup("netdev=", netdev_boot_setup);
641 /*******************************************************************************
643 Device Interface Subroutines
645 *******************************************************************************/
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
670 EXPORT_SYMBOL(__dev_get_by_name);
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
711 struct net_device *dev;
714 dev = dev_get_by_name_rcu(net, name);
720 EXPORT_SYMBOL(dev_get_by_name);
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
745 EXPORT_SYMBOL(__dev_get_by_index);
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
785 struct net_device *dev;
788 dev = dev_get_by_index_rcu(net, ifindex);
794 EXPORT_SYMBOL(dev_get_by_index);
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
813 struct net_device *dev;
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
826 struct net_device *dev;
829 for_each_netdev(net, dev)
830 if (dev->type == type)
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
839 struct net_device *dev, *ret = NULL;
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
867 struct net_device *dev, *ret;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
881 * dev_valid_name - check if name is okay for network device
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
888 bool dev_valid_name(const char *name)
892 if (strlen(name) >= IFNAMSIZ)
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
898 if (*name == '/' || isspace(*name))
904 EXPORT_SYMBOL(dev_valid_name);
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
929 p = strnchr(name, IFNAMSIZ-1, '%');
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
936 if (p[1] != 'd' || strchr(p + 2, '%'))
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
947 if (i < 0 || i >= max_netdevices)
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
973 * dev_alloc_name - allocate a name for a device
975 * @name: name format string
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
986 int dev_alloc_name(struct net_device *dev, const char *name)
992 BUG_ON(!dev_net(dev));
994 ret = __dev_alloc_name(net, name, buf);
996 strlcpy(dev->name, buf, IFNAMSIZ);
999 EXPORT_SYMBOL(dev_alloc_name);
1001 static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1008 ret = __dev_alloc_name(net, name, buf);
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1014 static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1020 if (!dev_valid_name(name))
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1034 * dev_change_name - change name of a device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1038 * Change name of a device, can pass format strings "eth%d".
1041 int dev_change_name(struct net_device *dev, const char *newname)
1043 char oldname[IFNAMSIZ];
1049 BUG_ON(!dev_net(dev));
1052 if (dev->flags & IFF_UP)
1055 write_seqcount_begin(&devnet_rename_seq);
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1064 err = dev_get_valid_name(net, dev, newname);
1066 write_seqcount_end(&devnet_rename_seq);
1071 ret = device_rename(&dev->dev, dev->name);
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1078 write_seqcount_end(&devnet_rename_seq);
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1101 pr_err("%s: name change rollback failed: %d\n",
1110 * dev_set_alias - change ifalias of a device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1115 * Set ifalias for a device,
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1123 if (len >= IFALIASZ)
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1135 dev->ifalias = new_ifalias;
1137 strlcpy(dev->ifalias, alias, len+1);
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1146 * Called to indicate a device has changed features.
1148 void netdev_features_change(struct net_device *dev)
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1152 EXPORT_SYMBOL(netdev_features_change);
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1162 void netdev_state_change(struct net_device *dev)
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1169 EXPORT_SYMBOL(netdev_state_change);
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1181 void netdev_notify_peers(struct net_device *dev)
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1187 EXPORT_SYMBOL(netdev_notify_peers);
1189 static int __dev_open(struct net_device *dev)
1191 const struct net_device_ops *ops = dev->netdev_ops;
1196 if (!netif_device_present(dev))
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1203 ret = netpoll_rx_disable(dev);
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1212 set_bit(__LINK_STATE_START, &dev->state);
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1220 netpoll_rx_enable(dev);
1223 clear_bit(__LINK_STATE_START, &dev->state);
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1247 int dev_open(struct net_device *dev)
1251 if (dev->flags & IFF_UP)
1254 ret = __dev_open(dev);
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1263 EXPORT_SYMBOL(dev_open);
1265 static int __dev_close_many(struct list_head *head)
1267 struct net_device *dev;
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1275 clear_bit(__LINK_STATE_START, &dev->state);
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1286 dev_deactivate_many(head);
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1295 * We allow it to be called even after a DETACH hot-plug
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1308 static int __dev_close(struct net_device *dev)
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1322 netpoll_rx_enable(dev);
1326 static int dev_close_many(struct list_head *head)
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1335 __dev_close_many(head);
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1356 int dev_close(struct net_device *dev)
1359 if (dev->flags & IFF_UP) {
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1371 netpoll_rx_enable(dev);
1375 EXPORT_SYMBOL(dev_close);
1379 * dev_disable_lro - disable Large Receive Offload on a device
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1386 void dev_disable_lro(struct net_device *dev)
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1401 EXPORT_SYMBOL(dev_disable_lro);
1404 static int dev_boot_phase = 1;
1407 * register_netdevice_notifier - register a network notifier block
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1420 int register_netdevice_notifier(struct notifier_block *nb)
1422 struct net_device *dev;
1423 struct net_device *last;
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1440 if (!(dev->flags & IFF_UP))
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1454 for_each_netdev(net, dev) {
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1473 * unregister_netdevice_notifier - unregister a network notifier block
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1488 struct net_device *dev;
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1534 static atomic_t netstamp_needed_deferred;
1537 void net_enable_timestamp(void)
1539 #ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1544 static_key_slow_dec(&netstamp_needed);
1548 WARN_ON(in_interrupt());
1549 static_key_slow_inc(&netstamp_needed);
1551 EXPORT_SYMBOL(net_enable_timestamp);
1553 void net_disable_timestamp(void)
1555 #ifdef HAVE_JUMP_LABEL
1556 if (in_interrupt()) {
1557 atomic_inc(&netstamp_needed_deferred);
1561 static_key_slow_dec(&netstamp_needed);
1563 EXPORT_SYMBOL(net_disable_timestamp);
1565 static inline void net_timestamp_set(struct sk_buff *skb)
1567 skb->tstamp.tv64 = 0;
1568 if (static_key_false(&netstamp_needed))
1569 __net_timestamp(skb);
1572 #define net_timestamp_check(COND, SKB) \
1573 if (static_key_false(&netstamp_needed)) { \
1574 if ((COND) && !(SKB)->tstamp.tv64) \
1575 __net_timestamp(SKB); \
1578 static inline bool is_skb_forwardable(struct net_device *dev,
1579 struct sk_buff *skb)
1583 if (!(dev->flags & IFF_UP))
1586 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1587 if (skb->len <= len)
1590 /* if TSO is enabled, we don't care about the length as the packet
1591 * could be forwarded without being segmented before
1593 if (skb_is_gso(skb))
1600 * dev_forward_skb - loopback an skb to another netif
1602 * @dev: destination network device
1603 * @skb: buffer to forward
1606 * NET_RX_SUCCESS (no congestion)
1607 * NET_RX_DROP (packet was dropped, but freed)
1609 * dev_forward_skb can be used for injecting an skb from the
1610 * start_xmit function of one device into the receive queue
1611 * of another device.
1613 * The receiving device may be in another namespace, so
1614 * we have to clear all information in the skb that could
1615 * impact namespace isolation.
1617 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1619 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1620 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1621 atomic_long_inc(&dev->rx_dropped);
1630 if (unlikely(!is_skb_forwardable(dev, skb))) {
1631 atomic_long_inc(&dev->rx_dropped);
1638 skb->tstamp.tv64 = 0;
1639 skb->pkt_type = PACKET_HOST;
1640 skb->protocol = eth_type_trans(skb, dev);
1644 return netif_rx(skb);
1646 EXPORT_SYMBOL_GPL(dev_forward_skb);
1648 static inline int deliver_skb(struct sk_buff *skb,
1649 struct packet_type *pt_prev,
1650 struct net_device *orig_dev)
1652 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1654 atomic_inc(&skb->users);
1655 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1658 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1660 if (!ptype->af_packet_priv || !skb->sk)
1663 if (ptype->id_match)
1664 return ptype->id_match(ptype, skb->sk);
1665 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1672 * Support routine. Sends outgoing frames to any network
1673 * taps currently in use.
1676 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1678 struct packet_type *ptype;
1679 struct sk_buff *skb2 = NULL;
1680 struct packet_type *pt_prev = NULL;
1683 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1684 /* Never send packets back to the socket
1685 * they originated from - MvS (miquels@drinkel.ow.org)
1687 if ((ptype->dev == dev || !ptype->dev) &&
1688 (!skb_loop_sk(ptype, skb))) {
1690 deliver_skb(skb2, pt_prev, skb->dev);
1695 skb2 = skb_clone(skb, GFP_ATOMIC);
1699 net_timestamp_set(skb2);
1701 /* skb->nh should be correctly
1702 set by sender, so that the second statement is
1703 just protection against buggy protocols.
1705 skb_reset_mac_header(skb2);
1707 if (skb_network_header(skb2) < skb2->data ||
1708 skb2->network_header > skb2->tail) {
1709 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1710 ntohs(skb2->protocol),
1712 skb_reset_network_header(skb2);
1715 skb2->transport_header = skb2->network_header;
1716 skb2->pkt_type = PACKET_OUTGOING;
1721 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1726 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1727 * @dev: Network device
1728 * @txq: number of queues available
1730 * If real_num_tx_queues is changed the tc mappings may no longer be
1731 * valid. To resolve this verify the tc mapping remains valid and if
1732 * not NULL the mapping. With no priorities mapping to this
1733 * offset/count pair it will no longer be used. In the worst case TC0
1734 * is invalid nothing can be done so disable priority mappings. If is
1735 * expected that drivers will fix this mapping if they can before
1736 * calling netif_set_real_num_tx_queues.
1738 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1741 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1743 /* If TC0 is invalidated disable TC mapping */
1744 if (tc->offset + tc->count > txq) {
1745 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1750 /* Invalidated prio to tc mappings set to TC0 */
1751 for (i = 1; i < TC_BITMASK + 1; i++) {
1752 int q = netdev_get_prio_tc_map(dev, i);
1754 tc = &dev->tc_to_txq[q];
1755 if (tc->offset + tc->count > txq) {
1756 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1758 netdev_set_prio_tc_map(dev, i, 0);
1764 static DEFINE_MUTEX(xps_map_mutex);
1765 #define xmap_dereference(P) \
1766 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1768 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1771 struct xps_map *map = NULL;
1775 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1777 for (pos = 0; map && pos < map->len; pos++) {
1778 if (map->queues[pos] == index) {
1780 map->queues[pos] = map->queues[--map->len];
1782 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1783 kfree_rcu(map, rcu);
1793 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1795 struct xps_dev_maps *dev_maps;
1797 bool active = false;
1799 mutex_lock(&xps_map_mutex);
1800 dev_maps = xmap_dereference(dev->xps_maps);
1805 for_each_possible_cpu(cpu) {
1806 for (i = index; i < dev->num_tx_queues; i++) {
1807 if (!remove_xps_queue(dev_maps, cpu, i))
1810 if (i == dev->num_tx_queues)
1815 RCU_INIT_POINTER(dev->xps_maps, NULL);
1816 kfree_rcu(dev_maps, rcu);
1819 for (i = index; i < dev->num_tx_queues; i++)
1820 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1824 mutex_unlock(&xps_map_mutex);
1827 static struct xps_map *expand_xps_map(struct xps_map *map,
1830 struct xps_map *new_map;
1831 int alloc_len = XPS_MIN_MAP_ALLOC;
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] != index)
1840 /* Need to add queue to this CPU's existing map */
1842 if (pos < map->alloc_len)
1845 alloc_len = map->alloc_len * 2;
1848 /* Need to allocate new map to store queue on this CPU's map */
1849 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1854 for (i = 0; i < pos; i++)
1855 new_map->queues[i] = map->queues[i];
1856 new_map->alloc_len = alloc_len;
1862 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1864 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1865 struct xps_map *map, *new_map;
1866 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1867 int cpu, numa_node_id = -2;
1868 bool active = false;
1870 mutex_lock(&xps_map_mutex);
1872 dev_maps = xmap_dereference(dev->xps_maps);
1874 /* allocate memory for queue storage */
1875 for_each_online_cpu(cpu) {
1876 if (!cpumask_test_cpu(cpu, mask))
1880 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1881 if (!new_dev_maps) {
1882 mutex_unlock(&xps_map_mutex);
1886 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1889 map = expand_xps_map(map, cpu, index);
1893 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1897 goto out_no_new_maps;
1899 for_each_possible_cpu(cpu) {
1900 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1901 /* add queue to CPU maps */
1904 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1905 while ((pos < map->len) && (map->queues[pos] != index))
1908 if (pos == map->len)
1909 map->queues[map->len++] = index;
1911 if (numa_node_id == -2)
1912 numa_node_id = cpu_to_node(cpu);
1913 else if (numa_node_id != cpu_to_node(cpu))
1916 } else if (dev_maps) {
1917 /* fill in the new device map from the old device map */
1918 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1919 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1924 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1926 /* Cleanup old maps */
1928 for_each_possible_cpu(cpu) {
1929 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1930 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1931 if (map && map != new_map)
1932 kfree_rcu(map, rcu);
1935 kfree_rcu(dev_maps, rcu);
1938 dev_maps = new_dev_maps;
1942 /* update Tx queue numa node */
1943 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1944 (numa_node_id >= 0) ? numa_node_id :
1950 /* removes queue from unused CPUs */
1951 for_each_possible_cpu(cpu) {
1952 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1955 if (remove_xps_queue(dev_maps, cpu, index))
1959 /* free map if not active */
1961 RCU_INIT_POINTER(dev->xps_maps, NULL);
1962 kfree_rcu(dev_maps, rcu);
1966 mutex_unlock(&xps_map_mutex);
1970 /* remove any maps that we added */
1971 for_each_possible_cpu(cpu) {
1972 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1973 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1975 if (new_map && new_map != map)
1979 mutex_unlock(&xps_map_mutex);
1981 kfree(new_dev_maps);
1984 EXPORT_SYMBOL(netif_set_xps_queue);
1988 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1989 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1991 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1995 if (txq < 1 || txq > dev->num_tx_queues)
1998 if (dev->reg_state == NETREG_REGISTERED ||
1999 dev->reg_state == NETREG_UNREGISTERING) {
2002 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2008 netif_setup_tc(dev, txq);
2010 if (txq < dev->real_num_tx_queues) {
2011 qdisc_reset_all_tx_gt(dev, txq);
2013 netif_reset_xps_queues_gt(dev, txq);
2018 dev->real_num_tx_queues = txq;
2021 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2025 * netif_set_real_num_rx_queues - set actual number of RX queues used
2026 * @dev: Network device
2027 * @rxq: Actual number of RX queues
2029 * This must be called either with the rtnl_lock held or before
2030 * registration of the net device. Returns 0 on success, or a
2031 * negative error code. If called before registration, it always
2034 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2038 if (rxq < 1 || rxq > dev->num_rx_queues)
2041 if (dev->reg_state == NETREG_REGISTERED) {
2044 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2050 dev->real_num_rx_queues = rxq;
2053 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2057 * netif_get_num_default_rss_queues - default number of RSS queues
2059 * This routine should set an upper limit on the number of RSS queues
2060 * used by default by multiqueue devices.
2062 int netif_get_num_default_rss_queues(void)
2064 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2068 static inline void __netif_reschedule(struct Qdisc *q)
2070 struct softnet_data *sd;
2071 unsigned long flags;
2073 local_irq_save(flags);
2074 sd = &__get_cpu_var(softnet_data);
2075 q->next_sched = NULL;
2076 *sd->output_queue_tailp = q;
2077 sd->output_queue_tailp = &q->next_sched;
2078 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2079 local_irq_restore(flags);
2082 void __netif_schedule(struct Qdisc *q)
2084 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2085 __netif_reschedule(q);
2087 EXPORT_SYMBOL(__netif_schedule);
2089 void dev_kfree_skb_irq(struct sk_buff *skb)
2091 if (atomic_dec_and_test(&skb->users)) {
2092 struct softnet_data *sd;
2093 unsigned long flags;
2095 local_irq_save(flags);
2096 sd = &__get_cpu_var(softnet_data);
2097 skb->next = sd->completion_queue;
2098 sd->completion_queue = skb;
2099 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2100 local_irq_restore(flags);
2103 EXPORT_SYMBOL(dev_kfree_skb_irq);
2105 void dev_kfree_skb_any(struct sk_buff *skb)
2107 if (in_irq() || irqs_disabled())
2108 dev_kfree_skb_irq(skb);
2112 EXPORT_SYMBOL(dev_kfree_skb_any);
2116 * netif_device_detach - mark device as removed
2117 * @dev: network device
2119 * Mark device as removed from system and therefore no longer available.
2121 void netif_device_detach(struct net_device *dev)
2123 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2124 netif_running(dev)) {
2125 netif_tx_stop_all_queues(dev);
2128 EXPORT_SYMBOL(netif_device_detach);
2131 * netif_device_attach - mark device as attached
2132 * @dev: network device
2134 * Mark device as attached from system and restart if needed.
2136 void netif_device_attach(struct net_device *dev)
2138 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2139 netif_running(dev)) {
2140 netif_tx_wake_all_queues(dev);
2141 __netdev_watchdog_up(dev);
2144 EXPORT_SYMBOL(netif_device_attach);
2146 static void skb_warn_bad_offload(const struct sk_buff *skb)
2148 static const netdev_features_t null_features = 0;
2149 struct net_device *dev = skb->dev;
2150 const char *driver = "";
2152 if (dev && dev->dev.parent)
2153 driver = dev_driver_string(dev->dev.parent);
2155 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2156 "gso_type=%d ip_summed=%d\n",
2157 driver, dev ? &dev->features : &null_features,
2158 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2159 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2160 skb_shinfo(skb)->gso_type, skb->ip_summed);
2164 * Invalidate hardware checksum when packet is to be mangled, and
2165 * complete checksum manually on outgoing path.
2167 int skb_checksum_help(struct sk_buff *skb)
2170 int ret = 0, offset;
2172 if (skb->ip_summed == CHECKSUM_COMPLETE)
2173 goto out_set_summed;
2175 if (unlikely(skb_shinfo(skb)->gso_size)) {
2176 skb_warn_bad_offload(skb);
2180 /* Before computing a checksum, we should make sure no frag could
2181 * be modified by an external entity : checksum could be wrong.
2183 if (skb_has_shared_frag(skb)) {
2184 ret = __skb_linearize(skb);
2189 offset = skb_checksum_start_offset(skb);
2190 BUG_ON(offset >= skb_headlen(skb));
2191 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2193 offset += skb->csum_offset;
2194 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2196 if (skb_cloned(skb) &&
2197 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2198 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2203 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2205 skb->ip_summed = CHECKSUM_NONE;
2209 EXPORT_SYMBOL(skb_checksum_help);
2211 __be16 skb_network_protocol(struct sk_buff *skb)
2213 __be16 type = skb->protocol;
2215 while (type == htons(ETH_P_8021Q)) {
2216 int vlan_depth = ETH_HLEN;
2217 struct vlan_hdr *vh;
2219 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2222 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2223 type = vh->h_vlan_encapsulated_proto;
2224 vlan_depth += VLAN_HLEN;
2231 * skb_mac_gso_segment - mac layer segmentation handler.
2232 * @skb: buffer to segment
2233 * @features: features for the output path (see dev->features)
2235 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2236 netdev_features_t features)
2238 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2239 struct packet_offload *ptype;
2240 __be16 type = skb_network_protocol(skb);
2242 if (unlikely(!type))
2243 return ERR_PTR(-EINVAL);
2245 __skb_pull(skb, skb->mac_len);
2248 list_for_each_entry_rcu(ptype, &offload_base, list) {
2249 if (ptype->type == type && ptype->callbacks.gso_segment) {
2250 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2253 err = ptype->callbacks.gso_send_check(skb);
2254 segs = ERR_PTR(err);
2255 if (err || skb_gso_ok(skb, features))
2257 __skb_push(skb, (skb->data -
2258 skb_network_header(skb)));
2260 segs = ptype->callbacks.gso_segment(skb, features);
2266 __skb_push(skb, skb->data - skb_mac_header(skb));
2270 EXPORT_SYMBOL(skb_mac_gso_segment);
2273 /* openvswitch calls this on rx path, so we need a different check.
2275 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2278 return skb->ip_summed != CHECKSUM_PARTIAL;
2280 return skb->ip_summed == CHECKSUM_NONE;
2284 * __skb_gso_segment - Perform segmentation on skb.
2285 * @skb: buffer to segment
2286 * @features: features for the output path (see dev->features)
2287 * @tx_path: whether it is called in TX path
2289 * This function segments the given skb and returns a list of segments.
2291 * It may return NULL if the skb requires no segmentation. This is
2292 * only possible when GSO is used for verifying header integrity.
2294 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2295 netdev_features_t features, bool tx_path)
2297 if (unlikely(skb_needs_check(skb, tx_path))) {
2300 skb_warn_bad_offload(skb);
2302 if (skb_header_cloned(skb) &&
2303 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2304 return ERR_PTR(err);
2307 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2308 skb_reset_mac_header(skb);
2309 skb_reset_mac_len(skb);
2311 return skb_mac_gso_segment(skb, features);
2313 EXPORT_SYMBOL(__skb_gso_segment);
2315 /* Take action when hardware reception checksum errors are detected. */
2317 void netdev_rx_csum_fault(struct net_device *dev)
2319 if (net_ratelimit()) {
2320 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2324 EXPORT_SYMBOL(netdev_rx_csum_fault);
2327 /* Actually, we should eliminate this check as soon as we know, that:
2328 * 1. IOMMU is present and allows to map all the memory.
2329 * 2. No high memory really exists on this machine.
2332 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2334 #ifdef CONFIG_HIGHMEM
2336 if (!(dev->features & NETIF_F_HIGHDMA)) {
2337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2338 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2339 if (PageHighMem(skb_frag_page(frag)))
2344 if (PCI_DMA_BUS_IS_PHYS) {
2345 struct device *pdev = dev->dev.parent;
2349 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2350 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2351 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2352 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2361 void (*destructor)(struct sk_buff *skb);
2364 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2366 static void dev_gso_skb_destructor(struct sk_buff *skb)
2368 struct dev_gso_cb *cb;
2371 struct sk_buff *nskb = skb->next;
2373 skb->next = nskb->next;
2376 } while (skb->next);
2378 cb = DEV_GSO_CB(skb);
2380 cb->destructor(skb);
2384 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2385 * @skb: buffer to segment
2386 * @features: device features as applicable to this skb
2388 * This function segments the given skb and stores the list of segments
2391 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2393 struct sk_buff *segs;
2395 segs = skb_gso_segment(skb, features);
2397 /* Verifying header integrity only. */
2402 return PTR_ERR(segs);
2405 DEV_GSO_CB(skb)->destructor = skb->destructor;
2406 skb->destructor = dev_gso_skb_destructor;
2411 static netdev_features_t harmonize_features(struct sk_buff *skb,
2412 __be16 protocol, netdev_features_t features)
2414 if (skb->ip_summed != CHECKSUM_NONE &&
2415 !can_checksum_protocol(features, protocol)) {
2416 features &= ~NETIF_F_ALL_CSUM;
2417 } else if (illegal_highdma(skb->dev, skb)) {
2418 features &= ~NETIF_F_SG;
2424 netdev_features_t netif_skb_features(struct sk_buff *skb)
2426 __be16 protocol = skb->protocol;
2427 netdev_features_t features = skb->dev->features;
2429 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2430 features &= ~NETIF_F_GSO_MASK;
2432 if (protocol == htons(ETH_P_8021Q)) {
2433 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2434 protocol = veh->h_vlan_encapsulated_proto;
2435 } else if (!vlan_tx_tag_present(skb)) {
2436 return harmonize_features(skb, protocol, features);
2439 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2441 if (protocol != htons(ETH_P_8021Q)) {
2442 return harmonize_features(skb, protocol, features);
2444 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2445 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2446 return harmonize_features(skb, protocol, features);
2449 EXPORT_SYMBOL(netif_skb_features);
2452 * Returns true if either:
2453 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2454 * 2. skb is fragmented and the device does not support SG.
2456 static inline int skb_needs_linearize(struct sk_buff *skb,
2459 return skb_is_nonlinear(skb) &&
2460 ((skb_has_frag_list(skb) &&
2461 !(features & NETIF_F_FRAGLIST)) ||
2462 (skb_shinfo(skb)->nr_frags &&
2463 !(features & NETIF_F_SG)));
2466 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2467 struct netdev_queue *txq)
2469 const struct net_device_ops *ops = dev->netdev_ops;
2470 int rc = NETDEV_TX_OK;
2471 unsigned int skb_len;
2473 if (likely(!skb->next)) {
2474 netdev_features_t features;
2477 * If device doesn't need skb->dst, release it right now while
2478 * its hot in this cpu cache
2480 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2483 features = netif_skb_features(skb);
2485 if (vlan_tx_tag_present(skb) &&
2486 !(features & NETIF_F_HW_VLAN_TX)) {
2487 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2494 /* If encapsulation offload request, verify we are testing
2495 * hardware encapsulation features instead of standard
2496 * features for the netdev
2498 if (skb->encapsulation)
2499 features &= dev->hw_enc_features;
2501 if (netif_needs_gso(skb, features)) {
2502 if (unlikely(dev_gso_segment(skb, features)))
2507 if (skb_needs_linearize(skb, features) &&
2508 __skb_linearize(skb))
2511 /* If packet is not checksummed and device does not
2512 * support checksumming for this protocol, complete
2513 * checksumming here.
2515 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2516 if (skb->encapsulation)
2517 skb_set_inner_transport_header(skb,
2518 skb_checksum_start_offset(skb));
2520 skb_set_transport_header(skb,
2521 skb_checksum_start_offset(skb));
2522 if (!(features & NETIF_F_ALL_CSUM) &&
2523 skb_checksum_help(skb))
2528 if (!list_empty(&ptype_all))
2529 dev_queue_xmit_nit(skb, dev);
2532 rc = ops->ndo_start_xmit(skb, dev);
2533 trace_net_dev_xmit(skb, rc, dev, skb_len);
2534 if (rc == NETDEV_TX_OK)
2535 txq_trans_update(txq);
2541 struct sk_buff *nskb = skb->next;
2543 skb->next = nskb->next;
2547 * If device doesn't need nskb->dst, release it right now while
2548 * its hot in this cpu cache
2550 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2553 if (!list_empty(&ptype_all))
2554 dev_queue_xmit_nit(nskb, dev);
2556 skb_len = nskb->len;
2557 rc = ops->ndo_start_xmit(nskb, dev);
2558 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2559 if (unlikely(rc != NETDEV_TX_OK)) {
2560 if (rc & ~NETDEV_TX_MASK)
2561 goto out_kfree_gso_skb;
2562 nskb->next = skb->next;
2566 txq_trans_update(txq);
2567 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2568 return NETDEV_TX_BUSY;
2569 } while (skb->next);
2572 if (likely(skb->next == NULL))
2573 skb->destructor = DEV_GSO_CB(skb)->destructor;
2580 static void qdisc_pkt_len_init(struct sk_buff *skb)
2582 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2584 qdisc_skb_cb(skb)->pkt_len = skb->len;
2586 /* To get more precise estimation of bytes sent on wire,
2587 * we add to pkt_len the headers size of all segments
2589 if (shinfo->gso_size) {
2590 unsigned int hdr_len;
2592 /* mac layer + network layer */
2593 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2595 /* + transport layer */
2596 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2597 hdr_len += tcp_hdrlen(skb);
2599 hdr_len += sizeof(struct udphdr);
2600 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2604 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2605 struct net_device *dev,
2606 struct netdev_queue *txq)
2608 spinlock_t *root_lock = qdisc_lock(q);
2612 qdisc_pkt_len_init(skb);
2613 qdisc_calculate_pkt_len(skb, q);
2615 * Heuristic to force contended enqueues to serialize on a
2616 * separate lock before trying to get qdisc main lock.
2617 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2618 * and dequeue packets faster.
2620 contended = qdisc_is_running(q);
2621 if (unlikely(contended))
2622 spin_lock(&q->busylock);
2624 spin_lock(root_lock);
2625 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2628 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2629 qdisc_run_begin(q)) {
2631 * This is a work-conserving queue; there are no old skbs
2632 * waiting to be sent out; and the qdisc is not running -
2633 * xmit the skb directly.
2635 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2638 qdisc_bstats_update(q, skb);
2640 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2641 if (unlikely(contended)) {
2642 spin_unlock(&q->busylock);
2649 rc = NET_XMIT_SUCCESS;
2652 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2653 if (qdisc_run_begin(q)) {
2654 if (unlikely(contended)) {
2655 spin_unlock(&q->busylock);
2661 spin_unlock(root_lock);
2662 if (unlikely(contended))
2663 spin_unlock(&q->busylock);
2667 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2668 static void skb_update_prio(struct sk_buff *skb)
2670 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2672 if (!skb->priority && skb->sk && map) {
2673 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2675 if (prioidx < map->priomap_len)
2676 skb->priority = map->priomap[prioidx];
2680 #define skb_update_prio(skb)
2683 static DEFINE_PER_CPU(int, xmit_recursion);
2684 #define RECURSION_LIMIT 10
2687 * dev_loopback_xmit - loop back @skb
2688 * @skb: buffer to transmit
2690 int dev_loopback_xmit(struct sk_buff *skb)
2692 skb_reset_mac_header(skb);
2693 __skb_pull(skb, skb_network_offset(skb));
2694 skb->pkt_type = PACKET_LOOPBACK;
2695 skb->ip_summed = CHECKSUM_UNNECESSARY;
2696 WARN_ON(!skb_dst(skb));
2701 EXPORT_SYMBOL(dev_loopback_xmit);
2704 * dev_queue_xmit - transmit a buffer
2705 * @skb: buffer to transmit
2707 * Queue a buffer for transmission to a network device. The caller must
2708 * have set the device and priority and built the buffer before calling
2709 * this function. The function can be called from an interrupt.
2711 * A negative errno code is returned on a failure. A success does not
2712 * guarantee the frame will be transmitted as it may be dropped due
2713 * to congestion or traffic shaping.
2715 * -----------------------------------------------------------------------------------
2716 * I notice this method can also return errors from the queue disciplines,
2717 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2720 * Regardless of the return value, the skb is consumed, so it is currently
2721 * difficult to retry a send to this method. (You can bump the ref count
2722 * before sending to hold a reference for retry if you are careful.)
2724 * When calling this method, interrupts MUST be enabled. This is because
2725 * the BH enable code must have IRQs enabled so that it will not deadlock.
2728 int dev_queue_xmit(struct sk_buff *skb)
2730 struct net_device *dev = skb->dev;
2731 struct netdev_queue *txq;
2735 skb_reset_mac_header(skb);
2737 /* Disable soft irqs for various locks below. Also
2738 * stops preemption for RCU.
2742 skb_update_prio(skb);
2744 txq = netdev_pick_tx(dev, skb);
2745 q = rcu_dereference_bh(txq->qdisc);
2747 #ifdef CONFIG_NET_CLS_ACT
2748 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2750 trace_net_dev_queue(skb);
2752 rc = __dev_xmit_skb(skb, q, dev, txq);
2756 /* The device has no queue. Common case for software devices:
2757 loopback, all the sorts of tunnels...
2759 Really, it is unlikely that netif_tx_lock protection is necessary
2760 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2762 However, it is possible, that they rely on protection
2765 Check this and shot the lock. It is not prone from deadlocks.
2766 Either shot noqueue qdisc, it is even simpler 8)
2768 if (dev->flags & IFF_UP) {
2769 int cpu = smp_processor_id(); /* ok because BHs are off */
2771 if (txq->xmit_lock_owner != cpu) {
2773 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2774 goto recursion_alert;
2776 HARD_TX_LOCK(dev, txq, cpu);
2778 if (!netif_xmit_stopped(txq)) {
2779 __this_cpu_inc(xmit_recursion);
2780 rc = dev_hard_start_xmit(skb, dev, txq);
2781 __this_cpu_dec(xmit_recursion);
2782 if (dev_xmit_complete(rc)) {
2783 HARD_TX_UNLOCK(dev, txq);
2787 HARD_TX_UNLOCK(dev, txq);
2788 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2791 /* Recursion is detected! It is possible,
2795 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2801 rcu_read_unlock_bh();
2806 rcu_read_unlock_bh();
2809 EXPORT_SYMBOL(dev_queue_xmit);
2812 /*=======================================================================
2814 =======================================================================*/
2816 int netdev_max_backlog __read_mostly = 1000;
2817 EXPORT_SYMBOL(netdev_max_backlog);
2819 int netdev_tstamp_prequeue __read_mostly = 1;
2820 int netdev_budget __read_mostly = 300;
2821 int weight_p __read_mostly = 64; /* old backlog weight */
2823 /* Called with irq disabled */
2824 static inline void ____napi_schedule(struct softnet_data *sd,
2825 struct napi_struct *napi)
2827 list_add_tail(&napi->poll_list, &sd->poll_list);
2828 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2833 /* One global table that all flow-based protocols share. */
2834 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2835 EXPORT_SYMBOL(rps_sock_flow_table);
2837 struct static_key rps_needed __read_mostly;
2839 static struct rps_dev_flow *
2840 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2841 struct rps_dev_flow *rflow, u16 next_cpu)
2843 if (next_cpu != RPS_NO_CPU) {
2844 #ifdef CONFIG_RFS_ACCEL
2845 struct netdev_rx_queue *rxqueue;
2846 struct rps_dev_flow_table *flow_table;
2847 struct rps_dev_flow *old_rflow;
2852 /* Should we steer this flow to a different hardware queue? */
2853 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2854 !(dev->features & NETIF_F_NTUPLE))
2856 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2857 if (rxq_index == skb_get_rx_queue(skb))
2860 rxqueue = dev->_rx + rxq_index;
2861 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2864 flow_id = skb->rxhash & flow_table->mask;
2865 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2866 rxq_index, flow_id);
2870 rflow = &flow_table->flows[flow_id];
2872 if (old_rflow->filter == rflow->filter)
2873 old_rflow->filter = RPS_NO_FILTER;
2877 per_cpu(softnet_data, next_cpu).input_queue_head;
2880 rflow->cpu = next_cpu;
2885 * get_rps_cpu is called from netif_receive_skb and returns the target
2886 * CPU from the RPS map of the receiving queue for a given skb.
2887 * rcu_read_lock must be held on entry.
2889 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2890 struct rps_dev_flow **rflowp)
2892 struct netdev_rx_queue *rxqueue;
2893 struct rps_map *map;
2894 struct rps_dev_flow_table *flow_table;
2895 struct rps_sock_flow_table *sock_flow_table;
2899 if (skb_rx_queue_recorded(skb)) {
2900 u16 index = skb_get_rx_queue(skb);
2901 if (unlikely(index >= dev->real_num_rx_queues)) {
2902 WARN_ONCE(dev->real_num_rx_queues > 1,
2903 "%s received packet on queue %u, but number "
2904 "of RX queues is %u\n",
2905 dev->name, index, dev->real_num_rx_queues);
2908 rxqueue = dev->_rx + index;
2912 map = rcu_dereference(rxqueue->rps_map);
2914 if (map->len == 1 &&
2915 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2916 tcpu = map->cpus[0];
2917 if (cpu_online(tcpu))
2921 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2925 skb_reset_network_header(skb);
2926 if (!skb_get_rxhash(skb))
2929 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2930 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2931 if (flow_table && sock_flow_table) {
2933 struct rps_dev_flow *rflow;
2935 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2938 next_cpu = sock_flow_table->ents[skb->rxhash &
2939 sock_flow_table->mask];
2942 * If the desired CPU (where last recvmsg was done) is
2943 * different from current CPU (one in the rx-queue flow
2944 * table entry), switch if one of the following holds:
2945 * - Current CPU is unset (equal to RPS_NO_CPU).
2946 * - Current CPU is offline.
2947 * - The current CPU's queue tail has advanced beyond the
2948 * last packet that was enqueued using this table entry.
2949 * This guarantees that all previous packets for the flow
2950 * have been dequeued, thus preserving in order delivery.
2952 if (unlikely(tcpu != next_cpu) &&
2953 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2954 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2955 rflow->last_qtail)) >= 0)) {
2957 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2960 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2968 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2970 if (cpu_online(tcpu)) {
2980 #ifdef CONFIG_RFS_ACCEL
2983 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2984 * @dev: Device on which the filter was set
2985 * @rxq_index: RX queue index
2986 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2987 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2989 * Drivers that implement ndo_rx_flow_steer() should periodically call
2990 * this function for each installed filter and remove the filters for
2991 * which it returns %true.
2993 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2994 u32 flow_id, u16 filter_id)
2996 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2997 struct rps_dev_flow_table *flow_table;
2998 struct rps_dev_flow *rflow;
3003 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3004 if (flow_table && flow_id <= flow_table->mask) {
3005 rflow = &flow_table->flows[flow_id];
3006 cpu = ACCESS_ONCE(rflow->cpu);
3007 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3008 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3009 rflow->last_qtail) <
3010 (int)(10 * flow_table->mask)))
3016 EXPORT_SYMBOL(rps_may_expire_flow);
3018 #endif /* CONFIG_RFS_ACCEL */
3020 /* Called from hardirq (IPI) context */
3021 static void rps_trigger_softirq(void *data)
3023 struct softnet_data *sd = data;
3025 ____napi_schedule(sd, &sd->backlog);
3029 #endif /* CONFIG_RPS */
3032 * Check if this softnet_data structure is another cpu one
3033 * If yes, queue it to our IPI list and return 1
3036 static int rps_ipi_queued(struct softnet_data *sd)
3039 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3042 sd->rps_ipi_next = mysd->rps_ipi_list;
3043 mysd->rps_ipi_list = sd;
3045 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3048 #endif /* CONFIG_RPS */
3053 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3054 * queue (may be a remote CPU queue).
3056 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3057 unsigned int *qtail)
3059 struct softnet_data *sd;
3060 unsigned long flags;
3062 sd = &per_cpu(softnet_data, cpu);
3064 local_irq_save(flags);
3067 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3068 if (skb_queue_len(&sd->input_pkt_queue)) {
3070 __skb_queue_tail(&sd->input_pkt_queue, skb);
3071 input_queue_tail_incr_save(sd, qtail);
3073 local_irq_restore(flags);
3074 return NET_RX_SUCCESS;
3077 /* Schedule NAPI for backlog device
3078 * We can use non atomic operation since we own the queue lock
3080 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3081 if (!rps_ipi_queued(sd))
3082 ____napi_schedule(sd, &sd->backlog);
3090 local_irq_restore(flags);
3092 atomic_long_inc(&skb->dev->rx_dropped);
3098 * netif_rx - post buffer to the network code
3099 * @skb: buffer to post
3101 * This function receives a packet from a device driver and queues it for
3102 * the upper (protocol) levels to process. It always succeeds. The buffer
3103 * may be dropped during processing for congestion control or by the
3107 * NET_RX_SUCCESS (no congestion)
3108 * NET_RX_DROP (packet was dropped)
3112 int netif_rx(struct sk_buff *skb)
3116 /* if netpoll wants it, pretend we never saw it */
3117 if (netpoll_rx(skb))
3120 net_timestamp_check(netdev_tstamp_prequeue, skb);
3122 trace_netif_rx(skb);
3124 if (static_key_false(&rps_needed)) {
3125 struct rps_dev_flow voidflow, *rflow = &voidflow;
3131 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3133 cpu = smp_processor_id();
3135 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3143 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3148 EXPORT_SYMBOL(netif_rx);
3150 int netif_rx_ni(struct sk_buff *skb)
3155 err = netif_rx(skb);
3156 if (local_softirq_pending())
3162 EXPORT_SYMBOL(netif_rx_ni);
3164 static void net_tx_action(struct softirq_action *h)
3166 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3168 if (sd->completion_queue) {
3169 struct sk_buff *clist;
3171 local_irq_disable();
3172 clist = sd->completion_queue;
3173 sd->completion_queue = NULL;
3177 struct sk_buff *skb = clist;
3178 clist = clist->next;
3180 WARN_ON(atomic_read(&skb->users));
3181 trace_kfree_skb(skb, net_tx_action);
3186 if (sd->output_queue) {
3189 local_irq_disable();
3190 head = sd->output_queue;
3191 sd->output_queue = NULL;
3192 sd->output_queue_tailp = &sd->output_queue;
3196 struct Qdisc *q = head;
3197 spinlock_t *root_lock;
3199 head = head->next_sched;
3201 root_lock = qdisc_lock(q);
3202 if (spin_trylock(root_lock)) {
3203 smp_mb__before_clear_bit();
3204 clear_bit(__QDISC_STATE_SCHED,
3207 spin_unlock(root_lock);
3209 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3211 __netif_reschedule(q);
3213 smp_mb__before_clear_bit();
3214 clear_bit(__QDISC_STATE_SCHED,
3222 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3223 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3224 /* This hook is defined here for ATM LANE */
3225 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3226 unsigned char *addr) __read_mostly;
3227 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3230 #ifdef CONFIG_NET_CLS_ACT
3231 /* TODO: Maybe we should just force sch_ingress to be compiled in
3232 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3233 * a compare and 2 stores extra right now if we dont have it on
3234 * but have CONFIG_NET_CLS_ACT
3235 * NOTE: This doesn't stop any functionality; if you dont have
3236 * the ingress scheduler, you just can't add policies on ingress.
3239 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3241 struct net_device *dev = skb->dev;
3242 u32 ttl = G_TC_RTTL(skb->tc_verd);
3243 int result = TC_ACT_OK;
3246 if (unlikely(MAX_RED_LOOP < ttl++)) {
3247 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3248 skb->skb_iif, dev->ifindex);
3252 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3253 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3256 if (q != &noop_qdisc) {
3257 spin_lock(qdisc_lock(q));
3258 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3259 result = qdisc_enqueue_root(skb, q);
3260 spin_unlock(qdisc_lock(q));
3266 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3267 struct packet_type **pt_prev,
3268 int *ret, struct net_device *orig_dev)
3270 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3272 if (!rxq || rxq->qdisc == &noop_qdisc)
3276 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3280 switch (ing_filter(skb, rxq)) {
3294 * netdev_rx_handler_register - register receive handler
3295 * @dev: device to register a handler for
3296 * @rx_handler: receive handler to register
3297 * @rx_handler_data: data pointer that is used by rx handler
3299 * Register a receive hander for a device. This handler will then be
3300 * called from __netif_receive_skb. A negative errno code is returned
3303 * The caller must hold the rtnl_mutex.
3305 * For a general description of rx_handler, see enum rx_handler_result.
3307 int netdev_rx_handler_register(struct net_device *dev,
3308 rx_handler_func_t *rx_handler,
3309 void *rx_handler_data)
3313 if (dev->rx_handler)
3316 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3317 rcu_assign_pointer(dev->rx_handler, rx_handler);
3321 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3324 * netdev_rx_handler_unregister - unregister receive handler
3325 * @dev: device to unregister a handler from
3327 * Unregister a receive hander from a device.
3329 * The caller must hold the rtnl_mutex.
3331 void netdev_rx_handler_unregister(struct net_device *dev)
3335 RCU_INIT_POINTER(dev->rx_handler, NULL);
3336 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3338 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3341 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3342 * the special handling of PFMEMALLOC skbs.
3344 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3346 switch (skb->protocol) {
3347 case __constant_htons(ETH_P_ARP):
3348 case __constant_htons(ETH_P_IP):
3349 case __constant_htons(ETH_P_IPV6):
3350 case __constant_htons(ETH_P_8021Q):
3357 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3359 struct packet_type *ptype, *pt_prev;
3360 rx_handler_func_t *rx_handler;
3361 struct net_device *orig_dev;
3362 struct net_device *null_or_dev;
3363 bool deliver_exact = false;
3364 int ret = NET_RX_DROP;
3367 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3369 trace_netif_receive_skb(skb);
3371 /* if we've gotten here through NAPI, check netpoll */
3372 if (netpoll_receive_skb(skb))
3375 orig_dev = skb->dev;
3377 skb_reset_network_header(skb);
3378 if (!skb_transport_header_was_set(skb))
3379 skb_reset_transport_header(skb);
3380 skb_reset_mac_len(skb);
3387 skb->skb_iif = skb->dev->ifindex;
3389 __this_cpu_inc(softnet_data.processed);
3391 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3392 skb = vlan_untag(skb);
3397 #ifdef CONFIG_NET_CLS_ACT
3398 if (skb->tc_verd & TC_NCLS) {
3399 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3407 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3408 if (!ptype->dev || ptype->dev == skb->dev) {
3410 ret = deliver_skb(skb, pt_prev, orig_dev);
3416 #ifdef CONFIG_NET_CLS_ACT
3417 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3423 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3426 if (vlan_tx_tag_present(skb)) {
3428 ret = deliver_skb(skb, pt_prev, orig_dev);
3431 if (vlan_do_receive(&skb))
3433 else if (unlikely(!skb))
3437 rx_handler = rcu_dereference(skb->dev->rx_handler);
3440 ret = deliver_skb(skb, pt_prev, orig_dev);
3443 switch (rx_handler(&skb)) {
3444 case RX_HANDLER_CONSUMED:
3446 case RX_HANDLER_ANOTHER:
3448 case RX_HANDLER_EXACT:
3449 deliver_exact = true;
3450 case RX_HANDLER_PASS:
3457 if (vlan_tx_nonzero_tag_present(skb))
3458 skb->pkt_type = PACKET_OTHERHOST;
3460 /* deliver only exact match when indicated */
3461 null_or_dev = deliver_exact ? skb->dev : NULL;
3463 type = skb->protocol;
3464 list_for_each_entry_rcu(ptype,
3465 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3466 if (ptype->type == type &&
3467 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3468 ptype->dev == orig_dev)) {
3470 ret = deliver_skb(skb, pt_prev, orig_dev);
3476 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3479 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3482 atomic_long_inc(&skb->dev->rx_dropped);
3484 /* Jamal, now you will not able to escape explaining
3485 * me how you were going to use this. :-)
3496 static int __netif_receive_skb(struct sk_buff *skb)
3500 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3501 unsigned long pflags = current->flags;
3504 * PFMEMALLOC skbs are special, they should
3505 * - be delivered to SOCK_MEMALLOC sockets only
3506 * - stay away from userspace
3507 * - have bounded memory usage
3509 * Use PF_MEMALLOC as this saves us from propagating the allocation
3510 * context down to all allocation sites.
3512 current->flags |= PF_MEMALLOC;
3513 ret = __netif_receive_skb_core(skb, true);
3514 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3516 ret = __netif_receive_skb_core(skb, false);
3522 * netif_receive_skb - process receive buffer from network
3523 * @skb: buffer to process
3525 * netif_receive_skb() is the main receive data processing function.
3526 * It always succeeds. The buffer may be dropped during processing
3527 * for congestion control or by the protocol layers.
3529 * This function may only be called from softirq context and interrupts
3530 * should be enabled.
3532 * Return values (usually ignored):
3533 * NET_RX_SUCCESS: no congestion
3534 * NET_RX_DROP: packet was dropped
3536 int netif_receive_skb(struct sk_buff *skb)
3538 net_timestamp_check(netdev_tstamp_prequeue, skb);
3540 if (skb_defer_rx_timestamp(skb))
3541 return NET_RX_SUCCESS;
3544 if (static_key_false(&rps_needed)) {
3545 struct rps_dev_flow voidflow, *rflow = &voidflow;
3550 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3553 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3560 return __netif_receive_skb(skb);
3562 EXPORT_SYMBOL(netif_receive_skb);
3564 /* Network device is going away, flush any packets still pending
3565 * Called with irqs disabled.
3567 static void flush_backlog(void *arg)
3569 struct net_device *dev = arg;
3570 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3571 struct sk_buff *skb, *tmp;
3574 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3575 if (skb->dev == dev) {
3576 __skb_unlink(skb, &sd->input_pkt_queue);
3578 input_queue_head_incr(sd);
3583 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3584 if (skb->dev == dev) {
3585 __skb_unlink(skb, &sd->process_queue);
3587 input_queue_head_incr(sd);
3592 static int napi_gro_complete(struct sk_buff *skb)
3594 struct packet_offload *ptype;
3595 __be16 type = skb->protocol;
3596 struct list_head *head = &offload_base;
3599 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3601 if (NAPI_GRO_CB(skb)->count == 1) {
3602 skb_shinfo(skb)->gso_size = 0;
3607 list_for_each_entry_rcu(ptype, head, list) {
3608 if (ptype->type != type || !ptype->callbacks.gro_complete)
3611 err = ptype->callbacks.gro_complete(skb);
3617 WARN_ON(&ptype->list == head);
3619 return NET_RX_SUCCESS;
3623 return netif_receive_skb(skb);
3626 /* napi->gro_list contains packets ordered by age.
3627 * youngest packets at the head of it.
3628 * Complete skbs in reverse order to reduce latencies.
3630 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3632 struct sk_buff *skb, *prev = NULL;
3634 /* scan list and build reverse chain */
3635 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3640 for (skb = prev; skb; skb = prev) {
3643 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3647 napi_gro_complete(skb);
3651 napi->gro_list = NULL;
3653 EXPORT_SYMBOL(napi_gro_flush);
3655 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3658 unsigned int maclen = skb->dev->hard_header_len;
3660 for (p = napi->gro_list; p; p = p->next) {
3661 unsigned long diffs;
3663 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3664 diffs |= p->vlan_tci ^ skb->vlan_tci;
3665 if (maclen == ETH_HLEN)
3666 diffs |= compare_ether_header(skb_mac_header(p),
3667 skb_gro_mac_header(skb));