Pull netlink into release branch
[pandora-kernel.git] / net / bluetooth / rfcomm / core.c
1 /*
2    RFCOMM implementation for Linux Bluetooth stack (BlueZ).
3    Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com>
4    Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org>
5
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License version 2 as
8    published by the Free Software Foundation;
9
10    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21    SOFTWARE IS DISCLAIMED.
22 */
23
24 /*
25  * Bluetooth RFCOMM core.
26  *
27  * $Id: core.c,v 1.42 2002/10/01 23:26:25 maxk Exp $
28  */
29
30 #include <linux/module.h>
31 #include <linux/errno.h>
32 #include <linux/kernel.h>
33 #include <linux/sched.h>
34 #include <linux/signal.h>
35 #include <linux/init.h>
36 #include <linux/freezer.h>
37 #include <linux/wait.h>
38 #include <linux/device.h>
39 #include <linux/net.h>
40 #include <linux/mutex.h>
41
42 #include <net/sock.h>
43 #include <asm/uaccess.h>
44 #include <asm/unaligned.h>
45
46 #include <net/bluetooth/bluetooth.h>
47 #include <net/bluetooth/hci_core.h>
48 #include <net/bluetooth/l2cap.h>
49 #include <net/bluetooth/rfcomm.h>
50
51 #ifndef CONFIG_BT_RFCOMM_DEBUG
52 #undef  BT_DBG
53 #define BT_DBG(D...)
54 #endif
55
56 #define VERSION "1.8"
57
58 static int disable_cfc = 0;
59 static int channel_mtu = -1;
60 static unsigned int l2cap_mtu = RFCOMM_MAX_L2CAP_MTU;
61
62 static struct task_struct *rfcomm_thread;
63
64 static DEFINE_MUTEX(rfcomm_mutex);
65 #define rfcomm_lock()   mutex_lock(&rfcomm_mutex)
66 #define rfcomm_unlock() mutex_unlock(&rfcomm_mutex)
67
68 static unsigned long rfcomm_event;
69
70 static LIST_HEAD(session_list);
71 static atomic_t terminate, running;
72
73 static int rfcomm_send_frame(struct rfcomm_session *s, u8 *data, int len);
74 static int rfcomm_send_sabm(struct rfcomm_session *s, u8 dlci);
75 static int rfcomm_send_disc(struct rfcomm_session *s, u8 dlci);
76 static int rfcomm_queue_disc(struct rfcomm_dlc *d);
77 static int rfcomm_send_nsc(struct rfcomm_session *s, int cr, u8 type);
78 static int rfcomm_send_pn(struct rfcomm_session *s, int cr, struct rfcomm_dlc *d);
79 static int rfcomm_send_msc(struct rfcomm_session *s, int cr, u8 dlci, u8 v24_sig);
80 static int rfcomm_send_test(struct rfcomm_session *s, int cr, u8 *pattern, int len);
81 static int rfcomm_send_credits(struct rfcomm_session *s, u8 addr, u8 credits);
82 static void rfcomm_make_uih(struct sk_buff *skb, u8 addr);
83
84 static void rfcomm_process_connect(struct rfcomm_session *s);
85
86 static struct rfcomm_session *rfcomm_session_create(bdaddr_t *src, bdaddr_t *dst, int *err);
87 static struct rfcomm_session *rfcomm_session_get(bdaddr_t *src, bdaddr_t *dst);
88 static void rfcomm_session_del(struct rfcomm_session *s);
89
90 /* ---- RFCOMM frame parsing macros ---- */
91 #define __get_dlci(b)     ((b & 0xfc) >> 2)
92 #define __get_channel(b)  ((b & 0xf8) >> 3)
93 #define __get_dir(b)      ((b & 0x04) >> 2)
94 #define __get_type(b)     ((b & 0xef))
95
96 #define __test_ea(b)      ((b & 0x01))
97 #define __test_cr(b)      ((b & 0x02))
98 #define __test_pf(b)      ((b & 0x10))
99
100 #define __addr(cr, dlci)       (((dlci & 0x3f) << 2) | (cr << 1) | 0x01)
101 #define __ctrl(type, pf)       (((type & 0xef) | (pf << 4)))
102 #define __dlci(dir, chn)       (((chn & 0x1f) << 1) | dir)
103 #define __srv_channel(dlci)    (dlci >> 1)
104 #define __dir(dlci)            (dlci & 0x01)
105
106 #define __len8(len)       (((len) << 1) | 1)
107 #define __len16(len)      ((len) << 1)
108
109 /* MCC macros */
110 #define __mcc_type(cr, type)   (((type << 2) | (cr << 1) | 0x01))
111 #define __get_mcc_type(b) ((b & 0xfc) >> 2)
112 #define __get_mcc_len(b)  ((b & 0xfe) >> 1)
113
114 /* RPN macros */
115 #define __rpn_line_settings(data, stop, parity)  ((data & 0x3) | ((stop & 0x1) << 2) | ((parity & 0x7) << 3))
116 #define __get_rpn_data_bits(line) ((line) & 0x3)
117 #define __get_rpn_stop_bits(line) (((line) >> 2) & 0x1)
118 #define __get_rpn_parity(line)    (((line) >> 3) & 0x7)
119
120 static inline void rfcomm_schedule(uint event)
121 {
122         if (!rfcomm_thread)
123                 return;
124         //set_bit(event, &rfcomm_event);
125         set_bit(RFCOMM_SCHED_WAKEUP, &rfcomm_event);
126         wake_up_process(rfcomm_thread);
127 }
128
129 static inline void rfcomm_session_put(struct rfcomm_session *s)
130 {
131         if (atomic_dec_and_test(&s->refcnt))
132                 rfcomm_session_del(s);
133 }
134
135 /* ---- RFCOMM FCS computation ---- */
136
137 /* reversed, 8-bit, poly=0x07 */
138 static unsigned char rfcomm_crc_table[256] = {
139         0x00, 0x91, 0xe3, 0x72, 0x07, 0x96, 0xe4, 0x75,
140         0x0e, 0x9f, 0xed, 0x7c, 0x09, 0x98, 0xea, 0x7b,
141         0x1c, 0x8d, 0xff, 0x6e, 0x1b, 0x8a, 0xf8, 0x69,
142         0x12, 0x83, 0xf1, 0x60, 0x15, 0x84, 0xf6, 0x67,
143
144         0x38, 0xa9, 0xdb, 0x4a, 0x3f, 0xae, 0xdc, 0x4d,
145         0x36, 0xa7, 0xd5, 0x44, 0x31, 0xa0, 0xd2, 0x43,
146         0x24, 0xb5, 0xc7, 0x56, 0x23, 0xb2, 0xc0, 0x51,
147         0x2a, 0xbb, 0xc9, 0x58, 0x2d, 0xbc, 0xce, 0x5f,
148
149         0x70, 0xe1, 0x93, 0x02, 0x77, 0xe6, 0x94, 0x05,
150         0x7e, 0xef, 0x9d, 0x0c, 0x79, 0xe8, 0x9a, 0x0b,
151         0x6c, 0xfd, 0x8f, 0x1e, 0x6b, 0xfa, 0x88, 0x19,
152         0x62, 0xf3, 0x81, 0x10, 0x65, 0xf4, 0x86, 0x17,
153
154         0x48, 0xd9, 0xab, 0x3a, 0x4f, 0xde, 0xac, 0x3d,
155         0x46, 0xd7, 0xa5, 0x34, 0x41, 0xd0, 0xa2, 0x33,
156         0x54, 0xc5, 0xb7, 0x26, 0x53, 0xc2, 0xb0, 0x21,
157         0x5a, 0xcb, 0xb9, 0x28, 0x5d, 0xcc, 0xbe, 0x2f,
158
159         0xe0, 0x71, 0x03, 0x92, 0xe7, 0x76, 0x04, 0x95,
160         0xee, 0x7f, 0x0d, 0x9c, 0xe9, 0x78, 0x0a, 0x9b,
161         0xfc, 0x6d, 0x1f, 0x8e, 0xfb, 0x6a, 0x18, 0x89,
162         0xf2, 0x63, 0x11, 0x80, 0xf5, 0x64, 0x16, 0x87,
163
164         0xd8, 0x49, 0x3b, 0xaa, 0xdf, 0x4e, 0x3c, 0xad,
165         0xd6, 0x47, 0x35, 0xa4, 0xd1, 0x40, 0x32, 0xa3,
166         0xc4, 0x55, 0x27, 0xb6, 0xc3, 0x52, 0x20, 0xb1,
167         0xca, 0x5b, 0x29, 0xb8, 0xcd, 0x5c, 0x2e, 0xbf,
168
169         0x90, 0x01, 0x73, 0xe2, 0x97, 0x06, 0x74, 0xe5,
170         0x9e, 0x0f, 0x7d, 0xec, 0x99, 0x08, 0x7a, 0xeb,
171         0x8c, 0x1d, 0x6f, 0xfe, 0x8b, 0x1a, 0x68, 0xf9,
172         0x82, 0x13, 0x61, 0xf0, 0x85, 0x14, 0x66, 0xf7,
173
174         0xa8, 0x39, 0x4b, 0xda, 0xaf, 0x3e, 0x4c, 0xdd,
175         0xa6, 0x37, 0x45, 0xd4, 0xa1, 0x30, 0x42, 0xd3,
176         0xb4, 0x25, 0x57, 0xc6, 0xb3, 0x22, 0x50, 0xc1,
177         0xba, 0x2b, 0x59, 0xc8, 0xbd, 0x2c, 0x5e, 0xcf
178 };
179
180 /* CRC on 2 bytes */
181 #define __crc(data) (rfcomm_crc_table[rfcomm_crc_table[0xff ^ data[0]] ^ data[1]])
182
183 /* FCS on 2 bytes */
184 static inline u8 __fcs(u8 *data)
185 {
186         return (0xff - __crc(data));
187 }
188
189 /* FCS on 3 bytes */
190 static inline u8 __fcs2(u8 *data)
191 {
192         return (0xff - rfcomm_crc_table[__crc(data) ^ data[2]]);
193 }
194
195 /* Check FCS */
196 static inline int __check_fcs(u8 *data, int type, u8 fcs)
197 {
198         u8 f = __crc(data);
199
200         if (type != RFCOMM_UIH)
201                 f = rfcomm_crc_table[f ^ data[2]];
202
203         return rfcomm_crc_table[f ^ fcs] != 0xcf;
204 }
205
206 /* ---- L2CAP callbacks ---- */
207 static void rfcomm_l2state_change(struct sock *sk)
208 {
209         BT_DBG("%p state %d", sk, sk->sk_state);
210         rfcomm_schedule(RFCOMM_SCHED_STATE);
211 }
212
213 static void rfcomm_l2data_ready(struct sock *sk, int bytes)
214 {
215         BT_DBG("%p bytes %d", sk, bytes);
216         rfcomm_schedule(RFCOMM_SCHED_RX);
217 }
218
219 static int rfcomm_l2sock_create(struct socket **sock)
220 {
221         int err;
222
223         BT_DBG("");
224
225         err = sock_create_kern(PF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_L2CAP, sock);
226         if (!err) {
227                 struct sock *sk = (*sock)->sk;
228                 sk->sk_data_ready   = rfcomm_l2data_ready;
229                 sk->sk_state_change = rfcomm_l2state_change;
230         }
231         return err;
232 }
233
234 /* ---- RFCOMM DLCs ---- */
235 static void rfcomm_dlc_timeout(unsigned long arg)
236 {
237         struct rfcomm_dlc *d = (void *) arg;
238
239         BT_DBG("dlc %p state %ld", d, d->state);
240
241         set_bit(RFCOMM_TIMED_OUT, &d->flags);
242         rfcomm_dlc_put(d);
243         rfcomm_schedule(RFCOMM_SCHED_TIMEO);
244 }
245
246 static void rfcomm_dlc_set_timer(struct rfcomm_dlc *d, long timeout)
247 {
248         BT_DBG("dlc %p state %ld timeout %ld", d, d->state, timeout);
249
250         if (!mod_timer(&d->timer, jiffies + timeout))
251                 rfcomm_dlc_hold(d);
252 }
253
254 static void rfcomm_dlc_clear_timer(struct rfcomm_dlc *d)
255 {
256         BT_DBG("dlc %p state %ld", d, d->state);
257
258         if (timer_pending(&d->timer) && del_timer(&d->timer))
259                 rfcomm_dlc_put(d);
260 }
261
262 static void rfcomm_dlc_clear_state(struct rfcomm_dlc *d)
263 {
264         BT_DBG("%p", d);
265
266         d->state      = BT_OPEN;
267         d->flags      = 0;
268         d->mscex      = 0;
269         d->mtu        = RFCOMM_DEFAULT_MTU;
270         d->v24_sig    = RFCOMM_V24_RTC | RFCOMM_V24_RTR | RFCOMM_V24_DV;
271
272         d->cfc        = RFCOMM_CFC_DISABLED;
273         d->rx_credits = RFCOMM_DEFAULT_CREDITS;
274 }
275
276 struct rfcomm_dlc *rfcomm_dlc_alloc(gfp_t prio)
277 {
278         struct rfcomm_dlc *d = kzalloc(sizeof(*d), prio);
279
280         if (!d)
281                 return NULL;
282
283         init_timer(&d->timer);
284         d->timer.function = rfcomm_dlc_timeout;
285         d->timer.data = (unsigned long) d;
286
287         skb_queue_head_init(&d->tx_queue);
288         spin_lock_init(&d->lock);
289         atomic_set(&d->refcnt, 1);
290
291         rfcomm_dlc_clear_state(d);
292
293         BT_DBG("%p", d);
294
295         return d;
296 }
297
298 void rfcomm_dlc_free(struct rfcomm_dlc *d)
299 {
300         BT_DBG("%p", d);
301
302         skb_queue_purge(&d->tx_queue);
303         kfree(d);
304 }
305
306 static void rfcomm_dlc_link(struct rfcomm_session *s, struct rfcomm_dlc *d)
307 {
308         BT_DBG("dlc %p session %p", d, s);
309
310         rfcomm_session_hold(s);
311
312         rfcomm_dlc_hold(d);
313         list_add(&d->list, &s->dlcs);
314         d->session = s;
315 }
316
317 static void rfcomm_dlc_unlink(struct rfcomm_dlc *d)
318 {
319         struct rfcomm_session *s = d->session;
320
321         BT_DBG("dlc %p refcnt %d session %p", d, atomic_read(&d->refcnt), s);
322
323         list_del(&d->list);
324         d->session = NULL;
325         rfcomm_dlc_put(d);
326
327         rfcomm_session_put(s);
328 }
329
330 static struct rfcomm_dlc *rfcomm_dlc_get(struct rfcomm_session *s, u8 dlci)
331 {
332         struct rfcomm_dlc *d;
333         struct list_head *p;
334
335         list_for_each(p, &s->dlcs) {
336                 d = list_entry(p, struct rfcomm_dlc, list);
337                 if (d->dlci == dlci)
338                         return d;
339         }
340         return NULL;
341 }
342
343 static int __rfcomm_dlc_open(struct rfcomm_dlc *d, bdaddr_t *src, bdaddr_t *dst, u8 channel)
344 {
345         struct rfcomm_session *s;
346         int err = 0;
347         u8 dlci;
348
349         BT_DBG("dlc %p state %ld %s %s channel %d",
350                         d, d->state, batostr(src), batostr(dst), channel);
351
352         if (channel < 1 || channel > 30)
353                 return -EINVAL;
354
355         if (d->state != BT_OPEN && d->state != BT_CLOSED)
356                 return 0;
357
358         s = rfcomm_session_get(src, dst);
359         if (!s) {
360                 s = rfcomm_session_create(src, dst, &err);
361                 if (!s)
362                         return err;
363         }
364
365         dlci = __dlci(!s->initiator, channel);
366
367         /* Check if DLCI already exists */
368         if (rfcomm_dlc_get(s, dlci))
369                 return -EBUSY;
370
371         rfcomm_dlc_clear_state(d);
372
373         d->dlci     = dlci;
374         d->addr     = __addr(s->initiator, dlci);
375         d->priority = 7;
376
377         d->state    = BT_CONFIG;
378         rfcomm_dlc_link(s, d);
379
380         d->mtu = s->mtu;
381         d->cfc = (s->cfc == RFCOMM_CFC_UNKNOWN) ? 0 : s->cfc;
382
383         if (s->state == BT_CONNECTED)
384                 rfcomm_send_pn(s, 1, d);
385         rfcomm_dlc_set_timer(d, RFCOMM_CONN_TIMEOUT);
386         return 0;
387 }
388
389 int rfcomm_dlc_open(struct rfcomm_dlc *d, bdaddr_t *src, bdaddr_t *dst, u8 channel)
390 {
391         int r;
392
393         rfcomm_lock();
394
395         r = __rfcomm_dlc_open(d, src, dst, channel);
396
397         rfcomm_unlock();
398         return r;
399 }
400
401 static int __rfcomm_dlc_close(struct rfcomm_dlc *d, int err)
402 {
403         struct rfcomm_session *s = d->session;
404         if (!s)
405                 return 0;
406
407         BT_DBG("dlc %p state %ld dlci %d err %d session %p",
408                         d, d->state, d->dlci, err, s);
409
410         switch (d->state) {
411         case BT_CONNECTED:
412         case BT_CONFIG:
413         case BT_CONNECT:
414                 d->state = BT_DISCONN;
415                 if (skb_queue_empty(&d->tx_queue)) {
416                         rfcomm_send_disc(s, d->dlci);
417                         rfcomm_dlc_set_timer(d, RFCOMM_DISC_TIMEOUT);
418                 } else {
419                         rfcomm_queue_disc(d);
420                         rfcomm_dlc_set_timer(d, RFCOMM_DISC_TIMEOUT * 2);
421                 }
422                 break;
423
424         default:
425                 rfcomm_dlc_clear_timer(d);
426
427                 rfcomm_dlc_lock(d);
428                 d->state = BT_CLOSED;
429                 d->state_change(d, err);
430                 rfcomm_dlc_unlock(d);
431
432                 skb_queue_purge(&d->tx_queue);
433                 rfcomm_dlc_unlink(d);
434         }
435
436         return 0;
437 }
438
439 int rfcomm_dlc_close(struct rfcomm_dlc *d, int err)
440 {
441         int r;
442
443         rfcomm_lock();
444
445         r = __rfcomm_dlc_close(d, err);
446
447         rfcomm_unlock();
448         return r;
449 }
450
451 int rfcomm_dlc_send(struct rfcomm_dlc *d, struct sk_buff *skb)
452 {
453         int len = skb->len;
454
455         if (d->state != BT_CONNECTED)
456                 return -ENOTCONN;
457
458         BT_DBG("dlc %p mtu %d len %d", d, d->mtu, len);
459
460         if (len > d->mtu)
461                 return -EINVAL;
462
463         rfcomm_make_uih(skb, d->addr);
464         skb_queue_tail(&d->tx_queue, skb);
465
466         if (!test_bit(RFCOMM_TX_THROTTLED, &d->flags))
467                 rfcomm_schedule(RFCOMM_SCHED_TX);
468         return len;
469 }
470
471 void fastcall __rfcomm_dlc_throttle(struct rfcomm_dlc *d)
472 {
473         BT_DBG("dlc %p state %ld", d, d->state);
474
475         if (!d->cfc) {
476                 d->v24_sig |= RFCOMM_V24_FC;
477                 set_bit(RFCOMM_MSC_PENDING, &d->flags);
478         }
479         rfcomm_schedule(RFCOMM_SCHED_TX);
480 }
481
482 void fastcall __rfcomm_dlc_unthrottle(struct rfcomm_dlc *d)
483 {
484         BT_DBG("dlc %p state %ld", d, d->state);
485
486         if (!d->cfc) {
487                 d->v24_sig &= ~RFCOMM_V24_FC;
488                 set_bit(RFCOMM_MSC_PENDING, &d->flags);
489         }
490         rfcomm_schedule(RFCOMM_SCHED_TX);
491 }
492
493 /*
494    Set/get modem status functions use _local_ status i.e. what we report
495    to the other side.
496    Remote status is provided by dlc->modem_status() callback.
497  */
498 int rfcomm_dlc_set_modem_status(struct rfcomm_dlc *d, u8 v24_sig)
499 {
500         BT_DBG("dlc %p state %ld v24_sig 0x%x",
501                         d, d->state, v24_sig);
502
503         if (test_bit(RFCOMM_RX_THROTTLED, &d->flags))
504                 v24_sig |= RFCOMM_V24_FC;
505         else
506                 v24_sig &= ~RFCOMM_V24_FC;
507
508         d->v24_sig = v24_sig;
509
510         if (!test_and_set_bit(RFCOMM_MSC_PENDING, &d->flags))
511                 rfcomm_schedule(RFCOMM_SCHED_TX);
512
513         return 0;
514 }
515
516 int rfcomm_dlc_get_modem_status(struct rfcomm_dlc *d, u8 *v24_sig)
517 {
518         BT_DBG("dlc %p state %ld v24_sig 0x%x",
519                         d, d->state, d->v24_sig);
520
521         *v24_sig = d->v24_sig;
522         return 0;
523 }
524
525 /* ---- RFCOMM sessions ---- */
526 static struct rfcomm_session *rfcomm_session_add(struct socket *sock, int state)
527 {
528         struct rfcomm_session *s = kzalloc(sizeof(*s), GFP_KERNEL);
529
530         if (!s)
531                 return NULL;
532
533         BT_DBG("session %p sock %p", s, sock);
534
535         INIT_LIST_HEAD(&s->dlcs);
536         s->state = state;
537         s->sock  = sock;
538
539         s->mtu = RFCOMM_DEFAULT_MTU;
540         s->cfc = disable_cfc ? RFCOMM_CFC_DISABLED : RFCOMM_CFC_UNKNOWN;
541
542         /* Do not increment module usage count for listening sessions.
543          * Otherwise we won't be able to unload the module. */
544         if (state != BT_LISTEN)
545                 if (!try_module_get(THIS_MODULE)) {
546                         kfree(s);
547                         return NULL;
548                 }
549
550         list_add(&s->list, &session_list);
551
552         return s;
553 }
554
555 static void rfcomm_session_del(struct rfcomm_session *s)
556 {
557         int state = s->state;
558
559         BT_DBG("session %p state %ld", s, s->state);
560
561         list_del(&s->list);
562
563         if (state == BT_CONNECTED)
564                 rfcomm_send_disc(s, 0);
565
566         sock_release(s->sock);
567         kfree(s);
568
569         if (state != BT_LISTEN)
570                 module_put(THIS_MODULE);
571 }
572
573 static struct rfcomm_session *rfcomm_session_get(bdaddr_t *src, bdaddr_t *dst)
574 {
575         struct rfcomm_session *s;
576         struct list_head *p, *n;
577         struct bt_sock *sk;
578         list_for_each_safe(p, n, &session_list) {
579                 s = list_entry(p, struct rfcomm_session, list);
580                 sk = bt_sk(s->sock->sk);
581
582                 if ((!bacmp(src, BDADDR_ANY) || !bacmp(&sk->src, src)) &&
583                                 !bacmp(&sk->dst, dst))
584                         return s;
585         }
586         return NULL;
587 }
588
589 static void rfcomm_session_close(struct rfcomm_session *s, int err)
590 {
591         struct rfcomm_dlc *d;
592         struct list_head *p, *n;
593
594         BT_DBG("session %p state %ld err %d", s, s->state, err);
595
596         rfcomm_session_hold(s);
597
598         s->state = BT_CLOSED;
599
600         /* Close all dlcs */
601         list_for_each_safe(p, n, &s->dlcs) {
602                 d = list_entry(p, struct rfcomm_dlc, list);
603                 d->state = BT_CLOSED;
604                 __rfcomm_dlc_close(d, err);
605         }
606
607         rfcomm_session_put(s);
608 }
609
610 static struct rfcomm_session *rfcomm_session_create(bdaddr_t *src, bdaddr_t *dst, int *err)
611 {
612         struct rfcomm_session *s = NULL;
613         struct sockaddr_l2 addr;
614         struct socket *sock;
615         struct sock *sk;
616
617         BT_DBG("%s %s", batostr(src), batostr(dst));
618
619         *err = rfcomm_l2sock_create(&sock);
620         if (*err < 0)
621                 return NULL;
622
623         bacpy(&addr.l2_bdaddr, src);
624         addr.l2_family = AF_BLUETOOTH;
625         addr.l2_psm    = 0;
626         *err = kernel_bind(sock, (struct sockaddr *) &addr, sizeof(addr));
627         if (*err < 0)
628                 goto failed;
629
630         /* Set L2CAP options */
631         sk = sock->sk;
632         lock_sock(sk);
633         l2cap_pi(sk)->imtu = l2cap_mtu;
634         release_sock(sk);
635
636         s = rfcomm_session_add(sock, BT_BOUND);
637         if (!s) {
638                 *err = -ENOMEM;
639                 goto failed;
640         }
641
642         s->initiator = 1;
643
644         bacpy(&addr.l2_bdaddr, dst);
645         addr.l2_family = AF_BLUETOOTH;
646         addr.l2_psm    = htobs(RFCOMM_PSM);
647         *err = kernel_connect(sock, (struct sockaddr *) &addr, sizeof(addr), O_NONBLOCK);
648         if (*err == 0 || *err == -EINPROGRESS)
649                 return s;
650
651         rfcomm_session_del(s);
652         return NULL;
653
654 failed:
655         sock_release(sock);
656         return NULL;
657 }
658
659 void rfcomm_session_getaddr(struct rfcomm_session *s, bdaddr_t *src, bdaddr_t *dst)
660 {
661         struct sock *sk = s->sock->sk;
662         if (src)
663                 bacpy(src, &bt_sk(sk)->src);
664         if (dst)
665                 bacpy(dst, &bt_sk(sk)->dst);
666 }
667
668 /* ---- RFCOMM frame sending ---- */
669 static int rfcomm_send_frame(struct rfcomm_session *s, u8 *data, int len)
670 {
671         struct socket *sock = s->sock;
672         struct kvec iv = { data, len };
673         struct msghdr msg;
674
675         BT_DBG("session %p len %d", s, len);
676
677         memset(&msg, 0, sizeof(msg));
678
679         return kernel_sendmsg(sock, &msg, &iv, 1, len);
680 }
681
682 static int rfcomm_send_sabm(struct rfcomm_session *s, u8 dlci)
683 {
684         struct rfcomm_cmd cmd;
685
686         BT_DBG("%p dlci %d", s, dlci);
687
688         cmd.addr = __addr(s->initiator, dlci);
689         cmd.ctrl = __ctrl(RFCOMM_SABM, 1);
690         cmd.len  = __len8(0);
691         cmd.fcs  = __fcs2((u8 *) &cmd);
692
693         return rfcomm_send_frame(s, (void *) &cmd, sizeof(cmd));
694 }
695
696 static int rfcomm_send_ua(struct rfcomm_session *s, u8 dlci)
697 {
698         struct rfcomm_cmd cmd;
699
700         BT_DBG("%p dlci %d", s, dlci);
701
702         cmd.addr = __addr(!s->initiator, dlci);
703         cmd.ctrl = __ctrl(RFCOMM_UA, 1);
704         cmd.len  = __len8(0);
705         cmd.fcs  = __fcs2((u8 *) &cmd);
706
707         return rfcomm_send_frame(s, (void *) &cmd, sizeof(cmd));
708 }
709
710 static int rfcomm_send_disc(struct rfcomm_session *s, u8 dlci)
711 {
712         struct rfcomm_cmd cmd;
713
714         BT_DBG("%p dlci %d", s, dlci);
715
716         cmd.addr = __addr(s->initiator, dlci);
717         cmd.ctrl = __ctrl(RFCOMM_DISC, 1);
718         cmd.len  = __len8(0);
719         cmd.fcs  = __fcs2((u8 *) &cmd);
720
721         return rfcomm_send_frame(s, (void *) &cmd, sizeof(cmd));
722 }
723
724 static int rfcomm_queue_disc(struct rfcomm_dlc *d)
725 {
726         struct rfcomm_cmd *cmd;
727         struct sk_buff *skb;
728
729         BT_DBG("dlc %p dlci %d", d, d->dlci);
730
731         skb = alloc_skb(sizeof(*cmd), GFP_KERNEL);
732         if (!skb)
733                 return -ENOMEM;
734
735         cmd = (void *) __skb_put(skb, sizeof(*cmd));
736         cmd->addr = d->addr;
737         cmd->ctrl = __ctrl(RFCOMM_DISC, 1);
738         cmd->len  = __len8(0);
739         cmd->fcs  = __fcs2((u8 *) cmd);
740
741         skb_queue_tail(&d->tx_queue, skb);
742         rfcomm_schedule(RFCOMM_SCHED_TX);
743         return 0;
744 }
745
746 static int rfcomm_send_dm(struct rfcomm_session *s, u8 dlci)
747 {
748         struct rfcomm_cmd cmd;
749
750         BT_DBG("%p dlci %d", s, dlci);
751
752         cmd.addr = __addr(!s->initiator, dlci);
753         cmd.ctrl = __ctrl(RFCOMM_DM, 1);
754         cmd.len  = __len8(0);
755         cmd.fcs  = __fcs2((u8 *) &cmd);
756
757         return rfcomm_send_frame(s, (void *) &cmd, sizeof(cmd));
758 }
759
760 static int rfcomm_send_nsc(struct rfcomm_session *s, int cr, u8 type)
761 {
762         struct rfcomm_hdr *hdr;
763         struct rfcomm_mcc *mcc;
764         u8 buf[16], *ptr = buf;
765
766         BT_DBG("%p cr %d type %d", s, cr, type);
767
768         hdr = (void *) ptr; ptr += sizeof(*hdr);
769         hdr->addr = __addr(s->initiator, 0);
770         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
771         hdr->len  = __len8(sizeof(*mcc) + 1);
772
773         mcc = (void *) ptr; ptr += sizeof(*mcc);
774         mcc->type = __mcc_type(cr, RFCOMM_NSC);
775         mcc->len  = __len8(1);
776
777         /* Type that we didn't like */
778         *ptr = __mcc_type(cr, type); ptr++;
779
780         *ptr = __fcs(buf); ptr++;
781
782         return rfcomm_send_frame(s, buf, ptr - buf);
783 }
784
785 static int rfcomm_send_pn(struct rfcomm_session *s, int cr, struct rfcomm_dlc *d)
786 {
787         struct rfcomm_hdr *hdr;
788         struct rfcomm_mcc *mcc;
789         struct rfcomm_pn  *pn;
790         u8 buf[16], *ptr = buf;
791
792         BT_DBG("%p cr %d dlci %d mtu %d", s, cr, d->dlci, d->mtu);
793
794         hdr = (void *) ptr; ptr += sizeof(*hdr);
795         hdr->addr = __addr(s->initiator, 0);
796         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
797         hdr->len  = __len8(sizeof(*mcc) + sizeof(*pn));
798
799         mcc = (void *) ptr; ptr += sizeof(*mcc);
800         mcc->type = __mcc_type(cr, RFCOMM_PN);
801         mcc->len  = __len8(sizeof(*pn));
802
803         pn = (void *) ptr; ptr += sizeof(*pn);
804         pn->dlci        = d->dlci;
805         pn->priority    = d->priority;
806         pn->ack_timer   = 0;
807         pn->max_retrans = 0;
808
809         if (s->cfc) {
810                 pn->flow_ctrl = cr ? 0xf0 : 0xe0;
811                 pn->credits = RFCOMM_DEFAULT_CREDITS;
812         } else {
813                 pn->flow_ctrl = 0;
814                 pn->credits   = 0;
815         }
816
817         if (cr && channel_mtu >= 0)
818                 pn->mtu = htobs(channel_mtu);
819         else
820                 pn->mtu = htobs(d->mtu);
821
822         *ptr = __fcs(buf); ptr++;
823
824         return rfcomm_send_frame(s, buf, ptr - buf);
825 }
826
827 int rfcomm_send_rpn(struct rfcomm_session *s, int cr, u8 dlci,
828                         u8 bit_rate, u8 data_bits, u8 stop_bits,
829                         u8 parity, u8 flow_ctrl_settings,
830                         u8 xon_char, u8 xoff_char, u16 param_mask)
831 {
832         struct rfcomm_hdr *hdr;
833         struct rfcomm_mcc *mcc;
834         struct rfcomm_rpn *rpn;
835         u8 buf[16], *ptr = buf;
836
837         BT_DBG("%p cr %d dlci %d bit_r 0x%x data_b 0x%x stop_b 0x%x parity 0x%x"
838                         " flwc_s 0x%x xon_c 0x%x xoff_c 0x%x p_mask 0x%x",
839                 s, cr, dlci, bit_rate, data_bits, stop_bits, parity,
840                 flow_ctrl_settings, xon_char, xoff_char, param_mask);
841
842         hdr = (void *) ptr; ptr += sizeof(*hdr);
843         hdr->addr = __addr(s->initiator, 0);
844         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
845         hdr->len  = __len8(sizeof(*mcc) + sizeof(*rpn));
846
847         mcc = (void *) ptr; ptr += sizeof(*mcc);
848         mcc->type = __mcc_type(cr, RFCOMM_RPN);
849         mcc->len  = __len8(sizeof(*rpn));
850
851         rpn = (void *) ptr; ptr += sizeof(*rpn);
852         rpn->dlci          = __addr(1, dlci);
853         rpn->bit_rate      = bit_rate;
854         rpn->line_settings = __rpn_line_settings(data_bits, stop_bits, parity);
855         rpn->flow_ctrl     = flow_ctrl_settings;
856         rpn->xon_char      = xon_char;
857         rpn->xoff_char     = xoff_char;
858         rpn->param_mask    = cpu_to_le16(param_mask);
859
860         *ptr = __fcs(buf); ptr++;
861
862         return rfcomm_send_frame(s, buf, ptr - buf);
863 }
864
865 static int rfcomm_send_rls(struct rfcomm_session *s, int cr, u8 dlci, u8 status)
866 {
867         struct rfcomm_hdr *hdr;
868         struct rfcomm_mcc *mcc;
869         struct rfcomm_rls *rls;
870         u8 buf[16], *ptr = buf;
871
872         BT_DBG("%p cr %d status 0x%x", s, cr, status);
873
874         hdr = (void *) ptr; ptr += sizeof(*hdr);
875         hdr->addr = __addr(s->initiator, 0);
876         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
877         hdr->len  = __len8(sizeof(*mcc) + sizeof(*rls));
878
879         mcc = (void *) ptr; ptr += sizeof(*mcc);
880         mcc->type = __mcc_type(cr, RFCOMM_RLS);
881         mcc->len  = __len8(sizeof(*rls));
882
883         rls = (void *) ptr; ptr += sizeof(*rls);
884         rls->dlci   = __addr(1, dlci);
885         rls->status = status;
886
887         *ptr = __fcs(buf); ptr++;
888
889         return rfcomm_send_frame(s, buf, ptr - buf);
890 }
891
892 static int rfcomm_send_msc(struct rfcomm_session *s, int cr, u8 dlci, u8 v24_sig)
893 {
894         struct rfcomm_hdr *hdr;
895         struct rfcomm_mcc *mcc;
896         struct rfcomm_msc *msc;
897         u8 buf[16], *ptr = buf;
898
899         BT_DBG("%p cr %d v24 0x%x", s, cr, v24_sig);
900
901         hdr = (void *) ptr; ptr += sizeof(*hdr);
902         hdr->addr = __addr(s->initiator, 0);
903         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
904         hdr->len  = __len8(sizeof(*mcc) + sizeof(*msc));
905
906         mcc = (void *) ptr; ptr += sizeof(*mcc);
907         mcc->type = __mcc_type(cr, RFCOMM_MSC);
908         mcc->len  = __len8(sizeof(*msc));
909
910         msc = (void *) ptr; ptr += sizeof(*msc);
911         msc->dlci    = __addr(1, dlci);
912         msc->v24_sig = v24_sig | 0x01;
913
914         *ptr = __fcs(buf); ptr++;
915
916         return rfcomm_send_frame(s, buf, ptr - buf);
917 }
918
919 static int rfcomm_send_fcoff(struct rfcomm_session *s, int cr)
920 {
921         struct rfcomm_hdr *hdr;
922         struct rfcomm_mcc *mcc;
923         u8 buf[16], *ptr = buf;
924
925         BT_DBG("%p cr %d", s, cr);
926
927         hdr = (void *) ptr; ptr += sizeof(*hdr);
928         hdr->addr = __addr(s->initiator, 0);
929         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
930         hdr->len  = __len8(sizeof(*mcc));
931
932         mcc = (void *) ptr; ptr += sizeof(*mcc);
933         mcc->type = __mcc_type(cr, RFCOMM_FCOFF);
934         mcc->len  = __len8(0);
935
936         *ptr = __fcs(buf); ptr++;
937
938         return rfcomm_send_frame(s, buf, ptr - buf);
939 }
940
941 static int rfcomm_send_fcon(struct rfcomm_session *s, int cr)
942 {
943         struct rfcomm_hdr *hdr;
944         struct rfcomm_mcc *mcc;
945         u8 buf[16], *ptr = buf;
946
947         BT_DBG("%p cr %d", s, cr);
948
949         hdr = (void *) ptr; ptr += sizeof(*hdr);
950         hdr->addr = __addr(s->initiator, 0);
951         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
952         hdr->len  = __len8(sizeof(*mcc));
953
954         mcc = (void *) ptr; ptr += sizeof(*mcc);
955         mcc->type = __mcc_type(cr, RFCOMM_FCON);
956         mcc->len  = __len8(0);
957
958         *ptr = __fcs(buf); ptr++;
959
960         return rfcomm_send_frame(s, buf, ptr - buf);
961 }
962
963 static int rfcomm_send_test(struct rfcomm_session *s, int cr, u8 *pattern, int len)
964 {
965         struct socket *sock = s->sock;
966         struct kvec iv[3];
967         struct msghdr msg;
968         unsigned char hdr[5], crc[1];
969
970         if (len > 125)
971                 return -EINVAL;
972
973         BT_DBG("%p cr %d", s, cr);
974
975         hdr[0] = __addr(s->initiator, 0);
976         hdr[1] = __ctrl(RFCOMM_UIH, 0);
977         hdr[2] = 0x01 | ((len + 2) << 1);
978         hdr[3] = 0x01 | ((cr & 0x01) << 1) | (RFCOMM_TEST << 2);
979         hdr[4] = 0x01 | (len << 1);
980
981         crc[0] = __fcs(hdr);
982
983         iv[0].iov_base = hdr;
984         iv[0].iov_len  = 5;
985         iv[1].iov_base = pattern;
986         iv[1].iov_len  = len;
987         iv[2].iov_base = crc;
988         iv[2].iov_len  = 1;
989
990         memset(&msg, 0, sizeof(msg));
991
992         return kernel_sendmsg(sock, &msg, iv, 3, 6 + len);
993 }
994
995 static int rfcomm_send_credits(struct rfcomm_session *s, u8 addr, u8 credits)
996 {
997         struct rfcomm_hdr *hdr;
998         u8 buf[16], *ptr = buf;
999
1000         BT_DBG("%p addr %d credits %d", s, addr, credits);
1001
1002         hdr = (void *) ptr; ptr += sizeof(*hdr);
1003         hdr->addr = addr;
1004         hdr->ctrl = __ctrl(RFCOMM_UIH, 1);
1005         hdr->len  = __len8(0);
1006
1007         *ptr = credits; ptr++;
1008
1009         *ptr = __fcs(buf); ptr++;
1010
1011         return rfcomm_send_frame(s, buf, ptr - buf);
1012 }
1013
1014 static void rfcomm_make_uih(struct sk_buff *skb, u8 addr)
1015 {
1016         struct rfcomm_hdr *hdr;
1017         int len = skb->len;
1018         u8 *crc;
1019
1020         if (len > 127) {
1021                 hdr = (void *) skb_push(skb, 4);
1022                 put_unaligned(htobs(__len16(len)), (__le16 *) &hdr->len);
1023         } else {
1024                 hdr = (void *) skb_push(skb, 3);
1025                 hdr->len = __len8(len);
1026         }
1027         hdr->addr = addr;
1028         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
1029
1030         crc = skb_put(skb, 1);
1031         *crc = __fcs((void *) hdr);
1032 }
1033
1034 /* ---- RFCOMM frame reception ---- */
1035 static int rfcomm_recv_ua(struct rfcomm_session *s, u8 dlci)
1036 {
1037         BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1038
1039         if (dlci) {
1040                 /* Data channel */
1041                 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci);
1042                 if (!d) {
1043                         rfcomm_send_dm(s, dlci);
1044                         return 0;
1045                 }
1046
1047                 switch (d->state) {
1048                 case BT_CONNECT:
1049                         rfcomm_dlc_clear_timer(d);
1050
1051                         rfcomm_dlc_lock(d);
1052                         d->state = BT_CONNECTED;
1053                         d->state_change(d, 0);
1054                         rfcomm_dlc_unlock(d);
1055
1056                         rfcomm_send_msc(s, 1, dlci, d->v24_sig);
1057                         break;
1058
1059                 case BT_DISCONN:
1060                         d->state = BT_CLOSED;
1061                         __rfcomm_dlc_close(d, 0);
1062
1063                         if (list_empty(&s->dlcs)) {
1064                                 s->state = BT_DISCONN;
1065                                 rfcomm_send_disc(s, 0);
1066                         }
1067
1068                         break;
1069                 }
1070         } else {
1071                 /* Control channel */
1072                 switch (s->state) {
1073                 case BT_CONNECT:
1074                         s->state = BT_CONNECTED;
1075                         rfcomm_process_connect(s);
1076                         break;
1077
1078                 case BT_DISCONN:
1079                         rfcomm_session_put(s);
1080                         break;
1081                 }
1082         }
1083         return 0;
1084 }
1085
1086 static int rfcomm_recv_dm(struct rfcomm_session *s, u8 dlci)
1087 {
1088         int err = 0;
1089
1090         BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1091
1092         if (dlci) {
1093                 /* Data DLC */
1094                 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci);
1095                 if (d) {
1096                         if (d->state == BT_CONNECT || d->state == BT_CONFIG)
1097                                 err = ECONNREFUSED;
1098                         else
1099                                 err = ECONNRESET;
1100
1101                         d->state = BT_CLOSED;
1102                         __rfcomm_dlc_close(d, err);
1103                 }
1104         } else {
1105                 if (s->state == BT_CONNECT)
1106                         err = ECONNREFUSED;
1107                 else
1108                         err = ECONNRESET;
1109
1110                 s->state = BT_CLOSED;
1111                 rfcomm_session_close(s, err);
1112         }
1113         return 0;
1114 }
1115
1116 static int rfcomm_recv_disc(struct rfcomm_session *s, u8 dlci)
1117 {
1118         int err = 0;
1119
1120         BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1121
1122         if (dlci) {
1123                 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci);
1124                 if (d) {
1125                         rfcomm_send_ua(s, dlci);
1126
1127                         if (d->state == BT_CONNECT || d->state == BT_CONFIG)
1128                                 err = ECONNREFUSED;
1129                         else
1130                                 err = ECONNRESET;
1131
1132                         d->state = BT_CLOSED;
1133                         __rfcomm_dlc_close(d, err);
1134                 } else
1135                         rfcomm_send_dm(s, dlci);
1136
1137         } else {
1138                 rfcomm_send_ua(s, 0);
1139
1140                 if (s->state == BT_CONNECT)
1141                         err = ECONNREFUSED;
1142                 else
1143                         err = ECONNRESET;
1144
1145                 s->state = BT_CLOSED;
1146                 rfcomm_session_close(s, err);
1147         }
1148
1149         return 0;
1150 }
1151
1152 static inline int rfcomm_check_link_mode(struct rfcomm_dlc *d)
1153 {
1154         struct sock *sk = d->session->sock->sk;
1155
1156         if (d->link_mode & (RFCOMM_LM_ENCRYPT | RFCOMM_LM_SECURE)) {
1157                 if (!hci_conn_encrypt(l2cap_pi(sk)->conn->hcon))
1158                         return 1;
1159         } else if (d->link_mode & RFCOMM_LM_AUTH) {
1160                 if (!hci_conn_auth(l2cap_pi(sk)->conn->hcon))
1161                         return 1;
1162         }
1163
1164         return 0;
1165 }
1166
1167 static void rfcomm_dlc_accept(struct rfcomm_dlc *d)
1168 {
1169         struct sock *sk = d->session->sock->sk;
1170
1171         BT_DBG("dlc %p", d);
1172
1173         rfcomm_send_ua(d->session, d->dlci);
1174
1175         rfcomm_dlc_lock(d);
1176         d->state = BT_CONNECTED;
1177         d->state_change(d, 0);
1178         rfcomm_dlc_unlock(d);
1179
1180         if (d->link_mode & RFCOMM_LM_MASTER)
1181                 hci_conn_switch_role(l2cap_pi(sk)->conn->hcon, 0x00);
1182
1183         rfcomm_send_msc(d->session, 1, d->dlci, d->v24_sig);
1184 }
1185
1186 static int rfcomm_recv_sabm(struct rfcomm_session *s, u8 dlci)
1187 {
1188         struct rfcomm_dlc *d;
1189         u8 channel;
1190
1191         BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1192
1193         if (!dlci) {
1194                 rfcomm_send_ua(s, 0);
1195
1196                 if (s->state == BT_OPEN) {
1197                         s->state = BT_CONNECTED;
1198                         rfcomm_process_connect(s);
1199                 }
1200                 return 0;
1201         }
1202
1203         /* Check if DLC exists */
1204         d = rfcomm_dlc_get(s, dlci);
1205         if (d) {
1206                 if (d->state == BT_OPEN) {
1207                         /* DLC was previously opened by PN request */
1208                         if (rfcomm_check_link_mode(d)) {
1209                                 set_bit(RFCOMM_AUTH_PENDING, &d->flags);
1210                                 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1211                                 return 0;
1212                         }
1213
1214                         rfcomm_dlc_accept(d);
1215                 }
1216                 return 0;
1217         }
1218
1219         /* Notify socket layer about incoming connection */
1220         channel = __srv_channel(dlci);
1221         if (rfcomm_connect_ind(s, channel, &d)) {
1222                 d->dlci = dlci;
1223                 d->addr = __addr(s->initiator, dlci);
1224                 rfcomm_dlc_link(s, d);
1225
1226                 if (rfcomm_check_link_mode(d)) {
1227                         set_bit(RFCOMM_AUTH_PENDING, &d->flags);
1228                         rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1229                         return 0;
1230                 }
1231
1232                 rfcomm_dlc_accept(d);
1233         } else {
1234                 rfcomm_send_dm(s, dlci);
1235         }
1236
1237         return 0;
1238 }
1239
1240 static int rfcomm_apply_pn(struct rfcomm_dlc *d, int cr, struct rfcomm_pn *pn)
1241 {
1242         struct rfcomm_session *s = d->session;
1243
1244         BT_DBG("dlc %p state %ld dlci %d mtu %d fc 0x%x credits %d",
1245                         d, d->state, d->dlci, pn->mtu, pn->flow_ctrl, pn->credits);
1246
1247         if ((pn->flow_ctrl == 0xf0 && s->cfc != RFCOMM_CFC_DISABLED) ||
1248                                                 pn->flow_ctrl == 0xe0) {
1249                 d->cfc = RFCOMM_CFC_ENABLED;
1250                 d->tx_credits = pn->credits;
1251         } else {
1252                 d->cfc = RFCOMM_CFC_DISABLED;
1253                 set_bit(RFCOMM_TX_THROTTLED, &d->flags);
1254         }
1255
1256         if (s->cfc == RFCOMM_CFC_UNKNOWN)
1257                 s->cfc = d->cfc;
1258
1259         d->priority = pn->priority;
1260
1261         d->mtu = btohs(pn->mtu);
1262
1263         if (cr && d->mtu > s->mtu)
1264                 d->mtu = s->mtu;
1265
1266         return 0;
1267 }
1268
1269 static int rfcomm_recv_pn(struct rfcomm_session *s, int cr, struct sk_buff *skb)
1270 {
1271         struct rfcomm_pn *pn = (void *) skb->data;
1272         struct rfcomm_dlc *d;
1273         u8 dlci = pn->dlci;
1274
1275         BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1276
1277         if (!dlci)
1278                 return 0;
1279
1280         d = rfcomm_dlc_get(s, dlci);
1281         if (d) {
1282                 if (cr) {
1283                         /* PN request */
1284                         rfcomm_apply_pn(d, cr, pn);
1285                         rfcomm_send_pn(s, 0, d);
1286                 } else {
1287                         /* PN response */
1288                         switch (d->state) {
1289                         case BT_CONFIG:
1290                                 rfcomm_apply_pn(d, cr, pn);
1291
1292                                 d->state = BT_CONNECT;
1293                                 rfcomm_send_sabm(s, d->dlci);
1294                                 break;
1295                         }
1296                 }
1297         } else {
1298                 u8 channel = __srv_channel(dlci);
1299
1300                 if (!cr)
1301                         return 0;
1302
1303                 /* PN request for non existing DLC.
1304                  * Assume incoming connection. */
1305                 if (rfcomm_connect_ind(s, channel, &d)) {
1306                         d->dlci = dlci;
1307                         d->addr = __addr(s->initiator, dlci);
1308                         rfcomm_dlc_link(s, d);
1309
1310                         rfcomm_apply_pn(d, cr, pn);
1311
1312                         d->state = BT_OPEN;
1313                         rfcomm_send_pn(s, 0, d);
1314                 } else {
1315                         rfcomm_send_dm(s, dlci);
1316                 }
1317         }
1318         return 0;
1319 }
1320
1321 static int rfcomm_recv_rpn(struct rfcomm_session *s, int cr, int len, struct sk_buff *skb)
1322 {
1323         struct rfcomm_rpn *rpn = (void *) skb->data;
1324         u8 dlci = __get_dlci(rpn->dlci);
1325
1326         u8 bit_rate  = 0;
1327         u8 data_bits = 0;
1328         u8 stop_bits = 0;
1329         u8 parity    = 0;
1330         u8 flow_ctrl = 0;
1331         u8 xon_char  = 0;
1332         u8 xoff_char = 0;
1333         u16 rpn_mask = RFCOMM_RPN_PM_ALL;
1334
1335         BT_DBG("dlci %d cr %d len 0x%x bitr 0x%x line 0x%x flow 0x%x xonc 0x%x xoffc 0x%x pm 0x%x",
1336                 dlci, cr, len, rpn->bit_rate, rpn->line_settings, rpn->flow_ctrl,
1337                 rpn->xon_char, rpn->xoff_char, rpn->param_mask);
1338
1339         if (!cr)
1340                 return 0;
1341
1342         if (len == 1) {
1343                 /* This is a request, return default settings */
1344                 bit_rate  = RFCOMM_RPN_BR_115200;
1345                 data_bits = RFCOMM_RPN_DATA_8;
1346                 stop_bits = RFCOMM_RPN_STOP_1;
1347                 parity    = RFCOMM_RPN_PARITY_NONE;
1348                 flow_ctrl = RFCOMM_RPN_FLOW_NONE;
1349                 xon_char  = RFCOMM_RPN_XON_CHAR;
1350                 xoff_char = RFCOMM_RPN_XOFF_CHAR;
1351                 goto rpn_out;
1352         }
1353
1354         /* Check for sane values, ignore/accept bit_rate, 8 bits, 1 stop bit,
1355          * no parity, no flow control lines, normal XON/XOFF chars */
1356
1357         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_BITRATE)) {
1358                 bit_rate = rpn->bit_rate;
1359                 if (bit_rate != RFCOMM_RPN_BR_115200) {
1360                         BT_DBG("RPN bit rate mismatch 0x%x", bit_rate);
1361                         bit_rate = RFCOMM_RPN_BR_115200;
1362                         rpn_mask ^= RFCOMM_RPN_PM_BITRATE;
1363                 }
1364         }
1365
1366         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_DATA)) {
1367                 data_bits = __get_rpn_data_bits(rpn->line_settings);
1368                 if (data_bits != RFCOMM_RPN_DATA_8) {
1369                         BT_DBG("RPN data bits mismatch 0x%x", data_bits);
1370                         data_bits = RFCOMM_RPN_DATA_8;
1371                         rpn_mask ^= RFCOMM_RPN_PM_DATA;
1372                 }
1373         }
1374
1375         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_STOP)) {
1376                 stop_bits = __get_rpn_stop_bits(rpn->line_settings);
1377                 if (stop_bits != RFCOMM_RPN_STOP_1) {
1378                         BT_DBG("RPN stop bits mismatch 0x%x", stop_bits);
1379                         stop_bits = RFCOMM_RPN_STOP_1;
1380                         rpn_mask ^= RFCOMM_RPN_PM_STOP;
1381                 }
1382         }
1383
1384         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_PARITY)) {
1385                 parity = __get_rpn_parity(rpn->line_settings);
1386                 if (parity != RFCOMM_RPN_PARITY_NONE) {
1387                         BT_DBG("RPN parity mismatch 0x%x", parity);
1388                         parity = RFCOMM_RPN_PARITY_NONE;
1389                         rpn_mask ^= RFCOMM_RPN_PM_PARITY;
1390                 }
1391         }
1392
1393         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_FLOW)) {
1394                 flow_ctrl = rpn->flow_ctrl;
1395                 if (flow_ctrl != RFCOMM_RPN_FLOW_NONE) {
1396                         BT_DBG("RPN flow ctrl mismatch 0x%x", flow_ctrl);
1397                         flow_ctrl = RFCOMM_RPN_FLOW_NONE;
1398                         rpn_mask ^= RFCOMM_RPN_PM_FLOW;
1399                 }
1400         }
1401
1402         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_XON)) {
1403                 xon_char = rpn->xon_char;
1404                 if (xon_char != RFCOMM_RPN_XON_CHAR) {
1405                         BT_DBG("RPN XON char mismatch 0x%x", xon_char);
1406                         xon_char = RFCOMM_RPN_XON_CHAR;
1407                         rpn_mask ^= RFCOMM_RPN_PM_XON;
1408                 }
1409         }
1410
1411         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_XOFF)) {
1412                 xoff_char = rpn->xoff_char;
1413                 if (xoff_char != RFCOMM_RPN_XOFF_CHAR) {
1414                         BT_DBG("RPN XOFF char mismatch 0x%x", xoff_char);
1415                         xoff_char = RFCOMM_RPN_XOFF_CHAR;
1416                         rpn_mask ^= RFCOMM_RPN_PM_XOFF;
1417                 }
1418         }
1419
1420 rpn_out:
1421         rfcomm_send_rpn(s, 0, dlci, bit_rate, data_bits, stop_bits,
1422                         parity, flow_ctrl, xon_char, xoff_char, rpn_mask);
1423
1424         return 0;
1425 }
1426
1427 static int rfcomm_recv_rls(struct rfcomm_session *s, int cr, struct sk_buff *skb)
1428 {
1429         struct rfcomm_rls *rls = (void *) skb->data;
1430         u8 dlci = __get_dlci(rls->dlci);
1431
1432         BT_DBG("dlci %d cr %d status 0x%x", dlci, cr, rls->status);
1433
1434         if (!cr)
1435                 return 0;
1436
1437         /* We should probably do something with this information here. But
1438          * for now it's sufficient just to reply -- Bluetooth 1.1 says it's
1439          * mandatory to recognise and respond to RLS */
1440
1441         rfcomm_send_rls(s, 0, dlci, rls->status);
1442
1443         return 0;
1444 }
1445
1446 static int rfcomm_recv_msc(struct rfcomm_session *s, int cr, struct sk_buff *skb)
1447 {
1448         struct rfcomm_msc *msc = (void *) skb->data;
1449         struct rfcomm_dlc *d;
1450         u8 dlci = __get_dlci(msc->dlci);
1451
1452         BT_DBG("dlci %d cr %d v24 0x%x", dlci, cr, msc->v24_sig);
1453
1454         d = rfcomm_dlc_get(s, dlci);
1455         if (!d)
1456                 return 0;
1457
1458         if (cr) {
1459                 if (msc->v24_sig & RFCOMM_V24_FC && !d->cfc)
1460                         set_bit(RFCOMM_TX_THROTTLED, &d->flags);
1461                 else
1462                         clear_bit(RFCOMM_TX_THROTTLED, &d->flags);
1463
1464                 rfcomm_dlc_lock(d);
1465                 if (d->modem_status)
1466                         d->modem_status(d, msc->v24_sig);
1467                 rfcomm_dlc_unlock(d);
1468
1469                 rfcomm_send_msc(s, 0, dlci, msc->v24_sig);
1470
1471                 d->mscex |= RFCOMM_MSCEX_RX;
1472         } else
1473                 d->mscex |= RFCOMM_MSCEX_TX;
1474
1475         return 0;
1476 }
1477
1478 static int rfcomm_recv_mcc(struct rfcomm_session *s, struct sk_buff *skb)
1479 {
1480         struct rfcomm_mcc *mcc = (void *) skb->data;
1481         u8 type, cr, len;
1482
1483         cr   = __test_cr(mcc->type);
1484         type = __get_mcc_type(mcc->type);
1485         len  = __get_mcc_len(mcc->len);
1486
1487         BT_DBG("%p type 0x%x cr %d", s, type, cr);
1488
1489         skb_pull(skb, 2);
1490
1491         switch (type) {
1492         case RFCOMM_PN:
1493                 rfcomm_recv_pn(s, cr, skb);
1494                 break;
1495
1496         case RFCOMM_RPN:
1497                 rfcomm_recv_rpn(s, cr, len, skb);
1498                 break;
1499
1500         case RFCOMM_RLS:
1501                 rfcomm_recv_rls(s, cr, skb);
1502                 break;
1503
1504         case RFCOMM_MSC:
1505                 rfcomm_recv_msc(s, cr, skb);
1506                 break;
1507
1508         case RFCOMM_FCOFF:
1509                 if (cr) {
1510                         set_bit(RFCOMM_TX_THROTTLED, &s->flags);
1511                         rfcomm_send_fcoff(s, 0);
1512                 }
1513                 break;
1514
1515         case RFCOMM_FCON:
1516                 if (cr) {
1517                         clear_bit(RFCOMM_TX_THROTTLED, &s->flags);
1518                         rfcomm_send_fcon(s, 0);
1519                 }
1520                 break;
1521
1522         case RFCOMM_TEST:
1523                 if (cr)
1524                         rfcomm_send_test(s, 0, skb->data, skb->len);
1525                 break;
1526
1527         case RFCOMM_NSC:
1528                 break;
1529
1530         default:
1531                 BT_ERR("Unknown control type 0x%02x", type);
1532                 rfcomm_send_nsc(s, cr, type);
1533                 break;
1534         }
1535         return 0;
1536 }
1537
1538 static int rfcomm_recv_data(struct rfcomm_session *s, u8 dlci, int pf, struct sk_buff *skb)
1539 {
1540         struct rfcomm_dlc *d;
1541
1542         BT_DBG("session %p state %ld dlci %d pf %d", s, s->state, dlci, pf);
1543
1544         d = rfcomm_dlc_get(s, dlci);
1545         if (!d) {
1546                 rfcomm_send_dm(s, dlci);
1547                 goto drop;
1548         }
1549
1550         if (pf && d->cfc) {
1551                 u8 credits = *(u8 *) skb->data; skb_pull(skb, 1);
1552
1553                 d->tx_credits += credits;
1554                 if (d->tx_credits)
1555                         clear_bit(RFCOMM_TX_THROTTLED, &d->flags);
1556         }
1557
1558         if (skb->len && d->state == BT_CONNECTED) {
1559                 rfcomm_dlc_lock(d);
1560                 d->rx_credits--;
1561                 d->data_ready(d, skb);
1562                 rfcomm_dlc_unlock(d);
1563                 return 0;
1564         }
1565
1566 drop:
1567         kfree_skb(skb);
1568         return 0;
1569 }
1570
1571 static int rfcomm_recv_frame(struct rfcomm_session *s, struct sk_buff *skb)
1572 {
1573         struct rfcomm_hdr *hdr = (void *) skb->data;
1574         u8 type, dlci, fcs;
1575
1576         dlci = __get_dlci(hdr->addr);
1577         type = __get_type(hdr->ctrl);
1578
1579         /* Trim FCS */
1580         skb->len--; skb->tail--;
1581         fcs = *(u8 *)skb_tail_pointer(skb);
1582
1583         if (__check_fcs(skb->data, type, fcs)) {
1584                 BT_ERR("bad checksum in packet");
1585                 kfree_skb(skb);
1586                 return -EILSEQ;
1587         }
1588
1589         if (__test_ea(hdr->len))
1590                 skb_pull(skb, 3);
1591         else
1592                 skb_pull(skb, 4);
1593
1594         switch (type) {
1595         case RFCOMM_SABM:
1596                 if (__test_pf(hdr->ctrl))
1597                         rfcomm_recv_sabm(s, dlci);
1598                 break;
1599
1600         case RFCOMM_DISC:
1601                 if (__test_pf(hdr->ctrl))
1602                         rfcomm_recv_disc(s, dlci);
1603                 break;
1604
1605         case RFCOMM_UA:
1606                 if (__test_pf(hdr->ctrl))
1607                         rfcomm_recv_ua(s, dlci);
1608                 break;
1609
1610         case RFCOMM_DM:
1611                 rfcomm_recv_dm(s, dlci);
1612                 break;
1613
1614         case RFCOMM_UIH:
1615                 if (dlci)
1616                         return rfcomm_recv_data(s, dlci, __test_pf(hdr->ctrl), skb);
1617
1618                 rfcomm_recv_mcc(s, skb);
1619                 break;
1620
1621         default:
1622                 BT_ERR("Unknown packet type 0x%02x\n", type);
1623                 break;
1624         }
1625         kfree_skb(skb);
1626         return 0;
1627 }
1628
1629 /* ---- Connection and data processing ---- */
1630
1631 static void rfcomm_process_connect(struct rfcomm_session *s)
1632 {
1633         struct rfcomm_dlc *d;
1634         struct list_head *p, *n;
1635
1636         BT_DBG("session %p state %ld", s, s->state);
1637
1638         list_for_each_safe(p, n, &s->dlcs) {
1639                 d = list_entry(p, struct rfcomm_dlc, list);
1640                 if (d->state == BT_CONFIG) {
1641                         d->mtu = s->mtu;
1642                         rfcomm_send_pn(s, 1, d);
1643                 }
1644         }
1645 }
1646
1647 /* Send data queued for the DLC.
1648  * Return number of frames left in the queue.
1649  */
1650 static inline int rfcomm_process_tx(struct rfcomm_dlc *d)
1651 {
1652         struct sk_buff *skb;
1653         int err;
1654
1655         BT_DBG("dlc %p state %ld cfc %d rx_credits %d tx_credits %d",
1656                         d, d->state, d->cfc, d->rx_credits, d->tx_credits);
1657
1658         /* Send pending MSC */
1659         if (test_and_clear_bit(RFCOMM_MSC_PENDING, &d->flags))
1660                 rfcomm_send_msc(d->session, 1, d->dlci, d->v24_sig);
1661
1662         if (d->cfc) {
1663                 /* CFC enabled.
1664                  * Give them some credits */
1665                 if (!test_bit(RFCOMM_RX_THROTTLED, &d->flags) &&
1666                                 d->rx_credits <= (d->cfc >> 2)) {
1667                         rfcomm_send_credits(d->session, d->addr, d->cfc - d->rx_credits);
1668                         d->rx_credits = d->cfc;
1669                 }
1670         } else {
1671                 /* CFC disabled.
1672                  * Give ourselves some credits */
1673                 d->tx_credits = 5;
1674         }
1675
1676         if (test_bit(RFCOMM_TX_THROTTLED, &d->flags))
1677                 return skb_queue_len(&d->tx_queue);
1678
1679         while (d->tx_credits && (skb = skb_dequeue(&d->tx_queue))) {
1680                 err = rfcomm_send_frame(d->session, skb->data, skb->len);
1681                 if (err < 0) {
1682                         skb_queue_head(&d->tx_queue, skb);
1683                         break;
1684                 }
1685                 kfree_skb(skb);
1686                 d->tx_credits--;
1687         }
1688
1689         if (d->cfc && !d->tx_credits) {
1690                 /* We're out of TX credits.
1691                  * Set TX_THROTTLED flag to avoid unnesary wakeups by dlc_send. */
1692                 set_bit(RFCOMM_TX_THROTTLED, &d->flags);
1693         }
1694
1695         return skb_queue_len(&d->tx_queue);
1696 }
1697
1698 static inline void rfcomm_process_dlcs(struct rfcomm_session *s)
1699 {
1700         struct rfcomm_dlc *d;
1701         struct list_head *p, *n;
1702
1703         BT_DBG("session %p state %ld", s, s->state);
1704
1705         list_for_each_safe(p, n, &s->dlcs) {
1706                 d = list_entry(p, struct rfcomm_dlc, list);
1707
1708                 if (test_bit(RFCOMM_TIMED_OUT, &d->flags)) {
1709                         __rfcomm_dlc_close(d, ETIMEDOUT);
1710                         continue;
1711                 }
1712
1713                 if (test_and_clear_bit(RFCOMM_AUTH_ACCEPT, &d->flags)) {
1714                         rfcomm_dlc_clear_timer(d);
1715                         rfcomm_dlc_accept(d);
1716                         if (d->link_mode & RFCOMM_LM_SECURE) {
1717                                 struct sock *sk = s->sock->sk;
1718                                 hci_conn_change_link_key(l2cap_pi(sk)->conn->hcon);
1719                         }
1720                         continue;
1721                 } else if (test_and_clear_bit(RFCOMM_AUTH_REJECT, &d->flags)) {
1722                         rfcomm_dlc_clear_timer(d);
1723                         rfcomm_send_dm(s, d->dlci);
1724                         __rfcomm_dlc_close(d, ECONNREFUSED);
1725                         continue;
1726                 }
1727
1728                 if (test_bit(RFCOMM_TX_THROTTLED, &s->flags))
1729                         continue;
1730
1731                 if ((d->state == BT_CONNECTED || d->state == BT_DISCONN) &&
1732                                 d->mscex == RFCOMM_MSCEX_OK)
1733                         rfcomm_process_tx(d);
1734         }
1735 }
1736
1737 static inline void rfcomm_process_rx(struct rfcomm_session *s)
1738 {
1739         struct socket *sock = s->sock;
1740         struct sock *sk = sock->sk;
1741         struct sk_buff *skb;
1742
1743         BT_DBG("session %p state %ld qlen %d", s, s->state, skb_queue_len(&sk->sk_receive_queue));
1744
1745         /* Get data directly from socket receive queue without copying it. */
1746         while ((skb = skb_dequeue(&sk->sk_receive_queue))) {
1747                 skb_orphan(skb);
1748                 rfcomm_recv_frame(s, skb);
1749         }
1750
1751         if (sk->sk_state == BT_CLOSED) {
1752                 if (!s->initiator)
1753                         rfcomm_session_put(s);
1754
1755                 rfcomm_session_close(s, sk->sk_err);
1756         }
1757 }
1758
1759 static inline void rfcomm_accept_connection(struct rfcomm_session *s)
1760 {
1761         struct socket *sock = s->sock, *nsock;
1762         int err;
1763
1764         /* Fast check for a new connection.
1765          * Avoids unnesesary socket allocations. */
1766         if (list_empty(&bt_sk(sock->sk)->accept_q))
1767                 return;
1768
1769         BT_DBG("session %p", s);
1770
1771         err = kernel_accept(sock, &nsock, O_NONBLOCK);
1772         if (err < 0)
1773                 return;
1774
1775         __module_get(nsock->ops->owner);
1776
1777         /* Set our callbacks */
1778         nsock->sk->sk_data_ready   = rfcomm_l2data_ready;
1779         nsock->sk->sk_state_change = rfcomm_l2state_change;
1780
1781         s = rfcomm_session_add(nsock, BT_OPEN);
1782         if (s) {
1783                 rfcomm_session_hold(s);
1784
1785                 /* We should adjust MTU on incoming sessions.
1786                  * L2CAP MTU minus UIH header and FCS. */
1787                 s->mtu = min(l2cap_pi(nsock->sk)->omtu, l2cap_pi(nsock->sk)->imtu) - 5;
1788
1789                 rfcomm_schedule(RFCOMM_SCHED_RX);
1790         } else
1791                 sock_release(nsock);
1792 }
1793
1794 static inline void rfcomm_check_connection(struct rfcomm_session *s)
1795 {
1796         struct sock *sk = s->sock->sk;
1797
1798         BT_DBG("%p state %ld", s, s->state);
1799
1800         switch(sk->sk_state) {
1801         case BT_CONNECTED:
1802                 s->state = BT_CONNECT;
1803
1804                 /* We can adjust MTU on outgoing sessions.
1805                  * L2CAP MTU minus UIH header and FCS. */
1806                 s->mtu = min(l2cap_pi(sk)->omtu, l2cap_pi(sk)->imtu) - 5;
1807
1808                 rfcomm_send_sabm(s, 0);
1809                 break;
1810
1811         case BT_CLOSED:
1812                 s->state = BT_CLOSED;
1813                 rfcomm_session_close(s, sk->sk_err);
1814                 break;
1815         }
1816 }
1817
1818 static inline void rfcomm_process_sessions(void)
1819 {
1820         struct list_head *p, *n;
1821
1822         rfcomm_lock();
1823
1824         list_for_each_safe(p, n, &session_list) {
1825                 struct rfcomm_session *s;
1826                 s = list_entry(p, struct rfcomm_session, list);
1827
1828                 if (s->state == BT_LISTEN) {
1829                         rfcomm_accept_connection(s);
1830                         continue;
1831                 }
1832
1833                 rfcomm_session_hold(s);
1834
1835                 switch (s->state) {
1836                 case BT_BOUND:
1837                         rfcomm_check_connection(s);
1838                         break;
1839
1840                 default:
1841                         rfcomm_process_rx(s);
1842                         break;
1843                 }
1844
1845                 rfcomm_process_dlcs(s);
1846
1847                 rfcomm_session_put(s);
1848         }
1849
1850         rfcomm_unlock();
1851 }
1852
1853 static void rfcomm_worker(void)
1854 {
1855         BT_DBG("");
1856
1857         while (!atomic_read(&terminate)) {
1858                 set_current_state(TASK_INTERRUPTIBLE);
1859                 if (!test_bit(RFCOMM_SCHED_WAKEUP, &rfcomm_event)) {
1860                         /* No pending events. Let's sleep.
1861                          * Incoming connections and data will wake us up. */
1862                         schedule();
1863                 }
1864                 set_current_state(TASK_RUNNING);
1865
1866                 /* Process stuff */
1867                 clear_bit(RFCOMM_SCHED_WAKEUP, &rfcomm_event);
1868                 rfcomm_process_sessions();
1869         }
1870         return;
1871 }
1872
1873 static int rfcomm_add_listener(bdaddr_t *ba)
1874 {
1875         struct sockaddr_l2 addr;
1876         struct socket *sock;
1877         struct sock *sk;
1878         struct rfcomm_session *s;
1879         int    err = 0;
1880
1881         /* Create socket */
1882         err = rfcomm_l2sock_create(&sock);
1883         if (err < 0) {
1884                 BT_ERR("Create socket failed %d", err);
1885                 return err;
1886         }
1887
1888         /* Bind socket */
1889         bacpy(&addr.l2_bdaddr, ba);
1890         addr.l2_family = AF_BLUETOOTH;
1891         addr.l2_psm    = htobs(RFCOMM_PSM);
1892         err = kernel_bind(sock, (struct sockaddr *) &addr, sizeof(addr));
1893         if (err < 0) {
1894                 BT_ERR("Bind failed %d", err);
1895                 goto failed;
1896         }
1897
1898         /* Set L2CAP options */
1899         sk = sock->sk;
1900         lock_sock(sk);
1901         l2cap_pi(sk)->imtu = l2cap_mtu;
1902         release_sock(sk);
1903
1904         /* Start listening on the socket */
1905         err = kernel_listen(sock, 10);
1906         if (err) {
1907                 BT_ERR("Listen failed %d", err);
1908                 goto failed;
1909         }
1910
1911         /* Add listening session */
1912         s = rfcomm_session_add(sock, BT_LISTEN);
1913         if (!s)
1914                 goto failed;
1915
1916         rfcomm_session_hold(s);
1917         return 0;
1918 failed:
1919         sock_release(sock);
1920         return err;
1921 }
1922
1923 static void rfcomm_kill_listener(void)
1924 {
1925         struct rfcomm_session *s;
1926         struct list_head *p, *n;
1927
1928         BT_DBG("");
1929
1930         list_for_each_safe(p, n, &session_list) {
1931                 s = list_entry(p, struct rfcomm_session, list);
1932                 rfcomm_session_del(s);
1933         }
1934 }
1935
1936 static int rfcomm_run(void *unused)
1937 {
1938         rfcomm_thread = current;
1939
1940         atomic_inc(&running);
1941
1942         daemonize("krfcommd");
1943         set_user_nice(current, -10);
1944
1945         BT_DBG("");
1946
1947         rfcomm_add_listener(BDADDR_ANY);
1948
1949         rfcomm_worker();
1950
1951         rfcomm_kill_listener();
1952
1953         atomic_dec(&running);
1954         return 0;
1955 }
1956
1957 static void rfcomm_auth_cfm(struct hci_conn *conn, u8 status)
1958 {
1959         struct rfcomm_session *s;
1960         struct rfcomm_dlc *d;
1961         struct list_head *p, *n;
1962
1963         BT_DBG("conn %p status 0x%02x", conn, status);
1964
1965         s = rfcomm_session_get(&conn->hdev->bdaddr, &conn->dst);
1966         if (!s)
1967                 return;
1968
1969         rfcomm_session_hold(s);
1970
1971         list_for_each_safe(p, n, &s->dlcs) {
1972                 d = list_entry(p, struct rfcomm_dlc, list);
1973
1974                 if (d->link_mode & (RFCOMM_LM_ENCRYPT | RFCOMM_LM_SECURE))
1975                         continue;
1976
1977                 if (!test_and_clear_bit(RFCOMM_AUTH_PENDING, &d->flags))
1978                         continue;
1979
1980                 if (!status)
1981                         set_bit(RFCOMM_AUTH_ACCEPT, &d->flags);
1982                 else
1983                         set_bit(RFCOMM_AUTH_REJECT, &d->flags);
1984         }
1985
1986         rfcomm_session_put(s);
1987
1988         rfcomm_schedule(RFCOMM_SCHED_AUTH);
1989 }
1990
1991 static void rfcomm_encrypt_cfm(struct hci_conn *conn, u8 status, u8 encrypt)
1992 {
1993         struct rfcomm_session *s;
1994         struct rfcomm_dlc *d;
1995         struct list_head *p, *n;
1996
1997         BT_DBG("conn %p status 0x%02x encrypt 0x%02x", conn, status, encrypt);
1998
1999         s = rfcomm_session_get(&conn->hdev->bdaddr, &conn->dst);
2000         if (!s)
2001                 return;
2002
2003         rfcomm_session_hold(s);
2004
2005         list_for_each_safe(p, n, &s->dlcs) {
2006                 d = list_entry(p, struct rfcomm_dlc, list);
2007
2008                 if (!test_and_clear_bit(RFCOMM_AUTH_PENDING, &d->flags))
2009                         continue;
2010
2011                 if (!status && encrypt)
2012                         set_bit(RFCOMM_AUTH_ACCEPT, &d->flags);
2013                 else
2014                         set_bit(RFCOMM_AUTH_REJECT, &d->flags);
2015         }
2016
2017         rfcomm_session_put(s);
2018
2019         rfcomm_schedule(RFCOMM_SCHED_AUTH);
2020 }
2021
2022 static struct hci_cb rfcomm_cb = {
2023         .name           = "RFCOMM",
2024         .auth_cfm       = rfcomm_auth_cfm,
2025         .encrypt_cfm    = rfcomm_encrypt_cfm
2026 };
2027
2028 static ssize_t rfcomm_dlc_sysfs_show(struct class *dev, char *buf)
2029 {
2030         struct rfcomm_session *s;
2031         struct list_head *pp, *p;
2032         char *str = buf;
2033
2034         rfcomm_lock();
2035
2036         list_for_each(p, &session_list) {
2037                 s = list_entry(p, struct rfcomm_session, list);
2038                 list_for_each(pp, &s->dlcs) {
2039                         struct sock *sk = s->sock->sk;
2040                         struct rfcomm_dlc *d = list_entry(pp, struct rfcomm_dlc, list);
2041
2042                         str += sprintf(str, "%s %s %ld %d %d %d %d\n",
2043                                         batostr(&bt_sk(sk)->src), batostr(&bt_sk(sk)->dst),
2044                                         d->state, d->dlci, d->mtu, d->rx_credits, d->tx_credits);
2045                 }
2046         }
2047
2048         rfcomm_unlock();
2049
2050         return (str - buf);
2051 }
2052
2053 static CLASS_ATTR(rfcomm_dlc, S_IRUGO, rfcomm_dlc_sysfs_show, NULL);
2054
2055 /* ---- Initialization ---- */
2056 static int __init rfcomm_init(void)
2057 {
2058         l2cap_load();
2059
2060         hci_register_cb(&rfcomm_cb);
2061
2062         kernel_thread(rfcomm_run, NULL, CLONE_KERNEL);
2063
2064         if (class_create_file(bt_class, &class_attr_rfcomm_dlc) < 0)
2065                 BT_ERR("Failed to create RFCOMM info file");
2066
2067         rfcomm_init_sockets();
2068
2069 #ifdef CONFIG_BT_RFCOMM_TTY
2070         rfcomm_init_ttys();
2071 #endif
2072
2073         BT_INFO("RFCOMM ver %s", VERSION);
2074
2075         return 0;
2076 }
2077
2078 static void __exit rfcomm_exit(void)
2079 {
2080         class_remove_file(bt_class, &class_attr_rfcomm_dlc);
2081
2082         hci_unregister_cb(&rfcomm_cb);
2083
2084         /* Terminate working thread.
2085          * ie. Set terminate flag and wake it up */
2086         atomic_inc(&terminate);
2087         rfcomm_schedule(RFCOMM_SCHED_STATE);
2088
2089         /* Wait until thread is running */
2090         while (atomic_read(&running))
2091                 schedule();
2092
2093 #ifdef CONFIG_BT_RFCOMM_TTY
2094         rfcomm_cleanup_ttys();
2095 #endif
2096
2097         rfcomm_cleanup_sockets();
2098 }
2099
2100 module_init(rfcomm_init);
2101 module_exit(rfcomm_exit);
2102
2103 module_param(disable_cfc, bool, 0644);
2104 MODULE_PARM_DESC(disable_cfc, "Disable credit based flow control");
2105
2106 module_param(channel_mtu, int, 0644);
2107 MODULE_PARM_DESC(channel_mtu, "Default MTU for the RFCOMM channel");
2108
2109 module_param(l2cap_mtu, uint, 0644);
2110 MODULE_PARM_DESC(l2cap_mtu, "Default MTU for the L2CAP connection");
2111
2112 MODULE_AUTHOR("Maxim Krasnyansky <maxk@qualcomm.com>, Marcel Holtmann <marcel@holtmann.org>");
2113 MODULE_DESCRIPTION("Bluetooth RFCOMM ver " VERSION);
2114 MODULE_VERSION(VERSION);
2115 MODULE_LICENSE("GPL");
2116 MODULE_ALIAS("bt-proto-3");