Merge branch 'fixes' of http://ftp.arm.linux.org.uk/pub/linux/arm/kernel/git-cur...
[pandora-kernel.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI core. */
26
27 #include <linux/jiffies.h>
28 #include <linux/module.h>
29 #include <linux/kmod.h>
30
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fcntl.h>
38 #include <linux/init.h>
39 #include <linux/skbuff.h>
40 #include <linux/workqueue.h>
41 #include <linux/interrupt.h>
42 #include <linux/notifier.h>
43 #include <linux/rfkill.h>
44 #include <linux/timer.h>
45 #include <linux/crypto.h>
46 #include <net/sock.h>
47
48 #include <asm/system.h>
49 #include <linux/uaccess.h>
50 #include <asm/unaligned.h>
51
52 #include <net/bluetooth/bluetooth.h>
53 #include <net/bluetooth/hci_core.h>
54
55 #define AUTO_OFF_TIMEOUT 2000
56
57 static void hci_cmd_task(unsigned long arg);
58 static void hci_rx_task(unsigned long arg);
59 static void hci_tx_task(unsigned long arg);
60
61 static DEFINE_RWLOCK(hci_task_lock);
62
63 /* HCI device list */
64 LIST_HEAD(hci_dev_list);
65 DEFINE_RWLOCK(hci_dev_list_lock);
66
67 /* HCI callback list */
68 LIST_HEAD(hci_cb_list);
69 DEFINE_RWLOCK(hci_cb_list_lock);
70
71 /* HCI protocols */
72 #define HCI_MAX_PROTO   2
73 struct hci_proto *hci_proto[HCI_MAX_PROTO];
74
75 /* HCI notifiers list */
76 static ATOMIC_NOTIFIER_HEAD(hci_notifier);
77
78 /* ---- HCI notifications ---- */
79
80 int hci_register_notifier(struct notifier_block *nb)
81 {
82         return atomic_notifier_chain_register(&hci_notifier, nb);
83 }
84
85 int hci_unregister_notifier(struct notifier_block *nb)
86 {
87         return atomic_notifier_chain_unregister(&hci_notifier, nb);
88 }
89
90 static void hci_notify(struct hci_dev *hdev, int event)
91 {
92         atomic_notifier_call_chain(&hci_notifier, event, hdev);
93 }
94
95 /* ---- HCI requests ---- */
96
97 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
98 {
99         BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
100
101         /* If this is the init phase check if the completed command matches
102          * the last init command, and if not just return.
103          */
104         if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
105                 return;
106
107         if (hdev->req_status == HCI_REQ_PEND) {
108                 hdev->req_result = result;
109                 hdev->req_status = HCI_REQ_DONE;
110                 wake_up_interruptible(&hdev->req_wait_q);
111         }
112 }
113
114 static void hci_req_cancel(struct hci_dev *hdev, int err)
115 {
116         BT_DBG("%s err 0x%2.2x", hdev->name, err);
117
118         if (hdev->req_status == HCI_REQ_PEND) {
119                 hdev->req_result = err;
120                 hdev->req_status = HCI_REQ_CANCELED;
121                 wake_up_interruptible(&hdev->req_wait_q);
122         }
123 }
124
125 /* Execute request and wait for completion. */
126 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
127                                         unsigned long opt, __u32 timeout)
128 {
129         DECLARE_WAITQUEUE(wait, current);
130         int err = 0;
131
132         BT_DBG("%s start", hdev->name);
133
134         hdev->req_status = HCI_REQ_PEND;
135
136         add_wait_queue(&hdev->req_wait_q, &wait);
137         set_current_state(TASK_INTERRUPTIBLE);
138
139         req(hdev, opt);
140         schedule_timeout(timeout);
141
142         remove_wait_queue(&hdev->req_wait_q, &wait);
143
144         if (signal_pending(current))
145                 return -EINTR;
146
147         switch (hdev->req_status) {
148         case HCI_REQ_DONE:
149                 err = -bt_to_errno(hdev->req_result);
150                 break;
151
152         case HCI_REQ_CANCELED:
153                 err = -hdev->req_result;
154                 break;
155
156         default:
157                 err = -ETIMEDOUT;
158                 break;
159         }
160
161         hdev->req_status = hdev->req_result = 0;
162
163         BT_DBG("%s end: err %d", hdev->name, err);
164
165         return err;
166 }
167
168 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
169                                         unsigned long opt, __u32 timeout)
170 {
171         int ret;
172
173         if (!test_bit(HCI_UP, &hdev->flags))
174                 return -ENETDOWN;
175
176         /* Serialize all requests */
177         hci_req_lock(hdev);
178         ret = __hci_request(hdev, req, opt, timeout);
179         hci_req_unlock(hdev);
180
181         return ret;
182 }
183
184 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
185 {
186         BT_DBG("%s %ld", hdev->name, opt);
187
188         /* Reset device */
189         set_bit(HCI_RESET, &hdev->flags);
190         hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
191 }
192
193 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
194 {
195         struct hci_cp_delete_stored_link_key cp;
196         struct sk_buff *skb;
197         __le16 param;
198         __u8 flt_type;
199
200         BT_DBG("%s %ld", hdev->name, opt);
201
202         /* Driver initialization */
203
204         /* Special commands */
205         while ((skb = skb_dequeue(&hdev->driver_init))) {
206                 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
207                 skb->dev = (void *) hdev;
208
209                 skb_queue_tail(&hdev->cmd_q, skb);
210                 tasklet_schedule(&hdev->cmd_task);
211         }
212         skb_queue_purge(&hdev->driver_init);
213
214         /* Mandatory initialization */
215
216         /* Reset */
217         if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
218                         set_bit(HCI_RESET, &hdev->flags);
219                         hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
220         }
221
222         /* Read Local Supported Features */
223         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
224
225         /* Read Local Version */
226         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
227
228         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
229         hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
230
231 #if 0
232         /* Host buffer size */
233         {
234                 struct hci_cp_host_buffer_size cp;
235                 cp.acl_mtu = cpu_to_le16(HCI_MAX_ACL_SIZE);
236                 cp.sco_mtu = HCI_MAX_SCO_SIZE;
237                 cp.acl_max_pkt = cpu_to_le16(0xffff);
238                 cp.sco_max_pkt = cpu_to_le16(0xffff);
239                 hci_send_cmd(hdev, HCI_OP_HOST_BUFFER_SIZE, sizeof(cp), &cp);
240         }
241 #endif
242
243         /* Read BD Address */
244         hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
245
246         /* Read Class of Device */
247         hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
248
249         /* Read Local Name */
250         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
251
252         /* Read Voice Setting */
253         hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
254
255         /* Optional initialization */
256
257         /* Clear Event Filters */
258         flt_type = HCI_FLT_CLEAR_ALL;
259         hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
260
261         /* Connection accept timeout ~20 secs */
262         param = cpu_to_le16(0x7d00);
263         hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
264
265         bacpy(&cp.bdaddr, BDADDR_ANY);
266         cp.delete_all = 1;
267         hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
268 }
269
270 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
271 {
272         BT_DBG("%s", hdev->name);
273
274         /* Read LE buffer size */
275         hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
276 }
277
278 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
279 {
280         __u8 scan = opt;
281
282         BT_DBG("%s %x", hdev->name, scan);
283
284         /* Inquiry and Page scans */
285         hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
286 }
287
288 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
289 {
290         __u8 auth = opt;
291
292         BT_DBG("%s %x", hdev->name, auth);
293
294         /* Authentication */
295         hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
296 }
297
298 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
299 {
300         __u8 encrypt = opt;
301
302         BT_DBG("%s %x", hdev->name, encrypt);
303
304         /* Encryption */
305         hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
306 }
307
308 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
309 {
310         __le16 policy = cpu_to_le16(opt);
311
312         BT_DBG("%s %x", hdev->name, policy);
313
314         /* Default link policy */
315         hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
316 }
317
318 /* Get HCI device by index.
319  * Device is held on return. */
320 struct hci_dev *hci_dev_get(int index)
321 {
322         struct hci_dev *hdev = NULL;
323         struct list_head *p;
324
325         BT_DBG("%d", index);
326
327         if (index < 0)
328                 return NULL;
329
330         read_lock(&hci_dev_list_lock);
331         list_for_each(p, &hci_dev_list) {
332                 struct hci_dev *d = list_entry(p, struct hci_dev, list);
333                 if (d->id == index) {
334                         hdev = hci_dev_hold(d);
335                         break;
336                 }
337         }
338         read_unlock(&hci_dev_list_lock);
339         return hdev;
340 }
341
342 /* ---- Inquiry support ---- */
343 static void inquiry_cache_flush(struct hci_dev *hdev)
344 {
345         struct inquiry_cache *cache = &hdev->inq_cache;
346         struct inquiry_entry *next  = cache->list, *e;
347
348         BT_DBG("cache %p", cache);
349
350         cache->list = NULL;
351         while ((e = next)) {
352                 next = e->next;
353                 kfree(e);
354         }
355 }
356
357 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
358 {
359         struct inquiry_cache *cache = &hdev->inq_cache;
360         struct inquiry_entry *e;
361
362         BT_DBG("cache %p, %s", cache, batostr(bdaddr));
363
364         for (e = cache->list; e; e = e->next)
365                 if (!bacmp(&e->data.bdaddr, bdaddr))
366                         break;
367         return e;
368 }
369
370 void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
371 {
372         struct inquiry_cache *cache = &hdev->inq_cache;
373         struct inquiry_entry *ie;
374
375         BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
376
377         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
378         if (!ie) {
379                 /* Entry not in the cache. Add new one. */
380                 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
381                 if (!ie)
382                         return;
383
384                 ie->next = cache->list;
385                 cache->list = ie;
386         }
387
388         memcpy(&ie->data, data, sizeof(*data));
389         ie->timestamp = jiffies;
390         cache->timestamp = jiffies;
391 }
392
393 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
394 {
395         struct inquiry_cache *cache = &hdev->inq_cache;
396         struct inquiry_info *info = (struct inquiry_info *) buf;
397         struct inquiry_entry *e;
398         int copied = 0;
399
400         for (e = cache->list; e && copied < num; e = e->next, copied++) {
401                 struct inquiry_data *data = &e->data;
402                 bacpy(&info->bdaddr, &data->bdaddr);
403                 info->pscan_rep_mode    = data->pscan_rep_mode;
404                 info->pscan_period_mode = data->pscan_period_mode;
405                 info->pscan_mode        = data->pscan_mode;
406                 memcpy(info->dev_class, data->dev_class, 3);
407                 info->clock_offset      = data->clock_offset;
408                 info++;
409         }
410
411         BT_DBG("cache %p, copied %d", cache, copied);
412         return copied;
413 }
414
415 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
416 {
417         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
418         struct hci_cp_inquiry cp;
419
420         BT_DBG("%s", hdev->name);
421
422         if (test_bit(HCI_INQUIRY, &hdev->flags))
423                 return;
424
425         /* Start Inquiry */
426         memcpy(&cp.lap, &ir->lap, 3);
427         cp.length  = ir->length;
428         cp.num_rsp = ir->num_rsp;
429         hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
430 }
431
432 int hci_inquiry(void __user *arg)
433 {
434         __u8 __user *ptr = arg;
435         struct hci_inquiry_req ir;
436         struct hci_dev *hdev;
437         int err = 0, do_inquiry = 0, max_rsp;
438         long timeo;
439         __u8 *buf;
440
441         if (copy_from_user(&ir, ptr, sizeof(ir)))
442                 return -EFAULT;
443
444         hdev = hci_dev_get(ir.dev_id);
445         if (!hdev)
446                 return -ENODEV;
447
448         hci_dev_lock_bh(hdev);
449         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
450                                 inquiry_cache_empty(hdev) ||
451                                 ir.flags & IREQ_CACHE_FLUSH) {
452                 inquiry_cache_flush(hdev);
453                 do_inquiry = 1;
454         }
455         hci_dev_unlock_bh(hdev);
456
457         timeo = ir.length * msecs_to_jiffies(2000);
458
459         if (do_inquiry) {
460                 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
461                 if (err < 0)
462                         goto done;
463         }
464
465         /* for unlimited number of responses we will use buffer with 255 entries */
466         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
467
468         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
469          * copy it to the user space.
470          */
471         buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
472         if (!buf) {
473                 err = -ENOMEM;
474                 goto done;
475         }
476
477         hci_dev_lock_bh(hdev);
478         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
479         hci_dev_unlock_bh(hdev);
480
481         BT_DBG("num_rsp %d", ir.num_rsp);
482
483         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
484                 ptr += sizeof(ir);
485                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
486                                         ir.num_rsp))
487                         err = -EFAULT;
488         } else
489                 err = -EFAULT;
490
491         kfree(buf);
492
493 done:
494         hci_dev_put(hdev);
495         return err;
496 }
497
498 /* ---- HCI ioctl helpers ---- */
499
500 int hci_dev_open(__u16 dev)
501 {
502         struct hci_dev *hdev;
503         int ret = 0;
504
505         hdev = hci_dev_get(dev);
506         if (!hdev)
507                 return -ENODEV;
508
509         BT_DBG("%s %p", hdev->name, hdev);
510
511         hci_req_lock(hdev);
512
513         if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
514                 ret = -ERFKILL;
515                 goto done;
516         }
517
518         if (test_bit(HCI_UP, &hdev->flags)) {
519                 ret = -EALREADY;
520                 goto done;
521         }
522
523         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
524                 set_bit(HCI_RAW, &hdev->flags);
525
526         /* Treat all non BR/EDR controllers as raw devices for now */
527         if (hdev->dev_type != HCI_BREDR)
528                 set_bit(HCI_RAW, &hdev->flags);
529
530         if (hdev->open(hdev)) {
531                 ret = -EIO;
532                 goto done;
533         }
534
535         if (!test_bit(HCI_RAW, &hdev->flags)) {
536                 atomic_set(&hdev->cmd_cnt, 1);
537                 set_bit(HCI_INIT, &hdev->flags);
538                 hdev->init_last_cmd = 0;
539
540                 ret = __hci_request(hdev, hci_init_req, 0,
541                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
542
543                 if (lmp_host_le_capable(hdev))
544                         ret = __hci_request(hdev, hci_le_init_req, 0,
545                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
546
547                 clear_bit(HCI_INIT, &hdev->flags);
548         }
549
550         if (!ret) {
551                 hci_dev_hold(hdev);
552                 set_bit(HCI_UP, &hdev->flags);
553                 hci_notify(hdev, HCI_DEV_UP);
554                 if (!test_bit(HCI_SETUP, &hdev->flags))
555                         mgmt_powered(hdev->id, 1);
556         } else {
557                 /* Init failed, cleanup */
558                 tasklet_kill(&hdev->rx_task);
559                 tasklet_kill(&hdev->tx_task);
560                 tasklet_kill(&hdev->cmd_task);
561
562                 skb_queue_purge(&hdev->cmd_q);
563                 skb_queue_purge(&hdev->rx_q);
564
565                 if (hdev->flush)
566                         hdev->flush(hdev);
567
568                 if (hdev->sent_cmd) {
569                         kfree_skb(hdev->sent_cmd);
570                         hdev->sent_cmd = NULL;
571                 }
572
573                 hdev->close(hdev);
574                 hdev->flags = 0;
575         }
576
577 done:
578         hci_req_unlock(hdev);
579         hci_dev_put(hdev);
580         return ret;
581 }
582
583 static int hci_dev_do_close(struct hci_dev *hdev)
584 {
585         BT_DBG("%s %p", hdev->name, hdev);
586
587         hci_req_cancel(hdev, ENODEV);
588         hci_req_lock(hdev);
589
590         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
591                 del_timer_sync(&hdev->cmd_timer);
592                 hci_req_unlock(hdev);
593                 return 0;
594         }
595
596         /* Kill RX and TX tasks */
597         tasklet_kill(&hdev->rx_task);
598         tasklet_kill(&hdev->tx_task);
599
600         hci_dev_lock_bh(hdev);
601         inquiry_cache_flush(hdev);
602         hci_conn_hash_flush(hdev);
603         hci_dev_unlock_bh(hdev);
604
605         hci_notify(hdev, HCI_DEV_DOWN);
606
607         if (hdev->flush)
608                 hdev->flush(hdev);
609
610         /* Reset device */
611         skb_queue_purge(&hdev->cmd_q);
612         atomic_set(&hdev->cmd_cnt, 1);
613         if (!test_bit(HCI_RAW, &hdev->flags)) {
614                 set_bit(HCI_INIT, &hdev->flags);
615                 __hci_request(hdev, hci_reset_req, 0,
616                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
617                 clear_bit(HCI_INIT, &hdev->flags);
618         }
619
620         /* Kill cmd task */
621         tasklet_kill(&hdev->cmd_task);
622
623         /* Drop queues */
624         skb_queue_purge(&hdev->rx_q);
625         skb_queue_purge(&hdev->cmd_q);
626         skb_queue_purge(&hdev->raw_q);
627
628         /* Drop last sent command */
629         if (hdev->sent_cmd) {
630                 del_timer_sync(&hdev->cmd_timer);
631                 kfree_skb(hdev->sent_cmd);
632                 hdev->sent_cmd = NULL;
633         }
634
635         /* After this point our queues are empty
636          * and no tasks are scheduled. */
637         hdev->close(hdev);
638
639         mgmt_powered(hdev->id, 0);
640
641         /* Clear flags */
642         hdev->flags = 0;
643
644         hci_req_unlock(hdev);
645
646         hci_dev_put(hdev);
647         return 0;
648 }
649
650 int hci_dev_close(__u16 dev)
651 {
652         struct hci_dev *hdev;
653         int err;
654
655         hdev = hci_dev_get(dev);
656         if (!hdev)
657                 return -ENODEV;
658         err = hci_dev_do_close(hdev);
659         hci_dev_put(hdev);
660         return err;
661 }
662
663 int hci_dev_reset(__u16 dev)
664 {
665         struct hci_dev *hdev;
666         int ret = 0;
667
668         hdev = hci_dev_get(dev);
669         if (!hdev)
670                 return -ENODEV;
671
672         hci_req_lock(hdev);
673         tasklet_disable(&hdev->tx_task);
674
675         if (!test_bit(HCI_UP, &hdev->flags))
676                 goto done;
677
678         /* Drop queues */
679         skb_queue_purge(&hdev->rx_q);
680         skb_queue_purge(&hdev->cmd_q);
681
682         hci_dev_lock_bh(hdev);
683         inquiry_cache_flush(hdev);
684         hci_conn_hash_flush(hdev);
685         hci_dev_unlock_bh(hdev);
686
687         if (hdev->flush)
688                 hdev->flush(hdev);
689
690         atomic_set(&hdev->cmd_cnt, 1);
691         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
692
693         if (!test_bit(HCI_RAW, &hdev->flags))
694                 ret = __hci_request(hdev, hci_reset_req, 0,
695                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
696
697 done:
698         tasklet_enable(&hdev->tx_task);
699         hci_req_unlock(hdev);
700         hci_dev_put(hdev);
701         return ret;
702 }
703
704 int hci_dev_reset_stat(__u16 dev)
705 {
706         struct hci_dev *hdev;
707         int ret = 0;
708
709         hdev = hci_dev_get(dev);
710         if (!hdev)
711                 return -ENODEV;
712
713         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
714
715         hci_dev_put(hdev);
716
717         return ret;
718 }
719
720 int hci_dev_cmd(unsigned int cmd, void __user *arg)
721 {
722         struct hci_dev *hdev;
723         struct hci_dev_req dr;
724         int err = 0;
725
726         if (copy_from_user(&dr, arg, sizeof(dr)))
727                 return -EFAULT;
728
729         hdev = hci_dev_get(dr.dev_id);
730         if (!hdev)
731                 return -ENODEV;
732
733         switch (cmd) {
734         case HCISETAUTH:
735                 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
736                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
737                 break;
738
739         case HCISETENCRYPT:
740                 if (!lmp_encrypt_capable(hdev)) {
741                         err = -EOPNOTSUPP;
742                         break;
743                 }
744
745                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
746                         /* Auth must be enabled first */
747                         err = hci_request(hdev, hci_auth_req, dr.dev_opt,
748                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
749                         if (err)
750                                 break;
751                 }
752
753                 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
754                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
755                 break;
756
757         case HCISETSCAN:
758                 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
759                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
760                 break;
761
762         case HCISETLINKPOL:
763                 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
764                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
765                 break;
766
767         case HCISETLINKMODE:
768                 hdev->link_mode = ((__u16) dr.dev_opt) &
769                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
770                 break;
771
772         case HCISETPTYPE:
773                 hdev->pkt_type = (__u16) dr.dev_opt;
774                 break;
775
776         case HCISETACLMTU:
777                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
778                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
779                 break;
780
781         case HCISETSCOMTU:
782                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
783                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
784                 break;
785
786         default:
787                 err = -EINVAL;
788                 break;
789         }
790
791         hci_dev_put(hdev);
792         return err;
793 }
794
795 int hci_get_dev_list(void __user *arg)
796 {
797         struct hci_dev_list_req *dl;
798         struct hci_dev_req *dr;
799         struct list_head *p;
800         int n = 0, size, err;
801         __u16 dev_num;
802
803         if (get_user(dev_num, (__u16 __user *) arg))
804                 return -EFAULT;
805
806         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
807                 return -EINVAL;
808
809         size = sizeof(*dl) + dev_num * sizeof(*dr);
810
811         dl = kzalloc(size, GFP_KERNEL);
812         if (!dl)
813                 return -ENOMEM;
814
815         dr = dl->dev_req;
816
817         read_lock_bh(&hci_dev_list_lock);
818         list_for_each(p, &hci_dev_list) {
819                 struct hci_dev *hdev;
820
821                 hdev = list_entry(p, struct hci_dev, list);
822
823                 hci_del_off_timer(hdev);
824
825                 if (!test_bit(HCI_MGMT, &hdev->flags))
826                         set_bit(HCI_PAIRABLE, &hdev->flags);
827
828                 (dr + n)->dev_id  = hdev->id;
829                 (dr + n)->dev_opt = hdev->flags;
830
831                 if (++n >= dev_num)
832                         break;
833         }
834         read_unlock_bh(&hci_dev_list_lock);
835
836         dl->dev_num = n;
837         size = sizeof(*dl) + n * sizeof(*dr);
838
839         err = copy_to_user(arg, dl, size);
840         kfree(dl);
841
842         return err ? -EFAULT : 0;
843 }
844
845 int hci_get_dev_info(void __user *arg)
846 {
847         struct hci_dev *hdev;
848         struct hci_dev_info di;
849         int err = 0;
850
851         if (copy_from_user(&di, arg, sizeof(di)))
852                 return -EFAULT;
853
854         hdev = hci_dev_get(di.dev_id);
855         if (!hdev)
856                 return -ENODEV;
857
858         hci_del_off_timer(hdev);
859
860         if (!test_bit(HCI_MGMT, &hdev->flags))
861                 set_bit(HCI_PAIRABLE, &hdev->flags);
862
863         strcpy(di.name, hdev->name);
864         di.bdaddr   = hdev->bdaddr;
865         di.type     = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
866         di.flags    = hdev->flags;
867         di.pkt_type = hdev->pkt_type;
868         di.acl_mtu  = hdev->acl_mtu;
869         di.acl_pkts = hdev->acl_pkts;
870         di.sco_mtu  = hdev->sco_mtu;
871         di.sco_pkts = hdev->sco_pkts;
872         di.link_policy = hdev->link_policy;
873         di.link_mode   = hdev->link_mode;
874
875         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
876         memcpy(&di.features, &hdev->features, sizeof(di.features));
877
878         if (copy_to_user(arg, &di, sizeof(di)))
879                 err = -EFAULT;
880
881         hci_dev_put(hdev);
882
883         return err;
884 }
885
886 /* ---- Interface to HCI drivers ---- */
887
888 static int hci_rfkill_set_block(void *data, bool blocked)
889 {
890         struct hci_dev *hdev = data;
891
892         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
893
894         if (!blocked)
895                 return 0;
896
897         hci_dev_do_close(hdev);
898
899         return 0;
900 }
901
902 static const struct rfkill_ops hci_rfkill_ops = {
903         .set_block = hci_rfkill_set_block,
904 };
905
906 /* Alloc HCI device */
907 struct hci_dev *hci_alloc_dev(void)
908 {
909         struct hci_dev *hdev;
910
911         hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
912         if (!hdev)
913                 return NULL;
914
915         skb_queue_head_init(&hdev->driver_init);
916
917         return hdev;
918 }
919 EXPORT_SYMBOL(hci_alloc_dev);
920
921 /* Free HCI device */
922 void hci_free_dev(struct hci_dev *hdev)
923 {
924         skb_queue_purge(&hdev->driver_init);
925
926         /* will free via device release */
927         put_device(&hdev->dev);
928 }
929 EXPORT_SYMBOL(hci_free_dev);
930
931 static void hci_power_on(struct work_struct *work)
932 {
933         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
934
935         BT_DBG("%s", hdev->name);
936
937         if (hci_dev_open(hdev->id) < 0)
938                 return;
939
940         if (test_bit(HCI_AUTO_OFF, &hdev->flags))
941                 mod_timer(&hdev->off_timer,
942                                 jiffies + msecs_to_jiffies(AUTO_OFF_TIMEOUT));
943
944         if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
945                 mgmt_index_added(hdev->id);
946 }
947
948 static void hci_power_off(struct work_struct *work)
949 {
950         struct hci_dev *hdev = container_of(work, struct hci_dev, power_off);
951
952         BT_DBG("%s", hdev->name);
953
954         hci_dev_close(hdev->id);
955 }
956
957 static void hci_auto_off(unsigned long data)
958 {
959         struct hci_dev *hdev = (struct hci_dev *) data;
960
961         BT_DBG("%s", hdev->name);
962
963         clear_bit(HCI_AUTO_OFF, &hdev->flags);
964
965         queue_work(hdev->workqueue, &hdev->power_off);
966 }
967
968 void hci_del_off_timer(struct hci_dev *hdev)
969 {
970         BT_DBG("%s", hdev->name);
971
972         clear_bit(HCI_AUTO_OFF, &hdev->flags);
973         del_timer(&hdev->off_timer);
974 }
975
976 int hci_uuids_clear(struct hci_dev *hdev)
977 {
978         struct list_head *p, *n;
979
980         list_for_each_safe(p, n, &hdev->uuids) {
981                 struct bt_uuid *uuid;
982
983                 uuid = list_entry(p, struct bt_uuid, list);
984
985                 list_del(p);
986                 kfree(uuid);
987         }
988
989         return 0;
990 }
991
992 int hci_link_keys_clear(struct hci_dev *hdev)
993 {
994         struct list_head *p, *n;
995
996         list_for_each_safe(p, n, &hdev->link_keys) {
997                 struct link_key *key;
998
999                 key = list_entry(p, struct link_key, list);
1000
1001                 list_del(p);
1002                 kfree(key);
1003         }
1004
1005         return 0;
1006 }
1007
1008 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1009 {
1010         struct list_head *p;
1011
1012         list_for_each(p, &hdev->link_keys) {
1013                 struct link_key *k;
1014
1015                 k = list_entry(p, struct link_key, list);
1016
1017                 if (bacmp(bdaddr, &k->bdaddr) == 0)
1018                         return k;
1019         }
1020
1021         return NULL;
1022 }
1023
1024 static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1025                                                 u8 key_type, u8 old_key_type)
1026 {
1027         /* Legacy key */
1028         if (key_type < 0x03)
1029                 return 1;
1030
1031         /* Debug keys are insecure so don't store them persistently */
1032         if (key_type == HCI_LK_DEBUG_COMBINATION)
1033                 return 0;
1034
1035         /* Changed combination key and there's no previous one */
1036         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1037                 return 0;
1038
1039         /* Security mode 3 case */
1040         if (!conn)
1041                 return 1;
1042
1043         /* Neither local nor remote side had no-bonding as requirement */
1044         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1045                 return 1;
1046
1047         /* Local side had dedicated bonding as requirement */
1048         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1049                 return 1;
1050
1051         /* Remote side had dedicated bonding as requirement */
1052         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1053                 return 1;
1054
1055         /* If none of the above criteria match, then don't store the key
1056          * persistently */
1057         return 0;
1058 }
1059
1060 struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1061 {
1062         struct link_key *k;
1063
1064         list_for_each_entry(k, &hdev->link_keys, list) {
1065                 struct key_master_id *id;
1066
1067                 if (k->type != HCI_LK_SMP_LTK)
1068                         continue;
1069
1070                 if (k->dlen != sizeof(*id))
1071                         continue;
1072
1073                 id = (void *) &k->data;
1074                 if (id->ediv == ediv &&
1075                                 (memcmp(rand, id->rand, sizeof(id->rand)) == 0))
1076                         return k;
1077         }
1078
1079         return NULL;
1080 }
1081 EXPORT_SYMBOL(hci_find_ltk);
1082
1083 struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
1084                                         bdaddr_t *bdaddr, u8 type)
1085 {
1086         struct link_key *k;
1087
1088         list_for_each_entry(k, &hdev->link_keys, list)
1089                 if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
1090                         return k;
1091
1092         return NULL;
1093 }
1094 EXPORT_SYMBOL(hci_find_link_key_type);
1095
1096 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1097                                 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1098 {
1099         struct link_key *key, *old_key;
1100         u8 old_key_type, persistent;
1101
1102         old_key = hci_find_link_key(hdev, bdaddr);
1103         if (old_key) {
1104                 old_key_type = old_key->type;
1105                 key = old_key;
1106         } else {
1107                 old_key_type = conn ? conn->key_type : 0xff;
1108                 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1109                 if (!key)
1110                         return -ENOMEM;
1111                 list_add(&key->list, &hdev->link_keys);
1112         }
1113
1114         BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1115
1116         /* Some buggy controller combinations generate a changed
1117          * combination key for legacy pairing even when there's no
1118          * previous key */
1119         if (type == HCI_LK_CHANGED_COMBINATION &&
1120                                         (!conn || conn->remote_auth == 0xff) &&
1121                                         old_key_type == 0xff) {
1122                 type = HCI_LK_COMBINATION;
1123                 if (conn)
1124                         conn->key_type = type;
1125         }
1126
1127         bacpy(&key->bdaddr, bdaddr);
1128         memcpy(key->val, val, 16);
1129         key->pin_len = pin_len;
1130
1131         if (type == HCI_LK_CHANGED_COMBINATION)
1132                 key->type = old_key_type;
1133         else
1134                 key->type = type;
1135
1136         if (!new_key)
1137                 return 0;
1138
1139         persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1140
1141         mgmt_new_key(hdev->id, key, persistent);
1142
1143         if (!persistent) {
1144                 list_del(&key->list);
1145                 kfree(key);
1146         }
1147
1148         return 0;
1149 }
1150
1151 int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1152                         u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
1153 {
1154         struct link_key *key, *old_key;
1155         struct key_master_id *id;
1156         u8 old_key_type;
1157
1158         BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
1159
1160         old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
1161         if (old_key) {
1162                 key = old_key;
1163                 old_key_type = old_key->type;
1164         } else {
1165                 key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
1166                 if (!key)
1167                         return -ENOMEM;
1168                 list_add(&key->list, &hdev->link_keys);
1169                 old_key_type = 0xff;
1170         }
1171
1172         key->dlen = sizeof(*id);
1173
1174         bacpy(&key->bdaddr, bdaddr);
1175         memcpy(key->val, ltk, sizeof(key->val));
1176         key->type = HCI_LK_SMP_LTK;
1177         key->pin_len = key_size;
1178
1179         id = (void *) &key->data;
1180         id->ediv = ediv;
1181         memcpy(id->rand, rand, sizeof(id->rand));
1182
1183         if (new_key)
1184                 mgmt_new_key(hdev->id, key, old_key_type);
1185
1186         return 0;
1187 }
1188
1189 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1190 {
1191         struct link_key *key;
1192
1193         key = hci_find_link_key(hdev, bdaddr);
1194         if (!key)
1195                 return -ENOENT;
1196
1197         BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1198
1199         list_del(&key->list);
1200         kfree(key);
1201
1202         return 0;
1203 }
1204
1205 /* HCI command timer function */
1206 static void hci_cmd_timer(unsigned long arg)
1207 {
1208         struct hci_dev *hdev = (void *) arg;
1209
1210         BT_ERR("%s command tx timeout", hdev->name);
1211         atomic_set(&hdev->cmd_cnt, 1);
1212         tasklet_schedule(&hdev->cmd_task);
1213 }
1214
1215 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1216                                                         bdaddr_t *bdaddr)
1217 {
1218         struct oob_data *data;
1219
1220         list_for_each_entry(data, &hdev->remote_oob_data, list)
1221                 if (bacmp(bdaddr, &data->bdaddr) == 0)
1222                         return data;
1223
1224         return NULL;
1225 }
1226
1227 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1228 {
1229         struct oob_data *data;
1230
1231         data = hci_find_remote_oob_data(hdev, bdaddr);
1232         if (!data)
1233                 return -ENOENT;
1234
1235         BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1236
1237         list_del(&data->list);
1238         kfree(data);
1239
1240         return 0;
1241 }
1242
1243 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1244 {
1245         struct oob_data *data, *n;
1246
1247         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1248                 list_del(&data->list);
1249                 kfree(data);
1250         }
1251
1252         return 0;
1253 }
1254
1255 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1256                                                                 u8 *randomizer)
1257 {
1258         struct oob_data *data;
1259
1260         data = hci_find_remote_oob_data(hdev, bdaddr);
1261
1262         if (!data) {
1263                 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1264                 if (!data)
1265                         return -ENOMEM;
1266
1267                 bacpy(&data->bdaddr, bdaddr);
1268                 list_add(&data->list, &hdev->remote_oob_data);
1269         }
1270
1271         memcpy(data->hash, hash, sizeof(data->hash));
1272         memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1273
1274         BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1275
1276         return 0;
1277 }
1278
1279 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
1280                                                 bdaddr_t *bdaddr)
1281 {
1282         struct list_head *p;
1283
1284         list_for_each(p, &hdev->blacklist) {
1285                 struct bdaddr_list *b;
1286
1287                 b = list_entry(p, struct bdaddr_list, list);
1288
1289                 if (bacmp(bdaddr, &b->bdaddr) == 0)
1290                         return b;
1291         }
1292
1293         return NULL;
1294 }
1295
1296 int hci_blacklist_clear(struct hci_dev *hdev)
1297 {
1298         struct list_head *p, *n;
1299
1300         list_for_each_safe(p, n, &hdev->blacklist) {
1301                 struct bdaddr_list *b;
1302
1303                 b = list_entry(p, struct bdaddr_list, list);
1304
1305                 list_del(p);
1306                 kfree(b);
1307         }
1308
1309         return 0;
1310 }
1311
1312 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
1313 {
1314         struct bdaddr_list *entry;
1315
1316         if (bacmp(bdaddr, BDADDR_ANY) == 0)
1317                 return -EBADF;
1318
1319         if (hci_blacklist_lookup(hdev, bdaddr))
1320                 return -EEXIST;
1321
1322         entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1323         if (!entry)
1324                 return -ENOMEM;
1325
1326         bacpy(&entry->bdaddr, bdaddr);
1327
1328         list_add(&entry->list, &hdev->blacklist);
1329
1330         return mgmt_device_blocked(hdev->id, bdaddr);
1331 }
1332
1333 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
1334 {
1335         struct bdaddr_list *entry;
1336
1337         if (bacmp(bdaddr, BDADDR_ANY) == 0) {
1338                 return hci_blacklist_clear(hdev);
1339         }
1340
1341         entry = hci_blacklist_lookup(hdev, bdaddr);
1342         if (!entry) {
1343                 return -ENOENT;
1344         }
1345
1346         list_del(&entry->list);
1347         kfree(entry);
1348
1349         return mgmt_device_unblocked(hdev->id, bdaddr);
1350 }
1351
1352 static void hci_clear_adv_cache(unsigned long arg)
1353 {
1354         struct hci_dev *hdev = (void *) arg;
1355
1356         hci_dev_lock(hdev);
1357
1358         hci_adv_entries_clear(hdev);
1359
1360         hci_dev_unlock(hdev);
1361 }
1362
1363 int hci_adv_entries_clear(struct hci_dev *hdev)
1364 {
1365         struct adv_entry *entry, *tmp;
1366
1367         list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1368                 list_del(&entry->list);
1369                 kfree(entry);
1370         }
1371
1372         BT_DBG("%s adv cache cleared", hdev->name);
1373
1374         return 0;
1375 }
1376
1377 struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
1378 {
1379         struct adv_entry *entry;
1380
1381         list_for_each_entry(entry, &hdev->adv_entries, list)
1382                 if (bacmp(bdaddr, &entry->bdaddr) == 0)
1383                         return entry;
1384
1385         return NULL;
1386 }
1387
1388 static inline int is_connectable_adv(u8 evt_type)
1389 {
1390         if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1391                 return 1;
1392
1393         return 0;
1394 }
1395
1396 int hci_add_adv_entry(struct hci_dev *hdev,
1397                                         struct hci_ev_le_advertising_info *ev)
1398 {
1399         struct adv_entry *entry;
1400
1401         if (!is_connectable_adv(ev->evt_type))
1402                 return -EINVAL;
1403
1404         /* Only new entries should be added to adv_entries. So, if
1405          * bdaddr was found, don't add it. */
1406         if (hci_find_adv_entry(hdev, &ev->bdaddr))
1407                 return 0;
1408
1409         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1410         if (!entry)
1411                 return -ENOMEM;
1412
1413         bacpy(&entry->bdaddr, &ev->bdaddr);
1414         entry->bdaddr_type = ev->bdaddr_type;
1415
1416         list_add(&entry->list, &hdev->adv_entries);
1417
1418         BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1419                                 batostr(&entry->bdaddr), entry->bdaddr_type);
1420
1421         return 0;
1422 }
1423
1424 /* Register HCI device */
1425 int hci_register_dev(struct hci_dev *hdev)
1426 {
1427         struct list_head *head = &hci_dev_list, *p;
1428         int i, id = 0;
1429
1430         BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1431                                                 hdev->bus, hdev->owner);
1432
1433         if (!hdev->open || !hdev->close || !hdev->destruct)
1434                 return -EINVAL;
1435
1436         write_lock_bh(&hci_dev_list_lock);
1437
1438         /* Find first available device id */
1439         list_for_each(p, &hci_dev_list) {
1440                 if (list_entry(p, struct hci_dev, list)->id != id)
1441                         break;
1442                 head = p; id++;
1443         }
1444
1445         sprintf(hdev->name, "hci%d", id);
1446         hdev->id = id;
1447         list_add(&hdev->list, head);
1448
1449         atomic_set(&hdev->refcnt, 1);
1450         spin_lock_init(&hdev->lock);
1451
1452         hdev->flags = 0;
1453         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1454         hdev->esco_type = (ESCO_HV1);
1455         hdev->link_mode = (HCI_LM_ACCEPT);
1456         hdev->io_capability = 0x03; /* No Input No Output */
1457
1458         hdev->idle_timeout = 0;
1459         hdev->sniff_max_interval = 800;
1460         hdev->sniff_min_interval = 80;
1461
1462         tasklet_init(&hdev->cmd_task, hci_cmd_task, (unsigned long) hdev);
1463         tasklet_init(&hdev->rx_task, hci_rx_task, (unsigned long) hdev);
1464         tasklet_init(&hdev->tx_task, hci_tx_task, (unsigned long) hdev);
1465
1466         skb_queue_head_init(&hdev->rx_q);
1467         skb_queue_head_init(&hdev->cmd_q);
1468         skb_queue_head_init(&hdev->raw_q);
1469
1470         setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1471
1472         for (i = 0; i < NUM_REASSEMBLY; i++)
1473                 hdev->reassembly[i] = NULL;
1474
1475         init_waitqueue_head(&hdev->req_wait_q);
1476         mutex_init(&hdev->req_lock);
1477
1478         inquiry_cache_init(hdev);
1479
1480         hci_conn_hash_init(hdev);
1481
1482         INIT_LIST_HEAD(&hdev->blacklist);
1483
1484         INIT_LIST_HEAD(&hdev->uuids);
1485
1486         INIT_LIST_HEAD(&hdev->link_keys);
1487
1488         INIT_LIST_HEAD(&hdev->remote_oob_data);
1489
1490         INIT_LIST_HEAD(&hdev->adv_entries);
1491         setup_timer(&hdev->adv_timer, hci_clear_adv_cache,
1492                                                 (unsigned long) hdev);
1493
1494         INIT_WORK(&hdev->power_on, hci_power_on);
1495         INIT_WORK(&hdev->power_off, hci_power_off);
1496         setup_timer(&hdev->off_timer, hci_auto_off, (unsigned long) hdev);
1497
1498         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1499
1500         atomic_set(&hdev->promisc, 0);
1501
1502         write_unlock_bh(&hci_dev_list_lock);
1503
1504         hdev->workqueue = create_singlethread_workqueue(hdev->name);
1505         if (!hdev->workqueue)
1506                 goto nomem;
1507
1508         hci_register_sysfs(hdev);
1509
1510         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1511                                 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1512         if (hdev->rfkill) {
1513                 if (rfkill_register(hdev->rfkill) < 0) {
1514                         rfkill_destroy(hdev->rfkill);
1515                         hdev->rfkill = NULL;
1516                 }
1517         }
1518
1519         set_bit(HCI_AUTO_OFF, &hdev->flags);
1520         set_bit(HCI_SETUP, &hdev->flags);
1521         queue_work(hdev->workqueue, &hdev->power_on);
1522
1523         hci_notify(hdev, HCI_DEV_REG);
1524
1525         return id;
1526
1527 nomem:
1528         write_lock_bh(&hci_dev_list_lock);
1529         list_del(&hdev->list);
1530         write_unlock_bh(&hci_dev_list_lock);
1531
1532         return -ENOMEM;
1533 }
1534 EXPORT_SYMBOL(hci_register_dev);
1535
1536 /* Unregister HCI device */
1537 int hci_unregister_dev(struct hci_dev *hdev)
1538 {
1539         int i;
1540
1541         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1542
1543         write_lock_bh(&hci_dev_list_lock);
1544         list_del(&hdev->list);
1545         write_unlock_bh(&hci_dev_list_lock);
1546
1547         hci_dev_do_close(hdev);
1548
1549         for (i = 0; i < NUM_REASSEMBLY; i++)
1550                 kfree_skb(hdev->reassembly[i]);
1551
1552         if (!test_bit(HCI_INIT, &hdev->flags) &&
1553                                         !test_bit(HCI_SETUP, &hdev->flags))
1554                 mgmt_index_removed(hdev->id);
1555
1556         hci_notify(hdev, HCI_DEV_UNREG);
1557
1558         if (hdev->rfkill) {
1559                 rfkill_unregister(hdev->rfkill);
1560                 rfkill_destroy(hdev->rfkill);
1561         }
1562
1563         hci_unregister_sysfs(hdev);
1564
1565         hci_del_off_timer(hdev);
1566         del_timer(&hdev->adv_timer);
1567
1568         destroy_workqueue(hdev->workqueue);
1569
1570         hci_dev_lock_bh(hdev);
1571         hci_blacklist_clear(hdev);
1572         hci_uuids_clear(hdev);
1573         hci_link_keys_clear(hdev);
1574         hci_remote_oob_data_clear(hdev);
1575         hci_adv_entries_clear(hdev);
1576         hci_dev_unlock_bh(hdev);
1577
1578         __hci_dev_put(hdev);
1579
1580         return 0;
1581 }
1582 EXPORT_SYMBOL(hci_unregister_dev);
1583
1584 /* Suspend HCI device */
1585 int hci_suspend_dev(struct hci_dev *hdev)
1586 {
1587         hci_notify(hdev, HCI_DEV_SUSPEND);
1588         return 0;
1589 }
1590 EXPORT_SYMBOL(hci_suspend_dev);
1591
1592 /* Resume HCI device */
1593 int hci_resume_dev(struct hci_dev *hdev)
1594 {
1595         hci_notify(hdev, HCI_DEV_RESUME);
1596         return 0;
1597 }
1598 EXPORT_SYMBOL(hci_resume_dev);
1599
1600 /* Receive frame from HCI drivers */
1601 int hci_recv_frame(struct sk_buff *skb)
1602 {
1603         struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1604         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1605                                 && !test_bit(HCI_INIT, &hdev->flags))) {
1606                 kfree_skb(skb);
1607                 return -ENXIO;
1608         }
1609
1610         /* Incomming skb */
1611         bt_cb(skb)->incoming = 1;
1612
1613         /* Time stamp */
1614         __net_timestamp(skb);
1615
1616         /* Queue frame for rx task */
1617         skb_queue_tail(&hdev->rx_q, skb);
1618         tasklet_schedule(&hdev->rx_task);
1619
1620         return 0;
1621 }
1622 EXPORT_SYMBOL(hci_recv_frame);
1623
1624 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1625                                                   int count, __u8 index)
1626 {
1627         int len = 0;
1628         int hlen = 0;
1629         int remain = count;
1630         struct sk_buff *skb;
1631         struct bt_skb_cb *scb;
1632
1633         if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1634                                 index >= NUM_REASSEMBLY)
1635                 return -EILSEQ;
1636
1637         skb = hdev->reassembly[index];
1638
1639         if (!skb) {
1640                 switch (type) {
1641                 case HCI_ACLDATA_PKT:
1642                         len = HCI_MAX_FRAME_SIZE;
1643                         hlen = HCI_ACL_HDR_SIZE;
1644                         break;
1645                 case HCI_EVENT_PKT:
1646                         len = HCI_MAX_EVENT_SIZE;
1647                         hlen = HCI_EVENT_HDR_SIZE;
1648                         break;
1649                 case HCI_SCODATA_PKT:
1650                         len = HCI_MAX_SCO_SIZE;
1651                         hlen = HCI_SCO_HDR_SIZE;
1652                         break;
1653                 }
1654
1655                 skb = bt_skb_alloc(len, GFP_ATOMIC);
1656                 if (!skb)
1657                         return -ENOMEM;
1658
1659                 scb = (void *) skb->cb;
1660                 scb->expect = hlen;
1661                 scb->pkt_type = type;
1662
1663                 skb->dev = (void *) hdev;
1664                 hdev->reassembly[index] = skb;
1665         }
1666
1667         while (count) {
1668                 scb = (void *) skb->cb;
1669                 len = min(scb->expect, (__u16)count);
1670
1671                 memcpy(skb_put(skb, len), data, len);
1672
1673                 count -= len;
1674                 data += len;
1675                 scb->expect -= len;
1676                 remain = count;
1677
1678                 switch (type) {
1679                 case HCI_EVENT_PKT:
1680                         if (skb->len == HCI_EVENT_HDR_SIZE) {
1681                                 struct hci_event_hdr *h = hci_event_hdr(skb);
1682                                 scb->expect = h->plen;
1683
1684                                 if (skb_tailroom(skb) < scb->expect) {
1685                                         kfree_skb(skb);
1686                                         hdev->reassembly[index] = NULL;
1687                                         return -ENOMEM;
1688                                 }
1689                         }
1690                         break;
1691
1692                 case HCI_ACLDATA_PKT:
1693                         if (skb->len  == HCI_ACL_HDR_SIZE) {
1694                                 struct hci_acl_hdr *h = hci_acl_hdr(skb);
1695                                 scb->expect = __le16_to_cpu(h->dlen);
1696
1697                                 if (skb_tailroom(skb) < scb->expect) {
1698                                         kfree_skb(skb);
1699                                         hdev->reassembly[index] = NULL;
1700                                         return -ENOMEM;
1701                                 }
1702                         }
1703                         break;
1704
1705                 case HCI_SCODATA_PKT:
1706                         if (skb->len == HCI_SCO_HDR_SIZE) {
1707                                 struct hci_sco_hdr *h = hci_sco_hdr(skb);
1708                                 scb->expect = h->dlen;
1709
1710                                 if (skb_tailroom(skb) < scb->expect) {
1711                                         kfree_skb(skb);
1712                                         hdev->reassembly[index] = NULL;
1713                                         return -ENOMEM;
1714                                 }
1715                         }
1716                         break;
1717                 }
1718
1719                 if (scb->expect == 0) {
1720                         /* Complete frame */
1721
1722                         bt_cb(skb)->pkt_type = type;
1723                         hci_recv_frame(skb);
1724
1725                         hdev->reassembly[index] = NULL;
1726                         return remain;
1727                 }
1728         }
1729
1730         return remain;
1731 }
1732
1733 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1734 {
1735         int rem = 0;
1736
1737         if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1738                 return -EILSEQ;
1739
1740         while (count) {
1741                 rem = hci_reassembly(hdev, type, data, count, type - 1);
1742                 if (rem < 0)
1743                         return rem;
1744
1745                 data += (count - rem);
1746                 count = rem;
1747         }
1748
1749         return rem;
1750 }
1751 EXPORT_SYMBOL(hci_recv_fragment);
1752
1753 #define STREAM_REASSEMBLY 0
1754
1755 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1756 {
1757         int type;
1758         int rem = 0;
1759
1760         while (count) {
1761                 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1762
1763                 if (!skb) {
1764                         struct { char type; } *pkt;
1765
1766                         /* Start of the frame */
1767                         pkt = data;
1768                         type = pkt->type;
1769
1770                         data++;
1771                         count--;
1772                 } else
1773                         type = bt_cb(skb)->pkt_type;
1774
1775                 rem = hci_reassembly(hdev, type, data, count,
1776                                                         STREAM_REASSEMBLY);
1777                 if (rem < 0)
1778                         return rem;
1779
1780                 data += (count - rem);
1781                 count = rem;
1782         }
1783
1784         return rem;
1785 }
1786 EXPORT_SYMBOL(hci_recv_stream_fragment);
1787
1788 /* ---- Interface to upper protocols ---- */
1789
1790 /* Register/Unregister protocols.
1791  * hci_task_lock is used to ensure that no tasks are running. */
1792 int hci_register_proto(struct hci_proto *hp)
1793 {
1794         int err = 0;
1795
1796         BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1797
1798         if (hp->id >= HCI_MAX_PROTO)
1799                 return -EINVAL;
1800
1801         write_lock_bh(&hci_task_lock);
1802
1803         if (!hci_proto[hp->id])
1804                 hci_proto[hp->id] = hp;
1805         else
1806                 err = -EEXIST;
1807
1808         write_unlock_bh(&hci_task_lock);
1809
1810         return err;
1811 }
1812 EXPORT_SYMBOL(hci_register_proto);
1813
1814 int hci_unregister_proto(struct hci_proto *hp)
1815 {
1816         int err = 0;
1817
1818         BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1819
1820         if (hp->id >= HCI_MAX_PROTO)
1821                 return -EINVAL;
1822
1823         write_lock_bh(&hci_task_lock);
1824
1825         if (hci_proto[hp->id])
1826                 hci_proto[hp->id] = NULL;
1827         else
1828                 err = -ENOENT;
1829
1830         write_unlock_bh(&hci_task_lock);
1831
1832         return err;
1833 }
1834 EXPORT_SYMBOL(hci_unregister_proto);
1835
1836 int hci_register_cb(struct hci_cb *cb)
1837 {
1838         BT_DBG("%p name %s", cb, cb->name);
1839
1840         write_lock_bh(&hci_cb_list_lock);
1841         list_add(&cb->list, &hci_cb_list);
1842         write_unlock_bh(&hci_cb_list_lock);
1843
1844         return 0;
1845 }
1846 EXPORT_SYMBOL(hci_register_cb);
1847
1848 int hci_unregister_cb(struct hci_cb *cb)
1849 {
1850         BT_DBG("%p name %s", cb, cb->name);
1851
1852         write_lock_bh(&hci_cb_list_lock);
1853         list_del(&cb->list);
1854         write_unlock_bh(&hci_cb_list_lock);
1855
1856         return 0;
1857 }
1858 EXPORT_SYMBOL(hci_unregister_cb);
1859
1860 static int hci_send_frame(struct sk_buff *skb)
1861 {
1862         struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1863
1864         if (!hdev) {
1865                 kfree_skb(skb);
1866                 return -ENODEV;
1867         }
1868
1869         BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
1870
1871         if (atomic_read(&hdev->promisc)) {
1872                 /* Time stamp */
1873                 __net_timestamp(skb);
1874
1875                 hci_send_to_sock(hdev, skb, NULL);
1876         }
1877
1878         /* Get rid of skb owner, prior to sending to the driver. */
1879         skb_orphan(skb);
1880
1881         return hdev->send(skb);
1882 }
1883
1884 /* Send HCI command */
1885 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
1886 {
1887         int len = HCI_COMMAND_HDR_SIZE + plen;
1888         struct hci_command_hdr *hdr;
1889         struct sk_buff *skb;
1890
1891         BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1892
1893         skb = bt_skb_alloc(len, GFP_ATOMIC);
1894         if (!skb) {
1895                 BT_ERR("%s no memory for command", hdev->name);
1896                 return -ENOMEM;
1897         }
1898
1899         hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1900         hdr->opcode = cpu_to_le16(opcode);
1901         hdr->plen   = plen;
1902
1903         if (plen)
1904                 memcpy(skb_put(skb, plen), param, plen);
1905
1906         BT_DBG("skb len %d", skb->len);
1907
1908         bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
1909         skb->dev = (void *) hdev;
1910
1911         if (test_bit(HCI_INIT, &hdev->flags))
1912                 hdev->init_last_cmd = opcode;
1913
1914         skb_queue_tail(&hdev->cmd_q, skb);
1915         tasklet_schedule(&hdev->cmd_task);
1916
1917         return 0;
1918 }
1919
1920 /* Get data from the previously sent command */
1921 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
1922 {
1923         struct hci_command_hdr *hdr;
1924
1925         if (!hdev->sent_cmd)
1926                 return NULL;
1927
1928         hdr = (void *) hdev->sent_cmd->data;
1929
1930         if (hdr->opcode != cpu_to_le16(opcode))
1931                 return NULL;
1932
1933         BT_DBG("%s opcode 0x%x", hdev->name, opcode);
1934
1935         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
1936 }
1937
1938 /* Send ACL data */
1939 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
1940 {
1941         struct hci_acl_hdr *hdr;
1942         int len = skb->len;
1943
1944         skb_push(skb, HCI_ACL_HDR_SIZE);
1945         skb_reset_transport_header(skb);
1946         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
1947         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
1948         hdr->dlen   = cpu_to_le16(len);
1949 }
1950
1951 void hci_send_acl(struct hci_conn *conn, struct sk_buff *skb, __u16 flags)
1952 {
1953         struct hci_dev *hdev = conn->hdev;
1954         struct sk_buff *list;
1955
1956         BT_DBG("%s conn %p flags 0x%x", hdev->name, conn, flags);
1957
1958         skb->dev = (void *) hdev;
1959         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1960         hci_add_acl_hdr(skb, conn->handle, flags);
1961
1962         list = skb_shinfo(skb)->frag_list;
1963         if (!list) {
1964                 /* Non fragmented */
1965                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
1966
1967                 skb_queue_tail(&conn->data_q, skb);
1968         } else {
1969                 /* Fragmented */
1970                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1971
1972                 skb_shinfo(skb)->frag_list = NULL;
1973
1974                 /* Queue all fragments atomically */
1975                 spin_lock_bh(&conn->data_q.lock);
1976
1977                 __skb_queue_tail(&conn->data_q, skb);
1978
1979                 flags &= ~ACL_START;
1980                 flags |= ACL_CONT;
1981                 do {
1982                         skb = list; list = list->next;
1983
1984                         skb->dev = (void *) hdev;
1985                         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1986                         hci_add_acl_hdr(skb, conn->handle, flags);
1987
1988                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1989
1990                         __skb_queue_tail(&conn->data_q, skb);
1991                 } while (list);
1992
1993                 spin_unlock_bh(&conn->data_q.lock);
1994         }
1995
1996         tasklet_schedule(&hdev->tx_task);
1997 }
1998 EXPORT_SYMBOL(hci_send_acl);
1999
2000 /* Send SCO data */
2001 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2002 {
2003         struct hci_dev *hdev = conn->hdev;
2004         struct hci_sco_hdr hdr;
2005
2006         BT_DBG("%s len %d", hdev->name, skb->len);
2007
2008         hdr.handle = cpu_to_le16(conn->handle);
2009         hdr.dlen   = skb->len;
2010
2011         skb_push(skb, HCI_SCO_HDR_SIZE);
2012         skb_reset_transport_header(skb);
2013         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2014
2015         skb->dev = (void *) hdev;
2016         bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2017
2018         skb_queue_tail(&conn->data_q, skb);
2019         tasklet_schedule(&hdev->tx_task);
2020 }
2021 EXPORT_SYMBOL(hci_send_sco);
2022
2023 /* ---- HCI TX task (outgoing data) ---- */
2024
2025 /* HCI Connection scheduler */
2026 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
2027 {
2028         struct hci_conn_hash *h = &hdev->conn_hash;
2029         struct hci_conn *conn = NULL;
2030         int num = 0, min = ~0;
2031         struct list_head *p;
2032
2033         /* We don't have to lock device here. Connections are always
2034          * added and removed with TX task disabled. */
2035         list_for_each(p, &h->list) {
2036                 struct hci_conn *c;
2037                 c = list_entry(p, struct hci_conn, list);
2038
2039                 if (c->type != type || skb_queue_empty(&c->data_q))
2040                         continue;
2041
2042                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2043                         continue;
2044
2045                 num++;
2046
2047                 if (c->sent < min) {
2048                         min  = c->sent;
2049                         conn = c;
2050                 }
2051
2052                 if (hci_conn_num(hdev, type) == num)
2053                         break;
2054         }
2055
2056         if (conn) {
2057                 int cnt, q;
2058
2059                 switch (conn->type) {
2060                 case ACL_LINK:
2061                         cnt = hdev->acl_cnt;
2062                         break;
2063                 case SCO_LINK:
2064                 case ESCO_LINK:
2065                         cnt = hdev->sco_cnt;
2066                         break;
2067                 case LE_LINK:
2068                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2069                         break;
2070                 default:
2071                         cnt = 0;
2072                         BT_ERR("Unknown link type");
2073                 }
2074
2075                 q = cnt / num;
2076                 *quote = q ? q : 1;
2077         } else
2078                 *quote = 0;
2079
2080         BT_DBG("conn %p quote %d", conn, *quote);
2081         return conn;
2082 }
2083
2084 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2085 {
2086         struct hci_conn_hash *h = &hdev->conn_hash;
2087         struct list_head *p;
2088         struct hci_conn  *c;
2089
2090         BT_ERR("%s link tx timeout", hdev->name);
2091
2092         /* Kill stalled connections */
2093         list_for_each(p, &h->list) {
2094                 c = list_entry(p, struct hci_conn, list);
2095                 if (c->type == type && c->sent) {
2096                         BT_ERR("%s killing stalled connection %s",
2097                                 hdev->name, batostr(&c->dst));
2098                         hci_acl_disconn(c, 0x13);
2099                 }
2100         }
2101 }
2102
2103 static inline void hci_sched_acl(struct hci_dev *hdev)
2104 {
2105         struct hci_conn *conn;
2106         struct sk_buff *skb;
2107         int quote;
2108
2109         BT_DBG("%s", hdev->name);
2110
2111         if (!hci_conn_num(hdev, ACL_LINK))
2112                 return;
2113
2114         if (!test_bit(HCI_RAW, &hdev->flags)) {
2115                 /* ACL tx timeout must be longer than maximum
2116                  * link supervision timeout (40.9 seconds) */
2117                 if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
2118                         hci_link_tx_to(hdev, ACL_LINK);
2119         }
2120
2121         while (hdev->acl_cnt && (conn = hci_low_sent(hdev, ACL_LINK, &quote))) {
2122                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2123                         BT_DBG("skb %p len %d", skb, skb->len);
2124
2125                         hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2126
2127                         hci_send_frame(skb);
2128                         hdev->acl_last_tx = jiffies;
2129
2130                         hdev->acl_cnt--;
2131                         conn->sent++;
2132                 }
2133         }
2134 }
2135
2136 /* Schedule SCO */
2137 static inline void hci_sched_sco(struct hci_dev *hdev)
2138 {
2139         struct hci_conn *conn;
2140         struct sk_buff *skb;
2141         int quote;
2142
2143         BT_DBG("%s", hdev->name);
2144
2145         if (!hci_conn_num(hdev, SCO_LINK))
2146                 return;
2147
2148         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2149                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2150                         BT_DBG("skb %p len %d", skb, skb->len);
2151                         hci_send_frame(skb);
2152
2153                         conn->sent++;
2154                         if (conn->sent == ~0)
2155                                 conn->sent = 0;
2156                 }
2157         }
2158 }
2159
2160 static inline void hci_sched_esco(struct hci_dev *hdev)
2161 {
2162         struct hci_conn *conn;
2163         struct sk_buff *skb;
2164         int quote;
2165
2166         BT_DBG("%s", hdev->name);
2167
2168         if (!hci_conn_num(hdev, ESCO_LINK))
2169                 return;
2170
2171         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
2172                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2173                         BT_DBG("skb %p len %d", skb, skb->len);
2174                         hci_send_frame(skb);
2175
2176                         conn->sent++;
2177                         if (conn->sent == ~0)
2178                                 conn->sent = 0;
2179                 }
2180         }
2181 }
2182
2183 static inline void hci_sched_le(struct hci_dev *hdev)
2184 {
2185         struct hci_conn *conn;
2186         struct sk_buff *skb;
2187         int quote, cnt;
2188
2189         BT_DBG("%s", hdev->name);
2190
2191         if (!hci_conn_num(hdev, LE_LINK))
2192                 return;
2193
2194         if (!test_bit(HCI_RAW, &hdev->flags)) {
2195                 /* LE tx timeout must be longer than maximum
2196                  * link supervision timeout (40.9 seconds) */
2197                 if (!hdev->le_cnt && hdev->le_pkts &&
2198                                 time_after(jiffies, hdev->le_last_tx + HZ * 45))
2199                         hci_link_tx_to(hdev, LE_LINK);
2200         }
2201
2202         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2203         while (cnt && (conn = hci_low_sent(hdev, LE_LINK, &quote))) {
2204                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2205                         BT_DBG("skb %p len %d", skb, skb->len);
2206
2207                         hci_send_frame(skb);
2208                         hdev->le_last_tx = jiffies;
2209
2210                         cnt--;
2211                         conn->sent++;
2212                 }
2213         }
2214         if (hdev->le_pkts)
2215                 hdev->le_cnt = cnt;
2216         else
2217                 hdev->acl_cnt = cnt;
2218 }
2219
2220 static void hci_tx_task(unsigned long arg)
2221 {
2222         struct hci_dev *hdev = (struct hci_dev *) arg;
2223         struct sk_buff *skb;
2224
2225         read_lock(&hci_task_lock);
2226
2227         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2228                 hdev->sco_cnt, hdev->le_cnt);
2229
2230         /* Schedule queues and send stuff to HCI driver */
2231
2232         hci_sched_acl(hdev);
2233
2234         hci_sched_sco(hdev);
2235
2236         hci_sched_esco(hdev);
2237
2238         hci_sched_le(hdev);
2239
2240         /* Send next queued raw (unknown type) packet */
2241         while ((skb = skb_dequeue(&hdev->raw_q)))
2242                 hci_send_frame(skb);
2243
2244         read_unlock(&hci_task_lock);
2245 }
2246
2247 /* ----- HCI RX task (incoming data processing) ----- */
2248
2249 /* ACL data packet */
2250 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2251 {
2252         struct hci_acl_hdr *hdr = (void *) skb->data;
2253         struct hci_conn *conn;
2254         __u16 handle, flags;
2255
2256         skb_pull(skb, HCI_ACL_HDR_SIZE);
2257
2258         handle = __le16_to_cpu(hdr->handle);
2259         flags  = hci_flags(handle);
2260         handle = hci_handle(handle);
2261
2262         BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
2263
2264         hdev->stat.acl_rx++;
2265
2266         hci_dev_lock(hdev);
2267         conn = hci_conn_hash_lookup_handle(hdev, handle);
2268         hci_dev_unlock(hdev);
2269
2270         if (conn) {
2271                 register struct hci_proto *hp;
2272
2273                 hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2274
2275                 /* Send to upper protocol */
2276                 hp = hci_proto[HCI_PROTO_L2CAP];
2277                 if (hp && hp->recv_acldata) {
2278                         hp->recv_acldata(conn, skb, flags);
2279                         return;
2280                 }
2281         } else {
2282                 BT_ERR("%s ACL packet for unknown connection handle %d",
2283                         hdev->name, handle);
2284         }
2285
2286         kfree_skb(skb);
2287 }
2288
2289 /* SCO data packet */
2290 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2291 {
2292         struct hci_sco_hdr *hdr = (void *) skb->data;
2293         struct hci_conn *conn;
2294         __u16 handle;
2295
2296         skb_pull(skb, HCI_SCO_HDR_SIZE);
2297
2298         handle = __le16_to_cpu(hdr->handle);
2299
2300         BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2301
2302         hdev->stat.sco_rx++;
2303
2304         hci_dev_lock(hdev);
2305         conn = hci_conn_hash_lookup_handle(hdev, handle);
2306         hci_dev_unlock(hdev);
2307
2308         if (conn) {
2309                 register struct hci_proto *hp;
2310
2311                 /* Send to upper protocol */
2312                 hp = hci_proto[HCI_PROTO_SCO];
2313                 if (hp && hp->recv_scodata) {
2314                         hp->recv_scodata(conn, skb);
2315                         return;
2316                 }
2317         } else {
2318                 BT_ERR("%s SCO packet for unknown connection handle %d",
2319                         hdev->name, handle);
2320         }
2321
2322         kfree_skb(skb);
2323 }
2324
2325 static void hci_rx_task(unsigned long arg)
2326 {
2327         struct hci_dev *hdev = (struct hci_dev *) arg;
2328         struct sk_buff *skb;
2329
2330         BT_DBG("%s", hdev->name);
2331
2332         read_lock(&hci_task_lock);
2333
2334         while ((skb = skb_dequeue(&hdev->rx_q))) {
2335                 if (atomic_read(&hdev->promisc)) {
2336                         /* Send copy to the sockets */
2337                         hci_send_to_sock(hdev, skb, NULL);
2338                 }
2339
2340                 if (test_bit(HCI_RAW, &hdev->flags)) {
2341                         kfree_skb(skb);
2342                         continue;
2343                 }
2344
2345                 if (test_bit(HCI_INIT, &hdev->flags)) {
2346                         /* Don't process data packets in this states. */
2347                         switch (bt_cb(skb)->pkt_type) {
2348                         case HCI_ACLDATA_PKT:
2349                         case HCI_SCODATA_PKT:
2350                                 kfree_skb(skb);
2351                                 continue;
2352                         }
2353                 }
2354
2355                 /* Process frame */
2356                 switch (bt_cb(skb)->pkt_type) {
2357                 case HCI_EVENT_PKT:
2358                         hci_event_packet(hdev, skb);
2359                         break;
2360
2361                 case HCI_ACLDATA_PKT:
2362                         BT_DBG("%s ACL data packet", hdev->name);
2363                         hci_acldata_packet(hdev, skb);
2364                         break;
2365
2366                 case HCI_SCODATA_PKT:
2367                         BT_DBG("%s SCO data packet", hdev->name);
2368                         hci_scodata_packet(hdev, skb);
2369                         break;
2370
2371                 default:
2372                         kfree_skb(skb);
2373                         break;
2374                 }
2375         }
2376
2377         read_unlock(&hci_task_lock);
2378 }
2379
2380 static void hci_cmd_task(unsigned long arg)
2381 {
2382         struct hci_dev *hdev = (struct hci_dev *) arg;
2383         struct sk_buff *skb;
2384
2385         BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2386
2387         /* Send queued commands */
2388         if (atomic_read(&hdev->cmd_cnt)) {
2389                 skb = skb_dequeue(&hdev->cmd_q);
2390                 if (!skb)
2391                         return;
2392
2393                 kfree_skb(hdev->sent_cmd);
2394
2395                 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2396                 if (hdev->sent_cmd) {
2397                         atomic_dec(&hdev->cmd_cnt);
2398                         hci_send_frame(skb);
2399                         if (test_bit(HCI_RESET, &hdev->flags))
2400                                 del_timer(&hdev->cmd_timer);
2401                         else
2402                                 mod_timer(&hdev->cmd_timer,
2403                                   jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2404                 } else {
2405                         skb_queue_head(&hdev->cmd_q, skb);
2406                         tasklet_schedule(&hdev->cmd_task);
2407                 }
2408         }
2409 }