Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
27 static void sum_vm_events(unsigned long *ret)
28 {
29         int cpu;
30         int i;
31
32         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
34         for_each_online_cpu(cpu) {
35                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
37                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38                         ret[i] += this->event[i];
39         }
40 }
41
42 /*
43  * Accumulate the vm event counters across all CPUs.
44  * The result is unavoidably approximate - it can change
45  * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49         get_online_cpus();
50         sum_vm_events(ret);
51         put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54
55 #ifdef CONFIG_HOTPLUG
56 /*
57  * Fold the foreign cpu events into our own.
58  *
59  * This is adding to the events on one processor
60  * but keeps the global counts constant.
61  */
62 void vm_events_fold_cpu(int cpu)
63 {
64         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65         int i;
66
67         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68                 count_vm_events(i, fold_state->event[i]);
69                 fold_state->event[i] = 0;
70         }
71 }
72 #endif /* CONFIG_HOTPLUG */
73
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
75
76 /*
77  * Manage combined zone based / global counters
78  *
79  * vm_stat contains the global counters
80  */
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
82 EXPORT_SYMBOL(vm_stat);
83
84 #ifdef CONFIG_SMP
85
86 int calculate_pressure_threshold(struct zone *zone)
87 {
88         int threshold;
89         int watermark_distance;
90
91         /*
92          * As vmstats are not up to date, there is drift between the estimated
93          * and real values. For high thresholds and a high number of CPUs, it
94          * is possible for the min watermark to be breached while the estimated
95          * value looks fine. The pressure threshold is a reduced value such
96          * that even the maximum amount of drift will not accidentally breach
97          * the min watermark
98          */
99         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
100         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
101
102         /*
103          * Maximum threshold is 125
104          */
105         threshold = min(125, threshold);
106
107         return threshold;
108 }
109
110 int calculate_normal_threshold(struct zone *zone)
111 {
112         int threshold;
113         int mem;        /* memory in 128 MB units */
114
115         /*
116          * The threshold scales with the number of processors and the amount
117          * of memory per zone. More memory means that we can defer updates for
118          * longer, more processors could lead to more contention.
119          * fls() is used to have a cheap way of logarithmic scaling.
120          *
121          * Some sample thresholds:
122          *
123          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
124          * ------------------------------------------------------------------
125          * 8            1               1       0.9-1 GB        4
126          * 16           2               2       0.9-1 GB        4
127          * 20           2               2       1-2 GB          5
128          * 24           2               2       2-4 GB          6
129          * 28           2               2       4-8 GB          7
130          * 32           2               2       8-16 GB         8
131          * 4            2               2       <128M           1
132          * 30           4               3       2-4 GB          5
133          * 48           4               3       8-16 GB         8
134          * 32           8               4       1-2 GB          4
135          * 32           8               4       0.9-1GB         4
136          * 10           16              5       <128M           1
137          * 40           16              5       900M            4
138          * 70           64              7       2-4 GB          5
139          * 84           64              7       4-8 GB          6
140          * 108          512             9       4-8 GB          6
141          * 125          1024            10      8-16 GB         8
142          * 125          1024            10      16-32 GB        9
143          */
144
145         mem = zone->present_pages >> (27 - PAGE_SHIFT);
146
147         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
148
149         /*
150          * Maximum threshold is 125
151          */
152         threshold = min(125, threshold);
153
154         return threshold;
155 }
156
157 /*
158  * Refresh the thresholds for each zone.
159  */
160 void refresh_zone_stat_thresholds(void)
161 {
162         struct zone *zone;
163         int cpu;
164         int threshold;
165
166         for_each_populated_zone(zone) {
167                 unsigned long max_drift, tolerate_drift;
168
169                 threshold = calculate_normal_threshold(zone);
170
171                 for_each_online_cpu(cpu)
172                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
173                                                         = threshold;
174
175                 /*
176                  * Only set percpu_drift_mark if there is a danger that
177                  * NR_FREE_PAGES reports the low watermark is ok when in fact
178                  * the min watermark could be breached by an allocation
179                  */
180                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
181                 max_drift = num_online_cpus() * threshold;
182                 if (max_drift > tolerate_drift)
183                         zone->percpu_drift_mark = high_wmark_pages(zone) +
184                                         max_drift;
185         }
186 }
187
188 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
189                                 int (*calculate_pressure)(struct zone *))
190 {
191         struct zone *zone;
192         int cpu;
193         int threshold;
194         int i;
195
196         for (i = 0; i < pgdat->nr_zones; i++) {
197                 zone = &pgdat->node_zones[i];
198                 if (!zone->percpu_drift_mark)
199                         continue;
200
201                 threshold = (*calculate_pressure)(zone);
202                 for_each_possible_cpu(cpu)
203                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
204                                                         = threshold;
205         }
206 }
207
208 /*
209  * For use when we know that interrupts are disabled.
210  */
211 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
212                                 int delta)
213 {
214         struct per_cpu_pageset __percpu *pcp = zone->pageset;
215         s8 __percpu *p = pcp->vm_stat_diff + item;
216         long x;
217         long t;
218
219         x = delta + __this_cpu_read(*p);
220
221         t = __this_cpu_read(pcp->stat_threshold);
222
223         if (unlikely(x > t || x < -t)) {
224                 zone_page_state_add(x, zone, item);
225                 x = 0;
226         }
227         __this_cpu_write(*p, x);
228 }
229 EXPORT_SYMBOL(__mod_zone_page_state);
230
231 /*
232  * Optimized increment and decrement functions.
233  *
234  * These are only for a single page and therefore can take a struct page *
235  * argument instead of struct zone *. This allows the inclusion of the code
236  * generated for page_zone(page) into the optimized functions.
237  *
238  * No overflow check is necessary and therefore the differential can be
239  * incremented or decremented in place which may allow the compilers to
240  * generate better code.
241  * The increment or decrement is known and therefore one boundary check can
242  * be omitted.
243  *
244  * NOTE: These functions are very performance sensitive. Change only
245  * with care.
246  *
247  * Some processors have inc/dec instructions that are atomic vs an interrupt.
248  * However, the code must first determine the differential location in a zone
249  * based on the processor number and then inc/dec the counter. There is no
250  * guarantee without disabling preemption that the processor will not change
251  * in between and therefore the atomicity vs. interrupt cannot be exploited
252  * in a useful way here.
253  */
254 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
255 {
256         struct per_cpu_pageset __percpu *pcp = zone->pageset;
257         s8 __percpu *p = pcp->vm_stat_diff + item;
258         s8 v, t;
259
260         v = __this_cpu_inc_return(*p);
261         t = __this_cpu_read(pcp->stat_threshold);
262         if (unlikely(v > t)) {
263                 s8 overstep = t >> 1;
264
265                 zone_page_state_add(v + overstep, zone, item);
266                 __this_cpu_write(*p, -overstep);
267         }
268 }
269
270 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
271 {
272         __inc_zone_state(page_zone(page), item);
273 }
274 EXPORT_SYMBOL(__inc_zone_page_state);
275
276 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
277 {
278         struct per_cpu_pageset __percpu *pcp = zone->pageset;
279         s8 __percpu *p = pcp->vm_stat_diff + item;
280         s8 v, t;
281
282         v = __this_cpu_dec_return(*p);
283         t = __this_cpu_read(pcp->stat_threshold);
284         if (unlikely(v < - t)) {
285                 s8 overstep = t >> 1;
286
287                 zone_page_state_add(v - overstep, zone, item);
288                 __this_cpu_write(*p, overstep);
289         }
290 }
291
292 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
293 {
294         __dec_zone_state(page_zone(page), item);
295 }
296 EXPORT_SYMBOL(__dec_zone_page_state);
297
298 #ifdef CONFIG_CMPXCHG_LOCAL
299 /*
300  * If we have cmpxchg_local support then we do not need to incur the overhead
301  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
302  *
303  * mod_state() modifies the zone counter state through atomic per cpu
304  * operations.
305  *
306  * Overstep mode specifies how overstep should handled:
307  *     0       No overstepping
308  *     1       Overstepping half of threshold
309  *     -1      Overstepping minus half of threshold
310 */
311 static inline void mod_state(struct zone *zone,
312        enum zone_stat_item item, int delta, int overstep_mode)
313 {
314         struct per_cpu_pageset __percpu *pcp = zone->pageset;
315         s8 __percpu *p = pcp->vm_stat_diff + item;
316         long o, n, t, z;
317
318         do {
319                 z = 0;  /* overflow to zone counters */
320
321                 /*
322                  * The fetching of the stat_threshold is racy. We may apply
323                  * a counter threshold to the wrong the cpu if we get
324                  * rescheduled while executing here. However, the next
325                  * counter update will apply the threshold again and
326                  * therefore bring the counter under the threshold again.
327                  *
328                  * Most of the time the thresholds are the same anyways
329                  * for all cpus in a zone.
330                  */
331                 t = this_cpu_read(pcp->stat_threshold);
332
333                 o = this_cpu_read(*p);
334                 n = delta + o;
335
336                 if (n > t || n < -t) {
337                         int os = overstep_mode * (t >> 1) ;
338
339                         /* Overflow must be added to zone counters */
340                         z = n + os;
341                         n = -os;
342                 }
343         } while (this_cpu_cmpxchg(*p, o, n) != o);
344
345         if (z)
346                 zone_page_state_add(z, zone, item);
347 }
348
349 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
350                                         int delta)
351 {
352         mod_state(zone, item, delta, 0);
353 }
354 EXPORT_SYMBOL(mod_zone_page_state);
355
356 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
357 {
358         mod_state(zone, item, 1, 1);
359 }
360
361 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
362 {
363         mod_state(page_zone(page), item, 1, 1);
364 }
365 EXPORT_SYMBOL(inc_zone_page_state);
366
367 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
368 {
369         mod_state(page_zone(page), item, -1, -1);
370 }
371 EXPORT_SYMBOL(dec_zone_page_state);
372 #else
373 /*
374  * Use interrupt disable to serialize counter updates
375  */
376 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
377                                         int delta)
378 {
379         unsigned long flags;
380
381         local_irq_save(flags);
382         __mod_zone_page_state(zone, item, delta);
383         local_irq_restore(flags);
384 }
385 EXPORT_SYMBOL(mod_zone_page_state);
386
387 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
388 {
389         unsigned long flags;
390
391         local_irq_save(flags);
392         __inc_zone_state(zone, item);
393         local_irq_restore(flags);
394 }
395
396 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
397 {
398         unsigned long flags;
399         struct zone *zone;
400
401         zone = page_zone(page);
402         local_irq_save(flags);
403         __inc_zone_state(zone, item);
404         local_irq_restore(flags);
405 }
406 EXPORT_SYMBOL(inc_zone_page_state);
407
408 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
409 {
410         unsigned long flags;
411
412         local_irq_save(flags);
413         __dec_zone_page_state(page, item);
414         local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(dec_zone_page_state);
417 #endif
418
419 /*
420  * Update the zone counters for one cpu.
421  *
422  * The cpu specified must be either the current cpu or a processor that
423  * is not online. If it is the current cpu then the execution thread must
424  * be pinned to the current cpu.
425  *
426  * Note that refresh_cpu_vm_stats strives to only access
427  * node local memory. The per cpu pagesets on remote zones are placed
428  * in the memory local to the processor using that pageset. So the
429  * loop over all zones will access a series of cachelines local to
430  * the processor.
431  *
432  * The call to zone_page_state_add updates the cachelines with the
433  * statistics in the remote zone struct as well as the global cachelines
434  * with the global counters. These could cause remote node cache line
435  * bouncing and will have to be only done when necessary.
436  */
437 void refresh_cpu_vm_stats(int cpu)
438 {
439         struct zone *zone;
440         int i;
441         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
442
443         for_each_populated_zone(zone) {
444                 struct per_cpu_pageset *p;
445
446                 p = per_cpu_ptr(zone->pageset, cpu);
447
448                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
449                         if (p->vm_stat_diff[i]) {
450                                 unsigned long flags;
451                                 int v;
452
453                                 local_irq_save(flags);
454                                 v = p->vm_stat_diff[i];
455                                 p->vm_stat_diff[i] = 0;
456                                 local_irq_restore(flags);
457                                 atomic_long_add(v, &zone->vm_stat[i]);
458                                 global_diff[i] += v;
459 #ifdef CONFIG_NUMA
460                                 /* 3 seconds idle till flush */
461                                 p->expire = 3;
462 #endif
463                         }
464                 cond_resched();
465 #ifdef CONFIG_NUMA
466                 /*
467                  * Deal with draining the remote pageset of this
468                  * processor
469                  *
470                  * Check if there are pages remaining in this pageset
471                  * if not then there is nothing to expire.
472                  */
473                 if (!p->expire || !p->pcp.count)
474                         continue;
475
476                 /*
477                  * We never drain zones local to this processor.
478                  */
479                 if (zone_to_nid(zone) == numa_node_id()) {
480                         p->expire = 0;
481                         continue;
482                 }
483
484                 p->expire--;
485                 if (p->expire)
486                         continue;
487
488                 if (p->pcp.count)
489                         drain_zone_pages(zone, &p->pcp);
490 #endif
491         }
492
493         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
494                 if (global_diff[i])
495                         atomic_long_add(global_diff[i], &vm_stat[i]);
496 }
497
498 #endif
499
500 #ifdef CONFIG_NUMA
501 /*
502  * zonelist = the list of zones passed to the allocator
503  * z        = the zone from which the allocation occurred.
504  *
505  * Must be called with interrupts disabled.
506  *
507  * When __GFP_OTHER_NODE is set assume the node of the preferred
508  * zone is the local node. This is useful for daemons who allocate
509  * memory on behalf of other processes.
510  */
511 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
512 {
513         if (z->zone_pgdat == preferred_zone->zone_pgdat) {
514                 __inc_zone_state(z, NUMA_HIT);
515         } else {
516                 __inc_zone_state(z, NUMA_MISS);
517                 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
518         }
519         if (z->node == ((flags & __GFP_OTHER_NODE) ?
520                         preferred_zone->node : numa_node_id()))
521                 __inc_zone_state(z, NUMA_LOCAL);
522         else
523                 __inc_zone_state(z, NUMA_OTHER);
524 }
525 #endif
526
527 #ifdef CONFIG_COMPACTION
528
529 struct contig_page_info {
530         unsigned long free_pages;
531         unsigned long free_blocks_total;
532         unsigned long free_blocks_suitable;
533 };
534
535 /*
536  * Calculate the number of free pages in a zone, how many contiguous
537  * pages are free and how many are large enough to satisfy an allocation of
538  * the target size. Note that this function makes no attempt to estimate
539  * how many suitable free blocks there *might* be if MOVABLE pages were
540  * migrated. Calculating that is possible, but expensive and can be
541  * figured out from userspace
542  */
543 static void fill_contig_page_info(struct zone *zone,
544                                 unsigned int suitable_order,
545                                 struct contig_page_info *info)
546 {
547         unsigned int order;
548
549         info->free_pages = 0;
550         info->free_blocks_total = 0;
551         info->free_blocks_suitable = 0;
552
553         for (order = 0; order < MAX_ORDER; order++) {
554                 unsigned long blocks;
555
556                 /* Count number of free blocks */
557                 blocks = zone->free_area[order].nr_free;
558                 info->free_blocks_total += blocks;
559
560                 /* Count free base pages */
561                 info->free_pages += blocks << order;
562
563                 /* Count the suitable free blocks */
564                 if (order >= suitable_order)
565                         info->free_blocks_suitable += blocks <<
566                                                 (order - suitable_order);
567         }
568 }
569
570 /*
571  * A fragmentation index only makes sense if an allocation of a requested
572  * size would fail. If that is true, the fragmentation index indicates
573  * whether external fragmentation or a lack of memory was the problem.
574  * The value can be used to determine if page reclaim or compaction
575  * should be used
576  */
577 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
578 {
579         unsigned long requested = 1UL << order;
580
581         if (!info->free_blocks_total)
582                 return 0;
583
584         /* Fragmentation index only makes sense when a request would fail */
585         if (info->free_blocks_suitable)
586                 return -1000;
587
588         /*
589          * Index is between 0 and 1 so return within 3 decimal places
590          *
591          * 0 => allocation would fail due to lack of memory
592          * 1 => allocation would fail due to fragmentation
593          */
594         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
595 }
596
597 /* Same as __fragmentation index but allocs contig_page_info on stack */
598 int fragmentation_index(struct zone *zone, unsigned int order)
599 {
600         struct contig_page_info info;
601
602         fill_contig_page_info(zone, order, &info);
603         return __fragmentation_index(order, &info);
604 }
605 #endif
606
607 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
608 #include <linux/proc_fs.h>
609 #include <linux/seq_file.h>
610
611 static char * const migratetype_names[MIGRATE_TYPES] = {
612         "Unmovable",
613         "Reclaimable",
614         "Movable",
615         "Reserve",
616 #ifdef CONFIG_CMA
617         "CMA",
618 #endif
619         "Isolate",
620 };
621
622 static void *frag_start(struct seq_file *m, loff_t *pos)
623 {
624         pg_data_t *pgdat;
625         loff_t node = *pos;
626         for (pgdat = first_online_pgdat();
627              pgdat && node;
628              pgdat = next_online_pgdat(pgdat))
629                 --node;
630
631         return pgdat;
632 }
633
634 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
635 {
636         pg_data_t *pgdat = (pg_data_t *)arg;
637
638         (*pos)++;
639         return next_online_pgdat(pgdat);
640 }
641
642 static void frag_stop(struct seq_file *m, void *arg)
643 {
644 }
645
646 /* Walk all the zones in a node and print using a callback */
647 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
648                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
649 {
650         struct zone *zone;
651         struct zone *node_zones = pgdat->node_zones;
652         unsigned long flags;
653
654         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
655                 if (!populated_zone(zone))
656                         continue;
657
658                 spin_lock_irqsave(&zone->lock, flags);
659                 print(m, pgdat, zone);
660                 spin_unlock_irqrestore(&zone->lock, flags);
661         }
662 }
663 #endif
664
665 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
666 #ifdef CONFIG_ZONE_DMA
667 #define TEXT_FOR_DMA(xx) xx "_dma",
668 #else
669 #define TEXT_FOR_DMA(xx)
670 #endif
671
672 #ifdef CONFIG_ZONE_DMA32
673 #define TEXT_FOR_DMA32(xx) xx "_dma32",
674 #else
675 #define TEXT_FOR_DMA32(xx)
676 #endif
677
678 #ifdef CONFIG_HIGHMEM
679 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
680 #else
681 #define TEXT_FOR_HIGHMEM(xx)
682 #endif
683
684 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
685                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
686
687 const char * const vmstat_text[] = {
688         /* Zoned VM counters */
689         "nr_free_pages",
690         "nr_inactive_anon",
691         "nr_active_anon",
692         "nr_inactive_file",
693         "nr_active_file",
694         "nr_unevictable",
695         "nr_mlock",
696         "nr_anon_pages",
697         "nr_mapped",
698         "nr_file_pages",
699         "nr_dirty",
700         "nr_writeback",
701         "nr_slab_reclaimable",
702         "nr_slab_unreclaimable",
703         "nr_page_table_pages",
704         "nr_kernel_stack",
705         "nr_unstable",
706         "nr_bounce",
707         "nr_vmscan_write",
708         "nr_vmscan_immediate_reclaim",
709         "nr_writeback_temp",
710         "nr_isolated_anon",
711         "nr_isolated_file",
712         "nr_shmem",
713         "nr_dirtied",
714         "nr_written",
715
716 #ifdef CONFIG_NUMA
717         "numa_hit",
718         "numa_miss",
719         "numa_foreign",
720         "numa_interleave",
721         "numa_local",
722         "numa_other",
723 #endif
724         "nr_anon_transparent_hugepages",
725         "nr_dirty_threshold",
726         "nr_dirty_background_threshold",
727
728 #ifdef CONFIG_VM_EVENT_COUNTERS
729         "pgpgin",
730         "pgpgout",
731         "pswpin",
732         "pswpout",
733
734         TEXTS_FOR_ZONES("pgalloc")
735
736         "pgfree",
737         "pgactivate",
738         "pgdeactivate",
739
740         "pgfault",
741         "pgmajfault",
742
743         TEXTS_FOR_ZONES("pgrefill")
744         TEXTS_FOR_ZONES("pgsteal")
745         TEXTS_FOR_ZONES("pgscan_kswapd")
746         TEXTS_FOR_ZONES("pgscan_direct")
747
748 #ifdef CONFIG_NUMA
749         "zone_reclaim_failed",
750 #endif
751         "pginodesteal",
752         "slabs_scanned",
753         "kswapd_steal",
754         "kswapd_inodesteal",
755         "kswapd_low_wmark_hit_quickly",
756         "kswapd_high_wmark_hit_quickly",
757         "kswapd_skip_congestion_wait",
758         "pageoutrun",
759         "allocstall",
760
761         "pgrotated",
762
763 #ifdef CONFIG_COMPACTION
764         "compact_blocks_moved",
765         "compact_pages_moved",
766         "compact_pagemigrate_failed",
767         "compact_stall",
768         "compact_fail",
769         "compact_success",
770 #endif
771
772 #ifdef CONFIG_HUGETLB_PAGE
773         "htlb_buddy_alloc_success",
774         "htlb_buddy_alloc_fail",
775 #endif
776         "unevictable_pgs_culled",
777         "unevictable_pgs_scanned",
778         "unevictable_pgs_rescued",
779         "unevictable_pgs_mlocked",
780         "unevictable_pgs_munlocked",
781         "unevictable_pgs_cleared",
782         "unevictable_pgs_stranded",
783         "unevictable_pgs_mlockfreed",
784
785 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
786         "thp_fault_alloc",
787         "thp_fault_fallback",
788         "thp_collapse_alloc",
789         "thp_collapse_alloc_failed",
790         "thp_split",
791 #endif
792
793 #endif /* CONFIG_VM_EVENTS_COUNTERS */
794 };
795 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
796
797
798 #ifdef CONFIG_PROC_FS
799 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
800                                                 struct zone *zone)
801 {
802         int order;
803
804         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
805         for (order = 0; order < MAX_ORDER; ++order)
806                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
807         seq_putc(m, '\n');
808 }
809
810 /*
811  * This walks the free areas for each zone.
812  */
813 static int frag_show(struct seq_file *m, void *arg)
814 {
815         pg_data_t *pgdat = (pg_data_t *)arg;
816         walk_zones_in_node(m, pgdat, frag_show_print);
817         return 0;
818 }
819
820 static void pagetypeinfo_showfree_print(struct seq_file *m,
821                                         pg_data_t *pgdat, struct zone *zone)
822 {
823         int order, mtype;
824
825         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
826                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
827                                         pgdat->node_id,
828                                         zone->name,
829                                         migratetype_names[mtype]);
830                 for (order = 0; order < MAX_ORDER; ++order) {
831                         unsigned long freecount = 0;
832                         struct free_area *area;
833                         struct list_head *curr;
834
835                         area = &(zone->free_area[order]);
836
837                         list_for_each(curr, &area->free_list[mtype])
838                                 freecount++;
839                         seq_printf(m, "%6lu ", freecount);
840                 }
841                 seq_putc(m, '\n');
842         }
843 }
844
845 /* Print out the free pages at each order for each migatetype */
846 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
847 {
848         int order;
849         pg_data_t *pgdat = (pg_data_t *)arg;
850
851         /* Print header */
852         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
853         for (order = 0; order < MAX_ORDER; ++order)
854                 seq_printf(m, "%6d ", order);
855         seq_putc(m, '\n');
856
857         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
858
859         return 0;
860 }
861
862 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
863                                         pg_data_t *pgdat, struct zone *zone)
864 {
865         int mtype;
866         unsigned long pfn;
867         unsigned long start_pfn = zone->zone_start_pfn;
868         unsigned long end_pfn = start_pfn + zone->spanned_pages;
869         unsigned long count[MIGRATE_TYPES] = { 0, };
870
871         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
872                 struct page *page;
873
874                 if (!pfn_valid(pfn))
875                         continue;
876
877                 page = pfn_to_page(pfn);
878
879                 /* Watch for unexpected holes punched in the memmap */
880                 if (!memmap_valid_within(pfn, page, zone))
881                         continue;
882
883                 mtype = get_pageblock_migratetype(page);
884
885                 if (mtype < MIGRATE_TYPES)
886                         count[mtype]++;
887         }
888
889         /* Print counts */
890         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
891         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
892                 seq_printf(m, "%12lu ", count[mtype]);
893         seq_putc(m, '\n');
894 }
895
896 /* Print out the free pages at each order for each migratetype */
897 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
898 {
899         int mtype;
900         pg_data_t *pgdat = (pg_data_t *)arg;
901
902         seq_printf(m, "\n%-23s", "Number of blocks type ");
903         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
904                 seq_printf(m, "%12s ", migratetype_names[mtype]);
905         seq_putc(m, '\n');
906         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
907
908         return 0;
909 }
910
911 /*
912  * This prints out statistics in relation to grouping pages by mobility.
913  * It is expensive to collect so do not constantly read the file.
914  */
915 static int pagetypeinfo_show(struct seq_file *m, void *arg)
916 {
917         pg_data_t *pgdat = (pg_data_t *)arg;
918
919         /* check memoryless node */
920         if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
921                 return 0;
922
923         seq_printf(m, "Page block order: %d\n", pageblock_order);
924         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
925         seq_putc(m, '\n');
926         pagetypeinfo_showfree(m, pgdat);
927         pagetypeinfo_showblockcount(m, pgdat);
928
929         return 0;
930 }
931
932 static const struct seq_operations fragmentation_op = {
933         .start  = frag_start,
934         .next   = frag_next,
935         .stop   = frag_stop,
936         .show   = frag_show,
937 };
938
939 static int fragmentation_open(struct inode *inode, struct file *file)
940 {
941         return seq_open(file, &fragmentation_op);
942 }
943
944 static const struct file_operations fragmentation_file_operations = {
945         .open           = fragmentation_open,
946         .read           = seq_read,
947         .llseek         = seq_lseek,
948         .release        = seq_release,
949 };
950
951 static const struct seq_operations pagetypeinfo_op = {
952         .start  = frag_start,
953         .next   = frag_next,
954         .stop   = frag_stop,
955         .show   = pagetypeinfo_show,
956 };
957
958 static int pagetypeinfo_open(struct inode *inode, struct file *file)
959 {
960         return seq_open(file, &pagetypeinfo_op);
961 }
962
963 static const struct file_operations pagetypeinfo_file_ops = {
964         .open           = pagetypeinfo_open,
965         .read           = seq_read,
966         .llseek         = seq_lseek,
967         .release        = seq_release,
968 };
969
970 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
971                                                         struct zone *zone)
972 {
973         int i;
974         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
975         seq_printf(m,
976                    "\n  pages free     %lu"
977                    "\n        min      %lu"
978                    "\n        low      %lu"
979                    "\n        high     %lu"
980                    "\n        scanned  %lu"
981                    "\n        spanned  %lu"
982                    "\n        present  %lu",
983                    zone_page_state(zone, NR_FREE_PAGES),
984                    min_wmark_pages(zone),
985                    low_wmark_pages(zone),
986                    high_wmark_pages(zone),
987                    zone->pages_scanned,
988                    zone->spanned_pages,
989                    zone->present_pages);
990
991         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
992                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
993                                 zone_page_state(zone, i));
994
995         seq_printf(m,
996                    "\n        protection: (%lu",
997                    zone->lowmem_reserve[0]);
998         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
999                 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1000         seq_printf(m,
1001                    ")"
1002                    "\n  pagesets");
1003         for_each_online_cpu(i) {
1004                 struct per_cpu_pageset *pageset;
1005
1006                 pageset = per_cpu_ptr(zone->pageset, i);
1007                 seq_printf(m,
1008                            "\n    cpu: %i"
1009                            "\n              count: %i"
1010                            "\n              high:  %i"
1011                            "\n              batch: %i",
1012                            i,
1013                            pageset->pcp.count,
1014                            pageset->pcp.high,
1015                            pageset->pcp.batch);
1016 #ifdef CONFIG_SMP
1017                 seq_printf(m, "\n  vm stats threshold: %d",
1018                                 pageset->stat_threshold);
1019 #endif
1020         }
1021         seq_printf(m,
1022                    "\n  all_unreclaimable: %u"
1023                    "\n  start_pfn:         %lu"
1024                    "\n  inactive_ratio:    %u",
1025                    zone->all_unreclaimable,
1026                    zone->zone_start_pfn,
1027                    zone->inactive_ratio);
1028         seq_putc(m, '\n');
1029 }
1030
1031 /*
1032  * Output information about zones in @pgdat.
1033  */
1034 static int zoneinfo_show(struct seq_file *m, void *arg)
1035 {
1036         pg_data_t *pgdat = (pg_data_t *)arg;
1037         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1038         return 0;
1039 }
1040
1041 static const struct seq_operations zoneinfo_op = {
1042         .start  = frag_start, /* iterate over all zones. The same as in
1043                                * fragmentation. */
1044         .next   = frag_next,
1045         .stop   = frag_stop,
1046         .show   = zoneinfo_show,
1047 };
1048
1049 static int zoneinfo_open(struct inode *inode, struct file *file)
1050 {
1051         return seq_open(file, &zoneinfo_op);
1052 }
1053
1054 static const struct file_operations proc_zoneinfo_file_operations = {
1055         .open           = zoneinfo_open,
1056         .read           = seq_read,
1057         .llseek         = seq_lseek,
1058         .release        = seq_release,
1059 };
1060
1061 enum writeback_stat_item {
1062         NR_DIRTY_THRESHOLD,
1063         NR_DIRTY_BG_THRESHOLD,
1064         NR_VM_WRITEBACK_STAT_ITEMS,
1065 };
1066
1067 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1068 {
1069         unsigned long *v;
1070         int i, stat_items_size;
1071
1072         if (*pos >= ARRAY_SIZE(vmstat_text))
1073                 return NULL;
1074         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1075                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1076
1077 #ifdef CONFIG_VM_EVENT_COUNTERS
1078         stat_items_size += sizeof(struct vm_event_state);
1079 #endif
1080
1081         v = kmalloc(stat_items_size, GFP_KERNEL);
1082         m->private = v;
1083         if (!v)
1084                 return ERR_PTR(-ENOMEM);
1085         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1086                 v[i] = global_page_state(i);
1087         v += NR_VM_ZONE_STAT_ITEMS;
1088
1089         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1090                             v + NR_DIRTY_THRESHOLD);
1091         v += NR_VM_WRITEBACK_STAT_ITEMS;
1092
1093 #ifdef CONFIG_VM_EVENT_COUNTERS
1094         all_vm_events(v);
1095         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1096         v[PGPGOUT] /= 2;
1097 #endif
1098         return (unsigned long *)m->private + *pos;
1099 }
1100
1101 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1102 {
1103         (*pos)++;
1104         if (*pos >= ARRAY_SIZE(vmstat_text))
1105                 return NULL;
1106         return (unsigned long *)m->private + *pos;
1107 }
1108
1109 static int vmstat_show(struct seq_file *m, void *arg)
1110 {
1111         unsigned long *l = arg;
1112         unsigned long off = l - (unsigned long *)m->private;
1113
1114         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1115         return 0;
1116 }
1117
1118 static void vmstat_stop(struct seq_file *m, void *arg)
1119 {
1120         kfree(m->private);
1121         m->private = NULL;
1122 }
1123
1124 static const struct seq_operations vmstat_op = {
1125         .start  = vmstat_start,
1126         .next   = vmstat_next,
1127         .stop   = vmstat_stop,
1128         .show   = vmstat_show,
1129 };
1130
1131 static int vmstat_open(struct inode *inode, struct file *file)
1132 {
1133         return seq_open(file, &vmstat_op);
1134 }
1135
1136 static const struct file_operations proc_vmstat_file_operations = {
1137         .open           = vmstat_open,
1138         .read           = seq_read,
1139         .llseek         = seq_lseek,
1140         .release        = seq_release,
1141 };
1142 #endif /* CONFIG_PROC_FS */
1143
1144 #ifdef CONFIG_SMP
1145 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1146 int sysctl_stat_interval __read_mostly = HZ;
1147
1148 static void vmstat_update(struct work_struct *w)
1149 {
1150         refresh_cpu_vm_stats(smp_processor_id());
1151         schedule_delayed_work(&__get_cpu_var(vmstat_work),
1152                 round_jiffies_relative(sysctl_stat_interval));
1153 }
1154
1155 static void __cpuinit start_cpu_timer(int cpu)
1156 {
1157         struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1158
1159         INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1160         schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1161 }
1162
1163 /*
1164  * Use the cpu notifier to insure that the thresholds are recalculated
1165  * when necessary.
1166  */
1167 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1168                 unsigned long action,
1169                 void *hcpu)
1170 {
1171         long cpu = (long)hcpu;
1172
1173         switch (action) {
1174         case CPU_ONLINE:
1175         case CPU_ONLINE_FROZEN:
1176                 refresh_zone_stat_thresholds();
1177                 start_cpu_timer(cpu);
1178                 node_set_state(cpu_to_node(cpu), N_CPU);
1179                 break;
1180         case CPU_DOWN_PREPARE:
1181         case CPU_DOWN_PREPARE_FROZEN:
1182                 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1183                 per_cpu(vmstat_work, cpu).work.func = NULL;
1184                 break;
1185         case CPU_DOWN_FAILED:
1186         case CPU_DOWN_FAILED_FROZEN:
1187                 start_cpu_timer(cpu);
1188                 break;
1189         case CPU_DEAD:
1190         case CPU_DEAD_FROZEN:
1191                 refresh_zone_stat_thresholds();
1192                 break;
1193         default:
1194                 break;
1195         }
1196         return NOTIFY_OK;
1197 }
1198
1199 static struct notifier_block __cpuinitdata vmstat_notifier =
1200         { &vmstat_cpuup_callback, NULL, 0 };
1201 #endif
1202
1203 static int __init setup_vmstat(void)
1204 {
1205 #ifdef CONFIG_SMP
1206         int cpu;
1207
1208         register_cpu_notifier(&vmstat_notifier);
1209
1210         for_each_online_cpu(cpu)
1211                 start_cpu_timer(cpu);
1212 #endif
1213 #ifdef CONFIG_PROC_FS
1214         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1215         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1216         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1217         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1218 #endif
1219         return 0;
1220 }
1221 module_init(setup_vmstat)
1222
1223 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1224 #include <linux/debugfs.h>
1225
1226 static struct dentry *extfrag_debug_root;
1227
1228 /*
1229  * Return an index indicating how much of the available free memory is
1230  * unusable for an allocation of the requested size.
1231  */
1232 static int unusable_free_index(unsigned int order,
1233                                 struct contig_page_info *info)
1234 {
1235         /* No free memory is interpreted as all free memory is unusable */
1236         if (info->free_pages == 0)
1237                 return 1000;
1238
1239         /*
1240          * Index should be a value between 0 and 1. Return a value to 3
1241          * decimal places.
1242          *
1243          * 0 => no fragmentation
1244          * 1 => high fragmentation
1245          */
1246         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1247
1248 }
1249
1250 static void unusable_show_print(struct seq_file *m,
1251                                         pg_data_t *pgdat, struct zone *zone)
1252 {
1253         unsigned int order;
1254         int index;
1255         struct contig_page_info info;
1256
1257         seq_printf(m, "Node %d, zone %8s ",
1258                                 pgdat->node_id,
1259                                 zone->name);
1260         for (order = 0; order < MAX_ORDER; ++order) {
1261                 fill_contig_page_info(zone, order, &info);
1262                 index = unusable_free_index(order, &info);
1263                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1264         }
1265
1266         seq_putc(m, '\n');
1267 }
1268
1269 /*
1270  * Display unusable free space index
1271  *
1272  * The unusable free space index measures how much of the available free
1273  * memory cannot be used to satisfy an allocation of a given size and is a
1274  * value between 0 and 1. The higher the value, the more of free memory is
1275  * unusable and by implication, the worse the external fragmentation is. This
1276  * can be expressed as a percentage by multiplying by 100.
1277  */
1278 static int unusable_show(struct seq_file *m, void *arg)
1279 {
1280         pg_data_t *pgdat = (pg_data_t *)arg;
1281
1282         /* check memoryless node */
1283         if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1284                 return 0;
1285
1286         walk_zones_in_node(m, pgdat, unusable_show_print);
1287
1288         return 0;
1289 }
1290
1291 static const struct seq_operations unusable_op = {
1292         .start  = frag_start,
1293         .next   = frag_next,
1294         .stop   = frag_stop,
1295         .show   = unusable_show,
1296 };
1297
1298 static int unusable_open(struct inode *inode, struct file *file)
1299 {
1300         return seq_open(file, &unusable_op);
1301 }
1302
1303 static const struct file_operations unusable_file_ops = {
1304         .open           = unusable_open,
1305         .read           = seq_read,
1306         .llseek         = seq_lseek,
1307         .release        = seq_release,
1308 };
1309
1310 static void extfrag_show_print(struct seq_file *m,
1311                                         pg_data_t *pgdat, struct zone *zone)
1312 {
1313         unsigned int order;
1314         int index;
1315
1316         /* Alloc on stack as interrupts are disabled for zone walk */
1317         struct contig_page_info info;
1318
1319         seq_printf(m, "Node %d, zone %8s ",
1320                                 pgdat->node_id,
1321                                 zone->name);
1322         for (order = 0; order < MAX_ORDER; ++order) {
1323                 fill_contig_page_info(zone, order, &info);
1324                 index = __fragmentation_index(order, &info);
1325                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1326         }
1327
1328         seq_putc(m, '\n');
1329 }
1330
1331 /*
1332  * Display fragmentation index for orders that allocations would fail for
1333  */
1334 static int extfrag_show(struct seq_file *m, void *arg)
1335 {
1336         pg_data_t *pgdat = (pg_data_t *)arg;
1337
1338         walk_zones_in_node(m, pgdat, extfrag_show_print);
1339
1340         return 0;
1341 }
1342
1343 static const struct seq_operations extfrag_op = {
1344         .start  = frag_start,
1345         .next   = frag_next,
1346         .stop   = frag_stop,
1347         .show   = extfrag_show,
1348 };
1349
1350 static int extfrag_open(struct inode *inode, struct file *file)
1351 {
1352         return seq_open(file, &extfrag_op);
1353 }
1354
1355 static const struct file_operations extfrag_file_ops = {
1356         .open           = extfrag_open,
1357         .read           = seq_read,
1358         .llseek         = seq_lseek,
1359         .release        = seq_release,
1360 };
1361
1362 static int __init extfrag_debug_init(void)
1363 {
1364         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1365         if (!extfrag_debug_root)
1366                 return -ENOMEM;
1367
1368         if (!debugfs_create_file("unusable_index", 0444,
1369                         extfrag_debug_root, NULL, &unusable_file_ops))
1370                 return -ENOMEM;
1371
1372         if (!debugfs_create_file("extfrag_index", 0444,
1373                         extfrag_debug_root, NULL, &extfrag_file_ops))
1374                 return -ENOMEM;
1375
1376         return 0;
1377 }
1378
1379 module_init(extfrag_debug_init);
1380 #endif