Merge signal handler branch
[pandora-kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36 #include <linux/delay.h>
37
38 #include <asm/tlbflush.h>
39 #include <asm/div64.h>
40
41 #include <linux/swapops.h>
42
43 #include "internal.h"
44
45 struct scan_control {
46         /* Incremented by the number of inactive pages that were scanned */
47         unsigned long nr_scanned;
48
49         unsigned long nr_mapped;        /* From page_state */
50
51         /* This context's GFP mask */
52         gfp_t gfp_mask;
53
54         int may_writepage;
55
56         /* Can pages be swapped as part of reclaim? */
57         int may_swap;
58
59         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
60          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
61          * In this context, it doesn't matter that we scan the
62          * whole list at once. */
63         int swap_cluster_max;
64
65         int swappiness;
66 };
67
68 /*
69  * The list of shrinker callbacks used by to apply pressure to
70  * ageable caches.
71  */
72 struct shrinker {
73         shrinker_t              shrinker;
74         struct list_head        list;
75         int                     seeks;  /* seeks to recreate an obj */
76         long                    nr;     /* objs pending delete */
77 };
78
79 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
80
81 #ifdef ARCH_HAS_PREFETCH
82 #define prefetch_prev_lru_page(_page, _base, _field)                    \
83         do {                                                            \
84                 if ((_page)->lru.prev != _base) {                       \
85                         struct page *prev;                              \
86                                                                         \
87                         prev = lru_to_page(&(_page->lru));              \
88                         prefetch(&prev->_field);                        \
89                 }                                                       \
90         } while (0)
91 #else
92 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
93 #endif
94
95 #ifdef ARCH_HAS_PREFETCHW
96 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
97         do {                                                            \
98                 if ((_page)->lru.prev != _base) {                       \
99                         struct page *prev;                              \
100                                                                         \
101                         prev = lru_to_page(&(_page->lru));              \
102                         prefetchw(&prev->_field);                       \
103                 }                                                       \
104         } while (0)
105 #else
106 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
107 #endif
108
109 /*
110  * From 0 .. 100.  Higher means more swappy.
111  */
112 int vm_swappiness = 60;
113 long vm_total_pages;    /* The total number of pages which the VM controls */
114
115 static LIST_HEAD(shrinker_list);
116 static DECLARE_RWSEM(shrinker_rwsem);
117
118 /*
119  * Add a shrinker callback to be called from the vm
120  */
121 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
122 {
123         struct shrinker *shrinker;
124
125         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
126         if (shrinker) {
127                 shrinker->shrinker = theshrinker;
128                 shrinker->seeks = seeks;
129                 shrinker->nr = 0;
130                 down_write(&shrinker_rwsem);
131                 list_add_tail(&shrinker->list, &shrinker_list);
132                 up_write(&shrinker_rwsem);
133         }
134         return shrinker;
135 }
136 EXPORT_SYMBOL(set_shrinker);
137
138 /*
139  * Remove one
140  */
141 void remove_shrinker(struct shrinker *shrinker)
142 {
143         down_write(&shrinker_rwsem);
144         list_del(&shrinker->list);
145         up_write(&shrinker_rwsem);
146         kfree(shrinker);
147 }
148 EXPORT_SYMBOL(remove_shrinker);
149
150 #define SHRINK_BATCH 128
151 /*
152  * Call the shrink functions to age shrinkable caches
153  *
154  * Here we assume it costs one seek to replace a lru page and that it also
155  * takes a seek to recreate a cache object.  With this in mind we age equal
156  * percentages of the lru and ageable caches.  This should balance the seeks
157  * generated by these structures.
158  *
159  * If the vm encounted mapped pages on the LRU it increase the pressure on
160  * slab to avoid swapping.
161  *
162  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
163  *
164  * `lru_pages' represents the number of on-LRU pages in all the zones which
165  * are eligible for the caller's allocation attempt.  It is used for balancing
166  * slab reclaim versus page reclaim.
167  *
168  * Returns the number of slab objects which we shrunk.
169  */
170 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
171                         unsigned long lru_pages)
172 {
173         struct shrinker *shrinker;
174         unsigned long ret = 0;
175
176         if (scanned == 0)
177                 scanned = SWAP_CLUSTER_MAX;
178
179         if (!down_read_trylock(&shrinker_rwsem))
180                 return 1;       /* Assume we'll be able to shrink next time */
181
182         list_for_each_entry(shrinker, &shrinker_list, list) {
183                 unsigned long long delta;
184                 unsigned long total_scan;
185                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
186
187                 delta = (4 * scanned) / shrinker->seeks;
188                 delta *= max_pass;
189                 do_div(delta, lru_pages + 1);
190                 shrinker->nr += delta;
191                 if (shrinker->nr < 0) {
192                         printk(KERN_ERR "%s: nr=%ld\n",
193                                         __FUNCTION__, shrinker->nr);
194                         shrinker->nr = max_pass;
195                 }
196
197                 /*
198                  * Avoid risking looping forever due to too large nr value:
199                  * never try to free more than twice the estimate number of
200                  * freeable entries.
201                  */
202                 if (shrinker->nr > max_pass * 2)
203                         shrinker->nr = max_pass * 2;
204
205                 total_scan = shrinker->nr;
206                 shrinker->nr = 0;
207
208                 while (total_scan >= SHRINK_BATCH) {
209                         long this_scan = SHRINK_BATCH;
210                         int shrink_ret;
211                         int nr_before;
212
213                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
214                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
215                         if (shrink_ret == -1)
216                                 break;
217                         if (shrink_ret < nr_before)
218                                 ret += nr_before - shrink_ret;
219                         mod_page_state(slabs_scanned, this_scan);
220                         total_scan -= this_scan;
221
222                         cond_resched();
223                 }
224
225                 shrinker->nr += total_scan;
226         }
227         up_read(&shrinker_rwsem);
228         return ret;
229 }
230
231 /* Called without lock on whether page is mapped, so answer is unstable */
232 static inline int page_mapping_inuse(struct page *page)
233 {
234         struct address_space *mapping;
235
236         /* Page is in somebody's page tables. */
237         if (page_mapped(page))
238                 return 1;
239
240         /* Be more reluctant to reclaim swapcache than pagecache */
241         if (PageSwapCache(page))
242                 return 1;
243
244         mapping = page_mapping(page);
245         if (!mapping)
246                 return 0;
247
248         /* File is mmap'd by somebody? */
249         return mapping_mapped(mapping);
250 }
251
252 static inline int is_page_cache_freeable(struct page *page)
253 {
254         return page_count(page) - !!PagePrivate(page) == 2;
255 }
256
257 static int may_write_to_queue(struct backing_dev_info *bdi)
258 {
259         if (current->flags & PF_SWAPWRITE)
260                 return 1;
261         if (!bdi_write_congested(bdi))
262                 return 1;
263         if (bdi == current->backing_dev_info)
264                 return 1;
265         return 0;
266 }
267
268 /*
269  * We detected a synchronous write error writing a page out.  Probably
270  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
271  * fsync(), msync() or close().
272  *
273  * The tricky part is that after writepage we cannot touch the mapping: nothing
274  * prevents it from being freed up.  But we have a ref on the page and once
275  * that page is locked, the mapping is pinned.
276  *
277  * We're allowed to run sleeping lock_page() here because we know the caller has
278  * __GFP_FS.
279  */
280 static void handle_write_error(struct address_space *mapping,
281                                 struct page *page, int error)
282 {
283         lock_page(page);
284         if (page_mapping(page) == mapping) {
285                 if (error == -ENOSPC)
286                         set_bit(AS_ENOSPC, &mapping->flags);
287                 else
288                         set_bit(AS_EIO, &mapping->flags);
289         }
290         unlock_page(page);
291 }
292
293 /* possible outcome of pageout() */
294 typedef enum {
295         /* failed to write page out, page is locked */
296         PAGE_KEEP,
297         /* move page to the active list, page is locked */
298         PAGE_ACTIVATE,
299         /* page has been sent to the disk successfully, page is unlocked */
300         PAGE_SUCCESS,
301         /* page is clean and locked */
302         PAGE_CLEAN,
303 } pageout_t;
304
305 /*
306  * pageout is called by shrink_page_list() for each dirty page.
307  * Calls ->writepage().
308  */
309 static pageout_t pageout(struct page *page, struct address_space *mapping)
310 {
311         /*
312          * If the page is dirty, only perform writeback if that write
313          * will be non-blocking.  To prevent this allocation from being
314          * stalled by pagecache activity.  But note that there may be
315          * stalls if we need to run get_block().  We could test
316          * PagePrivate for that.
317          *
318          * If this process is currently in generic_file_write() against
319          * this page's queue, we can perform writeback even if that
320          * will block.
321          *
322          * If the page is swapcache, write it back even if that would
323          * block, for some throttling. This happens by accident, because
324          * swap_backing_dev_info is bust: it doesn't reflect the
325          * congestion state of the swapdevs.  Easy to fix, if needed.
326          * See swapfile.c:page_queue_congested().
327          */
328         if (!is_page_cache_freeable(page))
329                 return PAGE_KEEP;
330         if (!mapping) {
331                 /*
332                  * Some data journaling orphaned pages can have
333                  * page->mapping == NULL while being dirty with clean buffers.
334                  */
335                 if (PagePrivate(page)) {
336                         if (try_to_free_buffers(page)) {
337                                 ClearPageDirty(page);
338                                 printk("%s: orphaned page\n", __FUNCTION__);
339                                 return PAGE_CLEAN;
340                         }
341                 }
342                 return PAGE_KEEP;
343         }
344         if (mapping->a_ops->writepage == NULL)
345                 return PAGE_ACTIVATE;
346         if (!may_write_to_queue(mapping->backing_dev_info))
347                 return PAGE_KEEP;
348
349         if (clear_page_dirty_for_io(page)) {
350                 int res;
351                 struct writeback_control wbc = {
352                         .sync_mode = WB_SYNC_NONE,
353                         .nr_to_write = SWAP_CLUSTER_MAX,
354                         .range_start = 0,
355                         .range_end = LLONG_MAX,
356                         .nonblocking = 1,
357                         .for_reclaim = 1,
358                 };
359
360                 SetPageReclaim(page);
361                 res = mapping->a_ops->writepage(page, &wbc);
362                 if (res < 0)
363                         handle_write_error(mapping, page, res);
364                 if (res == AOP_WRITEPAGE_ACTIVATE) {
365                         ClearPageReclaim(page);
366                         return PAGE_ACTIVATE;
367                 }
368                 if (!PageWriteback(page)) {
369                         /* synchronous write or broken a_ops? */
370                         ClearPageReclaim(page);
371                 }
372
373                 return PAGE_SUCCESS;
374         }
375
376         return PAGE_CLEAN;
377 }
378
379 int remove_mapping(struct address_space *mapping, struct page *page)
380 {
381         if (!mapping)
382                 return 0;               /* truncate got there first */
383
384         write_lock_irq(&mapping->tree_lock);
385
386         /*
387          * The non-racy check for busy page.  It is critical to check
388          * PageDirty _after_ making sure that the page is freeable and
389          * not in use by anybody.       (pagecache + us == 2)
390          */
391         if (unlikely(page_count(page) != 2))
392                 goto cannot_free;
393         smp_rmb();
394         if (unlikely(PageDirty(page)))
395                 goto cannot_free;
396
397         if (PageSwapCache(page)) {
398                 swp_entry_t swap = { .val = page_private(page) };
399                 __delete_from_swap_cache(page);
400                 write_unlock_irq(&mapping->tree_lock);
401                 swap_free(swap);
402                 __put_page(page);       /* The pagecache ref */
403                 return 1;
404         }
405
406         __remove_from_page_cache(page);
407         write_unlock_irq(&mapping->tree_lock);
408         __put_page(page);
409         return 1;
410
411 cannot_free:
412         write_unlock_irq(&mapping->tree_lock);
413         return 0;
414 }
415
416 /*
417  * shrink_page_list() returns the number of reclaimed pages
418  */
419 static unsigned long shrink_page_list(struct list_head *page_list,
420                                         struct scan_control *sc)
421 {
422         LIST_HEAD(ret_pages);
423         struct pagevec freed_pvec;
424         int pgactivate = 0;
425         unsigned long nr_reclaimed = 0;
426
427         cond_resched();
428
429         pagevec_init(&freed_pvec, 1);
430         while (!list_empty(page_list)) {
431                 struct address_space *mapping;
432                 struct page *page;
433                 int may_enter_fs;
434                 int referenced;
435
436                 cond_resched();
437
438                 page = lru_to_page(page_list);
439                 list_del(&page->lru);
440
441                 if (TestSetPageLocked(page))
442                         goto keep;
443
444                 BUG_ON(PageActive(page));
445
446                 sc->nr_scanned++;
447
448                 if (!sc->may_swap && page_mapped(page))
449                         goto keep_locked;
450
451                 /* Double the slab pressure for mapped and swapcache pages */
452                 if (page_mapped(page) || PageSwapCache(page))
453                         sc->nr_scanned++;
454
455                 if (PageWriteback(page))
456                         goto keep_locked;
457
458                 referenced = page_referenced(page, 1);
459                 /* In active use or really unfreeable?  Activate it. */
460                 if (referenced && page_mapping_inuse(page))
461                         goto activate_locked;
462
463 #ifdef CONFIG_SWAP
464                 /*
465                  * Anonymous process memory has backing store?
466                  * Try to allocate it some swap space here.
467                  */
468                 if (PageAnon(page) && !PageSwapCache(page))
469                         if (!add_to_swap(page, GFP_ATOMIC))
470                                 goto activate_locked;
471 #endif /* CONFIG_SWAP */
472
473                 mapping = page_mapping(page);
474                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
475                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
476
477                 /*
478                  * The page is mapped into the page tables of one or more
479                  * processes. Try to unmap it here.
480                  */
481                 if (page_mapped(page) && mapping) {
482                         switch (try_to_unmap(page, 0)) {
483                         case SWAP_FAIL:
484                                 goto activate_locked;
485                         case SWAP_AGAIN:
486                                 goto keep_locked;
487                         case SWAP_SUCCESS:
488                                 ; /* try to free the page below */
489                         }
490                 }
491
492                 if (PageDirty(page)) {
493                         if (referenced)
494                                 goto keep_locked;
495                         if (!may_enter_fs)
496                                 goto keep_locked;
497                         if (!sc->may_writepage)
498                                 goto keep_locked;
499
500                         /* Page is dirty, try to write it out here */
501                         switch(pageout(page, mapping)) {
502                         case PAGE_KEEP:
503                                 goto keep_locked;
504                         case PAGE_ACTIVATE:
505                                 goto activate_locked;
506                         case PAGE_SUCCESS:
507                                 if (PageWriteback(page) || PageDirty(page))
508                                         goto keep;
509                                 /*
510                                  * A synchronous write - probably a ramdisk.  Go
511                                  * ahead and try to reclaim the page.
512                                  */
513                                 if (TestSetPageLocked(page))
514                                         goto keep;
515                                 if (PageDirty(page) || PageWriteback(page))
516                                         goto keep_locked;
517                                 mapping = page_mapping(page);
518                         case PAGE_CLEAN:
519                                 ; /* try to free the page below */
520                         }
521                 }
522
523                 /*
524                  * If the page has buffers, try to free the buffer mappings
525                  * associated with this page. If we succeed we try to free
526                  * the page as well.
527                  *
528                  * We do this even if the page is PageDirty().
529                  * try_to_release_page() does not perform I/O, but it is
530                  * possible for a page to have PageDirty set, but it is actually
531                  * clean (all its buffers are clean).  This happens if the
532                  * buffers were written out directly, with submit_bh(). ext3
533                  * will do this, as well as the blockdev mapping. 
534                  * try_to_release_page() will discover that cleanness and will
535                  * drop the buffers and mark the page clean - it can be freed.
536                  *
537                  * Rarely, pages can have buffers and no ->mapping.  These are
538                  * the pages which were not successfully invalidated in
539                  * truncate_complete_page().  We try to drop those buffers here
540                  * and if that worked, and the page is no longer mapped into
541                  * process address space (page_count == 1) it can be freed.
542                  * Otherwise, leave the page on the LRU so it is swappable.
543                  */
544                 if (PagePrivate(page)) {
545                         if (!try_to_release_page(page, sc->gfp_mask))
546                                 goto activate_locked;
547                         if (!mapping && page_count(page) == 1)
548                                 goto free_it;
549                 }
550
551                 if (!remove_mapping(mapping, page))
552                         goto keep_locked;
553
554 free_it:
555                 unlock_page(page);
556                 nr_reclaimed++;
557                 if (!pagevec_add(&freed_pvec, page))
558                         __pagevec_release_nonlru(&freed_pvec);
559                 continue;
560
561 activate_locked:
562                 SetPageActive(page);
563                 pgactivate++;
564 keep_locked:
565                 unlock_page(page);
566 keep:
567                 list_add(&page->lru, &ret_pages);
568                 BUG_ON(PageLRU(page));
569         }
570         list_splice(&ret_pages, page_list);
571         if (pagevec_count(&freed_pvec))
572                 __pagevec_release_nonlru(&freed_pvec);
573         mod_page_state(pgactivate, pgactivate);
574         return nr_reclaimed;
575 }
576
577 /*
578  * zone->lru_lock is heavily contended.  Some of the functions that
579  * shrink the lists perform better by taking out a batch of pages
580  * and working on them outside the LRU lock.
581  *
582  * For pagecache intensive workloads, this function is the hottest
583  * spot in the kernel (apart from copy_*_user functions).
584  *
585  * Appropriate locks must be held before calling this function.
586  *
587  * @nr_to_scan: The number of pages to look through on the list.
588  * @src:        The LRU list to pull pages off.
589  * @dst:        The temp list to put pages on to.
590  * @scanned:    The number of pages that were scanned.
591  *
592  * returns how many pages were moved onto *@dst.
593  */
594 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
595                 struct list_head *src, struct list_head *dst,
596                 unsigned long *scanned)
597 {
598         unsigned long nr_taken = 0;
599         struct page *page;
600         unsigned long scan;
601
602         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
603                 struct list_head *target;
604                 page = lru_to_page(src);
605                 prefetchw_prev_lru_page(page, src, flags);
606
607                 BUG_ON(!PageLRU(page));
608
609                 list_del(&page->lru);
610                 target = src;
611                 if (likely(get_page_unless_zero(page))) {
612                         /*
613                          * Be careful not to clear PageLRU until after we're
614                          * sure the page is not being freed elsewhere -- the
615                          * page release code relies on it.
616                          */
617                         ClearPageLRU(page);
618                         target = dst;
619                         nr_taken++;
620                 } /* else it is being freed elsewhere */
621
622                 list_add(&page->lru, target);
623         }
624
625         *scanned = scan;
626         return nr_taken;
627 }
628
629 /*
630  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
631  * of reclaimed pages
632  */
633 static unsigned long shrink_inactive_list(unsigned long max_scan,
634                                 struct zone *zone, struct scan_control *sc)
635 {
636         LIST_HEAD(page_list);
637         struct pagevec pvec;
638         unsigned long nr_scanned = 0;
639         unsigned long nr_reclaimed = 0;
640
641         pagevec_init(&pvec, 1);
642
643         lru_add_drain();
644         spin_lock_irq(&zone->lru_lock);
645         do {
646                 struct page *page;
647                 unsigned long nr_taken;
648                 unsigned long nr_scan;
649                 unsigned long nr_freed;
650
651                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
652                                              &zone->inactive_list,
653                                              &page_list, &nr_scan);
654                 zone->nr_inactive -= nr_taken;
655                 zone->pages_scanned += nr_scan;
656                 spin_unlock_irq(&zone->lru_lock);
657
658                 nr_scanned += nr_scan;
659                 nr_freed = shrink_page_list(&page_list, sc);
660                 nr_reclaimed += nr_freed;
661                 local_irq_disable();
662                 if (current_is_kswapd()) {
663                         __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
664                         __mod_page_state(kswapd_steal, nr_freed);
665                 } else
666                         __mod_page_state_zone(zone, pgscan_direct, nr_scan);
667                 __mod_page_state_zone(zone, pgsteal, nr_freed);
668
669                 if (nr_taken == 0)
670                         goto done;
671
672                 spin_lock(&zone->lru_lock);
673                 /*
674                  * Put back any unfreeable pages.
675                  */
676                 while (!list_empty(&page_list)) {
677                         page = lru_to_page(&page_list);
678                         BUG_ON(PageLRU(page));
679                         SetPageLRU(page);
680                         list_del(&page->lru);
681                         if (PageActive(page))
682                                 add_page_to_active_list(zone, page);
683                         else
684                                 add_page_to_inactive_list(zone, page);
685                         if (!pagevec_add(&pvec, page)) {
686                                 spin_unlock_irq(&zone->lru_lock);
687                                 __pagevec_release(&pvec);
688                                 spin_lock_irq(&zone->lru_lock);
689                         }
690                 }
691         } while (nr_scanned < max_scan);
692         spin_unlock(&zone->lru_lock);
693 done:
694         local_irq_enable();
695         pagevec_release(&pvec);
696         return nr_reclaimed;
697 }
698
699 /*
700  * This moves pages from the active list to the inactive list.
701  *
702  * We move them the other way if the page is referenced by one or more
703  * processes, from rmap.
704  *
705  * If the pages are mostly unmapped, the processing is fast and it is
706  * appropriate to hold zone->lru_lock across the whole operation.  But if
707  * the pages are mapped, the processing is slow (page_referenced()) so we
708  * should drop zone->lru_lock around each page.  It's impossible to balance
709  * this, so instead we remove the pages from the LRU while processing them.
710  * It is safe to rely on PG_active against the non-LRU pages in here because
711  * nobody will play with that bit on a non-LRU page.
712  *
713  * The downside is that we have to touch page->_count against each page.
714  * But we had to alter page->flags anyway.
715  */
716 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
717                                 struct scan_control *sc)
718 {
719         unsigned long pgmoved;
720         int pgdeactivate = 0;
721         unsigned long pgscanned;
722         LIST_HEAD(l_hold);      /* The pages which were snipped off */
723         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
724         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
725         struct page *page;
726         struct pagevec pvec;
727         int reclaim_mapped = 0;
728
729         if (sc->may_swap) {
730                 long mapped_ratio;
731                 long distress;
732                 long swap_tendency;
733
734                 /*
735                  * `distress' is a measure of how much trouble we're having
736                  * reclaiming pages.  0 -> no problems.  100 -> great trouble.
737                  */
738                 distress = 100 >> zone->prev_priority;
739
740                 /*
741                  * The point of this algorithm is to decide when to start
742                  * reclaiming mapped memory instead of just pagecache.  Work out
743                  * how much memory
744                  * is mapped.
745                  */
746                 mapped_ratio = (sc->nr_mapped * 100) / vm_total_pages;
747
748                 /*
749                  * Now decide how much we really want to unmap some pages.  The
750                  * mapped ratio is downgraded - just because there's a lot of
751                  * mapped memory doesn't necessarily mean that page reclaim
752                  * isn't succeeding.
753                  *
754                  * The distress ratio is important - we don't want to start
755                  * going oom.
756                  *
757                  * A 100% value of vm_swappiness overrides this algorithm
758                  * altogether.
759                  */
760                 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
761
762                 /*
763                  * Now use this metric to decide whether to start moving mapped
764                  * memory onto the inactive list.
765                  */
766                 if (swap_tendency >= 100)
767                         reclaim_mapped = 1;
768         }
769
770         lru_add_drain();
771         spin_lock_irq(&zone->lru_lock);
772         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
773                                     &l_hold, &pgscanned);
774         zone->pages_scanned += pgscanned;
775         zone->nr_active -= pgmoved;
776         spin_unlock_irq(&zone->lru_lock);
777
778         while (!list_empty(&l_hold)) {
779                 cond_resched();
780                 page = lru_to_page(&l_hold);
781                 list_del(&page->lru);
782                 if (page_mapped(page)) {
783                         if (!reclaim_mapped ||
784                             (total_swap_pages == 0 && PageAnon(page)) ||
785                             page_referenced(page, 0)) {
786                                 list_add(&page->lru, &l_active);
787                                 continue;
788                         }
789                 }
790                 list_add(&page->lru, &l_inactive);
791         }
792
793         pagevec_init(&pvec, 1);
794         pgmoved = 0;
795         spin_lock_irq(&zone->lru_lock);
796         while (!list_empty(&l_inactive)) {
797                 page = lru_to_page(&l_inactive);
798                 prefetchw_prev_lru_page(page, &l_inactive, flags);
799                 BUG_ON(PageLRU(page));
800                 SetPageLRU(page);
801                 BUG_ON(!PageActive(page));
802                 ClearPageActive(page);
803
804                 list_move(&page->lru, &zone->inactive_list);
805                 pgmoved++;
806                 if (!pagevec_add(&pvec, page)) {
807                         zone->nr_inactive += pgmoved;
808                         spin_unlock_irq(&zone->lru_lock);
809                         pgdeactivate += pgmoved;
810                         pgmoved = 0;
811                         if (buffer_heads_over_limit)
812                                 pagevec_strip(&pvec);
813                         __pagevec_release(&pvec);
814                         spin_lock_irq(&zone->lru_lock);
815                 }
816         }
817         zone->nr_inactive += pgmoved;
818         pgdeactivate += pgmoved;
819         if (buffer_heads_over_limit) {
820                 spin_unlock_irq(&zone->lru_lock);
821                 pagevec_strip(&pvec);
822                 spin_lock_irq(&zone->lru_lock);
823         }
824
825         pgmoved = 0;
826         while (!list_empty(&l_active)) {
827                 page = lru_to_page(&l_active);
828                 prefetchw_prev_lru_page(page, &l_active, flags);
829                 BUG_ON(PageLRU(page));
830                 SetPageLRU(page);
831                 BUG_ON(!PageActive(page));
832                 list_move(&page->lru, &zone->active_list);
833                 pgmoved++;
834                 if (!pagevec_add(&pvec, page)) {
835                         zone->nr_active += pgmoved;
836                         pgmoved = 0;
837                         spin_unlock_irq(&zone->lru_lock);
838                         __pagevec_release(&pvec);
839                         spin_lock_irq(&zone->lru_lock);
840                 }
841         }
842         zone->nr_active += pgmoved;
843         spin_unlock(&zone->lru_lock);
844
845         __mod_page_state_zone(zone, pgrefill, pgscanned);
846         __mod_page_state(pgdeactivate, pgdeactivate);
847         local_irq_enable();
848
849         pagevec_release(&pvec);
850 }
851
852 /*
853  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
854  */
855 static unsigned long shrink_zone(int priority, struct zone *zone,
856                                 struct scan_control *sc)
857 {
858         unsigned long nr_active;
859         unsigned long nr_inactive;
860         unsigned long nr_to_scan;
861         unsigned long nr_reclaimed = 0;
862
863         atomic_inc(&zone->reclaim_in_progress);
864
865         /*
866          * Add one to `nr_to_scan' just to make sure that the kernel will
867          * slowly sift through the active list.
868          */
869         zone->nr_scan_active += (zone->nr_active >> priority) + 1;
870         nr_active = zone->nr_scan_active;
871         if (nr_active >= sc->swap_cluster_max)
872                 zone->nr_scan_active = 0;
873         else
874                 nr_active = 0;
875
876         zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
877         nr_inactive = zone->nr_scan_inactive;
878         if (nr_inactive >= sc->swap_cluster_max)
879                 zone->nr_scan_inactive = 0;
880         else
881                 nr_inactive = 0;
882
883         while (nr_active || nr_inactive) {
884                 if (nr_active) {
885                         nr_to_scan = min(nr_active,
886                                         (unsigned long)sc->swap_cluster_max);
887                         nr_active -= nr_to_scan;
888                         shrink_active_list(nr_to_scan, zone, sc);
889                 }
890
891                 if (nr_inactive) {
892                         nr_to_scan = min(nr_inactive,
893                                         (unsigned long)sc->swap_cluster_max);
894                         nr_inactive -= nr_to_scan;
895                         nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
896                                                                 sc);
897                 }
898         }
899
900         throttle_vm_writeout();
901
902         atomic_dec(&zone->reclaim_in_progress);
903         return nr_reclaimed;
904 }
905
906 /*
907  * This is the direct reclaim path, for page-allocating processes.  We only
908  * try to reclaim pages from zones which will satisfy the caller's allocation
909  * request.
910  *
911  * We reclaim from a zone even if that zone is over pages_high.  Because:
912  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
913  *    allocation or
914  * b) The zones may be over pages_high but they must go *over* pages_high to
915  *    satisfy the `incremental min' zone defense algorithm.
916  *
917  * Returns the number of reclaimed pages.
918  *
919  * If a zone is deemed to be full of pinned pages then just give it a light
920  * scan then give up on it.
921  */
922 static unsigned long shrink_zones(int priority, struct zone **zones,
923                                         struct scan_control *sc)
924 {
925         unsigned long nr_reclaimed = 0;
926         int i;
927
928         for (i = 0; zones[i] != NULL; i++) {
929                 struct zone *zone = zones[i];
930
931                 if (!populated_zone(zone))
932                         continue;
933
934                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
935                         continue;
936
937                 zone->temp_priority = priority;
938                 if (zone->prev_priority > priority)
939                         zone->prev_priority = priority;
940
941                 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
942                         continue;       /* Let kswapd poll it */
943
944                 nr_reclaimed += shrink_zone(priority, zone, sc);
945         }
946         return nr_reclaimed;
947 }
948  
949 /*
950  * This is the main entry point to direct page reclaim.
951  *
952  * If a full scan of the inactive list fails to free enough memory then we
953  * are "out of memory" and something needs to be killed.
954  *
955  * If the caller is !__GFP_FS then the probability of a failure is reasonably
956  * high - the zone may be full of dirty or under-writeback pages, which this
957  * caller can't do much about.  We kick pdflush and take explicit naps in the
958  * hope that some of these pages can be written.  But if the allocating task
959  * holds filesystem locks which prevent writeout this might not work, and the
960  * allocation attempt will fail.
961  */
962 unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
963 {
964         int priority;
965         int ret = 0;
966         unsigned long total_scanned = 0;
967         unsigned long nr_reclaimed = 0;
968         struct reclaim_state *reclaim_state = current->reclaim_state;
969         unsigned long lru_pages = 0;
970         int i;
971         struct scan_control sc = {
972                 .gfp_mask = gfp_mask,
973                 .may_writepage = !laptop_mode,
974                 .swap_cluster_max = SWAP_CLUSTER_MAX,
975                 .may_swap = 1,
976                 .swappiness = vm_swappiness,
977         };
978
979         inc_page_state(allocstall);
980
981         for (i = 0; zones[i] != NULL; i++) {
982                 struct zone *zone = zones[i];
983
984                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
985                         continue;
986
987                 zone->temp_priority = DEF_PRIORITY;
988                 lru_pages += zone->nr_active + zone->nr_inactive;
989         }
990
991         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
992                 sc.nr_mapped = read_page_state(nr_mapped);
993                 sc.nr_scanned = 0;
994                 if (!priority)
995                         disable_swap_token();
996                 nr_reclaimed += shrink_zones(priority, zones, &sc);
997                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
998                 if (reclaim_state) {
999                         nr_reclaimed += reclaim_state->reclaimed_slab;
1000                         reclaim_state->reclaimed_slab = 0;
1001                 }
1002                 total_scanned += sc.nr_scanned;
1003                 if (nr_reclaimed >= sc.swap_cluster_max) {
1004                         ret = 1;
1005                         goto out;
1006                 }
1007
1008                 /*
1009                  * Try to write back as many pages as we just scanned.  This
1010                  * tends to cause slow streaming writers to write data to the
1011                  * disk smoothly, at the dirtying rate, which is nice.   But
1012                  * that's undesirable in laptop mode, where we *want* lumpy
1013                  * writeout.  So in laptop mode, write out the whole world.
1014                  */
1015                 if (total_scanned > sc.swap_cluster_max +
1016                                         sc.swap_cluster_max / 2) {
1017                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1018                         sc.may_writepage = 1;
1019                 }
1020
1021                 /* Take a nap, wait for some writeback to complete */
1022                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1023                         blk_congestion_wait(WRITE, HZ/10);
1024         }
1025 out:
1026         for (i = 0; zones[i] != 0; i++) {
1027                 struct zone *zone = zones[i];
1028
1029                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1030                         continue;
1031
1032                 zone->prev_priority = zone->temp_priority;
1033         }
1034         return ret;
1035 }
1036
1037 /*
1038  * For kswapd, balance_pgdat() will work across all this node's zones until
1039  * they are all at pages_high.
1040  *
1041  * Returns the number of pages which were actually freed.
1042  *
1043  * There is special handling here for zones which are full of pinned pages.
1044  * This can happen if the pages are all mlocked, or if they are all used by
1045  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1046  * What we do is to detect the case where all pages in the zone have been
1047  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1048  * dead and from now on, only perform a short scan.  Basically we're polling
1049  * the zone for when the problem goes away.
1050  *
1051  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1052  * zones which have free_pages > pages_high, but once a zone is found to have
1053  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1054  * of the number of free pages in the lower zones.  This interoperates with
1055  * the page allocator fallback scheme to ensure that aging of pages is balanced
1056  * across the zones.
1057  */
1058 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1059 {
1060         int all_zones_ok;
1061         int priority;
1062         int i;
1063         unsigned long total_scanned;
1064         unsigned long nr_reclaimed;
1065         struct reclaim_state *reclaim_state = current->reclaim_state;
1066         struct scan_control sc = {
1067                 .gfp_mask = GFP_KERNEL,
1068                 .may_swap = 1,
1069                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1070                 .swappiness = vm_swappiness,
1071         };
1072
1073 loop_again:
1074         total_scanned = 0;
1075         nr_reclaimed = 0;
1076         sc.may_writepage = !laptop_mode;
1077         sc.nr_mapped = read_page_state(nr_mapped);
1078
1079         inc_page_state(pageoutrun);
1080
1081         for (i = 0; i < pgdat->nr_zones; i++) {
1082                 struct zone *zone = pgdat->node_zones + i;
1083
1084                 zone->temp_priority = DEF_PRIORITY;
1085         }
1086
1087         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1088                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1089                 unsigned long lru_pages = 0;
1090
1091                 /* The swap token gets in the way of swapout... */
1092                 if (!priority)
1093                         disable_swap_token();
1094
1095                 all_zones_ok = 1;
1096
1097                 /*
1098                  * Scan in the highmem->dma direction for the highest
1099                  * zone which needs scanning
1100                  */
1101                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1102                         struct zone *zone = pgdat->node_zones + i;
1103
1104                         if (!populated_zone(zone))
1105                                 continue;
1106
1107                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1108                                 continue;
1109
1110                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1111                                                0, 0)) {
1112                                 end_zone = i;
1113                                 goto scan;
1114                         }
1115                 }
1116                 goto out;
1117 scan:
1118                 for (i = 0; i <= end_zone; i++) {
1119                         struct zone *zone = pgdat->node_zones + i;
1120
1121                         lru_pages += zone->nr_active + zone->nr_inactive;
1122                 }
1123
1124                 /*
1125                  * Now scan the zone in the dma->highmem direction, stopping
1126                  * at the last zone which needs scanning.
1127                  *
1128                  * We do this because the page allocator works in the opposite
1129                  * direction.  This prevents the page allocator from allocating
1130                  * pages behind kswapd's direction of progress, which would
1131                  * cause too much scanning of the lower zones.
1132                  */
1133                 for (i = 0; i <= end_zone; i++) {
1134                         struct zone *zone = pgdat->node_zones + i;
1135                         int nr_slab;
1136
1137                         if (!populated_zone(zone))
1138                                 continue;
1139
1140                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1141                                 continue;
1142
1143                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1144                                                end_zone, 0))
1145                                 all_zones_ok = 0;
1146                         zone->temp_priority = priority;
1147                         if (zone->prev_priority > priority)
1148                                 zone->prev_priority = priority;
1149                         sc.nr_scanned = 0;
1150                         nr_reclaimed += shrink_zone(priority, zone, &sc);
1151                         reclaim_state->reclaimed_slab = 0;
1152                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1153                                                 lru_pages);
1154                         nr_reclaimed += reclaim_state->reclaimed_slab;
1155                         total_scanned += sc.nr_scanned;
1156                         if (zone->all_unreclaimable)
1157                                 continue;
1158                         if (nr_slab == 0 && zone->pages_scanned >=
1159                                     (zone->nr_active + zone->nr_inactive) * 4)
1160                                 zone->all_unreclaimable = 1;
1161                         /*
1162                          * If we've done a decent amount of scanning and
1163                          * the reclaim ratio is low, start doing writepage
1164                          * even in laptop mode
1165                          */
1166                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1167                             total_scanned > nr_reclaimed + nr_reclaimed / 2)
1168                                 sc.may_writepage = 1;
1169                 }
1170                 if (all_zones_ok)
1171                         break;          /* kswapd: all done */
1172                 /*
1173                  * OK, kswapd is getting into trouble.  Take a nap, then take
1174                  * another pass across the zones.
1175                  */
1176                 if (total_scanned && priority < DEF_PRIORITY - 2)
1177                         blk_congestion_wait(WRITE, HZ/10);
1178
1179                 /*
1180                  * We do this so kswapd doesn't build up large priorities for
1181                  * example when it is freeing in parallel with allocators. It
1182                  * matches the direct reclaim path behaviour in terms of impact
1183                  * on zone->*_priority.
1184                  */
1185                 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1186                         break;
1187         }
1188 out:
1189         for (i = 0; i < pgdat->nr_zones; i++) {
1190                 struct zone *zone = pgdat->node_zones + i;
1191
1192                 zone->prev_priority = zone->temp_priority;
1193         }
1194         if (!all_zones_ok) {
1195                 cond_resched();
1196                 goto loop_again;
1197         }
1198
1199         return nr_reclaimed;
1200 }
1201
1202 /*
1203  * The background pageout daemon, started as a kernel thread
1204  * from the init process. 
1205  *
1206  * This basically trickles out pages so that we have _some_
1207  * free memory available even if there is no other activity
1208  * that frees anything up. This is needed for things like routing
1209  * etc, where we otherwise might have all activity going on in
1210  * asynchronous contexts that cannot page things out.
1211  *
1212  * If there are applications that are active memory-allocators
1213  * (most normal use), this basically shouldn't matter.
1214  */
1215 static int kswapd(void *p)
1216 {
1217         unsigned long order;
1218         pg_data_t *pgdat = (pg_data_t*)p;
1219         struct task_struct *tsk = current;
1220         DEFINE_WAIT(wait);
1221         struct reclaim_state reclaim_state = {
1222                 .reclaimed_slab = 0,
1223         };
1224         cpumask_t cpumask;
1225
1226         daemonize("kswapd%d", pgdat->node_id);
1227         cpumask = node_to_cpumask(pgdat->node_id);
1228         if (!cpus_empty(cpumask))
1229                 set_cpus_allowed(tsk, cpumask);
1230         current->reclaim_state = &reclaim_state;
1231
1232         /*
1233          * Tell the memory management that we're a "memory allocator",
1234          * and that if we need more memory we should get access to it
1235          * regardless (see "__alloc_pages()"). "kswapd" should
1236          * never get caught in the normal page freeing logic.
1237          *
1238          * (Kswapd normally doesn't need memory anyway, but sometimes
1239          * you need a small amount of memory in order to be able to
1240          * page out something else, and this flag essentially protects
1241          * us from recursively trying to free more memory as we're
1242          * trying to free the first piece of memory in the first place).
1243          */
1244         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1245
1246         order = 0;
1247         for ( ; ; ) {
1248                 unsigned long new_order;
1249
1250                 try_to_freeze();
1251
1252                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1253                 new_order = pgdat->kswapd_max_order;
1254                 pgdat->kswapd_max_order = 0;
1255                 if (order < new_order) {
1256                         /*
1257                          * Don't sleep if someone wants a larger 'order'
1258                          * allocation
1259                          */
1260                         order = new_order;
1261                 } else {
1262                         schedule();
1263                         order = pgdat->kswapd_max_order;
1264                 }
1265                 finish_wait(&pgdat->kswapd_wait, &wait);
1266
1267                 balance_pgdat(pgdat, order);
1268         }
1269         return 0;
1270 }
1271
1272 /*
1273  * A zone is low on free memory, so wake its kswapd task to service it.
1274  */
1275 void wakeup_kswapd(struct zone *zone, int order)
1276 {
1277         pg_data_t *pgdat;
1278
1279         if (!populated_zone(zone))
1280                 return;
1281
1282         pgdat = zone->zone_pgdat;
1283         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1284                 return;
1285         if (pgdat->kswapd_max_order < order)
1286                 pgdat->kswapd_max_order = order;
1287         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1288                 return;
1289         if (!waitqueue_active(&pgdat->kswapd_wait))
1290                 return;
1291         wake_up_interruptible(&pgdat->kswapd_wait);
1292 }
1293
1294 #ifdef CONFIG_PM
1295 /*
1296  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1297  * from LRU lists system-wide, for given pass and priority, and returns the
1298  * number of reclaimed pages
1299  *
1300  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1301  */
1302 static unsigned long shrink_all_zones(unsigned long nr_pages, int pass,
1303                                       int prio, struct scan_control *sc)
1304 {
1305         struct zone *zone;
1306         unsigned long nr_to_scan, ret = 0;
1307
1308         for_each_zone(zone) {
1309
1310                 if (!populated_zone(zone))
1311                         continue;
1312
1313                 if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1314                         continue;
1315
1316                 /* For pass = 0 we don't shrink the active list */
1317                 if (pass > 0) {
1318                         zone->nr_scan_active += (zone->nr_active >> prio) + 1;
1319                         if (zone->nr_scan_active >= nr_pages || pass > 3) {
1320                                 zone->nr_scan_active = 0;
1321                                 nr_to_scan = min(nr_pages, zone->nr_active);
1322                                 shrink_active_list(nr_to_scan, zone, sc);
1323                         }
1324                 }
1325
1326                 zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1;
1327                 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1328                         zone->nr_scan_inactive = 0;
1329                         nr_to_scan = min(nr_pages, zone->nr_inactive);
1330                         ret += shrink_inactive_list(nr_to_scan, zone, sc);
1331                         if (ret >= nr_pages)
1332                                 return ret;
1333                 }
1334         }
1335
1336         return ret;
1337 }
1338
1339 /*
1340  * Try to free `nr_pages' of memory, system-wide, and return the number of
1341  * freed pages.
1342  *
1343  * Rather than trying to age LRUs the aim is to preserve the overall
1344  * LRU order by reclaiming preferentially
1345  * inactive > active > active referenced > active mapped
1346  */
1347 unsigned long shrink_all_memory(unsigned long nr_pages)
1348 {
1349         unsigned long lru_pages, nr_slab;
1350         unsigned long ret = 0;
1351         int pass;
1352         struct reclaim_state reclaim_state;
1353         struct zone *zone;
1354         struct scan_control sc = {
1355                 .gfp_mask = GFP_KERNEL,
1356                 .may_swap = 0,
1357                 .swap_cluster_max = nr_pages,
1358                 .may_writepage = 1,
1359                 .swappiness = vm_swappiness,
1360         };
1361
1362         current->reclaim_state = &reclaim_state;
1363
1364         lru_pages = 0;
1365         for_each_zone(zone)
1366                 lru_pages += zone->nr_active + zone->nr_inactive;
1367
1368         nr_slab = read_page_state(nr_slab);
1369         /* If slab caches are huge, it's better to hit them first */
1370         while (nr_slab >= lru_pages) {
1371                 reclaim_state.reclaimed_slab = 0;
1372                 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1373                 if (!reclaim_state.reclaimed_slab)
1374                         break;
1375
1376                 ret += reclaim_state.reclaimed_slab;
1377                 if (ret >= nr_pages)
1378                         goto out;
1379
1380                 nr_slab -= reclaim_state.reclaimed_slab;
1381         }
1382
1383         /*
1384          * We try to shrink LRUs in 5 passes:
1385          * 0 = Reclaim from inactive_list only
1386          * 1 = Reclaim from active list but don't reclaim mapped
1387          * 2 = 2nd pass of type 1
1388          * 3 = Reclaim mapped (normal reclaim)
1389          * 4 = 2nd pass of type 3
1390          */
1391         for (pass = 0; pass < 5; pass++) {
1392                 int prio;
1393
1394                 /* Needed for shrinking slab caches later on */
1395                 if (!lru_pages)
1396                         for_each_zone(zone) {
1397                                 lru_pages += zone->nr_active;
1398                                 lru_pages += zone->nr_inactive;
1399                         }
1400
1401                 /* Force reclaiming mapped pages in the passes #3 and #4 */
1402                 if (pass > 2) {
1403                         sc.may_swap = 1;
1404                         sc.swappiness = 100;
1405                 }
1406
1407                 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1408                         unsigned long nr_to_scan = nr_pages - ret;
1409
1410                         sc.nr_mapped = read_page_state(nr_mapped);
1411                         sc.nr_scanned = 0;
1412
1413                         ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1414                         if (ret >= nr_pages)
1415                                 goto out;
1416
1417                         reclaim_state.reclaimed_slab = 0;
1418                         shrink_slab(sc.nr_scanned, sc.gfp_mask, lru_pages);
1419                         ret += reclaim_state.reclaimed_slab;
1420                         if (ret >= nr_pages)
1421                                 goto out;
1422
1423                         if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1424                                 blk_congestion_wait(WRITE, HZ / 10);
1425                 }
1426
1427                 lru_pages = 0;
1428         }
1429
1430         /*
1431          * If ret = 0, we could not shrink LRUs, but there may be something
1432          * in slab caches
1433          */
1434         if (!ret)
1435                 do {
1436                         reclaim_state.reclaimed_slab = 0;
1437                         shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1438                         ret += reclaim_state.reclaimed_slab;
1439                 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1440
1441 out:
1442         current->reclaim_state = NULL;
1443
1444         return ret;
1445 }
1446 #endif
1447
1448 #ifdef CONFIG_HOTPLUG_CPU
1449 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1450    not required for correctness.  So if the last cpu in a node goes
1451    away, we get changed to run anywhere: as the first one comes back,
1452    restore their cpu bindings. */
1453 static int cpu_callback(struct notifier_block *nfb,
1454                                   unsigned long action, void *hcpu)
1455 {
1456         pg_data_t *pgdat;
1457         cpumask_t mask;
1458
1459         if (action == CPU_ONLINE) {
1460                 for_each_online_pgdat(pgdat) {
1461                         mask = node_to_cpumask(pgdat->node_id);
1462                         if (any_online_cpu(mask) != NR_CPUS)
1463                                 /* One of our CPUs online: restore mask */
1464                                 set_cpus_allowed(pgdat->kswapd, mask);
1465                 }
1466         }
1467         return NOTIFY_OK;
1468 }
1469 #endif /* CONFIG_HOTPLUG_CPU */
1470
1471 static int __init kswapd_init(void)
1472 {
1473         pg_data_t *pgdat;
1474
1475         swap_setup();
1476         for_each_online_pgdat(pgdat) {
1477                 pid_t pid;
1478
1479                 pid = kernel_thread(kswapd, pgdat, CLONE_KERNEL);
1480                 BUG_ON(pid < 0);
1481                 read_lock(&tasklist_lock);
1482                 pgdat->kswapd = find_task_by_pid(pid);
1483                 read_unlock(&tasklist_lock);
1484         }
1485         hotcpu_notifier(cpu_callback, 0);
1486         return 0;
1487 }
1488
1489 module_init(kswapd_init)
1490
1491 #ifdef CONFIG_NUMA
1492 /*
1493  * Zone reclaim mode
1494  *
1495  * If non-zero call zone_reclaim when the number of free pages falls below
1496  * the watermarks.
1497  *
1498  * In the future we may add flags to the mode. However, the page allocator
1499  * should only have to check that zone_reclaim_mode != 0 before calling
1500  * zone_reclaim().
1501  */
1502 int zone_reclaim_mode __read_mostly;
1503
1504 #define RECLAIM_OFF 0
1505 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1506 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1507 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1508 #define RECLAIM_SLAB (1<<3)     /* Do a global slab shrink if the zone is out of memory */
1509
1510 /*
1511  * Mininum time between zone reclaim scans
1512  */
1513 int zone_reclaim_interval __read_mostly = 30*HZ;
1514
1515 /*
1516  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1517  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1518  * a zone.
1519  */
1520 #define ZONE_RECLAIM_PRIORITY 4
1521
1522 /*
1523  * Try to free up some pages from this zone through reclaim.
1524  */
1525 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1526 {
1527         /* Minimum pages needed in order to stay on node */
1528         const unsigned long nr_pages = 1 << order;
1529         struct task_struct *p = current;
1530         struct reclaim_state reclaim_state;
1531         int priority;
1532         unsigned long nr_reclaimed = 0;
1533         struct scan_control sc = {
1534                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1535                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1536                 .nr_mapped = read_page_state(nr_mapped),
1537                 .swap_cluster_max = max_t(unsigned long, nr_pages,
1538                                         SWAP_CLUSTER_MAX),
1539                 .gfp_mask = gfp_mask,
1540                 .swappiness = vm_swappiness,
1541         };
1542
1543         disable_swap_token();
1544         cond_resched();
1545         /*
1546          * We need to be able to allocate from the reserves for RECLAIM_SWAP
1547          * and we also need to be able to write out pages for RECLAIM_WRITE
1548          * and RECLAIM_SWAP.
1549          */
1550         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1551         reclaim_state.reclaimed_slab = 0;
1552         p->reclaim_state = &reclaim_state;
1553
1554         /*
1555          * Free memory by calling shrink zone with increasing priorities
1556          * until we have enough memory freed.
1557          */
1558         priority = ZONE_RECLAIM_PRIORITY;
1559         do {
1560                 nr_reclaimed += shrink_zone(priority, zone, &sc);
1561                 priority--;
1562         } while (priority >= 0 && nr_reclaimed < nr_pages);
1563
1564         if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1565                 /*
1566                  * shrink_slab() does not currently allow us to determine how
1567                  * many pages were freed in this zone. So we just shake the slab
1568                  * a bit and then go off node for this particular allocation
1569                  * despite possibly having freed enough memory to allocate in
1570                  * this zone.  If we freed local memory then the next
1571                  * allocations will be local again.
1572                  *
1573                  * shrink_slab will free memory on all zones and may take
1574                  * a long time.
1575                  */
1576                 shrink_slab(sc.nr_scanned, gfp_mask, order);
1577         }
1578
1579         p->reclaim_state = NULL;
1580         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1581
1582         if (nr_reclaimed == 0) {
1583                 /*
1584                  * We were unable to reclaim enough pages to stay on node.  We
1585                  * now allow off node accesses for a certain time period before
1586                  * trying again to reclaim pages from the local zone.
1587                  */
1588                 zone->last_unsuccessful_zone_reclaim = jiffies;
1589         }
1590
1591         return nr_reclaimed >= nr_pages;
1592 }
1593
1594 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1595 {
1596         cpumask_t mask;
1597         int node_id;
1598
1599         /*
1600          * Do not reclaim if there was a recent unsuccessful attempt at zone
1601          * reclaim.  In that case we let allocations go off node for the
1602          * zone_reclaim_interval.  Otherwise we would scan for each off-node
1603          * page allocation.
1604          */
1605         if (time_before(jiffies,
1606                 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1607                         return 0;
1608
1609         /*
1610          * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1611          * not have reclaimable pages and if we should not delay the allocation
1612          * then do not scan.
1613          */
1614         if (!(gfp_mask & __GFP_WAIT) ||
1615                 zone->all_unreclaimable ||
1616                 atomic_read(&zone->reclaim_in_progress) > 0 ||
1617                 (current->flags & PF_MEMALLOC))
1618                         return 0;
1619
1620         /*
1621          * Only run zone reclaim on the local zone or on zones that do not
1622          * have associated processors. This will favor the local processor
1623          * over remote processors and spread off node memory allocations
1624          * as wide as possible.
1625          */
1626         node_id = zone->zone_pgdat->node_id;
1627         mask = node_to_cpumask(node_id);
1628         if (!cpus_empty(mask) && node_id != numa_node_id())
1629                 return 0;
1630         return __zone_reclaim(zone, gfp_mask, order);
1631 }
1632 #endif