mm: vmscan: remove dead code related to lumpy reclaim waiting on pages under writeback
[pandora-kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         shrinker->nr = 0;
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 unsigned long total_scan;
251                 unsigned long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 /*
259                  * copy the current shrinker scan count into a local variable
260                  * and zero it so that other concurrent shrinker invocations
261                  * don't also do this scanning work.
262                  */
263                 do {
264                         nr = shrinker->nr;
265                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267                 total_scan = nr;
268                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
270                 delta *= max_pass;
271                 do_div(delta, lru_pages + 1);
272                 total_scan += delta;
273                 if (total_scan < 0) {
274                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
275                                "delete nr=%ld\n",
276                                shrinker->shrink, total_scan);
277                         total_scan = max_pass;
278                 }
279
280                 /*
281                  * We need to avoid excessive windup on filesystem shrinkers
282                  * due to large numbers of GFP_NOFS allocations causing the
283                  * shrinkers to return -1 all the time. This results in a large
284                  * nr being built up so when a shrink that can do some work
285                  * comes along it empties the entire cache due to nr >>>
286                  * max_pass.  This is bad for sustaining a working set in
287                  * memory.
288                  *
289                  * Hence only allow the shrinker to scan the entire cache when
290                  * a large delta change is calculated directly.
291                  */
292                 if (delta < max_pass / 4)
293                         total_scan = min(total_scan, max_pass / 2);
294
295                 /*
296                  * Avoid risking looping forever due to too large nr value:
297                  * never try to free more than twice the estimate number of
298                  * freeable entries.
299                  */
300                 if (total_scan > max_pass * 2)
301                         total_scan = max_pass * 2;
302
303                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
304                                         nr_pages_scanned, lru_pages,
305                                         max_pass, delta, total_scan);
306
307                 while (total_scan >= batch_size) {
308                         int nr_before;
309
310                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
312                                                         batch_size);
313                         if (shrink_ret == -1)
314                                 break;
315                         if (shrink_ret < nr_before)
316                                 ret += nr_before - shrink_ret;
317                         count_vm_events(SLABS_SCANNED, batch_size);
318                         total_scan -= batch_size;
319
320                         cond_resched();
321                 }
322
323                 /*
324                  * move the unused scan count back into the shrinker in a
325                  * manner that handles concurrent updates. If we exhausted the
326                  * scan, there is no need to do an update.
327                  */
328                 do {
329                         nr = shrinker->nr;
330                         new_nr = total_scan + nr;
331                         if (total_scan <= 0)
332                                 break;
333                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 if (!PageWriteback(page)) {
499                         /* synchronous write or broken a_ops? */
500                         ClearPageReclaim(page);
501                 }
502                 trace_mm_vmscan_writepage(page,
503                         trace_reclaim_flags(page, sc->reclaim_mode));
504                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
505                 return PAGE_SUCCESS;
506         }
507
508         return PAGE_CLEAN;
509 }
510
511 /*
512  * Same as remove_mapping, but if the page is removed from the mapping, it
513  * gets returned with a refcount of 0.
514  */
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
516 {
517         BUG_ON(!PageLocked(page));
518         BUG_ON(mapping != page_mapping(page));
519
520         spin_lock_irq(&mapping->tree_lock);
521         /*
522          * The non racy check for a busy page.
523          *
524          * Must be careful with the order of the tests. When someone has
525          * a ref to the page, it may be possible that they dirty it then
526          * drop the reference. So if PageDirty is tested before page_count
527          * here, then the following race may occur:
528          *
529          * get_user_pages(&page);
530          * [user mapping goes away]
531          * write_to(page);
532          *                              !PageDirty(page)    [good]
533          * SetPageDirty(page);
534          * put_page(page);
535          *                              !page_count(page)   [good, discard it]
536          *
537          * [oops, our write_to data is lost]
538          *
539          * Reversing the order of the tests ensures such a situation cannot
540          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541          * load is not satisfied before that of page->_count.
542          *
543          * Note that if SetPageDirty is always performed via set_page_dirty,
544          * and thus under tree_lock, then this ordering is not required.
545          */
546         if (!page_freeze_refs(page, 2))
547                 goto cannot_free;
548         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549         if (unlikely(PageDirty(page))) {
550                 page_unfreeze_refs(page, 2);
551                 goto cannot_free;
552         }
553
554         if (PageSwapCache(page)) {
555                 swp_entry_t swap = { .val = page_private(page) };
556                 __delete_from_swap_cache(page);
557                 spin_unlock_irq(&mapping->tree_lock);
558                 swapcache_free(swap, page);
559         } else {
560                 void (*freepage)(struct page *);
561
562                 freepage = mapping->a_ops->freepage;
563
564                 __delete_from_page_cache(page);
565                 spin_unlock_irq(&mapping->tree_lock);
566                 mem_cgroup_uncharge_cache_page(page);
567
568                 if (freepage != NULL)
569                         freepage(page);
570         }
571
572         return 1;
573
574 cannot_free:
575         spin_unlock_irq(&mapping->tree_lock);
576         return 0;
577 }
578
579 /*
580  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581  * someone else has a ref on the page, abort and return 0.  If it was
582  * successfully detached, return 1.  Assumes the caller has a single ref on
583  * this page.
584  */
585 int remove_mapping(struct address_space *mapping, struct page *page)
586 {
587         if (__remove_mapping(mapping, page)) {
588                 /*
589                  * Unfreezing the refcount with 1 rather than 2 effectively
590                  * drops the pagecache ref for us without requiring another
591                  * atomic operation.
592                  */
593                 page_unfreeze_refs(page, 1);
594                 return 1;
595         }
596         return 0;
597 }
598
599 /**
600  * putback_lru_page - put previously isolated page onto appropriate LRU list
601  * @page: page to be put back to appropriate lru list
602  *
603  * Add previously isolated @page to appropriate LRU list.
604  * Page may still be unevictable for other reasons.
605  *
606  * lru_lock must not be held, interrupts must be enabled.
607  */
608 void putback_lru_page(struct page *page)
609 {
610         int lru;
611         int active = !!TestClearPageActive(page);
612         int was_unevictable = PageUnevictable(page);
613
614         VM_BUG_ON(PageLRU(page));
615
616 redo:
617         ClearPageUnevictable(page);
618
619         if (page_evictable(page, NULL)) {
620                 /*
621                  * For evictable pages, we can use the cache.
622                  * In event of a race, worst case is we end up with an
623                  * unevictable page on [in]active list.
624                  * We know how to handle that.
625                  */
626                 lru = active + page_lru_base_type(page);
627                 lru_cache_add_lru(page, lru);
628         } else {
629                 /*
630                  * Put unevictable pages directly on zone's unevictable
631                  * list.
632                  */
633                 lru = LRU_UNEVICTABLE;
634                 add_page_to_unevictable_list(page);
635                 /*
636                  * When racing with an mlock clearing (page is
637                  * unlocked), make sure that if the other thread does
638                  * not observe our setting of PG_lru and fails
639                  * isolation, we see PG_mlocked cleared below and move
640                  * the page back to the evictable list.
641                  *
642                  * The other side is TestClearPageMlocked().
643                  */
644                 smp_mb();
645         }
646
647         /*
648          * page's status can change while we move it among lru. If an evictable
649          * page is on unevictable list, it never be freed. To avoid that,
650          * check after we added it to the list, again.
651          */
652         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
653                 if (!isolate_lru_page(page)) {
654                         put_page(page);
655                         goto redo;
656                 }
657                 /* This means someone else dropped this page from LRU
658                  * So, it will be freed or putback to LRU again. There is
659                  * nothing to do here.
660                  */
661         }
662
663         if (was_unevictable && lru != LRU_UNEVICTABLE)
664                 count_vm_event(UNEVICTABLE_PGRESCUED);
665         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
666                 count_vm_event(UNEVICTABLE_PGCULLED);
667
668         put_page(page);         /* drop ref from isolate */
669 }
670
671 enum page_references {
672         PAGEREF_RECLAIM,
673         PAGEREF_RECLAIM_CLEAN,
674         PAGEREF_KEEP,
675         PAGEREF_ACTIVATE,
676 };
677
678 static enum page_references page_check_references(struct page *page,
679                                                   struct scan_control *sc)
680 {
681         int referenced_ptes, referenced_page;
682         unsigned long vm_flags;
683
684         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
685         referenced_page = TestClearPageReferenced(page);
686
687         /* Lumpy reclaim - ignore references */
688         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
689                 return PAGEREF_RECLAIM;
690
691         /*
692          * Mlock lost the isolation race with us.  Let try_to_unmap()
693          * move the page to the unevictable list.
694          */
695         if (vm_flags & VM_LOCKED)
696                 return PAGEREF_RECLAIM;
697
698         if (referenced_ptes) {
699                 if (PageAnon(page))
700                         return PAGEREF_ACTIVATE;
701                 /*
702                  * All mapped pages start out with page table
703                  * references from the instantiating fault, so we need
704                  * to look twice if a mapped file page is used more
705                  * than once.
706                  *
707                  * Mark it and spare it for another trip around the
708                  * inactive list.  Another page table reference will
709                  * lead to its activation.
710                  *
711                  * Note: the mark is set for activated pages as well
712                  * so that recently deactivated but used pages are
713                  * quickly recovered.
714                  */
715                 SetPageReferenced(page);
716
717                 if (referenced_page)
718                         return PAGEREF_ACTIVATE;
719
720                 return PAGEREF_KEEP;
721         }
722
723         /* Reclaim if clean, defer dirty pages to writeback */
724         if (referenced_page && !PageSwapBacked(page))
725                 return PAGEREF_RECLAIM_CLEAN;
726
727         return PAGEREF_RECLAIM;
728 }
729
730 static noinline_for_stack void free_page_list(struct list_head *free_pages)
731 {
732         struct pagevec freed_pvec;
733         struct page *page, *tmp;
734
735         pagevec_init(&freed_pvec, 1);
736
737         list_for_each_entry_safe(page, tmp, free_pages, lru) {
738                 list_del(&page->lru);
739                 if (!pagevec_add(&freed_pvec, page)) {
740                         __pagevec_free(&freed_pvec);
741                         pagevec_reinit(&freed_pvec);
742                 }
743         }
744
745         pagevec_free(&freed_pvec);
746 }
747
748 /*
749  * shrink_page_list() returns the number of reclaimed pages
750  */
751 static unsigned long shrink_page_list(struct list_head *page_list,
752                                       struct zone *zone,
753                                       struct scan_control *sc)
754 {
755         LIST_HEAD(ret_pages);
756         LIST_HEAD(free_pages);
757         int pgactivate = 0;
758         unsigned long nr_dirty = 0;
759         unsigned long nr_congested = 0;
760         unsigned long nr_reclaimed = 0;
761
762         cond_resched();
763
764         while (!list_empty(page_list)) {
765                 enum page_references references;
766                 struct address_space *mapping;
767                 struct page *page;
768                 int may_enter_fs;
769
770                 cond_resched();
771
772                 page = lru_to_page(page_list);
773                 list_del(&page->lru);
774
775                 if (!trylock_page(page))
776                         goto keep;
777
778                 VM_BUG_ON(PageActive(page));
779                 VM_BUG_ON(page_zone(page) != zone);
780
781                 sc->nr_scanned++;
782
783                 if (unlikely(!page_evictable(page, NULL)))
784                         goto cull_mlocked;
785
786                 if (!sc->may_unmap && page_mapped(page))
787                         goto keep_locked;
788
789                 /* Double the slab pressure for mapped and swapcache pages */
790                 if (page_mapped(page) || PageSwapCache(page))
791                         sc->nr_scanned++;
792
793                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
794                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
795
796                 if (PageWriteback(page)) {
797                         /*
798                          * Synchronous reclaim cannot queue pages for
799                          * writeback due to the possibility of stack overflow
800                          * but if it encounters a page under writeback, wait
801                          * for the IO to complete.
802                          */
803                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
804                             may_enter_fs)
805                                 wait_on_page_writeback(page);
806                         else {
807                                 unlock_page(page);
808                                 goto keep_lumpy;
809                         }
810                 }
811
812                 references = page_check_references(page, sc);
813                 switch (references) {
814                 case PAGEREF_ACTIVATE:
815                         goto activate_locked;
816                 case PAGEREF_KEEP:
817                         goto keep_locked;
818                 case PAGEREF_RECLAIM:
819                 case PAGEREF_RECLAIM_CLEAN:
820                         ; /* try to reclaim the page below */
821                 }
822
823                 /*
824                  * Anonymous process memory has backing store?
825                  * Try to allocate it some swap space here.
826                  */
827                 if (PageAnon(page) && !PageSwapCache(page)) {
828                         if (!(sc->gfp_mask & __GFP_IO))
829                                 goto keep_locked;
830                         if (!add_to_swap(page))
831                                 goto activate_locked;
832                         may_enter_fs = 1;
833                 }
834
835                 mapping = page_mapping(page);
836
837                 /*
838                  * The page is mapped into the page tables of one or more
839                  * processes. Try to unmap it here.
840                  */
841                 if (page_mapped(page) && mapping) {
842                         switch (try_to_unmap(page, TTU_UNMAP)) {
843                         case SWAP_FAIL:
844                                 goto activate_locked;
845                         case SWAP_AGAIN:
846                                 goto keep_locked;
847                         case SWAP_MLOCK:
848                                 goto cull_mlocked;
849                         case SWAP_SUCCESS:
850                                 ; /* try to free the page below */
851                         }
852                 }
853
854                 if (PageDirty(page)) {
855                         nr_dirty++;
856
857                         /*
858                          * Only kswapd can writeback filesystem pages to
859                          * avoid risk of stack overflow
860                          */
861                         if (page_is_file_cache(page) && !current_is_kswapd()) {
862                                 inc_zone_page_state(page, NR_VMSCAN_WRITE_SKIP);
863                                 goto keep_locked;
864                         }
865
866                         if (references == PAGEREF_RECLAIM_CLEAN)
867                                 goto keep_locked;
868                         if (!may_enter_fs)
869                                 goto keep_locked;
870                         if (!sc->may_writepage)
871                                 goto keep_locked;
872
873                         /* Page is dirty, try to write it out here */
874                         switch (pageout(page, mapping, sc)) {
875                         case PAGE_KEEP:
876                                 nr_congested++;
877                                 goto keep_locked;
878                         case PAGE_ACTIVATE:
879                                 goto activate_locked;
880                         case PAGE_SUCCESS:
881                                 if (PageWriteback(page))
882                                         goto keep_lumpy;
883                                 if (PageDirty(page))
884                                         goto keep;
885
886                                 /*
887                                  * A synchronous write - probably a ramdisk.  Go
888                                  * ahead and try to reclaim the page.
889                                  */
890                                 if (!trylock_page(page))
891                                         goto keep;
892                                 if (PageDirty(page) || PageWriteback(page))
893                                         goto keep_locked;
894                                 mapping = page_mapping(page);
895                         case PAGE_CLEAN:
896                                 ; /* try to free the page below */
897                         }
898                 }
899
900                 /*
901                  * If the page has buffers, try to free the buffer mappings
902                  * associated with this page. If we succeed we try to free
903                  * the page as well.
904                  *
905                  * We do this even if the page is PageDirty().
906                  * try_to_release_page() does not perform I/O, but it is
907                  * possible for a page to have PageDirty set, but it is actually
908                  * clean (all its buffers are clean).  This happens if the
909                  * buffers were written out directly, with submit_bh(). ext3
910                  * will do this, as well as the blockdev mapping.
911                  * try_to_release_page() will discover that cleanness and will
912                  * drop the buffers and mark the page clean - it can be freed.
913                  *
914                  * Rarely, pages can have buffers and no ->mapping.  These are
915                  * the pages which were not successfully invalidated in
916                  * truncate_complete_page().  We try to drop those buffers here
917                  * and if that worked, and the page is no longer mapped into
918                  * process address space (page_count == 1) it can be freed.
919                  * Otherwise, leave the page on the LRU so it is swappable.
920                  */
921                 if (page_has_private(page)) {
922                         if (!try_to_release_page(page, sc->gfp_mask))
923                                 goto activate_locked;
924                         if (!mapping && page_count(page) == 1) {
925                                 unlock_page(page);
926                                 if (put_page_testzero(page))
927                                         goto free_it;
928                                 else {
929                                         /*
930                                          * rare race with speculative reference.
931                                          * the speculative reference will free
932                                          * this page shortly, so we may
933                                          * increment nr_reclaimed here (and
934                                          * leave it off the LRU).
935                                          */
936                                         nr_reclaimed++;
937                                         continue;
938                                 }
939                         }
940                 }
941
942                 if (!mapping || !__remove_mapping(mapping, page))
943                         goto keep_locked;
944
945                 /*
946                  * At this point, we have no other references and there is
947                  * no way to pick any more up (removed from LRU, removed
948                  * from pagecache). Can use non-atomic bitops now (and
949                  * we obviously don't have to worry about waking up a process
950                  * waiting on the page lock, because there are no references.
951                  */
952                 __clear_page_locked(page);
953 free_it:
954                 nr_reclaimed++;
955
956                 /*
957                  * Is there need to periodically free_page_list? It would
958                  * appear not as the counts should be low
959                  */
960                 list_add(&page->lru, &free_pages);
961                 continue;
962
963 cull_mlocked:
964                 if (PageSwapCache(page))
965                         try_to_free_swap(page);
966                 unlock_page(page);
967                 putback_lru_page(page);
968                 reset_reclaim_mode(sc);
969                 continue;
970
971 activate_locked:
972                 /* Not a candidate for swapping, so reclaim swap space. */
973                 if (PageSwapCache(page) && vm_swap_full())
974                         try_to_free_swap(page);
975                 VM_BUG_ON(PageActive(page));
976                 SetPageActive(page);
977                 pgactivate++;
978 keep_locked:
979                 unlock_page(page);
980 keep:
981                 reset_reclaim_mode(sc);
982 keep_lumpy:
983                 list_add(&page->lru, &ret_pages);
984                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
985         }
986
987         /*
988          * Tag a zone as congested if all the dirty pages encountered were
989          * backed by a congested BDI. In this case, reclaimers should just
990          * back off and wait for congestion to clear because further reclaim
991          * will encounter the same problem
992          */
993         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
994                 zone_set_flag(zone, ZONE_CONGESTED);
995
996         free_page_list(&free_pages);
997
998         list_splice(&ret_pages, page_list);
999         count_vm_events(PGACTIVATE, pgactivate);
1000         return nr_reclaimed;
1001 }
1002
1003 /*
1004  * Attempt to remove the specified page from its LRU.  Only take this page
1005  * if it is of the appropriate PageActive status.  Pages which are being
1006  * freed elsewhere are also ignored.
1007  *
1008  * page:        page to consider
1009  * mode:        one of the LRU isolation modes defined above
1010  *
1011  * returns 0 on success, -ve errno on failure.
1012  */
1013 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1014 {
1015         bool all_lru_mode;
1016         int ret = -EINVAL;
1017
1018         /* Only take pages on the LRU. */
1019         if (!PageLRU(page))
1020                 return ret;
1021
1022         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1023                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1024
1025         /*
1026          * When checking the active state, we need to be sure we are
1027          * dealing with comparible boolean values.  Take the logical not
1028          * of each.
1029          */
1030         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1031                 return ret;
1032
1033         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1034                 return ret;
1035
1036         /*
1037          * When this function is being called for lumpy reclaim, we
1038          * initially look into all LRU pages, active, inactive and
1039          * unevictable; only give shrink_page_list evictable pages.
1040          */
1041         if (PageUnevictable(page))
1042                 return ret;
1043
1044         ret = -EBUSY;
1045
1046         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1047                 return ret;
1048
1049         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1050                 return ret;
1051
1052         if (likely(get_page_unless_zero(page))) {
1053                 /*
1054                  * Be careful not to clear PageLRU until after we're
1055                  * sure the page is not being freed elsewhere -- the
1056                  * page release code relies on it.
1057                  */
1058                 ClearPageLRU(page);
1059                 ret = 0;
1060         }
1061
1062         return ret;
1063 }
1064
1065 /*
1066  * zone->lru_lock is heavily contended.  Some of the functions that
1067  * shrink the lists perform better by taking out a batch of pages
1068  * and working on them outside the LRU lock.
1069  *
1070  * For pagecache intensive workloads, this function is the hottest
1071  * spot in the kernel (apart from copy_*_user functions).
1072  *
1073  * Appropriate locks must be held before calling this function.
1074  *
1075  * @nr_to_scan: The number of pages to look through on the list.
1076  * @src:        The LRU list to pull pages off.
1077  * @dst:        The temp list to put pages on to.
1078  * @scanned:    The number of pages that were scanned.
1079  * @order:      The caller's attempted allocation order
1080  * @mode:       One of the LRU isolation modes
1081  * @file:       True [1] if isolating file [!anon] pages
1082  *
1083  * returns how many pages were moved onto *@dst.
1084  */
1085 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1086                 struct list_head *src, struct list_head *dst,
1087                 unsigned long *scanned, int order, isolate_mode_t mode,
1088                 int file)
1089 {
1090         unsigned long nr_taken = 0;
1091         unsigned long nr_lumpy_taken = 0;
1092         unsigned long nr_lumpy_dirty = 0;
1093         unsigned long nr_lumpy_failed = 0;
1094         unsigned long scan;
1095
1096         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1097                 struct page *page;
1098                 unsigned long pfn;
1099                 unsigned long end_pfn;
1100                 unsigned long page_pfn;
1101                 int zone_id;
1102
1103                 page = lru_to_page(src);
1104                 prefetchw_prev_lru_page(page, src, flags);
1105
1106                 VM_BUG_ON(!PageLRU(page));
1107
1108                 switch (__isolate_lru_page(page, mode, file)) {
1109                 case 0:
1110                         list_move(&page->lru, dst);
1111                         mem_cgroup_del_lru(page);
1112                         nr_taken += hpage_nr_pages(page);
1113                         break;
1114
1115                 case -EBUSY:
1116                         /* else it is being freed elsewhere */
1117                         list_move(&page->lru, src);
1118                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1119                         continue;
1120
1121                 default:
1122                         BUG();
1123                 }
1124
1125                 if (!order)
1126                         continue;
1127
1128                 /*
1129                  * Attempt to take all pages in the order aligned region
1130                  * surrounding the tag page.  Only take those pages of
1131                  * the same active state as that tag page.  We may safely
1132                  * round the target page pfn down to the requested order
1133                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1134                  * where that page is in a different zone we will detect
1135                  * it from its zone id and abort this block scan.
1136                  */
1137                 zone_id = page_zone_id(page);
1138                 page_pfn = page_to_pfn(page);
1139                 pfn = page_pfn & ~((1 << order) - 1);
1140                 end_pfn = pfn + (1 << order);
1141                 for (; pfn < end_pfn; pfn++) {
1142                         struct page *cursor_page;
1143
1144                         /* The target page is in the block, ignore it. */
1145                         if (unlikely(pfn == page_pfn))
1146                                 continue;
1147
1148                         /* Avoid holes within the zone. */
1149                         if (unlikely(!pfn_valid_within(pfn)))
1150                                 break;
1151
1152                         cursor_page = pfn_to_page(pfn);
1153
1154                         /* Check that we have not crossed a zone boundary. */
1155                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1156                                 break;
1157
1158                         /*
1159                          * If we don't have enough swap space, reclaiming of
1160                          * anon page which don't already have a swap slot is
1161                          * pointless.
1162                          */
1163                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1164                             !PageSwapCache(cursor_page))
1165                                 break;
1166
1167                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1168                                 list_move(&cursor_page->lru, dst);
1169                                 mem_cgroup_del_lru(cursor_page);
1170                                 nr_taken += hpage_nr_pages(page);
1171                                 nr_lumpy_taken++;
1172                                 if (PageDirty(cursor_page))
1173                                         nr_lumpy_dirty++;
1174                                 scan++;
1175                         } else {
1176                                 /*
1177                                  * Check if the page is freed already.
1178                                  *
1179                                  * We can't use page_count() as that
1180                                  * requires compound_head and we don't
1181                                  * have a pin on the page here. If a
1182                                  * page is tail, we may or may not
1183                                  * have isolated the head, so assume
1184                                  * it's not free, it'd be tricky to
1185                                  * track the head status without a
1186                                  * page pin.
1187                                  */
1188                                 if (!PageTail(cursor_page) &&
1189                                     !atomic_read(&cursor_page->_count))
1190                                         continue;
1191                                 break;
1192                         }
1193                 }
1194
1195                 /* If we break out of the loop above, lumpy reclaim failed */
1196                 if (pfn < end_pfn)
1197                         nr_lumpy_failed++;
1198         }
1199
1200         *scanned = scan;
1201
1202         trace_mm_vmscan_lru_isolate(order,
1203                         nr_to_scan, scan,
1204                         nr_taken,
1205                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1206                         mode);
1207         return nr_taken;
1208 }
1209
1210 static unsigned long isolate_pages_global(unsigned long nr,
1211                                         struct list_head *dst,
1212                                         unsigned long *scanned, int order,
1213                                         isolate_mode_t mode,
1214                                         struct zone *z, int active, int file)
1215 {
1216         int lru = LRU_BASE;
1217         if (active)
1218                 lru += LRU_ACTIVE;
1219         if (file)
1220                 lru += LRU_FILE;
1221         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1222                                                                 mode, file);
1223 }
1224
1225 /*
1226  * clear_active_flags() is a helper for shrink_active_list(), clearing
1227  * any active bits from the pages in the list.
1228  */
1229 static unsigned long clear_active_flags(struct list_head *page_list,
1230                                         unsigned int *count)
1231 {
1232         int nr_active = 0;
1233         int lru;
1234         struct page *page;
1235
1236         list_for_each_entry(page, page_list, lru) {
1237                 int numpages = hpage_nr_pages(page);
1238                 lru = page_lru_base_type(page);
1239                 if (PageActive(page)) {
1240                         lru += LRU_ACTIVE;
1241                         ClearPageActive(page);
1242                         nr_active += numpages;
1243                 }
1244                 if (count)
1245                         count[lru] += numpages;
1246         }
1247
1248         return nr_active;
1249 }
1250
1251 /**
1252  * isolate_lru_page - tries to isolate a page from its LRU list
1253  * @page: page to isolate from its LRU list
1254  *
1255  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1256  * vmstat statistic corresponding to whatever LRU list the page was on.
1257  *
1258  * Returns 0 if the page was removed from an LRU list.
1259  * Returns -EBUSY if the page was not on an LRU list.
1260  *
1261  * The returned page will have PageLRU() cleared.  If it was found on
1262  * the active list, it will have PageActive set.  If it was found on
1263  * the unevictable list, it will have the PageUnevictable bit set. That flag
1264  * may need to be cleared by the caller before letting the page go.
1265  *
1266  * The vmstat statistic corresponding to the list on which the page was
1267  * found will be decremented.
1268  *
1269  * Restrictions:
1270  * (1) Must be called with an elevated refcount on the page. This is a
1271  *     fundamentnal difference from isolate_lru_pages (which is called
1272  *     without a stable reference).
1273  * (2) the lru_lock must not be held.
1274  * (3) interrupts must be enabled.
1275  */
1276 int isolate_lru_page(struct page *page)
1277 {
1278         int ret = -EBUSY;
1279
1280         VM_BUG_ON(!page_count(page));
1281
1282         if (PageLRU(page)) {
1283                 struct zone *zone = page_zone(page);
1284
1285                 spin_lock_irq(&zone->lru_lock);
1286                 if (PageLRU(page)) {
1287                         int lru = page_lru(page);
1288                         ret = 0;
1289                         get_page(page);
1290                         ClearPageLRU(page);
1291
1292                         del_page_from_lru_list(zone, page, lru);
1293                 }
1294                 spin_unlock_irq(&zone->lru_lock);
1295         }
1296         return ret;
1297 }
1298
1299 /*
1300  * Are there way too many processes in the direct reclaim path already?
1301  */
1302 static int too_many_isolated(struct zone *zone, int file,
1303                 struct scan_control *sc)
1304 {
1305         unsigned long inactive, isolated;
1306
1307         if (current_is_kswapd())
1308                 return 0;
1309
1310         if (!scanning_global_lru(sc))
1311                 return 0;
1312
1313         if (file) {
1314                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1315                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1316         } else {
1317                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1318                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1319         }
1320
1321         return isolated > inactive;
1322 }
1323
1324 /*
1325  * TODO: Try merging with migrations version of putback_lru_pages
1326  */
1327 static noinline_for_stack void
1328 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1329                                 unsigned long nr_anon, unsigned long nr_file,
1330                                 struct list_head *page_list)
1331 {
1332         struct page *page;
1333         struct pagevec pvec;
1334         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1335
1336         pagevec_init(&pvec, 1);
1337
1338         /*
1339          * Put back any unfreeable pages.
1340          */
1341         spin_lock(&zone->lru_lock);
1342         while (!list_empty(page_list)) {
1343                 int lru;
1344                 page = lru_to_page(page_list);
1345                 VM_BUG_ON(PageLRU(page));
1346                 list_del(&page->lru);
1347                 if (unlikely(!page_evictable(page, NULL))) {
1348                         spin_unlock_irq(&zone->lru_lock);
1349                         putback_lru_page(page);
1350                         spin_lock_irq(&zone->lru_lock);
1351                         continue;
1352                 }
1353                 SetPageLRU(page);
1354                 lru = page_lru(page);
1355                 add_page_to_lru_list(zone, page, lru);
1356                 if (is_active_lru(lru)) {
1357                         int file = is_file_lru(lru);
1358                         int numpages = hpage_nr_pages(page);
1359                         reclaim_stat->recent_rotated[file] += numpages;
1360                 }
1361                 if (!pagevec_add(&pvec, page)) {
1362                         spin_unlock_irq(&zone->lru_lock);
1363                         __pagevec_release(&pvec);
1364                         spin_lock_irq(&zone->lru_lock);
1365                 }
1366         }
1367         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1368         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1369
1370         spin_unlock_irq(&zone->lru_lock);
1371         pagevec_release(&pvec);
1372 }
1373
1374 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1375                                         struct scan_control *sc,
1376                                         unsigned long *nr_anon,
1377                                         unsigned long *nr_file,
1378                                         struct list_head *isolated_list)
1379 {
1380         unsigned long nr_active;
1381         unsigned int count[NR_LRU_LISTS] = { 0, };
1382         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1383
1384         nr_active = clear_active_flags(isolated_list, count);
1385         __count_vm_events(PGDEACTIVATE, nr_active);
1386
1387         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1388                               -count[LRU_ACTIVE_FILE]);
1389         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1390                               -count[LRU_INACTIVE_FILE]);
1391         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1392                               -count[LRU_ACTIVE_ANON]);
1393         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1394                               -count[LRU_INACTIVE_ANON]);
1395
1396         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1397         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1398         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1399         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1400
1401         reclaim_stat->recent_scanned[0] += *nr_anon;
1402         reclaim_stat->recent_scanned[1] += *nr_file;
1403 }
1404
1405 /*
1406  * Returns true if a direct reclaim should wait on pages under writeback.
1407  *
1408  * If we are direct reclaiming for contiguous pages and we do not reclaim
1409  * everything in the list, try again and wait for writeback IO to complete.
1410  * This will stall high-order allocations noticeably. Only do that when really
1411  * need to free the pages under high memory pressure.
1412  */
1413 static inline bool should_reclaim_stall(unsigned long nr_taken,
1414                                         unsigned long nr_freed,
1415                                         int priority,
1416                                         struct scan_control *sc)
1417 {
1418         int lumpy_stall_priority;
1419
1420         /* kswapd should not stall on sync IO */
1421         if (current_is_kswapd())
1422                 return false;
1423
1424         /* Only stall on lumpy reclaim */
1425         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1426                 return false;
1427
1428         /* If we have reclaimed everything on the isolated list, no stall */
1429         if (nr_freed == nr_taken)
1430                 return false;
1431
1432         /*
1433          * For high-order allocations, there are two stall thresholds.
1434          * High-cost allocations stall immediately where as lower
1435          * order allocations such as stacks require the scanning
1436          * priority to be much higher before stalling.
1437          */
1438         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1439                 lumpy_stall_priority = DEF_PRIORITY;
1440         else
1441                 lumpy_stall_priority = DEF_PRIORITY / 3;
1442
1443         return priority <= lumpy_stall_priority;
1444 }
1445
1446 /*
1447  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1448  * of reclaimed pages
1449  */
1450 static noinline_for_stack unsigned long
1451 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1452                         struct scan_control *sc, int priority, int file)
1453 {
1454         LIST_HEAD(page_list);
1455         unsigned long nr_scanned;
1456         unsigned long nr_reclaimed = 0;
1457         unsigned long nr_taken;
1458         unsigned long nr_anon;
1459         unsigned long nr_file;
1460         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1461
1462         while (unlikely(too_many_isolated(zone, file, sc))) {
1463                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1464
1465                 /* We are about to die and free our memory. Return now. */
1466                 if (fatal_signal_pending(current))
1467                         return SWAP_CLUSTER_MAX;
1468         }
1469
1470         set_reclaim_mode(priority, sc, false);
1471         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1472                 reclaim_mode |= ISOLATE_ACTIVE;
1473
1474         lru_add_drain();
1475
1476         if (!sc->may_unmap)
1477                 reclaim_mode |= ISOLATE_UNMAPPED;
1478         if (!sc->may_writepage)
1479                 reclaim_mode |= ISOLATE_CLEAN;
1480
1481         spin_lock_irq(&zone->lru_lock);
1482
1483         if (scanning_global_lru(sc)) {
1484                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1485                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1486                 zone->pages_scanned += nr_scanned;
1487                 if (current_is_kswapd())
1488                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1489                                                nr_scanned);
1490                 else
1491                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1492                                                nr_scanned);
1493         } else {
1494                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1495                         &nr_scanned, sc->order, reclaim_mode, zone,
1496                         sc->mem_cgroup, 0, file);
1497                 /*
1498                  * mem_cgroup_isolate_pages() keeps track of
1499                  * scanned pages on its own.
1500                  */
1501         }
1502
1503         if (nr_taken == 0) {
1504                 spin_unlock_irq(&zone->lru_lock);
1505                 return 0;
1506         }
1507
1508         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1509
1510         spin_unlock_irq(&zone->lru_lock);
1511
1512         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1513
1514         /* Check if we should syncronously wait for writeback */
1515         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1516                 set_reclaim_mode(priority, sc, true);
1517                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1518         }
1519
1520         local_irq_disable();
1521         if (current_is_kswapd())
1522                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1523         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1524
1525         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1526
1527         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1528                 zone_idx(zone),
1529                 nr_scanned, nr_reclaimed,
1530                 priority,
1531                 trace_shrink_flags(file, sc->reclaim_mode));
1532         return nr_reclaimed;
1533 }
1534
1535 /*
1536  * This moves pages from the active list to the inactive list.
1537  *
1538  * We move them the other way if the page is referenced by one or more
1539  * processes, from rmap.
1540  *
1541  * If the pages are mostly unmapped, the processing is fast and it is
1542  * appropriate to hold zone->lru_lock across the whole operation.  But if
1543  * the pages are mapped, the processing is slow (page_referenced()) so we
1544  * should drop zone->lru_lock around each page.  It's impossible to balance
1545  * this, so instead we remove the pages from the LRU while processing them.
1546  * It is safe to rely on PG_active against the non-LRU pages in here because
1547  * nobody will play with that bit on a non-LRU page.
1548  *
1549  * The downside is that we have to touch page->_count against each page.
1550  * But we had to alter page->flags anyway.
1551  */
1552
1553 static void move_active_pages_to_lru(struct zone *zone,
1554                                      struct list_head *list,
1555                                      enum lru_list lru)
1556 {
1557         unsigned long pgmoved = 0;
1558         struct pagevec pvec;
1559         struct page *page;
1560
1561         pagevec_init(&pvec, 1);
1562
1563         while (!list_empty(list)) {
1564                 page = lru_to_page(list);
1565
1566                 VM_BUG_ON(PageLRU(page));
1567                 SetPageLRU(page);
1568
1569                 list_move(&page->lru, &zone->lru[lru].list);
1570                 mem_cgroup_add_lru_list(page, lru);
1571                 pgmoved += hpage_nr_pages(page);
1572
1573                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1574                         spin_unlock_irq(&zone->lru_lock);
1575                         if (buffer_heads_over_limit)
1576                                 pagevec_strip(&pvec);
1577                         __pagevec_release(&pvec);
1578                         spin_lock_irq(&zone->lru_lock);
1579                 }
1580         }
1581         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1582         if (!is_active_lru(lru))
1583                 __count_vm_events(PGDEACTIVATE, pgmoved);
1584 }
1585
1586 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1587                         struct scan_control *sc, int priority, int file)
1588 {
1589         unsigned long nr_taken;
1590         unsigned long pgscanned;
1591         unsigned long vm_flags;
1592         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1593         LIST_HEAD(l_active);
1594         LIST_HEAD(l_inactive);
1595         struct page *page;
1596         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1597         unsigned long nr_rotated = 0;
1598         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1599
1600         lru_add_drain();
1601
1602         if (!sc->may_unmap)
1603                 reclaim_mode |= ISOLATE_UNMAPPED;
1604         if (!sc->may_writepage)
1605                 reclaim_mode |= ISOLATE_CLEAN;
1606
1607         spin_lock_irq(&zone->lru_lock);
1608         if (scanning_global_lru(sc)) {
1609                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1610                                                 &pgscanned, sc->order,
1611                                                 reclaim_mode, zone,
1612                                                 1, file);
1613                 zone->pages_scanned += pgscanned;
1614         } else {
1615                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1616                                                 &pgscanned, sc->order,
1617                                                 reclaim_mode, zone,
1618                                                 sc->mem_cgroup, 1, file);
1619                 /*
1620                  * mem_cgroup_isolate_pages() keeps track of
1621                  * scanned pages on its own.
1622                  */
1623         }
1624
1625         reclaim_stat->recent_scanned[file] += nr_taken;
1626
1627         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1628         if (file)
1629                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1630         else
1631                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1632         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1633         spin_unlock_irq(&zone->lru_lock);
1634
1635         while (!list_empty(&l_hold)) {
1636                 cond_resched();
1637                 page = lru_to_page(&l_hold);
1638                 list_del(&page->lru);
1639
1640                 if (unlikely(!page_evictable(page, NULL))) {
1641                         putback_lru_page(page);
1642                         continue;
1643                 }
1644
1645                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1646                         nr_rotated += hpage_nr_pages(page);
1647                         /*
1648                          * Identify referenced, file-backed active pages and
1649                          * give them one more trip around the active list. So
1650                          * that executable code get better chances to stay in
1651                          * memory under moderate memory pressure.  Anon pages
1652                          * are not likely to be evicted by use-once streaming
1653                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1654                          * so we ignore them here.
1655                          */
1656                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1657                                 list_add(&page->lru, &l_active);
1658                                 continue;
1659                         }
1660                 }
1661
1662                 ClearPageActive(page);  /* we are de-activating */
1663                 list_add(&page->lru, &l_inactive);
1664         }
1665
1666         /*
1667          * Move pages back to the lru list.
1668          */
1669         spin_lock_irq(&zone->lru_lock);
1670         /*
1671          * Count referenced pages from currently used mappings as rotated,
1672          * even though only some of them are actually re-activated.  This
1673          * helps balance scan pressure between file and anonymous pages in
1674          * get_scan_ratio.
1675          */
1676         reclaim_stat->recent_rotated[file] += nr_rotated;
1677
1678         move_active_pages_to_lru(zone, &l_active,
1679                                                 LRU_ACTIVE + file * LRU_FILE);
1680         move_active_pages_to_lru(zone, &l_inactive,
1681                                                 LRU_BASE   + file * LRU_FILE);
1682         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1683         spin_unlock_irq(&zone->lru_lock);
1684 }
1685
1686 #ifdef CONFIG_SWAP
1687 static int inactive_anon_is_low_global(struct zone *zone)
1688 {
1689         unsigned long active, inactive;
1690
1691         active = zone_page_state(zone, NR_ACTIVE_ANON);
1692         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1693
1694         if (inactive * zone->inactive_ratio < active)
1695                 return 1;
1696
1697         return 0;
1698 }
1699
1700 /**
1701  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1702  * @zone: zone to check
1703  * @sc:   scan control of this context
1704  *
1705  * Returns true if the zone does not have enough inactive anon pages,
1706  * meaning some active anon pages need to be deactivated.
1707  */
1708 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1709 {
1710         int low;
1711
1712         /*
1713          * If we don't have swap space, anonymous page deactivation
1714          * is pointless.
1715          */
1716         if (!total_swap_pages)
1717                 return 0;
1718
1719         if (scanning_global_lru(sc))
1720                 low = inactive_anon_is_low_global(zone);
1721         else
1722                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1723         return low;
1724 }
1725 #else
1726 static inline int inactive_anon_is_low(struct zone *zone,
1727                                         struct scan_control *sc)
1728 {
1729         return 0;
1730 }
1731 #endif
1732
1733 static int inactive_file_is_low_global(struct zone *zone)
1734 {
1735         unsigned long active, inactive;
1736
1737         active = zone_page_state(zone, NR_ACTIVE_FILE);
1738         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1739
1740         return (active > inactive);
1741 }
1742
1743 /**
1744  * inactive_file_is_low - check if file pages need to be deactivated
1745  * @zone: zone to check
1746  * @sc:   scan control of this context
1747  *
1748  * When the system is doing streaming IO, memory pressure here
1749  * ensures that active file pages get deactivated, until more
1750  * than half of the file pages are on the inactive list.
1751  *
1752  * Once we get to that situation, protect the system's working
1753  * set from being evicted by disabling active file page aging.
1754  *
1755  * This uses a different ratio than the anonymous pages, because
1756  * the page cache uses a use-once replacement algorithm.
1757  */
1758 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1759 {
1760         int low;
1761
1762         if (scanning_global_lru(sc))
1763                 low = inactive_file_is_low_global(zone);
1764         else
1765                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1766         return low;
1767 }
1768
1769 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1770                                 int file)
1771 {
1772         if (file)
1773                 return inactive_file_is_low(zone, sc);
1774         else
1775                 return inactive_anon_is_low(zone, sc);
1776 }
1777
1778 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1779         struct zone *zone, struct scan_control *sc, int priority)
1780 {
1781         int file = is_file_lru(lru);
1782
1783         if (is_active_lru(lru)) {
1784                 if (inactive_list_is_low(zone, sc, file))
1785                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1786                 return 0;
1787         }
1788
1789         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1790 }
1791
1792 static int vmscan_swappiness(struct scan_control *sc)
1793 {
1794         if (scanning_global_lru(sc))
1795                 return vm_swappiness;
1796         return mem_cgroup_swappiness(sc->mem_cgroup);
1797 }
1798
1799 /*
1800  * Determine how aggressively the anon and file LRU lists should be
1801  * scanned.  The relative value of each set of LRU lists is determined
1802  * by looking at the fraction of the pages scanned we did rotate back
1803  * onto the active list instead of evict.
1804  *
1805  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1806  */
1807 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1808                                         unsigned long *nr, int priority)
1809 {
1810         unsigned long anon, file, free;
1811         unsigned long anon_prio, file_prio;
1812         unsigned long ap, fp;
1813         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1814         u64 fraction[2], denominator;
1815         enum lru_list l;
1816         int noswap = 0;
1817         bool force_scan = false;
1818
1819         /*
1820          * If the zone or memcg is small, nr[l] can be 0.  This
1821          * results in no scanning on this priority and a potential
1822          * priority drop.  Global direct reclaim can go to the next
1823          * zone and tends to have no problems. Global kswapd is for
1824          * zone balancing and it needs to scan a minimum amount. When
1825          * reclaiming for a memcg, a priority drop can cause high
1826          * latencies, so it's better to scan a minimum amount there as
1827          * well.
1828          */
1829         if (scanning_global_lru(sc) && current_is_kswapd())
1830                 force_scan = true;
1831         if (!scanning_global_lru(sc))
1832                 force_scan = true;
1833
1834         /* If we have no swap space, do not bother scanning anon pages. */
1835         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1836                 noswap = 1;
1837                 fraction[0] = 0;
1838                 fraction[1] = 1;
1839                 denominator = 1;
1840                 goto out;
1841         }
1842
1843         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1844                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1845         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1846                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1847
1848         if (scanning_global_lru(sc)) {
1849                 free  = zone_page_state(zone, NR_FREE_PAGES);
1850                 /* If we have very few page cache pages,
1851                    force-scan anon pages. */
1852                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1853                         fraction[0] = 1;
1854                         fraction[1] = 0;
1855                         denominator = 1;
1856                         goto out;
1857                 }
1858         }
1859
1860         /*
1861          * With swappiness at 100, anonymous and file have the same priority.
1862          * This scanning priority is essentially the inverse of IO cost.
1863          */
1864         anon_prio = vmscan_swappiness(sc);
1865         file_prio = 200 - vmscan_swappiness(sc);
1866
1867         /*
1868          * OK, so we have swap space and a fair amount of page cache
1869          * pages.  We use the recently rotated / recently scanned
1870          * ratios to determine how valuable each cache is.
1871          *
1872          * Because workloads change over time (and to avoid overflow)
1873          * we keep these statistics as a floating average, which ends
1874          * up weighing recent references more than old ones.
1875          *
1876          * anon in [0], file in [1]
1877          */
1878         spin_lock_irq(&zone->lru_lock);
1879         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1880                 reclaim_stat->recent_scanned[0] /= 2;
1881                 reclaim_stat->recent_rotated[0] /= 2;
1882         }
1883
1884         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1885                 reclaim_stat->recent_scanned[1] /= 2;
1886                 reclaim_stat->recent_rotated[1] /= 2;
1887         }
1888
1889         /*
1890          * The amount of pressure on anon vs file pages is inversely
1891          * proportional to the fraction of recently scanned pages on
1892          * each list that were recently referenced and in active use.
1893          */
1894         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1895         ap /= reclaim_stat->recent_rotated[0] + 1;
1896
1897         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1898         fp /= reclaim_stat->recent_rotated[1] + 1;
1899         spin_unlock_irq(&zone->lru_lock);
1900
1901         fraction[0] = ap;
1902         fraction[1] = fp;
1903         denominator = ap + fp + 1;
1904 out:
1905         for_each_evictable_lru(l) {
1906                 int file = is_file_lru(l);
1907                 unsigned long scan;
1908
1909                 scan = zone_nr_lru_pages(zone, sc, l);
1910                 if (priority || noswap) {
1911                         scan >>= priority;
1912                         if (!scan && force_scan)
1913                                 scan = SWAP_CLUSTER_MAX;
1914                         scan = div64_u64(scan * fraction[file], denominator);
1915                 }
1916                 nr[l] = scan;
1917         }
1918 }
1919
1920 /*
1921  * Reclaim/compaction depends on a number of pages being freed. To avoid
1922  * disruption to the system, a small number of order-0 pages continue to be
1923  * rotated and reclaimed in the normal fashion. However, by the time we get
1924  * back to the allocator and call try_to_compact_zone(), we ensure that
1925  * there are enough free pages for it to be likely successful
1926  */
1927 static inline bool should_continue_reclaim(struct zone *zone,
1928                                         unsigned long nr_reclaimed,
1929                                         unsigned long nr_scanned,
1930                                         struct scan_control *sc)
1931 {
1932         unsigned long pages_for_compaction;
1933         unsigned long inactive_lru_pages;
1934
1935         /* If not in reclaim/compaction mode, stop */
1936         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1937                 return false;
1938
1939         /* Consider stopping depending on scan and reclaim activity */
1940         if (sc->gfp_mask & __GFP_REPEAT) {
1941                 /*
1942                  * For __GFP_REPEAT allocations, stop reclaiming if the
1943                  * full LRU list has been scanned and we are still failing
1944                  * to reclaim pages. This full LRU scan is potentially
1945                  * expensive but a __GFP_REPEAT caller really wants to succeed
1946                  */
1947                 if (!nr_reclaimed && !nr_scanned)
1948                         return false;
1949         } else {
1950                 /*
1951                  * For non-__GFP_REPEAT allocations which can presumably
1952                  * fail without consequence, stop if we failed to reclaim
1953                  * any pages from the last SWAP_CLUSTER_MAX number of
1954                  * pages that were scanned. This will return to the
1955                  * caller faster at the risk reclaim/compaction and
1956                  * the resulting allocation attempt fails
1957                  */
1958                 if (!nr_reclaimed)
1959                         return false;
1960         }
1961
1962         /*
1963          * If we have not reclaimed enough pages for compaction and the
1964          * inactive lists are large enough, continue reclaiming
1965          */
1966         pages_for_compaction = (2UL << sc->order);
1967         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1968                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1969         if (sc->nr_reclaimed < pages_for_compaction &&
1970                         inactive_lru_pages > pages_for_compaction)
1971                 return true;
1972
1973         /* If compaction would go ahead or the allocation would succeed, stop */
1974         switch (compaction_suitable(zone, sc->order)) {
1975         case COMPACT_PARTIAL:
1976         case COMPACT_CONTINUE:
1977                 return false;
1978         default:
1979                 return true;
1980         }
1981 }
1982
1983 /*
1984  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1985  */
1986 static void shrink_zone(int priority, struct zone *zone,
1987                                 struct scan_control *sc)
1988 {
1989         unsigned long nr[NR_LRU_LISTS];
1990         unsigned long nr_to_scan;
1991         enum lru_list l;
1992         unsigned long nr_reclaimed, nr_scanned;
1993         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1994         struct blk_plug plug;
1995
1996 restart:
1997         nr_reclaimed = 0;
1998         nr_scanned = sc->nr_scanned;
1999         get_scan_count(zone, sc, nr, priority);
2000
2001         blk_start_plug(&plug);
2002         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2003                                         nr[LRU_INACTIVE_FILE]) {
2004                 for_each_evictable_lru(l) {
2005                         if (nr[l]) {
2006                                 nr_to_scan = min_t(unsigned long,
2007                                                    nr[l], SWAP_CLUSTER_MAX);
2008                                 nr[l] -= nr_to_scan;
2009
2010                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2011                                                             zone, sc, priority);
2012                         }
2013                 }
2014                 /*
2015                  * On large memory systems, scan >> priority can become
2016                  * really large. This is fine for the starting priority;
2017                  * we want to put equal scanning pressure on each zone.
2018                  * However, if the VM has a harder time of freeing pages,
2019                  * with multiple processes reclaiming pages, the total
2020                  * freeing target can get unreasonably large.
2021                  */
2022                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2023                         break;
2024         }
2025         blk_finish_plug(&plug);
2026         sc->nr_reclaimed += nr_reclaimed;
2027
2028         /*
2029          * Even if we did not try to evict anon pages at all, we want to
2030          * rebalance the anon lru active/inactive ratio.
2031          */
2032         if (inactive_anon_is_low(zone, sc))
2033                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2034
2035         /* reclaim/compaction might need reclaim to continue */
2036         if (should_continue_reclaim(zone, nr_reclaimed,
2037                                         sc->nr_scanned - nr_scanned, sc))
2038                 goto restart;
2039
2040         throttle_vm_writeout(sc->gfp_mask);
2041 }
2042
2043 /*
2044  * This is the direct reclaim path, for page-allocating processes.  We only
2045  * try to reclaim pages from zones which will satisfy the caller's allocation
2046  * request.
2047  *
2048  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2049  * Because:
2050  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2051  *    allocation or
2052  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2053  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2054  *    zone defense algorithm.
2055  *
2056  * If a zone is deemed to be full of pinned pages then just give it a light
2057  * scan then give up on it.
2058  */
2059 static void shrink_zones(int priority, struct zonelist *zonelist,
2060                                         struct scan_control *sc)
2061 {
2062         struct zoneref *z;
2063         struct zone *zone;
2064         unsigned long nr_soft_reclaimed;
2065         unsigned long nr_soft_scanned;
2066
2067         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2068                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2069                 if (!populated_zone(zone))
2070                         continue;
2071                 /*
2072                  * Take care memory controller reclaiming has small influence
2073                  * to global LRU.
2074                  */
2075                 if (scanning_global_lru(sc)) {
2076                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2077                                 continue;
2078                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2079                                 continue;       /* Let kswapd poll it */
2080                         /*
2081                          * This steals pages from memory cgroups over softlimit
2082                          * and returns the number of reclaimed pages and
2083                          * scanned pages. This works for global memory pressure
2084                          * and balancing, not for a memcg's limit.
2085                          */
2086                         nr_soft_scanned = 0;
2087                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2088                                                 sc->order, sc->gfp_mask,
2089                                                 &nr_soft_scanned);
2090                         sc->nr_reclaimed += nr_soft_reclaimed;
2091                         sc->nr_scanned += nr_soft_scanned;
2092                         /* need some check for avoid more shrink_zone() */
2093                 }
2094
2095                 shrink_zone(priority, zone, sc);
2096         }
2097 }
2098
2099 static bool zone_reclaimable(struct zone *zone)
2100 {
2101         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2102 }
2103
2104 /* All zones in zonelist are unreclaimable? */
2105 static bool all_unreclaimable(struct zonelist *zonelist,
2106                 struct scan_control *sc)
2107 {
2108         struct zoneref *z;
2109         struct zone *zone;
2110
2111         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2112                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2113                 if (!populated_zone(zone))
2114                         continue;
2115                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2116                         continue;
2117                 if (!zone->all_unreclaimable)
2118                         return false;
2119         }
2120
2121         return true;
2122 }
2123
2124 /*
2125  * This is the main entry point to direct page reclaim.
2126  *
2127  * If a full scan of the inactive list fails to free enough memory then we
2128  * are "out of memory" and something needs to be killed.
2129  *
2130  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2131  * high - the zone may be full of dirty or under-writeback pages, which this
2132  * caller can't do much about.  We kick the writeback threads and take explicit
2133  * naps in the hope that some of these pages can be written.  But if the
2134  * allocating task holds filesystem locks which prevent writeout this might not
2135  * work, and the allocation attempt will fail.
2136  *
2137  * returns:     0, if no pages reclaimed
2138  *              else, the number of pages reclaimed
2139  */
2140 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2141                                         struct scan_control *sc,
2142                                         struct shrink_control *shrink)
2143 {
2144         int priority;
2145         unsigned long total_scanned = 0;
2146         struct reclaim_state *reclaim_state = current->reclaim_state;
2147         struct zoneref *z;
2148         struct zone *zone;
2149         unsigned long writeback_threshold;
2150
2151         get_mems_allowed();
2152         delayacct_freepages_start();
2153
2154         if (scanning_global_lru(sc))
2155                 count_vm_event(ALLOCSTALL);
2156
2157         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2158                 sc->nr_scanned = 0;
2159                 if (!priority)
2160                         disable_swap_token(sc->mem_cgroup);
2161                 shrink_zones(priority, zonelist, sc);
2162                 /*
2163                  * Don't shrink slabs when reclaiming memory from
2164                  * over limit cgroups
2165                  */
2166                 if (scanning_global_lru(sc)) {
2167                         unsigned long lru_pages = 0;
2168                         for_each_zone_zonelist(zone, z, zonelist,
2169                                         gfp_zone(sc->gfp_mask)) {
2170                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2171                                         continue;
2172
2173                                 lru_pages += zone_reclaimable_pages(zone);
2174                         }
2175
2176                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2177                         if (reclaim_state) {
2178                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2179                                 reclaim_state->reclaimed_slab = 0;
2180                         }
2181                 }
2182                 total_scanned += sc->nr_scanned;
2183                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2184                         goto out;
2185
2186                 /*
2187                  * Try to write back as many pages as we just scanned.  This
2188                  * tends to cause slow streaming writers to write data to the
2189                  * disk smoothly, at the dirtying rate, which is nice.   But
2190                  * that's undesirable in laptop mode, where we *want* lumpy
2191                  * writeout.  So in laptop mode, write out the whole world.
2192                  */
2193                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2194                 if (total_scanned > writeback_threshold) {
2195                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2196                         sc->may_writepage = 1;
2197                 }
2198
2199                 /* Take a nap, wait for some writeback to complete */
2200                 if (!sc->hibernation_mode && sc->nr_scanned &&
2201                     priority < DEF_PRIORITY - 2) {
2202                         struct zone *preferred_zone;
2203
2204                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2205                                                 &cpuset_current_mems_allowed,
2206                                                 &preferred_zone);
2207                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2208                 }
2209         }
2210
2211 out:
2212         delayacct_freepages_end();
2213         put_mems_allowed();
2214
2215         if (sc->nr_reclaimed)
2216                 return sc->nr_reclaimed;
2217
2218         /*
2219          * As hibernation is going on, kswapd is freezed so that it can't mark
2220          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2221          * check.
2222          */
2223         if (oom_killer_disabled)
2224                 return 0;
2225
2226         /* top priority shrink_zones still had more to do? don't OOM, then */
2227         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2228                 return 1;
2229
2230         return 0;
2231 }
2232
2233 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2234                                 gfp_t gfp_mask, nodemask_t *nodemask)
2235 {
2236         unsigned long nr_reclaimed;
2237         struct scan_control sc = {
2238                 .gfp_mask = gfp_mask,
2239                 .may_writepage = !laptop_mode,
2240                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2241                 .may_unmap = 1,
2242                 .may_swap = 1,
2243                 .order = order,
2244                 .mem_cgroup = NULL,
2245                 .nodemask = nodemask,
2246         };
2247         struct shrink_control shrink = {
2248                 .gfp_mask = sc.gfp_mask,
2249         };
2250
2251         trace_mm_vmscan_direct_reclaim_begin(order,
2252                                 sc.may_writepage,
2253                                 gfp_mask);
2254
2255         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2256
2257         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2258
2259         return nr_reclaimed;
2260 }
2261
2262 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2263
2264 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2265                                                 gfp_t gfp_mask, bool noswap,
2266                                                 struct zone *zone,
2267                                                 unsigned long *nr_scanned)
2268 {
2269         struct scan_control sc = {
2270                 .nr_scanned = 0,
2271                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2272                 .may_writepage = !laptop_mode,
2273                 .may_unmap = 1,
2274                 .may_swap = !noswap,
2275                 .order = 0,
2276                 .mem_cgroup = mem,
2277         };
2278
2279         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2280                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2281
2282         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2283                                                       sc.may_writepage,
2284                                                       sc.gfp_mask);
2285
2286         /*
2287          * NOTE: Although we can get the priority field, using it
2288          * here is not a good idea, since it limits the pages we can scan.
2289          * if we don't reclaim here, the shrink_zone from balance_pgdat
2290          * will pick up pages from other mem cgroup's as well. We hack
2291          * the priority and make it zero.
2292          */
2293         shrink_zone(0, zone, &sc);
2294
2295         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2296
2297         *nr_scanned = sc.nr_scanned;
2298         return sc.nr_reclaimed;
2299 }
2300
2301 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2302                                            gfp_t gfp_mask,
2303                                            bool noswap)
2304 {
2305         struct zonelist *zonelist;
2306         unsigned long nr_reclaimed;
2307         int nid;
2308         struct scan_control sc = {
2309                 .may_writepage = !laptop_mode,
2310                 .may_unmap = 1,
2311                 .may_swap = !noswap,
2312                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2313                 .order = 0,
2314                 .mem_cgroup = mem_cont,
2315                 .nodemask = NULL, /* we don't care the placement */
2316                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2317                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2318         };
2319         struct shrink_control shrink = {
2320                 .gfp_mask = sc.gfp_mask,
2321         };
2322
2323         /*
2324          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2325          * take care of from where we get pages. So the node where we start the
2326          * scan does not need to be the current node.
2327          */
2328         nid = mem_cgroup_select_victim_node(mem_cont);
2329
2330         zonelist = NODE_DATA(nid)->node_zonelists;
2331
2332         trace_mm_vmscan_memcg_reclaim_begin(0,
2333                                             sc.may_writepage,
2334                                             sc.gfp_mask);
2335
2336         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2337
2338         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2339
2340         return nr_reclaimed;
2341 }
2342 #endif
2343
2344 /*
2345  * pgdat_balanced is used when checking if a node is balanced for high-order
2346  * allocations. Only zones that meet watermarks and are in a zone allowed
2347  * by the callers classzone_idx are added to balanced_pages. The total of
2348  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2349  * for the node to be considered balanced. Forcing all zones to be balanced
2350  * for high orders can cause excessive reclaim when there are imbalanced zones.
2351  * The choice of 25% is due to
2352  *   o a 16M DMA zone that is balanced will not balance a zone on any
2353  *     reasonable sized machine
2354  *   o On all other machines, the top zone must be at least a reasonable
2355  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2356  *     would need to be at least 256M for it to be balance a whole node.
2357  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2358  *     to balance a node on its own. These seemed like reasonable ratios.
2359  */
2360 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2361                                                 int classzone_idx)
2362 {
2363         unsigned long present_pages = 0;
2364         int i;
2365
2366         for (i = 0; i <= classzone_idx; i++)
2367                 present_pages += pgdat->node_zones[i].present_pages;
2368
2369         /* A special case here: if zone has no page, we think it's balanced */
2370         return balanced_pages >= (present_pages >> 2);
2371 }
2372
2373 /* is kswapd sleeping prematurely? */
2374 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2375                                         int classzone_idx)
2376 {
2377         int i;
2378         unsigned long balanced = 0;
2379         bool all_zones_ok = true;
2380
2381         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2382         if (remaining)
2383                 return true;
2384
2385         /* Check the watermark levels */
2386         for (i = 0; i <= classzone_idx; i++) {
2387                 struct zone *zone = pgdat->node_zones + i;
2388
2389                 if (!populated_zone(zone))
2390                         continue;
2391
2392                 /*
2393                  * balance_pgdat() skips over all_unreclaimable after
2394                  * DEF_PRIORITY. Effectively, it considers them balanced so
2395                  * they must be considered balanced here as well if kswapd
2396                  * is to sleep
2397                  */
2398                 if (zone->all_unreclaimable) {
2399                         balanced += zone->present_pages;
2400                         continue;
2401                 }
2402
2403                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2404                                                         i, 0))
2405                         all_zones_ok = false;
2406                 else
2407                         balanced += zone->present_pages;
2408         }
2409
2410         /*
2411          * For high-order requests, the balanced zones must contain at least
2412          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2413          * must be balanced
2414          */
2415         if (order)
2416                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2417         else
2418                 return !all_zones_ok;
2419 }
2420
2421 /*
2422  * For kswapd, balance_pgdat() will work across all this node's zones until
2423  * they are all at high_wmark_pages(zone).
2424  *
2425  * Returns the final order kswapd was reclaiming at
2426  *
2427  * There is special handling here for zones which are full of pinned pages.
2428  * This can happen if the pages are all mlocked, or if they are all used by
2429  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2430  * What we do is to detect the case where all pages in the zone have been
2431  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2432  * dead and from now on, only perform a short scan.  Basically we're polling
2433  * the zone for when the problem goes away.
2434  *
2435  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2436  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2437  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2438  * lower zones regardless of the number of free pages in the lower zones. This
2439  * interoperates with the page allocator fallback scheme to ensure that aging
2440  * of pages is balanced across the zones.
2441  */
2442 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2443                                                         int *classzone_idx)
2444 {
2445         int all_zones_ok;
2446         unsigned long balanced;
2447         int priority;
2448         int i;
2449         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2450         unsigned long total_scanned;
2451         struct reclaim_state *reclaim_state = current->reclaim_state;
2452         unsigned long nr_soft_reclaimed;
2453         unsigned long nr_soft_scanned;
2454         struct scan_control sc = {
2455                 .gfp_mask = GFP_KERNEL,
2456                 .may_unmap = 1,
2457                 .may_swap = 1,
2458                 /*
2459                  * kswapd doesn't want to be bailed out while reclaim. because
2460                  * we want to put equal scanning pressure on each zone.
2461                  */
2462                 .nr_to_reclaim = ULONG_MAX,
2463                 .order = order,
2464                 .mem_cgroup = NULL,
2465         };
2466         struct shrink_control shrink = {
2467                 .gfp_mask = sc.gfp_mask,
2468         };
2469 loop_again:
2470         total_scanned = 0;
2471         sc.nr_reclaimed = 0;
2472         sc.may_writepage = !laptop_mode;
2473         count_vm_event(PAGEOUTRUN);
2474
2475         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2476                 unsigned long lru_pages = 0;
2477                 int has_under_min_watermark_zone = 0;
2478
2479                 /* The swap token gets in the way of swapout... */
2480                 if (!priority)
2481                         disable_swap_token(NULL);
2482
2483                 all_zones_ok = 1;
2484                 balanced = 0;
2485
2486                 /*
2487                  * Scan in the highmem->dma direction for the highest
2488                  * zone which needs scanning
2489                  */
2490                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2491                         struct zone *zone = pgdat->node_zones + i;
2492
2493                         if (!populated_zone(zone))
2494                                 continue;
2495
2496                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2497                                 continue;
2498
2499                         /*
2500                          * Do some background aging of the anon list, to give
2501                          * pages a chance to be referenced before reclaiming.
2502                          */
2503                         if (inactive_anon_is_low(zone, &sc))
2504                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2505                                                         &sc, priority, 0);
2506
2507                         if (!zone_watermark_ok_safe(zone, order,
2508                                         high_wmark_pages(zone), 0, 0)) {
2509                                 end_zone = i;
2510                                 break;
2511                         } else {
2512                                 /* If balanced, clear the congested flag */
2513                                 zone_clear_flag(zone, ZONE_CONGESTED);
2514                         }
2515                 }
2516                 if (i < 0)
2517                         goto out;
2518
2519                 for (i = 0; i <= end_zone; i++) {
2520                         struct zone *zone = pgdat->node_zones + i;
2521
2522                         lru_pages += zone_reclaimable_pages(zone);
2523                 }
2524
2525                 /*
2526                  * Now scan the zone in the dma->highmem direction, stopping
2527                  * at the last zone which needs scanning.
2528                  *
2529                  * We do this because the page allocator works in the opposite
2530                  * direction.  This prevents the page allocator from allocating
2531                  * pages behind kswapd's direction of progress, which would
2532                  * cause too much scanning of the lower zones.
2533                  */
2534                 for (i = 0; i <= end_zone; i++) {
2535                         struct zone *zone = pgdat->node_zones + i;
2536                         int nr_slab;
2537                         unsigned long balance_gap;
2538
2539                         if (!populated_zone(zone))
2540                                 continue;
2541
2542                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2543                                 continue;
2544
2545                         sc.nr_scanned = 0;
2546
2547                         nr_soft_scanned = 0;
2548                         /*
2549                          * Call soft limit reclaim before calling shrink_zone.
2550                          */
2551                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2552                                                         order, sc.gfp_mask,
2553                                                         &nr_soft_scanned);
2554                         sc.nr_reclaimed += nr_soft_reclaimed;
2555                         total_scanned += nr_soft_scanned;
2556
2557                         /*
2558                          * We put equal pressure on every zone, unless
2559                          * one zone has way too many pages free
2560                          * already. The "too many pages" is defined
2561                          * as the high wmark plus a "gap" where the
2562                          * gap is either the low watermark or 1%
2563                          * of the zone, whichever is smaller.
2564                          */
2565                         balance_gap = min(low_wmark_pages(zone),
2566                                 (zone->present_pages +
2567                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2568                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2569                         if (!zone_watermark_ok_safe(zone, order,
2570                                         high_wmark_pages(zone) + balance_gap,
2571                                         end_zone, 0)) {
2572                                 shrink_zone(priority, zone, &sc);
2573
2574                                 reclaim_state->reclaimed_slab = 0;
2575                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2576                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2577                                 total_scanned += sc.nr_scanned;
2578
2579                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2580                                         zone->all_unreclaimable = 1;
2581                         }
2582
2583                         /*
2584                          * If we've done a decent amount of scanning and
2585                          * the reclaim ratio is low, start doing writepage
2586                          * even in laptop mode
2587                          */
2588                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2589                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2590                                 sc.may_writepage = 1;
2591
2592                         if (zone->all_unreclaimable) {
2593                                 if (end_zone && end_zone == i)
2594                                         end_zone--;
2595                                 continue;
2596                         }
2597
2598                         if (!zone_watermark_ok_safe(zone, order,
2599                                         high_wmark_pages(zone), end_zone, 0)) {
2600                                 all_zones_ok = 0;
2601                                 /*
2602                                  * We are still under min water mark.  This
2603                                  * means that we have a GFP_ATOMIC allocation
2604                                  * failure risk. Hurry up!
2605                                  */
2606                                 if (!zone_watermark_ok_safe(zone, order,
2607                                             min_wmark_pages(zone), end_zone, 0))
2608                                         has_under_min_watermark_zone = 1;
2609                         } else {
2610                                 /*
2611                                  * If a zone reaches its high watermark,
2612                                  * consider it to be no longer congested. It's
2613                                  * possible there are dirty pages backed by
2614                                  * congested BDIs but as pressure is relieved,
2615                                  * spectulatively avoid congestion waits
2616                                  */
2617                                 zone_clear_flag(zone, ZONE_CONGESTED);
2618                                 if (i <= *classzone_idx)
2619                                         balanced += zone->present_pages;
2620                         }
2621
2622                 }
2623                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2624                         break;          /* kswapd: all done */
2625                 /*
2626                  * OK, kswapd is getting into trouble.  Take a nap, then take
2627                  * another pass across the zones.
2628                  */
2629                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2630                         if (has_under_min_watermark_zone)
2631                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2632                         else
2633                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2634                 }
2635
2636                 /*
2637                  * We do this so kswapd doesn't build up large priorities for
2638                  * example when it is freeing in parallel with allocators. It
2639                  * matches the direct reclaim path behaviour in terms of impact
2640                  * on zone->*_priority.
2641                  */
2642                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2643                         break;
2644         }
2645 out:
2646
2647         /*
2648          * order-0: All zones must meet high watermark for a balanced node
2649          * high-order: Balanced zones must make up at least 25% of the node
2650          *             for the node to be balanced
2651          */
2652         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2653                 cond_resched();
2654
2655                 try_to_freeze();
2656
2657                 /*
2658                  * Fragmentation may mean that the system cannot be
2659                  * rebalanced for high-order allocations in all zones.
2660                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2661                  * it means the zones have been fully scanned and are still
2662                  * not balanced. For high-order allocations, there is
2663                  * little point trying all over again as kswapd may
2664                  * infinite loop.
2665                  *
2666                  * Instead, recheck all watermarks at order-0 as they
2667                  * are the most important. If watermarks are ok, kswapd will go
2668                  * back to sleep. High-order users can still perform direct
2669                  * reclaim if they wish.
2670                  */
2671                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2672                         order = sc.order = 0;
2673
2674                 goto loop_again;
2675         }
2676
2677         /*
2678          * If kswapd was reclaiming at a higher order, it has the option of
2679          * sleeping without all zones being balanced. Before it does, it must
2680          * ensure that the watermarks for order-0 on *all* zones are met and
2681          * that the congestion flags are cleared. The congestion flag must
2682          * be cleared as kswapd is the only mechanism that clears the flag
2683          * and it is potentially going to sleep here.
2684          */
2685         if (order) {
2686                 for (i = 0; i <= end_zone; i++) {
2687                         struct zone *zone = pgdat->node_zones + i;
2688
2689                         if (!populated_zone(zone))
2690                                 continue;
2691
2692                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2693                                 continue;
2694
2695                         /* Confirm the zone is balanced for order-0 */
2696                         if (!zone_watermark_ok(zone, 0,
2697                                         high_wmark_pages(zone), 0, 0)) {
2698                                 order = sc.order = 0;
2699                                 goto loop_again;
2700                         }
2701
2702                         /* If balanced, clear the congested flag */
2703                         zone_clear_flag(zone, ZONE_CONGESTED);
2704                 }
2705         }
2706
2707         /*
2708          * Return the order we were reclaiming at so sleeping_prematurely()
2709          * makes a decision on the order we were last reclaiming at. However,
2710          * if another caller entered the allocator slow path while kswapd
2711          * was awake, order will remain at the higher level
2712          */
2713         *classzone_idx = end_zone;
2714         return order;
2715 }
2716
2717 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2718 {
2719         long remaining = 0;
2720         DEFINE_WAIT(wait);
2721
2722         if (freezing(current) || kthread_should_stop())
2723                 return;
2724
2725         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2726
2727         /* Try to sleep for a short interval */
2728         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2729                 remaining = schedule_timeout(HZ/10);
2730                 finish_wait(&pgdat->kswapd_wait, &wait);
2731                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2732         }
2733
2734         /*
2735          * After a short sleep, check if it was a premature sleep. If not, then
2736          * go fully to sleep until explicitly woken up.
2737          */
2738         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2739                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2740
2741                 /*
2742                  * vmstat counters are not perfectly accurate and the estimated
2743                  * value for counters such as NR_FREE_PAGES can deviate from the
2744                  * true value by nr_online_cpus * threshold. To avoid the zone
2745                  * watermarks being breached while under pressure, we reduce the
2746                  * per-cpu vmstat threshold while kswapd is awake and restore
2747                  * them before going back to sleep.
2748                  */
2749                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2750                 schedule();
2751                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2752         } else {
2753                 if (remaining)
2754                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2755                 else
2756                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2757         }
2758         finish_wait(&pgdat->kswapd_wait, &wait);
2759 }
2760
2761 /*
2762  * The background pageout daemon, started as a kernel thread
2763  * from the init process.
2764  *
2765  * This basically trickles out pages so that we have _some_
2766  * free memory available even if there is no other activity
2767  * that frees anything up. This is needed for things like routing
2768  * etc, where we otherwise might have all activity going on in
2769  * asynchronous contexts that cannot page things out.
2770  *
2771  * If there are applications that are active memory-allocators
2772  * (most normal use), this basically shouldn't matter.
2773  */
2774 static int kswapd(void *p)
2775 {
2776         unsigned long order, new_order;
2777         int classzone_idx, new_classzone_idx;
2778         pg_data_t *pgdat = (pg_data_t*)p;
2779         struct task_struct *tsk = current;
2780
2781         struct reclaim_state reclaim_state = {
2782                 .reclaimed_slab = 0,
2783         };
2784         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2785
2786         lockdep_set_current_reclaim_state(GFP_KERNEL);
2787
2788         if (!cpumask_empty(cpumask))
2789                 set_cpus_allowed_ptr(tsk, cpumask);
2790         current->reclaim_state = &reclaim_state;
2791
2792         /*
2793          * Tell the memory management that we're a "memory allocator",
2794          * and that if we need more memory we should get access to it
2795          * regardless (see "__alloc_pages()"). "kswapd" should
2796          * never get caught in the normal page freeing logic.
2797          *
2798          * (Kswapd normally doesn't need memory anyway, but sometimes
2799          * you need a small amount of memory in order to be able to
2800          * page out something else, and this flag essentially protects
2801          * us from recursively trying to free more memory as we're
2802          * trying to free the first piece of memory in the first place).
2803          */
2804         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2805         set_freezable();
2806
2807         order = new_order = 0;
2808         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2809         for ( ; ; ) {
2810                 int ret;
2811
2812                 /*
2813                  * If the last balance_pgdat was unsuccessful it's unlikely a
2814                  * new request of a similar or harder type will succeed soon
2815                  * so consider going to sleep on the basis we reclaimed at
2816                  */
2817                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2818                         new_order = pgdat->kswapd_max_order;
2819                         new_classzone_idx = pgdat->classzone_idx;
2820                         pgdat->kswapd_max_order =  0;
2821                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2822                 }
2823
2824                 if (order < new_order || classzone_idx > new_classzone_idx) {
2825                         /*
2826                          * Don't sleep if someone wants a larger 'order'
2827                          * allocation or has tigher zone constraints
2828                          */
2829                         order = new_order;
2830                         classzone_idx = new_classzone_idx;
2831                 } else {
2832                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2833                         order = pgdat->kswapd_max_order;
2834                         classzone_idx = pgdat->classzone_idx;
2835                         pgdat->kswapd_max_order = 0;
2836                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2837                 }
2838
2839                 ret = try_to_freeze();
2840                 if (kthread_should_stop())
2841                         break;
2842
2843                 /*
2844                  * We can speed up thawing tasks if we don't call balance_pgdat
2845                  * after returning from the refrigerator
2846                  */
2847                 if (!ret) {
2848                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2849                         order = balance_pgdat(pgdat, order, &classzone_idx);
2850                 }
2851         }
2852         return 0;
2853 }
2854
2855 /*
2856  * A zone is low on free memory, so wake its kswapd task to service it.
2857  */
2858 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2859 {
2860         pg_data_t *pgdat;
2861
2862         if (!populated_zone(zone))
2863                 return;
2864
2865         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2866                 return;
2867         pgdat = zone->zone_pgdat;
2868         if (pgdat->kswapd_max_order < order) {
2869                 pgdat->kswapd_max_order = order;
2870                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2871         }
2872         if (!waitqueue_active(&pgdat->kswapd_wait))
2873                 return;
2874         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2875                 return;
2876
2877         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2878         wake_up_interruptible(&pgdat->kswapd_wait);
2879 }
2880
2881 /*
2882  * The reclaimable count would be mostly accurate.
2883  * The less reclaimable pages may be
2884  * - mlocked pages, which will be moved to unevictable list when encountered
2885  * - mapped pages, which may require several travels to be reclaimed
2886  * - dirty pages, which is not "instantly" reclaimable
2887  */
2888 unsigned long global_reclaimable_pages(void)
2889 {
2890         int nr;
2891
2892         nr = global_page_state(NR_ACTIVE_FILE) +
2893              global_page_state(NR_INACTIVE_FILE);
2894
2895         if (nr_swap_pages > 0)
2896                 nr += global_page_state(NR_ACTIVE_ANON) +
2897                       global_page_state(NR_INACTIVE_ANON);
2898
2899         return nr;
2900 }
2901
2902 unsigned long zone_reclaimable_pages(struct zone *zone)
2903 {
2904         int nr;
2905
2906         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2907              zone_page_state(zone, NR_INACTIVE_FILE);
2908
2909         if (nr_swap_pages > 0)
2910                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2911                       zone_page_state(zone, NR_INACTIVE_ANON);
2912
2913         return nr;
2914 }
2915
2916 #ifdef CONFIG_HIBERNATION
2917 /*
2918  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2919  * freed pages.
2920  *
2921  * Rather than trying to age LRUs the aim is to preserve the overall
2922  * LRU order by reclaiming preferentially
2923  * inactive > active > active referenced > active mapped
2924  */
2925 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2926 {
2927         struct reclaim_state reclaim_state;
2928         struct scan_control sc = {
2929                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2930                 .may_swap = 1,
2931                 .may_unmap = 1,
2932                 .may_writepage = 1,
2933                 .nr_to_reclaim = nr_to_reclaim,
2934                 .hibernation_mode = 1,
2935                 .order = 0,
2936         };
2937         struct shrink_control shrink = {
2938                 .gfp_mask = sc.gfp_mask,
2939         };
2940         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2941         struct task_struct *p = current;
2942         unsigned long nr_reclaimed;
2943
2944         p->flags |= PF_MEMALLOC;
2945         lockdep_set_current_reclaim_state(sc.gfp_mask);
2946         reclaim_state.reclaimed_slab = 0;
2947         p->reclaim_state = &reclaim_state;
2948
2949         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2950
2951         p->reclaim_state = NULL;
2952         lockdep_clear_current_reclaim_state();
2953         p->flags &= ~PF_MEMALLOC;
2954
2955         return nr_reclaimed;
2956 }
2957 #endif /* CONFIG_HIBERNATION */
2958
2959 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2960    not required for correctness.  So if the last cpu in a node goes
2961    away, we get changed to run anywhere: as the first one comes back,
2962    restore their cpu bindings. */
2963 static int __devinit cpu_callback(struct notifier_block *nfb,
2964                                   unsigned long action, void *hcpu)
2965 {
2966         int nid;
2967
2968         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2969                 for_each_node_state(nid, N_HIGH_MEMORY) {
2970                         pg_data_t *pgdat = NODE_DATA(nid);
2971                         const struct cpumask *mask;
2972
2973                         mask = cpumask_of_node(pgdat->node_id);
2974
2975                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2976                                 /* One of our CPUs online: restore mask */
2977                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2978                 }
2979         }
2980         return NOTIFY_OK;
2981 }
2982
2983 /*
2984  * This kswapd start function will be called by init and node-hot-add.
2985  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2986  */
2987 int kswapd_run(int nid)
2988 {
2989         pg_data_t *pgdat = NODE_DATA(nid);
2990         int ret = 0;
2991
2992         if (pgdat->kswapd)
2993                 return 0;
2994
2995         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2996         if (IS_ERR(pgdat->kswapd)) {
2997                 /* failure at boot is fatal */
2998                 BUG_ON(system_state == SYSTEM_BOOTING);
2999                 printk("Failed to start kswapd on node %d\n",nid);
3000                 ret = -1;
3001         }
3002         return ret;
3003 }
3004
3005 /*
3006  * Called by memory hotplug when all memory in a node is offlined.
3007  */
3008 void kswapd_stop(int nid)
3009 {
3010         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3011
3012         if (kswapd)
3013                 kthread_stop(kswapd);
3014 }
3015
3016 static int __init kswapd_init(void)
3017 {
3018         int nid;
3019
3020         swap_setup();
3021         for_each_node_state(nid, N_HIGH_MEMORY)
3022                 kswapd_run(nid);
3023         hotcpu_notifier(cpu_callback, 0);
3024         return 0;
3025 }
3026
3027 module_init(kswapd_init)
3028
3029 #ifdef CONFIG_NUMA
3030 /*
3031  * Zone reclaim mode
3032  *
3033  * If non-zero call zone_reclaim when the number of free pages falls below
3034  * the watermarks.
3035  */
3036 int zone_reclaim_mode __read_mostly;
3037
3038 #define RECLAIM_OFF 0
3039 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3040 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3041 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3042
3043 /*
3044  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3045  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3046  * a zone.
3047  */
3048 #define ZONE_RECLAIM_PRIORITY 4
3049
3050 /*
3051  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3052  * occur.
3053  */
3054 int sysctl_min_unmapped_ratio = 1;
3055
3056 /*
3057  * If the number of slab pages in a zone grows beyond this percentage then
3058  * slab reclaim needs to occur.
3059  */
3060 int sysctl_min_slab_ratio = 5;
3061
3062 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3063 {
3064         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3065         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3066                 zone_page_state(zone, NR_ACTIVE_FILE);
3067
3068         /*
3069          * It's possible for there to be more file mapped pages than
3070          * accounted for by the pages on the file LRU lists because
3071          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3072          */
3073         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3074 }
3075
3076 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3077 static long zone_pagecache_reclaimable(struct zone *zone)
3078 {
3079         long nr_pagecache_reclaimable;
3080         long delta = 0;
3081
3082         /*
3083          * If RECLAIM_SWAP is set, then all file pages are considered
3084          * potentially reclaimable. Otherwise, we have to worry about
3085          * pages like swapcache and zone_unmapped_file_pages() provides
3086          * a better estimate
3087          */
3088         if (zone_reclaim_mode & RECLAIM_SWAP)
3089                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3090         else
3091                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3092
3093         /* If we can't clean pages, remove dirty pages from consideration */
3094         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3095                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3096
3097         /* Watch for any possible underflows due to delta */
3098         if (unlikely(delta > nr_pagecache_reclaimable))
3099                 delta = nr_pagecache_reclaimable;
3100
3101         return nr_pagecache_reclaimable - delta;
3102 }
3103
3104 /*
3105  * Try to free up some pages from this zone through reclaim.
3106  */
3107 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3108 {
3109         /* Minimum pages needed in order to stay on node */
3110         const unsigned long nr_pages = 1 << order;
3111         struct task_struct *p = current;
3112         struct reclaim_state reclaim_state;
3113         int priority;
3114         struct scan_control sc = {
3115                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3116                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3117                 .may_swap = 1,
3118                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3119                                        SWAP_CLUSTER_MAX),
3120                 .gfp_mask = gfp_mask,
3121                 .order = order,
3122         };
3123         struct shrink_control shrink = {
3124                 .gfp_mask = sc.gfp_mask,
3125         };
3126         unsigned long nr_slab_pages0, nr_slab_pages1;
3127
3128         cond_resched();
3129         /*
3130          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3131          * and we also need to be able to write out pages for RECLAIM_WRITE
3132          * and RECLAIM_SWAP.
3133          */
3134         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3135         lockdep_set_current_reclaim_state(gfp_mask);
3136         reclaim_state.reclaimed_slab = 0;
3137         p->reclaim_state = &reclaim_state;
3138
3139         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3140                 /*
3141                  * Free memory by calling shrink zone with increasing
3142                  * priorities until we have enough memory freed.
3143                  */
3144                 priority = ZONE_RECLAIM_PRIORITY;
3145                 do {
3146                         shrink_zone(priority, zone, &sc);
3147                         priority--;
3148                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3149         }
3150
3151         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3152         if (nr_slab_pages0 > zone->min_slab_pages) {
3153                 /*
3154                  * shrink_slab() does not currently allow us to determine how
3155                  * many pages were freed in this zone. So we take the current
3156                  * number of slab pages and shake the slab until it is reduced
3157                  * by the same nr_pages that we used for reclaiming unmapped
3158                  * pages.
3159                  *
3160                  * Note that shrink_slab will free memory on all zones and may
3161                  * take a long time.
3162                  */
3163                 for (;;) {
3164                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3165
3166                         /* No reclaimable slab or very low memory pressure */
3167                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3168                                 break;
3169
3170                         /* Freed enough memory */
3171                         nr_slab_pages1 = zone_page_state(zone,
3172                                                         NR_SLAB_RECLAIMABLE);
3173                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3174                                 break;
3175                 }
3176
3177                 /*
3178                  * Update nr_reclaimed by the number of slab pages we
3179                  * reclaimed from this zone.
3180                  */
3181                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3182                 if (nr_slab_pages1 < nr_slab_pages0)
3183                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3184         }
3185
3186         p->reclaim_state = NULL;
3187         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3188         lockdep_clear_current_reclaim_state();
3189         return sc.nr_reclaimed >= nr_pages;
3190 }
3191
3192 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3193 {
3194         int node_id;
3195         int ret;
3196
3197         /*
3198          * Zone reclaim reclaims unmapped file backed pages and
3199          * slab pages if we are over the defined limits.
3200          *
3201          * A small portion of unmapped file backed pages is needed for
3202          * file I/O otherwise pages read by file I/O will be immediately
3203          * thrown out if the zone is overallocated. So we do not reclaim
3204          * if less than a specified percentage of the zone is used by
3205          * unmapped file backed pages.
3206          */
3207         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3208             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3209                 return ZONE_RECLAIM_FULL;
3210
3211         if (zone->all_unreclaimable)
3212                 return ZONE_RECLAIM_FULL;
3213
3214         /*
3215          * Do not scan if the allocation should not be delayed.
3216          */
3217         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3218                 return ZONE_RECLAIM_NOSCAN;
3219
3220         /*
3221          * Only run zone reclaim on the local zone or on zones that do not
3222          * have associated processors. This will favor the local processor
3223          * over remote processors and spread off node memory allocations
3224          * as wide as possible.
3225          */
3226         node_id = zone_to_nid(zone);
3227         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3228                 return ZONE_RECLAIM_NOSCAN;
3229
3230         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3231                 return ZONE_RECLAIM_NOSCAN;
3232
3233         ret = __zone_reclaim(zone, gfp_mask, order);
3234         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3235
3236         if (!ret)
3237                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3238
3239         return ret;
3240 }
3241 #endif
3242
3243 /*
3244  * page_evictable - test whether a page is evictable
3245  * @page: the page to test
3246  * @vma: the VMA in which the page is or will be mapped, may be NULL
3247  *
3248  * Test whether page is evictable--i.e., should be placed on active/inactive
3249  * lists vs unevictable list.  The vma argument is !NULL when called from the
3250  * fault path to determine how to instantate a new page.
3251  *
3252  * Reasons page might not be evictable:
3253  * (1) page's mapping marked unevictable
3254  * (2) page is part of an mlocked VMA
3255  *
3256  */
3257 int page_evictable(struct page *page, struct vm_area_struct *vma)
3258 {
3259
3260         if (mapping_unevictable(page_mapping(page)))
3261                 return 0;
3262
3263         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3264                 return 0;
3265
3266         return 1;
3267 }
3268
3269 /**
3270  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3271  * @page: page to check evictability and move to appropriate lru list
3272  * @zone: zone page is in
3273  *
3274  * Checks a page for evictability and moves the page to the appropriate
3275  * zone lru list.
3276  *
3277  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3278  * have PageUnevictable set.
3279  */
3280 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3281 {
3282         VM_BUG_ON(PageActive(page));
3283
3284 retry:
3285         ClearPageUnevictable(page);
3286         if (page_evictable(page, NULL)) {
3287                 enum lru_list l = page_lru_base_type(page);
3288
3289                 __dec_zone_state(zone, NR_UNEVICTABLE);
3290                 list_move(&page->lru, &zone->lru[l].list);
3291                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3292                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3293                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3294         } else {
3295                 /*
3296                  * rotate unevictable list
3297                  */
3298                 SetPageUnevictable(page);
3299                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3300                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3301                 if (page_evictable(page, NULL))
3302                         goto retry;
3303         }
3304 }
3305
3306 /**
3307  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3308  * @mapping: struct address_space to scan for evictable pages
3309  *
3310  * Scan all pages in mapping.  Check unevictable pages for
3311  * evictability and move them to the appropriate zone lru list.
3312  */
3313 void scan_mapping_unevictable_pages(struct address_space *mapping)
3314 {
3315         pgoff_t next = 0;
3316         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3317                          PAGE_CACHE_SHIFT;
3318         struct zone *zone;
3319         struct pagevec pvec;
3320
3321         if (mapping->nrpages == 0)
3322                 return;
3323
3324         pagevec_init(&pvec, 0);
3325         while (next < end &&
3326                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3327                 int i;
3328                 int pg_scanned = 0;
3329
3330                 zone = NULL;
3331
3332                 for (i = 0; i < pagevec_count(&pvec); i++) {
3333                         struct page *page = pvec.pages[i];
3334                         pgoff_t page_index = page->index;
3335                         struct zone *pagezone = page_zone(page);
3336
3337                         pg_scanned++;
3338                         if (page_index > next)
3339                                 next = page_index;
3340                         next++;
3341
3342                         if (pagezone != zone) {
3343                                 if (zone)
3344                                         spin_unlock_irq(&zone->lru_lock);
3345                                 zone = pagezone;
3346                                 spin_lock_irq(&zone->lru_lock);
3347                         }
3348
3349                         if (PageLRU(page) && PageUnevictable(page))
3350                                 check_move_unevictable_page(page, zone);
3351                 }
3352                 if (zone)
3353                         spin_unlock_irq(&zone->lru_lock);
3354                 pagevec_release(&pvec);
3355
3356                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3357         }
3358
3359 }
3360
3361 /**
3362  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3363  * @zone - zone of which to scan the unevictable list
3364  *
3365  * Scan @zone's unevictable LRU lists to check for pages that have become
3366  * evictable.  Move those that have to @zone's inactive list where they
3367  * become candidates for reclaim, unless shrink_inactive_zone() decides
3368  * to reactivate them.  Pages that are still unevictable are rotated
3369  * back onto @zone's unevictable list.
3370  */
3371 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3372 static void scan_zone_unevictable_pages(struct zone *zone)
3373 {
3374         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3375         unsigned long scan;
3376         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3377
3378         while (nr_to_scan > 0) {
3379                 unsigned long batch_size = min(nr_to_scan,
3380                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3381
3382                 spin_lock_irq(&zone->lru_lock);
3383                 for (scan = 0;  scan < batch_size; scan++) {
3384                         struct page *page = lru_to_page(l_unevictable);
3385
3386                         if (!trylock_page(page))
3387                                 continue;
3388
3389                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3390
3391                         if (likely(PageLRU(page) && PageUnevictable(page)))
3392                                 check_move_unevictable_page(page, zone);
3393
3394                         unlock_page(page);
3395                 }
3396                 spin_unlock_irq(&zone->lru_lock);
3397
3398                 nr_to_scan -= batch_size;
3399         }
3400 }
3401
3402
3403 /**
3404  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3405  *
3406  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3407  * pages that have become evictable.  Move those back to the zones'
3408  * inactive list where they become candidates for reclaim.
3409  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3410  * and we add swap to the system.  As such, it runs in the context of a task
3411  * that has possibly/probably made some previously unevictable pages
3412  * evictable.
3413  */
3414 static void scan_all_zones_unevictable_pages(void)
3415 {
3416         struct zone *zone;
3417
3418         for_each_zone(zone) {
3419                 scan_zone_unevictable_pages(zone);
3420         }
3421 }
3422
3423 /*
3424  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3425  * all nodes' unevictable lists for evictable pages
3426  */
3427 unsigned long scan_unevictable_pages;
3428
3429 int scan_unevictable_handler(struct ctl_table *table, int write,
3430                            void __user *buffer,
3431                            size_t *length, loff_t *ppos)
3432 {
3433         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3434
3435         if (write && *(unsigned long *)table->data)
3436                 scan_all_zones_unevictable_pages();
3437
3438         scan_unevictable_pages = 0;
3439         return 0;
3440 }
3441
3442 #ifdef CONFIG_NUMA
3443 /*
3444  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3445  * a specified node's per zone unevictable lists for evictable pages.
3446  */
3447
3448 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3449                                           struct sysdev_attribute *attr,
3450                                           char *buf)
3451 {
3452         return sprintf(buf, "0\n");     /* always zero; should fit... */
3453 }
3454
3455 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3456                                            struct sysdev_attribute *attr,
3457                                         const char *buf, size_t count)
3458 {
3459         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3460         struct zone *zone;
3461         unsigned long res;
3462         unsigned long req = strict_strtoul(buf, 10, &res);
3463
3464         if (!req)
3465                 return 1;       /* zero is no-op */
3466
3467         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3468                 if (!populated_zone(zone))
3469                         continue;
3470                 scan_zone_unevictable_pages(zone);
3471         }
3472         return 1;
3473 }
3474
3475
3476 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3477                         read_scan_unevictable_node,
3478                         write_scan_unevictable_node);
3479
3480 int scan_unevictable_register_node(struct node *node)
3481 {
3482         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3483 }
3484
3485 void scan_unevictable_unregister_node(struct node *node)
3486 {
3487         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3488 }
3489 #endif