f51a33e8ed89111089b35dee6b3a6f7d084b07e7
[pandora-kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         shrinker->nr = 0;
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 unsigned long total_scan;
251                 unsigned long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 /*
259                  * copy the current shrinker scan count into a local variable
260                  * and zero it so that other concurrent shrinker invocations
261                  * don't also do this scanning work.
262                  */
263                 do {
264                         nr = shrinker->nr;
265                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267                 total_scan = nr;
268                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
270                 delta *= max_pass;
271                 do_div(delta, lru_pages + 1);
272                 total_scan += delta;
273                 if (total_scan < 0) {
274                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
275                                "delete nr=%ld\n",
276                                shrinker->shrink, total_scan);
277                         total_scan = max_pass;
278                 }
279
280                 /*
281                  * We need to avoid excessive windup on filesystem shrinkers
282                  * due to large numbers of GFP_NOFS allocations causing the
283                  * shrinkers to return -1 all the time. This results in a large
284                  * nr being built up so when a shrink that can do some work
285                  * comes along it empties the entire cache due to nr >>>
286                  * max_pass.  This is bad for sustaining a working set in
287                  * memory.
288                  *
289                  * Hence only allow the shrinker to scan the entire cache when
290                  * a large delta change is calculated directly.
291                  */
292                 if (delta < max_pass / 4)
293                         total_scan = min(total_scan, max_pass / 2);
294
295                 /*
296                  * Avoid risking looping forever due to too large nr value:
297                  * never try to free more than twice the estimate number of
298                  * freeable entries.
299                  */
300                 if (total_scan > max_pass * 2)
301                         total_scan = max_pass * 2;
302
303                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
304                                         nr_pages_scanned, lru_pages,
305                                         max_pass, delta, total_scan);
306
307                 while (total_scan >= batch_size) {
308                         int nr_before;
309
310                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
312                                                         batch_size);
313                         if (shrink_ret == -1)
314                                 break;
315                         if (shrink_ret < nr_before)
316                                 ret += nr_before - shrink_ret;
317                         count_vm_events(SLABS_SCANNED, batch_size);
318                         total_scan -= batch_size;
319
320                         cond_resched();
321                 }
322
323                 /*
324                  * move the unused scan count back into the shrinker in a
325                  * manner that handles concurrent updates. If we exhausted the
326                  * scan, there is no need to do an update.
327                  */
328                 do {
329                         nr = shrinker->nr;
330                         new_nr = total_scan + nr;
331                         if (total_scan <= 0)
332                                 break;
333                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 if (!PageWriteback(page)) {
499                         /* synchronous write or broken a_ops? */
500                         ClearPageReclaim(page);
501                 }
502                 trace_mm_vmscan_writepage(page,
503                         trace_reclaim_flags(page, sc->reclaim_mode));
504                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
505                 return PAGE_SUCCESS;
506         }
507
508         return PAGE_CLEAN;
509 }
510
511 /*
512  * Same as remove_mapping, but if the page is removed from the mapping, it
513  * gets returned with a refcount of 0.
514  */
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
516 {
517         BUG_ON(!PageLocked(page));
518         BUG_ON(mapping != page_mapping(page));
519
520         spin_lock_irq(&mapping->tree_lock);
521         /*
522          * The non racy check for a busy page.
523          *
524          * Must be careful with the order of the tests. When someone has
525          * a ref to the page, it may be possible that they dirty it then
526          * drop the reference. So if PageDirty is tested before page_count
527          * here, then the following race may occur:
528          *
529          * get_user_pages(&page);
530          * [user mapping goes away]
531          * write_to(page);
532          *                              !PageDirty(page)    [good]
533          * SetPageDirty(page);
534          * put_page(page);
535          *                              !page_count(page)   [good, discard it]
536          *
537          * [oops, our write_to data is lost]
538          *
539          * Reversing the order of the tests ensures such a situation cannot
540          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541          * load is not satisfied before that of page->_count.
542          *
543          * Note that if SetPageDirty is always performed via set_page_dirty,
544          * and thus under tree_lock, then this ordering is not required.
545          */
546         if (!page_freeze_refs(page, 2))
547                 goto cannot_free;
548         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549         if (unlikely(PageDirty(page))) {
550                 page_unfreeze_refs(page, 2);
551                 goto cannot_free;
552         }
553
554         if (PageSwapCache(page)) {
555                 swp_entry_t swap = { .val = page_private(page) };
556                 __delete_from_swap_cache(page);
557                 spin_unlock_irq(&mapping->tree_lock);
558                 swapcache_free(swap, page);
559         } else {
560                 void (*freepage)(struct page *);
561
562                 freepage = mapping->a_ops->freepage;
563
564                 __delete_from_page_cache(page);
565                 spin_unlock_irq(&mapping->tree_lock);
566                 mem_cgroup_uncharge_cache_page(page);
567
568                 if (freepage != NULL)
569                         freepage(page);
570         }
571
572         return 1;
573
574 cannot_free:
575         spin_unlock_irq(&mapping->tree_lock);
576         return 0;
577 }
578
579 /*
580  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581  * someone else has a ref on the page, abort and return 0.  If it was
582  * successfully detached, return 1.  Assumes the caller has a single ref on
583  * this page.
584  */
585 int remove_mapping(struct address_space *mapping, struct page *page)
586 {
587         if (__remove_mapping(mapping, page)) {
588                 /*
589                  * Unfreezing the refcount with 1 rather than 2 effectively
590                  * drops the pagecache ref for us without requiring another
591                  * atomic operation.
592                  */
593                 page_unfreeze_refs(page, 1);
594                 return 1;
595         }
596         return 0;
597 }
598
599 /**
600  * putback_lru_page - put previously isolated page onto appropriate LRU list
601  * @page: page to be put back to appropriate lru list
602  *
603  * Add previously isolated @page to appropriate LRU list.
604  * Page may still be unevictable for other reasons.
605  *
606  * lru_lock must not be held, interrupts must be enabled.
607  */
608 void putback_lru_page(struct page *page)
609 {
610         int lru;
611         int active = !!TestClearPageActive(page);
612         int was_unevictable = PageUnevictable(page);
613
614         VM_BUG_ON(PageLRU(page));
615
616 redo:
617         ClearPageUnevictable(page);
618
619         if (page_evictable(page, NULL)) {
620                 /*
621                  * For evictable pages, we can use the cache.
622                  * In event of a race, worst case is we end up with an
623                  * unevictable page on [in]active list.
624                  * We know how to handle that.
625                  */
626                 lru = active + page_lru_base_type(page);
627                 lru_cache_add_lru(page, lru);
628         } else {
629                 /*
630                  * Put unevictable pages directly on zone's unevictable
631                  * list.
632                  */
633                 lru = LRU_UNEVICTABLE;
634                 add_page_to_unevictable_list(page);
635                 /*
636                  * When racing with an mlock or AS_UNEVICTABLE clearing
637                  * (page is unlocked) make sure that if the other thread
638                  * does not observe our setting of PG_lru and fails
639                  * isolation/check_move_unevictable_page,
640                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
641                  * the page back to the evictable list.
642                  *
643                  * The other side is TestClearPageMlocked() or shmem_lock().
644                  */
645                 smp_mb();
646         }
647
648         /*
649          * page's status can change while we move it among lru. If an evictable
650          * page is on unevictable list, it never be freed. To avoid that,
651          * check after we added it to the list, again.
652          */
653         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654                 if (!isolate_lru_page(page)) {
655                         put_page(page);
656                         goto redo;
657                 }
658                 /* This means someone else dropped this page from LRU
659                  * So, it will be freed or putback to LRU again. There is
660                  * nothing to do here.
661                  */
662         }
663
664         if (was_unevictable && lru != LRU_UNEVICTABLE)
665                 count_vm_event(UNEVICTABLE_PGRESCUED);
666         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667                 count_vm_event(UNEVICTABLE_PGCULLED);
668
669         put_page(page);         /* drop ref from isolate */
670 }
671
672 enum page_references {
673         PAGEREF_RECLAIM,
674         PAGEREF_RECLAIM_CLEAN,
675         PAGEREF_KEEP,
676         PAGEREF_ACTIVATE,
677 };
678
679 static enum page_references page_check_references(struct page *page,
680                                                   struct scan_control *sc)
681 {
682         int referenced_ptes, referenced_page;
683         unsigned long vm_flags;
684
685         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686         referenced_page = TestClearPageReferenced(page);
687
688         /* Lumpy reclaim - ignore references */
689         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690                 return PAGEREF_RECLAIM;
691
692         /*
693          * Mlock lost the isolation race with us.  Let try_to_unmap()
694          * move the page to the unevictable list.
695          */
696         if (vm_flags & VM_LOCKED)
697                 return PAGEREF_RECLAIM;
698
699         if (referenced_ptes) {
700                 if (PageAnon(page))
701                         return PAGEREF_ACTIVATE;
702                 /*
703                  * All mapped pages start out with page table
704                  * references from the instantiating fault, so we need
705                  * to look twice if a mapped file page is used more
706                  * than once.
707                  *
708                  * Mark it and spare it for another trip around the
709                  * inactive list.  Another page table reference will
710                  * lead to its activation.
711                  *
712                  * Note: the mark is set for activated pages as well
713                  * so that recently deactivated but used pages are
714                  * quickly recovered.
715                  */
716                 SetPageReferenced(page);
717
718                 if (referenced_page)
719                         return PAGEREF_ACTIVATE;
720
721                 return PAGEREF_KEEP;
722         }
723
724         /* Reclaim if clean, defer dirty pages to writeback */
725         if (referenced_page && !PageSwapBacked(page))
726                 return PAGEREF_RECLAIM_CLEAN;
727
728         return PAGEREF_RECLAIM;
729 }
730
731 static noinline_for_stack void free_page_list(struct list_head *free_pages)
732 {
733         struct pagevec freed_pvec;
734         struct page *page, *tmp;
735
736         pagevec_init(&freed_pvec, 1);
737
738         list_for_each_entry_safe(page, tmp, free_pages, lru) {
739                 list_del(&page->lru);
740                 if (!pagevec_add(&freed_pvec, page)) {
741                         __pagevec_free(&freed_pvec);
742                         pagevec_reinit(&freed_pvec);
743                 }
744         }
745
746         pagevec_free(&freed_pvec);
747 }
748
749 /*
750  * shrink_page_list() returns the number of reclaimed pages
751  */
752 static unsigned long shrink_page_list(struct list_head *page_list,
753                                       struct zone *zone,
754                                       struct scan_control *sc,
755                                       int priority,
756                                       unsigned long *ret_nr_dirty,
757                                       unsigned long *ret_nr_writeback)
758 {
759         LIST_HEAD(ret_pages);
760         LIST_HEAD(free_pages);
761         int pgactivate = 0;
762         unsigned long nr_dirty = 0;
763         unsigned long nr_congested = 0;
764         unsigned long nr_reclaimed = 0;
765         unsigned long nr_writeback = 0;
766
767         cond_resched();
768
769         while (!list_empty(page_list)) {
770                 enum page_references references;
771                 struct address_space *mapping;
772                 struct page *page;
773                 int may_enter_fs;
774
775                 cond_resched();
776
777                 page = lru_to_page(page_list);
778                 list_del(&page->lru);
779
780                 if (!trylock_page(page))
781                         goto keep;
782
783                 VM_BUG_ON(PageActive(page));
784                 VM_BUG_ON(page_zone(page) != zone);
785
786                 sc->nr_scanned++;
787
788                 if (unlikely(!page_evictable(page, NULL)))
789                         goto cull_mlocked;
790
791                 if (!sc->may_unmap && page_mapped(page))
792                         goto keep_locked;
793
794                 /* Double the slab pressure for mapped and swapcache pages */
795                 if (page_mapped(page) || PageSwapCache(page))
796                         sc->nr_scanned++;
797
798                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
799                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
800
801                 if (PageWriteback(page)) {
802                         nr_writeback++;
803                         /*
804                          * Synchronous reclaim cannot queue pages for
805                          * writeback due to the possibility of stack overflow
806                          * but if it encounters a page under writeback, wait
807                          * for the IO to complete.
808                          */
809                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
810                             may_enter_fs)
811                                 wait_on_page_writeback(page);
812                         else {
813                                 unlock_page(page);
814                                 goto keep_lumpy;
815                         }
816                 }
817
818                 references = page_check_references(page, sc);
819                 switch (references) {
820                 case PAGEREF_ACTIVATE:
821                         goto activate_locked;
822                 case PAGEREF_KEEP:
823                         goto keep_locked;
824                 case PAGEREF_RECLAIM:
825                 case PAGEREF_RECLAIM_CLEAN:
826                         ; /* try to reclaim the page below */
827                 }
828
829                 /*
830                  * Anonymous process memory has backing store?
831                  * Try to allocate it some swap space here.
832                  */
833                 if (PageAnon(page) && !PageSwapCache(page)) {
834                         if (!(sc->gfp_mask & __GFP_IO))
835                                 goto keep_locked;
836                         if (!add_to_swap(page))
837                                 goto activate_locked;
838                         may_enter_fs = 1;
839                 }
840
841                 mapping = page_mapping(page);
842
843                 /*
844                  * The page is mapped into the page tables of one or more
845                  * processes. Try to unmap it here.
846                  */
847                 if (page_mapped(page) && mapping) {
848                         switch (try_to_unmap(page, TTU_UNMAP)) {
849                         case SWAP_FAIL:
850                                 goto activate_locked;
851                         case SWAP_AGAIN:
852                                 goto keep_locked;
853                         case SWAP_MLOCK:
854                                 goto cull_mlocked;
855                         case SWAP_SUCCESS:
856                                 ; /* try to free the page below */
857                         }
858                 }
859
860                 if (PageDirty(page)) {
861                         nr_dirty++;
862
863                         /*
864                          * Only kswapd can writeback filesystem pages to
865                          * avoid risk of stack overflow but do not writeback
866                          * unless under significant pressure.
867                          */
868                         if (page_is_file_cache(page) &&
869                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
870                                 /*
871                                  * Immediately reclaim when written back.
872                                  * Similar in principal to deactivate_page()
873                                  * except we already have the page isolated
874                                  * and know it's dirty
875                                  */
876                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
877                                 SetPageReclaim(page);
878
879                                 goto keep_locked;
880                         }
881
882                         if (references == PAGEREF_RECLAIM_CLEAN)
883                                 goto keep_locked;
884                         if (!may_enter_fs)
885                                 goto keep_locked;
886                         if (!sc->may_writepage)
887                                 goto keep_locked;
888
889                         /* Page is dirty, try to write it out here */
890                         switch (pageout(page, mapping, sc)) {
891                         case PAGE_KEEP:
892                                 nr_congested++;
893                                 goto keep_locked;
894                         case PAGE_ACTIVATE:
895                                 goto activate_locked;
896                         case PAGE_SUCCESS:
897                                 if (PageWriteback(page))
898                                         goto keep_lumpy;
899                                 if (PageDirty(page))
900                                         goto keep;
901
902                                 /*
903                                  * A synchronous write - probably a ramdisk.  Go
904                                  * ahead and try to reclaim the page.
905                                  */
906                                 if (!trylock_page(page))
907                                         goto keep;
908                                 if (PageDirty(page) || PageWriteback(page))
909                                         goto keep_locked;
910                                 mapping = page_mapping(page);
911                         case PAGE_CLEAN:
912                                 ; /* try to free the page below */
913                         }
914                 }
915
916                 /*
917                  * If the page has buffers, try to free the buffer mappings
918                  * associated with this page. If we succeed we try to free
919                  * the page as well.
920                  *
921                  * We do this even if the page is PageDirty().
922                  * try_to_release_page() does not perform I/O, but it is
923                  * possible for a page to have PageDirty set, but it is actually
924                  * clean (all its buffers are clean).  This happens if the
925                  * buffers were written out directly, with submit_bh(). ext3
926                  * will do this, as well as the blockdev mapping.
927                  * try_to_release_page() will discover that cleanness and will
928                  * drop the buffers and mark the page clean - it can be freed.
929                  *
930                  * Rarely, pages can have buffers and no ->mapping.  These are
931                  * the pages which were not successfully invalidated in
932                  * truncate_complete_page().  We try to drop those buffers here
933                  * and if that worked, and the page is no longer mapped into
934                  * process address space (page_count == 1) it can be freed.
935                  * Otherwise, leave the page on the LRU so it is swappable.
936                  */
937                 if (page_has_private(page)) {
938                         if (!try_to_release_page(page, sc->gfp_mask))
939                                 goto activate_locked;
940                         if (!mapping && page_count(page) == 1) {
941                                 unlock_page(page);
942                                 if (put_page_testzero(page))
943                                         goto free_it;
944                                 else {
945                                         /*
946                                          * rare race with speculative reference.
947                                          * the speculative reference will free
948                                          * this page shortly, so we may
949                                          * increment nr_reclaimed here (and
950                                          * leave it off the LRU).
951                                          */
952                                         nr_reclaimed++;
953                                         continue;
954                                 }
955                         }
956                 }
957
958                 if (!mapping || !__remove_mapping(mapping, page))
959                         goto keep_locked;
960
961                 /*
962                  * At this point, we have no other references and there is
963                  * no way to pick any more up (removed from LRU, removed
964                  * from pagecache). Can use non-atomic bitops now (and
965                  * we obviously don't have to worry about waking up a process
966                  * waiting on the page lock, because there are no references.
967                  */
968                 __clear_page_locked(page);
969 free_it:
970                 nr_reclaimed++;
971
972                 /*
973                  * Is there need to periodically free_page_list? It would
974                  * appear not as the counts should be low
975                  */
976                 list_add(&page->lru, &free_pages);
977                 continue;
978
979 cull_mlocked:
980                 if (PageSwapCache(page))
981                         try_to_free_swap(page);
982                 unlock_page(page);
983                 putback_lru_page(page);
984                 reset_reclaim_mode(sc);
985                 continue;
986
987 activate_locked:
988                 /* Not a candidate for swapping, so reclaim swap space. */
989                 if (PageSwapCache(page) && vm_swap_full())
990                         try_to_free_swap(page);
991                 VM_BUG_ON(PageActive(page));
992                 SetPageActive(page);
993                 pgactivate++;
994 keep_locked:
995                 unlock_page(page);
996 keep:
997                 reset_reclaim_mode(sc);
998 keep_lumpy:
999                 list_add(&page->lru, &ret_pages);
1000                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1001         }
1002
1003         /*
1004          * Tag a zone as congested if all the dirty pages encountered were
1005          * backed by a congested BDI. In this case, reclaimers should just
1006          * back off and wait for congestion to clear because further reclaim
1007          * will encounter the same problem
1008          */
1009         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1010                 zone_set_flag(zone, ZONE_CONGESTED);
1011
1012         free_page_list(&free_pages);
1013
1014         list_splice(&ret_pages, page_list);
1015         count_vm_events(PGACTIVATE, pgactivate);
1016         *ret_nr_dirty += nr_dirty;
1017         *ret_nr_writeback += nr_writeback;
1018         return nr_reclaimed;
1019 }
1020
1021 /*
1022  * Attempt to remove the specified page from its LRU.  Only take this page
1023  * if it is of the appropriate PageActive status.  Pages which are being
1024  * freed elsewhere are also ignored.
1025  *
1026  * page:        page to consider
1027  * mode:        one of the LRU isolation modes defined above
1028  *
1029  * returns 0 on success, -ve errno on failure.
1030  */
1031 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1032 {
1033         bool all_lru_mode;
1034         int ret = -EINVAL;
1035
1036         /* Only take pages on the LRU. */
1037         if (!PageLRU(page))
1038                 return ret;
1039
1040         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1041                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1042
1043         /*
1044          * When checking the active state, we need to be sure we are
1045          * dealing with comparible boolean values.  Take the logical not
1046          * of each.
1047          */
1048         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1049                 return ret;
1050
1051         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1052                 return ret;
1053
1054         /*
1055          * When this function is being called for lumpy reclaim, we
1056          * initially look into all LRU pages, active, inactive and
1057          * unevictable; only give shrink_page_list evictable pages.
1058          */
1059         if (PageUnevictable(page))
1060                 return ret;
1061
1062         ret = -EBUSY;
1063
1064         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1065                 return ret;
1066
1067         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1068                 return ret;
1069
1070         if (likely(get_page_unless_zero(page))) {
1071                 /*
1072                  * Be careful not to clear PageLRU until after we're
1073                  * sure the page is not being freed elsewhere -- the
1074                  * page release code relies on it.
1075                  */
1076                 ClearPageLRU(page);
1077                 ret = 0;
1078         }
1079
1080         return ret;
1081 }
1082
1083 /*
1084  * zone->lru_lock is heavily contended.  Some of the functions that
1085  * shrink the lists perform better by taking out a batch of pages
1086  * and working on them outside the LRU lock.
1087  *
1088  * For pagecache intensive workloads, this function is the hottest
1089  * spot in the kernel (apart from copy_*_user functions).
1090  *
1091  * Appropriate locks must be held before calling this function.
1092  *
1093  * @nr_to_scan: The number of pages to look through on the list.
1094  * @src:        The LRU list to pull pages off.
1095  * @dst:        The temp list to put pages on to.
1096  * @scanned:    The number of pages that were scanned.
1097  * @order:      The caller's attempted allocation order
1098  * @mode:       One of the LRU isolation modes
1099  * @file:       True [1] if isolating file [!anon] pages
1100  *
1101  * returns how many pages were moved onto *@dst.
1102  */
1103 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1104                 struct list_head *src, struct list_head *dst,
1105                 unsigned long *scanned, int order, isolate_mode_t mode,
1106                 int file)
1107 {
1108         unsigned long nr_taken = 0;
1109         unsigned long nr_lumpy_taken = 0;
1110         unsigned long nr_lumpy_dirty = 0;
1111         unsigned long nr_lumpy_failed = 0;
1112         unsigned long scan;
1113
1114         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1115                 struct page *page;
1116                 unsigned long pfn;
1117                 unsigned long end_pfn;
1118                 unsigned long page_pfn;
1119                 int zone_id;
1120
1121                 page = lru_to_page(src);
1122                 prefetchw_prev_lru_page(page, src, flags);
1123
1124                 VM_BUG_ON(!PageLRU(page));
1125
1126                 switch (__isolate_lru_page(page, mode, file)) {
1127                 case 0:
1128                         list_move(&page->lru, dst);
1129                         mem_cgroup_del_lru(page);
1130                         nr_taken += hpage_nr_pages(page);
1131                         break;
1132
1133                 case -EBUSY:
1134                         /* else it is being freed elsewhere */
1135                         list_move(&page->lru, src);
1136                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1137                         continue;
1138
1139                 default:
1140                         BUG();
1141                 }
1142
1143                 if (!order)
1144                         continue;
1145
1146                 /*
1147                  * Attempt to take all pages in the order aligned region
1148                  * surrounding the tag page.  Only take those pages of
1149                  * the same active state as that tag page.  We may safely
1150                  * round the target page pfn down to the requested order
1151                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1152                  * where that page is in a different zone we will detect
1153                  * it from its zone id and abort this block scan.
1154                  */
1155                 zone_id = page_zone_id(page);
1156                 page_pfn = page_to_pfn(page);
1157                 pfn = page_pfn & ~((1 << order) - 1);
1158                 end_pfn = pfn + (1 << order);
1159                 for (; pfn < end_pfn; pfn++) {
1160                         struct page *cursor_page;
1161
1162                         /* The target page is in the block, ignore it. */
1163                         if (unlikely(pfn == page_pfn))
1164                                 continue;
1165
1166                         /* Avoid holes within the zone. */
1167                         if (unlikely(!pfn_valid_within(pfn)))
1168                                 break;
1169
1170                         cursor_page = pfn_to_page(pfn);
1171
1172                         /* Check that we have not crossed a zone boundary. */
1173                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1174                                 break;
1175
1176                         /*
1177                          * If we don't have enough swap space, reclaiming of
1178                          * anon page which don't already have a swap slot is
1179                          * pointless.
1180                          */
1181                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1182                             !PageSwapCache(cursor_page))
1183                                 break;
1184
1185                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1186                                 list_move(&cursor_page->lru, dst);
1187                                 mem_cgroup_del_lru(cursor_page);
1188                                 nr_taken += hpage_nr_pages(page);
1189                                 nr_lumpy_taken++;
1190                                 if (PageDirty(cursor_page))
1191                                         nr_lumpy_dirty++;
1192                                 scan++;
1193                         } else {
1194                                 /*
1195                                  * Check if the page is freed already.
1196                                  *
1197                                  * We can't use page_count() as that
1198                                  * requires compound_head and we don't
1199                                  * have a pin on the page here. If a
1200                                  * page is tail, we may or may not
1201                                  * have isolated the head, so assume
1202                                  * it's not free, it'd be tricky to
1203                                  * track the head status without a
1204                                  * page pin.
1205                                  */
1206                                 if (!PageTail(cursor_page) &&
1207                                     !atomic_read(&cursor_page->_count))
1208                                         continue;
1209                                 break;
1210                         }
1211                 }
1212
1213                 /* If we break out of the loop above, lumpy reclaim failed */
1214                 if (pfn < end_pfn)
1215                         nr_lumpy_failed++;
1216         }
1217
1218         *scanned = scan;
1219
1220         trace_mm_vmscan_lru_isolate(order,
1221                         nr_to_scan, scan,
1222                         nr_taken,
1223                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1224                         mode);
1225         return nr_taken;
1226 }
1227
1228 static unsigned long isolate_pages_global(unsigned long nr,
1229                                         struct list_head *dst,
1230                                         unsigned long *scanned, int order,
1231                                         isolate_mode_t mode,
1232                                         struct zone *z, int active, int file)
1233 {
1234         int lru = LRU_BASE;
1235         if (active)
1236                 lru += LRU_ACTIVE;
1237         if (file)
1238                 lru += LRU_FILE;
1239         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1240                                                                 mode, file);
1241 }
1242
1243 /*
1244  * clear_active_flags() is a helper for shrink_active_list(), clearing
1245  * any active bits from the pages in the list.
1246  */
1247 static unsigned long clear_active_flags(struct list_head *page_list,
1248                                         unsigned int *count)
1249 {
1250         int nr_active = 0;
1251         int lru;
1252         struct page *page;
1253
1254         list_for_each_entry(page, page_list, lru) {
1255                 int numpages = hpage_nr_pages(page);
1256                 lru = page_lru_base_type(page);
1257                 if (PageActive(page)) {
1258                         lru += LRU_ACTIVE;
1259                         ClearPageActive(page);
1260                         nr_active += numpages;
1261                 }
1262                 if (count)
1263                         count[lru] += numpages;
1264         }
1265
1266         return nr_active;
1267 }
1268
1269 /**
1270  * isolate_lru_page - tries to isolate a page from its LRU list
1271  * @page: page to isolate from its LRU list
1272  *
1273  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1274  * vmstat statistic corresponding to whatever LRU list the page was on.
1275  *
1276  * Returns 0 if the page was removed from an LRU list.
1277  * Returns -EBUSY if the page was not on an LRU list.
1278  *
1279  * The returned page will have PageLRU() cleared.  If it was found on
1280  * the active list, it will have PageActive set.  If it was found on
1281  * the unevictable list, it will have the PageUnevictable bit set. That flag
1282  * may need to be cleared by the caller before letting the page go.
1283  *
1284  * The vmstat statistic corresponding to the list on which the page was
1285  * found will be decremented.
1286  *
1287  * Restrictions:
1288  * (1) Must be called with an elevated refcount on the page. This is a
1289  *     fundamentnal difference from isolate_lru_pages (which is called
1290  *     without a stable reference).
1291  * (2) the lru_lock must not be held.
1292  * (3) interrupts must be enabled.
1293  */
1294 int isolate_lru_page(struct page *page)
1295 {
1296         int ret = -EBUSY;
1297
1298         VM_BUG_ON(!page_count(page));
1299
1300         if (PageLRU(page)) {
1301                 struct zone *zone = page_zone(page);
1302
1303                 spin_lock_irq(&zone->lru_lock);
1304                 if (PageLRU(page)) {
1305                         int lru = page_lru(page);
1306                         ret = 0;
1307                         get_page(page);
1308                         ClearPageLRU(page);
1309
1310                         del_page_from_lru_list(zone, page, lru);
1311                 }
1312                 spin_unlock_irq(&zone->lru_lock);
1313         }
1314         return ret;
1315 }
1316
1317 /*
1318  * Are there way too many processes in the direct reclaim path already?
1319  */
1320 static int too_many_isolated(struct zone *zone, int file,
1321                 struct scan_control *sc)
1322 {
1323         unsigned long inactive, isolated;
1324
1325         if (current_is_kswapd())
1326                 return 0;
1327
1328         if (!scanning_global_lru(sc))
1329                 return 0;
1330
1331         if (file) {
1332                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1333                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1334         } else {
1335                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1336                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1337         }
1338
1339         return isolated > inactive;
1340 }
1341
1342 /*
1343  * TODO: Try merging with migrations version of putback_lru_pages
1344  */
1345 static noinline_for_stack void
1346 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1347                                 unsigned long nr_anon, unsigned long nr_file,
1348                                 struct list_head *page_list)
1349 {
1350         struct page *page;
1351         struct pagevec pvec;
1352         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1353
1354         pagevec_init(&pvec, 1);
1355
1356         /*
1357          * Put back any unfreeable pages.
1358          */
1359         spin_lock(&zone->lru_lock);
1360         while (!list_empty(page_list)) {
1361                 int lru;
1362                 page = lru_to_page(page_list);
1363                 VM_BUG_ON(PageLRU(page));
1364                 list_del(&page->lru);
1365                 if (unlikely(!page_evictable(page, NULL))) {
1366                         spin_unlock_irq(&zone->lru_lock);
1367                         putback_lru_page(page);
1368                         spin_lock_irq(&zone->lru_lock);
1369                         continue;
1370                 }
1371                 SetPageLRU(page);
1372                 lru = page_lru(page);
1373                 add_page_to_lru_list(zone, page, lru);
1374                 if (is_active_lru(lru)) {
1375                         int file = is_file_lru(lru);
1376                         int numpages = hpage_nr_pages(page);
1377                         reclaim_stat->recent_rotated[file] += numpages;
1378                 }
1379                 if (!pagevec_add(&pvec, page)) {
1380                         spin_unlock_irq(&zone->lru_lock);
1381                         __pagevec_release(&pvec);
1382                         spin_lock_irq(&zone->lru_lock);
1383                 }
1384         }
1385         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1386         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1387
1388         spin_unlock_irq(&zone->lru_lock);
1389         pagevec_release(&pvec);
1390 }
1391
1392 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1393                                         struct scan_control *sc,
1394                                         unsigned long *nr_anon,
1395                                         unsigned long *nr_file,
1396                                         struct list_head *isolated_list)
1397 {
1398         unsigned long nr_active;
1399         unsigned int count[NR_LRU_LISTS] = { 0, };
1400         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1401
1402         nr_active = clear_active_flags(isolated_list, count);
1403         __count_vm_events(PGDEACTIVATE, nr_active);
1404
1405         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1406                               -count[LRU_ACTIVE_FILE]);
1407         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1408                               -count[LRU_INACTIVE_FILE]);
1409         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1410                               -count[LRU_ACTIVE_ANON]);
1411         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1412                               -count[LRU_INACTIVE_ANON]);
1413
1414         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1415         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1416         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1417         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1418
1419         reclaim_stat->recent_scanned[0] += *nr_anon;
1420         reclaim_stat->recent_scanned[1] += *nr_file;
1421 }
1422
1423 /*
1424  * Returns true if a direct reclaim should wait on pages under writeback.
1425  *
1426  * If we are direct reclaiming for contiguous pages and we do not reclaim
1427  * everything in the list, try again and wait for writeback IO to complete.
1428  * This will stall high-order allocations noticeably. Only do that when really
1429  * need to free the pages under high memory pressure.
1430  */
1431 static inline bool should_reclaim_stall(unsigned long nr_taken,
1432                                         unsigned long nr_freed,
1433                                         int priority,
1434                                         struct scan_control *sc)
1435 {
1436         int lumpy_stall_priority;
1437
1438         /* kswapd should not stall on sync IO */
1439         if (current_is_kswapd())
1440                 return false;
1441
1442         /* Only stall on lumpy reclaim */
1443         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1444                 return false;
1445
1446         /* If we have reclaimed everything on the isolated list, no stall */
1447         if (nr_freed == nr_taken)
1448                 return false;
1449
1450         /*
1451          * For high-order allocations, there are two stall thresholds.
1452          * High-cost allocations stall immediately where as lower
1453          * order allocations such as stacks require the scanning
1454          * priority to be much higher before stalling.
1455          */
1456         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1457                 lumpy_stall_priority = DEF_PRIORITY;
1458         else
1459                 lumpy_stall_priority = DEF_PRIORITY / 3;
1460
1461         return priority <= lumpy_stall_priority;
1462 }
1463
1464 /*
1465  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1466  * of reclaimed pages
1467  */
1468 static noinline_for_stack unsigned long
1469 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1470                         struct scan_control *sc, int priority, int file)
1471 {
1472         LIST_HEAD(page_list);
1473         unsigned long nr_scanned;
1474         unsigned long nr_reclaimed = 0;
1475         unsigned long nr_taken;
1476         unsigned long nr_anon;
1477         unsigned long nr_file;
1478         unsigned long nr_dirty = 0;
1479         unsigned long nr_writeback = 0;
1480         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1481
1482         while (unlikely(too_many_isolated(zone, file, sc))) {
1483                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1484
1485                 /* We are about to die and free our memory. Return now. */
1486                 if (fatal_signal_pending(current))
1487                         return SWAP_CLUSTER_MAX;
1488         }
1489
1490         set_reclaim_mode(priority, sc, false);
1491         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1492                 reclaim_mode |= ISOLATE_ACTIVE;
1493
1494         lru_add_drain();
1495
1496         if (!sc->may_unmap)
1497                 reclaim_mode |= ISOLATE_UNMAPPED;
1498         if (!sc->may_writepage)
1499                 reclaim_mode |= ISOLATE_CLEAN;
1500
1501         spin_lock_irq(&zone->lru_lock);
1502
1503         if (scanning_global_lru(sc)) {
1504                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1505                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1506                 zone->pages_scanned += nr_scanned;
1507                 if (current_is_kswapd())
1508                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1509                                                nr_scanned);
1510                 else
1511                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1512                                                nr_scanned);
1513         } else {
1514                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1515                         &nr_scanned, sc->order, reclaim_mode, zone,
1516                         sc->mem_cgroup, 0, file);
1517                 /*
1518                  * mem_cgroup_isolate_pages() keeps track of
1519                  * scanned pages on its own.
1520                  */
1521         }
1522
1523         if (nr_taken == 0) {
1524                 spin_unlock_irq(&zone->lru_lock);
1525                 return 0;
1526         }
1527
1528         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1529
1530         spin_unlock_irq(&zone->lru_lock);
1531
1532         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1533                                                 &nr_dirty, &nr_writeback);
1534
1535         /* Check if we should syncronously wait for writeback */
1536         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1537                 set_reclaim_mode(priority, sc, true);
1538                 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1539                                         priority, &nr_dirty, &nr_writeback);
1540         }
1541
1542         local_irq_disable();
1543         if (current_is_kswapd())
1544                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1545         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1546
1547         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1548
1549         /*
1550          * If reclaim is isolating dirty pages under writeback, it implies
1551          * that the long-lived page allocation rate is exceeding the page
1552          * laundering rate. Either the global limits are not being effective
1553          * at throttling processes due to the page distribution throughout
1554          * zones or there is heavy usage of a slow backing device. The
1555          * only option is to throttle from reclaim context which is not ideal
1556          * as there is no guarantee the dirtying process is throttled in the
1557          * same way balance_dirty_pages() manages.
1558          *
1559          * This scales the number of dirty pages that must be under writeback
1560          * before throttling depending on priority. It is a simple backoff
1561          * function that has the most effect in the range DEF_PRIORITY to
1562          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1563          * in trouble and reclaim is considered to be in trouble.
1564          *
1565          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1566          * DEF_PRIORITY-1  50% must be PageWriteback
1567          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1568          * ...
1569          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1570          *                     isolated page is PageWriteback
1571          */
1572         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1573                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1574
1575         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1576                 zone_idx(zone),
1577                 nr_scanned, nr_reclaimed,
1578                 priority,
1579                 trace_shrink_flags(file, sc->reclaim_mode));
1580         return nr_reclaimed;
1581 }
1582
1583 /*
1584  * This moves pages from the active list to the inactive list.
1585  *
1586  * We move them the other way if the page is referenced by one or more
1587  * processes, from rmap.
1588  *
1589  * If the pages are mostly unmapped, the processing is fast and it is
1590  * appropriate to hold zone->lru_lock across the whole operation.  But if
1591  * the pages are mapped, the processing is slow (page_referenced()) so we
1592  * should drop zone->lru_lock around each page.  It's impossible to balance
1593  * this, so instead we remove the pages from the LRU while processing them.
1594  * It is safe to rely on PG_active against the non-LRU pages in here because
1595  * nobody will play with that bit on a non-LRU page.
1596  *
1597  * The downside is that we have to touch page->_count against each page.
1598  * But we had to alter page->flags anyway.
1599  */
1600
1601 static void move_active_pages_to_lru(struct zone *zone,
1602                                      struct list_head *list,
1603                                      enum lru_list lru)
1604 {
1605         unsigned long pgmoved = 0;
1606         struct pagevec pvec;
1607         struct page *page;
1608
1609         pagevec_init(&pvec, 1);
1610
1611         while (!list_empty(list)) {
1612                 page = lru_to_page(list);
1613
1614                 VM_BUG_ON(PageLRU(page));
1615                 SetPageLRU(page);
1616
1617                 list_move(&page->lru, &zone->lru[lru].list);
1618                 mem_cgroup_add_lru_list(page, lru);
1619                 pgmoved += hpage_nr_pages(page);
1620
1621                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1622                         spin_unlock_irq(&zone->lru_lock);
1623                         if (buffer_heads_over_limit)
1624                                 pagevec_strip(&pvec);
1625                         __pagevec_release(&pvec);
1626                         spin_lock_irq(&zone->lru_lock);
1627                 }
1628         }
1629         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1630         if (!is_active_lru(lru))
1631                 __count_vm_events(PGDEACTIVATE, pgmoved);
1632 }
1633
1634 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1635                         struct scan_control *sc, int priority, int file)
1636 {
1637         unsigned long nr_taken;
1638         unsigned long pgscanned;
1639         unsigned long vm_flags;
1640         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1641         LIST_HEAD(l_active);
1642         LIST_HEAD(l_inactive);
1643         struct page *page;
1644         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1645         unsigned long nr_rotated = 0;
1646         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1647
1648         lru_add_drain();
1649
1650         if (!sc->may_unmap)
1651                 reclaim_mode |= ISOLATE_UNMAPPED;
1652         if (!sc->may_writepage)
1653                 reclaim_mode |= ISOLATE_CLEAN;
1654
1655         spin_lock_irq(&zone->lru_lock);
1656         if (scanning_global_lru(sc)) {
1657                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1658                                                 &pgscanned, sc->order,
1659                                                 reclaim_mode, zone,
1660                                                 1, file);
1661                 zone->pages_scanned += pgscanned;
1662         } else {
1663                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1664                                                 &pgscanned, sc->order,
1665                                                 reclaim_mode, zone,
1666                                                 sc->mem_cgroup, 1, file);
1667                 /*
1668                  * mem_cgroup_isolate_pages() keeps track of
1669                  * scanned pages on its own.
1670                  */
1671         }
1672
1673         reclaim_stat->recent_scanned[file] += nr_taken;
1674
1675         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1676         if (file)
1677                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1678         else
1679                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1680         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1681         spin_unlock_irq(&zone->lru_lock);
1682
1683         while (!list_empty(&l_hold)) {
1684                 cond_resched();
1685                 page = lru_to_page(&l_hold);
1686                 list_del(&page->lru);
1687
1688                 if (unlikely(!page_evictable(page, NULL))) {
1689                         putback_lru_page(page);
1690                         continue;
1691                 }
1692
1693                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1694                         nr_rotated += hpage_nr_pages(page);
1695                         /*
1696                          * Identify referenced, file-backed active pages and
1697                          * give them one more trip around the active list. So
1698                          * that executable code get better chances to stay in
1699                          * memory under moderate memory pressure.  Anon pages
1700                          * are not likely to be evicted by use-once streaming
1701                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1702                          * so we ignore them here.
1703                          */
1704                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1705                                 list_add(&page->lru, &l_active);
1706                                 continue;
1707                         }
1708                 }
1709
1710                 ClearPageActive(page);  /* we are de-activating */
1711                 list_add(&page->lru, &l_inactive);
1712         }
1713
1714         /*
1715          * Move pages back to the lru list.
1716          */
1717         spin_lock_irq(&zone->lru_lock);
1718         /*
1719          * Count referenced pages from currently used mappings as rotated,
1720          * even though only some of them are actually re-activated.  This
1721          * helps balance scan pressure between file and anonymous pages in
1722          * get_scan_ratio.
1723          */
1724         reclaim_stat->recent_rotated[file] += nr_rotated;
1725
1726         move_active_pages_to_lru(zone, &l_active,
1727                                                 LRU_ACTIVE + file * LRU_FILE);
1728         move_active_pages_to_lru(zone, &l_inactive,
1729                                                 LRU_BASE   + file * LRU_FILE);
1730         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1731         spin_unlock_irq(&zone->lru_lock);
1732 }
1733
1734 #ifdef CONFIG_SWAP
1735 static int inactive_anon_is_low_global(struct zone *zone)
1736 {
1737         unsigned long active, inactive;
1738
1739         active = zone_page_state(zone, NR_ACTIVE_ANON);
1740         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1741
1742         if (inactive * zone->inactive_ratio < active)
1743                 return 1;
1744
1745         return 0;
1746 }
1747
1748 /**
1749  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1750  * @zone: zone to check
1751  * @sc:   scan control of this context
1752  *
1753  * Returns true if the zone does not have enough inactive anon pages,
1754  * meaning some active anon pages need to be deactivated.
1755  */
1756 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1757 {
1758         int low;
1759
1760         /*
1761          * If we don't have swap space, anonymous page deactivation
1762          * is pointless.
1763          */
1764         if (!total_swap_pages)
1765                 return 0;
1766
1767         if (scanning_global_lru(sc))
1768                 low = inactive_anon_is_low_global(zone);
1769         else
1770                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1771         return low;
1772 }
1773 #else
1774 static inline int inactive_anon_is_low(struct zone *zone,
1775                                         struct scan_control *sc)
1776 {
1777         return 0;
1778 }
1779 #endif
1780
1781 static int inactive_file_is_low_global(struct zone *zone)
1782 {
1783         unsigned long active, inactive;
1784
1785         active = zone_page_state(zone, NR_ACTIVE_FILE);
1786         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1787
1788         return (active > inactive);
1789 }
1790
1791 /**
1792  * inactive_file_is_low - check if file pages need to be deactivated
1793  * @zone: zone to check
1794  * @sc:   scan control of this context
1795  *
1796  * When the system is doing streaming IO, memory pressure here
1797  * ensures that active file pages get deactivated, until more
1798  * than half of the file pages are on the inactive list.
1799  *
1800  * Once we get to that situation, protect the system's working
1801  * set from being evicted by disabling active file page aging.
1802  *
1803  * This uses a different ratio than the anonymous pages, because
1804  * the page cache uses a use-once replacement algorithm.
1805  */
1806 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1807 {
1808         int low;
1809
1810         if (scanning_global_lru(sc))
1811                 low = inactive_file_is_low_global(zone);
1812         else
1813                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1814         return low;
1815 }
1816
1817 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1818                                 int file)
1819 {
1820         if (file)
1821                 return inactive_file_is_low(zone, sc);
1822         else
1823                 return inactive_anon_is_low(zone, sc);
1824 }
1825
1826 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1827         struct zone *zone, struct scan_control *sc, int priority)
1828 {
1829         int file = is_file_lru(lru);
1830
1831         if (is_active_lru(lru)) {
1832                 if (inactive_list_is_low(zone, sc, file))
1833                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1834                 return 0;
1835         }
1836
1837         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1838 }
1839
1840 static int vmscan_swappiness(struct scan_control *sc)
1841 {
1842         if (scanning_global_lru(sc))
1843                 return vm_swappiness;
1844         return mem_cgroup_swappiness(sc->mem_cgroup);
1845 }
1846
1847 /*
1848  * Determine how aggressively the anon and file LRU lists should be
1849  * scanned.  The relative value of each set of LRU lists is determined
1850  * by looking at the fraction of the pages scanned we did rotate back
1851  * onto the active list instead of evict.
1852  *
1853  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1854  */
1855 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1856                                         unsigned long *nr, int priority)
1857 {
1858         unsigned long anon, file, free;
1859         unsigned long anon_prio, file_prio;
1860         unsigned long ap, fp;
1861         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1862         u64 fraction[2], denominator;
1863         enum lru_list l;
1864         int noswap = 0;
1865         bool force_scan = false;
1866
1867         /*
1868          * If the zone or memcg is small, nr[l] can be 0.  This
1869          * results in no scanning on this priority and a potential
1870          * priority drop.  Global direct reclaim can go to the next
1871          * zone and tends to have no problems. Global kswapd is for
1872          * zone balancing and it needs to scan a minimum amount. When
1873          * reclaiming for a memcg, a priority drop can cause high
1874          * latencies, so it's better to scan a minimum amount there as
1875          * well.
1876          */
1877         if (scanning_global_lru(sc) && current_is_kswapd())
1878                 force_scan = true;
1879         if (!scanning_global_lru(sc))
1880                 force_scan = true;
1881
1882         /* If we have no swap space, do not bother scanning anon pages. */
1883         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1884                 noswap = 1;
1885                 fraction[0] = 0;
1886                 fraction[1] = 1;
1887                 denominator = 1;
1888                 goto out;
1889         }
1890
1891         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1892                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1893         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1894                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1895
1896         if (scanning_global_lru(sc)) {
1897                 free  = zone_page_state(zone, NR_FREE_PAGES);
1898                 /* If we have very few page cache pages,
1899                    force-scan anon pages. */
1900                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1901                         fraction[0] = 1;
1902                         fraction[1] = 0;
1903                         denominator = 1;
1904                         goto out;
1905                 }
1906         }
1907
1908         /*
1909          * With swappiness at 100, anonymous and file have the same priority.
1910          * This scanning priority is essentially the inverse of IO cost.
1911          */
1912         anon_prio = vmscan_swappiness(sc);
1913         file_prio = 200 - vmscan_swappiness(sc);
1914
1915         /*
1916          * OK, so we have swap space and a fair amount of page cache
1917          * pages.  We use the recently rotated / recently scanned
1918          * ratios to determine how valuable each cache is.
1919          *
1920          * Because workloads change over time (and to avoid overflow)
1921          * we keep these statistics as a floating average, which ends
1922          * up weighing recent references more than old ones.
1923          *
1924          * anon in [0], file in [1]
1925          */
1926         spin_lock_irq(&zone->lru_lock);
1927         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1928                 reclaim_stat->recent_scanned[0] /= 2;
1929                 reclaim_stat->recent_rotated[0] /= 2;
1930         }
1931
1932         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1933                 reclaim_stat->recent_scanned[1] /= 2;
1934                 reclaim_stat->recent_rotated[1] /= 2;
1935         }
1936
1937         /*
1938          * The amount of pressure on anon vs file pages is inversely
1939          * proportional to the fraction of recently scanned pages on
1940          * each list that were recently referenced and in active use.
1941          */
1942         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1943         ap /= reclaim_stat->recent_rotated[0] + 1;
1944
1945         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1946         fp /= reclaim_stat->recent_rotated[1] + 1;
1947         spin_unlock_irq(&zone->lru_lock);
1948
1949         fraction[0] = ap;
1950         fraction[1] = fp;
1951         denominator = ap + fp + 1;
1952 out:
1953         for_each_evictable_lru(l) {
1954                 int file = is_file_lru(l);
1955                 unsigned long scan;
1956
1957                 scan = zone_nr_lru_pages(zone, sc, l);
1958                 if (priority || noswap) {
1959                         scan >>= priority;
1960                         if (!scan && force_scan)
1961                                 scan = SWAP_CLUSTER_MAX;
1962                         scan = div64_u64(scan * fraction[file], denominator);
1963                 }
1964                 nr[l] = scan;
1965         }
1966 }
1967
1968 /*
1969  * Reclaim/compaction depends on a number of pages being freed. To avoid
1970  * disruption to the system, a small number of order-0 pages continue to be
1971  * rotated and reclaimed in the normal fashion. However, by the time we get
1972  * back to the allocator and call try_to_compact_zone(), we ensure that
1973  * there are enough free pages for it to be likely successful
1974  */
1975 static inline bool should_continue_reclaim(struct zone *zone,
1976                                         unsigned long nr_reclaimed,
1977                                         unsigned long nr_scanned,
1978                                         struct scan_control *sc)
1979 {
1980         unsigned long pages_for_compaction;
1981         unsigned long inactive_lru_pages;
1982
1983         /* If not in reclaim/compaction mode, stop */
1984         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1985                 return false;
1986
1987         /* Consider stopping depending on scan and reclaim activity */
1988         if (sc->gfp_mask & __GFP_REPEAT) {
1989                 /*
1990                  * For __GFP_REPEAT allocations, stop reclaiming if the
1991                  * full LRU list has been scanned and we are still failing
1992                  * to reclaim pages. This full LRU scan is potentially
1993                  * expensive but a __GFP_REPEAT caller really wants to succeed
1994                  */
1995                 if (!nr_reclaimed && !nr_scanned)
1996                         return false;
1997         } else {
1998                 /*
1999                  * For non-__GFP_REPEAT allocations which can presumably
2000                  * fail without consequence, stop if we failed to reclaim
2001                  * any pages from the last SWAP_CLUSTER_MAX number of
2002                  * pages that were scanned. This will return to the
2003                  * caller faster at the risk reclaim/compaction and
2004                  * the resulting allocation attempt fails
2005                  */
2006                 if (!nr_reclaimed)
2007                         return false;
2008         }
2009
2010         /*
2011          * If we have not reclaimed enough pages for compaction and the
2012          * inactive lists are large enough, continue reclaiming
2013          */
2014         pages_for_compaction = (2UL << sc->order);
2015         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2016                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2017         if (sc->nr_reclaimed < pages_for_compaction &&
2018                         inactive_lru_pages > pages_for_compaction)
2019                 return true;
2020
2021         /* If compaction would go ahead or the allocation would succeed, stop */
2022         switch (compaction_suitable(zone, sc->order)) {
2023         case COMPACT_PARTIAL:
2024         case COMPACT_CONTINUE:
2025                 return false;
2026         default:
2027                 return true;
2028         }
2029 }
2030
2031 /*
2032  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2033  */
2034 static void shrink_zone(int priority, struct zone *zone,
2035                                 struct scan_control *sc)
2036 {
2037         unsigned long nr[NR_LRU_LISTS];
2038         unsigned long nr_to_scan;
2039         enum lru_list l;
2040         unsigned long nr_reclaimed, nr_scanned;
2041         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2042         struct blk_plug plug;
2043
2044 restart:
2045         nr_reclaimed = 0;
2046         nr_scanned = sc->nr_scanned;
2047         get_scan_count(zone, sc, nr, priority);
2048
2049         blk_start_plug(&plug);
2050         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2051                                         nr[LRU_INACTIVE_FILE]) {
2052                 for_each_evictable_lru(l) {
2053                         if (nr[l]) {
2054                                 nr_to_scan = min_t(unsigned long,
2055                                                    nr[l], SWAP_CLUSTER_MAX);
2056                                 nr[l] -= nr_to_scan;
2057
2058                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2059                                                             zone, sc, priority);
2060                         }
2061                 }
2062                 /*
2063                  * On large memory systems, scan >> priority can become
2064                  * really large. This is fine for the starting priority;
2065                  * we want to put equal scanning pressure on each zone.
2066                  * However, if the VM has a harder time of freeing pages,
2067                  * with multiple processes reclaiming pages, the total
2068                  * freeing target can get unreasonably large.
2069                  */
2070                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2071                         break;
2072         }
2073         blk_finish_plug(&plug);
2074         sc->nr_reclaimed += nr_reclaimed;
2075
2076         /*
2077          * Even if we did not try to evict anon pages at all, we want to
2078          * rebalance the anon lru active/inactive ratio.
2079          */
2080         if (inactive_anon_is_low(zone, sc))
2081                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2082
2083         /* reclaim/compaction might need reclaim to continue */
2084         if (should_continue_reclaim(zone, nr_reclaimed,
2085                                         sc->nr_scanned - nr_scanned, sc))
2086                 goto restart;
2087
2088         throttle_vm_writeout(sc->gfp_mask);
2089 }
2090
2091 /*
2092  * This is the direct reclaim path, for page-allocating processes.  We only
2093  * try to reclaim pages from zones which will satisfy the caller's allocation
2094  * request.
2095  *
2096  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2097  * Because:
2098  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2099  *    allocation or
2100  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2101  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2102  *    zone defense algorithm.
2103  *
2104  * If a zone is deemed to be full of pinned pages then just give it a light
2105  * scan then give up on it.
2106  */
2107 static void shrink_zones(int priority, struct zonelist *zonelist,
2108                                         struct scan_control *sc)
2109 {
2110         struct zoneref *z;
2111         struct zone *zone;
2112         unsigned long nr_soft_reclaimed;
2113         unsigned long nr_soft_scanned;
2114
2115         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2116                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2117                 if (!populated_zone(zone))
2118                         continue;
2119                 /*
2120                  * Take care memory controller reclaiming has small influence
2121                  * to global LRU.
2122                  */
2123                 if (scanning_global_lru(sc)) {
2124                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2125                                 continue;
2126                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2127                                 continue;       /* Let kswapd poll it */
2128                         /*
2129                          * This steals pages from memory cgroups over softlimit
2130                          * and returns the number of reclaimed pages and
2131                          * scanned pages. This works for global memory pressure
2132                          * and balancing, not for a memcg's limit.
2133                          */
2134                         nr_soft_scanned = 0;
2135                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2136                                                 sc->order, sc->gfp_mask,
2137                                                 &nr_soft_scanned);
2138                         sc->nr_reclaimed += nr_soft_reclaimed;
2139                         sc->nr_scanned += nr_soft_scanned;
2140                         /* need some check for avoid more shrink_zone() */
2141                 }
2142
2143                 shrink_zone(priority, zone, sc);
2144         }
2145 }
2146
2147 static bool zone_reclaimable(struct zone *zone)
2148 {
2149         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2150 }
2151
2152 /* All zones in zonelist are unreclaimable? */
2153 static bool all_unreclaimable(struct zonelist *zonelist,
2154                 struct scan_control *sc)
2155 {
2156         struct zoneref *z;
2157         struct zone *zone;
2158
2159         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2160                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2161                 if (!populated_zone(zone))
2162                         continue;
2163                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2164                         continue;
2165                 if (!zone->all_unreclaimable)
2166                         return false;
2167         }
2168
2169         return true;
2170 }
2171
2172 /*
2173  * This is the main entry point to direct page reclaim.
2174  *
2175  * If a full scan of the inactive list fails to free enough memory then we
2176  * are "out of memory" and something needs to be killed.
2177  *
2178  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2179  * high - the zone may be full of dirty or under-writeback pages, which this
2180  * caller can't do much about.  We kick the writeback threads and take explicit
2181  * naps in the hope that some of these pages can be written.  But if the
2182  * allocating task holds filesystem locks which prevent writeout this might not
2183  * work, and the allocation attempt will fail.
2184  *
2185  * returns:     0, if no pages reclaimed
2186  *              else, the number of pages reclaimed
2187  */
2188 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2189                                         struct scan_control *sc,
2190                                         struct shrink_control *shrink)
2191 {
2192         int priority;
2193         unsigned long total_scanned = 0;
2194         struct reclaim_state *reclaim_state = current->reclaim_state;
2195         struct zoneref *z;
2196         struct zone *zone;
2197         unsigned long writeback_threshold;
2198
2199         get_mems_allowed();
2200         delayacct_freepages_start();
2201
2202         if (scanning_global_lru(sc))
2203                 count_vm_event(ALLOCSTALL);
2204
2205         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2206                 sc->nr_scanned = 0;
2207                 if (!priority)
2208                         disable_swap_token(sc->mem_cgroup);
2209                 shrink_zones(priority, zonelist, sc);
2210                 /*
2211                  * Don't shrink slabs when reclaiming memory from
2212                  * over limit cgroups
2213                  */
2214                 if (scanning_global_lru(sc)) {
2215                         unsigned long lru_pages = 0;
2216                         for_each_zone_zonelist(zone, z, zonelist,
2217                                         gfp_zone(sc->gfp_mask)) {
2218                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2219                                         continue;
2220
2221                                 lru_pages += zone_reclaimable_pages(zone);
2222                         }
2223
2224                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2225                         if (reclaim_state) {
2226                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2227                                 reclaim_state->reclaimed_slab = 0;
2228                         }
2229                 }
2230                 total_scanned += sc->nr_scanned;
2231                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2232                         goto out;
2233
2234                 /*
2235                  * Try to write back as many pages as we just scanned.  This
2236                  * tends to cause slow streaming writers to write data to the
2237                  * disk smoothly, at the dirtying rate, which is nice.   But
2238                  * that's undesirable in laptop mode, where we *want* lumpy
2239                  * writeout.  So in laptop mode, write out the whole world.
2240                  */
2241                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2242                 if (total_scanned > writeback_threshold) {
2243                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2244                         sc->may_writepage = 1;
2245                 }
2246
2247                 /* Take a nap, wait for some writeback to complete */
2248                 if (!sc->hibernation_mode && sc->nr_scanned &&
2249                     priority < DEF_PRIORITY - 2) {
2250                         struct zone *preferred_zone;
2251
2252                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2253                                                 &cpuset_current_mems_allowed,
2254                                                 &preferred_zone);
2255                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2256                 }
2257         }
2258
2259 out:
2260         delayacct_freepages_end();
2261         put_mems_allowed();
2262
2263         if (sc->nr_reclaimed)
2264                 return sc->nr_reclaimed;
2265
2266         /*
2267          * As hibernation is going on, kswapd is freezed so that it can't mark
2268          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2269          * check.
2270          */
2271         if (oom_killer_disabled)
2272                 return 0;
2273
2274         /* top priority shrink_zones still had more to do? don't OOM, then */
2275         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2276                 return 1;
2277
2278         return 0;
2279 }
2280
2281 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2282                                 gfp_t gfp_mask, nodemask_t *nodemask)
2283 {
2284         unsigned long nr_reclaimed;
2285         struct scan_control sc = {
2286                 .gfp_mask = gfp_mask,
2287                 .may_writepage = !laptop_mode,
2288                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2289                 .may_unmap = 1,
2290                 .may_swap = 1,
2291                 .order = order,
2292                 .mem_cgroup = NULL,
2293                 .nodemask = nodemask,
2294         };
2295         struct shrink_control shrink = {
2296                 .gfp_mask = sc.gfp_mask,
2297         };
2298
2299         trace_mm_vmscan_direct_reclaim_begin(order,
2300                                 sc.may_writepage,
2301                                 gfp_mask);
2302
2303         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2304
2305         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2306
2307         return nr_reclaimed;
2308 }
2309
2310 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2311
2312 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2313                                                 gfp_t gfp_mask, bool noswap,
2314                                                 struct zone *zone,
2315                                                 unsigned long *nr_scanned)
2316 {
2317         struct scan_control sc = {
2318                 .nr_scanned = 0,
2319                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2320                 .may_writepage = !laptop_mode,
2321                 .may_unmap = 1,
2322                 .may_swap = !noswap,
2323                 .order = 0,
2324                 .mem_cgroup = mem,
2325         };
2326
2327         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2328                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2329
2330         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2331                                                       sc.may_writepage,
2332                                                       sc.gfp_mask);
2333
2334         /*
2335          * NOTE: Although we can get the priority field, using it
2336          * here is not a good idea, since it limits the pages we can scan.
2337          * if we don't reclaim here, the shrink_zone from balance_pgdat
2338          * will pick up pages from other mem cgroup's as well. We hack
2339          * the priority and make it zero.
2340          */
2341         shrink_zone(0, zone, &sc);
2342
2343         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2344
2345         *nr_scanned = sc.nr_scanned;
2346         return sc.nr_reclaimed;
2347 }
2348
2349 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2350                                            gfp_t gfp_mask,
2351                                            bool noswap)
2352 {
2353         struct zonelist *zonelist;
2354         unsigned long nr_reclaimed;
2355         int nid;
2356         struct scan_control sc = {
2357                 .may_writepage = !laptop_mode,
2358                 .may_unmap = 1,
2359                 .may_swap = !noswap,
2360                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2361                 .order = 0,
2362                 .mem_cgroup = mem_cont,
2363                 .nodemask = NULL, /* we don't care the placement */
2364                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2365                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2366         };
2367         struct shrink_control shrink = {
2368                 .gfp_mask = sc.gfp_mask,
2369         };
2370
2371         /*
2372          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2373          * take care of from where we get pages. So the node where we start the
2374          * scan does not need to be the current node.
2375          */
2376         nid = mem_cgroup_select_victim_node(mem_cont);
2377
2378         zonelist = NODE_DATA(nid)->node_zonelists;
2379
2380         trace_mm_vmscan_memcg_reclaim_begin(0,
2381                                             sc.may_writepage,
2382                                             sc.gfp_mask);
2383
2384         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2385
2386         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2387
2388         return nr_reclaimed;
2389 }
2390 #endif
2391
2392 /*
2393  * pgdat_balanced is used when checking if a node is balanced for high-order
2394  * allocations. Only zones that meet watermarks and are in a zone allowed
2395  * by the callers classzone_idx are added to balanced_pages. The total of
2396  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2397  * for the node to be considered balanced. Forcing all zones to be balanced
2398  * for high orders can cause excessive reclaim when there are imbalanced zones.
2399  * The choice of 25% is due to
2400  *   o a 16M DMA zone that is balanced will not balance a zone on any
2401  *     reasonable sized machine
2402  *   o On all other machines, the top zone must be at least a reasonable
2403  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2404  *     would need to be at least 256M for it to be balance a whole node.
2405  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2406  *     to balance a node on its own. These seemed like reasonable ratios.
2407  */
2408 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2409                                                 int classzone_idx)
2410 {
2411         unsigned long present_pages = 0;
2412         int i;
2413
2414         for (i = 0; i <= classzone_idx; i++)
2415                 present_pages += pgdat->node_zones[i].present_pages;
2416
2417         /* A special case here: if zone has no page, we think it's balanced */
2418         return balanced_pages >= (present_pages >> 2);
2419 }
2420
2421 /* is kswapd sleeping prematurely? */
2422 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2423                                         int classzone_idx)
2424 {
2425         int i;
2426         unsigned long balanced = 0;
2427         bool all_zones_ok = true;
2428
2429         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2430         if (remaining)
2431                 return true;
2432
2433         /* Check the watermark levels */
2434         for (i = 0; i <= classzone_idx; i++) {
2435                 struct zone *zone = pgdat->node_zones + i;
2436
2437                 if (!populated_zone(zone))
2438                         continue;
2439
2440                 /*
2441                  * balance_pgdat() skips over all_unreclaimable after
2442                  * DEF_PRIORITY. Effectively, it considers them balanced so
2443                  * they must be considered balanced here as well if kswapd
2444                  * is to sleep
2445                  */
2446                 if (zone->all_unreclaimable) {
2447                         balanced += zone->present_pages;
2448                         continue;
2449                 }
2450
2451                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2452                                                         i, 0))
2453                         all_zones_ok = false;
2454                 else
2455                         balanced += zone->present_pages;
2456         }
2457
2458         /*
2459          * For high-order requests, the balanced zones must contain at least
2460          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2461          * must be balanced
2462          */
2463         if (order)
2464                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2465         else
2466                 return !all_zones_ok;
2467 }
2468
2469 /*
2470  * For kswapd, balance_pgdat() will work across all this node's zones until
2471  * they are all at high_wmark_pages(zone).
2472  *
2473  * Returns the final order kswapd was reclaiming at
2474  *
2475  * There is special handling here for zones which are full of pinned pages.
2476  * This can happen if the pages are all mlocked, or if they are all used by
2477  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2478  * What we do is to detect the case where all pages in the zone have been
2479  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2480  * dead and from now on, only perform a short scan.  Basically we're polling
2481  * the zone for when the problem goes away.
2482  *
2483  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2484  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2485  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2486  * lower zones regardless of the number of free pages in the lower zones. This
2487  * interoperates with the page allocator fallback scheme to ensure that aging
2488  * of pages is balanced across the zones.
2489  */
2490 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2491                                                         int *classzone_idx)
2492 {
2493         int all_zones_ok;
2494         unsigned long balanced;
2495         int priority;
2496         int i;
2497         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2498         unsigned long total_scanned;
2499         struct reclaim_state *reclaim_state = current->reclaim_state;
2500         unsigned long nr_soft_reclaimed;
2501         unsigned long nr_soft_scanned;
2502         struct scan_control sc = {
2503                 .gfp_mask = GFP_KERNEL,
2504                 .may_unmap = 1,
2505                 .may_swap = 1,
2506                 /*
2507                  * kswapd doesn't want to be bailed out while reclaim. because
2508                  * we want to put equal scanning pressure on each zone.
2509                  */
2510                 .nr_to_reclaim = ULONG_MAX,
2511                 .order = order,
2512                 .mem_cgroup = NULL,
2513         };
2514         struct shrink_control shrink = {
2515                 .gfp_mask = sc.gfp_mask,
2516         };
2517 loop_again:
2518         total_scanned = 0;
2519         sc.nr_reclaimed = 0;
2520         sc.may_writepage = !laptop_mode;
2521         count_vm_event(PAGEOUTRUN);
2522
2523         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2524                 unsigned long lru_pages = 0;
2525                 int has_under_min_watermark_zone = 0;
2526
2527                 /* The swap token gets in the way of swapout... */
2528                 if (!priority)
2529                         disable_swap_token(NULL);
2530
2531                 all_zones_ok = 1;
2532                 balanced = 0;
2533
2534                 /*
2535                  * Scan in the highmem->dma direction for the highest
2536                  * zone which needs scanning
2537                  */
2538                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2539                         struct zone *zone = pgdat->node_zones + i;
2540
2541                         if (!populated_zone(zone))
2542                                 continue;
2543
2544                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2545                                 continue;
2546
2547                         /*
2548                          * Do some background aging of the anon list, to give
2549                          * pages a chance to be referenced before reclaiming.
2550                          */
2551                         if (inactive_anon_is_low(zone, &sc))
2552                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2553                                                         &sc, priority, 0);
2554
2555                         if (!zone_watermark_ok_safe(zone, order,
2556                                         high_wmark_pages(zone), 0, 0)) {
2557                                 end_zone = i;
2558                                 break;
2559                         } else {
2560                                 /* If balanced, clear the congested flag */
2561                                 zone_clear_flag(zone, ZONE_CONGESTED);
2562                         }
2563                 }
2564                 if (i < 0)
2565                         goto out;
2566
2567                 for (i = 0; i <= end_zone; i++) {
2568                         struct zone *zone = pgdat->node_zones + i;
2569
2570                         lru_pages += zone_reclaimable_pages(zone);
2571                 }
2572
2573                 /*
2574                  * Now scan the zone in the dma->highmem direction, stopping
2575                  * at the last zone which needs scanning.
2576                  *
2577                  * We do this because the page allocator works in the opposite
2578                  * direction.  This prevents the page allocator from allocating
2579                  * pages behind kswapd's direction of progress, which would
2580                  * cause too much scanning of the lower zones.
2581                  */
2582                 for (i = 0; i <= end_zone; i++) {
2583                         struct zone *zone = pgdat->node_zones + i;
2584                         int nr_slab;
2585                         unsigned long balance_gap;
2586
2587                         if (!populated_zone(zone))
2588                                 continue;
2589
2590                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2591                                 continue;
2592
2593                         sc.nr_scanned = 0;
2594
2595                         nr_soft_scanned = 0;
2596                         /*
2597                          * Call soft limit reclaim before calling shrink_zone.
2598                          */
2599                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2600                                                         order, sc.gfp_mask,
2601                                                         &nr_soft_scanned);
2602                         sc.nr_reclaimed += nr_soft_reclaimed;
2603                         total_scanned += nr_soft_scanned;
2604
2605                         /*
2606                          * We put equal pressure on every zone, unless
2607                          * one zone has way too many pages free
2608                          * already. The "too many pages" is defined
2609                          * as the high wmark plus a "gap" where the
2610                          * gap is either the low watermark or 1%
2611                          * of the zone, whichever is smaller.
2612                          */
2613                         balance_gap = min(low_wmark_pages(zone),
2614                                 (zone->present_pages +
2615                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2616                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2617                         if (!zone_watermark_ok_safe(zone, order,
2618                                         high_wmark_pages(zone) + balance_gap,
2619                                         end_zone, 0)) {
2620                                 shrink_zone(priority, zone, &sc);
2621
2622                                 reclaim_state->reclaimed_slab = 0;
2623                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2624                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2625                                 total_scanned += sc.nr_scanned;
2626
2627                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2628                                         zone->all_unreclaimable = 1;
2629                         }
2630
2631                         /*
2632                          * If we've done a decent amount of scanning and
2633                          * the reclaim ratio is low, start doing writepage
2634                          * even in laptop mode
2635                          */
2636                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2637                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2638                                 sc.may_writepage = 1;
2639
2640                         if (zone->all_unreclaimable) {
2641                                 if (end_zone && end_zone == i)
2642                                         end_zone--;
2643                                 continue;
2644                         }
2645
2646                         if (!zone_watermark_ok_safe(zone, order,
2647                                         high_wmark_pages(zone), end_zone, 0)) {
2648                                 all_zones_ok = 0;
2649                                 /*
2650                                  * We are still under min water mark.  This
2651                                  * means that we have a GFP_ATOMIC allocation
2652                                  * failure risk. Hurry up!
2653                                  */
2654                                 if (!zone_watermark_ok_safe(zone, order,
2655                                             min_wmark_pages(zone), end_zone, 0))
2656                                         has_under_min_watermark_zone = 1;
2657                         } else {
2658                                 /*
2659                                  * If a zone reaches its high watermark,
2660                                  * consider it to be no longer congested. It's
2661                                  * possible there are dirty pages backed by
2662                                  * congested BDIs but as pressure is relieved,
2663                                  * spectulatively avoid congestion waits
2664                                  */
2665                                 zone_clear_flag(zone, ZONE_CONGESTED);
2666                                 if (i <= *classzone_idx)
2667                                         balanced += zone->present_pages;
2668                         }
2669
2670                 }
2671                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2672                         break;          /* kswapd: all done */
2673                 /*
2674                  * OK, kswapd is getting into trouble.  Take a nap, then take
2675                  * another pass across the zones.
2676                  */
2677                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2678                         if (has_under_min_watermark_zone)
2679                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2680                         else
2681                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2682                 }
2683
2684                 /*
2685                  * We do this so kswapd doesn't build up large priorities for
2686                  * example when it is freeing in parallel with allocators. It
2687                  * matches the direct reclaim path behaviour in terms of impact
2688                  * on zone->*_priority.
2689                  */
2690                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2691                         break;
2692         }
2693 out:
2694
2695         /*
2696          * order-0: All zones must meet high watermark for a balanced node
2697          * high-order: Balanced zones must make up at least 25% of the node
2698          *             for the node to be balanced
2699          */
2700         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2701                 cond_resched();
2702
2703                 try_to_freeze();
2704
2705                 /*
2706                  * Fragmentation may mean that the system cannot be
2707                  * rebalanced for high-order allocations in all zones.
2708                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2709                  * it means the zones have been fully scanned and are still
2710                  * not balanced. For high-order allocations, there is
2711                  * little point trying all over again as kswapd may
2712                  * infinite loop.
2713                  *
2714                  * Instead, recheck all watermarks at order-0 as they
2715                  * are the most important. If watermarks are ok, kswapd will go
2716                  * back to sleep. High-order users can still perform direct
2717                  * reclaim if they wish.
2718                  */
2719                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2720                         order = sc.order = 0;
2721
2722                 goto loop_again;
2723         }
2724
2725         /*
2726          * If kswapd was reclaiming at a higher order, it has the option of
2727          * sleeping without all zones being balanced. Before it does, it must
2728          * ensure that the watermarks for order-0 on *all* zones are met and
2729          * that the congestion flags are cleared. The congestion flag must
2730          * be cleared as kswapd is the only mechanism that clears the flag
2731          * and it is potentially going to sleep here.
2732          */
2733         if (order) {
2734                 for (i = 0; i <= end_zone; i++) {
2735                         struct zone *zone = pgdat->node_zones + i;
2736
2737                         if (!populated_zone(zone))
2738                                 continue;
2739
2740                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2741                                 continue;
2742
2743                         /* Confirm the zone is balanced for order-0 */
2744                         if (!zone_watermark_ok(zone, 0,
2745                                         high_wmark_pages(zone), 0, 0)) {
2746                                 order = sc.order = 0;
2747                                 goto loop_again;
2748                         }
2749
2750                         /* If balanced, clear the congested flag */
2751                         zone_clear_flag(zone, ZONE_CONGESTED);
2752                         if (i <= *classzone_idx)
2753                                 balanced += zone->present_pages;
2754                 }
2755         }
2756
2757         /*
2758          * Return the order we were reclaiming at so sleeping_prematurely()
2759          * makes a decision on the order we were last reclaiming at. However,
2760          * if another caller entered the allocator slow path while kswapd
2761          * was awake, order will remain at the higher level
2762          */
2763         *classzone_idx = end_zone;
2764         return order;
2765 }
2766
2767 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2768 {
2769         long remaining = 0;
2770         DEFINE_WAIT(wait);
2771
2772         if (freezing(current) || kthread_should_stop())
2773                 return;
2774
2775         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2776
2777         /* Try to sleep for a short interval */
2778         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2779                 remaining = schedule_timeout(HZ/10);
2780                 finish_wait(&pgdat->kswapd_wait, &wait);
2781                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2782         }
2783
2784         /*
2785          * After a short sleep, check if it was a premature sleep. If not, then
2786          * go fully to sleep until explicitly woken up.
2787          */
2788         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2789                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2790
2791                 /*
2792                  * vmstat counters are not perfectly accurate and the estimated
2793                  * value for counters such as NR_FREE_PAGES can deviate from the
2794                  * true value by nr_online_cpus * threshold. To avoid the zone
2795                  * watermarks being breached while under pressure, we reduce the
2796                  * per-cpu vmstat threshold while kswapd is awake and restore
2797                  * them before going back to sleep.
2798                  */
2799                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2800                 schedule();
2801                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2802         } else {
2803                 if (remaining)
2804                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2805                 else
2806                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2807         }
2808         finish_wait(&pgdat->kswapd_wait, &wait);
2809 }
2810
2811 /*
2812  * The background pageout daemon, started as a kernel thread
2813  * from the init process.
2814  *
2815  * This basically trickles out pages so that we have _some_
2816  * free memory available even if there is no other activity
2817  * that frees anything up. This is needed for things like routing
2818  * etc, where we otherwise might have all activity going on in
2819  * asynchronous contexts that cannot page things out.
2820  *
2821  * If there are applications that are active memory-allocators
2822  * (most normal use), this basically shouldn't matter.
2823  */
2824 static int kswapd(void *p)
2825 {
2826         unsigned long order, new_order;
2827         unsigned balanced_order;
2828         int classzone_idx, new_classzone_idx;
2829         int balanced_classzone_idx;
2830         pg_data_t *pgdat = (pg_data_t*)p;
2831         struct task_struct *tsk = current;
2832
2833         struct reclaim_state reclaim_state = {
2834                 .reclaimed_slab = 0,
2835         };
2836         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2837
2838         lockdep_set_current_reclaim_state(GFP_KERNEL);
2839
2840         if (!cpumask_empty(cpumask))
2841                 set_cpus_allowed_ptr(tsk, cpumask);
2842         current->reclaim_state = &reclaim_state;
2843
2844         /*
2845          * Tell the memory management that we're a "memory allocator",
2846          * and that if we need more memory we should get access to it
2847          * regardless (see "__alloc_pages()"). "kswapd" should
2848          * never get caught in the normal page freeing logic.
2849          *
2850          * (Kswapd normally doesn't need memory anyway, but sometimes
2851          * you need a small amount of memory in order to be able to
2852          * page out something else, and this flag essentially protects
2853          * us from recursively trying to free more memory as we're
2854          * trying to free the first piece of memory in the first place).
2855          */
2856         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2857         set_freezable();
2858
2859         order = new_order = 0;
2860         balanced_order = 0;
2861         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2862         balanced_classzone_idx = classzone_idx;
2863         for ( ; ; ) {
2864                 int ret;
2865
2866                 /*
2867                  * If the last balance_pgdat was unsuccessful it's unlikely a
2868                  * new request of a similar or harder type will succeed soon
2869                  * so consider going to sleep on the basis we reclaimed at
2870                  */
2871                 if (balanced_classzone_idx >= new_classzone_idx &&
2872                                         balanced_order == new_order) {
2873                         new_order = pgdat->kswapd_max_order;
2874                         new_classzone_idx = pgdat->classzone_idx;
2875                         pgdat->kswapd_max_order =  0;
2876                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2877                 }
2878
2879                 if (order < new_order || classzone_idx > new_classzone_idx) {
2880                         /*
2881                          * Don't sleep if someone wants a larger 'order'
2882                          * allocation or has tigher zone constraints
2883                          */
2884                         order = new_order;
2885                         classzone_idx = new_classzone_idx;
2886                 } else {
2887                         kswapd_try_to_sleep(pgdat, balanced_order,
2888                                                 balanced_classzone_idx);
2889                         order = pgdat->kswapd_max_order;
2890                         classzone_idx = pgdat->classzone_idx;
2891                         new_order = order;
2892                         new_classzone_idx = classzone_idx;
2893                         pgdat->kswapd_max_order = 0;
2894                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2895                 }
2896
2897                 ret = try_to_freeze();
2898                 if (kthread_should_stop())
2899                         break;
2900
2901                 /*
2902                  * We can speed up thawing tasks if we don't call balance_pgdat
2903                  * after returning from the refrigerator
2904                  */
2905                 if (!ret) {
2906                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2907                         balanced_classzone_idx = classzone_idx;
2908                         balanced_order = balance_pgdat(pgdat, order,
2909                                                 &balanced_classzone_idx);
2910                 }
2911         }
2912         return 0;
2913 }
2914
2915 /*
2916  * A zone is low on free memory, so wake its kswapd task to service it.
2917  */
2918 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2919 {
2920         pg_data_t *pgdat;
2921
2922         if (!populated_zone(zone))
2923                 return;
2924
2925         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2926                 return;
2927         pgdat = zone->zone_pgdat;
2928         if (pgdat->kswapd_max_order < order) {
2929                 pgdat->kswapd_max_order = order;
2930                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2931         }
2932         if (!waitqueue_active(&pgdat->kswapd_wait))
2933                 return;
2934         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2935                 return;
2936
2937         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2938         wake_up_interruptible(&pgdat->kswapd_wait);
2939 }
2940
2941 /*
2942  * The reclaimable count would be mostly accurate.
2943  * The less reclaimable pages may be
2944  * - mlocked pages, which will be moved to unevictable list when encountered
2945  * - mapped pages, which may require several travels to be reclaimed
2946  * - dirty pages, which is not "instantly" reclaimable
2947  */
2948 unsigned long global_reclaimable_pages(void)
2949 {
2950         int nr;
2951
2952         nr = global_page_state(NR_ACTIVE_FILE) +
2953              global_page_state(NR_INACTIVE_FILE);
2954
2955         if (nr_swap_pages > 0)
2956                 nr += global_page_state(NR_ACTIVE_ANON) +
2957                       global_page_state(NR_INACTIVE_ANON);
2958
2959         return nr;
2960 }
2961
2962 unsigned long zone_reclaimable_pages(struct zone *zone)
2963 {
2964         int nr;
2965
2966         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2967              zone_page_state(zone, NR_INACTIVE_FILE);
2968
2969         if (nr_swap_pages > 0)
2970                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2971                       zone_page_state(zone, NR_INACTIVE_ANON);
2972
2973         return nr;
2974 }
2975
2976 #ifdef CONFIG_HIBERNATION
2977 /*
2978  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2979  * freed pages.
2980  *
2981  * Rather than trying to age LRUs the aim is to preserve the overall
2982  * LRU order by reclaiming preferentially
2983  * inactive > active > active referenced > active mapped
2984  */
2985 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2986 {
2987         struct reclaim_state reclaim_state;
2988         struct scan_control sc = {
2989                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2990                 .may_swap = 1,
2991                 .may_unmap = 1,
2992                 .may_writepage = 1,
2993                 .nr_to_reclaim = nr_to_reclaim,
2994                 .hibernation_mode = 1,
2995                 .order = 0,
2996         };
2997         struct shrink_control shrink = {
2998                 .gfp_mask = sc.gfp_mask,
2999         };
3000         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3001         struct task_struct *p = current;
3002         unsigned long nr_reclaimed;
3003
3004         p->flags |= PF_MEMALLOC;
3005         lockdep_set_current_reclaim_state(sc.gfp_mask);
3006         reclaim_state.reclaimed_slab = 0;
3007         p->reclaim_state = &reclaim_state;
3008
3009         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3010
3011         p->reclaim_state = NULL;
3012         lockdep_clear_current_reclaim_state();
3013         p->flags &= ~PF_MEMALLOC;
3014
3015         return nr_reclaimed;
3016 }
3017 #endif /* CONFIG_HIBERNATION */
3018
3019 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3020    not required for correctness.  So if the last cpu in a node goes
3021    away, we get changed to run anywhere: as the first one comes back,
3022    restore their cpu bindings. */
3023 static int __devinit cpu_callback(struct notifier_block *nfb,
3024                                   unsigned long action, void *hcpu)
3025 {
3026         int nid;
3027
3028         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3029                 for_each_node_state(nid, N_HIGH_MEMORY) {
3030                         pg_data_t *pgdat = NODE_DATA(nid);
3031                         const struct cpumask *mask;
3032
3033                         mask = cpumask_of_node(pgdat->node_id);
3034
3035                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3036                                 /* One of our CPUs online: restore mask */
3037                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3038                 }
3039         }
3040         return NOTIFY_OK;
3041 }
3042
3043 /*
3044  * This kswapd start function will be called by init and node-hot-add.
3045  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3046  */
3047 int kswapd_run(int nid)
3048 {
3049         pg_data_t *pgdat = NODE_DATA(nid);
3050         int ret = 0;
3051
3052         if (pgdat->kswapd)
3053                 return 0;
3054
3055         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3056         if (IS_ERR(pgdat->kswapd)) {
3057                 /* failure at boot is fatal */
3058                 BUG_ON(system_state == SYSTEM_BOOTING);
3059                 printk("Failed to start kswapd on node %d\n",nid);
3060                 ret = -1;
3061         }
3062         return ret;
3063 }
3064
3065 /*
3066  * Called by memory hotplug when all memory in a node is offlined.
3067  */
3068 void kswapd_stop(int nid)
3069 {
3070         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3071
3072         if (kswapd)
3073                 kthread_stop(kswapd);
3074 }
3075
3076 static int __init kswapd_init(void)
3077 {
3078         int nid;
3079
3080         swap_setup();
3081         for_each_node_state(nid, N_HIGH_MEMORY)
3082                 kswapd_run(nid);
3083         hotcpu_notifier(cpu_callback, 0);
3084         return 0;
3085 }
3086
3087 module_init(kswapd_init)
3088
3089 #ifdef CONFIG_NUMA
3090 /*
3091  * Zone reclaim mode
3092  *
3093  * If non-zero call zone_reclaim when the number of free pages falls below
3094  * the watermarks.
3095  */
3096 int zone_reclaim_mode __read_mostly;
3097
3098 #define RECLAIM_OFF 0
3099 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3100 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3101 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3102
3103 /*
3104  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3105  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3106  * a zone.
3107  */
3108 #define ZONE_RECLAIM_PRIORITY 4
3109
3110 /*
3111  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3112  * occur.
3113  */
3114 int sysctl_min_unmapped_ratio = 1;
3115
3116 /*
3117  * If the number of slab pages in a zone grows beyond this percentage then
3118  * slab reclaim needs to occur.
3119  */
3120 int sysctl_min_slab_ratio = 5;
3121
3122 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3123 {
3124         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3125         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3126                 zone_page_state(zone, NR_ACTIVE_FILE);
3127
3128         /*
3129          * It's possible for there to be more file mapped pages than
3130          * accounted for by the pages on the file LRU lists because
3131          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3132          */
3133         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3134 }
3135
3136 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3137 static long zone_pagecache_reclaimable(struct zone *zone)
3138 {
3139         long nr_pagecache_reclaimable;
3140         long delta = 0;
3141
3142         /*
3143          * If RECLAIM_SWAP is set, then all file pages are considered
3144          * potentially reclaimable. Otherwise, we have to worry about
3145          * pages like swapcache and zone_unmapped_file_pages() provides
3146          * a better estimate
3147          */
3148         if (zone_reclaim_mode & RECLAIM_SWAP)
3149                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3150         else
3151                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3152
3153         /* If we can't clean pages, remove dirty pages from consideration */
3154         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3155                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3156
3157         /* Watch for any possible underflows due to delta */
3158         if (unlikely(delta > nr_pagecache_reclaimable))
3159                 delta = nr_pagecache_reclaimable;
3160
3161         return nr_pagecache_reclaimable - delta;
3162 }
3163
3164 /*
3165  * Try to free up some pages from this zone through reclaim.
3166  */
3167 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3168 {
3169         /* Minimum pages needed in order to stay on node */
3170         const unsigned long nr_pages = 1 << order;
3171         struct task_struct *p = current;
3172         struct reclaim_state reclaim_state;
3173         int priority;
3174         struct scan_control sc = {
3175                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3176                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3177                 .may_swap = 1,
3178                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3179                                        SWAP_CLUSTER_MAX),
3180                 .gfp_mask = gfp_mask,
3181                 .order = order,
3182         };
3183         struct shrink_control shrink = {
3184                 .gfp_mask = sc.gfp_mask,
3185         };
3186         unsigned long nr_slab_pages0, nr_slab_pages1;
3187
3188         cond_resched();
3189         /*
3190          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3191          * and we also need to be able to write out pages for RECLAIM_WRITE
3192          * and RECLAIM_SWAP.
3193          */
3194         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3195         lockdep_set_current_reclaim_state(gfp_mask);
3196         reclaim_state.reclaimed_slab = 0;
3197         p->reclaim_state = &reclaim_state;
3198
3199         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3200                 /*
3201                  * Free memory by calling shrink zone with increasing
3202                  * priorities until we have enough memory freed.
3203                  */
3204                 priority = ZONE_RECLAIM_PRIORITY;
3205                 do {
3206                         shrink_zone(priority, zone, &sc);
3207                         priority--;
3208                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3209         }
3210
3211         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3212         if (nr_slab_pages0 > zone->min_slab_pages) {
3213                 /*
3214                  * shrink_slab() does not currently allow us to determine how
3215                  * many pages were freed in this zone. So we take the current
3216                  * number of slab pages and shake the slab until it is reduced
3217                  * by the same nr_pages that we used for reclaiming unmapped
3218                  * pages.
3219                  *
3220                  * Note that shrink_slab will free memory on all zones and may
3221                  * take a long time.
3222                  */
3223                 for (;;) {
3224                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3225
3226                         /* No reclaimable slab or very low memory pressure */
3227                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3228                                 break;
3229
3230                         /* Freed enough memory */
3231                         nr_slab_pages1 = zone_page_state(zone,
3232                                                         NR_SLAB_RECLAIMABLE);
3233                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3234                                 break;
3235                 }
3236
3237                 /*
3238                  * Update nr_reclaimed by the number of slab pages we
3239                  * reclaimed from this zone.
3240                  */
3241                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3242                 if (nr_slab_pages1 < nr_slab_pages0)
3243                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3244         }
3245
3246         p->reclaim_state = NULL;
3247         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3248         lockdep_clear_current_reclaim_state();
3249         return sc.nr_reclaimed >= nr_pages;
3250 }
3251
3252 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3253 {
3254         int node_id;
3255         int ret;
3256
3257         /*
3258          * Zone reclaim reclaims unmapped file backed pages and
3259          * slab pages if we are over the defined limits.
3260          *
3261          * A small portion of unmapped file backed pages is needed for
3262          * file I/O otherwise pages read by file I/O will be immediately
3263          * thrown out if the zone is overallocated. So we do not reclaim
3264          * if less than a specified percentage of the zone is used by
3265          * unmapped file backed pages.
3266          */
3267         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3268             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3269                 return ZONE_RECLAIM_FULL;
3270
3271         if (zone->all_unreclaimable)
3272                 return ZONE_RECLAIM_FULL;
3273
3274         /*
3275          * Do not scan if the allocation should not be delayed.
3276          */
3277         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3278                 return ZONE_RECLAIM_NOSCAN;
3279
3280         /*
3281          * Only run zone reclaim on the local zone or on zones that do not
3282          * have associated processors. This will favor the local processor
3283          * over remote processors and spread off node memory allocations
3284          * as wide as possible.
3285          */
3286         node_id = zone_to_nid(zone);
3287         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3288                 return ZONE_RECLAIM_NOSCAN;
3289
3290         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3291                 return ZONE_RECLAIM_NOSCAN;
3292
3293         ret = __zone_reclaim(zone, gfp_mask, order);
3294         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3295
3296         if (!ret)
3297                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3298
3299         return ret;
3300 }
3301 #endif
3302
3303 /*
3304  * page_evictable - test whether a page is evictable
3305  * @page: the page to test
3306  * @vma: the VMA in which the page is or will be mapped, may be NULL
3307  *
3308  * Test whether page is evictable--i.e., should be placed on active/inactive
3309  * lists vs unevictable list.  The vma argument is !NULL when called from the
3310  * fault path to determine how to instantate a new page.
3311  *
3312  * Reasons page might not be evictable:
3313  * (1) page's mapping marked unevictable
3314  * (2) page is part of an mlocked VMA
3315  *
3316  */
3317 int page_evictable(struct page *page, struct vm_area_struct *vma)
3318 {
3319
3320         if (mapping_unevictable(page_mapping(page)))
3321                 return 0;
3322
3323         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3324                 return 0;
3325
3326         return 1;
3327 }
3328
3329 /**
3330  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3331  * @page: page to check evictability and move to appropriate lru list
3332  * @zone: zone page is in
3333  *
3334  * Checks a page for evictability and moves the page to the appropriate
3335  * zone lru list.
3336  *
3337  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3338  * have PageUnevictable set.
3339  */
3340 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3341 {
3342         VM_BUG_ON(PageActive(page));
3343
3344 retry:
3345         ClearPageUnevictable(page);
3346         if (page_evictable(page, NULL)) {
3347                 enum lru_list l = page_lru_base_type(page);
3348
3349                 __dec_zone_state(zone, NR_UNEVICTABLE);
3350                 list_move(&page->lru, &zone->lru[l].list);
3351                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3352                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3353                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3354         } else {
3355                 /*
3356                  * rotate unevictable list
3357                  */
3358                 SetPageUnevictable(page);
3359                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3360                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3361                 if (page_evictable(page, NULL))
3362                         goto retry;
3363         }
3364 }
3365
3366 /**
3367  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3368  * @mapping: struct address_space to scan for evictable pages
3369  *
3370  * Scan all pages in mapping.  Check unevictable pages for
3371  * evictability and move them to the appropriate zone lru list.
3372  */
3373 void scan_mapping_unevictable_pages(struct address_space *mapping)
3374 {
3375         pgoff_t next = 0;
3376         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3377                          PAGE_CACHE_SHIFT;
3378         struct zone *zone;
3379         struct pagevec pvec;
3380
3381         if (mapping->nrpages == 0)
3382                 return;
3383
3384         pagevec_init(&pvec, 0);
3385         while (next < end &&
3386                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3387                 int i;
3388                 int pg_scanned = 0;
3389
3390                 zone = NULL;
3391
3392                 for (i = 0; i < pagevec_count(&pvec); i++) {
3393                         struct page *page = pvec.pages[i];
3394                         pgoff_t page_index = page->index;
3395                         struct zone *pagezone = page_zone(page);
3396
3397                         pg_scanned++;
3398                         if (page_index > next)
3399                                 next = page_index;
3400                         next++;
3401
3402                         if (pagezone != zone) {
3403                                 if (zone)
3404                                         spin_unlock_irq(&zone->lru_lock);
3405                                 zone = pagezone;
3406                                 spin_lock_irq(&zone->lru_lock);
3407                         }
3408
3409                         if (PageLRU(page) && PageUnevictable(page))
3410                                 check_move_unevictable_page(page, zone);
3411                 }
3412                 if (zone)
3413                         spin_unlock_irq(&zone->lru_lock);
3414                 pagevec_release(&pvec);
3415
3416                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3417         }
3418
3419 }
3420
3421 static void warn_scan_unevictable_pages(void)
3422 {
3423         printk_once(KERN_WARNING
3424                     "The scan_unevictable_pages sysctl/node-interface has been "
3425                     "disabled for lack of a legitimate use case.  If you have "
3426                     "one, please send an email to linux-mm@kvack.org.\n");
3427 }
3428
3429 /*
3430  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3431  * all nodes' unevictable lists for evictable pages
3432  */
3433 unsigned long scan_unevictable_pages;
3434
3435 int scan_unevictable_handler(struct ctl_table *table, int write,
3436                            void __user *buffer,
3437                            size_t *length, loff_t *ppos)
3438 {
3439         warn_scan_unevictable_pages();
3440         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3441         scan_unevictable_pages = 0;
3442         return 0;
3443 }
3444
3445 #ifdef CONFIG_NUMA
3446 /*
3447  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3448  * a specified node's per zone unevictable lists for evictable pages.
3449  */
3450
3451 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3452                                           struct sysdev_attribute *attr,
3453                                           char *buf)
3454 {
3455         warn_scan_unevictable_pages();
3456         return sprintf(buf, "0\n");     /* always zero; should fit... */
3457 }
3458
3459 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3460                                            struct sysdev_attribute *attr,
3461                                         const char *buf, size_t count)
3462 {
3463         warn_scan_unevictable_pages();
3464         return 1;
3465 }
3466
3467
3468 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3469                         read_scan_unevictable_node,
3470                         write_scan_unevictable_node);
3471
3472 int scan_unevictable_register_node(struct node *node)
3473 {
3474         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3475 }
3476
3477 void scan_unevictable_unregister_node(struct node *node)
3478 {
3479         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3480 }
3481 #endif