ec6dbcb976d1b112f4f9a46178b59a0cc6fe7575
[pandora-kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         shrinker->nr = 0;
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 unsigned long total_scan;
251                 unsigned long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 /*
259                  * copy the current shrinker scan count into a local variable
260                  * and zero it so that other concurrent shrinker invocations
261                  * don't also do this scanning work.
262                  */
263                 do {
264                         nr = shrinker->nr;
265                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267                 total_scan = nr;
268                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
270                 delta *= max_pass;
271                 do_div(delta, lru_pages + 1);
272                 total_scan += delta;
273                 if (total_scan < 0) {
274                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
275                                "delete nr=%ld\n",
276                                shrinker->shrink, total_scan);
277                         total_scan = max_pass;
278                 }
279
280                 /*
281                  * We need to avoid excessive windup on filesystem shrinkers
282                  * due to large numbers of GFP_NOFS allocations causing the
283                  * shrinkers to return -1 all the time. This results in a large
284                  * nr being built up so when a shrink that can do some work
285                  * comes along it empties the entire cache due to nr >>>
286                  * max_pass.  This is bad for sustaining a working set in
287                  * memory.
288                  *
289                  * Hence only allow the shrinker to scan the entire cache when
290                  * a large delta change is calculated directly.
291                  */
292                 if (delta < max_pass / 4)
293                         total_scan = min(total_scan, max_pass / 2);
294
295                 /*
296                  * Avoid risking looping forever due to too large nr value:
297                  * never try to free more than twice the estimate number of
298                  * freeable entries.
299                  */
300                 if (total_scan > max_pass * 2)
301                         total_scan = max_pass * 2;
302
303                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
304                                         nr_pages_scanned, lru_pages,
305                                         max_pass, delta, total_scan);
306
307                 while (total_scan >= batch_size) {
308                         int nr_before;
309
310                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
312                                                         batch_size);
313                         if (shrink_ret == -1)
314                                 break;
315                         if (shrink_ret < nr_before)
316                                 ret += nr_before - shrink_ret;
317                         count_vm_events(SLABS_SCANNED, batch_size);
318                         total_scan -= batch_size;
319
320                         cond_resched();
321                 }
322
323                 /*
324                  * move the unused scan count back into the shrinker in a
325                  * manner that handles concurrent updates. If we exhausted the
326                  * scan, there is no need to do an update.
327                  */
328                 do {
329                         nr = shrinker->nr;
330                         new_nr = total_scan + nr;
331                         if (total_scan <= 0)
332                                 break;
333                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 /*
499                  * Wait on writeback if requested to. This happens when
500                  * direct reclaiming a large contiguous area and the
501                  * first attempt to free a range of pages fails.
502                  */
503                 if (PageWriteback(page) &&
504                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
505                         wait_on_page_writeback(page);
506
507                 if (!PageWriteback(page)) {
508                         /* synchronous write or broken a_ops? */
509                         ClearPageReclaim(page);
510                 }
511                 trace_mm_vmscan_writepage(page,
512                         trace_reclaim_flags(page, sc->reclaim_mode));
513                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
514                 return PAGE_SUCCESS;
515         }
516
517         return PAGE_CLEAN;
518 }
519
520 /*
521  * Same as remove_mapping, but if the page is removed from the mapping, it
522  * gets returned with a refcount of 0.
523  */
524 static int __remove_mapping(struct address_space *mapping, struct page *page)
525 {
526         BUG_ON(!PageLocked(page));
527         BUG_ON(mapping != page_mapping(page));
528
529         spin_lock_irq(&mapping->tree_lock);
530         /*
531          * The non racy check for a busy page.
532          *
533          * Must be careful with the order of the tests. When someone has
534          * a ref to the page, it may be possible that they dirty it then
535          * drop the reference. So if PageDirty is tested before page_count
536          * here, then the following race may occur:
537          *
538          * get_user_pages(&page);
539          * [user mapping goes away]
540          * write_to(page);
541          *                              !PageDirty(page)    [good]
542          * SetPageDirty(page);
543          * put_page(page);
544          *                              !page_count(page)   [good, discard it]
545          *
546          * [oops, our write_to data is lost]
547          *
548          * Reversing the order of the tests ensures such a situation cannot
549          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550          * load is not satisfied before that of page->_count.
551          *
552          * Note that if SetPageDirty is always performed via set_page_dirty,
553          * and thus under tree_lock, then this ordering is not required.
554          */
555         if (!page_freeze_refs(page, 2))
556                 goto cannot_free;
557         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558         if (unlikely(PageDirty(page))) {
559                 page_unfreeze_refs(page, 2);
560                 goto cannot_free;
561         }
562
563         if (PageSwapCache(page)) {
564                 swp_entry_t swap = { .val = page_private(page) };
565                 __delete_from_swap_cache(page);
566                 spin_unlock_irq(&mapping->tree_lock);
567                 swapcache_free(swap, page);
568         } else {
569                 void (*freepage)(struct page *);
570
571                 freepage = mapping->a_ops->freepage;
572
573                 __delete_from_page_cache(page);
574                 spin_unlock_irq(&mapping->tree_lock);
575                 mem_cgroup_uncharge_cache_page(page);
576
577                 if (freepage != NULL)
578                         freepage(page);
579         }
580
581         return 1;
582
583 cannot_free:
584         spin_unlock_irq(&mapping->tree_lock);
585         return 0;
586 }
587
588 /*
589  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
590  * someone else has a ref on the page, abort and return 0.  If it was
591  * successfully detached, return 1.  Assumes the caller has a single ref on
592  * this page.
593  */
594 int remove_mapping(struct address_space *mapping, struct page *page)
595 {
596         if (__remove_mapping(mapping, page)) {
597                 /*
598                  * Unfreezing the refcount with 1 rather than 2 effectively
599                  * drops the pagecache ref for us without requiring another
600                  * atomic operation.
601                  */
602                 page_unfreeze_refs(page, 1);
603                 return 1;
604         }
605         return 0;
606 }
607
608 /**
609  * putback_lru_page - put previously isolated page onto appropriate LRU list
610  * @page: page to be put back to appropriate lru list
611  *
612  * Add previously isolated @page to appropriate LRU list.
613  * Page may still be unevictable for other reasons.
614  *
615  * lru_lock must not be held, interrupts must be enabled.
616  */
617 void putback_lru_page(struct page *page)
618 {
619         int lru;
620         int active = !!TestClearPageActive(page);
621         int was_unevictable = PageUnevictable(page);
622
623         VM_BUG_ON(PageLRU(page));
624
625 redo:
626         ClearPageUnevictable(page);
627
628         if (page_evictable(page, NULL)) {
629                 /*
630                  * For evictable pages, we can use the cache.
631                  * In event of a race, worst case is we end up with an
632                  * unevictable page on [in]active list.
633                  * We know how to handle that.
634                  */
635                 lru = active + page_lru_base_type(page);
636                 lru_cache_add_lru(page, lru);
637         } else {
638                 /*
639                  * Put unevictable pages directly on zone's unevictable
640                  * list.
641                  */
642                 lru = LRU_UNEVICTABLE;
643                 add_page_to_unevictable_list(page);
644                 /*
645                  * When racing with an mlock clearing (page is
646                  * unlocked), make sure that if the other thread does
647                  * not observe our setting of PG_lru and fails
648                  * isolation, we see PG_mlocked cleared below and move
649                  * the page back to the evictable list.
650                  *
651                  * The other side is TestClearPageMlocked().
652                  */
653                 smp_mb();
654         }
655
656         /*
657          * page's status can change while we move it among lru. If an evictable
658          * page is on unevictable list, it never be freed. To avoid that,
659          * check after we added it to the list, again.
660          */
661         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662                 if (!isolate_lru_page(page)) {
663                         put_page(page);
664                         goto redo;
665                 }
666                 /* This means someone else dropped this page from LRU
667                  * So, it will be freed or putback to LRU again. There is
668                  * nothing to do here.
669                  */
670         }
671
672         if (was_unevictable && lru != LRU_UNEVICTABLE)
673                 count_vm_event(UNEVICTABLE_PGRESCUED);
674         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675                 count_vm_event(UNEVICTABLE_PGCULLED);
676
677         put_page(page);         /* drop ref from isolate */
678 }
679
680 enum page_references {
681         PAGEREF_RECLAIM,
682         PAGEREF_RECLAIM_CLEAN,
683         PAGEREF_KEEP,
684         PAGEREF_ACTIVATE,
685 };
686
687 static enum page_references page_check_references(struct page *page,
688                                                   struct scan_control *sc)
689 {
690         int referenced_ptes, referenced_page;
691         unsigned long vm_flags;
692
693         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694         referenced_page = TestClearPageReferenced(page);
695
696         /* Lumpy reclaim - ignore references */
697         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
698                 return PAGEREF_RECLAIM;
699
700         /*
701          * Mlock lost the isolation race with us.  Let try_to_unmap()
702          * move the page to the unevictable list.
703          */
704         if (vm_flags & VM_LOCKED)
705                 return PAGEREF_RECLAIM;
706
707         if (referenced_ptes) {
708                 if (PageAnon(page))
709                         return PAGEREF_ACTIVATE;
710                 /*
711                  * All mapped pages start out with page table
712                  * references from the instantiating fault, so we need
713                  * to look twice if a mapped file page is used more
714                  * than once.
715                  *
716                  * Mark it and spare it for another trip around the
717                  * inactive list.  Another page table reference will
718                  * lead to its activation.
719                  *
720                  * Note: the mark is set for activated pages as well
721                  * so that recently deactivated but used pages are
722                  * quickly recovered.
723                  */
724                 SetPageReferenced(page);
725
726                 if (referenced_page)
727                         return PAGEREF_ACTIVATE;
728
729                 return PAGEREF_KEEP;
730         }
731
732         /* Reclaim if clean, defer dirty pages to writeback */
733         if (referenced_page && !PageSwapBacked(page))
734                 return PAGEREF_RECLAIM_CLEAN;
735
736         return PAGEREF_RECLAIM;
737 }
738
739 static noinline_for_stack void free_page_list(struct list_head *free_pages)
740 {
741         struct pagevec freed_pvec;
742         struct page *page, *tmp;
743
744         pagevec_init(&freed_pvec, 1);
745
746         list_for_each_entry_safe(page, tmp, free_pages, lru) {
747                 list_del(&page->lru);
748                 if (!pagevec_add(&freed_pvec, page)) {
749                         __pagevec_free(&freed_pvec);
750                         pagevec_reinit(&freed_pvec);
751                 }
752         }
753
754         pagevec_free(&freed_pvec);
755 }
756
757 /*
758  * shrink_page_list() returns the number of reclaimed pages
759  */
760 static unsigned long shrink_page_list(struct list_head *page_list,
761                                       struct zone *zone,
762                                       struct scan_control *sc)
763 {
764         LIST_HEAD(ret_pages);
765         LIST_HEAD(free_pages);
766         int pgactivate = 0;
767         unsigned long nr_dirty = 0;
768         unsigned long nr_congested = 0;
769         unsigned long nr_reclaimed = 0;
770
771         cond_resched();
772
773         while (!list_empty(page_list)) {
774                 enum page_references references;
775                 struct address_space *mapping;
776                 struct page *page;
777                 int may_enter_fs;
778
779                 cond_resched();
780
781                 page = lru_to_page(page_list);
782                 list_del(&page->lru);
783
784                 if (!trylock_page(page))
785                         goto keep;
786
787                 VM_BUG_ON(PageActive(page));
788                 VM_BUG_ON(page_zone(page) != zone);
789
790                 sc->nr_scanned++;
791
792                 if (unlikely(!page_evictable(page, NULL)))
793                         goto cull_mlocked;
794
795                 if (!sc->may_unmap && page_mapped(page))
796                         goto keep_locked;
797
798                 /* Double the slab pressure for mapped and swapcache pages */
799                 if (page_mapped(page) || PageSwapCache(page))
800                         sc->nr_scanned++;
801
802                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805                 if (PageWriteback(page)) {
806                         /*
807                          * Synchronous reclaim is performed in two passes,
808                          * first an asynchronous pass over the list to
809                          * start parallel writeback, and a second synchronous
810                          * pass to wait for the IO to complete.  Wait here
811                          * for any page for which writeback has already
812                          * started.
813                          */
814                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
815                             may_enter_fs)
816                                 wait_on_page_writeback(page);
817                         else {
818                                 unlock_page(page);
819                                 goto keep_lumpy;
820                         }
821                 }
822
823                 references = page_check_references(page, sc);
824                 switch (references) {
825                 case PAGEREF_ACTIVATE:
826                         goto activate_locked;
827                 case PAGEREF_KEEP:
828                         goto keep_locked;
829                 case PAGEREF_RECLAIM:
830                 case PAGEREF_RECLAIM_CLEAN:
831                         ; /* try to reclaim the page below */
832                 }
833
834                 /*
835                  * Anonymous process memory has backing store?
836                  * Try to allocate it some swap space here.
837                  */
838                 if (PageAnon(page) && !PageSwapCache(page)) {
839                         if (!(sc->gfp_mask & __GFP_IO))
840                                 goto keep_locked;
841                         if (!add_to_swap(page))
842                                 goto activate_locked;
843                         may_enter_fs = 1;
844                 }
845
846                 mapping = page_mapping(page);
847
848                 /*
849                  * The page is mapped into the page tables of one or more
850                  * processes. Try to unmap it here.
851                  */
852                 if (page_mapped(page) && mapping) {
853                         switch (try_to_unmap(page, TTU_UNMAP)) {
854                         case SWAP_FAIL:
855                                 goto activate_locked;
856                         case SWAP_AGAIN:
857                                 goto keep_locked;
858                         case SWAP_MLOCK:
859                                 goto cull_mlocked;
860                         case SWAP_SUCCESS:
861                                 ; /* try to free the page below */
862                         }
863                 }
864
865                 if (PageDirty(page)) {
866                         nr_dirty++;
867
868                         if (references == PAGEREF_RECLAIM_CLEAN)
869                                 goto keep_locked;
870                         if (!may_enter_fs)
871                                 goto keep_locked;
872                         if (!sc->may_writepage)
873                                 goto keep_locked;
874
875                         /* Page is dirty, try to write it out here */
876                         switch (pageout(page, mapping, sc)) {
877                         case PAGE_KEEP:
878                                 nr_congested++;
879                                 goto keep_locked;
880                         case PAGE_ACTIVATE:
881                                 goto activate_locked;
882                         case PAGE_SUCCESS:
883                                 if (PageWriteback(page))
884                                         goto keep_lumpy;
885                                 if (PageDirty(page))
886                                         goto keep;
887
888                                 /*
889                                  * A synchronous write - probably a ramdisk.  Go
890                                  * ahead and try to reclaim the page.
891                                  */
892                                 if (!trylock_page(page))
893                                         goto keep;
894                                 if (PageDirty(page) || PageWriteback(page))
895                                         goto keep_locked;
896                                 mapping = page_mapping(page);
897                         case PAGE_CLEAN:
898                                 ; /* try to free the page below */
899                         }
900                 }
901
902                 /*
903                  * If the page has buffers, try to free the buffer mappings
904                  * associated with this page. If we succeed we try to free
905                  * the page as well.
906                  *
907                  * We do this even if the page is PageDirty().
908                  * try_to_release_page() does not perform I/O, but it is
909                  * possible for a page to have PageDirty set, but it is actually
910                  * clean (all its buffers are clean).  This happens if the
911                  * buffers were written out directly, with submit_bh(). ext3
912                  * will do this, as well as the blockdev mapping.
913                  * try_to_release_page() will discover that cleanness and will
914                  * drop the buffers and mark the page clean - it can be freed.
915                  *
916                  * Rarely, pages can have buffers and no ->mapping.  These are
917                  * the pages which were not successfully invalidated in
918                  * truncate_complete_page().  We try to drop those buffers here
919                  * and if that worked, and the page is no longer mapped into
920                  * process address space (page_count == 1) it can be freed.
921                  * Otherwise, leave the page on the LRU so it is swappable.
922                  */
923                 if (page_has_private(page)) {
924                         if (!try_to_release_page(page, sc->gfp_mask))
925                                 goto activate_locked;
926                         if (!mapping && page_count(page) == 1) {
927                                 unlock_page(page);
928                                 if (put_page_testzero(page))
929                                         goto free_it;
930                                 else {
931                                         /*
932                                          * rare race with speculative reference.
933                                          * the speculative reference will free
934                                          * this page shortly, so we may
935                                          * increment nr_reclaimed here (and
936                                          * leave it off the LRU).
937                                          */
938                                         nr_reclaimed++;
939                                         continue;
940                                 }
941                         }
942                 }
943
944                 if (!mapping || !__remove_mapping(mapping, page))
945                         goto keep_locked;
946
947                 /*
948                  * At this point, we have no other references and there is
949                  * no way to pick any more up (removed from LRU, removed
950                  * from pagecache). Can use non-atomic bitops now (and
951                  * we obviously don't have to worry about waking up a process
952                  * waiting on the page lock, because there are no references.
953                  */
954                 __clear_page_locked(page);
955 free_it:
956                 nr_reclaimed++;
957
958                 /*
959                  * Is there need to periodically free_page_list? It would
960                  * appear not as the counts should be low
961                  */
962                 list_add(&page->lru, &free_pages);
963                 continue;
964
965 cull_mlocked:
966                 if (PageSwapCache(page))
967                         try_to_free_swap(page);
968                 unlock_page(page);
969                 putback_lru_page(page);
970                 reset_reclaim_mode(sc);
971                 continue;
972
973 activate_locked:
974                 /* Not a candidate for swapping, so reclaim swap space. */
975                 if (PageSwapCache(page) && vm_swap_full())
976                         try_to_free_swap(page);
977                 VM_BUG_ON(PageActive(page));
978                 SetPageActive(page);
979                 pgactivate++;
980 keep_locked:
981                 unlock_page(page);
982 keep:
983                 reset_reclaim_mode(sc);
984 keep_lumpy:
985                 list_add(&page->lru, &ret_pages);
986                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
987         }
988
989         /*
990          * Tag a zone as congested if all the dirty pages encountered were
991          * backed by a congested BDI. In this case, reclaimers should just
992          * back off and wait for congestion to clear because further reclaim
993          * will encounter the same problem
994          */
995         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
996                 zone_set_flag(zone, ZONE_CONGESTED);
997
998         free_page_list(&free_pages);
999
1000         list_splice(&ret_pages, page_list);
1001         count_vm_events(PGACTIVATE, pgactivate);
1002         return nr_reclaimed;
1003 }
1004
1005 /*
1006  * Attempt to remove the specified page from its LRU.  Only take this page
1007  * if it is of the appropriate PageActive status.  Pages which are being
1008  * freed elsewhere are also ignored.
1009  *
1010  * page:        page to consider
1011  * mode:        one of the LRU isolation modes defined above
1012  *
1013  * returns 0 on success, -ve errno on failure.
1014  */
1015 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1016 {
1017         bool all_lru_mode;
1018         int ret = -EINVAL;
1019
1020         /* Only take pages on the LRU. */
1021         if (!PageLRU(page))
1022                 return ret;
1023
1024         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1025                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1026
1027         /*
1028          * When checking the active state, we need to be sure we are
1029          * dealing with comparible boolean values.  Take the logical not
1030          * of each.
1031          */
1032         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1033                 return ret;
1034
1035         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1036                 return ret;
1037
1038         /*
1039          * When this function is being called for lumpy reclaim, we
1040          * initially look into all LRU pages, active, inactive and
1041          * unevictable; only give shrink_page_list evictable pages.
1042          */
1043         if (PageUnevictable(page))
1044                 return ret;
1045
1046         ret = -EBUSY;
1047
1048         if (likely(get_page_unless_zero(page))) {
1049                 /*
1050                  * Be careful not to clear PageLRU until after we're
1051                  * sure the page is not being freed elsewhere -- the
1052                  * page release code relies on it.
1053                  */
1054                 ClearPageLRU(page);
1055                 ret = 0;
1056         }
1057
1058         return ret;
1059 }
1060
1061 /*
1062  * zone->lru_lock is heavily contended.  Some of the functions that
1063  * shrink the lists perform better by taking out a batch of pages
1064  * and working on them outside the LRU lock.
1065  *
1066  * For pagecache intensive workloads, this function is the hottest
1067  * spot in the kernel (apart from copy_*_user functions).
1068  *
1069  * Appropriate locks must be held before calling this function.
1070  *
1071  * @nr_to_scan: The number of pages to look through on the list.
1072  * @src:        The LRU list to pull pages off.
1073  * @dst:        The temp list to put pages on to.
1074  * @scanned:    The number of pages that were scanned.
1075  * @order:      The caller's attempted allocation order
1076  * @mode:       One of the LRU isolation modes
1077  * @file:       True [1] if isolating file [!anon] pages
1078  *
1079  * returns how many pages were moved onto *@dst.
1080  */
1081 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1082                 struct list_head *src, struct list_head *dst,
1083                 unsigned long *scanned, int order, isolate_mode_t mode,
1084                 int file)
1085 {
1086         unsigned long nr_taken = 0;
1087         unsigned long nr_lumpy_taken = 0;
1088         unsigned long nr_lumpy_dirty = 0;
1089         unsigned long nr_lumpy_failed = 0;
1090         unsigned long scan;
1091
1092         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1093                 struct page *page;
1094                 unsigned long pfn;
1095                 unsigned long end_pfn;
1096                 unsigned long page_pfn;
1097                 int zone_id;
1098
1099                 page = lru_to_page(src);
1100                 prefetchw_prev_lru_page(page, src, flags);
1101
1102                 VM_BUG_ON(!PageLRU(page));
1103
1104                 switch (__isolate_lru_page(page, mode, file)) {
1105                 case 0:
1106                         list_move(&page->lru, dst);
1107                         mem_cgroup_del_lru(page);
1108                         nr_taken += hpage_nr_pages(page);
1109                         break;
1110
1111                 case -EBUSY:
1112                         /* else it is being freed elsewhere */
1113                         list_move(&page->lru, src);
1114                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1115                         continue;
1116
1117                 default:
1118                         BUG();
1119                 }
1120
1121                 if (!order)
1122                         continue;
1123
1124                 /*
1125                  * Attempt to take all pages in the order aligned region
1126                  * surrounding the tag page.  Only take those pages of
1127                  * the same active state as that tag page.  We may safely
1128                  * round the target page pfn down to the requested order
1129                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1130                  * where that page is in a different zone we will detect
1131                  * it from its zone id and abort this block scan.
1132                  */
1133                 zone_id = page_zone_id(page);
1134                 page_pfn = page_to_pfn(page);
1135                 pfn = page_pfn & ~((1 << order) - 1);
1136                 end_pfn = pfn + (1 << order);
1137                 for (; pfn < end_pfn; pfn++) {
1138                         struct page *cursor_page;
1139
1140                         /* The target page is in the block, ignore it. */
1141                         if (unlikely(pfn == page_pfn))
1142                                 continue;
1143
1144                         /* Avoid holes within the zone. */
1145                         if (unlikely(!pfn_valid_within(pfn)))
1146                                 break;
1147
1148                         cursor_page = pfn_to_page(pfn);
1149
1150                         /* Check that we have not crossed a zone boundary. */
1151                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1152                                 break;
1153
1154                         /*
1155                          * If we don't have enough swap space, reclaiming of
1156                          * anon page which don't already have a swap slot is
1157                          * pointless.
1158                          */
1159                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1160                             !PageSwapCache(cursor_page))
1161                                 break;
1162
1163                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1164                                 list_move(&cursor_page->lru, dst);
1165                                 mem_cgroup_del_lru(cursor_page);
1166                                 nr_taken += hpage_nr_pages(page);
1167                                 nr_lumpy_taken++;
1168                                 if (PageDirty(cursor_page))
1169                                         nr_lumpy_dirty++;
1170                                 scan++;
1171                         } else {
1172                                 /*
1173                                  * Check if the page is freed already.
1174                                  *
1175                                  * We can't use page_count() as that
1176                                  * requires compound_head and we don't
1177                                  * have a pin on the page here. If a
1178                                  * page is tail, we may or may not
1179                                  * have isolated the head, so assume
1180                                  * it's not free, it'd be tricky to
1181                                  * track the head status without a
1182                                  * page pin.
1183                                  */
1184                                 if (!PageTail(cursor_page) &&
1185                                     !atomic_read(&cursor_page->_count))
1186                                         continue;
1187                                 break;
1188                         }
1189                 }
1190
1191                 /* If we break out of the loop above, lumpy reclaim failed */
1192                 if (pfn < end_pfn)
1193                         nr_lumpy_failed++;
1194         }
1195
1196         *scanned = scan;
1197
1198         trace_mm_vmscan_lru_isolate(order,
1199                         nr_to_scan, scan,
1200                         nr_taken,
1201                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1202                         mode);
1203         return nr_taken;
1204 }
1205
1206 static unsigned long isolate_pages_global(unsigned long nr,
1207                                         struct list_head *dst,
1208                                         unsigned long *scanned, int order,
1209                                         isolate_mode_t mode,
1210                                         struct zone *z, int active, int file)
1211 {
1212         int lru = LRU_BASE;
1213         if (active)
1214                 lru += LRU_ACTIVE;
1215         if (file)
1216                 lru += LRU_FILE;
1217         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1218                                                                 mode, file);
1219 }
1220
1221 /*
1222  * clear_active_flags() is a helper for shrink_active_list(), clearing
1223  * any active bits from the pages in the list.
1224  */
1225 static unsigned long clear_active_flags(struct list_head *page_list,
1226                                         unsigned int *count)
1227 {
1228         int nr_active = 0;
1229         int lru;
1230         struct page *page;
1231
1232         list_for_each_entry(page, page_list, lru) {
1233                 int numpages = hpage_nr_pages(page);
1234                 lru = page_lru_base_type(page);
1235                 if (PageActive(page)) {
1236                         lru += LRU_ACTIVE;
1237                         ClearPageActive(page);
1238                         nr_active += numpages;
1239                 }
1240                 if (count)
1241                         count[lru] += numpages;
1242         }
1243
1244         return nr_active;
1245 }
1246
1247 /**
1248  * isolate_lru_page - tries to isolate a page from its LRU list
1249  * @page: page to isolate from its LRU list
1250  *
1251  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1252  * vmstat statistic corresponding to whatever LRU list the page was on.
1253  *
1254  * Returns 0 if the page was removed from an LRU list.
1255  * Returns -EBUSY if the page was not on an LRU list.
1256  *
1257  * The returned page will have PageLRU() cleared.  If it was found on
1258  * the active list, it will have PageActive set.  If it was found on
1259  * the unevictable list, it will have the PageUnevictable bit set. That flag
1260  * may need to be cleared by the caller before letting the page go.
1261  *
1262  * The vmstat statistic corresponding to the list on which the page was
1263  * found will be decremented.
1264  *
1265  * Restrictions:
1266  * (1) Must be called with an elevated refcount on the page. This is a
1267  *     fundamentnal difference from isolate_lru_pages (which is called
1268  *     without a stable reference).
1269  * (2) the lru_lock must not be held.
1270  * (3) interrupts must be enabled.
1271  */
1272 int isolate_lru_page(struct page *page)
1273 {
1274         int ret = -EBUSY;
1275
1276         VM_BUG_ON(!page_count(page));
1277
1278         if (PageLRU(page)) {
1279                 struct zone *zone = page_zone(page);
1280
1281                 spin_lock_irq(&zone->lru_lock);
1282                 if (PageLRU(page)) {
1283                         int lru = page_lru(page);
1284                         ret = 0;
1285                         get_page(page);
1286                         ClearPageLRU(page);
1287
1288                         del_page_from_lru_list(zone, page, lru);
1289                 }
1290                 spin_unlock_irq(&zone->lru_lock);
1291         }
1292         return ret;
1293 }
1294
1295 /*
1296  * Are there way too many processes in the direct reclaim path already?
1297  */
1298 static int too_many_isolated(struct zone *zone, int file,
1299                 struct scan_control *sc)
1300 {
1301         unsigned long inactive, isolated;
1302
1303         if (current_is_kswapd())
1304                 return 0;
1305
1306         if (!scanning_global_lru(sc))
1307                 return 0;
1308
1309         if (file) {
1310                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1311                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1312         } else {
1313                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1314                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1315         }
1316
1317         return isolated > inactive;
1318 }
1319
1320 /*
1321  * TODO: Try merging with migrations version of putback_lru_pages
1322  */
1323 static noinline_for_stack void
1324 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1325                                 unsigned long nr_anon, unsigned long nr_file,
1326                                 struct list_head *page_list)
1327 {
1328         struct page *page;
1329         struct pagevec pvec;
1330         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1331
1332         pagevec_init(&pvec, 1);
1333
1334         /*
1335          * Put back any unfreeable pages.
1336          */
1337         spin_lock(&zone->lru_lock);
1338         while (!list_empty(page_list)) {
1339                 int lru;
1340                 page = lru_to_page(page_list);
1341                 VM_BUG_ON(PageLRU(page));
1342                 list_del(&page->lru);
1343                 if (unlikely(!page_evictable(page, NULL))) {
1344                         spin_unlock_irq(&zone->lru_lock);
1345                         putback_lru_page(page);
1346                         spin_lock_irq(&zone->lru_lock);
1347                         continue;
1348                 }
1349                 SetPageLRU(page);
1350                 lru = page_lru(page);
1351                 add_page_to_lru_list(zone, page, lru);
1352                 if (is_active_lru(lru)) {
1353                         int file = is_file_lru(lru);
1354                         int numpages = hpage_nr_pages(page);
1355                         reclaim_stat->recent_rotated[file] += numpages;
1356                 }
1357                 if (!pagevec_add(&pvec, page)) {
1358                         spin_unlock_irq(&zone->lru_lock);
1359                         __pagevec_release(&pvec);
1360                         spin_lock_irq(&zone->lru_lock);
1361                 }
1362         }
1363         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1364         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1365
1366         spin_unlock_irq(&zone->lru_lock);
1367         pagevec_release(&pvec);
1368 }
1369
1370 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1371                                         struct scan_control *sc,
1372                                         unsigned long *nr_anon,
1373                                         unsigned long *nr_file,
1374                                         struct list_head *isolated_list)
1375 {
1376         unsigned long nr_active;
1377         unsigned int count[NR_LRU_LISTS] = { 0, };
1378         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1379
1380         nr_active = clear_active_flags(isolated_list, count);
1381         __count_vm_events(PGDEACTIVATE, nr_active);
1382
1383         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1384                               -count[LRU_ACTIVE_FILE]);
1385         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1386                               -count[LRU_INACTIVE_FILE]);
1387         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1388                               -count[LRU_ACTIVE_ANON]);
1389         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1390                               -count[LRU_INACTIVE_ANON]);
1391
1392         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1393         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1394         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1395         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1396
1397         reclaim_stat->recent_scanned[0] += *nr_anon;
1398         reclaim_stat->recent_scanned[1] += *nr_file;
1399 }
1400
1401 /*
1402  * Returns true if the caller should wait to clean dirty/writeback pages.
1403  *
1404  * If we are direct reclaiming for contiguous pages and we do not reclaim
1405  * everything in the list, try again and wait for writeback IO to complete.
1406  * This will stall high-order allocations noticeably. Only do that when really
1407  * need to free the pages under high memory pressure.
1408  */
1409 static inline bool should_reclaim_stall(unsigned long nr_taken,
1410                                         unsigned long nr_freed,
1411                                         int priority,
1412                                         struct scan_control *sc)
1413 {
1414         int lumpy_stall_priority;
1415
1416         /* kswapd should not stall on sync IO */
1417         if (current_is_kswapd())
1418                 return false;
1419
1420         /* Only stall on lumpy reclaim */
1421         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1422                 return false;
1423
1424         /* If we have reclaimed everything on the isolated list, no stall */
1425         if (nr_freed == nr_taken)
1426                 return false;
1427
1428         /*
1429          * For high-order allocations, there are two stall thresholds.
1430          * High-cost allocations stall immediately where as lower
1431          * order allocations such as stacks require the scanning
1432          * priority to be much higher before stalling.
1433          */
1434         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1435                 lumpy_stall_priority = DEF_PRIORITY;
1436         else
1437                 lumpy_stall_priority = DEF_PRIORITY / 3;
1438
1439         return priority <= lumpy_stall_priority;
1440 }
1441
1442 /*
1443  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1444  * of reclaimed pages
1445  */
1446 static noinline_for_stack unsigned long
1447 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1448                         struct scan_control *sc, int priority, int file)
1449 {
1450         LIST_HEAD(page_list);
1451         unsigned long nr_scanned;
1452         unsigned long nr_reclaimed = 0;
1453         unsigned long nr_taken;
1454         unsigned long nr_anon;
1455         unsigned long nr_file;
1456         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1457
1458         while (unlikely(too_many_isolated(zone, file, sc))) {
1459                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1460
1461                 /* We are about to die and free our memory. Return now. */
1462                 if (fatal_signal_pending(current))
1463                         return SWAP_CLUSTER_MAX;
1464         }
1465
1466         set_reclaim_mode(priority, sc, false);
1467         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1468                 reclaim_mode |= ISOLATE_ACTIVE;
1469
1470         lru_add_drain();
1471         spin_lock_irq(&zone->lru_lock);
1472
1473         if (scanning_global_lru(sc)) {
1474                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1475                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1476                 zone->pages_scanned += nr_scanned;
1477                 if (current_is_kswapd())
1478                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1479                                                nr_scanned);
1480                 else
1481                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1482                                                nr_scanned);
1483         } else {
1484                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1485                         &nr_scanned, sc->order, reclaim_mode, zone,
1486                         sc->mem_cgroup, 0, file);
1487                 /*
1488                  * mem_cgroup_isolate_pages() keeps track of
1489                  * scanned pages on its own.
1490                  */
1491         }
1492
1493         if (nr_taken == 0) {
1494                 spin_unlock_irq(&zone->lru_lock);
1495                 return 0;
1496         }
1497
1498         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1499
1500         spin_unlock_irq(&zone->lru_lock);
1501
1502         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1503
1504         /* Check if we should syncronously wait for writeback */
1505         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1506                 set_reclaim_mode(priority, sc, true);
1507                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1508         }
1509
1510         local_irq_disable();
1511         if (current_is_kswapd())
1512                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1513         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1514
1515         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1516
1517         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1518                 zone_idx(zone),
1519                 nr_scanned, nr_reclaimed,
1520                 priority,
1521                 trace_shrink_flags(file, sc->reclaim_mode));
1522         return nr_reclaimed;
1523 }
1524
1525 /*
1526  * This moves pages from the active list to the inactive list.
1527  *
1528  * We move them the other way if the page is referenced by one or more
1529  * processes, from rmap.
1530  *
1531  * If the pages are mostly unmapped, the processing is fast and it is
1532  * appropriate to hold zone->lru_lock across the whole operation.  But if
1533  * the pages are mapped, the processing is slow (page_referenced()) so we
1534  * should drop zone->lru_lock around each page.  It's impossible to balance
1535  * this, so instead we remove the pages from the LRU while processing them.
1536  * It is safe to rely on PG_active against the non-LRU pages in here because
1537  * nobody will play with that bit on a non-LRU page.
1538  *
1539  * The downside is that we have to touch page->_count against each page.
1540  * But we had to alter page->flags anyway.
1541  */
1542
1543 static void move_active_pages_to_lru(struct zone *zone,
1544                                      struct list_head *list,
1545                                      enum lru_list lru)
1546 {
1547         unsigned long pgmoved = 0;
1548         struct pagevec pvec;
1549         struct page *page;
1550
1551         pagevec_init(&pvec, 1);
1552
1553         while (!list_empty(list)) {
1554                 page = lru_to_page(list);
1555
1556                 VM_BUG_ON(PageLRU(page));
1557                 SetPageLRU(page);
1558
1559                 list_move(&page->lru, &zone->lru[lru].list);
1560                 mem_cgroup_add_lru_list(page, lru);
1561                 pgmoved += hpage_nr_pages(page);
1562
1563                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1564                         spin_unlock_irq(&zone->lru_lock);
1565                         if (buffer_heads_over_limit)
1566                                 pagevec_strip(&pvec);
1567                         __pagevec_release(&pvec);
1568                         spin_lock_irq(&zone->lru_lock);
1569                 }
1570         }
1571         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1572         if (!is_active_lru(lru))
1573                 __count_vm_events(PGDEACTIVATE, pgmoved);
1574 }
1575
1576 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1577                         struct scan_control *sc, int priority, int file)
1578 {
1579         unsigned long nr_taken;
1580         unsigned long pgscanned;
1581         unsigned long vm_flags;
1582         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1583         LIST_HEAD(l_active);
1584         LIST_HEAD(l_inactive);
1585         struct page *page;
1586         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1587         unsigned long nr_rotated = 0;
1588
1589         lru_add_drain();
1590         spin_lock_irq(&zone->lru_lock);
1591         if (scanning_global_lru(sc)) {
1592                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1593                                                 &pgscanned, sc->order,
1594                                                 ISOLATE_ACTIVE, zone,
1595                                                 1, file);
1596                 zone->pages_scanned += pgscanned;
1597         } else {
1598                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1599                                                 &pgscanned, sc->order,
1600                                                 ISOLATE_ACTIVE, zone,
1601                                                 sc->mem_cgroup, 1, file);
1602                 /*
1603                  * mem_cgroup_isolate_pages() keeps track of
1604                  * scanned pages on its own.
1605                  */
1606         }
1607
1608         reclaim_stat->recent_scanned[file] += nr_taken;
1609
1610         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1611         if (file)
1612                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1613         else
1614                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1615         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1616         spin_unlock_irq(&zone->lru_lock);
1617
1618         while (!list_empty(&l_hold)) {
1619                 cond_resched();
1620                 page = lru_to_page(&l_hold);
1621                 list_del(&page->lru);
1622
1623                 if (unlikely(!page_evictable(page, NULL))) {
1624                         putback_lru_page(page);
1625                         continue;
1626                 }
1627
1628                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1629                         nr_rotated += hpage_nr_pages(page);
1630                         /*
1631                          * Identify referenced, file-backed active pages and
1632                          * give them one more trip around the active list. So
1633                          * that executable code get better chances to stay in
1634                          * memory under moderate memory pressure.  Anon pages
1635                          * are not likely to be evicted by use-once streaming
1636                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1637                          * so we ignore them here.
1638                          */
1639                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1640                                 list_add(&page->lru, &l_active);
1641                                 continue;
1642                         }
1643                 }
1644
1645                 ClearPageActive(page);  /* we are de-activating */
1646                 list_add(&page->lru, &l_inactive);
1647         }
1648
1649         /*
1650          * Move pages back to the lru list.
1651          */
1652         spin_lock_irq(&zone->lru_lock);
1653         /*
1654          * Count referenced pages from currently used mappings as rotated,
1655          * even though only some of them are actually re-activated.  This
1656          * helps balance scan pressure between file and anonymous pages in
1657          * get_scan_ratio.
1658          */
1659         reclaim_stat->recent_rotated[file] += nr_rotated;
1660
1661         move_active_pages_to_lru(zone, &l_active,
1662                                                 LRU_ACTIVE + file * LRU_FILE);
1663         move_active_pages_to_lru(zone, &l_inactive,
1664                                                 LRU_BASE   + file * LRU_FILE);
1665         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1666         spin_unlock_irq(&zone->lru_lock);
1667 }
1668
1669 #ifdef CONFIG_SWAP
1670 static int inactive_anon_is_low_global(struct zone *zone)
1671 {
1672         unsigned long active, inactive;
1673
1674         active = zone_page_state(zone, NR_ACTIVE_ANON);
1675         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1676
1677         if (inactive * zone->inactive_ratio < active)
1678                 return 1;
1679
1680         return 0;
1681 }
1682
1683 /**
1684  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1685  * @zone: zone to check
1686  * @sc:   scan control of this context
1687  *
1688  * Returns true if the zone does not have enough inactive anon pages,
1689  * meaning some active anon pages need to be deactivated.
1690  */
1691 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1692 {
1693         int low;
1694
1695         /*
1696          * If we don't have swap space, anonymous page deactivation
1697          * is pointless.
1698          */
1699         if (!total_swap_pages)
1700                 return 0;
1701
1702         if (scanning_global_lru(sc))
1703                 low = inactive_anon_is_low_global(zone);
1704         else
1705                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1706         return low;
1707 }
1708 #else
1709 static inline int inactive_anon_is_low(struct zone *zone,
1710                                         struct scan_control *sc)
1711 {
1712         return 0;
1713 }
1714 #endif
1715
1716 static int inactive_file_is_low_global(struct zone *zone)
1717 {
1718         unsigned long active, inactive;
1719
1720         active = zone_page_state(zone, NR_ACTIVE_FILE);
1721         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1722
1723         return (active > inactive);
1724 }
1725
1726 /**
1727  * inactive_file_is_low - check if file pages need to be deactivated
1728  * @zone: zone to check
1729  * @sc:   scan control of this context
1730  *
1731  * When the system is doing streaming IO, memory pressure here
1732  * ensures that active file pages get deactivated, until more
1733  * than half of the file pages are on the inactive list.
1734  *
1735  * Once we get to that situation, protect the system's working
1736  * set from being evicted by disabling active file page aging.
1737  *
1738  * This uses a different ratio than the anonymous pages, because
1739  * the page cache uses a use-once replacement algorithm.
1740  */
1741 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1742 {
1743         int low;
1744
1745         if (scanning_global_lru(sc))
1746                 low = inactive_file_is_low_global(zone);
1747         else
1748                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1749         return low;
1750 }
1751
1752 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1753                                 int file)
1754 {
1755         if (file)
1756                 return inactive_file_is_low(zone, sc);
1757         else
1758                 return inactive_anon_is_low(zone, sc);
1759 }
1760
1761 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1762         struct zone *zone, struct scan_control *sc, int priority)
1763 {
1764         int file = is_file_lru(lru);
1765
1766         if (is_active_lru(lru)) {
1767                 if (inactive_list_is_low(zone, sc, file))
1768                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1769                 return 0;
1770         }
1771
1772         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1773 }
1774
1775 static int vmscan_swappiness(struct scan_control *sc)
1776 {
1777         if (scanning_global_lru(sc))
1778                 return vm_swappiness;
1779         return mem_cgroup_swappiness(sc->mem_cgroup);
1780 }
1781
1782 /*
1783  * Determine how aggressively the anon and file LRU lists should be
1784  * scanned.  The relative value of each set of LRU lists is determined
1785  * by looking at the fraction of the pages scanned we did rotate back
1786  * onto the active list instead of evict.
1787  *
1788  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1789  */
1790 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1791                                         unsigned long *nr, int priority)
1792 {
1793         unsigned long anon, file, free;
1794         unsigned long anon_prio, file_prio;
1795         unsigned long ap, fp;
1796         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1797         u64 fraction[2], denominator;
1798         enum lru_list l;
1799         int noswap = 0;
1800         bool force_scan = false;
1801         unsigned long nr_force_scan[2];
1802
1803         /* kswapd does zone balancing and needs to scan this zone */
1804         if (scanning_global_lru(sc) && current_is_kswapd())
1805                 force_scan = true;
1806         /* memcg may have small limit and need to avoid priority drop */
1807         if (!scanning_global_lru(sc))
1808                 force_scan = true;
1809
1810         /* If we have no swap space, do not bother scanning anon pages. */
1811         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1812                 noswap = 1;
1813                 fraction[0] = 0;
1814                 fraction[1] = 1;
1815                 denominator = 1;
1816                 nr_force_scan[0] = 0;
1817                 nr_force_scan[1] = SWAP_CLUSTER_MAX;
1818                 goto out;
1819         }
1820
1821         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1822                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1823         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1824                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1825
1826         if (scanning_global_lru(sc)) {
1827                 free  = zone_page_state(zone, NR_FREE_PAGES);
1828                 /* If we have very few page cache pages,
1829                    force-scan anon pages. */
1830                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1831                         fraction[0] = 1;
1832                         fraction[1] = 0;
1833                         denominator = 1;
1834                         nr_force_scan[0] = SWAP_CLUSTER_MAX;
1835                         nr_force_scan[1] = 0;
1836                         goto out;
1837                 }
1838         }
1839
1840         /*
1841          * With swappiness at 100, anonymous and file have the same priority.
1842          * This scanning priority is essentially the inverse of IO cost.
1843          */
1844         anon_prio = vmscan_swappiness(sc);
1845         file_prio = 200 - vmscan_swappiness(sc);
1846
1847         /*
1848          * OK, so we have swap space and a fair amount of page cache
1849          * pages.  We use the recently rotated / recently scanned
1850          * ratios to determine how valuable each cache is.
1851          *
1852          * Because workloads change over time (and to avoid overflow)
1853          * we keep these statistics as a floating average, which ends
1854          * up weighing recent references more than old ones.
1855          *
1856          * anon in [0], file in [1]
1857          */
1858         spin_lock_irq(&zone->lru_lock);
1859         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1860                 reclaim_stat->recent_scanned[0] /= 2;
1861                 reclaim_stat->recent_rotated[0] /= 2;
1862         }
1863
1864         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1865                 reclaim_stat->recent_scanned[1] /= 2;
1866                 reclaim_stat->recent_rotated[1] /= 2;
1867         }
1868
1869         /*
1870          * The amount of pressure on anon vs file pages is inversely
1871          * proportional to the fraction of recently scanned pages on
1872          * each list that were recently referenced and in active use.
1873          */
1874         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1875         ap /= reclaim_stat->recent_rotated[0] + 1;
1876
1877         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1878         fp /= reclaim_stat->recent_rotated[1] + 1;
1879         spin_unlock_irq(&zone->lru_lock);
1880
1881         fraction[0] = ap;
1882         fraction[1] = fp;
1883         denominator = ap + fp + 1;
1884         if (force_scan) {
1885                 unsigned long scan = SWAP_CLUSTER_MAX;
1886                 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1887                 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1888         }
1889 out:
1890         for_each_evictable_lru(l) {
1891                 int file = is_file_lru(l);
1892                 unsigned long scan;
1893
1894                 scan = zone_nr_lru_pages(zone, sc, l);
1895                 if (priority || noswap) {
1896                         scan >>= priority;
1897                         scan = div64_u64(scan * fraction[file], denominator);
1898                 }
1899
1900                 /*
1901                  * If zone is small or memcg is small, nr[l] can be 0.
1902                  * This results no-scan on this priority and priority drop down.
1903                  * For global direct reclaim, it can visit next zone and tend
1904                  * not to have problems. For global kswapd, it's for zone
1905                  * balancing and it need to scan a small amounts. When using
1906                  * memcg, priority drop can cause big latency. So, it's better
1907                  * to scan small amount. See may_noscan above.
1908                  */
1909                 if (!scan && force_scan)
1910                         scan = nr_force_scan[file];
1911                 nr[l] = scan;
1912         }
1913 }
1914
1915 /*
1916  * Reclaim/compaction depends on a number of pages being freed. To avoid
1917  * disruption to the system, a small number of order-0 pages continue to be
1918  * rotated and reclaimed in the normal fashion. However, by the time we get
1919  * back to the allocator and call try_to_compact_zone(), we ensure that
1920  * there are enough free pages for it to be likely successful
1921  */
1922 static inline bool should_continue_reclaim(struct zone *zone,
1923                                         unsigned long nr_reclaimed,
1924                                         unsigned long nr_scanned,
1925                                         struct scan_control *sc)
1926 {
1927         unsigned long pages_for_compaction;
1928         unsigned long inactive_lru_pages;
1929
1930         /* If not in reclaim/compaction mode, stop */
1931         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1932                 return false;
1933
1934         /* Consider stopping depending on scan and reclaim activity */
1935         if (sc->gfp_mask & __GFP_REPEAT) {
1936                 /*
1937                  * For __GFP_REPEAT allocations, stop reclaiming if the
1938                  * full LRU list has been scanned and we are still failing
1939                  * to reclaim pages. This full LRU scan is potentially
1940                  * expensive but a __GFP_REPEAT caller really wants to succeed
1941                  */
1942                 if (!nr_reclaimed && !nr_scanned)
1943                         return false;
1944         } else {
1945                 /*
1946                  * For non-__GFP_REPEAT allocations which can presumably
1947                  * fail without consequence, stop if we failed to reclaim
1948                  * any pages from the last SWAP_CLUSTER_MAX number of
1949                  * pages that were scanned. This will return to the
1950                  * caller faster at the risk reclaim/compaction and
1951                  * the resulting allocation attempt fails
1952                  */
1953                 if (!nr_reclaimed)
1954                         return false;
1955         }
1956
1957         /*
1958          * If we have not reclaimed enough pages for compaction and the
1959          * inactive lists are large enough, continue reclaiming
1960          */
1961         pages_for_compaction = (2UL << sc->order);
1962         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1963                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1964         if (sc->nr_reclaimed < pages_for_compaction &&
1965                         inactive_lru_pages > pages_for_compaction)
1966                 return true;
1967
1968         /* If compaction would go ahead or the allocation would succeed, stop */
1969         switch (compaction_suitable(zone, sc->order)) {
1970         case COMPACT_PARTIAL:
1971         case COMPACT_CONTINUE:
1972                 return false;
1973         default:
1974                 return true;
1975         }
1976 }
1977
1978 /*
1979  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1980  */
1981 static void shrink_zone(int priority, struct zone *zone,
1982                                 struct scan_control *sc)
1983 {
1984         unsigned long nr[NR_LRU_LISTS];
1985         unsigned long nr_to_scan;
1986         enum lru_list l;
1987         unsigned long nr_reclaimed, nr_scanned;
1988         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1989
1990 restart:
1991         nr_reclaimed = 0;
1992         nr_scanned = sc->nr_scanned;
1993         get_scan_count(zone, sc, nr, priority);
1994
1995         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1996                                         nr[LRU_INACTIVE_FILE]) {
1997                 for_each_evictable_lru(l) {
1998                         if (nr[l]) {
1999                                 nr_to_scan = min_t(unsigned long,
2000                                                    nr[l], SWAP_CLUSTER_MAX);
2001                                 nr[l] -= nr_to_scan;
2002
2003                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2004                                                             zone, sc, priority);
2005                         }
2006                 }
2007                 /*
2008                  * On large memory systems, scan >> priority can become
2009                  * really large. This is fine for the starting priority;
2010                  * we want to put equal scanning pressure on each zone.
2011                  * However, if the VM has a harder time of freeing pages,
2012                  * with multiple processes reclaiming pages, the total
2013                  * freeing target can get unreasonably large.
2014                  */
2015                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2016                         break;
2017         }
2018         sc->nr_reclaimed += nr_reclaimed;
2019
2020         /*
2021          * Even if we did not try to evict anon pages at all, we want to
2022          * rebalance the anon lru active/inactive ratio.
2023          */
2024         if (inactive_anon_is_low(zone, sc))
2025                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2026
2027         /* reclaim/compaction might need reclaim to continue */
2028         if (should_continue_reclaim(zone, nr_reclaimed,
2029                                         sc->nr_scanned - nr_scanned, sc))
2030                 goto restart;
2031
2032         throttle_vm_writeout(sc->gfp_mask);
2033 }
2034
2035 /*
2036  * This is the direct reclaim path, for page-allocating processes.  We only
2037  * try to reclaim pages from zones which will satisfy the caller's allocation
2038  * request.
2039  *
2040  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2041  * Because:
2042  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2043  *    allocation or
2044  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2045  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2046  *    zone defense algorithm.
2047  *
2048  * If a zone is deemed to be full of pinned pages then just give it a light
2049  * scan then give up on it.
2050  */
2051 static void shrink_zones(int priority, struct zonelist *zonelist,
2052                                         struct scan_control *sc)
2053 {
2054         struct zoneref *z;
2055         struct zone *zone;
2056         unsigned long nr_soft_reclaimed;
2057         unsigned long nr_soft_scanned;
2058
2059         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2060                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2061                 if (!populated_zone(zone))
2062                         continue;
2063                 /*
2064                  * Take care memory controller reclaiming has small influence
2065                  * to global LRU.
2066                  */
2067                 if (scanning_global_lru(sc)) {
2068                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2069                                 continue;
2070                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2071                                 continue;       /* Let kswapd poll it */
2072                         /*
2073                          * This steals pages from memory cgroups over softlimit
2074                          * and returns the number of reclaimed pages and
2075                          * scanned pages. This works for global memory pressure
2076                          * and balancing, not for a memcg's limit.
2077                          */
2078                         nr_soft_scanned = 0;
2079                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2080                                                 sc->order, sc->gfp_mask,
2081                                                 &nr_soft_scanned);
2082                         sc->nr_reclaimed += nr_soft_reclaimed;
2083                         sc->nr_scanned += nr_soft_scanned;
2084                         /* need some check for avoid more shrink_zone() */
2085                 }
2086
2087                 shrink_zone(priority, zone, sc);
2088         }
2089 }
2090
2091 static bool zone_reclaimable(struct zone *zone)
2092 {
2093         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2094 }
2095
2096 /* All zones in zonelist are unreclaimable? */
2097 static bool all_unreclaimable(struct zonelist *zonelist,
2098                 struct scan_control *sc)
2099 {
2100         struct zoneref *z;
2101         struct zone *zone;
2102
2103         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2104                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2105                 if (!populated_zone(zone))
2106                         continue;
2107                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2108                         continue;
2109                 if (!zone->all_unreclaimable)
2110                         return false;
2111         }
2112
2113         return true;
2114 }
2115
2116 /*
2117  * This is the main entry point to direct page reclaim.
2118  *
2119  * If a full scan of the inactive list fails to free enough memory then we
2120  * are "out of memory" and something needs to be killed.
2121  *
2122  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2123  * high - the zone may be full of dirty or under-writeback pages, which this
2124  * caller can't do much about.  We kick the writeback threads and take explicit
2125  * naps in the hope that some of these pages can be written.  But if the
2126  * allocating task holds filesystem locks which prevent writeout this might not
2127  * work, and the allocation attempt will fail.
2128  *
2129  * returns:     0, if no pages reclaimed
2130  *              else, the number of pages reclaimed
2131  */
2132 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2133                                         struct scan_control *sc,
2134                                         struct shrink_control *shrink)
2135 {
2136         int priority;
2137         unsigned long total_scanned = 0;
2138         struct reclaim_state *reclaim_state = current->reclaim_state;
2139         struct zoneref *z;
2140         struct zone *zone;
2141         unsigned long writeback_threshold;
2142
2143         get_mems_allowed();
2144         delayacct_freepages_start();
2145
2146         if (scanning_global_lru(sc))
2147                 count_vm_event(ALLOCSTALL);
2148
2149         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2150                 sc->nr_scanned = 0;
2151                 if (!priority)
2152                         disable_swap_token(sc->mem_cgroup);
2153                 shrink_zones(priority, zonelist, sc);
2154                 /*
2155                  * Don't shrink slabs when reclaiming memory from
2156                  * over limit cgroups
2157                  */
2158                 if (scanning_global_lru(sc)) {
2159                         unsigned long lru_pages = 0;
2160                         for_each_zone_zonelist(zone, z, zonelist,
2161                                         gfp_zone(sc->gfp_mask)) {
2162                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2163                                         continue;
2164
2165                                 lru_pages += zone_reclaimable_pages(zone);
2166                         }
2167
2168                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2169                         if (reclaim_state) {
2170                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2171                                 reclaim_state->reclaimed_slab = 0;
2172                         }
2173                 }
2174                 total_scanned += sc->nr_scanned;
2175                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2176                         goto out;
2177
2178                 /*
2179                  * Try to write back as many pages as we just scanned.  This
2180                  * tends to cause slow streaming writers to write data to the
2181                  * disk smoothly, at the dirtying rate, which is nice.   But
2182                  * that's undesirable in laptop mode, where we *want* lumpy
2183                  * writeout.  So in laptop mode, write out the whole world.
2184                  */
2185                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2186                 if (total_scanned > writeback_threshold) {
2187                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2188                         sc->may_writepage = 1;
2189                 }
2190
2191                 /* Take a nap, wait for some writeback to complete */
2192                 if (!sc->hibernation_mode && sc->nr_scanned &&
2193                     priority < DEF_PRIORITY - 2) {
2194                         struct zone *preferred_zone;
2195
2196                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2197                                                 &cpuset_current_mems_allowed,
2198                                                 &preferred_zone);
2199                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2200                 }
2201         }
2202
2203 out:
2204         delayacct_freepages_end();
2205         put_mems_allowed();
2206
2207         if (sc->nr_reclaimed)
2208                 return sc->nr_reclaimed;
2209
2210         /*
2211          * As hibernation is going on, kswapd is freezed so that it can't mark
2212          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2213          * check.
2214          */
2215         if (oom_killer_disabled)
2216                 return 0;
2217
2218         /* top priority shrink_zones still had more to do? don't OOM, then */
2219         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2220                 return 1;
2221
2222         return 0;
2223 }
2224
2225 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2226                                 gfp_t gfp_mask, nodemask_t *nodemask)
2227 {
2228         unsigned long nr_reclaimed;
2229         struct scan_control sc = {
2230                 .gfp_mask = gfp_mask,
2231                 .may_writepage = !laptop_mode,
2232                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2233                 .may_unmap = 1,
2234                 .may_swap = 1,
2235                 .order = order,
2236                 .mem_cgroup = NULL,
2237                 .nodemask = nodemask,
2238         };
2239         struct shrink_control shrink = {
2240                 .gfp_mask = sc.gfp_mask,
2241         };
2242
2243         trace_mm_vmscan_direct_reclaim_begin(order,
2244                                 sc.may_writepage,
2245                                 gfp_mask);
2246
2247         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2248
2249         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2250
2251         return nr_reclaimed;
2252 }
2253
2254 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2255
2256 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2257                                                 gfp_t gfp_mask, bool noswap,
2258                                                 struct zone *zone,
2259                                                 unsigned long *nr_scanned)
2260 {
2261         struct scan_control sc = {
2262                 .nr_scanned = 0,
2263                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2264                 .may_writepage = !laptop_mode,
2265                 .may_unmap = 1,
2266                 .may_swap = !noswap,
2267                 .order = 0,
2268                 .mem_cgroup = mem,
2269         };
2270
2271         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2272                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2273
2274         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2275                                                       sc.may_writepage,
2276                                                       sc.gfp_mask);
2277
2278         /*
2279          * NOTE: Although we can get the priority field, using it
2280          * here is not a good idea, since it limits the pages we can scan.
2281          * if we don't reclaim here, the shrink_zone from balance_pgdat
2282          * will pick up pages from other mem cgroup's as well. We hack
2283          * the priority and make it zero.
2284          */
2285         shrink_zone(0, zone, &sc);
2286
2287         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2288
2289         *nr_scanned = sc.nr_scanned;
2290         return sc.nr_reclaimed;
2291 }
2292
2293 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2294                                            gfp_t gfp_mask,
2295                                            bool noswap)
2296 {
2297         struct zonelist *zonelist;
2298         unsigned long nr_reclaimed;
2299         int nid;
2300         struct scan_control sc = {
2301                 .may_writepage = !laptop_mode,
2302                 .may_unmap = 1,
2303                 .may_swap = !noswap,
2304                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2305                 .order = 0,
2306                 .mem_cgroup = mem_cont,
2307                 .nodemask = NULL, /* we don't care the placement */
2308                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2309                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2310         };
2311         struct shrink_control shrink = {
2312                 .gfp_mask = sc.gfp_mask,
2313         };
2314
2315         /*
2316          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2317          * take care of from where we get pages. So the node where we start the
2318          * scan does not need to be the current node.
2319          */
2320         nid = mem_cgroup_select_victim_node(mem_cont);
2321
2322         zonelist = NODE_DATA(nid)->node_zonelists;
2323
2324         trace_mm_vmscan_memcg_reclaim_begin(0,
2325                                             sc.may_writepage,
2326                                             sc.gfp_mask);
2327
2328         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2329
2330         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2331
2332         return nr_reclaimed;
2333 }
2334 #endif
2335
2336 /*
2337  * pgdat_balanced is used when checking if a node is balanced for high-order
2338  * allocations. Only zones that meet watermarks and are in a zone allowed
2339  * by the callers classzone_idx are added to balanced_pages. The total of
2340  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2341  * for the node to be considered balanced. Forcing all zones to be balanced
2342  * for high orders can cause excessive reclaim when there are imbalanced zones.
2343  * The choice of 25% is due to
2344  *   o a 16M DMA zone that is balanced will not balance a zone on any
2345  *     reasonable sized machine
2346  *   o On all other machines, the top zone must be at least a reasonable
2347  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2348  *     would need to be at least 256M for it to be balance a whole node.
2349  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2350  *     to balance a node on its own. These seemed like reasonable ratios.
2351  */
2352 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2353                                                 int classzone_idx)
2354 {
2355         unsigned long present_pages = 0;
2356         int i;
2357
2358         for (i = 0; i <= classzone_idx; i++)
2359                 present_pages += pgdat->node_zones[i].present_pages;
2360
2361         /* A special case here: if zone has no page, we think it's balanced */
2362         return balanced_pages >= (present_pages >> 2);
2363 }
2364
2365 /* is kswapd sleeping prematurely? */
2366 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2367                                         int classzone_idx)
2368 {
2369         int i;
2370         unsigned long balanced = 0;
2371         bool all_zones_ok = true;
2372
2373         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2374         if (remaining)
2375                 return true;
2376
2377         /* Check the watermark levels */
2378         for (i = 0; i <= classzone_idx; i++) {
2379                 struct zone *zone = pgdat->node_zones + i;
2380
2381                 if (!populated_zone(zone))
2382                         continue;
2383
2384                 /*
2385                  * balance_pgdat() skips over all_unreclaimable after
2386                  * DEF_PRIORITY. Effectively, it considers them balanced so
2387                  * they must be considered balanced here as well if kswapd
2388                  * is to sleep
2389                  */
2390                 if (zone->all_unreclaimable) {
2391                         balanced += zone->present_pages;
2392                         continue;
2393                 }
2394
2395                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2396                                                         i, 0))
2397                         all_zones_ok = false;
2398                 else
2399                         balanced += zone->present_pages;
2400         }
2401
2402         /*
2403          * For high-order requests, the balanced zones must contain at least
2404          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2405          * must be balanced
2406          */
2407         if (order)
2408                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2409         else
2410                 return !all_zones_ok;
2411 }
2412
2413 /*
2414  * For kswapd, balance_pgdat() will work across all this node's zones until
2415  * they are all at high_wmark_pages(zone).
2416  *
2417  * Returns the final order kswapd was reclaiming at
2418  *
2419  * There is special handling here for zones which are full of pinned pages.
2420  * This can happen if the pages are all mlocked, or if they are all used by
2421  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2422  * What we do is to detect the case where all pages in the zone have been
2423  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2424  * dead and from now on, only perform a short scan.  Basically we're polling
2425  * the zone for when the problem goes away.
2426  *
2427  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2428  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2429  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2430  * lower zones regardless of the number of free pages in the lower zones. This
2431  * interoperates with the page allocator fallback scheme to ensure that aging
2432  * of pages is balanced across the zones.
2433  */
2434 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2435                                                         int *classzone_idx)
2436 {
2437         int all_zones_ok;
2438         unsigned long balanced;
2439         int priority;
2440         int i;
2441         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2442         unsigned long total_scanned;
2443         struct reclaim_state *reclaim_state = current->reclaim_state;
2444         unsigned long nr_soft_reclaimed;
2445         unsigned long nr_soft_scanned;
2446         struct scan_control sc = {
2447                 .gfp_mask = GFP_KERNEL,
2448                 .may_unmap = 1,
2449                 .may_swap = 1,
2450                 /*
2451                  * kswapd doesn't want to be bailed out while reclaim. because
2452                  * we want to put equal scanning pressure on each zone.
2453                  */
2454                 .nr_to_reclaim = ULONG_MAX,
2455                 .order = order,
2456                 .mem_cgroup = NULL,
2457         };
2458         struct shrink_control shrink = {
2459                 .gfp_mask = sc.gfp_mask,
2460         };
2461 loop_again:
2462         total_scanned = 0;
2463         sc.nr_reclaimed = 0;
2464         sc.may_writepage = !laptop_mode;
2465         count_vm_event(PAGEOUTRUN);
2466
2467         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2468                 unsigned long lru_pages = 0;
2469                 int has_under_min_watermark_zone = 0;
2470
2471                 /* The swap token gets in the way of swapout... */
2472                 if (!priority)
2473                         disable_swap_token(NULL);
2474
2475                 all_zones_ok = 1;
2476                 balanced = 0;
2477
2478                 /*
2479                  * Scan in the highmem->dma direction for the highest
2480                  * zone which needs scanning
2481                  */
2482                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2483                         struct zone *zone = pgdat->node_zones + i;
2484
2485                         if (!populated_zone(zone))
2486                                 continue;
2487
2488                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2489                                 continue;
2490
2491                         /*
2492                          * Do some background aging of the anon list, to give
2493                          * pages a chance to be referenced before reclaiming.
2494                          */
2495                         if (inactive_anon_is_low(zone, &sc))
2496                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2497                                                         &sc, priority, 0);
2498
2499                         if (!zone_watermark_ok_safe(zone, order,
2500                                         high_wmark_pages(zone), 0, 0)) {
2501                                 end_zone = i;
2502                                 break;
2503                         } else {
2504                                 /* If balanced, clear the congested flag */
2505                                 zone_clear_flag(zone, ZONE_CONGESTED);
2506                         }
2507                 }
2508                 if (i < 0)
2509                         goto out;
2510
2511                 for (i = 0; i <= end_zone; i++) {
2512                         struct zone *zone = pgdat->node_zones + i;
2513
2514                         lru_pages += zone_reclaimable_pages(zone);
2515                 }
2516
2517                 /*
2518                  * Now scan the zone in the dma->highmem direction, stopping
2519                  * at the last zone which needs scanning.
2520                  *
2521                  * We do this because the page allocator works in the opposite
2522                  * direction.  This prevents the page allocator from allocating
2523                  * pages behind kswapd's direction of progress, which would
2524                  * cause too much scanning of the lower zones.
2525                  */
2526                 for (i = 0; i <= end_zone; i++) {
2527                         struct zone *zone = pgdat->node_zones + i;
2528                         int nr_slab;
2529                         unsigned long balance_gap;
2530
2531                         if (!populated_zone(zone))
2532                                 continue;
2533
2534                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2535                                 continue;
2536
2537                         sc.nr_scanned = 0;
2538
2539                         nr_soft_scanned = 0;
2540                         /*
2541                          * Call soft limit reclaim before calling shrink_zone.
2542                          */
2543                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2544                                                         order, sc.gfp_mask,
2545                                                         &nr_soft_scanned);
2546                         sc.nr_reclaimed += nr_soft_reclaimed;
2547                         total_scanned += nr_soft_scanned;
2548
2549                         /*
2550                          * We put equal pressure on every zone, unless
2551                          * one zone has way too many pages free
2552                          * already. The "too many pages" is defined
2553                          * as the high wmark plus a "gap" where the
2554                          * gap is either the low watermark or 1%
2555                          * of the zone, whichever is smaller.
2556                          */
2557                         balance_gap = min(low_wmark_pages(zone),
2558                                 (zone->present_pages +
2559                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2560                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2561                         if (!zone_watermark_ok_safe(zone, order,
2562                                         high_wmark_pages(zone) + balance_gap,
2563                                         end_zone, 0)) {
2564                                 shrink_zone(priority, zone, &sc);
2565
2566                                 reclaim_state->reclaimed_slab = 0;
2567                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2568                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2569                                 total_scanned += sc.nr_scanned;
2570
2571                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2572                                         zone->all_unreclaimable = 1;
2573                         }
2574
2575                         /*
2576                          * If we've done a decent amount of scanning and
2577                          * the reclaim ratio is low, start doing writepage
2578                          * even in laptop mode
2579                          */
2580                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2581                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2582                                 sc.may_writepage = 1;
2583
2584                         if (zone->all_unreclaimable) {
2585                                 if (end_zone && end_zone == i)
2586                                         end_zone--;
2587                                 continue;
2588                         }
2589
2590                         if (!zone_watermark_ok_safe(zone, order,
2591                                         high_wmark_pages(zone), end_zone, 0)) {
2592                                 all_zones_ok = 0;
2593                                 /*
2594                                  * We are still under min water mark.  This
2595                                  * means that we have a GFP_ATOMIC allocation
2596                                  * failure risk. Hurry up!
2597                                  */
2598                                 if (!zone_watermark_ok_safe(zone, order,
2599                                             min_wmark_pages(zone), end_zone, 0))
2600                                         has_under_min_watermark_zone = 1;
2601                         } else {
2602                                 /*
2603                                  * If a zone reaches its high watermark,
2604                                  * consider it to be no longer congested. It's
2605                                  * possible there are dirty pages backed by
2606                                  * congested BDIs but as pressure is relieved,
2607                                  * spectulatively avoid congestion waits
2608                                  */
2609                                 zone_clear_flag(zone, ZONE_CONGESTED);
2610                                 if (i <= *classzone_idx)
2611                                         balanced += zone->present_pages;
2612                         }
2613
2614                 }
2615                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2616                         break;          /* kswapd: all done */
2617                 /*
2618                  * OK, kswapd is getting into trouble.  Take a nap, then take
2619                  * another pass across the zones.
2620                  */
2621                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2622                         if (has_under_min_watermark_zone)
2623                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2624                         else
2625                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2626                 }
2627
2628                 /*
2629                  * We do this so kswapd doesn't build up large priorities for
2630                  * example when it is freeing in parallel with allocators. It
2631                  * matches the direct reclaim path behaviour in terms of impact
2632                  * on zone->*_priority.
2633                  */
2634                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2635                         break;
2636         }
2637 out:
2638
2639         /*
2640          * order-0: All zones must meet high watermark for a balanced node
2641          * high-order: Balanced zones must make up at least 25% of the node
2642          *             for the node to be balanced
2643          */
2644         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2645                 cond_resched();
2646
2647                 try_to_freeze();
2648
2649                 /*
2650                  * Fragmentation may mean that the system cannot be
2651                  * rebalanced for high-order allocations in all zones.
2652                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2653                  * it means the zones have been fully scanned and are still
2654                  * not balanced. For high-order allocations, there is
2655                  * little point trying all over again as kswapd may
2656                  * infinite loop.
2657                  *
2658                  * Instead, recheck all watermarks at order-0 as they
2659                  * are the most important. If watermarks are ok, kswapd will go
2660                  * back to sleep. High-order users can still perform direct
2661                  * reclaim if they wish.
2662                  */
2663                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2664                         order = sc.order = 0;
2665
2666                 goto loop_again;
2667         }
2668
2669         /*
2670          * If kswapd was reclaiming at a higher order, it has the option of
2671          * sleeping without all zones being balanced. Before it does, it must
2672          * ensure that the watermarks for order-0 on *all* zones are met and
2673          * that the congestion flags are cleared. The congestion flag must
2674          * be cleared as kswapd is the only mechanism that clears the flag
2675          * and it is potentially going to sleep here.
2676          */
2677         if (order) {
2678                 for (i = 0; i <= end_zone; i++) {
2679                         struct zone *zone = pgdat->node_zones + i;
2680
2681                         if (!populated_zone(zone))
2682                                 continue;
2683
2684                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2685                                 continue;
2686
2687                         /* Confirm the zone is balanced for order-0 */
2688                         if (!zone_watermark_ok(zone, 0,
2689                                         high_wmark_pages(zone), 0, 0)) {
2690                                 order = sc.order = 0;
2691                                 goto loop_again;
2692                         }
2693
2694                         /* If balanced, clear the congested flag */
2695                         zone_clear_flag(zone, ZONE_CONGESTED);
2696                 }
2697         }
2698
2699         /*
2700          * Return the order we were reclaiming at so sleeping_prematurely()
2701          * makes a decision on the order we were last reclaiming at. However,
2702          * if another caller entered the allocator slow path while kswapd
2703          * was awake, order will remain at the higher level
2704          */
2705         *classzone_idx = end_zone;
2706         return order;
2707 }
2708
2709 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2710 {
2711         long remaining = 0;
2712         DEFINE_WAIT(wait);
2713
2714         if (freezing(current) || kthread_should_stop())
2715                 return;
2716
2717         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2718
2719         /* Try to sleep for a short interval */
2720         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2721                 remaining = schedule_timeout(HZ/10);
2722                 finish_wait(&pgdat->kswapd_wait, &wait);
2723                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2724         }
2725
2726         /*
2727          * After a short sleep, check if it was a premature sleep. If not, then
2728          * go fully to sleep until explicitly woken up.
2729          */
2730         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2731                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2732
2733                 /*
2734                  * vmstat counters are not perfectly accurate and the estimated
2735                  * value for counters such as NR_FREE_PAGES can deviate from the
2736                  * true value by nr_online_cpus * threshold. To avoid the zone
2737                  * watermarks being breached while under pressure, we reduce the
2738                  * per-cpu vmstat threshold while kswapd is awake and restore
2739                  * them before going back to sleep.
2740                  */
2741                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2742                 schedule();
2743                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2744         } else {
2745                 if (remaining)
2746                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2747                 else
2748                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2749         }
2750         finish_wait(&pgdat->kswapd_wait, &wait);
2751 }
2752
2753 /*
2754  * The background pageout daemon, started as a kernel thread
2755  * from the init process.
2756  *
2757  * This basically trickles out pages so that we have _some_
2758  * free memory available even if there is no other activity
2759  * that frees anything up. This is needed for things like routing
2760  * etc, where we otherwise might have all activity going on in
2761  * asynchronous contexts that cannot page things out.
2762  *
2763  * If there are applications that are active memory-allocators
2764  * (most normal use), this basically shouldn't matter.
2765  */
2766 static int kswapd(void *p)
2767 {
2768         unsigned long order, new_order;
2769         int classzone_idx, new_classzone_idx;
2770         pg_data_t *pgdat = (pg_data_t*)p;
2771         struct task_struct *tsk = current;
2772
2773         struct reclaim_state reclaim_state = {
2774                 .reclaimed_slab = 0,
2775         };
2776         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2777
2778         lockdep_set_current_reclaim_state(GFP_KERNEL);
2779
2780         if (!cpumask_empty(cpumask))
2781                 set_cpus_allowed_ptr(tsk, cpumask);
2782         current->reclaim_state = &reclaim_state;
2783
2784         /*
2785          * Tell the memory management that we're a "memory allocator",
2786          * and that if we need more memory we should get access to it
2787          * regardless (see "__alloc_pages()"). "kswapd" should
2788          * never get caught in the normal page freeing logic.
2789          *
2790          * (Kswapd normally doesn't need memory anyway, but sometimes
2791          * you need a small amount of memory in order to be able to
2792          * page out something else, and this flag essentially protects
2793          * us from recursively trying to free more memory as we're
2794          * trying to free the first piece of memory in the first place).
2795          */
2796         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2797         set_freezable();
2798
2799         order = new_order = 0;
2800         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2801         for ( ; ; ) {
2802                 int ret;
2803
2804                 /*
2805                  * If the last balance_pgdat was unsuccessful it's unlikely a
2806                  * new request of a similar or harder type will succeed soon
2807                  * so consider going to sleep on the basis we reclaimed at
2808                  */
2809                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2810                         new_order = pgdat->kswapd_max_order;
2811                         new_classzone_idx = pgdat->classzone_idx;
2812                         pgdat->kswapd_max_order =  0;
2813                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2814                 }
2815
2816                 if (order < new_order || classzone_idx > new_classzone_idx) {
2817                         /*
2818                          * Don't sleep if someone wants a larger 'order'
2819                          * allocation or has tigher zone constraints
2820                          */
2821                         order = new_order;
2822                         classzone_idx = new_classzone_idx;
2823                 } else {
2824                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2825                         order = pgdat->kswapd_max_order;
2826                         classzone_idx = pgdat->classzone_idx;
2827                         pgdat->kswapd_max_order = 0;
2828                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2829                 }
2830
2831                 ret = try_to_freeze();
2832                 if (kthread_should_stop())
2833                         break;
2834
2835                 /*
2836                  * We can speed up thawing tasks if we don't call balance_pgdat
2837                  * after returning from the refrigerator
2838                  */
2839                 if (!ret) {
2840                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2841                         order = balance_pgdat(pgdat, order, &classzone_idx);
2842                 }
2843         }
2844         return 0;
2845 }
2846
2847 /*
2848  * A zone is low on free memory, so wake its kswapd task to service it.
2849  */
2850 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2851 {
2852         pg_data_t *pgdat;
2853
2854         if (!populated_zone(zone))
2855                 return;
2856
2857         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2858                 return;
2859         pgdat = zone->zone_pgdat;
2860         if (pgdat->kswapd_max_order < order) {
2861                 pgdat->kswapd_max_order = order;
2862                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2863         }
2864         if (!waitqueue_active(&pgdat->kswapd_wait))
2865                 return;
2866         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2867                 return;
2868
2869         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2870         wake_up_interruptible(&pgdat->kswapd_wait);
2871 }
2872
2873 /*
2874  * The reclaimable count would be mostly accurate.
2875  * The less reclaimable pages may be
2876  * - mlocked pages, which will be moved to unevictable list when encountered
2877  * - mapped pages, which may require several travels to be reclaimed
2878  * - dirty pages, which is not "instantly" reclaimable
2879  */
2880 unsigned long global_reclaimable_pages(void)
2881 {
2882         int nr;
2883
2884         nr = global_page_state(NR_ACTIVE_FILE) +
2885              global_page_state(NR_INACTIVE_FILE);
2886
2887         if (nr_swap_pages > 0)
2888                 nr += global_page_state(NR_ACTIVE_ANON) +
2889                       global_page_state(NR_INACTIVE_ANON);
2890
2891         return nr;
2892 }
2893
2894 unsigned long zone_reclaimable_pages(struct zone *zone)
2895 {
2896         int nr;
2897
2898         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2899              zone_page_state(zone, NR_INACTIVE_FILE);
2900
2901         if (nr_swap_pages > 0)
2902                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2903                       zone_page_state(zone, NR_INACTIVE_ANON);
2904
2905         return nr;
2906 }
2907
2908 #ifdef CONFIG_HIBERNATION
2909 /*
2910  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2911  * freed pages.
2912  *
2913  * Rather than trying to age LRUs the aim is to preserve the overall
2914  * LRU order by reclaiming preferentially
2915  * inactive > active > active referenced > active mapped
2916  */
2917 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2918 {
2919         struct reclaim_state reclaim_state;
2920         struct scan_control sc = {
2921                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2922                 .may_swap = 1,
2923                 .may_unmap = 1,
2924                 .may_writepage = 1,
2925                 .nr_to_reclaim = nr_to_reclaim,
2926                 .hibernation_mode = 1,
2927                 .order = 0,
2928         };
2929         struct shrink_control shrink = {
2930                 .gfp_mask = sc.gfp_mask,
2931         };
2932         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2933         struct task_struct *p = current;
2934         unsigned long nr_reclaimed;
2935
2936         p->flags |= PF_MEMALLOC;
2937         lockdep_set_current_reclaim_state(sc.gfp_mask);
2938         reclaim_state.reclaimed_slab = 0;
2939         p->reclaim_state = &reclaim_state;
2940
2941         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2942
2943         p->reclaim_state = NULL;
2944         lockdep_clear_current_reclaim_state();
2945         p->flags &= ~PF_MEMALLOC;
2946
2947         return nr_reclaimed;
2948 }
2949 #endif /* CONFIG_HIBERNATION */
2950
2951 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2952    not required for correctness.  So if the last cpu in a node goes
2953    away, we get changed to run anywhere: as the first one comes back,
2954    restore their cpu bindings. */
2955 static int __devinit cpu_callback(struct notifier_block *nfb,
2956                                   unsigned long action, void *hcpu)
2957 {
2958         int nid;
2959
2960         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2961                 for_each_node_state(nid, N_HIGH_MEMORY) {
2962                         pg_data_t *pgdat = NODE_DATA(nid);
2963                         const struct cpumask *mask;
2964
2965                         mask = cpumask_of_node(pgdat->node_id);
2966
2967                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2968                                 /* One of our CPUs online: restore mask */
2969                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2970                 }
2971         }
2972         return NOTIFY_OK;
2973 }
2974
2975 /*
2976  * This kswapd start function will be called by init and node-hot-add.
2977  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2978  */
2979 int kswapd_run(int nid)
2980 {
2981         pg_data_t *pgdat = NODE_DATA(nid);
2982         int ret = 0;
2983
2984         if (pgdat->kswapd)
2985                 return 0;
2986
2987         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2988         if (IS_ERR(pgdat->kswapd)) {
2989                 /* failure at boot is fatal */
2990                 BUG_ON(system_state == SYSTEM_BOOTING);
2991                 printk("Failed to start kswapd on node %d\n",nid);
2992                 ret = -1;
2993         }
2994         return ret;
2995 }
2996
2997 /*
2998  * Called by memory hotplug when all memory in a node is offlined.
2999  */
3000 void kswapd_stop(int nid)
3001 {
3002         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3003
3004         if (kswapd)
3005                 kthread_stop(kswapd);
3006 }
3007
3008 static int __init kswapd_init(void)
3009 {
3010         int nid;
3011
3012         swap_setup();
3013         for_each_node_state(nid, N_HIGH_MEMORY)
3014                 kswapd_run(nid);
3015         hotcpu_notifier(cpu_callback, 0);
3016         return 0;
3017 }
3018
3019 module_init(kswapd_init)
3020
3021 #ifdef CONFIG_NUMA
3022 /*
3023  * Zone reclaim mode
3024  *
3025  * If non-zero call zone_reclaim when the number of free pages falls below
3026  * the watermarks.
3027  */
3028 int zone_reclaim_mode __read_mostly;
3029
3030 #define RECLAIM_OFF 0
3031 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3032 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3033 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3034
3035 /*
3036  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3037  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3038  * a zone.
3039  */
3040 #define ZONE_RECLAIM_PRIORITY 4
3041
3042 /*
3043  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3044  * occur.
3045  */
3046 int sysctl_min_unmapped_ratio = 1;
3047
3048 /*
3049  * If the number of slab pages in a zone grows beyond this percentage then
3050  * slab reclaim needs to occur.
3051  */
3052 int sysctl_min_slab_ratio = 5;
3053
3054 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3055 {
3056         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3057         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3058                 zone_page_state(zone, NR_ACTIVE_FILE);
3059
3060         /*
3061          * It's possible for there to be more file mapped pages than
3062          * accounted for by the pages on the file LRU lists because
3063          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3064          */
3065         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3066 }
3067
3068 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3069 static long zone_pagecache_reclaimable(struct zone *zone)
3070 {
3071         long nr_pagecache_reclaimable;
3072         long delta = 0;
3073
3074         /*
3075          * If RECLAIM_SWAP is set, then all file pages are considered
3076          * potentially reclaimable. Otherwise, we have to worry about
3077          * pages like swapcache and zone_unmapped_file_pages() provides
3078          * a better estimate
3079          */
3080         if (zone_reclaim_mode & RECLAIM_SWAP)
3081                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3082         else
3083                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3084
3085         /* If we can't clean pages, remove dirty pages from consideration */
3086         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3087                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3088
3089         /* Watch for any possible underflows due to delta */
3090         if (unlikely(delta > nr_pagecache_reclaimable))
3091                 delta = nr_pagecache_reclaimable;
3092
3093         return nr_pagecache_reclaimable - delta;
3094 }
3095
3096 /*
3097  * Try to free up some pages from this zone through reclaim.
3098  */
3099 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3100 {
3101         /* Minimum pages needed in order to stay on node */
3102         const unsigned long nr_pages = 1 << order;
3103         struct task_struct *p = current;
3104         struct reclaim_state reclaim_state;
3105         int priority;
3106         struct scan_control sc = {
3107                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3108                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3109                 .may_swap = 1,
3110                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3111                                        SWAP_CLUSTER_MAX),
3112                 .gfp_mask = gfp_mask,
3113                 .order = order,
3114         };
3115         struct shrink_control shrink = {
3116                 .gfp_mask = sc.gfp_mask,
3117         };
3118         unsigned long nr_slab_pages0, nr_slab_pages1;
3119
3120         cond_resched();
3121         /*
3122          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3123          * and we also need to be able to write out pages for RECLAIM_WRITE
3124          * and RECLAIM_SWAP.
3125          */
3126         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3127         lockdep_set_current_reclaim_state(gfp_mask);
3128         reclaim_state.reclaimed_slab = 0;
3129         p->reclaim_state = &reclaim_state;
3130
3131         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3132                 /*
3133                  * Free memory by calling shrink zone with increasing
3134                  * priorities until we have enough memory freed.
3135                  */
3136                 priority = ZONE_RECLAIM_PRIORITY;
3137                 do {
3138                         shrink_zone(priority, zone, &sc);
3139                         priority--;
3140                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3141         }
3142
3143         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3144         if (nr_slab_pages0 > zone->min_slab_pages) {
3145                 /*
3146                  * shrink_slab() does not currently allow us to determine how
3147                  * many pages were freed in this zone. So we take the current
3148                  * number of slab pages and shake the slab until it is reduced
3149                  * by the same nr_pages that we used for reclaiming unmapped
3150                  * pages.
3151                  *
3152                  * Note that shrink_slab will free memory on all zones and may
3153                  * take a long time.
3154                  */
3155                 for (;;) {
3156                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3157
3158                         /* No reclaimable slab or very low memory pressure */
3159                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3160                                 break;
3161
3162                         /* Freed enough memory */
3163                         nr_slab_pages1 = zone_page_state(zone,
3164                                                         NR_SLAB_RECLAIMABLE);
3165                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3166                                 break;
3167                 }
3168
3169                 /*
3170                  * Update nr_reclaimed by the number of slab pages we
3171                  * reclaimed from this zone.
3172                  */
3173                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3174                 if (nr_slab_pages1 < nr_slab_pages0)
3175                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3176         }
3177
3178         p->reclaim_state = NULL;
3179         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3180         lockdep_clear_current_reclaim_state();
3181         return sc.nr_reclaimed >= nr_pages;
3182 }
3183
3184 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3185 {
3186         int node_id;
3187         int ret;
3188
3189         /*
3190          * Zone reclaim reclaims unmapped file backed pages and
3191          * slab pages if we are over the defined limits.
3192          *
3193          * A small portion of unmapped file backed pages is needed for
3194          * file I/O otherwise pages read by file I/O will be immediately
3195          * thrown out if the zone is overallocated. So we do not reclaim
3196          * if less than a specified percentage of the zone is used by
3197          * unmapped file backed pages.
3198          */
3199         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3200             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3201                 return ZONE_RECLAIM_FULL;
3202
3203         if (zone->all_unreclaimable)
3204                 return ZONE_RECLAIM_FULL;
3205
3206         /*
3207          * Do not scan if the allocation should not be delayed.
3208          */
3209         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3210                 return ZONE_RECLAIM_NOSCAN;
3211
3212         /*
3213          * Only run zone reclaim on the local zone or on zones that do not
3214          * have associated processors. This will favor the local processor
3215          * over remote processors and spread off node memory allocations
3216          * as wide as possible.
3217          */
3218         node_id = zone_to_nid(zone);
3219         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3220                 return ZONE_RECLAIM_NOSCAN;
3221
3222         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3223                 return ZONE_RECLAIM_NOSCAN;
3224
3225         ret = __zone_reclaim(zone, gfp_mask, order);
3226         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3227
3228         if (!ret)
3229                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3230
3231         return ret;
3232 }
3233 #endif
3234
3235 /*
3236  * page_evictable - test whether a page is evictable
3237  * @page: the page to test
3238  * @vma: the VMA in which the page is or will be mapped, may be NULL
3239  *
3240  * Test whether page is evictable--i.e., should be placed on active/inactive
3241  * lists vs unevictable list.  The vma argument is !NULL when called from the
3242  * fault path to determine how to instantate a new page.
3243  *
3244  * Reasons page might not be evictable:
3245  * (1) page's mapping marked unevictable
3246  * (2) page is part of an mlocked VMA
3247  *
3248  */
3249 int page_evictable(struct page *page, struct vm_area_struct *vma)
3250 {
3251
3252         if (mapping_unevictable(page_mapping(page)))
3253                 return 0;
3254
3255         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3256                 return 0;
3257
3258         return 1;
3259 }
3260
3261 /**
3262  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3263  * @page: page to check evictability and move to appropriate lru list
3264  * @zone: zone page is in
3265  *
3266  * Checks a page for evictability and moves the page to the appropriate
3267  * zone lru list.
3268  *
3269  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3270  * have PageUnevictable set.
3271  */
3272 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3273 {
3274         VM_BUG_ON(PageActive(page));
3275
3276 retry:
3277         ClearPageUnevictable(page);
3278         if (page_evictable(page, NULL)) {
3279                 enum lru_list l = page_lru_base_type(page);
3280
3281                 __dec_zone_state(zone, NR_UNEVICTABLE);
3282                 list_move(&page->lru, &zone->lru[l].list);
3283                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3284                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3285                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3286         } else {
3287                 /*
3288                  * rotate unevictable list
3289                  */
3290                 SetPageUnevictable(page);
3291                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3292                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3293                 if (page_evictable(page, NULL))
3294                         goto retry;
3295         }
3296 }
3297
3298 /**
3299  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3300  * @mapping: struct address_space to scan for evictable pages
3301  *
3302  * Scan all pages in mapping.  Check unevictable pages for
3303  * evictability and move them to the appropriate zone lru list.
3304  */
3305 void scan_mapping_unevictable_pages(struct address_space *mapping)
3306 {
3307         pgoff_t next = 0;
3308         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3309                          PAGE_CACHE_SHIFT;
3310         struct zone *zone;
3311         struct pagevec pvec;
3312
3313         if (mapping->nrpages == 0)
3314                 return;
3315
3316         pagevec_init(&pvec, 0);
3317         while (next < end &&
3318                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3319                 int i;
3320                 int pg_scanned = 0;
3321
3322                 zone = NULL;
3323
3324                 for (i = 0; i < pagevec_count(&pvec); i++) {
3325                         struct page *page = pvec.pages[i];
3326                         pgoff_t page_index = page->index;
3327                         struct zone *pagezone = page_zone(page);
3328
3329                         pg_scanned++;
3330                         if (page_index > next)
3331                                 next = page_index;
3332                         next++;
3333
3334                         if (pagezone != zone) {
3335                                 if (zone)
3336                                         spin_unlock_irq(&zone->lru_lock);
3337                                 zone = pagezone;
3338                                 spin_lock_irq(&zone->lru_lock);
3339                         }
3340
3341                         if (PageLRU(page) && PageUnevictable(page))
3342                                 check_move_unevictable_page(page, zone);
3343                 }
3344                 if (zone)
3345                         spin_unlock_irq(&zone->lru_lock);
3346                 pagevec_release(&pvec);
3347
3348                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3349         }
3350
3351 }
3352
3353 /**
3354  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3355  * @zone - zone of which to scan the unevictable list
3356  *
3357  * Scan @zone's unevictable LRU lists to check for pages that have become
3358  * evictable.  Move those that have to @zone's inactive list where they
3359  * become candidates for reclaim, unless shrink_inactive_zone() decides
3360  * to reactivate them.  Pages that are still unevictable are rotated
3361  * back onto @zone's unevictable list.
3362  */
3363 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3364 static void scan_zone_unevictable_pages(struct zone *zone)
3365 {
3366         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3367         unsigned long scan;
3368         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3369
3370         while (nr_to_scan > 0) {
3371                 unsigned long batch_size = min(nr_to_scan,
3372                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3373
3374                 spin_lock_irq(&zone->lru_lock);
3375                 for (scan = 0;  scan < batch_size; scan++) {
3376                         struct page *page = lru_to_page(l_unevictable);
3377
3378                         if (!trylock_page(page))
3379                                 continue;
3380
3381                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3382
3383                         if (likely(PageLRU(page) && PageUnevictable(page)))
3384                                 check_move_unevictable_page(page, zone);
3385
3386                         unlock_page(page);
3387                 }
3388                 spin_unlock_irq(&zone->lru_lock);
3389
3390                 nr_to_scan -= batch_size;
3391         }
3392 }
3393
3394
3395 /**
3396  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3397  *
3398  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3399  * pages that have become evictable.  Move those back to the zones'
3400  * inactive list where they become candidates for reclaim.
3401  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3402  * and we add swap to the system.  As such, it runs in the context of a task
3403  * that has possibly/probably made some previously unevictable pages
3404  * evictable.
3405  */
3406 static void scan_all_zones_unevictable_pages(void)
3407 {
3408         struct zone *zone;
3409
3410         for_each_zone(zone) {
3411                 scan_zone_unevictable_pages(zone);
3412         }
3413 }
3414
3415 /*
3416  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3417  * all nodes' unevictable lists for evictable pages
3418  */
3419 unsigned long scan_unevictable_pages;
3420
3421 int scan_unevictable_handler(struct ctl_table *table, int write,
3422                            void __user *buffer,
3423                            size_t *length, loff_t *ppos)
3424 {
3425         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3426
3427         if (write && *(unsigned long *)table->data)
3428                 scan_all_zones_unevictable_pages();
3429
3430         scan_unevictable_pages = 0;
3431         return 0;
3432 }
3433
3434 #ifdef CONFIG_NUMA
3435 /*
3436  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3437  * a specified node's per zone unevictable lists for evictable pages.
3438  */
3439
3440 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3441                                           struct sysdev_attribute *attr,
3442                                           char *buf)
3443 {
3444         return sprintf(buf, "0\n");     /* always zero; should fit... */
3445 }
3446
3447 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3448                                            struct sysdev_attribute *attr,
3449                                         const char *buf, size_t count)
3450 {
3451         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3452         struct zone *zone;
3453         unsigned long res;
3454         unsigned long req = strict_strtoul(buf, 10, &res);
3455
3456         if (!req)
3457                 return 1;       /* zero is no-op */
3458
3459         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3460                 if (!populated_zone(zone))
3461                         continue;
3462                 scan_zone_unevictable_pages(zone);
3463         }
3464         return 1;
3465 }
3466
3467
3468 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3469                         read_scan_unevictable_node,
3470                         write_scan_unevictable_node);
3471
3472 int scan_unevictable_register_node(struct node *node)
3473 {
3474         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3475 }
3476
3477 void scan_unevictable_unregister_node(struct node *node)
3478 {
3479         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3480 }
3481 #endif