mm: vmscan: do not writeback filesystem pages in kswapd except in high priority
[pandora-kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         shrinker->nr = 0;
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 unsigned long total_scan;
251                 unsigned long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 /*
259                  * copy the current shrinker scan count into a local variable
260                  * and zero it so that other concurrent shrinker invocations
261                  * don't also do this scanning work.
262                  */
263                 do {
264                         nr = shrinker->nr;
265                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267                 total_scan = nr;
268                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
270                 delta *= max_pass;
271                 do_div(delta, lru_pages + 1);
272                 total_scan += delta;
273                 if (total_scan < 0) {
274                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
275                                "delete nr=%ld\n",
276                                shrinker->shrink, total_scan);
277                         total_scan = max_pass;
278                 }
279
280                 /*
281                  * We need to avoid excessive windup on filesystem shrinkers
282                  * due to large numbers of GFP_NOFS allocations causing the
283                  * shrinkers to return -1 all the time. This results in a large
284                  * nr being built up so when a shrink that can do some work
285                  * comes along it empties the entire cache due to nr >>>
286                  * max_pass.  This is bad for sustaining a working set in
287                  * memory.
288                  *
289                  * Hence only allow the shrinker to scan the entire cache when
290                  * a large delta change is calculated directly.
291                  */
292                 if (delta < max_pass / 4)
293                         total_scan = min(total_scan, max_pass / 2);
294
295                 /*
296                  * Avoid risking looping forever due to too large nr value:
297                  * never try to free more than twice the estimate number of
298                  * freeable entries.
299                  */
300                 if (total_scan > max_pass * 2)
301                         total_scan = max_pass * 2;
302
303                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
304                                         nr_pages_scanned, lru_pages,
305                                         max_pass, delta, total_scan);
306
307                 while (total_scan >= batch_size) {
308                         int nr_before;
309
310                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
312                                                         batch_size);
313                         if (shrink_ret == -1)
314                                 break;
315                         if (shrink_ret < nr_before)
316                                 ret += nr_before - shrink_ret;
317                         count_vm_events(SLABS_SCANNED, batch_size);
318                         total_scan -= batch_size;
319
320                         cond_resched();
321                 }
322
323                 /*
324                  * move the unused scan count back into the shrinker in a
325                  * manner that handles concurrent updates. If we exhausted the
326                  * scan, there is no need to do an update.
327                  */
328                 do {
329                         nr = shrinker->nr;
330                         new_nr = total_scan + nr;
331                         if (total_scan <= 0)
332                                 break;
333                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 if (!PageWriteback(page)) {
499                         /* synchronous write or broken a_ops? */
500                         ClearPageReclaim(page);
501                 }
502                 trace_mm_vmscan_writepage(page,
503                         trace_reclaim_flags(page, sc->reclaim_mode));
504                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
505                 return PAGE_SUCCESS;
506         }
507
508         return PAGE_CLEAN;
509 }
510
511 /*
512  * Same as remove_mapping, but if the page is removed from the mapping, it
513  * gets returned with a refcount of 0.
514  */
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
516 {
517         BUG_ON(!PageLocked(page));
518         BUG_ON(mapping != page_mapping(page));
519
520         spin_lock_irq(&mapping->tree_lock);
521         /*
522          * The non racy check for a busy page.
523          *
524          * Must be careful with the order of the tests. When someone has
525          * a ref to the page, it may be possible that they dirty it then
526          * drop the reference. So if PageDirty is tested before page_count
527          * here, then the following race may occur:
528          *
529          * get_user_pages(&page);
530          * [user mapping goes away]
531          * write_to(page);
532          *                              !PageDirty(page)    [good]
533          * SetPageDirty(page);
534          * put_page(page);
535          *                              !page_count(page)   [good, discard it]
536          *
537          * [oops, our write_to data is lost]
538          *
539          * Reversing the order of the tests ensures such a situation cannot
540          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541          * load is not satisfied before that of page->_count.
542          *
543          * Note that if SetPageDirty is always performed via set_page_dirty,
544          * and thus under tree_lock, then this ordering is not required.
545          */
546         if (!page_freeze_refs(page, 2))
547                 goto cannot_free;
548         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549         if (unlikely(PageDirty(page))) {
550                 page_unfreeze_refs(page, 2);
551                 goto cannot_free;
552         }
553
554         if (PageSwapCache(page)) {
555                 swp_entry_t swap = { .val = page_private(page) };
556                 __delete_from_swap_cache(page);
557                 spin_unlock_irq(&mapping->tree_lock);
558                 swapcache_free(swap, page);
559         } else {
560                 void (*freepage)(struct page *);
561
562                 freepage = mapping->a_ops->freepage;
563
564                 __delete_from_page_cache(page);
565                 spin_unlock_irq(&mapping->tree_lock);
566                 mem_cgroup_uncharge_cache_page(page);
567
568                 if (freepage != NULL)
569                         freepage(page);
570         }
571
572         return 1;
573
574 cannot_free:
575         spin_unlock_irq(&mapping->tree_lock);
576         return 0;
577 }
578
579 /*
580  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581  * someone else has a ref on the page, abort and return 0.  If it was
582  * successfully detached, return 1.  Assumes the caller has a single ref on
583  * this page.
584  */
585 int remove_mapping(struct address_space *mapping, struct page *page)
586 {
587         if (__remove_mapping(mapping, page)) {
588                 /*
589                  * Unfreezing the refcount with 1 rather than 2 effectively
590                  * drops the pagecache ref for us without requiring another
591                  * atomic operation.
592                  */
593                 page_unfreeze_refs(page, 1);
594                 return 1;
595         }
596         return 0;
597 }
598
599 /**
600  * putback_lru_page - put previously isolated page onto appropriate LRU list
601  * @page: page to be put back to appropriate lru list
602  *
603  * Add previously isolated @page to appropriate LRU list.
604  * Page may still be unevictable for other reasons.
605  *
606  * lru_lock must not be held, interrupts must be enabled.
607  */
608 void putback_lru_page(struct page *page)
609 {
610         int lru;
611         int active = !!TestClearPageActive(page);
612         int was_unevictable = PageUnevictable(page);
613
614         VM_BUG_ON(PageLRU(page));
615
616 redo:
617         ClearPageUnevictable(page);
618
619         if (page_evictable(page, NULL)) {
620                 /*
621                  * For evictable pages, we can use the cache.
622                  * In event of a race, worst case is we end up with an
623                  * unevictable page on [in]active list.
624                  * We know how to handle that.
625                  */
626                 lru = active + page_lru_base_type(page);
627                 lru_cache_add_lru(page, lru);
628         } else {
629                 /*
630                  * Put unevictable pages directly on zone's unevictable
631                  * list.
632                  */
633                 lru = LRU_UNEVICTABLE;
634                 add_page_to_unevictable_list(page);
635                 /*
636                  * When racing with an mlock clearing (page is
637                  * unlocked), make sure that if the other thread does
638                  * not observe our setting of PG_lru and fails
639                  * isolation, we see PG_mlocked cleared below and move
640                  * the page back to the evictable list.
641                  *
642                  * The other side is TestClearPageMlocked().
643                  */
644                 smp_mb();
645         }
646
647         /*
648          * page's status can change while we move it among lru. If an evictable
649          * page is on unevictable list, it never be freed. To avoid that,
650          * check after we added it to the list, again.
651          */
652         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
653                 if (!isolate_lru_page(page)) {
654                         put_page(page);
655                         goto redo;
656                 }
657                 /* This means someone else dropped this page from LRU
658                  * So, it will be freed or putback to LRU again. There is
659                  * nothing to do here.
660                  */
661         }
662
663         if (was_unevictable && lru != LRU_UNEVICTABLE)
664                 count_vm_event(UNEVICTABLE_PGRESCUED);
665         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
666                 count_vm_event(UNEVICTABLE_PGCULLED);
667
668         put_page(page);         /* drop ref from isolate */
669 }
670
671 enum page_references {
672         PAGEREF_RECLAIM,
673         PAGEREF_RECLAIM_CLEAN,
674         PAGEREF_KEEP,
675         PAGEREF_ACTIVATE,
676 };
677
678 static enum page_references page_check_references(struct page *page,
679                                                   struct scan_control *sc)
680 {
681         int referenced_ptes, referenced_page;
682         unsigned long vm_flags;
683
684         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
685         referenced_page = TestClearPageReferenced(page);
686
687         /* Lumpy reclaim - ignore references */
688         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
689                 return PAGEREF_RECLAIM;
690
691         /*
692          * Mlock lost the isolation race with us.  Let try_to_unmap()
693          * move the page to the unevictable list.
694          */
695         if (vm_flags & VM_LOCKED)
696                 return PAGEREF_RECLAIM;
697
698         if (referenced_ptes) {
699                 if (PageAnon(page))
700                         return PAGEREF_ACTIVATE;
701                 /*
702                  * All mapped pages start out with page table
703                  * references from the instantiating fault, so we need
704                  * to look twice if a mapped file page is used more
705                  * than once.
706                  *
707                  * Mark it and spare it for another trip around the
708                  * inactive list.  Another page table reference will
709                  * lead to its activation.
710                  *
711                  * Note: the mark is set for activated pages as well
712                  * so that recently deactivated but used pages are
713                  * quickly recovered.
714                  */
715                 SetPageReferenced(page);
716
717                 if (referenced_page)
718                         return PAGEREF_ACTIVATE;
719
720                 return PAGEREF_KEEP;
721         }
722
723         /* Reclaim if clean, defer dirty pages to writeback */
724         if (referenced_page && !PageSwapBacked(page))
725                 return PAGEREF_RECLAIM_CLEAN;
726
727         return PAGEREF_RECLAIM;
728 }
729
730 static noinline_for_stack void free_page_list(struct list_head *free_pages)
731 {
732         struct pagevec freed_pvec;
733         struct page *page, *tmp;
734
735         pagevec_init(&freed_pvec, 1);
736
737         list_for_each_entry_safe(page, tmp, free_pages, lru) {
738                 list_del(&page->lru);
739                 if (!pagevec_add(&freed_pvec, page)) {
740                         __pagevec_free(&freed_pvec);
741                         pagevec_reinit(&freed_pvec);
742                 }
743         }
744
745         pagevec_free(&freed_pvec);
746 }
747
748 /*
749  * shrink_page_list() returns the number of reclaimed pages
750  */
751 static unsigned long shrink_page_list(struct list_head *page_list,
752                                       struct zone *zone,
753                                       struct scan_control *sc,
754                                       int priority)
755 {
756         LIST_HEAD(ret_pages);
757         LIST_HEAD(free_pages);
758         int pgactivate = 0;
759         unsigned long nr_dirty = 0;
760         unsigned long nr_congested = 0;
761         unsigned long nr_reclaimed = 0;
762
763         cond_resched();
764
765         while (!list_empty(page_list)) {
766                 enum page_references references;
767                 struct address_space *mapping;
768                 struct page *page;
769                 int may_enter_fs;
770
771                 cond_resched();
772
773                 page = lru_to_page(page_list);
774                 list_del(&page->lru);
775
776                 if (!trylock_page(page))
777                         goto keep;
778
779                 VM_BUG_ON(PageActive(page));
780                 VM_BUG_ON(page_zone(page) != zone);
781
782                 sc->nr_scanned++;
783
784                 if (unlikely(!page_evictable(page, NULL)))
785                         goto cull_mlocked;
786
787                 if (!sc->may_unmap && page_mapped(page))
788                         goto keep_locked;
789
790                 /* Double the slab pressure for mapped and swapcache pages */
791                 if (page_mapped(page) || PageSwapCache(page))
792                         sc->nr_scanned++;
793
794                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
795                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
796
797                 if (PageWriteback(page)) {
798                         /*
799                          * Synchronous reclaim cannot queue pages for
800                          * writeback due to the possibility of stack overflow
801                          * but if it encounters a page under writeback, wait
802                          * for the IO to complete.
803                          */
804                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
805                             may_enter_fs)
806                                 wait_on_page_writeback(page);
807                         else {
808                                 unlock_page(page);
809                                 goto keep_lumpy;
810                         }
811                 }
812
813                 references = page_check_references(page, sc);
814                 switch (references) {
815                 case PAGEREF_ACTIVATE:
816                         goto activate_locked;
817                 case PAGEREF_KEEP:
818                         goto keep_locked;
819                 case PAGEREF_RECLAIM:
820                 case PAGEREF_RECLAIM_CLEAN:
821                         ; /* try to reclaim the page below */
822                 }
823
824                 /*
825                  * Anonymous process memory has backing store?
826                  * Try to allocate it some swap space here.
827                  */
828                 if (PageAnon(page) && !PageSwapCache(page)) {
829                         if (!(sc->gfp_mask & __GFP_IO))
830                                 goto keep_locked;
831                         if (!add_to_swap(page))
832                                 goto activate_locked;
833                         may_enter_fs = 1;
834                 }
835
836                 mapping = page_mapping(page);
837
838                 /*
839                  * The page is mapped into the page tables of one or more
840                  * processes. Try to unmap it here.
841                  */
842                 if (page_mapped(page) && mapping) {
843                         switch (try_to_unmap(page, TTU_UNMAP)) {
844                         case SWAP_FAIL:
845                                 goto activate_locked;
846                         case SWAP_AGAIN:
847                                 goto keep_locked;
848                         case SWAP_MLOCK:
849                                 goto cull_mlocked;
850                         case SWAP_SUCCESS:
851                                 ; /* try to free the page below */
852                         }
853                 }
854
855                 if (PageDirty(page)) {
856                         nr_dirty++;
857
858                         /*
859                          * Only kswapd can writeback filesystem pages to
860                          * avoid risk of stack overflow but do not writeback
861                          * unless under significant pressure.
862                          */
863                         if (page_is_file_cache(page) &&
864                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
865                                 inc_zone_page_state(page, NR_VMSCAN_WRITE_SKIP);
866                                 goto keep_locked;
867                         }
868
869                         if (references == PAGEREF_RECLAIM_CLEAN)
870                                 goto keep_locked;
871                         if (!may_enter_fs)
872                                 goto keep_locked;
873                         if (!sc->may_writepage)
874                                 goto keep_locked;
875
876                         /* Page is dirty, try to write it out here */
877                         switch (pageout(page, mapping, sc)) {
878                         case PAGE_KEEP:
879                                 nr_congested++;
880                                 goto keep_locked;
881                         case PAGE_ACTIVATE:
882                                 goto activate_locked;
883                         case PAGE_SUCCESS:
884                                 if (PageWriteback(page))
885                                         goto keep_lumpy;
886                                 if (PageDirty(page))
887                                         goto keep;
888
889                                 /*
890                                  * A synchronous write - probably a ramdisk.  Go
891                                  * ahead and try to reclaim the page.
892                                  */
893                                 if (!trylock_page(page))
894                                         goto keep;
895                                 if (PageDirty(page) || PageWriteback(page))
896                                         goto keep_locked;
897                                 mapping = page_mapping(page);
898                         case PAGE_CLEAN:
899                                 ; /* try to free the page below */
900                         }
901                 }
902
903                 /*
904                  * If the page has buffers, try to free the buffer mappings
905                  * associated with this page. If we succeed we try to free
906                  * the page as well.
907                  *
908                  * We do this even if the page is PageDirty().
909                  * try_to_release_page() does not perform I/O, but it is
910                  * possible for a page to have PageDirty set, but it is actually
911                  * clean (all its buffers are clean).  This happens if the
912                  * buffers were written out directly, with submit_bh(). ext3
913                  * will do this, as well as the blockdev mapping.
914                  * try_to_release_page() will discover that cleanness and will
915                  * drop the buffers and mark the page clean - it can be freed.
916                  *
917                  * Rarely, pages can have buffers and no ->mapping.  These are
918                  * the pages which were not successfully invalidated in
919                  * truncate_complete_page().  We try to drop those buffers here
920                  * and if that worked, and the page is no longer mapped into
921                  * process address space (page_count == 1) it can be freed.
922                  * Otherwise, leave the page on the LRU so it is swappable.
923                  */
924                 if (page_has_private(page)) {
925                         if (!try_to_release_page(page, sc->gfp_mask))
926                                 goto activate_locked;
927                         if (!mapping && page_count(page) == 1) {
928                                 unlock_page(page);
929                                 if (put_page_testzero(page))
930                                         goto free_it;
931                                 else {
932                                         /*
933                                          * rare race with speculative reference.
934                                          * the speculative reference will free
935                                          * this page shortly, so we may
936                                          * increment nr_reclaimed here (and
937                                          * leave it off the LRU).
938                                          */
939                                         nr_reclaimed++;
940                                         continue;
941                                 }
942                         }
943                 }
944
945                 if (!mapping || !__remove_mapping(mapping, page))
946                         goto keep_locked;
947
948                 /*
949                  * At this point, we have no other references and there is
950                  * no way to pick any more up (removed from LRU, removed
951                  * from pagecache). Can use non-atomic bitops now (and
952                  * we obviously don't have to worry about waking up a process
953                  * waiting on the page lock, because there are no references.
954                  */
955                 __clear_page_locked(page);
956 free_it:
957                 nr_reclaimed++;
958
959                 /*
960                  * Is there need to periodically free_page_list? It would
961                  * appear not as the counts should be low
962                  */
963                 list_add(&page->lru, &free_pages);
964                 continue;
965
966 cull_mlocked:
967                 if (PageSwapCache(page))
968                         try_to_free_swap(page);
969                 unlock_page(page);
970                 putback_lru_page(page);
971                 reset_reclaim_mode(sc);
972                 continue;
973
974 activate_locked:
975                 /* Not a candidate for swapping, so reclaim swap space. */
976                 if (PageSwapCache(page) && vm_swap_full())
977                         try_to_free_swap(page);
978                 VM_BUG_ON(PageActive(page));
979                 SetPageActive(page);
980                 pgactivate++;
981 keep_locked:
982                 unlock_page(page);
983 keep:
984                 reset_reclaim_mode(sc);
985 keep_lumpy:
986                 list_add(&page->lru, &ret_pages);
987                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
988         }
989
990         /*
991          * Tag a zone as congested if all the dirty pages encountered were
992          * backed by a congested BDI. In this case, reclaimers should just
993          * back off and wait for congestion to clear because further reclaim
994          * will encounter the same problem
995          */
996         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
997                 zone_set_flag(zone, ZONE_CONGESTED);
998
999         free_page_list(&free_pages);
1000
1001         list_splice(&ret_pages, page_list);
1002         count_vm_events(PGACTIVATE, pgactivate);
1003         return nr_reclaimed;
1004 }
1005
1006 /*
1007  * Attempt to remove the specified page from its LRU.  Only take this page
1008  * if it is of the appropriate PageActive status.  Pages which are being
1009  * freed elsewhere are also ignored.
1010  *
1011  * page:        page to consider
1012  * mode:        one of the LRU isolation modes defined above
1013  *
1014  * returns 0 on success, -ve errno on failure.
1015  */
1016 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1017 {
1018         bool all_lru_mode;
1019         int ret = -EINVAL;
1020
1021         /* Only take pages on the LRU. */
1022         if (!PageLRU(page))
1023                 return ret;
1024
1025         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1026                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1027
1028         /*
1029          * When checking the active state, we need to be sure we are
1030          * dealing with comparible boolean values.  Take the logical not
1031          * of each.
1032          */
1033         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1034                 return ret;
1035
1036         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1037                 return ret;
1038
1039         /*
1040          * When this function is being called for lumpy reclaim, we
1041          * initially look into all LRU pages, active, inactive and
1042          * unevictable; only give shrink_page_list evictable pages.
1043          */
1044         if (PageUnevictable(page))
1045                 return ret;
1046
1047         ret = -EBUSY;
1048
1049         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1050                 return ret;
1051
1052         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053                 return ret;
1054
1055         if (likely(get_page_unless_zero(page))) {
1056                 /*
1057                  * Be careful not to clear PageLRU until after we're
1058                  * sure the page is not being freed elsewhere -- the
1059                  * page release code relies on it.
1060                  */
1061                 ClearPageLRU(page);
1062                 ret = 0;
1063         }
1064
1065         return ret;
1066 }
1067
1068 /*
1069  * zone->lru_lock is heavily contended.  Some of the functions that
1070  * shrink the lists perform better by taking out a batch of pages
1071  * and working on them outside the LRU lock.
1072  *
1073  * For pagecache intensive workloads, this function is the hottest
1074  * spot in the kernel (apart from copy_*_user functions).
1075  *
1076  * Appropriate locks must be held before calling this function.
1077  *
1078  * @nr_to_scan: The number of pages to look through on the list.
1079  * @src:        The LRU list to pull pages off.
1080  * @dst:        The temp list to put pages on to.
1081  * @scanned:    The number of pages that were scanned.
1082  * @order:      The caller's attempted allocation order
1083  * @mode:       One of the LRU isolation modes
1084  * @file:       True [1] if isolating file [!anon] pages
1085  *
1086  * returns how many pages were moved onto *@dst.
1087  */
1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089                 struct list_head *src, struct list_head *dst,
1090                 unsigned long *scanned, int order, isolate_mode_t mode,
1091                 int file)
1092 {
1093         unsigned long nr_taken = 0;
1094         unsigned long nr_lumpy_taken = 0;
1095         unsigned long nr_lumpy_dirty = 0;
1096         unsigned long nr_lumpy_failed = 0;
1097         unsigned long scan;
1098
1099         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1100                 struct page *page;
1101                 unsigned long pfn;
1102                 unsigned long end_pfn;
1103                 unsigned long page_pfn;
1104                 int zone_id;
1105
1106                 page = lru_to_page(src);
1107                 prefetchw_prev_lru_page(page, src, flags);
1108
1109                 VM_BUG_ON(!PageLRU(page));
1110
1111                 switch (__isolate_lru_page(page, mode, file)) {
1112                 case 0:
1113                         list_move(&page->lru, dst);
1114                         mem_cgroup_del_lru(page);
1115                         nr_taken += hpage_nr_pages(page);
1116                         break;
1117
1118                 case -EBUSY:
1119                         /* else it is being freed elsewhere */
1120                         list_move(&page->lru, src);
1121                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1122                         continue;
1123
1124                 default:
1125                         BUG();
1126                 }
1127
1128                 if (!order)
1129                         continue;
1130
1131                 /*
1132                  * Attempt to take all pages in the order aligned region
1133                  * surrounding the tag page.  Only take those pages of
1134                  * the same active state as that tag page.  We may safely
1135                  * round the target page pfn down to the requested order
1136                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1137                  * where that page is in a different zone we will detect
1138                  * it from its zone id and abort this block scan.
1139                  */
1140                 zone_id = page_zone_id(page);
1141                 page_pfn = page_to_pfn(page);
1142                 pfn = page_pfn & ~((1 << order) - 1);
1143                 end_pfn = pfn + (1 << order);
1144                 for (; pfn < end_pfn; pfn++) {
1145                         struct page *cursor_page;
1146
1147                         /* The target page is in the block, ignore it. */
1148                         if (unlikely(pfn == page_pfn))
1149                                 continue;
1150
1151                         /* Avoid holes within the zone. */
1152                         if (unlikely(!pfn_valid_within(pfn)))
1153                                 break;
1154
1155                         cursor_page = pfn_to_page(pfn);
1156
1157                         /* Check that we have not crossed a zone boundary. */
1158                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1159                                 break;
1160
1161                         /*
1162                          * If we don't have enough swap space, reclaiming of
1163                          * anon page which don't already have a swap slot is
1164                          * pointless.
1165                          */
1166                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1167                             !PageSwapCache(cursor_page))
1168                                 break;
1169
1170                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1171                                 list_move(&cursor_page->lru, dst);
1172                                 mem_cgroup_del_lru(cursor_page);
1173                                 nr_taken += hpage_nr_pages(page);
1174                                 nr_lumpy_taken++;
1175                                 if (PageDirty(cursor_page))
1176                                         nr_lumpy_dirty++;
1177                                 scan++;
1178                         } else {
1179                                 /*
1180                                  * Check if the page is freed already.
1181                                  *
1182                                  * We can't use page_count() as that
1183                                  * requires compound_head and we don't
1184                                  * have a pin on the page here. If a
1185                                  * page is tail, we may or may not
1186                                  * have isolated the head, so assume
1187                                  * it's not free, it'd be tricky to
1188                                  * track the head status without a
1189                                  * page pin.
1190                                  */
1191                                 if (!PageTail(cursor_page) &&
1192                                     !atomic_read(&cursor_page->_count))
1193                                         continue;
1194                                 break;
1195                         }
1196                 }
1197
1198                 /* If we break out of the loop above, lumpy reclaim failed */
1199                 if (pfn < end_pfn)
1200                         nr_lumpy_failed++;
1201         }
1202
1203         *scanned = scan;
1204
1205         trace_mm_vmscan_lru_isolate(order,
1206                         nr_to_scan, scan,
1207                         nr_taken,
1208                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1209                         mode);
1210         return nr_taken;
1211 }
1212
1213 static unsigned long isolate_pages_global(unsigned long nr,
1214                                         struct list_head *dst,
1215                                         unsigned long *scanned, int order,
1216                                         isolate_mode_t mode,
1217                                         struct zone *z, int active, int file)
1218 {
1219         int lru = LRU_BASE;
1220         if (active)
1221                 lru += LRU_ACTIVE;
1222         if (file)
1223                 lru += LRU_FILE;
1224         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1225                                                                 mode, file);
1226 }
1227
1228 /*
1229  * clear_active_flags() is a helper for shrink_active_list(), clearing
1230  * any active bits from the pages in the list.
1231  */
1232 static unsigned long clear_active_flags(struct list_head *page_list,
1233                                         unsigned int *count)
1234 {
1235         int nr_active = 0;
1236         int lru;
1237         struct page *page;
1238
1239         list_for_each_entry(page, page_list, lru) {
1240                 int numpages = hpage_nr_pages(page);
1241                 lru = page_lru_base_type(page);
1242                 if (PageActive(page)) {
1243                         lru += LRU_ACTIVE;
1244                         ClearPageActive(page);
1245                         nr_active += numpages;
1246                 }
1247                 if (count)
1248                         count[lru] += numpages;
1249         }
1250
1251         return nr_active;
1252 }
1253
1254 /**
1255  * isolate_lru_page - tries to isolate a page from its LRU list
1256  * @page: page to isolate from its LRU list
1257  *
1258  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1259  * vmstat statistic corresponding to whatever LRU list the page was on.
1260  *
1261  * Returns 0 if the page was removed from an LRU list.
1262  * Returns -EBUSY if the page was not on an LRU list.
1263  *
1264  * The returned page will have PageLRU() cleared.  If it was found on
1265  * the active list, it will have PageActive set.  If it was found on
1266  * the unevictable list, it will have the PageUnevictable bit set. That flag
1267  * may need to be cleared by the caller before letting the page go.
1268  *
1269  * The vmstat statistic corresponding to the list on which the page was
1270  * found will be decremented.
1271  *
1272  * Restrictions:
1273  * (1) Must be called with an elevated refcount on the page. This is a
1274  *     fundamentnal difference from isolate_lru_pages (which is called
1275  *     without a stable reference).
1276  * (2) the lru_lock must not be held.
1277  * (3) interrupts must be enabled.
1278  */
1279 int isolate_lru_page(struct page *page)
1280 {
1281         int ret = -EBUSY;
1282
1283         VM_BUG_ON(!page_count(page));
1284
1285         if (PageLRU(page)) {
1286                 struct zone *zone = page_zone(page);
1287
1288                 spin_lock_irq(&zone->lru_lock);
1289                 if (PageLRU(page)) {
1290                         int lru = page_lru(page);
1291                         ret = 0;
1292                         get_page(page);
1293                         ClearPageLRU(page);
1294
1295                         del_page_from_lru_list(zone, page, lru);
1296                 }
1297                 spin_unlock_irq(&zone->lru_lock);
1298         }
1299         return ret;
1300 }
1301
1302 /*
1303  * Are there way too many processes in the direct reclaim path already?
1304  */
1305 static int too_many_isolated(struct zone *zone, int file,
1306                 struct scan_control *sc)
1307 {
1308         unsigned long inactive, isolated;
1309
1310         if (current_is_kswapd())
1311                 return 0;
1312
1313         if (!scanning_global_lru(sc))
1314                 return 0;
1315
1316         if (file) {
1317                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1318                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1319         } else {
1320                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1321                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1322         }
1323
1324         return isolated > inactive;
1325 }
1326
1327 /*
1328  * TODO: Try merging with migrations version of putback_lru_pages
1329  */
1330 static noinline_for_stack void
1331 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1332                                 unsigned long nr_anon, unsigned long nr_file,
1333                                 struct list_head *page_list)
1334 {
1335         struct page *page;
1336         struct pagevec pvec;
1337         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1338
1339         pagevec_init(&pvec, 1);
1340
1341         /*
1342          * Put back any unfreeable pages.
1343          */
1344         spin_lock(&zone->lru_lock);
1345         while (!list_empty(page_list)) {
1346                 int lru;
1347                 page = lru_to_page(page_list);
1348                 VM_BUG_ON(PageLRU(page));
1349                 list_del(&page->lru);
1350                 if (unlikely(!page_evictable(page, NULL))) {
1351                         spin_unlock_irq(&zone->lru_lock);
1352                         putback_lru_page(page);
1353                         spin_lock_irq(&zone->lru_lock);
1354                         continue;
1355                 }
1356                 SetPageLRU(page);
1357                 lru = page_lru(page);
1358                 add_page_to_lru_list(zone, page, lru);
1359                 if (is_active_lru(lru)) {
1360                         int file = is_file_lru(lru);
1361                         int numpages = hpage_nr_pages(page);
1362                         reclaim_stat->recent_rotated[file] += numpages;
1363                 }
1364                 if (!pagevec_add(&pvec, page)) {
1365                         spin_unlock_irq(&zone->lru_lock);
1366                         __pagevec_release(&pvec);
1367                         spin_lock_irq(&zone->lru_lock);
1368                 }
1369         }
1370         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1371         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1372
1373         spin_unlock_irq(&zone->lru_lock);
1374         pagevec_release(&pvec);
1375 }
1376
1377 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1378                                         struct scan_control *sc,
1379                                         unsigned long *nr_anon,
1380                                         unsigned long *nr_file,
1381                                         struct list_head *isolated_list)
1382 {
1383         unsigned long nr_active;
1384         unsigned int count[NR_LRU_LISTS] = { 0, };
1385         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1386
1387         nr_active = clear_active_flags(isolated_list, count);
1388         __count_vm_events(PGDEACTIVATE, nr_active);
1389
1390         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1391                               -count[LRU_ACTIVE_FILE]);
1392         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1393                               -count[LRU_INACTIVE_FILE]);
1394         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1395                               -count[LRU_ACTIVE_ANON]);
1396         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1397                               -count[LRU_INACTIVE_ANON]);
1398
1399         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1400         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1401         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1402         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1403
1404         reclaim_stat->recent_scanned[0] += *nr_anon;
1405         reclaim_stat->recent_scanned[1] += *nr_file;
1406 }
1407
1408 /*
1409  * Returns true if a direct reclaim should wait on pages under writeback.
1410  *
1411  * If we are direct reclaiming for contiguous pages and we do not reclaim
1412  * everything in the list, try again and wait for writeback IO to complete.
1413  * This will stall high-order allocations noticeably. Only do that when really
1414  * need to free the pages under high memory pressure.
1415  */
1416 static inline bool should_reclaim_stall(unsigned long nr_taken,
1417                                         unsigned long nr_freed,
1418                                         int priority,
1419                                         struct scan_control *sc)
1420 {
1421         int lumpy_stall_priority;
1422
1423         /* kswapd should not stall on sync IO */
1424         if (current_is_kswapd())
1425                 return false;
1426
1427         /* Only stall on lumpy reclaim */
1428         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1429                 return false;
1430
1431         /* If we have reclaimed everything on the isolated list, no stall */
1432         if (nr_freed == nr_taken)
1433                 return false;
1434
1435         /*
1436          * For high-order allocations, there are two stall thresholds.
1437          * High-cost allocations stall immediately where as lower
1438          * order allocations such as stacks require the scanning
1439          * priority to be much higher before stalling.
1440          */
1441         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1442                 lumpy_stall_priority = DEF_PRIORITY;
1443         else
1444                 lumpy_stall_priority = DEF_PRIORITY / 3;
1445
1446         return priority <= lumpy_stall_priority;
1447 }
1448
1449 /*
1450  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1451  * of reclaimed pages
1452  */
1453 static noinline_for_stack unsigned long
1454 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1455                         struct scan_control *sc, int priority, int file)
1456 {
1457         LIST_HEAD(page_list);
1458         unsigned long nr_scanned;
1459         unsigned long nr_reclaimed = 0;
1460         unsigned long nr_taken;
1461         unsigned long nr_anon;
1462         unsigned long nr_file;
1463         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1464
1465         while (unlikely(too_many_isolated(zone, file, sc))) {
1466                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1467
1468                 /* We are about to die and free our memory. Return now. */
1469                 if (fatal_signal_pending(current))
1470                         return SWAP_CLUSTER_MAX;
1471         }
1472
1473         set_reclaim_mode(priority, sc, false);
1474         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1475                 reclaim_mode |= ISOLATE_ACTIVE;
1476
1477         lru_add_drain();
1478
1479         if (!sc->may_unmap)
1480                 reclaim_mode |= ISOLATE_UNMAPPED;
1481         if (!sc->may_writepage)
1482                 reclaim_mode |= ISOLATE_CLEAN;
1483
1484         spin_lock_irq(&zone->lru_lock);
1485
1486         if (scanning_global_lru(sc)) {
1487                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1488                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1489                 zone->pages_scanned += nr_scanned;
1490                 if (current_is_kswapd())
1491                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1492                                                nr_scanned);
1493                 else
1494                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1495                                                nr_scanned);
1496         } else {
1497                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1498                         &nr_scanned, sc->order, reclaim_mode, zone,
1499                         sc->mem_cgroup, 0, file);
1500                 /*
1501                  * mem_cgroup_isolate_pages() keeps track of
1502                  * scanned pages on its own.
1503                  */
1504         }
1505
1506         if (nr_taken == 0) {
1507                 spin_unlock_irq(&zone->lru_lock);
1508                 return 0;
1509         }
1510
1511         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1512
1513         spin_unlock_irq(&zone->lru_lock);
1514
1515         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority);
1516
1517         /* Check if we should syncronously wait for writeback */
1518         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1519                 set_reclaim_mode(priority, sc, true);
1520                 nr_reclaimed += shrink_page_list(&page_list, zone, sc, priority);
1521         }
1522
1523         local_irq_disable();
1524         if (current_is_kswapd())
1525                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1526         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1527
1528         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1529
1530         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1531                 zone_idx(zone),
1532                 nr_scanned, nr_reclaimed,
1533                 priority,
1534                 trace_shrink_flags(file, sc->reclaim_mode));
1535         return nr_reclaimed;
1536 }
1537
1538 /*
1539  * This moves pages from the active list to the inactive list.
1540  *
1541  * We move them the other way if the page is referenced by one or more
1542  * processes, from rmap.
1543  *
1544  * If the pages are mostly unmapped, the processing is fast and it is
1545  * appropriate to hold zone->lru_lock across the whole operation.  But if
1546  * the pages are mapped, the processing is slow (page_referenced()) so we
1547  * should drop zone->lru_lock around each page.  It's impossible to balance
1548  * this, so instead we remove the pages from the LRU while processing them.
1549  * It is safe to rely on PG_active against the non-LRU pages in here because
1550  * nobody will play with that bit on a non-LRU page.
1551  *
1552  * The downside is that we have to touch page->_count against each page.
1553  * But we had to alter page->flags anyway.
1554  */
1555
1556 static void move_active_pages_to_lru(struct zone *zone,
1557                                      struct list_head *list,
1558                                      enum lru_list lru)
1559 {
1560         unsigned long pgmoved = 0;
1561         struct pagevec pvec;
1562         struct page *page;
1563
1564         pagevec_init(&pvec, 1);
1565
1566         while (!list_empty(list)) {
1567                 page = lru_to_page(list);
1568
1569                 VM_BUG_ON(PageLRU(page));
1570                 SetPageLRU(page);
1571
1572                 list_move(&page->lru, &zone->lru[lru].list);
1573                 mem_cgroup_add_lru_list(page, lru);
1574                 pgmoved += hpage_nr_pages(page);
1575
1576                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1577                         spin_unlock_irq(&zone->lru_lock);
1578                         if (buffer_heads_over_limit)
1579                                 pagevec_strip(&pvec);
1580                         __pagevec_release(&pvec);
1581                         spin_lock_irq(&zone->lru_lock);
1582                 }
1583         }
1584         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1585         if (!is_active_lru(lru))
1586                 __count_vm_events(PGDEACTIVATE, pgmoved);
1587 }
1588
1589 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1590                         struct scan_control *sc, int priority, int file)
1591 {
1592         unsigned long nr_taken;
1593         unsigned long pgscanned;
1594         unsigned long vm_flags;
1595         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1596         LIST_HEAD(l_active);
1597         LIST_HEAD(l_inactive);
1598         struct page *page;
1599         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1600         unsigned long nr_rotated = 0;
1601         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1602
1603         lru_add_drain();
1604
1605         if (!sc->may_unmap)
1606                 reclaim_mode |= ISOLATE_UNMAPPED;
1607         if (!sc->may_writepage)
1608                 reclaim_mode |= ISOLATE_CLEAN;
1609
1610         spin_lock_irq(&zone->lru_lock);
1611         if (scanning_global_lru(sc)) {
1612                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1613                                                 &pgscanned, sc->order,
1614                                                 reclaim_mode, zone,
1615                                                 1, file);
1616                 zone->pages_scanned += pgscanned;
1617         } else {
1618                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1619                                                 &pgscanned, sc->order,
1620                                                 reclaim_mode, zone,
1621                                                 sc->mem_cgroup, 1, file);
1622                 /*
1623                  * mem_cgroup_isolate_pages() keeps track of
1624                  * scanned pages on its own.
1625                  */
1626         }
1627
1628         reclaim_stat->recent_scanned[file] += nr_taken;
1629
1630         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1631         if (file)
1632                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1633         else
1634                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1635         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1636         spin_unlock_irq(&zone->lru_lock);
1637
1638         while (!list_empty(&l_hold)) {
1639                 cond_resched();
1640                 page = lru_to_page(&l_hold);
1641                 list_del(&page->lru);
1642
1643                 if (unlikely(!page_evictable(page, NULL))) {
1644                         putback_lru_page(page);
1645                         continue;
1646                 }
1647
1648                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1649                         nr_rotated += hpage_nr_pages(page);
1650                         /*
1651                          * Identify referenced, file-backed active pages and
1652                          * give them one more trip around the active list. So
1653                          * that executable code get better chances to stay in
1654                          * memory under moderate memory pressure.  Anon pages
1655                          * are not likely to be evicted by use-once streaming
1656                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1657                          * so we ignore them here.
1658                          */
1659                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1660                                 list_add(&page->lru, &l_active);
1661                                 continue;
1662                         }
1663                 }
1664
1665                 ClearPageActive(page);  /* we are de-activating */
1666                 list_add(&page->lru, &l_inactive);
1667         }
1668
1669         /*
1670          * Move pages back to the lru list.
1671          */
1672         spin_lock_irq(&zone->lru_lock);
1673         /*
1674          * Count referenced pages from currently used mappings as rotated,
1675          * even though only some of them are actually re-activated.  This
1676          * helps balance scan pressure between file and anonymous pages in
1677          * get_scan_ratio.
1678          */
1679         reclaim_stat->recent_rotated[file] += nr_rotated;
1680
1681         move_active_pages_to_lru(zone, &l_active,
1682                                                 LRU_ACTIVE + file * LRU_FILE);
1683         move_active_pages_to_lru(zone, &l_inactive,
1684                                                 LRU_BASE   + file * LRU_FILE);
1685         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1686         spin_unlock_irq(&zone->lru_lock);
1687 }
1688
1689 #ifdef CONFIG_SWAP
1690 static int inactive_anon_is_low_global(struct zone *zone)
1691 {
1692         unsigned long active, inactive;
1693
1694         active = zone_page_state(zone, NR_ACTIVE_ANON);
1695         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1696
1697         if (inactive * zone->inactive_ratio < active)
1698                 return 1;
1699
1700         return 0;
1701 }
1702
1703 /**
1704  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1705  * @zone: zone to check
1706  * @sc:   scan control of this context
1707  *
1708  * Returns true if the zone does not have enough inactive anon pages,
1709  * meaning some active anon pages need to be deactivated.
1710  */
1711 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1712 {
1713         int low;
1714
1715         /*
1716          * If we don't have swap space, anonymous page deactivation
1717          * is pointless.
1718          */
1719         if (!total_swap_pages)
1720                 return 0;
1721
1722         if (scanning_global_lru(sc))
1723                 low = inactive_anon_is_low_global(zone);
1724         else
1725                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1726         return low;
1727 }
1728 #else
1729 static inline int inactive_anon_is_low(struct zone *zone,
1730                                         struct scan_control *sc)
1731 {
1732         return 0;
1733 }
1734 #endif
1735
1736 static int inactive_file_is_low_global(struct zone *zone)
1737 {
1738         unsigned long active, inactive;
1739
1740         active = zone_page_state(zone, NR_ACTIVE_FILE);
1741         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1742
1743         return (active > inactive);
1744 }
1745
1746 /**
1747  * inactive_file_is_low - check if file pages need to be deactivated
1748  * @zone: zone to check
1749  * @sc:   scan control of this context
1750  *
1751  * When the system is doing streaming IO, memory pressure here
1752  * ensures that active file pages get deactivated, until more
1753  * than half of the file pages are on the inactive list.
1754  *
1755  * Once we get to that situation, protect the system's working
1756  * set from being evicted by disabling active file page aging.
1757  *
1758  * This uses a different ratio than the anonymous pages, because
1759  * the page cache uses a use-once replacement algorithm.
1760  */
1761 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1762 {
1763         int low;
1764
1765         if (scanning_global_lru(sc))
1766                 low = inactive_file_is_low_global(zone);
1767         else
1768                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1769         return low;
1770 }
1771
1772 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1773                                 int file)
1774 {
1775         if (file)
1776                 return inactive_file_is_low(zone, sc);
1777         else
1778                 return inactive_anon_is_low(zone, sc);
1779 }
1780
1781 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1782         struct zone *zone, struct scan_control *sc, int priority)
1783 {
1784         int file = is_file_lru(lru);
1785
1786         if (is_active_lru(lru)) {
1787                 if (inactive_list_is_low(zone, sc, file))
1788                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1789                 return 0;
1790         }
1791
1792         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1793 }
1794
1795 static int vmscan_swappiness(struct scan_control *sc)
1796 {
1797         if (scanning_global_lru(sc))
1798                 return vm_swappiness;
1799         return mem_cgroup_swappiness(sc->mem_cgroup);
1800 }
1801
1802 /*
1803  * Determine how aggressively the anon and file LRU lists should be
1804  * scanned.  The relative value of each set of LRU lists is determined
1805  * by looking at the fraction of the pages scanned we did rotate back
1806  * onto the active list instead of evict.
1807  *
1808  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1809  */
1810 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1811                                         unsigned long *nr, int priority)
1812 {
1813         unsigned long anon, file, free;
1814         unsigned long anon_prio, file_prio;
1815         unsigned long ap, fp;
1816         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1817         u64 fraction[2], denominator;
1818         enum lru_list l;
1819         int noswap = 0;
1820         bool force_scan = false;
1821
1822         /*
1823          * If the zone or memcg is small, nr[l] can be 0.  This
1824          * results in no scanning on this priority and a potential
1825          * priority drop.  Global direct reclaim can go to the next
1826          * zone and tends to have no problems. Global kswapd is for
1827          * zone balancing and it needs to scan a minimum amount. When
1828          * reclaiming for a memcg, a priority drop can cause high
1829          * latencies, so it's better to scan a minimum amount there as
1830          * well.
1831          */
1832         if (scanning_global_lru(sc) && current_is_kswapd())
1833                 force_scan = true;
1834         if (!scanning_global_lru(sc))
1835                 force_scan = true;
1836
1837         /* If we have no swap space, do not bother scanning anon pages. */
1838         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1839                 noswap = 1;
1840                 fraction[0] = 0;
1841                 fraction[1] = 1;
1842                 denominator = 1;
1843                 goto out;
1844         }
1845
1846         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1847                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1848         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1849                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1850
1851         if (scanning_global_lru(sc)) {
1852                 free  = zone_page_state(zone, NR_FREE_PAGES);
1853                 /* If we have very few page cache pages,
1854                    force-scan anon pages. */
1855                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1856                         fraction[0] = 1;
1857                         fraction[1] = 0;
1858                         denominator = 1;
1859                         goto out;
1860                 }
1861         }
1862
1863         /*
1864          * With swappiness at 100, anonymous and file have the same priority.
1865          * This scanning priority is essentially the inverse of IO cost.
1866          */
1867         anon_prio = vmscan_swappiness(sc);
1868         file_prio = 200 - vmscan_swappiness(sc);
1869
1870         /*
1871          * OK, so we have swap space and a fair amount of page cache
1872          * pages.  We use the recently rotated / recently scanned
1873          * ratios to determine how valuable each cache is.
1874          *
1875          * Because workloads change over time (and to avoid overflow)
1876          * we keep these statistics as a floating average, which ends
1877          * up weighing recent references more than old ones.
1878          *
1879          * anon in [0], file in [1]
1880          */
1881         spin_lock_irq(&zone->lru_lock);
1882         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1883                 reclaim_stat->recent_scanned[0] /= 2;
1884                 reclaim_stat->recent_rotated[0] /= 2;
1885         }
1886
1887         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1888                 reclaim_stat->recent_scanned[1] /= 2;
1889                 reclaim_stat->recent_rotated[1] /= 2;
1890         }
1891
1892         /*
1893          * The amount of pressure on anon vs file pages is inversely
1894          * proportional to the fraction of recently scanned pages on
1895          * each list that were recently referenced and in active use.
1896          */
1897         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1898         ap /= reclaim_stat->recent_rotated[0] + 1;
1899
1900         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1901         fp /= reclaim_stat->recent_rotated[1] + 1;
1902         spin_unlock_irq(&zone->lru_lock);
1903
1904         fraction[0] = ap;
1905         fraction[1] = fp;
1906         denominator = ap + fp + 1;
1907 out:
1908         for_each_evictable_lru(l) {
1909                 int file = is_file_lru(l);
1910                 unsigned long scan;
1911
1912                 scan = zone_nr_lru_pages(zone, sc, l);
1913                 if (priority || noswap) {
1914                         scan >>= priority;
1915                         if (!scan && force_scan)
1916                                 scan = SWAP_CLUSTER_MAX;
1917                         scan = div64_u64(scan * fraction[file], denominator);
1918                 }
1919                 nr[l] = scan;
1920         }
1921 }
1922
1923 /*
1924  * Reclaim/compaction depends on a number of pages being freed. To avoid
1925  * disruption to the system, a small number of order-0 pages continue to be
1926  * rotated and reclaimed in the normal fashion. However, by the time we get
1927  * back to the allocator and call try_to_compact_zone(), we ensure that
1928  * there are enough free pages for it to be likely successful
1929  */
1930 static inline bool should_continue_reclaim(struct zone *zone,
1931                                         unsigned long nr_reclaimed,
1932                                         unsigned long nr_scanned,
1933                                         struct scan_control *sc)
1934 {
1935         unsigned long pages_for_compaction;
1936         unsigned long inactive_lru_pages;
1937
1938         /* If not in reclaim/compaction mode, stop */
1939         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1940                 return false;
1941
1942         /* Consider stopping depending on scan and reclaim activity */
1943         if (sc->gfp_mask & __GFP_REPEAT) {
1944                 /*
1945                  * For __GFP_REPEAT allocations, stop reclaiming if the
1946                  * full LRU list has been scanned and we are still failing
1947                  * to reclaim pages. This full LRU scan is potentially
1948                  * expensive but a __GFP_REPEAT caller really wants to succeed
1949                  */
1950                 if (!nr_reclaimed && !nr_scanned)
1951                         return false;
1952         } else {
1953                 /*
1954                  * For non-__GFP_REPEAT allocations which can presumably
1955                  * fail without consequence, stop if we failed to reclaim
1956                  * any pages from the last SWAP_CLUSTER_MAX number of
1957                  * pages that were scanned. This will return to the
1958                  * caller faster at the risk reclaim/compaction and
1959                  * the resulting allocation attempt fails
1960                  */
1961                 if (!nr_reclaimed)
1962                         return false;
1963         }
1964
1965         /*
1966          * If we have not reclaimed enough pages for compaction and the
1967          * inactive lists are large enough, continue reclaiming
1968          */
1969         pages_for_compaction = (2UL << sc->order);
1970         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1971                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1972         if (sc->nr_reclaimed < pages_for_compaction &&
1973                         inactive_lru_pages > pages_for_compaction)
1974                 return true;
1975
1976         /* If compaction would go ahead or the allocation would succeed, stop */
1977         switch (compaction_suitable(zone, sc->order)) {
1978         case COMPACT_PARTIAL:
1979         case COMPACT_CONTINUE:
1980                 return false;
1981         default:
1982                 return true;
1983         }
1984 }
1985
1986 /*
1987  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1988  */
1989 static void shrink_zone(int priority, struct zone *zone,
1990                                 struct scan_control *sc)
1991 {
1992         unsigned long nr[NR_LRU_LISTS];
1993         unsigned long nr_to_scan;
1994         enum lru_list l;
1995         unsigned long nr_reclaimed, nr_scanned;
1996         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1997         struct blk_plug plug;
1998
1999 restart:
2000         nr_reclaimed = 0;
2001         nr_scanned = sc->nr_scanned;
2002         get_scan_count(zone, sc, nr, priority);
2003
2004         blk_start_plug(&plug);
2005         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2006                                         nr[LRU_INACTIVE_FILE]) {
2007                 for_each_evictable_lru(l) {
2008                         if (nr[l]) {
2009                                 nr_to_scan = min_t(unsigned long,
2010                                                    nr[l], SWAP_CLUSTER_MAX);
2011                                 nr[l] -= nr_to_scan;
2012
2013                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2014                                                             zone, sc, priority);
2015                         }
2016                 }
2017                 /*
2018                  * On large memory systems, scan >> priority can become
2019                  * really large. This is fine for the starting priority;
2020                  * we want to put equal scanning pressure on each zone.
2021                  * However, if the VM has a harder time of freeing pages,
2022                  * with multiple processes reclaiming pages, the total
2023                  * freeing target can get unreasonably large.
2024                  */
2025                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2026                         break;
2027         }
2028         blk_finish_plug(&plug);
2029         sc->nr_reclaimed += nr_reclaimed;
2030
2031         /*
2032          * Even if we did not try to evict anon pages at all, we want to
2033          * rebalance the anon lru active/inactive ratio.
2034          */
2035         if (inactive_anon_is_low(zone, sc))
2036                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2037
2038         /* reclaim/compaction might need reclaim to continue */
2039         if (should_continue_reclaim(zone, nr_reclaimed,
2040                                         sc->nr_scanned - nr_scanned, sc))
2041                 goto restart;
2042
2043         throttle_vm_writeout(sc->gfp_mask);
2044 }
2045
2046 /*
2047  * This is the direct reclaim path, for page-allocating processes.  We only
2048  * try to reclaim pages from zones which will satisfy the caller's allocation
2049  * request.
2050  *
2051  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2052  * Because:
2053  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2054  *    allocation or
2055  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2056  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2057  *    zone defense algorithm.
2058  *
2059  * If a zone is deemed to be full of pinned pages then just give it a light
2060  * scan then give up on it.
2061  */
2062 static void shrink_zones(int priority, struct zonelist *zonelist,
2063                                         struct scan_control *sc)
2064 {
2065         struct zoneref *z;
2066         struct zone *zone;
2067         unsigned long nr_soft_reclaimed;
2068         unsigned long nr_soft_scanned;
2069
2070         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2071                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2072                 if (!populated_zone(zone))
2073                         continue;
2074                 /*
2075                  * Take care memory controller reclaiming has small influence
2076                  * to global LRU.
2077                  */
2078                 if (scanning_global_lru(sc)) {
2079                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2080                                 continue;
2081                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2082                                 continue;       /* Let kswapd poll it */
2083                         /*
2084                          * This steals pages from memory cgroups over softlimit
2085                          * and returns the number of reclaimed pages and
2086                          * scanned pages. This works for global memory pressure
2087                          * and balancing, not for a memcg's limit.
2088                          */
2089                         nr_soft_scanned = 0;
2090                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2091                                                 sc->order, sc->gfp_mask,
2092                                                 &nr_soft_scanned);
2093                         sc->nr_reclaimed += nr_soft_reclaimed;
2094                         sc->nr_scanned += nr_soft_scanned;
2095                         /* need some check for avoid more shrink_zone() */
2096                 }
2097
2098                 shrink_zone(priority, zone, sc);
2099         }
2100 }
2101
2102 static bool zone_reclaimable(struct zone *zone)
2103 {
2104         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2105 }
2106
2107 /* All zones in zonelist are unreclaimable? */
2108 static bool all_unreclaimable(struct zonelist *zonelist,
2109                 struct scan_control *sc)
2110 {
2111         struct zoneref *z;
2112         struct zone *zone;
2113
2114         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2115                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2116                 if (!populated_zone(zone))
2117                         continue;
2118                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2119                         continue;
2120                 if (!zone->all_unreclaimable)
2121                         return false;
2122         }
2123
2124         return true;
2125 }
2126
2127 /*
2128  * This is the main entry point to direct page reclaim.
2129  *
2130  * If a full scan of the inactive list fails to free enough memory then we
2131  * are "out of memory" and something needs to be killed.
2132  *
2133  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2134  * high - the zone may be full of dirty or under-writeback pages, which this
2135  * caller can't do much about.  We kick the writeback threads and take explicit
2136  * naps in the hope that some of these pages can be written.  But if the
2137  * allocating task holds filesystem locks which prevent writeout this might not
2138  * work, and the allocation attempt will fail.
2139  *
2140  * returns:     0, if no pages reclaimed
2141  *              else, the number of pages reclaimed
2142  */
2143 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2144                                         struct scan_control *sc,
2145                                         struct shrink_control *shrink)
2146 {
2147         int priority;
2148         unsigned long total_scanned = 0;
2149         struct reclaim_state *reclaim_state = current->reclaim_state;
2150         struct zoneref *z;
2151         struct zone *zone;
2152         unsigned long writeback_threshold;
2153
2154         get_mems_allowed();
2155         delayacct_freepages_start();
2156
2157         if (scanning_global_lru(sc))
2158                 count_vm_event(ALLOCSTALL);
2159
2160         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2161                 sc->nr_scanned = 0;
2162                 if (!priority)
2163                         disable_swap_token(sc->mem_cgroup);
2164                 shrink_zones(priority, zonelist, sc);
2165                 /*
2166                  * Don't shrink slabs when reclaiming memory from
2167                  * over limit cgroups
2168                  */
2169                 if (scanning_global_lru(sc)) {
2170                         unsigned long lru_pages = 0;
2171                         for_each_zone_zonelist(zone, z, zonelist,
2172                                         gfp_zone(sc->gfp_mask)) {
2173                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2174                                         continue;
2175
2176                                 lru_pages += zone_reclaimable_pages(zone);
2177                         }
2178
2179                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2180                         if (reclaim_state) {
2181                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2182                                 reclaim_state->reclaimed_slab = 0;
2183                         }
2184                 }
2185                 total_scanned += sc->nr_scanned;
2186                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2187                         goto out;
2188
2189                 /*
2190                  * Try to write back as many pages as we just scanned.  This
2191                  * tends to cause slow streaming writers to write data to the
2192                  * disk smoothly, at the dirtying rate, which is nice.   But
2193                  * that's undesirable in laptop mode, where we *want* lumpy
2194                  * writeout.  So in laptop mode, write out the whole world.
2195                  */
2196                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2197                 if (total_scanned > writeback_threshold) {
2198                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2199                         sc->may_writepage = 1;
2200                 }
2201
2202                 /* Take a nap, wait for some writeback to complete */
2203                 if (!sc->hibernation_mode && sc->nr_scanned &&
2204                     priority < DEF_PRIORITY - 2) {
2205                         struct zone *preferred_zone;
2206
2207                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2208                                                 &cpuset_current_mems_allowed,
2209                                                 &preferred_zone);
2210                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2211                 }
2212         }
2213
2214 out:
2215         delayacct_freepages_end();
2216         put_mems_allowed();
2217
2218         if (sc->nr_reclaimed)
2219                 return sc->nr_reclaimed;
2220
2221         /*
2222          * As hibernation is going on, kswapd is freezed so that it can't mark
2223          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2224          * check.
2225          */
2226         if (oom_killer_disabled)
2227                 return 0;
2228
2229         /* top priority shrink_zones still had more to do? don't OOM, then */
2230         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2231                 return 1;
2232
2233         return 0;
2234 }
2235
2236 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2237                                 gfp_t gfp_mask, nodemask_t *nodemask)
2238 {
2239         unsigned long nr_reclaimed;
2240         struct scan_control sc = {
2241                 .gfp_mask = gfp_mask,
2242                 .may_writepage = !laptop_mode,
2243                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2244                 .may_unmap = 1,
2245                 .may_swap = 1,
2246                 .order = order,
2247                 .mem_cgroup = NULL,
2248                 .nodemask = nodemask,
2249         };
2250         struct shrink_control shrink = {
2251                 .gfp_mask = sc.gfp_mask,
2252         };
2253
2254         trace_mm_vmscan_direct_reclaim_begin(order,
2255                                 sc.may_writepage,
2256                                 gfp_mask);
2257
2258         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2259
2260         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2261
2262         return nr_reclaimed;
2263 }
2264
2265 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2266
2267 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2268                                                 gfp_t gfp_mask, bool noswap,
2269                                                 struct zone *zone,
2270                                                 unsigned long *nr_scanned)
2271 {
2272         struct scan_control sc = {
2273                 .nr_scanned = 0,
2274                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2275                 .may_writepage = !laptop_mode,
2276                 .may_unmap = 1,
2277                 .may_swap = !noswap,
2278                 .order = 0,
2279                 .mem_cgroup = mem,
2280         };
2281
2282         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2283                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2284
2285         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2286                                                       sc.may_writepage,
2287                                                       sc.gfp_mask);
2288
2289         /*
2290          * NOTE: Although we can get the priority field, using it
2291          * here is not a good idea, since it limits the pages we can scan.
2292          * if we don't reclaim here, the shrink_zone from balance_pgdat
2293          * will pick up pages from other mem cgroup's as well. We hack
2294          * the priority and make it zero.
2295          */
2296         shrink_zone(0, zone, &sc);
2297
2298         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2299
2300         *nr_scanned = sc.nr_scanned;
2301         return sc.nr_reclaimed;
2302 }
2303
2304 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2305                                            gfp_t gfp_mask,
2306                                            bool noswap)
2307 {
2308         struct zonelist *zonelist;
2309         unsigned long nr_reclaimed;
2310         int nid;
2311         struct scan_control sc = {
2312                 .may_writepage = !laptop_mode,
2313                 .may_unmap = 1,
2314                 .may_swap = !noswap,
2315                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2316                 .order = 0,
2317                 .mem_cgroup = mem_cont,
2318                 .nodemask = NULL, /* we don't care the placement */
2319                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2320                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2321         };
2322         struct shrink_control shrink = {
2323                 .gfp_mask = sc.gfp_mask,
2324         };
2325
2326         /*
2327          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2328          * take care of from where we get pages. So the node where we start the
2329          * scan does not need to be the current node.
2330          */
2331         nid = mem_cgroup_select_victim_node(mem_cont);
2332
2333         zonelist = NODE_DATA(nid)->node_zonelists;
2334
2335         trace_mm_vmscan_memcg_reclaim_begin(0,
2336                                             sc.may_writepage,
2337                                             sc.gfp_mask);
2338
2339         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2340
2341         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2342
2343         return nr_reclaimed;
2344 }
2345 #endif
2346
2347 /*
2348  * pgdat_balanced is used when checking if a node is balanced for high-order
2349  * allocations. Only zones that meet watermarks and are in a zone allowed
2350  * by the callers classzone_idx are added to balanced_pages. The total of
2351  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2352  * for the node to be considered balanced. Forcing all zones to be balanced
2353  * for high orders can cause excessive reclaim when there are imbalanced zones.
2354  * The choice of 25% is due to
2355  *   o a 16M DMA zone that is balanced will not balance a zone on any
2356  *     reasonable sized machine
2357  *   o On all other machines, the top zone must be at least a reasonable
2358  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2359  *     would need to be at least 256M for it to be balance a whole node.
2360  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2361  *     to balance a node on its own. These seemed like reasonable ratios.
2362  */
2363 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2364                                                 int classzone_idx)
2365 {
2366         unsigned long present_pages = 0;
2367         int i;
2368
2369         for (i = 0; i <= classzone_idx; i++)
2370                 present_pages += pgdat->node_zones[i].present_pages;
2371
2372         /* A special case here: if zone has no page, we think it's balanced */
2373         return balanced_pages >= (present_pages >> 2);
2374 }
2375
2376 /* is kswapd sleeping prematurely? */
2377 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2378                                         int classzone_idx)
2379 {
2380         int i;
2381         unsigned long balanced = 0;
2382         bool all_zones_ok = true;
2383
2384         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2385         if (remaining)
2386                 return true;
2387
2388         /* Check the watermark levels */
2389         for (i = 0; i <= classzone_idx; i++) {
2390                 struct zone *zone = pgdat->node_zones + i;
2391
2392                 if (!populated_zone(zone))
2393                         continue;
2394
2395                 /*
2396                  * balance_pgdat() skips over all_unreclaimable after
2397                  * DEF_PRIORITY. Effectively, it considers them balanced so
2398                  * they must be considered balanced here as well if kswapd
2399                  * is to sleep
2400                  */
2401                 if (zone->all_unreclaimable) {
2402                         balanced += zone->present_pages;
2403                         continue;
2404                 }
2405
2406                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2407                                                         i, 0))
2408                         all_zones_ok = false;
2409                 else
2410                         balanced += zone->present_pages;
2411         }
2412
2413         /*
2414          * For high-order requests, the balanced zones must contain at least
2415          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2416          * must be balanced
2417          */
2418         if (order)
2419                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2420         else
2421                 return !all_zones_ok;
2422 }
2423
2424 /*
2425  * For kswapd, balance_pgdat() will work across all this node's zones until
2426  * they are all at high_wmark_pages(zone).
2427  *
2428  * Returns the final order kswapd was reclaiming at
2429  *
2430  * There is special handling here for zones which are full of pinned pages.
2431  * This can happen if the pages are all mlocked, or if they are all used by
2432  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2433  * What we do is to detect the case where all pages in the zone have been
2434  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2435  * dead and from now on, only perform a short scan.  Basically we're polling
2436  * the zone for when the problem goes away.
2437  *
2438  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2439  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2440  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2441  * lower zones regardless of the number of free pages in the lower zones. This
2442  * interoperates with the page allocator fallback scheme to ensure that aging
2443  * of pages is balanced across the zones.
2444  */
2445 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2446                                                         int *classzone_idx)
2447 {
2448         int all_zones_ok;
2449         unsigned long balanced;
2450         int priority;
2451         int i;
2452         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2453         unsigned long total_scanned;
2454         struct reclaim_state *reclaim_state = current->reclaim_state;
2455         unsigned long nr_soft_reclaimed;
2456         unsigned long nr_soft_scanned;
2457         struct scan_control sc = {
2458                 .gfp_mask = GFP_KERNEL,
2459                 .may_unmap = 1,
2460                 .may_swap = 1,
2461                 /*
2462                  * kswapd doesn't want to be bailed out while reclaim. because
2463                  * we want to put equal scanning pressure on each zone.
2464                  */
2465                 .nr_to_reclaim = ULONG_MAX,
2466                 .order = order,
2467                 .mem_cgroup = NULL,
2468         };
2469         struct shrink_control shrink = {
2470                 .gfp_mask = sc.gfp_mask,
2471         };
2472 loop_again:
2473         total_scanned = 0;
2474         sc.nr_reclaimed = 0;
2475         sc.may_writepage = !laptop_mode;
2476         count_vm_event(PAGEOUTRUN);
2477
2478         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2479                 unsigned long lru_pages = 0;
2480                 int has_under_min_watermark_zone = 0;
2481
2482                 /* The swap token gets in the way of swapout... */
2483                 if (!priority)
2484                         disable_swap_token(NULL);
2485
2486                 all_zones_ok = 1;
2487                 balanced = 0;
2488
2489                 /*
2490                  * Scan in the highmem->dma direction for the highest
2491                  * zone which needs scanning
2492                  */
2493                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2494                         struct zone *zone = pgdat->node_zones + i;
2495
2496                         if (!populated_zone(zone))
2497                                 continue;
2498
2499                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2500                                 continue;
2501
2502                         /*
2503                          * Do some background aging of the anon list, to give
2504                          * pages a chance to be referenced before reclaiming.
2505                          */
2506                         if (inactive_anon_is_low(zone, &sc))
2507                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2508                                                         &sc, priority, 0);
2509
2510                         if (!zone_watermark_ok_safe(zone, order,
2511                                         high_wmark_pages(zone), 0, 0)) {
2512                                 end_zone = i;
2513                                 break;
2514                         } else {
2515                                 /* If balanced, clear the congested flag */
2516                                 zone_clear_flag(zone, ZONE_CONGESTED);
2517                         }
2518                 }
2519                 if (i < 0)
2520                         goto out;
2521
2522                 for (i = 0; i <= end_zone; i++) {
2523                         struct zone *zone = pgdat->node_zones + i;
2524
2525                         lru_pages += zone_reclaimable_pages(zone);
2526                 }
2527
2528                 /*
2529                  * Now scan the zone in the dma->highmem direction, stopping
2530                  * at the last zone which needs scanning.
2531                  *
2532                  * We do this because the page allocator works in the opposite
2533                  * direction.  This prevents the page allocator from allocating
2534                  * pages behind kswapd's direction of progress, which would
2535                  * cause too much scanning of the lower zones.
2536                  */
2537                 for (i = 0; i <= end_zone; i++) {
2538                         struct zone *zone = pgdat->node_zones + i;
2539                         int nr_slab;
2540                         unsigned long balance_gap;
2541
2542                         if (!populated_zone(zone))
2543                                 continue;
2544
2545                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2546                                 continue;
2547
2548                         sc.nr_scanned = 0;
2549
2550                         nr_soft_scanned = 0;
2551                         /*
2552                          * Call soft limit reclaim before calling shrink_zone.
2553                          */
2554                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2555                                                         order, sc.gfp_mask,
2556                                                         &nr_soft_scanned);
2557                         sc.nr_reclaimed += nr_soft_reclaimed;
2558                         total_scanned += nr_soft_scanned;
2559
2560                         /*
2561                          * We put equal pressure on every zone, unless
2562                          * one zone has way too many pages free
2563                          * already. The "too many pages" is defined
2564                          * as the high wmark plus a "gap" where the
2565                          * gap is either the low watermark or 1%
2566                          * of the zone, whichever is smaller.
2567                          */
2568                         balance_gap = min(low_wmark_pages(zone),
2569                                 (zone->present_pages +
2570                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2571                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2572                         if (!zone_watermark_ok_safe(zone, order,
2573                                         high_wmark_pages(zone) + balance_gap,
2574                                         end_zone, 0)) {
2575                                 shrink_zone(priority, zone, &sc);
2576
2577                                 reclaim_state->reclaimed_slab = 0;
2578                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2579                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2580                                 total_scanned += sc.nr_scanned;
2581
2582                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2583                                         zone->all_unreclaimable = 1;
2584                         }
2585
2586                         /*
2587                          * If we've done a decent amount of scanning and
2588                          * the reclaim ratio is low, start doing writepage
2589                          * even in laptop mode
2590                          */
2591                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2592                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2593                                 sc.may_writepage = 1;
2594
2595                         if (zone->all_unreclaimable) {
2596                                 if (end_zone && end_zone == i)
2597                                         end_zone--;
2598                                 continue;
2599                         }
2600
2601                         if (!zone_watermark_ok_safe(zone, order,
2602                                         high_wmark_pages(zone), end_zone, 0)) {
2603                                 all_zones_ok = 0;
2604                                 /*
2605                                  * We are still under min water mark.  This
2606                                  * means that we have a GFP_ATOMIC allocation
2607                                  * failure risk. Hurry up!
2608                                  */
2609                                 if (!zone_watermark_ok_safe(zone, order,
2610                                             min_wmark_pages(zone), end_zone, 0))
2611                                         has_under_min_watermark_zone = 1;
2612                         } else {
2613                                 /*
2614                                  * If a zone reaches its high watermark,
2615                                  * consider it to be no longer congested. It's
2616                                  * possible there are dirty pages backed by
2617                                  * congested BDIs but as pressure is relieved,
2618                                  * spectulatively avoid congestion waits
2619                                  */
2620                                 zone_clear_flag(zone, ZONE_CONGESTED);
2621                                 if (i <= *classzone_idx)
2622                                         balanced += zone->present_pages;
2623                         }
2624
2625                 }
2626                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2627                         break;          /* kswapd: all done */
2628                 /*
2629                  * OK, kswapd is getting into trouble.  Take a nap, then take
2630                  * another pass across the zones.
2631                  */
2632                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2633                         if (has_under_min_watermark_zone)
2634                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2635                         else
2636                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2637                 }
2638
2639                 /*
2640                  * We do this so kswapd doesn't build up large priorities for
2641                  * example when it is freeing in parallel with allocators. It
2642                  * matches the direct reclaim path behaviour in terms of impact
2643                  * on zone->*_priority.
2644                  */
2645                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2646                         break;
2647         }
2648 out:
2649
2650         /*
2651          * order-0: All zones must meet high watermark for a balanced node
2652          * high-order: Balanced zones must make up at least 25% of the node
2653          *             for the node to be balanced
2654          */
2655         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2656                 cond_resched();
2657
2658                 try_to_freeze();
2659
2660                 /*
2661                  * Fragmentation may mean that the system cannot be
2662                  * rebalanced for high-order allocations in all zones.
2663                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2664                  * it means the zones have been fully scanned and are still
2665                  * not balanced. For high-order allocations, there is
2666                  * little point trying all over again as kswapd may
2667                  * infinite loop.
2668                  *
2669                  * Instead, recheck all watermarks at order-0 as they
2670                  * are the most important. If watermarks are ok, kswapd will go
2671                  * back to sleep. High-order users can still perform direct
2672                  * reclaim if they wish.
2673                  */
2674                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2675                         order = sc.order = 0;
2676
2677                 goto loop_again;
2678         }
2679
2680         /*
2681          * If kswapd was reclaiming at a higher order, it has the option of
2682          * sleeping without all zones being balanced. Before it does, it must
2683          * ensure that the watermarks for order-0 on *all* zones are met and
2684          * that the congestion flags are cleared. The congestion flag must
2685          * be cleared as kswapd is the only mechanism that clears the flag
2686          * and it is potentially going to sleep here.
2687          */
2688         if (order) {
2689                 for (i = 0; i <= end_zone; i++) {
2690                         struct zone *zone = pgdat->node_zones + i;
2691
2692                         if (!populated_zone(zone))
2693                                 continue;
2694
2695                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2696                                 continue;
2697
2698                         /* Confirm the zone is balanced for order-0 */
2699                         if (!zone_watermark_ok(zone, 0,
2700                                         high_wmark_pages(zone), 0, 0)) {
2701                                 order = sc.order = 0;
2702                                 goto loop_again;
2703                         }
2704
2705                         /* If balanced, clear the congested flag */
2706                         zone_clear_flag(zone, ZONE_CONGESTED);
2707                 }
2708         }
2709
2710         /*
2711          * Return the order we were reclaiming at so sleeping_prematurely()
2712          * makes a decision on the order we were last reclaiming at. However,
2713          * if another caller entered the allocator slow path while kswapd
2714          * was awake, order will remain at the higher level
2715          */
2716         *classzone_idx = end_zone;
2717         return order;
2718 }
2719
2720 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2721 {
2722         long remaining = 0;
2723         DEFINE_WAIT(wait);
2724
2725         if (freezing(current) || kthread_should_stop())
2726                 return;
2727
2728         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2729
2730         /* Try to sleep for a short interval */
2731         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2732                 remaining = schedule_timeout(HZ/10);
2733                 finish_wait(&pgdat->kswapd_wait, &wait);
2734                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2735         }
2736
2737         /*
2738          * After a short sleep, check if it was a premature sleep. If not, then
2739          * go fully to sleep until explicitly woken up.
2740          */
2741         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2742                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2743
2744                 /*
2745                  * vmstat counters are not perfectly accurate and the estimated
2746                  * value for counters such as NR_FREE_PAGES can deviate from the
2747                  * true value by nr_online_cpus * threshold. To avoid the zone
2748                  * watermarks being breached while under pressure, we reduce the
2749                  * per-cpu vmstat threshold while kswapd is awake and restore
2750                  * them before going back to sleep.
2751                  */
2752                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2753                 schedule();
2754                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2755         } else {
2756                 if (remaining)
2757                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2758                 else
2759                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2760         }
2761         finish_wait(&pgdat->kswapd_wait, &wait);
2762 }
2763
2764 /*
2765  * The background pageout daemon, started as a kernel thread
2766  * from the init process.
2767  *
2768  * This basically trickles out pages so that we have _some_
2769  * free memory available even if there is no other activity
2770  * that frees anything up. This is needed for things like routing
2771  * etc, where we otherwise might have all activity going on in
2772  * asynchronous contexts that cannot page things out.
2773  *
2774  * If there are applications that are active memory-allocators
2775  * (most normal use), this basically shouldn't matter.
2776  */
2777 static int kswapd(void *p)
2778 {
2779         unsigned long order, new_order;
2780         int classzone_idx, new_classzone_idx;
2781         pg_data_t *pgdat = (pg_data_t*)p;
2782         struct task_struct *tsk = current;
2783
2784         struct reclaim_state reclaim_state = {
2785                 .reclaimed_slab = 0,
2786         };
2787         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2788
2789         lockdep_set_current_reclaim_state(GFP_KERNEL);
2790
2791         if (!cpumask_empty(cpumask))
2792                 set_cpus_allowed_ptr(tsk, cpumask);
2793         current->reclaim_state = &reclaim_state;
2794
2795         /*
2796          * Tell the memory management that we're a "memory allocator",
2797          * and that if we need more memory we should get access to it
2798          * regardless (see "__alloc_pages()"). "kswapd" should
2799          * never get caught in the normal page freeing logic.
2800          *
2801          * (Kswapd normally doesn't need memory anyway, but sometimes
2802          * you need a small amount of memory in order to be able to
2803          * page out something else, and this flag essentially protects
2804          * us from recursively trying to free more memory as we're
2805          * trying to free the first piece of memory in the first place).
2806          */
2807         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2808         set_freezable();
2809
2810         order = new_order = 0;
2811         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2812         for ( ; ; ) {
2813                 int ret;
2814
2815                 /*
2816                  * If the last balance_pgdat was unsuccessful it's unlikely a
2817                  * new request of a similar or harder type will succeed soon
2818                  * so consider going to sleep on the basis we reclaimed at
2819                  */
2820                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2821                         new_order = pgdat->kswapd_max_order;
2822                         new_classzone_idx = pgdat->classzone_idx;
2823                         pgdat->kswapd_max_order =  0;
2824                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2825                 }
2826
2827                 if (order < new_order || classzone_idx > new_classzone_idx) {
2828                         /*
2829                          * Don't sleep if someone wants a larger 'order'
2830                          * allocation or has tigher zone constraints
2831                          */
2832                         order = new_order;
2833                         classzone_idx = new_classzone_idx;
2834                 } else {
2835                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2836                         order = pgdat->kswapd_max_order;
2837                         classzone_idx = pgdat->classzone_idx;
2838                         pgdat->kswapd_max_order = 0;
2839                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2840                 }
2841
2842                 ret = try_to_freeze();
2843                 if (kthread_should_stop())
2844                         break;
2845
2846                 /*
2847                  * We can speed up thawing tasks if we don't call balance_pgdat
2848                  * after returning from the refrigerator
2849                  */
2850                 if (!ret) {
2851                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2852                         order = balance_pgdat(pgdat, order, &classzone_idx);
2853                 }
2854         }
2855         return 0;
2856 }
2857
2858 /*
2859  * A zone is low on free memory, so wake its kswapd task to service it.
2860  */
2861 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2862 {
2863         pg_data_t *pgdat;
2864
2865         if (!populated_zone(zone))
2866                 return;
2867
2868         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2869                 return;
2870         pgdat = zone->zone_pgdat;
2871         if (pgdat->kswapd_max_order < order) {
2872                 pgdat->kswapd_max_order = order;
2873                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2874         }
2875         if (!waitqueue_active(&pgdat->kswapd_wait))
2876                 return;
2877         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2878                 return;
2879
2880         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2881         wake_up_interruptible(&pgdat->kswapd_wait);
2882 }
2883
2884 /*
2885  * The reclaimable count would be mostly accurate.
2886  * The less reclaimable pages may be
2887  * - mlocked pages, which will be moved to unevictable list when encountered
2888  * - mapped pages, which may require several travels to be reclaimed
2889  * - dirty pages, which is not "instantly" reclaimable
2890  */
2891 unsigned long global_reclaimable_pages(void)
2892 {
2893         int nr;
2894
2895         nr = global_page_state(NR_ACTIVE_FILE) +
2896              global_page_state(NR_INACTIVE_FILE);
2897
2898         if (nr_swap_pages > 0)
2899                 nr += global_page_state(NR_ACTIVE_ANON) +
2900                       global_page_state(NR_INACTIVE_ANON);
2901
2902         return nr;
2903 }
2904
2905 unsigned long zone_reclaimable_pages(struct zone *zone)
2906 {
2907         int nr;
2908
2909         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2910              zone_page_state(zone, NR_INACTIVE_FILE);
2911
2912         if (nr_swap_pages > 0)
2913                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2914                       zone_page_state(zone, NR_INACTIVE_ANON);
2915
2916         return nr;
2917 }
2918
2919 #ifdef CONFIG_HIBERNATION
2920 /*
2921  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2922  * freed pages.
2923  *
2924  * Rather than trying to age LRUs the aim is to preserve the overall
2925  * LRU order by reclaiming preferentially
2926  * inactive > active > active referenced > active mapped
2927  */
2928 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2929 {
2930         struct reclaim_state reclaim_state;
2931         struct scan_control sc = {
2932                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2933                 .may_swap = 1,
2934                 .may_unmap = 1,
2935                 .may_writepage = 1,
2936                 .nr_to_reclaim = nr_to_reclaim,
2937                 .hibernation_mode = 1,
2938                 .order = 0,
2939         };
2940         struct shrink_control shrink = {
2941                 .gfp_mask = sc.gfp_mask,
2942         };
2943         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2944         struct task_struct *p = current;
2945         unsigned long nr_reclaimed;
2946
2947         p->flags |= PF_MEMALLOC;
2948         lockdep_set_current_reclaim_state(sc.gfp_mask);
2949         reclaim_state.reclaimed_slab = 0;
2950         p->reclaim_state = &reclaim_state;
2951
2952         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2953
2954         p->reclaim_state = NULL;
2955         lockdep_clear_current_reclaim_state();
2956         p->flags &= ~PF_MEMALLOC;
2957
2958         return nr_reclaimed;
2959 }
2960 #endif /* CONFIG_HIBERNATION */
2961
2962 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2963    not required for correctness.  So if the last cpu in a node goes
2964    away, we get changed to run anywhere: as the first one comes back,
2965    restore their cpu bindings. */
2966 static int __devinit cpu_callback(struct notifier_block *nfb,
2967                                   unsigned long action, void *hcpu)
2968 {
2969         int nid;
2970
2971         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2972                 for_each_node_state(nid, N_HIGH_MEMORY) {
2973                         pg_data_t *pgdat = NODE_DATA(nid);
2974                         const struct cpumask *mask;
2975
2976                         mask = cpumask_of_node(pgdat->node_id);
2977
2978                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2979                                 /* One of our CPUs online: restore mask */
2980                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2981                 }
2982         }
2983         return NOTIFY_OK;
2984 }
2985
2986 /*
2987  * This kswapd start function will be called by init and node-hot-add.
2988  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2989  */
2990 int kswapd_run(int nid)
2991 {
2992         pg_data_t *pgdat = NODE_DATA(nid);
2993         int ret = 0;
2994
2995         if (pgdat->kswapd)
2996                 return 0;
2997
2998         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2999         if (IS_ERR(pgdat->kswapd)) {
3000                 /* failure at boot is fatal */
3001                 BUG_ON(system_state == SYSTEM_BOOTING);
3002                 printk("Failed to start kswapd on node %d\n",nid);
3003                 ret = -1;
3004         }
3005         return ret;
3006 }
3007
3008 /*
3009  * Called by memory hotplug when all memory in a node is offlined.
3010  */
3011 void kswapd_stop(int nid)
3012 {
3013         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3014
3015         if (kswapd)
3016                 kthread_stop(kswapd);
3017 }
3018
3019 static int __init kswapd_init(void)
3020 {
3021         int nid;
3022
3023         swap_setup();
3024         for_each_node_state(nid, N_HIGH_MEMORY)
3025                 kswapd_run(nid);
3026         hotcpu_notifier(cpu_callback, 0);
3027         return 0;
3028 }
3029
3030 module_init(kswapd_init)
3031
3032 #ifdef CONFIG_NUMA
3033 /*
3034  * Zone reclaim mode
3035  *
3036  * If non-zero call zone_reclaim when the number of free pages falls below
3037  * the watermarks.
3038  */
3039 int zone_reclaim_mode __read_mostly;
3040
3041 #define RECLAIM_OFF 0
3042 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3043 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3044 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3045
3046 /*
3047  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3048  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3049  * a zone.
3050  */
3051 #define ZONE_RECLAIM_PRIORITY 4
3052
3053 /*
3054  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3055  * occur.
3056  */
3057 int sysctl_min_unmapped_ratio = 1;
3058
3059 /*
3060  * If the number of slab pages in a zone grows beyond this percentage then
3061  * slab reclaim needs to occur.
3062  */
3063 int sysctl_min_slab_ratio = 5;
3064
3065 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3066 {
3067         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3068         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3069                 zone_page_state(zone, NR_ACTIVE_FILE);
3070
3071         /*
3072          * It's possible for there to be more file mapped pages than
3073          * accounted for by the pages on the file LRU lists because
3074          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3075          */
3076         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3077 }
3078
3079 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3080 static long zone_pagecache_reclaimable(struct zone *zone)
3081 {
3082         long nr_pagecache_reclaimable;
3083         long delta = 0;
3084
3085         /*
3086          * If RECLAIM_SWAP is set, then all file pages are considered
3087          * potentially reclaimable. Otherwise, we have to worry about
3088          * pages like swapcache and zone_unmapped_file_pages() provides
3089          * a better estimate
3090          */
3091         if (zone_reclaim_mode & RECLAIM_SWAP)
3092                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3093         else
3094                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3095
3096         /* If we can't clean pages, remove dirty pages from consideration */
3097         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3098                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3099
3100         /* Watch for any possible underflows due to delta */
3101         if (unlikely(delta > nr_pagecache_reclaimable))
3102                 delta = nr_pagecache_reclaimable;
3103
3104         return nr_pagecache_reclaimable - delta;
3105 }
3106
3107 /*
3108  * Try to free up some pages from this zone through reclaim.
3109  */
3110 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3111 {
3112         /* Minimum pages needed in order to stay on node */
3113         const unsigned long nr_pages = 1 << order;
3114         struct task_struct *p = current;
3115         struct reclaim_state reclaim_state;
3116         int priority;
3117         struct scan_control sc = {
3118                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3119                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3120                 .may_swap = 1,
3121                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3122                                        SWAP_CLUSTER_MAX),
3123                 .gfp_mask = gfp_mask,
3124                 .order = order,
3125         };
3126         struct shrink_control shrink = {
3127                 .gfp_mask = sc.gfp_mask,
3128         };
3129         unsigned long nr_slab_pages0, nr_slab_pages1;
3130
3131         cond_resched();
3132         /*
3133          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3134          * and we also need to be able to write out pages for RECLAIM_WRITE
3135          * and RECLAIM_SWAP.
3136          */
3137         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3138         lockdep_set_current_reclaim_state(gfp_mask);
3139         reclaim_state.reclaimed_slab = 0;
3140         p->reclaim_state = &reclaim_state;
3141
3142         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3143                 /*
3144                  * Free memory by calling shrink zone with increasing
3145                  * priorities until we have enough memory freed.
3146                  */
3147                 priority = ZONE_RECLAIM_PRIORITY;
3148                 do {
3149                         shrink_zone(priority, zone, &sc);
3150                         priority--;
3151                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3152         }
3153
3154         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3155         if (nr_slab_pages0 > zone->min_slab_pages) {
3156                 /*
3157                  * shrink_slab() does not currently allow us to determine how
3158                  * many pages were freed in this zone. So we take the current
3159                  * number of slab pages and shake the slab until it is reduced
3160                  * by the same nr_pages that we used for reclaiming unmapped
3161                  * pages.
3162                  *
3163                  * Note that shrink_slab will free memory on all zones and may
3164                  * take a long time.
3165                  */
3166                 for (;;) {
3167                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3168
3169                         /* No reclaimable slab or very low memory pressure */
3170                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3171                                 break;
3172
3173                         /* Freed enough memory */
3174                         nr_slab_pages1 = zone_page_state(zone,
3175                                                         NR_SLAB_RECLAIMABLE);
3176                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3177                                 break;
3178                 }
3179
3180                 /*
3181                  * Update nr_reclaimed by the number of slab pages we
3182                  * reclaimed from this zone.
3183                  */
3184                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3185                 if (nr_slab_pages1 < nr_slab_pages0)
3186                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3187         }
3188
3189         p->reclaim_state = NULL;
3190         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3191         lockdep_clear_current_reclaim_state();
3192         return sc.nr_reclaimed >= nr_pages;
3193 }
3194
3195 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3196 {
3197         int node_id;
3198         int ret;
3199
3200         /*
3201          * Zone reclaim reclaims unmapped file backed pages and
3202          * slab pages if we are over the defined limits.
3203          *
3204          * A small portion of unmapped file backed pages is needed for
3205          * file I/O otherwise pages read by file I/O will be immediately
3206          * thrown out if the zone is overallocated. So we do not reclaim
3207          * if less than a specified percentage of the zone is used by
3208          * unmapped file backed pages.
3209          */
3210         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3211             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3212                 return ZONE_RECLAIM_FULL;
3213
3214         if (zone->all_unreclaimable)
3215                 return ZONE_RECLAIM_FULL;
3216
3217         /*
3218          * Do not scan if the allocation should not be delayed.
3219          */
3220         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3221                 return ZONE_RECLAIM_NOSCAN;
3222
3223         /*
3224          * Only run zone reclaim on the local zone or on zones that do not
3225          * have associated processors. This will favor the local processor
3226          * over remote processors and spread off node memory allocations
3227          * as wide as possible.
3228          */
3229         node_id = zone_to_nid(zone);
3230         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3231                 return ZONE_RECLAIM_NOSCAN;
3232
3233         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3234                 return ZONE_RECLAIM_NOSCAN;
3235
3236         ret = __zone_reclaim(zone, gfp_mask, order);
3237         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3238
3239         if (!ret)
3240                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3241
3242         return ret;
3243 }
3244 #endif
3245
3246 /*
3247  * page_evictable - test whether a page is evictable
3248  * @page: the page to test
3249  * @vma: the VMA in which the page is or will be mapped, may be NULL
3250  *
3251  * Test whether page is evictable--i.e., should be placed on active/inactive
3252  * lists vs unevictable list.  The vma argument is !NULL when called from the
3253  * fault path to determine how to instantate a new page.
3254  *
3255  * Reasons page might not be evictable:
3256  * (1) page's mapping marked unevictable
3257  * (2) page is part of an mlocked VMA
3258  *
3259  */
3260 int page_evictable(struct page *page, struct vm_area_struct *vma)
3261 {
3262
3263         if (mapping_unevictable(page_mapping(page)))
3264                 return 0;
3265
3266         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3267                 return 0;
3268
3269         return 1;
3270 }
3271
3272 /**
3273  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3274  * @page: page to check evictability and move to appropriate lru list
3275  * @zone: zone page is in
3276  *
3277  * Checks a page for evictability and moves the page to the appropriate
3278  * zone lru list.
3279  *
3280  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3281  * have PageUnevictable set.
3282  */
3283 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3284 {
3285         VM_BUG_ON(PageActive(page));
3286
3287 retry:
3288         ClearPageUnevictable(page);
3289         if (page_evictable(page, NULL)) {
3290                 enum lru_list l = page_lru_base_type(page);
3291
3292                 __dec_zone_state(zone, NR_UNEVICTABLE);
3293                 list_move(&page->lru, &zone->lru[l].list);
3294                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3295                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3296                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3297         } else {
3298                 /*
3299                  * rotate unevictable list
3300                  */
3301                 SetPageUnevictable(page);
3302                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3303                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3304                 if (page_evictable(page, NULL))
3305                         goto retry;
3306         }
3307 }
3308
3309 /**
3310  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3311  * @mapping: struct address_space to scan for evictable pages
3312  *
3313  * Scan all pages in mapping.  Check unevictable pages for
3314  * evictability and move them to the appropriate zone lru list.
3315  */
3316 void scan_mapping_unevictable_pages(struct address_space *mapping)
3317 {
3318         pgoff_t next = 0;
3319         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3320                          PAGE_CACHE_SHIFT;
3321         struct zone *zone;
3322         struct pagevec pvec;
3323
3324         if (mapping->nrpages == 0)
3325                 return;
3326
3327         pagevec_init(&pvec, 0);
3328         while (next < end &&
3329                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3330                 int i;
3331                 int pg_scanned = 0;
3332
3333                 zone = NULL;
3334
3335                 for (i = 0; i < pagevec_count(&pvec); i++) {
3336                         struct page *page = pvec.pages[i];
3337                         pgoff_t page_index = page->index;
3338                         struct zone *pagezone = page_zone(page);
3339
3340                         pg_scanned++;
3341                         if (page_index > next)
3342                                 next = page_index;
3343                         next++;
3344
3345                         if (pagezone != zone) {
3346                                 if (zone)
3347                                         spin_unlock_irq(&zone->lru_lock);
3348                                 zone = pagezone;
3349                                 spin_lock_irq(&zone->lru_lock);
3350                         }
3351
3352                         if (PageLRU(page) && PageUnevictable(page))
3353                                 check_move_unevictable_page(page, zone);
3354                 }
3355                 if (zone)
3356                         spin_unlock_irq(&zone->lru_lock);
3357                 pagevec_release(&pvec);
3358
3359                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3360         }
3361
3362 }
3363
3364 /**
3365  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3366  * @zone - zone of which to scan the unevictable list
3367  *
3368  * Scan @zone's unevictable LRU lists to check for pages that have become
3369  * evictable.  Move those that have to @zone's inactive list where they
3370  * become candidates for reclaim, unless shrink_inactive_zone() decides
3371  * to reactivate them.  Pages that are still unevictable are rotated
3372  * back onto @zone's unevictable list.
3373  */
3374 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3375 static void scan_zone_unevictable_pages(struct zone *zone)
3376 {
3377         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3378         unsigned long scan;
3379         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3380
3381         while (nr_to_scan > 0) {
3382                 unsigned long batch_size = min(nr_to_scan,
3383                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3384
3385                 spin_lock_irq(&zone->lru_lock);
3386                 for (scan = 0;  scan < batch_size; scan++) {
3387                         struct page *page = lru_to_page(l_unevictable);
3388
3389                         if (!trylock_page(page))
3390                                 continue;
3391
3392                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3393
3394                         if (likely(PageLRU(page) && PageUnevictable(page)))
3395                                 check_move_unevictable_page(page, zone);
3396
3397                         unlock_page(page);
3398                 }
3399                 spin_unlock_irq(&zone->lru_lock);
3400
3401                 nr_to_scan -= batch_size;
3402         }
3403 }
3404
3405
3406 /**
3407  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3408  *
3409  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3410  * pages that have become evictable.  Move those back to the zones'
3411  * inactive list where they become candidates for reclaim.
3412  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3413  * and we add swap to the system.  As such, it runs in the context of a task
3414  * that has possibly/probably made some previously unevictable pages
3415  * evictable.
3416  */
3417 static void scan_all_zones_unevictable_pages(void)
3418 {
3419         struct zone *zone;
3420
3421         for_each_zone(zone) {
3422                 scan_zone_unevictable_pages(zone);
3423         }
3424 }
3425
3426 /*
3427  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3428  * all nodes' unevictable lists for evictable pages
3429  */
3430 unsigned long scan_unevictable_pages;
3431
3432 int scan_unevictable_handler(struct ctl_table *table, int write,
3433                            void __user *buffer,
3434                            size_t *length, loff_t *ppos)
3435 {
3436         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3437
3438         if (write && *(unsigned long *)table->data)
3439                 scan_all_zones_unevictable_pages();
3440
3441         scan_unevictable_pages = 0;
3442         return 0;
3443 }
3444
3445 #ifdef CONFIG_NUMA
3446 /*
3447  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3448  * a specified node's per zone unevictable lists for evictable pages.
3449  */
3450
3451 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3452                                           struct sysdev_attribute *attr,
3453                                           char *buf)
3454 {
3455         return sprintf(buf, "0\n");     /* always zero; should fit... */
3456 }
3457
3458 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3459                                            struct sysdev_attribute *attr,
3460                                         const char *buf, size_t count)
3461 {
3462         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3463         struct zone *zone;
3464         unsigned long res;
3465         unsigned long req = strict_strtoul(buf, 10, &res);
3466
3467         if (!req)
3468                 return 1;       /* zero is no-op */
3469
3470         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3471                 if (!populated_zone(zone))
3472                         continue;
3473                 scan_zone_unevictable_pages(zone);
3474         }
3475         return 1;
3476 }
3477
3478
3479 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3480                         read_scan_unevictable_node,
3481                         write_scan_unevictable_node);
3482
3483 int scan_unevictable_register_node(struct node *node)
3484 {
3485         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3486 }
3487
3488 void scan_unevictable_unregister_node(struct node *node)
3489 {
3490         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3491 }
3492 #endif