Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/cjb/mmc
[pandora-kernel.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * tiny-shmem:
18  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19  *
20  * This file is released under the GPL.
21  */
22
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
63
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
67
68 /*
69  * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70  * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71  *
72  * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73  * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74  * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75  * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76  *
77  * We use / and * instead of shifts in the definitions below, so that the swap
78  * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79  */
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85
86 #define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN     VM_READ
94 #define SHMEM_TRUNCATE   VM_WRITE
95
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT    64
98
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
101
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103 enum sgp_type {
104         SGP_READ,       /* don't exceed i_size, don't allocate page */
105         SGP_CACHE,      /* don't exceed i_size, may allocate page */
106         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
107         SGP_WRITE,      /* may exceed i_size, may allocate page */
108 };
109
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
112 {
113         return totalram_pages / 2;
114 }
115
116 static unsigned long shmem_default_max_inodes(void)
117 {
118         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119 }
120 #endif
121
122 static int shmem_getpage(struct inode *inode, unsigned long idx,
123                          struct page **pagep, enum sgp_type sgp, int *type);
124
125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
126 {
127         /*
128          * The above definition of ENTRIES_PER_PAGE, and the use of
129          * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130          * might be reconsidered if it ever diverges from PAGE_SIZE.
131          *
132          * Mobility flags are masked out as swap vectors cannot move
133          */
134         return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135                                 PAGE_CACHE_SHIFT-PAGE_SHIFT);
136 }
137
138 static inline void shmem_dir_free(struct page *page)
139 {
140         __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
141 }
142
143 static struct page **shmem_dir_map(struct page *page)
144 {
145         return (struct page **)kmap_atomic(page, KM_USER0);
146 }
147
148 static inline void shmem_dir_unmap(struct page **dir)
149 {
150         kunmap_atomic(dir, KM_USER0);
151 }
152
153 static swp_entry_t *shmem_swp_map(struct page *page)
154 {
155         return (swp_entry_t *)kmap_atomic(page, KM_USER1);
156 }
157
158 static inline void shmem_swp_balance_unmap(void)
159 {
160         /*
161          * When passing a pointer to an i_direct entry, to code which
162          * also handles indirect entries and so will shmem_swp_unmap,
163          * we must arrange for the preempt count to remain in balance.
164          * What kmap_atomic of a lowmem page does depends on config
165          * and architecture, so pretend to kmap_atomic some lowmem page.
166          */
167         (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
168 }
169
170 static inline void shmem_swp_unmap(swp_entry_t *entry)
171 {
172         kunmap_atomic(entry, KM_USER1);
173 }
174
175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
176 {
177         return sb->s_fs_info;
178 }
179
180 /*
181  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182  * for shared memory and for shared anonymous (/dev/zero) mappings
183  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184  * consistent with the pre-accounting of private mappings ...
185  */
186 static inline int shmem_acct_size(unsigned long flags, loff_t size)
187 {
188         return (flags & VM_NORESERVE) ?
189                 0 : security_vm_enough_memory_kern(VM_ACCT(size));
190 }
191
192 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
193 {
194         if (!(flags & VM_NORESERVE))
195                 vm_unacct_memory(VM_ACCT(size));
196 }
197
198 /*
199  * ... whereas tmpfs objects are accounted incrementally as
200  * pages are allocated, in order to allow huge sparse files.
201  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
203  */
204 static inline int shmem_acct_block(unsigned long flags)
205 {
206         return (flags & VM_NORESERVE) ?
207                 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212         if (flags & VM_NORESERVE)
213                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
214 }
215
216 static const struct super_operations shmem_ops;
217 static const struct address_space_operations shmem_aops;
218 static const struct file_operations shmem_file_operations;
219 static const struct inode_operations shmem_inode_operations;
220 static const struct inode_operations shmem_dir_inode_operations;
221 static const struct inode_operations shmem_special_inode_operations;
222 static const struct vm_operations_struct shmem_vm_ops;
223
224 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
225         .ra_pages       = 0,    /* No readahead */
226         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
227         .unplug_io_fn   = default_unplug_io_fn,
228 };
229
230 static LIST_HEAD(shmem_swaplist);
231 static DEFINE_MUTEX(shmem_swaplist_mutex);
232
233 static void shmem_free_blocks(struct inode *inode, long pages)
234 {
235         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236         if (sbinfo->max_blocks) {
237                 percpu_counter_add(&sbinfo->used_blocks, -pages);
238                 spin_lock(&inode->i_lock);
239                 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
240                 spin_unlock(&inode->i_lock);
241         }
242 }
243
244 static int shmem_reserve_inode(struct super_block *sb)
245 {
246         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
247         if (sbinfo->max_inodes) {
248                 spin_lock(&sbinfo->stat_lock);
249                 if (!sbinfo->free_inodes) {
250                         spin_unlock(&sbinfo->stat_lock);
251                         return -ENOSPC;
252                 }
253                 sbinfo->free_inodes--;
254                 spin_unlock(&sbinfo->stat_lock);
255         }
256         return 0;
257 }
258
259 static void shmem_free_inode(struct super_block *sb)
260 {
261         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
262         if (sbinfo->max_inodes) {
263                 spin_lock(&sbinfo->stat_lock);
264                 sbinfo->free_inodes++;
265                 spin_unlock(&sbinfo->stat_lock);
266         }
267 }
268
269 /**
270  * shmem_recalc_inode - recalculate the size of an inode
271  * @inode: inode to recalc
272  *
273  * We have to calculate the free blocks since the mm can drop
274  * undirtied hole pages behind our back.
275  *
276  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
277  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
278  *
279  * It has to be called with the spinlock held.
280  */
281 static void shmem_recalc_inode(struct inode *inode)
282 {
283         struct shmem_inode_info *info = SHMEM_I(inode);
284         long freed;
285
286         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
287         if (freed > 0) {
288                 info->alloced -= freed;
289                 shmem_unacct_blocks(info->flags, freed);
290                 shmem_free_blocks(inode, freed);
291         }
292 }
293
294 /**
295  * shmem_swp_entry - find the swap vector position in the info structure
296  * @info:  info structure for the inode
297  * @index: index of the page to find
298  * @page:  optional page to add to the structure. Has to be preset to
299  *         all zeros
300  *
301  * If there is no space allocated yet it will return NULL when
302  * page is NULL, else it will use the page for the needed block,
303  * setting it to NULL on return to indicate that it has been used.
304  *
305  * The swap vector is organized the following way:
306  *
307  * There are SHMEM_NR_DIRECT entries directly stored in the
308  * shmem_inode_info structure. So small files do not need an addional
309  * allocation.
310  *
311  * For pages with index > SHMEM_NR_DIRECT there is the pointer
312  * i_indirect which points to a page which holds in the first half
313  * doubly indirect blocks, in the second half triple indirect blocks:
314  *
315  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
316  * following layout (for SHMEM_NR_DIRECT == 16):
317  *
318  * i_indirect -> dir --> 16-19
319  *            |      +-> 20-23
320  *            |
321  *            +-->dir2 --> 24-27
322  *            |        +-> 28-31
323  *            |        +-> 32-35
324  *            |        +-> 36-39
325  *            |
326  *            +-->dir3 --> 40-43
327  *                     +-> 44-47
328  *                     +-> 48-51
329  *                     +-> 52-55
330  */
331 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
332 {
333         unsigned long offset;
334         struct page **dir;
335         struct page *subdir;
336
337         if (index < SHMEM_NR_DIRECT) {
338                 shmem_swp_balance_unmap();
339                 return info->i_direct+index;
340         }
341         if (!info->i_indirect) {
342                 if (page) {
343                         info->i_indirect = *page;
344                         *page = NULL;
345                 }
346                 return NULL;                    /* need another page */
347         }
348
349         index -= SHMEM_NR_DIRECT;
350         offset = index % ENTRIES_PER_PAGE;
351         index /= ENTRIES_PER_PAGE;
352         dir = shmem_dir_map(info->i_indirect);
353
354         if (index >= ENTRIES_PER_PAGE/2) {
355                 index -= ENTRIES_PER_PAGE/2;
356                 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
357                 index %= ENTRIES_PER_PAGE;
358                 subdir = *dir;
359                 if (!subdir) {
360                         if (page) {
361                                 *dir = *page;
362                                 *page = NULL;
363                         }
364                         shmem_dir_unmap(dir);
365                         return NULL;            /* need another page */
366                 }
367                 shmem_dir_unmap(dir);
368                 dir = shmem_dir_map(subdir);
369         }
370
371         dir += index;
372         subdir = *dir;
373         if (!subdir) {
374                 if (!page || !(subdir = *page)) {
375                         shmem_dir_unmap(dir);
376                         return NULL;            /* need a page */
377                 }
378                 *dir = subdir;
379                 *page = NULL;
380         }
381         shmem_dir_unmap(dir);
382         return shmem_swp_map(subdir) + offset;
383 }
384
385 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
386 {
387         long incdec = value? 1: -1;
388
389         entry->val = value;
390         info->swapped += incdec;
391         if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
392                 struct page *page = kmap_atomic_to_page(entry);
393                 set_page_private(page, page_private(page) + incdec);
394         }
395 }
396
397 /**
398  * shmem_swp_alloc - get the position of the swap entry for the page.
399  * @info:       info structure for the inode
400  * @index:      index of the page to find
401  * @sgp:        check and recheck i_size? skip allocation?
402  *
403  * If the entry does not exist, allocate it.
404  */
405 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
406 {
407         struct inode *inode = &info->vfs_inode;
408         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
409         struct page *page = NULL;
410         swp_entry_t *entry;
411
412         if (sgp != SGP_WRITE &&
413             ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
414                 return ERR_PTR(-EINVAL);
415
416         while (!(entry = shmem_swp_entry(info, index, &page))) {
417                 if (sgp == SGP_READ)
418                         return shmem_swp_map(ZERO_PAGE(0));
419                 /*
420                  * Test used_blocks against 1 less max_blocks, since we have 1 data
421                  * page (and perhaps indirect index pages) yet to allocate:
422                  * a waste to allocate index if we cannot allocate data.
423                  */
424                 if (sbinfo->max_blocks) {
425                         if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0)
426                                 return ERR_PTR(-ENOSPC);
427                         percpu_counter_inc(&sbinfo->used_blocks);
428                         spin_lock(&inode->i_lock);
429                         inode->i_blocks += BLOCKS_PER_PAGE;
430                         spin_unlock(&inode->i_lock);
431                 }
432
433                 spin_unlock(&info->lock);
434                 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
435                 spin_lock(&info->lock);
436
437                 if (!page) {
438                         shmem_free_blocks(inode, 1);
439                         return ERR_PTR(-ENOMEM);
440                 }
441                 if (sgp != SGP_WRITE &&
442                     ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
443                         entry = ERR_PTR(-EINVAL);
444                         break;
445                 }
446                 if (info->next_index <= index)
447                         info->next_index = index + 1;
448         }
449         if (page) {
450                 /* another task gave its page, or truncated the file */
451                 shmem_free_blocks(inode, 1);
452                 shmem_dir_free(page);
453         }
454         if (info->next_index <= index && !IS_ERR(entry))
455                 info->next_index = index + 1;
456         return entry;
457 }
458
459 /**
460  * shmem_free_swp - free some swap entries in a directory
461  * @dir:        pointer to the directory
462  * @edir:       pointer after last entry of the directory
463  * @punch_lock: pointer to spinlock when needed for the holepunch case
464  */
465 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
466                                                 spinlock_t *punch_lock)
467 {
468         spinlock_t *punch_unlock = NULL;
469         swp_entry_t *ptr;
470         int freed = 0;
471
472         for (ptr = dir; ptr < edir; ptr++) {
473                 if (ptr->val) {
474                         if (unlikely(punch_lock)) {
475                                 punch_unlock = punch_lock;
476                                 punch_lock = NULL;
477                                 spin_lock(punch_unlock);
478                                 if (!ptr->val)
479                                         continue;
480                         }
481                         free_swap_and_cache(*ptr);
482                         *ptr = (swp_entry_t){0};
483                         freed++;
484                 }
485         }
486         if (punch_unlock)
487                 spin_unlock(punch_unlock);
488         return freed;
489 }
490
491 static int shmem_map_and_free_swp(struct page *subdir, int offset,
492                 int limit, struct page ***dir, spinlock_t *punch_lock)
493 {
494         swp_entry_t *ptr;
495         int freed = 0;
496
497         ptr = shmem_swp_map(subdir);
498         for (; offset < limit; offset += LATENCY_LIMIT) {
499                 int size = limit - offset;
500                 if (size > LATENCY_LIMIT)
501                         size = LATENCY_LIMIT;
502                 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
503                                                         punch_lock);
504                 if (need_resched()) {
505                         shmem_swp_unmap(ptr);
506                         if (*dir) {
507                                 shmem_dir_unmap(*dir);
508                                 *dir = NULL;
509                         }
510                         cond_resched();
511                         ptr = shmem_swp_map(subdir);
512                 }
513         }
514         shmem_swp_unmap(ptr);
515         return freed;
516 }
517
518 static void shmem_free_pages(struct list_head *next)
519 {
520         struct page *page;
521         int freed = 0;
522
523         do {
524                 page = container_of(next, struct page, lru);
525                 next = next->next;
526                 shmem_dir_free(page);
527                 freed++;
528                 if (freed >= LATENCY_LIMIT) {
529                         cond_resched();
530                         freed = 0;
531                 }
532         } while (next);
533 }
534
535 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
536 {
537         struct shmem_inode_info *info = SHMEM_I(inode);
538         unsigned long idx;
539         unsigned long size;
540         unsigned long limit;
541         unsigned long stage;
542         unsigned long diroff;
543         struct page **dir;
544         struct page *topdir;
545         struct page *middir;
546         struct page *subdir;
547         swp_entry_t *ptr;
548         LIST_HEAD(pages_to_free);
549         long nr_pages_to_free = 0;
550         long nr_swaps_freed = 0;
551         int offset;
552         int freed;
553         int punch_hole;
554         spinlock_t *needs_lock;
555         spinlock_t *punch_lock;
556         unsigned long upper_limit;
557
558         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
559         idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
560         if (idx >= info->next_index)
561                 return;
562
563         spin_lock(&info->lock);
564         info->flags |= SHMEM_TRUNCATE;
565         if (likely(end == (loff_t) -1)) {
566                 limit = info->next_index;
567                 upper_limit = SHMEM_MAX_INDEX;
568                 info->next_index = idx;
569                 needs_lock = NULL;
570                 punch_hole = 0;
571         } else {
572                 if (end + 1 >= inode->i_size) { /* we may free a little more */
573                         limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
574                                                         PAGE_CACHE_SHIFT;
575                         upper_limit = SHMEM_MAX_INDEX;
576                 } else {
577                         limit = (end + 1) >> PAGE_CACHE_SHIFT;
578                         upper_limit = limit;
579                 }
580                 needs_lock = &info->lock;
581                 punch_hole = 1;
582         }
583
584         topdir = info->i_indirect;
585         if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
586                 info->i_indirect = NULL;
587                 nr_pages_to_free++;
588                 list_add(&topdir->lru, &pages_to_free);
589         }
590         spin_unlock(&info->lock);
591
592         if (info->swapped && idx < SHMEM_NR_DIRECT) {
593                 ptr = info->i_direct;
594                 size = limit;
595                 if (size > SHMEM_NR_DIRECT)
596                         size = SHMEM_NR_DIRECT;
597                 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
598         }
599
600         /*
601          * If there are no indirect blocks or we are punching a hole
602          * below indirect blocks, nothing to be done.
603          */
604         if (!topdir || limit <= SHMEM_NR_DIRECT)
605                 goto done2;
606
607         /*
608          * The truncation case has already dropped info->lock, and we're safe
609          * because i_size and next_index have already been lowered, preventing
610          * access beyond.  But in the punch_hole case, we still need to take
611          * the lock when updating the swap directory, because there might be
612          * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
613          * shmem_writepage.  However, whenever we find we can remove a whole
614          * directory page (not at the misaligned start or end of the range),
615          * we first NULLify its pointer in the level above, and then have no
616          * need to take the lock when updating its contents: needs_lock and
617          * punch_lock (either pointing to info->lock or NULL) manage this.
618          */
619
620         upper_limit -= SHMEM_NR_DIRECT;
621         limit -= SHMEM_NR_DIRECT;
622         idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
623         offset = idx % ENTRIES_PER_PAGE;
624         idx -= offset;
625
626         dir = shmem_dir_map(topdir);
627         stage = ENTRIES_PER_PAGEPAGE/2;
628         if (idx < ENTRIES_PER_PAGEPAGE/2) {
629                 middir = topdir;
630                 diroff = idx/ENTRIES_PER_PAGE;
631         } else {
632                 dir += ENTRIES_PER_PAGE/2;
633                 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
634                 while (stage <= idx)
635                         stage += ENTRIES_PER_PAGEPAGE;
636                 middir = *dir;
637                 if (*dir) {
638                         diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
639                                 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
640                         if (!diroff && !offset && upper_limit >= stage) {
641                                 if (needs_lock) {
642                                         spin_lock(needs_lock);
643                                         *dir = NULL;
644                                         spin_unlock(needs_lock);
645                                         needs_lock = NULL;
646                                 } else
647                                         *dir = NULL;
648                                 nr_pages_to_free++;
649                                 list_add(&middir->lru, &pages_to_free);
650                         }
651                         shmem_dir_unmap(dir);
652                         dir = shmem_dir_map(middir);
653                 } else {
654                         diroff = 0;
655                         offset = 0;
656                         idx = stage;
657                 }
658         }
659
660         for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
661                 if (unlikely(idx == stage)) {
662                         shmem_dir_unmap(dir);
663                         dir = shmem_dir_map(topdir) +
664                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
665                         while (!*dir) {
666                                 dir++;
667                                 idx += ENTRIES_PER_PAGEPAGE;
668                                 if (idx >= limit)
669                                         goto done1;
670                         }
671                         stage = idx + ENTRIES_PER_PAGEPAGE;
672                         middir = *dir;
673                         if (punch_hole)
674                                 needs_lock = &info->lock;
675                         if (upper_limit >= stage) {
676                                 if (needs_lock) {
677                                         spin_lock(needs_lock);
678                                         *dir = NULL;
679                                         spin_unlock(needs_lock);
680                                         needs_lock = NULL;
681                                 } else
682                                         *dir = NULL;
683                                 nr_pages_to_free++;
684                                 list_add(&middir->lru, &pages_to_free);
685                         }
686                         shmem_dir_unmap(dir);
687                         cond_resched();
688                         dir = shmem_dir_map(middir);
689                         diroff = 0;
690                 }
691                 punch_lock = needs_lock;
692                 subdir = dir[diroff];
693                 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
694                         if (needs_lock) {
695                                 spin_lock(needs_lock);
696                                 dir[diroff] = NULL;
697                                 spin_unlock(needs_lock);
698                                 punch_lock = NULL;
699                         } else
700                                 dir[diroff] = NULL;
701                         nr_pages_to_free++;
702                         list_add(&subdir->lru, &pages_to_free);
703                 }
704                 if (subdir && page_private(subdir) /* has swap entries */) {
705                         size = limit - idx;
706                         if (size > ENTRIES_PER_PAGE)
707                                 size = ENTRIES_PER_PAGE;
708                         freed = shmem_map_and_free_swp(subdir,
709                                         offset, size, &dir, punch_lock);
710                         if (!dir)
711                                 dir = shmem_dir_map(middir);
712                         nr_swaps_freed += freed;
713                         if (offset || punch_lock) {
714                                 spin_lock(&info->lock);
715                                 set_page_private(subdir,
716                                         page_private(subdir) - freed);
717                                 spin_unlock(&info->lock);
718                         } else
719                                 BUG_ON(page_private(subdir) != freed);
720                 }
721                 offset = 0;
722         }
723 done1:
724         shmem_dir_unmap(dir);
725 done2:
726         if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
727                 /*
728                  * Call truncate_inode_pages again: racing shmem_unuse_inode
729                  * may have swizzled a page in from swap since
730                  * truncate_pagecache or generic_delete_inode did it, before we
731                  * lowered next_index.  Also, though shmem_getpage checks
732                  * i_size before adding to cache, no recheck after: so fix the
733                  * narrow window there too.
734                  *
735                  * Recalling truncate_inode_pages_range and unmap_mapping_range
736                  * every time for punch_hole (which never got a chance to clear
737                  * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738                  * yet hardly ever necessary: try to optimize them out later.
739                  */
740                 truncate_inode_pages_range(inode->i_mapping, start, end);
741                 if (punch_hole)
742                         unmap_mapping_range(inode->i_mapping, start,
743                                                         end - start, 1);
744         }
745
746         spin_lock(&info->lock);
747         info->flags &= ~SHMEM_TRUNCATE;
748         info->swapped -= nr_swaps_freed;
749         if (nr_pages_to_free)
750                 shmem_free_blocks(inode, nr_pages_to_free);
751         shmem_recalc_inode(inode);
752         spin_unlock(&info->lock);
753
754         /*
755          * Empty swap vector directory pages to be freed?
756          */
757         if (!list_empty(&pages_to_free)) {
758                 pages_to_free.prev->next = NULL;
759                 shmem_free_pages(pages_to_free.next);
760         }
761 }
762
763 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
764 {
765         struct inode *inode = dentry->d_inode;
766         loff_t newsize = attr->ia_size;
767         int error;
768
769         error = inode_change_ok(inode, attr);
770         if (error)
771                 return error;
772
773         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
774                                         && newsize != inode->i_size) {
775                 struct page *page = NULL;
776
777                 if (newsize < inode->i_size) {
778                         /*
779                          * If truncating down to a partial page, then
780                          * if that page is already allocated, hold it
781                          * in memory until the truncation is over, so
782                          * truncate_partial_page cannot miss it were
783                          * it assigned to swap.
784                          */
785                         if (newsize & (PAGE_CACHE_SIZE-1)) {
786                                 (void) shmem_getpage(inode,
787                                         newsize >> PAGE_CACHE_SHIFT,
788                                                 &page, SGP_READ, NULL);
789                                 if (page)
790                                         unlock_page(page);
791                         }
792                         /*
793                          * Reset SHMEM_PAGEIN flag so that shmem_truncate can
794                          * detect if any pages might have been added to cache
795                          * after truncate_inode_pages.  But we needn't bother
796                          * if it's being fully truncated to zero-length: the
797                          * nrpages check is efficient enough in that case.
798                          */
799                         if (newsize) {
800                                 struct shmem_inode_info *info = SHMEM_I(inode);
801                                 spin_lock(&info->lock);
802                                 info->flags &= ~SHMEM_PAGEIN;
803                                 spin_unlock(&info->lock);
804                         }
805                 }
806
807                 /* XXX(truncate): truncate_setsize should be called last */
808                 truncate_setsize(inode, newsize);
809                 if (page)
810                         page_cache_release(page);
811                 shmem_truncate_range(inode, newsize, (loff_t)-1);
812         }
813
814         setattr_copy(inode, attr);
815 #ifdef CONFIG_TMPFS_POSIX_ACL
816         if (attr->ia_valid & ATTR_MODE)
817                 error = generic_acl_chmod(inode);
818 #endif
819         return error;
820 }
821
822 static void shmem_evict_inode(struct inode *inode)
823 {
824         struct shmem_inode_info *info = SHMEM_I(inode);
825
826         if (inode->i_mapping->a_ops == &shmem_aops) {
827                 truncate_inode_pages(inode->i_mapping, 0);
828                 shmem_unacct_size(info->flags, inode->i_size);
829                 inode->i_size = 0;
830                 shmem_truncate_range(inode, 0, (loff_t)-1);
831                 if (!list_empty(&info->swaplist)) {
832                         mutex_lock(&shmem_swaplist_mutex);
833                         list_del_init(&info->swaplist);
834                         mutex_unlock(&shmem_swaplist_mutex);
835                 }
836         }
837         BUG_ON(inode->i_blocks);
838         shmem_free_inode(inode->i_sb);
839         end_writeback(inode);
840 }
841
842 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
843 {
844         swp_entry_t *ptr;
845
846         for (ptr = dir; ptr < edir; ptr++) {
847                 if (ptr->val == entry.val)
848                         return ptr - dir;
849         }
850         return -1;
851 }
852
853 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
854 {
855         struct inode *inode;
856         unsigned long idx;
857         unsigned long size;
858         unsigned long limit;
859         unsigned long stage;
860         struct page **dir;
861         struct page *subdir;
862         swp_entry_t *ptr;
863         int offset;
864         int error;
865
866         idx = 0;
867         ptr = info->i_direct;
868         spin_lock(&info->lock);
869         if (!info->swapped) {
870                 list_del_init(&info->swaplist);
871                 goto lost2;
872         }
873         limit = info->next_index;
874         size = limit;
875         if (size > SHMEM_NR_DIRECT)
876                 size = SHMEM_NR_DIRECT;
877         offset = shmem_find_swp(entry, ptr, ptr+size);
878         if (offset >= 0)
879                 goto found;
880         if (!info->i_indirect)
881                 goto lost2;
882
883         dir = shmem_dir_map(info->i_indirect);
884         stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
885
886         for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
887                 if (unlikely(idx == stage)) {
888                         shmem_dir_unmap(dir-1);
889                         if (cond_resched_lock(&info->lock)) {
890                                 /* check it has not been truncated */
891                                 if (limit > info->next_index) {
892                                         limit = info->next_index;
893                                         if (idx >= limit)
894                                                 goto lost2;
895                                 }
896                         }
897                         dir = shmem_dir_map(info->i_indirect) +
898                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
899                         while (!*dir) {
900                                 dir++;
901                                 idx += ENTRIES_PER_PAGEPAGE;
902                                 if (idx >= limit)
903                                         goto lost1;
904                         }
905                         stage = idx + ENTRIES_PER_PAGEPAGE;
906                         subdir = *dir;
907                         shmem_dir_unmap(dir);
908                         dir = shmem_dir_map(subdir);
909                 }
910                 subdir = *dir;
911                 if (subdir && page_private(subdir)) {
912                         ptr = shmem_swp_map(subdir);
913                         size = limit - idx;
914                         if (size > ENTRIES_PER_PAGE)
915                                 size = ENTRIES_PER_PAGE;
916                         offset = shmem_find_swp(entry, ptr, ptr+size);
917                         shmem_swp_unmap(ptr);
918                         if (offset >= 0) {
919                                 shmem_dir_unmap(dir);
920                                 goto found;
921                         }
922                 }
923         }
924 lost1:
925         shmem_dir_unmap(dir-1);
926 lost2:
927         spin_unlock(&info->lock);
928         return 0;
929 found:
930         idx += offset;
931         inode = igrab(&info->vfs_inode);
932         spin_unlock(&info->lock);
933
934         /*
935          * Move _head_ to start search for next from here.
936          * But be careful: shmem_evict_inode checks list_empty without taking
937          * mutex, and there's an instant in list_move_tail when info->swaplist
938          * would appear empty, if it were the only one on shmem_swaplist.  We
939          * could avoid doing it if inode NULL; or use this minor optimization.
940          */
941         if (shmem_swaplist.next != &info->swaplist)
942                 list_move_tail(&shmem_swaplist, &info->swaplist);
943         mutex_unlock(&shmem_swaplist_mutex);
944
945         error = 1;
946         if (!inode)
947                 goto out;
948         /*
949          * Charge page using GFP_KERNEL while we can wait.
950          * Charged back to the user(not to caller) when swap account is used.
951          * add_to_page_cache() will be called with GFP_NOWAIT.
952          */
953         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
954         if (error)
955                 goto out;
956         error = radix_tree_preload(GFP_KERNEL);
957         if (error) {
958                 mem_cgroup_uncharge_cache_page(page);
959                 goto out;
960         }
961         error = 1;
962
963         spin_lock(&info->lock);
964         ptr = shmem_swp_entry(info, idx, NULL);
965         if (ptr && ptr->val == entry.val) {
966                 error = add_to_page_cache_locked(page, inode->i_mapping,
967                                                 idx, GFP_NOWAIT);
968                 /* does mem_cgroup_uncharge_cache_page on error */
969         } else  /* we must compensate for our precharge above */
970                 mem_cgroup_uncharge_cache_page(page);
971
972         if (error == -EEXIST) {
973                 struct page *filepage = find_get_page(inode->i_mapping, idx);
974                 error = 1;
975                 if (filepage) {
976                         /*
977                          * There might be a more uptodate page coming down
978                          * from a stacked writepage: forget our swappage if so.
979                          */
980                         if (PageUptodate(filepage))
981                                 error = 0;
982                         page_cache_release(filepage);
983                 }
984         }
985         if (!error) {
986                 delete_from_swap_cache(page);
987                 set_page_dirty(page);
988                 info->flags |= SHMEM_PAGEIN;
989                 shmem_swp_set(info, ptr, 0);
990                 swap_free(entry);
991                 error = 1;      /* not an error, but entry was found */
992         }
993         if (ptr)
994                 shmem_swp_unmap(ptr);
995         spin_unlock(&info->lock);
996         radix_tree_preload_end();
997 out:
998         unlock_page(page);
999         page_cache_release(page);
1000         iput(inode);            /* allows for NULL */
1001         return error;
1002 }
1003
1004 /*
1005  * shmem_unuse() search for an eventually swapped out shmem page.
1006  */
1007 int shmem_unuse(swp_entry_t entry, struct page *page)
1008 {
1009         struct list_head *p, *next;
1010         struct shmem_inode_info *info;
1011         int found = 0;
1012
1013         mutex_lock(&shmem_swaplist_mutex);
1014         list_for_each_safe(p, next, &shmem_swaplist) {
1015                 info = list_entry(p, struct shmem_inode_info, swaplist);
1016                 found = shmem_unuse_inode(info, entry, page);
1017                 cond_resched();
1018                 if (found)
1019                         goto out;
1020         }
1021         mutex_unlock(&shmem_swaplist_mutex);
1022         /*
1023          * Can some race bring us here?  We've been holding page lock,
1024          * so I think not; but would rather try again later than BUG()
1025          */
1026         unlock_page(page);
1027         page_cache_release(page);
1028 out:
1029         return (found < 0) ? found : 0;
1030 }
1031
1032 /*
1033  * Move the page from the page cache to the swap cache.
1034  */
1035 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1036 {
1037         struct shmem_inode_info *info;
1038         swp_entry_t *entry, swap;
1039         struct address_space *mapping;
1040         unsigned long index;
1041         struct inode *inode;
1042
1043         BUG_ON(!PageLocked(page));
1044         mapping = page->mapping;
1045         index = page->index;
1046         inode = mapping->host;
1047         info = SHMEM_I(inode);
1048         if (info->flags & VM_LOCKED)
1049                 goto redirty;
1050         if (!total_swap_pages)
1051                 goto redirty;
1052
1053         /*
1054          * shmem_backing_dev_info's capabilities prevent regular writeback or
1055          * sync from ever calling shmem_writepage; but a stacking filesystem
1056          * may use the ->writepage of its underlying filesystem, in which case
1057          * tmpfs should write out to swap only in response to memory pressure,
1058          * and not for the writeback threads or sync.  However, in those cases,
1059          * we do still want to check if there's a redundant swappage to be
1060          * discarded.
1061          */
1062         if (wbc->for_reclaim)
1063                 swap = get_swap_page();
1064         else
1065                 swap.val = 0;
1066
1067         spin_lock(&info->lock);
1068         if (index >= info->next_index) {
1069                 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1070                 goto unlock;
1071         }
1072         entry = shmem_swp_entry(info, index, NULL);
1073         if (entry->val) {
1074                 /*
1075                  * The more uptodate page coming down from a stacked
1076                  * writepage should replace our old swappage.
1077                  */
1078                 free_swap_and_cache(*entry);
1079                 shmem_swp_set(info, entry, 0);
1080         }
1081         shmem_recalc_inode(inode);
1082
1083         if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1084                 remove_from_page_cache(page);
1085                 shmem_swp_set(info, entry, swap.val);
1086                 shmem_swp_unmap(entry);
1087                 if (list_empty(&info->swaplist))
1088                         inode = igrab(inode);
1089                 else
1090                         inode = NULL;
1091                 spin_unlock(&info->lock);
1092                 swap_shmem_alloc(swap);
1093                 BUG_ON(page_mapped(page));
1094                 page_cache_release(page);       /* pagecache ref */
1095                 swap_writepage(page, wbc);
1096                 if (inode) {
1097                         mutex_lock(&shmem_swaplist_mutex);
1098                         /* move instead of add in case we're racing */
1099                         list_move_tail(&info->swaplist, &shmem_swaplist);
1100                         mutex_unlock(&shmem_swaplist_mutex);
1101                         iput(inode);
1102                 }
1103                 return 0;
1104         }
1105
1106         shmem_swp_unmap(entry);
1107 unlock:
1108         spin_unlock(&info->lock);
1109         /*
1110          * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1111          * clear SWAP_HAS_CACHE flag.
1112          */
1113         swapcache_free(swap, NULL);
1114 redirty:
1115         set_page_dirty(page);
1116         if (wbc->for_reclaim)
1117                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1118         unlock_page(page);
1119         return 0;
1120 }
1121
1122 #ifdef CONFIG_NUMA
1123 #ifdef CONFIG_TMPFS
1124 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1125 {
1126         char buffer[64];
1127
1128         if (!mpol || mpol->mode == MPOL_DEFAULT)
1129                 return;         /* show nothing */
1130
1131         mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1132
1133         seq_printf(seq, ",mpol=%s", buffer);
1134 }
1135
1136 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1137 {
1138         struct mempolicy *mpol = NULL;
1139         if (sbinfo->mpol) {
1140                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1141                 mpol = sbinfo->mpol;
1142                 mpol_get(mpol);
1143                 spin_unlock(&sbinfo->stat_lock);
1144         }
1145         return mpol;
1146 }
1147 #endif /* CONFIG_TMPFS */
1148
1149 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1150                         struct shmem_inode_info *info, unsigned long idx)
1151 {
1152         struct mempolicy mpol, *spol;
1153         struct vm_area_struct pvma;
1154         struct page *page;
1155
1156         spol = mpol_cond_copy(&mpol,
1157                                 mpol_shared_policy_lookup(&info->policy, idx));
1158
1159         /* Create a pseudo vma that just contains the policy */
1160         pvma.vm_start = 0;
1161         pvma.vm_pgoff = idx;
1162         pvma.vm_ops = NULL;
1163         pvma.vm_policy = spol;
1164         page = swapin_readahead(entry, gfp, &pvma, 0);
1165         return page;
1166 }
1167
1168 static struct page *shmem_alloc_page(gfp_t gfp,
1169                         struct shmem_inode_info *info, unsigned long idx)
1170 {
1171         struct vm_area_struct pvma;
1172
1173         /* Create a pseudo vma that just contains the policy */
1174         pvma.vm_start = 0;
1175         pvma.vm_pgoff = idx;
1176         pvma.vm_ops = NULL;
1177         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1178
1179         /*
1180          * alloc_page_vma() will drop the shared policy reference
1181          */
1182         return alloc_page_vma(gfp, &pvma, 0);
1183 }
1184 #else /* !CONFIG_NUMA */
1185 #ifdef CONFIG_TMPFS
1186 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1187 {
1188 }
1189 #endif /* CONFIG_TMPFS */
1190
1191 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1192                         struct shmem_inode_info *info, unsigned long idx)
1193 {
1194         return swapin_readahead(entry, gfp, NULL, 0);
1195 }
1196
1197 static inline struct page *shmem_alloc_page(gfp_t gfp,
1198                         struct shmem_inode_info *info, unsigned long idx)
1199 {
1200         return alloc_page(gfp);
1201 }
1202 #endif /* CONFIG_NUMA */
1203
1204 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1205 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1206 {
1207         return NULL;
1208 }
1209 #endif
1210
1211 /*
1212  * shmem_getpage - either get the page from swap or allocate a new one
1213  *
1214  * If we allocate a new one we do not mark it dirty. That's up to the
1215  * vm. If we swap it in we mark it dirty since we also free the swap
1216  * entry since a page cannot live in both the swap and page cache
1217  */
1218 static int shmem_getpage(struct inode *inode, unsigned long idx,
1219                         struct page **pagep, enum sgp_type sgp, int *type)
1220 {
1221         struct address_space *mapping = inode->i_mapping;
1222         struct shmem_inode_info *info = SHMEM_I(inode);
1223         struct shmem_sb_info *sbinfo;
1224         struct page *filepage = *pagep;
1225         struct page *swappage;
1226         struct page *prealloc_page = NULL;
1227         swp_entry_t *entry;
1228         swp_entry_t swap;
1229         gfp_t gfp;
1230         int error;
1231
1232         if (idx >= SHMEM_MAX_INDEX)
1233                 return -EFBIG;
1234
1235         if (type)
1236                 *type = 0;
1237
1238         /*
1239          * Normally, filepage is NULL on entry, and either found
1240          * uptodate immediately, or allocated and zeroed, or read
1241          * in under swappage, which is then assigned to filepage.
1242          * But shmem_readpage (required for splice) passes in a locked
1243          * filepage, which may be found not uptodate by other callers
1244          * too, and may need to be copied from the swappage read in.
1245          */
1246 repeat:
1247         if (!filepage)
1248                 filepage = find_lock_page(mapping, idx);
1249         if (filepage && PageUptodate(filepage))
1250                 goto done;
1251         gfp = mapping_gfp_mask(mapping);
1252         if (!filepage) {
1253                 /*
1254                  * Try to preload while we can wait, to not make a habit of
1255                  * draining atomic reserves; but don't latch on to this cpu.
1256                  */
1257                 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1258                 if (error)
1259                         goto failed;
1260                 radix_tree_preload_end();
1261                 if (sgp != SGP_READ && !prealloc_page) {
1262                         /* We don't care if this fails */
1263                         prealloc_page = shmem_alloc_page(gfp, info, idx);
1264                         if (prealloc_page) {
1265                                 if (mem_cgroup_cache_charge(prealloc_page,
1266                                                 current->mm, GFP_KERNEL)) {
1267                                         page_cache_release(prealloc_page);
1268                                         prealloc_page = NULL;
1269                                 }
1270                         }
1271                 }
1272         }
1273         error = 0;
1274
1275         spin_lock(&info->lock);
1276         shmem_recalc_inode(inode);
1277         entry = shmem_swp_alloc(info, idx, sgp);
1278         if (IS_ERR(entry)) {
1279                 spin_unlock(&info->lock);
1280                 error = PTR_ERR(entry);
1281                 goto failed;
1282         }
1283         swap = *entry;
1284
1285         if (swap.val) {
1286                 /* Look it up and read it in.. */
1287                 swappage = lookup_swap_cache(swap);
1288                 if (!swappage) {
1289                         shmem_swp_unmap(entry);
1290                         /* here we actually do the io */
1291                         if (type && !(*type & VM_FAULT_MAJOR)) {
1292                                 __count_vm_event(PGMAJFAULT);
1293                                 *type |= VM_FAULT_MAJOR;
1294                         }
1295                         spin_unlock(&info->lock);
1296                         swappage = shmem_swapin(swap, gfp, info, idx);
1297                         if (!swappage) {
1298                                 spin_lock(&info->lock);
1299                                 entry = shmem_swp_alloc(info, idx, sgp);
1300                                 if (IS_ERR(entry))
1301                                         error = PTR_ERR(entry);
1302                                 else {
1303                                         if (entry->val == swap.val)
1304                                                 error = -ENOMEM;
1305                                         shmem_swp_unmap(entry);
1306                                 }
1307                                 spin_unlock(&info->lock);
1308                                 if (error)
1309                                         goto failed;
1310                                 goto repeat;
1311                         }
1312                         wait_on_page_locked(swappage);
1313                         page_cache_release(swappage);
1314                         goto repeat;
1315                 }
1316
1317                 /* We have to do this with page locked to prevent races */
1318                 if (!trylock_page(swappage)) {
1319                         shmem_swp_unmap(entry);
1320                         spin_unlock(&info->lock);
1321                         wait_on_page_locked(swappage);
1322                         page_cache_release(swappage);
1323                         goto repeat;
1324                 }
1325                 if (PageWriteback(swappage)) {
1326                         shmem_swp_unmap(entry);
1327                         spin_unlock(&info->lock);
1328                         wait_on_page_writeback(swappage);
1329                         unlock_page(swappage);
1330                         page_cache_release(swappage);
1331                         goto repeat;
1332                 }
1333                 if (!PageUptodate(swappage)) {
1334                         shmem_swp_unmap(entry);
1335                         spin_unlock(&info->lock);
1336                         unlock_page(swappage);
1337                         page_cache_release(swappage);
1338                         error = -EIO;
1339                         goto failed;
1340                 }
1341
1342                 if (filepage) {
1343                         shmem_swp_set(info, entry, 0);
1344                         shmem_swp_unmap(entry);
1345                         delete_from_swap_cache(swappage);
1346                         spin_unlock(&info->lock);
1347                         copy_highpage(filepage, swappage);
1348                         unlock_page(swappage);
1349                         page_cache_release(swappage);
1350                         flush_dcache_page(filepage);
1351                         SetPageUptodate(filepage);
1352                         set_page_dirty(filepage);
1353                         swap_free(swap);
1354                 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1355                                         idx, GFP_NOWAIT))) {
1356                         info->flags |= SHMEM_PAGEIN;
1357                         shmem_swp_set(info, entry, 0);
1358                         shmem_swp_unmap(entry);
1359                         delete_from_swap_cache(swappage);
1360                         spin_unlock(&info->lock);
1361                         filepage = swappage;
1362                         set_page_dirty(filepage);
1363                         swap_free(swap);
1364                 } else {
1365                         shmem_swp_unmap(entry);
1366                         spin_unlock(&info->lock);
1367                         if (error == -ENOMEM) {
1368                                 /*
1369                                  * reclaim from proper memory cgroup and
1370                                  * call memcg's OOM if needed.
1371                                  */
1372                                 error = mem_cgroup_shmem_charge_fallback(
1373                                                                 swappage,
1374                                                                 current->mm,
1375                                                                 gfp);
1376                                 if (error) {
1377                                         unlock_page(swappage);
1378                                         page_cache_release(swappage);
1379                                         goto failed;
1380                                 }
1381                         }
1382                         unlock_page(swappage);
1383                         page_cache_release(swappage);
1384                         goto repeat;
1385                 }
1386         } else if (sgp == SGP_READ && !filepage) {
1387                 shmem_swp_unmap(entry);
1388                 filepage = find_get_page(mapping, idx);
1389                 if (filepage &&
1390                     (!PageUptodate(filepage) || !trylock_page(filepage))) {
1391                         spin_unlock(&info->lock);
1392                         wait_on_page_locked(filepage);
1393                         page_cache_release(filepage);
1394                         filepage = NULL;
1395                         goto repeat;
1396                 }
1397                 spin_unlock(&info->lock);
1398         } else {
1399                 shmem_swp_unmap(entry);
1400                 sbinfo = SHMEM_SB(inode->i_sb);
1401                 if (sbinfo->max_blocks) {
1402                         if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) ||
1403                             shmem_acct_block(info->flags)) {
1404                                 spin_unlock(&info->lock);
1405                                 error = -ENOSPC;
1406                                 goto failed;
1407                         }
1408                         percpu_counter_inc(&sbinfo->used_blocks);
1409                         spin_lock(&inode->i_lock);
1410                         inode->i_blocks += BLOCKS_PER_PAGE;
1411                         spin_unlock(&inode->i_lock);
1412                 } else if (shmem_acct_block(info->flags)) {
1413                         spin_unlock(&info->lock);
1414                         error = -ENOSPC;
1415                         goto failed;
1416                 }
1417
1418                 if (!filepage) {
1419                         int ret;
1420
1421                         if (!prealloc_page) {
1422                                 spin_unlock(&info->lock);
1423                                 filepage = shmem_alloc_page(gfp, info, idx);
1424                                 if (!filepage) {
1425                                         shmem_unacct_blocks(info->flags, 1);
1426                                         shmem_free_blocks(inode, 1);
1427                                         error = -ENOMEM;
1428                                         goto failed;
1429                                 }
1430                                 SetPageSwapBacked(filepage);
1431
1432                                 /*
1433                                  * Precharge page while we can wait, compensate
1434                                  * after
1435                                  */
1436                                 error = mem_cgroup_cache_charge(filepage,
1437                                         current->mm, GFP_KERNEL);
1438                                 if (error) {
1439                                         page_cache_release(filepage);
1440                                         shmem_unacct_blocks(info->flags, 1);
1441                                         shmem_free_blocks(inode, 1);
1442                                         filepage = NULL;
1443                                         goto failed;
1444                                 }
1445
1446                                 spin_lock(&info->lock);
1447                         } else {
1448                                 filepage = prealloc_page;
1449                                 prealloc_page = NULL;
1450                                 SetPageSwapBacked(filepage);
1451                         }
1452
1453                         entry = shmem_swp_alloc(info, idx, sgp);
1454                         if (IS_ERR(entry))
1455                                 error = PTR_ERR(entry);
1456                         else {
1457                                 swap = *entry;
1458                                 shmem_swp_unmap(entry);
1459                         }
1460                         ret = error || swap.val;
1461                         if (ret)
1462                                 mem_cgroup_uncharge_cache_page(filepage);
1463                         else
1464                                 ret = add_to_page_cache_lru(filepage, mapping,
1465                                                 idx, GFP_NOWAIT);
1466                         /*
1467                          * At add_to_page_cache_lru() failure, uncharge will
1468                          * be done automatically.
1469                          */
1470                         if (ret) {
1471                                 spin_unlock(&info->lock);
1472                                 page_cache_release(filepage);
1473                                 shmem_unacct_blocks(info->flags, 1);
1474                                 shmem_free_blocks(inode, 1);
1475                                 filepage = NULL;
1476                                 if (error)
1477                                         goto failed;
1478                                 goto repeat;
1479                         }
1480                         info->flags |= SHMEM_PAGEIN;
1481                 }
1482
1483                 info->alloced++;
1484                 spin_unlock(&info->lock);
1485                 clear_highpage(filepage);
1486                 flush_dcache_page(filepage);
1487                 SetPageUptodate(filepage);
1488                 if (sgp == SGP_DIRTY)
1489                         set_page_dirty(filepage);
1490         }
1491 done:
1492         *pagep = filepage;
1493         error = 0;
1494         goto out;
1495
1496 failed:
1497         if (*pagep != filepage) {
1498                 unlock_page(filepage);
1499                 page_cache_release(filepage);
1500         }
1501 out:
1502         if (prealloc_page) {
1503                 mem_cgroup_uncharge_cache_page(prealloc_page);
1504                 page_cache_release(prealloc_page);
1505         }
1506         return error;
1507 }
1508
1509 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1510 {
1511         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1512         int error;
1513         int ret;
1514
1515         if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1516                 return VM_FAULT_SIGBUS;
1517
1518         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1519         if (error)
1520                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1521
1522         return ret | VM_FAULT_LOCKED;
1523 }
1524
1525 #ifdef CONFIG_NUMA
1526 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1527 {
1528         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1529         return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1530 }
1531
1532 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1533                                           unsigned long addr)
1534 {
1535         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1536         unsigned long idx;
1537
1538         idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1539         return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1540 }
1541 #endif
1542
1543 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1544 {
1545         struct inode *inode = file->f_path.dentry->d_inode;
1546         struct shmem_inode_info *info = SHMEM_I(inode);
1547         int retval = -ENOMEM;
1548
1549         spin_lock(&info->lock);
1550         if (lock && !(info->flags & VM_LOCKED)) {
1551                 if (!user_shm_lock(inode->i_size, user))
1552                         goto out_nomem;
1553                 info->flags |= VM_LOCKED;
1554                 mapping_set_unevictable(file->f_mapping);
1555         }
1556         if (!lock && (info->flags & VM_LOCKED) && user) {
1557                 user_shm_unlock(inode->i_size, user);
1558                 info->flags &= ~VM_LOCKED;
1559                 mapping_clear_unevictable(file->f_mapping);
1560                 scan_mapping_unevictable_pages(file->f_mapping);
1561         }
1562         retval = 0;
1563
1564 out_nomem:
1565         spin_unlock(&info->lock);
1566         return retval;
1567 }
1568
1569 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1570 {
1571         file_accessed(file);
1572         vma->vm_ops = &shmem_vm_ops;
1573         vma->vm_flags |= VM_CAN_NONLINEAR;
1574         return 0;
1575 }
1576
1577 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1578                                      int mode, dev_t dev, unsigned long flags)
1579 {
1580         struct inode *inode;
1581         struct shmem_inode_info *info;
1582         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1583
1584         if (shmem_reserve_inode(sb))
1585                 return NULL;
1586
1587         inode = new_inode(sb);
1588         if (inode) {
1589                 inode->i_ino = get_next_ino();
1590                 inode_init_owner(inode, dir, mode);
1591                 inode->i_blocks = 0;
1592                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1593                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1594                 inode->i_generation = get_seconds();
1595                 info = SHMEM_I(inode);
1596                 memset(info, 0, (char *)inode - (char *)info);
1597                 spin_lock_init(&info->lock);
1598                 info->flags = flags & VM_NORESERVE;
1599                 INIT_LIST_HEAD(&info->swaplist);
1600                 cache_no_acl(inode);
1601
1602                 switch (mode & S_IFMT) {
1603                 default:
1604                         inode->i_op = &shmem_special_inode_operations;
1605                         init_special_inode(inode, mode, dev);
1606                         break;
1607                 case S_IFREG:
1608                         inode->i_mapping->a_ops = &shmem_aops;
1609                         inode->i_op = &shmem_inode_operations;
1610                         inode->i_fop = &shmem_file_operations;
1611                         mpol_shared_policy_init(&info->policy,
1612                                                  shmem_get_sbmpol(sbinfo));
1613                         break;
1614                 case S_IFDIR:
1615                         inc_nlink(inode);
1616                         /* Some things misbehave if size == 0 on a directory */
1617                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1618                         inode->i_op = &shmem_dir_inode_operations;
1619                         inode->i_fop = &simple_dir_operations;
1620                         break;
1621                 case S_IFLNK:
1622                         /*
1623                          * Must not load anything in the rbtree,
1624                          * mpol_free_shared_policy will not be called.
1625                          */
1626                         mpol_shared_policy_init(&info->policy, NULL);
1627                         break;
1628                 }
1629         } else
1630                 shmem_free_inode(sb);
1631         return inode;
1632 }
1633
1634 #ifdef CONFIG_TMPFS
1635 static const struct inode_operations shmem_symlink_inode_operations;
1636 static const struct inode_operations shmem_symlink_inline_operations;
1637
1638 /*
1639  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1640  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1641  * below the loop driver, in the generic fashion that many filesystems support.
1642  */
1643 static int shmem_readpage(struct file *file, struct page *page)
1644 {
1645         struct inode *inode = page->mapping->host;
1646         int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1647         unlock_page(page);
1648         return error;
1649 }
1650
1651 static int
1652 shmem_write_begin(struct file *file, struct address_space *mapping,
1653                         loff_t pos, unsigned len, unsigned flags,
1654                         struct page **pagep, void **fsdata)
1655 {
1656         struct inode *inode = mapping->host;
1657         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1658         *pagep = NULL;
1659         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1660 }
1661
1662 static int
1663 shmem_write_end(struct file *file, struct address_space *mapping,
1664                         loff_t pos, unsigned len, unsigned copied,
1665                         struct page *page, void *fsdata)
1666 {
1667         struct inode *inode = mapping->host;
1668
1669         if (pos + copied > inode->i_size)
1670                 i_size_write(inode, pos + copied);
1671
1672         set_page_dirty(page);
1673         unlock_page(page);
1674         page_cache_release(page);
1675
1676         return copied;
1677 }
1678
1679 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1680 {
1681         struct inode *inode = filp->f_path.dentry->d_inode;
1682         struct address_space *mapping = inode->i_mapping;
1683         unsigned long index, offset;
1684         enum sgp_type sgp = SGP_READ;
1685
1686         /*
1687          * Might this read be for a stacking filesystem?  Then when reading
1688          * holes of a sparse file, we actually need to allocate those pages,
1689          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1690          */
1691         if (segment_eq(get_fs(), KERNEL_DS))
1692                 sgp = SGP_DIRTY;
1693
1694         index = *ppos >> PAGE_CACHE_SHIFT;
1695         offset = *ppos & ~PAGE_CACHE_MASK;
1696
1697         for (;;) {
1698                 struct page *page = NULL;
1699                 unsigned long end_index, nr, ret;
1700                 loff_t i_size = i_size_read(inode);
1701
1702                 end_index = i_size >> PAGE_CACHE_SHIFT;
1703                 if (index > end_index)
1704                         break;
1705                 if (index == end_index) {
1706                         nr = i_size & ~PAGE_CACHE_MASK;
1707                         if (nr <= offset)
1708                                 break;
1709                 }
1710
1711                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1712                 if (desc->error) {
1713                         if (desc->error == -EINVAL)
1714                                 desc->error = 0;
1715                         break;
1716                 }
1717                 if (page)
1718                         unlock_page(page);
1719
1720                 /*
1721                  * We must evaluate after, since reads (unlike writes)
1722                  * are called without i_mutex protection against truncate
1723                  */
1724                 nr = PAGE_CACHE_SIZE;
1725                 i_size = i_size_read(inode);
1726                 end_index = i_size >> PAGE_CACHE_SHIFT;
1727                 if (index == end_index) {
1728                         nr = i_size & ~PAGE_CACHE_MASK;
1729                         if (nr <= offset) {
1730                                 if (page)
1731                                         page_cache_release(page);
1732                                 break;
1733                         }
1734                 }
1735                 nr -= offset;
1736
1737                 if (page) {
1738                         /*
1739                          * If users can be writing to this page using arbitrary
1740                          * virtual addresses, take care about potential aliasing
1741                          * before reading the page on the kernel side.
1742                          */
1743                         if (mapping_writably_mapped(mapping))
1744                                 flush_dcache_page(page);
1745                         /*
1746                          * Mark the page accessed if we read the beginning.
1747                          */
1748                         if (!offset)
1749                                 mark_page_accessed(page);
1750                 } else {
1751                         page = ZERO_PAGE(0);
1752                         page_cache_get(page);
1753                 }
1754
1755                 /*
1756                  * Ok, we have the page, and it's up-to-date, so
1757                  * now we can copy it to user space...
1758                  *
1759                  * The actor routine returns how many bytes were actually used..
1760                  * NOTE! This may not be the same as how much of a user buffer
1761                  * we filled up (we may be padding etc), so we can only update
1762                  * "pos" here (the actor routine has to update the user buffer
1763                  * pointers and the remaining count).
1764                  */
1765                 ret = actor(desc, page, offset, nr);
1766                 offset += ret;
1767                 index += offset >> PAGE_CACHE_SHIFT;
1768                 offset &= ~PAGE_CACHE_MASK;
1769
1770                 page_cache_release(page);
1771                 if (ret != nr || !desc->count)
1772                         break;
1773
1774                 cond_resched();
1775         }
1776
1777         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1778         file_accessed(filp);
1779 }
1780
1781 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1782                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1783 {
1784         struct file *filp = iocb->ki_filp;
1785         ssize_t retval;
1786         unsigned long seg;
1787         size_t count;
1788         loff_t *ppos = &iocb->ki_pos;
1789
1790         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1791         if (retval)
1792                 return retval;
1793
1794         for (seg = 0; seg < nr_segs; seg++) {
1795                 read_descriptor_t desc;
1796
1797                 desc.written = 0;
1798                 desc.arg.buf = iov[seg].iov_base;
1799                 desc.count = iov[seg].iov_len;
1800                 if (desc.count == 0)
1801                         continue;
1802                 desc.error = 0;
1803                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1804                 retval += desc.written;
1805                 if (desc.error) {
1806                         retval = retval ?: desc.error;
1807                         break;
1808                 }
1809                 if (desc.count > 0)
1810                         break;
1811         }
1812         return retval;
1813 }
1814
1815 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1816 {
1817         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1818
1819         buf->f_type = TMPFS_MAGIC;
1820         buf->f_bsize = PAGE_CACHE_SIZE;
1821         buf->f_namelen = NAME_MAX;
1822         if (sbinfo->max_blocks) {
1823                 buf->f_blocks = sbinfo->max_blocks;
1824                 buf->f_bavail = buf->f_bfree =
1825                                 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1826         }
1827         if (sbinfo->max_inodes) {
1828                 buf->f_files = sbinfo->max_inodes;
1829                 buf->f_ffree = sbinfo->free_inodes;
1830         }
1831         /* else leave those fields 0 like simple_statfs */
1832         return 0;
1833 }
1834
1835 /*
1836  * File creation. Allocate an inode, and we're done..
1837  */
1838 static int
1839 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1840 {
1841         struct inode *inode;
1842         int error = -ENOSPC;
1843
1844         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1845         if (inode) {
1846                 error = security_inode_init_security(inode, dir,
1847                                                      &dentry->d_name, NULL,
1848                                                      NULL, NULL);
1849                 if (error) {
1850                         if (error != -EOPNOTSUPP) {
1851                                 iput(inode);
1852                                 return error;
1853                         }
1854                 }
1855 #ifdef CONFIG_TMPFS_POSIX_ACL
1856                 error = generic_acl_init(inode, dir);
1857                 if (error) {
1858                         iput(inode);
1859                         return error;
1860                 }
1861 #else
1862                 error = 0;
1863 #endif
1864                 dir->i_size += BOGO_DIRENT_SIZE;
1865                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1866                 d_instantiate(dentry, inode);
1867                 dget(dentry); /* Extra count - pin the dentry in core */
1868         }
1869         return error;
1870 }
1871
1872 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1873 {
1874         int error;
1875
1876         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1877                 return error;
1878         inc_nlink(dir);
1879         return 0;
1880 }
1881
1882 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1883                 struct nameidata *nd)
1884 {
1885         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1886 }
1887
1888 /*
1889  * Link a file..
1890  */
1891 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1892 {
1893         struct inode *inode = old_dentry->d_inode;
1894         int ret;
1895
1896         /*
1897          * No ordinary (disk based) filesystem counts links as inodes;
1898          * but each new link needs a new dentry, pinning lowmem, and
1899          * tmpfs dentries cannot be pruned until they are unlinked.
1900          */
1901         ret = shmem_reserve_inode(inode->i_sb);
1902         if (ret)
1903                 goto out;
1904
1905         dir->i_size += BOGO_DIRENT_SIZE;
1906         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1907         inc_nlink(inode);
1908         ihold(inode);   /* New dentry reference */
1909         dget(dentry);           /* Extra pinning count for the created dentry */
1910         d_instantiate(dentry, inode);
1911 out:
1912         return ret;
1913 }
1914
1915 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1916 {
1917         struct inode *inode = dentry->d_inode;
1918
1919         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1920                 shmem_free_inode(inode->i_sb);
1921
1922         dir->i_size -= BOGO_DIRENT_SIZE;
1923         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1924         drop_nlink(inode);
1925         dput(dentry);   /* Undo the count from "create" - this does all the work */
1926         return 0;
1927 }
1928
1929 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1930 {
1931         if (!simple_empty(dentry))
1932                 return -ENOTEMPTY;
1933
1934         drop_nlink(dentry->d_inode);
1935         drop_nlink(dir);
1936         return shmem_unlink(dir, dentry);
1937 }
1938
1939 /*
1940  * The VFS layer already does all the dentry stuff for rename,
1941  * we just have to decrement the usage count for the target if
1942  * it exists so that the VFS layer correctly free's it when it
1943  * gets overwritten.
1944  */
1945 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1946 {
1947         struct inode *inode = old_dentry->d_inode;
1948         int they_are_dirs = S_ISDIR(inode->i_mode);
1949
1950         if (!simple_empty(new_dentry))
1951                 return -ENOTEMPTY;
1952
1953         if (new_dentry->d_inode) {
1954                 (void) shmem_unlink(new_dir, new_dentry);
1955                 if (they_are_dirs)
1956                         drop_nlink(old_dir);
1957         } else if (they_are_dirs) {
1958                 drop_nlink(old_dir);
1959                 inc_nlink(new_dir);
1960         }
1961
1962         old_dir->i_size -= BOGO_DIRENT_SIZE;
1963         new_dir->i_size += BOGO_DIRENT_SIZE;
1964         old_dir->i_ctime = old_dir->i_mtime =
1965         new_dir->i_ctime = new_dir->i_mtime =
1966         inode->i_ctime = CURRENT_TIME;
1967         return 0;
1968 }
1969
1970 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1971 {
1972         int error;
1973         int len;
1974         struct inode *inode;
1975         struct page *page = NULL;
1976         char *kaddr;
1977         struct shmem_inode_info *info;
1978
1979         len = strlen(symname) + 1;
1980         if (len > PAGE_CACHE_SIZE)
1981                 return -ENAMETOOLONG;
1982
1983         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1984         if (!inode)
1985                 return -ENOSPC;
1986
1987         error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1988                                              NULL, NULL);
1989         if (error) {
1990                 if (error != -EOPNOTSUPP) {
1991                         iput(inode);
1992                         return error;
1993                 }
1994                 error = 0;
1995         }
1996
1997         info = SHMEM_I(inode);
1998         inode->i_size = len-1;
1999         if (len <= (char *)inode - (char *)info) {
2000                 /* do it inline */
2001                 memcpy(info, symname, len);
2002                 inode->i_op = &shmem_symlink_inline_operations;
2003         } else {
2004                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2005                 if (error) {
2006                         iput(inode);
2007                         return error;
2008                 }
2009                 inode->i_mapping->a_ops = &shmem_aops;
2010                 inode->i_op = &shmem_symlink_inode_operations;
2011                 kaddr = kmap_atomic(page, KM_USER0);
2012                 memcpy(kaddr, symname, len);
2013                 kunmap_atomic(kaddr, KM_USER0);
2014                 set_page_dirty(page);
2015                 unlock_page(page);
2016                 page_cache_release(page);
2017         }
2018         dir->i_size += BOGO_DIRENT_SIZE;
2019         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2020         d_instantiate(dentry, inode);
2021         dget(dentry);
2022         return 0;
2023 }
2024
2025 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2026 {
2027         nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2028         return NULL;
2029 }
2030
2031 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2032 {
2033         struct page *page = NULL;
2034         int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2035         nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2036         if (page)
2037                 unlock_page(page);
2038         return page;
2039 }
2040
2041 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2042 {
2043         if (!IS_ERR(nd_get_link(nd))) {
2044                 struct page *page = cookie;
2045                 kunmap(page);
2046                 mark_page_accessed(page);
2047                 page_cache_release(page);
2048         }
2049 }
2050
2051 static const struct inode_operations shmem_symlink_inline_operations = {
2052         .readlink       = generic_readlink,
2053         .follow_link    = shmem_follow_link_inline,
2054 };
2055
2056 static const struct inode_operations shmem_symlink_inode_operations = {
2057         .readlink       = generic_readlink,
2058         .follow_link    = shmem_follow_link,
2059         .put_link       = shmem_put_link,
2060 };
2061
2062 #ifdef CONFIG_TMPFS_POSIX_ACL
2063 /*
2064  * Superblocks without xattr inode operations will get security.* xattr
2065  * support from the VFS "for free". As soon as we have any other xattrs
2066  * like ACLs, we also need to implement the security.* handlers at
2067  * filesystem level, though.
2068  */
2069
2070 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2071                                         size_t list_len, const char *name,
2072                                         size_t name_len, int handler_flags)
2073 {
2074         return security_inode_listsecurity(dentry->d_inode, list, list_len);
2075 }
2076
2077 static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2078                 void *buffer, size_t size, int handler_flags)
2079 {
2080         if (strcmp(name, "") == 0)
2081                 return -EINVAL;
2082         return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2083 }
2084
2085 static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2086                 const void *value, size_t size, int flags, int handler_flags)
2087 {
2088         if (strcmp(name, "") == 0)
2089                 return -EINVAL;
2090         return security_inode_setsecurity(dentry->d_inode, name, value,
2091                                           size, flags);
2092 }
2093
2094 static const struct xattr_handler shmem_xattr_security_handler = {
2095         .prefix = XATTR_SECURITY_PREFIX,
2096         .list   = shmem_xattr_security_list,
2097         .get    = shmem_xattr_security_get,
2098         .set    = shmem_xattr_security_set,
2099 };
2100
2101 static const struct xattr_handler *shmem_xattr_handlers[] = {
2102         &generic_acl_access_handler,
2103         &generic_acl_default_handler,
2104         &shmem_xattr_security_handler,
2105         NULL
2106 };
2107 #endif
2108
2109 static struct dentry *shmem_get_parent(struct dentry *child)
2110 {
2111         return ERR_PTR(-ESTALE);
2112 }
2113
2114 static int shmem_match(struct inode *ino, void *vfh)
2115 {
2116         __u32 *fh = vfh;
2117         __u64 inum = fh[2];
2118         inum = (inum << 32) | fh[1];
2119         return ino->i_ino == inum && fh[0] == ino->i_generation;
2120 }
2121
2122 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2123                 struct fid *fid, int fh_len, int fh_type)
2124 {
2125         struct inode *inode;
2126         struct dentry *dentry = NULL;
2127         u64 inum = fid->raw[2];
2128         inum = (inum << 32) | fid->raw[1];
2129
2130         if (fh_len < 3)
2131                 return NULL;
2132
2133         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2134                         shmem_match, fid->raw);
2135         if (inode) {
2136                 dentry = d_find_alias(inode);
2137                 iput(inode);
2138         }
2139
2140         return dentry;
2141 }
2142
2143 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2144                                 int connectable)
2145 {
2146         struct inode *inode = dentry->d_inode;
2147
2148         if (*len < 3) {
2149                 *len = 3;
2150                 return 255;
2151         }
2152
2153         if (inode_unhashed(inode)) {
2154                 /* Unfortunately insert_inode_hash is not idempotent,
2155                  * so as we hash inodes here rather than at creation
2156                  * time, we need a lock to ensure we only try
2157                  * to do it once
2158                  */
2159                 static DEFINE_SPINLOCK(lock);
2160                 spin_lock(&lock);
2161                 if (inode_unhashed(inode))
2162                         __insert_inode_hash(inode,
2163                                             inode->i_ino + inode->i_generation);
2164                 spin_unlock(&lock);
2165         }
2166
2167         fh[0] = inode->i_generation;
2168         fh[1] = inode->i_ino;
2169         fh[2] = ((__u64)inode->i_ino) >> 32;
2170
2171         *len = 3;
2172         return 1;
2173 }
2174
2175 static const struct export_operations shmem_export_ops = {
2176         .get_parent     = shmem_get_parent,
2177         .encode_fh      = shmem_encode_fh,
2178         .fh_to_dentry   = shmem_fh_to_dentry,
2179 };
2180
2181 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2182                                bool remount)
2183 {
2184         char *this_char, *value, *rest;
2185
2186         while (options != NULL) {
2187                 this_char = options;
2188                 for (;;) {
2189                         /*
2190                          * NUL-terminate this option: unfortunately,
2191                          * mount options form a comma-separated list,
2192                          * but mpol's nodelist may also contain commas.
2193                          */
2194                         options = strchr(options, ',');
2195                         if (options == NULL)
2196                                 break;
2197                         options++;
2198                         if (!isdigit(*options)) {
2199                                 options[-1] = '\0';
2200                                 break;
2201                         }
2202                 }
2203                 if (!*this_char)
2204                         continue;
2205                 if ((value = strchr(this_char,'=')) != NULL) {
2206                         *value++ = 0;
2207                 } else {
2208                         printk(KERN_ERR
2209                             "tmpfs: No value for mount option '%s'\n",
2210                             this_char);
2211                         return 1;
2212                 }
2213
2214                 if (!strcmp(this_char,"size")) {
2215                         unsigned long long size;
2216                         size = memparse(value,&rest);
2217                         if (*rest == '%') {
2218                                 size <<= PAGE_SHIFT;
2219                                 size *= totalram_pages;
2220                                 do_div(size, 100);
2221                                 rest++;
2222                         }
2223                         if (*rest)
2224                                 goto bad_val;
2225                         sbinfo->max_blocks =
2226                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2227                 } else if (!strcmp(this_char,"nr_blocks")) {
2228                         sbinfo->max_blocks = memparse(value, &rest);
2229                         if (*rest)
2230                                 goto bad_val;
2231                 } else if (!strcmp(this_char,"nr_inodes")) {
2232                         sbinfo->max_inodes = memparse(value, &rest);
2233                         if (*rest)
2234                                 goto bad_val;
2235                 } else if (!strcmp(this_char,"mode")) {
2236                         if (remount)
2237                                 continue;
2238                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2239                         if (*rest)
2240                                 goto bad_val;
2241                 } else if (!strcmp(this_char,"uid")) {
2242                         if (remount)
2243                                 continue;
2244                         sbinfo->uid = simple_strtoul(value, &rest, 0);
2245                         if (*rest)
2246                                 goto bad_val;
2247                 } else if (!strcmp(this_char,"gid")) {
2248                         if (remount)
2249                                 continue;
2250                         sbinfo->gid = simple_strtoul(value, &rest, 0);
2251                         if (*rest)
2252                                 goto bad_val;
2253                 } else if (!strcmp(this_char,"mpol")) {
2254                         if (mpol_parse_str(value, &sbinfo->mpol, 1))
2255                                 goto bad_val;
2256                 } else {
2257                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2258                                this_char);
2259                         return 1;
2260                 }
2261         }
2262         return 0;
2263
2264 bad_val:
2265         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2266                value, this_char);
2267         return 1;
2268
2269 }
2270
2271 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2272 {
2273         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2274         struct shmem_sb_info config = *sbinfo;
2275         unsigned long inodes;
2276         int error = -EINVAL;
2277
2278         if (shmem_parse_options(data, &config, true))
2279                 return error;
2280
2281         spin_lock(&sbinfo->stat_lock);
2282         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2283         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2284                 goto out;
2285         if (config.max_inodes < inodes)
2286                 goto out;
2287         /*
2288          * Those tests also disallow limited->unlimited while any are in
2289          * use, so i_blocks will always be zero when max_blocks is zero;
2290          * but we must separately disallow unlimited->limited, because
2291          * in that case we have no record of how much is already in use.
2292          */
2293         if (config.max_blocks && !sbinfo->max_blocks)
2294                 goto out;
2295         if (config.max_inodes && !sbinfo->max_inodes)
2296                 goto out;
2297
2298         error = 0;
2299         sbinfo->max_blocks  = config.max_blocks;
2300         sbinfo->max_inodes  = config.max_inodes;
2301         sbinfo->free_inodes = config.max_inodes - inodes;
2302
2303         mpol_put(sbinfo->mpol);
2304         sbinfo->mpol        = config.mpol;      /* transfers initial ref */
2305 out:
2306         spin_unlock(&sbinfo->stat_lock);
2307         return error;
2308 }
2309
2310 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2311 {
2312         struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2313
2314         if (sbinfo->max_blocks != shmem_default_max_blocks())
2315                 seq_printf(seq, ",size=%luk",
2316                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2317         if (sbinfo->max_inodes != shmem_default_max_inodes())
2318                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2319         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2320                 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2321         if (sbinfo->uid != 0)
2322                 seq_printf(seq, ",uid=%u", sbinfo->uid);
2323         if (sbinfo->gid != 0)
2324                 seq_printf(seq, ",gid=%u", sbinfo->gid);
2325         shmem_show_mpol(seq, sbinfo->mpol);
2326         return 0;
2327 }
2328 #endif /* CONFIG_TMPFS */
2329
2330 static void shmem_put_super(struct super_block *sb)
2331 {
2332         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2333
2334         percpu_counter_destroy(&sbinfo->used_blocks);
2335         kfree(sbinfo);
2336         sb->s_fs_info = NULL;
2337 }
2338
2339 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2340 {
2341         struct inode *inode;
2342         struct dentry *root;
2343         struct shmem_sb_info *sbinfo;
2344         int err = -ENOMEM;
2345
2346         /* Round up to L1_CACHE_BYTES to resist false sharing */
2347         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2348                                 L1_CACHE_BYTES), GFP_KERNEL);
2349         if (!sbinfo)
2350                 return -ENOMEM;
2351
2352         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2353         sbinfo->uid = current_fsuid();
2354         sbinfo->gid = current_fsgid();
2355         sb->s_fs_info = sbinfo;
2356
2357 #ifdef CONFIG_TMPFS
2358         /*
2359          * Per default we only allow half of the physical ram per
2360          * tmpfs instance, limiting inodes to one per page of lowmem;
2361          * but the internal instance is left unlimited.
2362          */
2363         if (!(sb->s_flags & MS_NOUSER)) {
2364                 sbinfo->max_blocks = shmem_default_max_blocks();
2365                 sbinfo->max_inodes = shmem_default_max_inodes();
2366                 if (shmem_parse_options(data, sbinfo, false)) {
2367                         err = -EINVAL;
2368                         goto failed;
2369                 }
2370         }
2371         sb->s_export_op = &shmem_export_ops;
2372 #else
2373         sb->s_flags |= MS_NOUSER;
2374 #endif
2375
2376         spin_lock_init(&sbinfo->stat_lock);
2377         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2378                 goto failed;
2379         sbinfo->free_inodes = sbinfo->max_inodes;
2380
2381         sb->s_maxbytes = SHMEM_MAX_BYTES;
2382         sb->s_blocksize = PAGE_CACHE_SIZE;
2383         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2384         sb->s_magic = TMPFS_MAGIC;
2385         sb->s_op = &shmem_ops;
2386         sb->s_time_gran = 1;
2387 #ifdef CONFIG_TMPFS_POSIX_ACL
2388         sb->s_xattr = shmem_xattr_handlers;
2389         sb->s_flags |= MS_POSIXACL;
2390 #endif
2391
2392         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2393         if (!inode)
2394                 goto failed;
2395         inode->i_uid = sbinfo->uid;
2396         inode->i_gid = sbinfo->gid;
2397         root = d_alloc_root(inode);
2398         if (!root)
2399                 goto failed_iput;
2400         sb->s_root = root;
2401         return 0;
2402
2403 failed_iput:
2404         iput(inode);
2405 failed:
2406         shmem_put_super(sb);
2407         return err;
2408 }
2409
2410 static struct kmem_cache *shmem_inode_cachep;
2411
2412 static struct inode *shmem_alloc_inode(struct super_block *sb)
2413 {
2414         struct shmem_inode_info *p;
2415         p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2416         if (!p)
2417                 return NULL;
2418         return &p->vfs_inode;
2419 }
2420
2421 static void shmem_i_callback(struct rcu_head *head)
2422 {
2423         struct inode *inode = container_of(head, struct inode, i_rcu);
2424         INIT_LIST_HEAD(&inode->i_dentry);
2425         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2426 }
2427
2428 static void shmem_destroy_inode(struct inode *inode)
2429 {
2430         if ((inode->i_mode & S_IFMT) == S_IFREG) {
2431                 /* only struct inode is valid if it's an inline symlink */
2432                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2433         }
2434         call_rcu(&inode->i_rcu, shmem_i_callback);
2435 }
2436
2437 static void init_once(void *foo)
2438 {
2439         struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2440
2441         inode_init_once(&p->vfs_inode);
2442 }
2443
2444 static int init_inodecache(void)
2445 {
2446         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2447                                 sizeof(struct shmem_inode_info),
2448                                 0, SLAB_PANIC, init_once);
2449         return 0;
2450 }
2451
2452 static void destroy_inodecache(void)
2453 {
2454         kmem_cache_destroy(shmem_inode_cachep);
2455 }
2456
2457 static const struct address_space_operations shmem_aops = {
2458         .writepage      = shmem_writepage,
2459         .set_page_dirty = __set_page_dirty_no_writeback,
2460 #ifdef CONFIG_TMPFS
2461         .readpage       = shmem_readpage,
2462         .write_begin    = shmem_write_begin,
2463         .write_end      = shmem_write_end,
2464 #endif
2465         .migratepage    = migrate_page,
2466         .error_remove_page = generic_error_remove_page,
2467 };
2468
2469 static const struct file_operations shmem_file_operations = {
2470         .mmap           = shmem_mmap,
2471 #ifdef CONFIG_TMPFS
2472         .llseek         = generic_file_llseek,
2473         .read           = do_sync_read,
2474         .write          = do_sync_write,
2475         .aio_read       = shmem_file_aio_read,
2476         .aio_write      = generic_file_aio_write,
2477         .fsync          = noop_fsync,
2478         .splice_read    = generic_file_splice_read,
2479         .splice_write   = generic_file_splice_write,
2480 #endif
2481 };
2482
2483 static const struct inode_operations shmem_inode_operations = {
2484         .setattr        = shmem_notify_change,
2485         .truncate_range = shmem_truncate_range,
2486 #ifdef CONFIG_TMPFS_POSIX_ACL
2487         .setxattr       = generic_setxattr,
2488         .getxattr       = generic_getxattr,
2489         .listxattr      = generic_listxattr,
2490         .removexattr    = generic_removexattr,
2491         .check_acl      = generic_check_acl,
2492 #endif
2493
2494 };
2495
2496 static const struct inode_operations shmem_dir_inode_operations = {
2497 #ifdef CONFIG_TMPFS
2498         .create         = shmem_create,
2499         .lookup         = simple_lookup,
2500         .link           = shmem_link,
2501         .unlink         = shmem_unlink,
2502         .symlink        = shmem_symlink,
2503         .mkdir          = shmem_mkdir,
2504         .rmdir          = shmem_rmdir,
2505         .mknod          = shmem_mknod,
2506         .rename         = shmem_rename,
2507 #endif
2508 #ifdef CONFIG_TMPFS_POSIX_ACL
2509         .setattr        = shmem_notify_change,
2510         .setxattr       = generic_setxattr,
2511         .getxattr       = generic_getxattr,
2512         .listxattr      = generic_listxattr,
2513         .removexattr    = generic_removexattr,
2514         .check_acl      = generic_check_acl,
2515 #endif
2516 };
2517
2518 static const struct inode_operations shmem_special_inode_operations = {
2519 #ifdef CONFIG_TMPFS_POSIX_ACL
2520         .setattr        = shmem_notify_change,
2521         .setxattr       = generic_setxattr,
2522         .getxattr       = generic_getxattr,
2523         .listxattr      = generic_listxattr,
2524         .removexattr    = generic_removexattr,
2525         .check_acl      = generic_check_acl,
2526 #endif
2527 };
2528
2529 static const struct super_operations shmem_ops = {
2530         .alloc_inode    = shmem_alloc_inode,
2531         .destroy_inode  = shmem_destroy_inode,
2532 #ifdef CONFIG_TMPFS
2533         .statfs         = shmem_statfs,
2534         .remount_fs     = shmem_remount_fs,
2535         .show_options   = shmem_show_options,
2536 #endif
2537         .evict_inode    = shmem_evict_inode,
2538         .drop_inode     = generic_delete_inode,
2539         .put_super      = shmem_put_super,
2540 };
2541
2542 static const struct vm_operations_struct shmem_vm_ops = {
2543         .fault          = shmem_fault,
2544 #ifdef CONFIG_NUMA
2545         .set_policy     = shmem_set_policy,
2546         .get_policy     = shmem_get_policy,
2547 #endif
2548 };
2549
2550
2551 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2552         int flags, const char *dev_name, void *data)
2553 {
2554         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2555 }
2556
2557 static struct file_system_type tmpfs_fs_type = {
2558         .owner          = THIS_MODULE,
2559         .name           = "tmpfs",
2560         .mount          = shmem_mount,
2561         .kill_sb        = kill_litter_super,
2562 };
2563
2564 int __init init_tmpfs(void)
2565 {
2566         int error;
2567
2568         error = bdi_init(&shmem_backing_dev_info);
2569         if (error)
2570                 goto out4;
2571
2572         error = init_inodecache();
2573         if (error)
2574                 goto out3;
2575
2576         error = register_filesystem(&tmpfs_fs_type);
2577         if (error) {
2578                 printk(KERN_ERR "Could not register tmpfs\n");
2579                 goto out2;
2580         }
2581
2582         shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2583                                 tmpfs_fs_type.name, NULL);
2584         if (IS_ERR(shm_mnt)) {
2585                 error = PTR_ERR(shm_mnt);
2586                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2587                 goto out1;
2588         }
2589         return 0;
2590
2591 out1:
2592         unregister_filesystem(&tmpfs_fs_type);
2593 out2:
2594         destroy_inodecache();
2595 out3:
2596         bdi_destroy(&shmem_backing_dev_info);
2597 out4:
2598         shm_mnt = ERR_PTR(error);
2599         return error;
2600 }
2601
2602 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2603 /**
2604  * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2605  * @inode: the inode to be searched
2606  * @pgoff: the offset to be searched
2607  * @pagep: the pointer for the found page to be stored
2608  * @ent: the pointer for the found swap entry to be stored
2609  *
2610  * If a page is found, refcount of it is incremented. Callers should handle
2611  * these refcount.
2612  */
2613 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2614                                         struct page **pagep, swp_entry_t *ent)
2615 {
2616         swp_entry_t entry = { .val = 0 }, *ptr;
2617         struct page *page = NULL;
2618         struct shmem_inode_info *info = SHMEM_I(inode);
2619
2620         if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2621                 goto out;
2622
2623         spin_lock(&info->lock);
2624         ptr = shmem_swp_entry(info, pgoff, NULL);
2625 #ifdef CONFIG_SWAP
2626         if (ptr && ptr->val) {
2627                 entry.val = ptr->val;
2628                 page = find_get_page(&swapper_space, entry.val);
2629         } else
2630 #endif
2631                 page = find_get_page(inode->i_mapping, pgoff);
2632         if (ptr)
2633                 shmem_swp_unmap(ptr);
2634         spin_unlock(&info->lock);
2635 out:
2636         *pagep = page;
2637         *ent = entry;
2638 }
2639 #endif
2640
2641 #else /* !CONFIG_SHMEM */
2642
2643 /*
2644  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2645  *
2646  * This is intended for small system where the benefits of the full
2647  * shmem code (swap-backed and resource-limited) are outweighed by
2648  * their complexity. On systems without swap this code should be
2649  * effectively equivalent, but much lighter weight.
2650  */
2651
2652 #include <linux/ramfs.h>
2653
2654 static struct file_system_type tmpfs_fs_type = {
2655         .name           = "tmpfs",
2656         .mount          = ramfs_mount,
2657         .kill_sb        = kill_litter_super,
2658 };
2659
2660 int __init init_tmpfs(void)
2661 {
2662         BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2663
2664         shm_mnt = kern_mount(&tmpfs_fs_type);
2665         BUG_ON(IS_ERR(shm_mnt));
2666
2667         return 0;
2668 }
2669
2670 int shmem_unuse(swp_entry_t entry, struct page *page)
2671 {
2672         return 0;
2673 }
2674
2675 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2676 {
2677         return 0;
2678 }
2679
2680 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2681 /**
2682  * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2683  * @inode: the inode to be searched
2684  * @pgoff: the offset to be searched
2685  * @pagep: the pointer for the found page to be stored
2686  * @ent: the pointer for the found swap entry to be stored
2687  *
2688  * If a page is found, refcount of it is incremented. Callers should handle
2689  * these refcount.
2690  */
2691 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2692                                         struct page **pagep, swp_entry_t *ent)
2693 {
2694         struct page *page = NULL;
2695
2696         if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2697                 goto out;
2698         page = find_get_page(inode->i_mapping, pgoff);
2699 out:
2700         *pagep = page;
2701         *ent = (swp_entry_t){ .val = 0 };
2702 }
2703 #endif
2704
2705 #define shmem_vm_ops                            generic_file_vm_ops
2706 #define shmem_file_operations                   ramfs_file_operations
2707 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2708 #define shmem_acct_size(flags, size)            0
2709 #define shmem_unacct_size(flags, size)          do {} while (0)
2710 #define SHMEM_MAX_BYTES                         MAX_LFS_FILESIZE
2711
2712 #endif /* CONFIG_SHMEM */
2713
2714 /* common code */
2715
2716 /**
2717  * shmem_file_setup - get an unlinked file living in tmpfs
2718  * @name: name for dentry (to be seen in /proc/<pid>/maps
2719  * @size: size to be set for the file
2720  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2721  */
2722 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2723 {
2724         int error;
2725         struct file *file;
2726         struct inode *inode;
2727         struct path path;
2728         struct dentry *root;
2729         struct qstr this;
2730
2731         if (IS_ERR(shm_mnt))
2732                 return (void *)shm_mnt;
2733
2734         if (size < 0 || size > SHMEM_MAX_BYTES)
2735                 return ERR_PTR(-EINVAL);
2736
2737         if (shmem_acct_size(flags, size))
2738                 return ERR_PTR(-ENOMEM);
2739
2740         error = -ENOMEM;
2741         this.name = name;
2742         this.len = strlen(name);
2743         this.hash = 0; /* will go */
2744         root = shm_mnt->mnt_root;
2745         path.dentry = d_alloc(root, &this);
2746         if (!path.dentry)
2747                 goto put_memory;
2748         path.mnt = mntget(shm_mnt);
2749
2750         error = -ENOSPC;
2751         inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2752         if (!inode)
2753                 goto put_dentry;
2754
2755         d_instantiate(path.dentry, inode);
2756         inode->i_size = size;
2757         inode->i_nlink = 0;     /* It is unlinked */
2758 #ifndef CONFIG_MMU
2759         error = ramfs_nommu_expand_for_mapping(inode, size);
2760         if (error)
2761                 goto put_dentry;
2762 #endif
2763
2764         error = -ENFILE;
2765         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2766                   &shmem_file_operations);
2767         if (!file)
2768                 goto put_dentry;
2769
2770         return file;
2771
2772 put_dentry:
2773         path_put(&path);
2774 put_memory:
2775         shmem_unacct_size(flags, size);
2776         return ERR_PTR(error);
2777 }
2778 EXPORT_SYMBOL_GPL(shmem_file_setup);
2779
2780 /**
2781  * shmem_zero_setup - setup a shared anonymous mapping
2782  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2783  */
2784 int shmem_zero_setup(struct vm_area_struct *vma)
2785 {
2786         struct file *file;
2787         loff_t size = vma->vm_end - vma->vm_start;
2788
2789         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2790         if (IS_ERR(file))
2791                 return PTR_ERR(file);
2792
2793         if (vma->vm_file)
2794                 fput(vma->vm_file);
2795         vma->vm_file = file;
2796         vma->vm_ops = &shmem_vm_ops;
2797         return 0;
2798 }