mm: clarify the radix_tree exceptional cases
[pandora-kernel.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/splice.h>
57 #include <linux/security.h>
58 #include <linux/swapops.h>
59 #include <linux/mempolicy.h>
60 #include <linux/namei.h>
61 #include <linux/ctype.h>
62 #include <linux/migrate.h>
63 #include <linux/highmem.h>
64 #include <linux/seq_file.h>
65 #include <linux/magic.h>
66
67 #include <asm/uaccess.h>
68 #include <asm/pgtable.h>
69
70 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
71 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
72
73 /* Pretend that each entry is of this size in directory's i_size */
74 #define BOGO_DIRENT_SIZE 20
75
76 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77 #define SHORT_SYMLINK_LEN 128
78
79 struct shmem_xattr {
80         struct list_head list;  /* anchored by shmem_inode_info->xattr_list */
81         char *name;             /* xattr name */
82         size_t size;
83         char value[0];
84 };
85
86 /* Flag allocation requirements to shmem_getpage */
87 enum sgp_type {
88         SGP_READ,       /* don't exceed i_size, don't allocate page */
89         SGP_CACHE,      /* don't exceed i_size, may allocate page */
90         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
91         SGP_WRITE,      /* may exceed i_size, may allocate page */
92 };
93
94 #ifdef CONFIG_TMPFS
95 static unsigned long shmem_default_max_blocks(void)
96 {
97         return totalram_pages / 2;
98 }
99
100 static unsigned long shmem_default_max_inodes(void)
101 {
102         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103 }
104 #endif
105
106 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
107         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
108
109 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
110         struct page **pagep, enum sgp_type sgp, int *fault_type)
111 {
112         return shmem_getpage_gfp(inode, index, pagep, sgp,
113                         mapping_gfp_mask(inode->i_mapping), fault_type);
114 }
115
116 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
117 {
118         return sb->s_fs_info;
119 }
120
121 /*
122  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
123  * for shared memory and for shared anonymous (/dev/zero) mappings
124  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
125  * consistent with the pre-accounting of private mappings ...
126  */
127 static inline int shmem_acct_size(unsigned long flags, loff_t size)
128 {
129         return (flags & VM_NORESERVE) ?
130                 0 : security_vm_enough_memory_kern(VM_ACCT(size));
131 }
132
133 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
134 {
135         if (!(flags & VM_NORESERVE))
136                 vm_unacct_memory(VM_ACCT(size));
137 }
138
139 /*
140  * ... whereas tmpfs objects are accounted incrementally as
141  * pages are allocated, in order to allow huge sparse files.
142  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
143  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
144  */
145 static inline int shmem_acct_block(unsigned long flags)
146 {
147         return (flags & VM_NORESERVE) ?
148                 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
149 }
150
151 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
152 {
153         if (flags & VM_NORESERVE)
154                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
155 }
156
157 static const struct super_operations shmem_ops;
158 static const struct address_space_operations shmem_aops;
159 static const struct file_operations shmem_file_operations;
160 static const struct inode_operations shmem_inode_operations;
161 static const struct inode_operations shmem_dir_inode_operations;
162 static const struct inode_operations shmem_special_inode_operations;
163 static const struct vm_operations_struct shmem_vm_ops;
164
165 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
166         .ra_pages       = 0,    /* No readahead */
167         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
168 };
169
170 static LIST_HEAD(shmem_swaplist);
171 static DEFINE_MUTEX(shmem_swaplist_mutex);
172
173 static int shmem_reserve_inode(struct super_block *sb)
174 {
175         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
176         if (sbinfo->max_inodes) {
177                 spin_lock(&sbinfo->stat_lock);
178                 if (!sbinfo->free_inodes) {
179                         spin_unlock(&sbinfo->stat_lock);
180                         return -ENOSPC;
181                 }
182                 sbinfo->free_inodes--;
183                 spin_unlock(&sbinfo->stat_lock);
184         }
185         return 0;
186 }
187
188 static void shmem_free_inode(struct super_block *sb)
189 {
190         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
191         if (sbinfo->max_inodes) {
192                 spin_lock(&sbinfo->stat_lock);
193                 sbinfo->free_inodes++;
194                 spin_unlock(&sbinfo->stat_lock);
195         }
196 }
197
198 /**
199  * shmem_recalc_inode - recalculate the block usage of an inode
200  * @inode: inode to recalc
201  *
202  * We have to calculate the free blocks since the mm can drop
203  * undirtied hole pages behind our back.
204  *
205  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
206  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
207  *
208  * It has to be called with the spinlock held.
209  */
210 static void shmem_recalc_inode(struct inode *inode)
211 {
212         struct shmem_inode_info *info = SHMEM_I(inode);
213         long freed;
214
215         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
216         if (freed > 0) {
217                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218                 if (sbinfo->max_blocks)
219                         percpu_counter_add(&sbinfo->used_blocks, -freed);
220                 info->alloced -= freed;
221                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
222                 shmem_unacct_blocks(info->flags, freed);
223         }
224 }
225
226 /*
227  * Replace item expected in radix tree by a new item, while holding tree lock.
228  */
229 static int shmem_radix_tree_replace(struct address_space *mapping,
230                         pgoff_t index, void *expected, void *replacement)
231 {
232         void **pslot;
233         void *item = NULL;
234
235         VM_BUG_ON(!expected);
236         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
237         if (pslot)
238                 item = radix_tree_deref_slot_protected(pslot,
239                                                         &mapping->tree_lock);
240         if (item != expected)
241                 return -ENOENT;
242         if (replacement)
243                 radix_tree_replace_slot(pslot, replacement);
244         else
245                 radix_tree_delete(&mapping->page_tree, index);
246         return 0;
247 }
248
249 /*
250  * Like add_to_page_cache_locked, but error if expected item has gone.
251  */
252 static int shmem_add_to_page_cache(struct page *page,
253                                    struct address_space *mapping,
254                                    pgoff_t index, gfp_t gfp, void *expected)
255 {
256         int error = 0;
257
258         VM_BUG_ON(!PageLocked(page));
259         VM_BUG_ON(!PageSwapBacked(page));
260
261         if (!expected)
262                 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
263         if (!error) {
264                 page_cache_get(page);
265                 page->mapping = mapping;
266                 page->index = index;
267
268                 spin_lock_irq(&mapping->tree_lock);
269                 if (!expected)
270                         error = radix_tree_insert(&mapping->page_tree,
271                                                         index, page);
272                 else
273                         error = shmem_radix_tree_replace(mapping, index,
274                                                         expected, page);
275                 if (!error) {
276                         mapping->nrpages++;
277                         __inc_zone_page_state(page, NR_FILE_PAGES);
278                         __inc_zone_page_state(page, NR_SHMEM);
279                         spin_unlock_irq(&mapping->tree_lock);
280                 } else {
281                         page->mapping = NULL;
282                         spin_unlock_irq(&mapping->tree_lock);
283                         page_cache_release(page);
284                 }
285                 if (!expected)
286                         radix_tree_preload_end();
287         }
288         if (error)
289                 mem_cgroup_uncharge_cache_page(page);
290         return error;
291 }
292
293 /*
294  * Like delete_from_page_cache, but substitutes swap for page.
295  */
296 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
297 {
298         struct address_space *mapping = page->mapping;
299         int error;
300
301         spin_lock_irq(&mapping->tree_lock);
302         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
303         page->mapping = NULL;
304         mapping->nrpages--;
305         __dec_zone_page_state(page, NR_FILE_PAGES);
306         __dec_zone_page_state(page, NR_SHMEM);
307         spin_unlock_irq(&mapping->tree_lock);
308         page_cache_release(page);
309         BUG_ON(error);
310 }
311
312 /*
313  * Like find_get_pages, but collecting swap entries as well as pages.
314  */
315 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
316                                         pgoff_t start, unsigned int nr_pages,
317                                         struct page **pages, pgoff_t *indices)
318 {
319         unsigned int i;
320         unsigned int ret;
321         unsigned int nr_found;
322
323         rcu_read_lock();
324 restart:
325         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
326                                 (void ***)pages, indices, start, nr_pages);
327         ret = 0;
328         for (i = 0; i < nr_found; i++) {
329                 struct page *page;
330 repeat:
331                 page = radix_tree_deref_slot((void **)pages[i]);
332                 if (unlikely(!page))
333                         continue;
334                 if (radix_tree_exception(page)) {
335                         if (radix_tree_deref_retry(page))
336                                 goto restart;
337                         /*
338                          * Otherwise, we must be storing a swap entry
339                          * here as an exceptional entry: so return it
340                          * without attempting to raise page count.
341                          */
342                         goto export;
343                 }
344                 if (!page_cache_get_speculative(page))
345                         goto repeat;
346
347                 /* Has the page moved? */
348                 if (unlikely(page != *((void **)pages[i]))) {
349                         page_cache_release(page);
350                         goto repeat;
351                 }
352 export:
353                 indices[ret] = indices[i];
354                 pages[ret] = page;
355                 ret++;
356         }
357         if (unlikely(!ret && nr_found))
358                 goto restart;
359         rcu_read_unlock();
360         return ret;
361 }
362
363 /*
364  * Remove swap entry from radix tree, free the swap and its page cache.
365  */
366 static int shmem_free_swap(struct address_space *mapping,
367                            pgoff_t index, void *radswap)
368 {
369         int error;
370
371         spin_lock_irq(&mapping->tree_lock);
372         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
373         spin_unlock_irq(&mapping->tree_lock);
374         if (!error)
375                 free_swap_and_cache(radix_to_swp_entry(radswap));
376         return error;
377 }
378
379 /*
380  * Pagevec may contain swap entries, so shuffle up pages before releasing.
381  */
382 static void shmem_pagevec_release(struct pagevec *pvec)
383 {
384         int i, j;
385
386         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
387                 struct page *page = pvec->pages[i];
388                 if (!radix_tree_exceptional_entry(page))
389                         pvec->pages[j++] = page;
390         }
391         pvec->nr = j;
392         pagevec_release(pvec);
393 }
394
395 /*
396  * Remove range of pages and swap entries from radix tree, and free them.
397  */
398 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
399 {
400         struct address_space *mapping = inode->i_mapping;
401         struct shmem_inode_info *info = SHMEM_I(inode);
402         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
403         unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
404         pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
405         struct pagevec pvec;
406         pgoff_t indices[PAGEVEC_SIZE];
407         long nr_swaps_freed = 0;
408         pgoff_t index;
409         int i;
410
411         BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
412
413         pagevec_init(&pvec, 0);
414         index = start;
415         while (index <= end) {
416                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
417                         min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
418                                                         pvec.pages, indices);
419                 if (!pvec.nr)
420                         break;
421                 mem_cgroup_uncharge_start();
422                 for (i = 0; i < pagevec_count(&pvec); i++) {
423                         struct page *page = pvec.pages[i];
424
425                         index = indices[i];
426                         if (index > end)
427                                 break;
428
429                         if (radix_tree_exceptional_entry(page)) {
430                                 nr_swaps_freed += !shmem_free_swap(mapping,
431                                                                 index, page);
432                                 continue;
433                         }
434
435                         if (!trylock_page(page))
436                                 continue;
437                         if (page->mapping == mapping) {
438                                 VM_BUG_ON(PageWriteback(page));
439                                 truncate_inode_page(mapping, page);
440                         }
441                         unlock_page(page);
442                 }
443                 shmem_pagevec_release(&pvec);
444                 mem_cgroup_uncharge_end();
445                 cond_resched();
446                 index++;
447         }
448
449         if (partial) {
450                 struct page *page = NULL;
451                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
452                 if (page) {
453                         zero_user_segment(page, partial, PAGE_CACHE_SIZE);
454                         set_page_dirty(page);
455                         unlock_page(page);
456                         page_cache_release(page);
457                 }
458         }
459
460         index = start;
461         for ( ; ; ) {
462                 cond_resched();
463                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
464                         min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
465                                                         pvec.pages, indices);
466                 if (!pvec.nr) {
467                         if (index == start)
468                                 break;
469                         index = start;
470                         continue;
471                 }
472                 if (index == start && indices[0] > end) {
473                         shmem_pagevec_release(&pvec);
474                         break;
475                 }
476                 mem_cgroup_uncharge_start();
477                 for (i = 0; i < pagevec_count(&pvec); i++) {
478                         struct page *page = pvec.pages[i];
479
480                         index = indices[i];
481                         if (index > end)
482                                 break;
483
484                         if (radix_tree_exceptional_entry(page)) {
485                                 nr_swaps_freed += !shmem_free_swap(mapping,
486                                                                 index, page);
487                                 continue;
488                         }
489
490                         lock_page(page);
491                         if (page->mapping == mapping) {
492                                 VM_BUG_ON(PageWriteback(page));
493                                 truncate_inode_page(mapping, page);
494                         }
495                         unlock_page(page);
496                 }
497                 shmem_pagevec_release(&pvec);
498                 mem_cgroup_uncharge_end();
499                 index++;
500         }
501
502         spin_lock(&info->lock);
503         info->swapped -= nr_swaps_freed;
504         shmem_recalc_inode(inode);
505         spin_unlock(&info->lock);
506
507         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
508 }
509 EXPORT_SYMBOL_GPL(shmem_truncate_range);
510
511 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
512 {
513         struct inode *inode = dentry->d_inode;
514         int error;
515
516         error = inode_change_ok(inode, attr);
517         if (error)
518                 return error;
519
520         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
521                 loff_t oldsize = inode->i_size;
522                 loff_t newsize = attr->ia_size;
523
524                 if (newsize != oldsize) {
525                         i_size_write(inode, newsize);
526                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
527                 }
528                 if (newsize < oldsize) {
529                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
530                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
531                         shmem_truncate_range(inode, newsize, (loff_t)-1);
532                         /* unmap again to remove racily COWed private pages */
533                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
534                 }
535         }
536
537         setattr_copy(inode, attr);
538 #ifdef CONFIG_TMPFS_POSIX_ACL
539         if (attr->ia_valid & ATTR_MODE)
540                 error = generic_acl_chmod(inode);
541 #endif
542         return error;
543 }
544
545 static void shmem_evict_inode(struct inode *inode)
546 {
547         struct shmem_inode_info *info = SHMEM_I(inode);
548         struct shmem_xattr *xattr, *nxattr;
549
550         if (inode->i_mapping->a_ops == &shmem_aops) {
551                 shmem_unacct_size(info->flags, inode->i_size);
552                 inode->i_size = 0;
553                 shmem_truncate_range(inode, 0, (loff_t)-1);
554                 if (!list_empty(&info->swaplist)) {
555                         mutex_lock(&shmem_swaplist_mutex);
556                         list_del_init(&info->swaplist);
557                         mutex_unlock(&shmem_swaplist_mutex);
558                 }
559         } else
560                 kfree(info->symlink);
561
562         list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
563                 kfree(xattr->name);
564                 kfree(xattr);
565         }
566         BUG_ON(inode->i_blocks);
567         shmem_free_inode(inode->i_sb);
568         end_writeback(inode);
569 }
570
571 /*
572  * If swap found in inode, free it and move page from swapcache to filecache.
573  */
574 static int shmem_unuse_inode(struct shmem_inode_info *info,
575                              swp_entry_t swap, struct page *page)
576 {
577         struct address_space *mapping = info->vfs_inode.i_mapping;
578         void *radswap;
579         pgoff_t index;
580         int error;
581
582         radswap = swp_to_radix_entry(swap);
583         index = radix_tree_locate_item(&mapping->page_tree, radswap);
584         if (index == -1)
585                 return 0;
586
587         /*
588          * Move _head_ to start search for next from here.
589          * But be careful: shmem_evict_inode checks list_empty without taking
590          * mutex, and there's an instant in list_move_tail when info->swaplist
591          * would appear empty, if it were the only one on shmem_swaplist.
592          */
593         if (shmem_swaplist.next != &info->swaplist)
594                 list_move_tail(&shmem_swaplist, &info->swaplist);
595
596         /*
597          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
598          * but also to hold up shmem_evict_inode(): so inode cannot be freed
599          * beneath us (pagelock doesn't help until the page is in pagecache).
600          */
601         error = shmem_add_to_page_cache(page, mapping, index,
602                                                 GFP_NOWAIT, radswap);
603         /* which does mem_cgroup_uncharge_cache_page on error */
604
605         if (error != -ENOMEM) {
606                 /*
607                  * Truncation and eviction use free_swap_and_cache(), which
608                  * only does trylock page: if we raced, best clean up here.
609                  */
610                 delete_from_swap_cache(page);
611                 set_page_dirty(page);
612                 if (!error) {
613                         spin_lock(&info->lock);
614                         info->swapped--;
615                         spin_unlock(&info->lock);
616                         swap_free(swap);
617                 }
618                 error = 1;      /* not an error, but entry was found */
619         }
620         return error;
621 }
622
623 /*
624  * Search through swapped inodes to find and replace swap by page.
625  */
626 int shmem_unuse(swp_entry_t swap, struct page *page)
627 {
628         struct list_head *this, *next;
629         struct shmem_inode_info *info;
630         int found = 0;
631         int error;
632
633         /*
634          * Charge page using GFP_KERNEL while we can wait, before taking
635          * the shmem_swaplist_mutex which might hold up shmem_writepage().
636          * Charged back to the user (not to caller) when swap account is used.
637          */
638         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
639         if (error)
640                 goto out;
641         /* No radix_tree_preload: swap entry keeps a place for page in tree */
642
643         mutex_lock(&shmem_swaplist_mutex);
644         list_for_each_safe(this, next, &shmem_swaplist) {
645                 info = list_entry(this, struct shmem_inode_info, swaplist);
646                 if (info->swapped)
647                         found = shmem_unuse_inode(info, swap, page);
648                 else
649                         list_del_init(&info->swaplist);
650                 cond_resched();
651                 if (found)
652                         break;
653         }
654         mutex_unlock(&shmem_swaplist_mutex);
655
656         if (!found)
657                 mem_cgroup_uncharge_cache_page(page);
658         if (found < 0)
659                 error = found;
660 out:
661         unlock_page(page);
662         page_cache_release(page);
663         return error;
664 }
665
666 /*
667  * Move the page from the page cache to the swap cache.
668  */
669 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
670 {
671         struct shmem_inode_info *info;
672         struct address_space *mapping;
673         struct inode *inode;
674         swp_entry_t swap;
675         pgoff_t index;
676
677         BUG_ON(!PageLocked(page));
678         mapping = page->mapping;
679         index = page->index;
680         inode = mapping->host;
681         info = SHMEM_I(inode);
682         if (info->flags & VM_LOCKED)
683                 goto redirty;
684         if (!total_swap_pages)
685                 goto redirty;
686
687         /*
688          * shmem_backing_dev_info's capabilities prevent regular writeback or
689          * sync from ever calling shmem_writepage; but a stacking filesystem
690          * might use ->writepage of its underlying filesystem, in which case
691          * tmpfs should write out to swap only in response to memory pressure,
692          * and not for the writeback threads or sync.
693          */
694         if (!wbc->for_reclaim) {
695                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
696                 goto redirty;
697         }
698         swap = get_swap_page();
699         if (!swap.val)
700                 goto redirty;
701
702         /*
703          * Add inode to shmem_unuse()'s list of swapped-out inodes,
704          * if it's not already there.  Do it now before the page is
705          * moved to swap cache, when its pagelock no longer protects
706          * the inode from eviction.  But don't unlock the mutex until
707          * we've incremented swapped, because shmem_unuse_inode() will
708          * prune a !swapped inode from the swaplist under this mutex.
709          */
710         mutex_lock(&shmem_swaplist_mutex);
711         if (list_empty(&info->swaplist))
712                 list_add_tail(&info->swaplist, &shmem_swaplist);
713
714         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
715                 swap_shmem_alloc(swap);
716                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
717
718                 spin_lock(&info->lock);
719                 info->swapped++;
720                 shmem_recalc_inode(inode);
721                 spin_unlock(&info->lock);
722
723                 mutex_unlock(&shmem_swaplist_mutex);
724                 BUG_ON(page_mapped(page));
725                 swap_writepage(page, wbc);
726                 return 0;
727         }
728
729         mutex_unlock(&shmem_swaplist_mutex);
730         swapcache_free(swap, NULL);
731 redirty:
732         set_page_dirty(page);
733         if (wbc->for_reclaim)
734                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
735         unlock_page(page);
736         return 0;
737 }
738
739 #ifdef CONFIG_NUMA
740 #ifdef CONFIG_TMPFS
741 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
742 {
743         char buffer[64];
744
745         if (!mpol || mpol->mode == MPOL_DEFAULT)
746                 return;         /* show nothing */
747
748         mpol_to_str(buffer, sizeof(buffer), mpol, 1);
749
750         seq_printf(seq, ",mpol=%s", buffer);
751 }
752
753 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
754 {
755         struct mempolicy *mpol = NULL;
756         if (sbinfo->mpol) {
757                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
758                 mpol = sbinfo->mpol;
759                 mpol_get(mpol);
760                 spin_unlock(&sbinfo->stat_lock);
761         }
762         return mpol;
763 }
764 #endif /* CONFIG_TMPFS */
765
766 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
767                         struct shmem_inode_info *info, pgoff_t index)
768 {
769         struct mempolicy mpol, *spol;
770         struct vm_area_struct pvma;
771
772         spol = mpol_cond_copy(&mpol,
773                         mpol_shared_policy_lookup(&info->policy, index));
774
775         /* Create a pseudo vma that just contains the policy */
776         pvma.vm_start = 0;
777         pvma.vm_pgoff = index;
778         pvma.vm_ops = NULL;
779         pvma.vm_policy = spol;
780         return swapin_readahead(swap, gfp, &pvma, 0);
781 }
782
783 static struct page *shmem_alloc_page(gfp_t gfp,
784                         struct shmem_inode_info *info, pgoff_t index)
785 {
786         struct vm_area_struct pvma;
787
788         /* Create a pseudo vma that just contains the policy */
789         pvma.vm_start = 0;
790         pvma.vm_pgoff = index;
791         pvma.vm_ops = NULL;
792         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
793
794         /*
795          * alloc_page_vma() will drop the shared policy reference
796          */
797         return alloc_page_vma(gfp, &pvma, 0);
798 }
799 #else /* !CONFIG_NUMA */
800 #ifdef CONFIG_TMPFS
801 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
802 {
803 }
804 #endif /* CONFIG_TMPFS */
805
806 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
807                         struct shmem_inode_info *info, pgoff_t index)
808 {
809         return swapin_readahead(swap, gfp, NULL, 0);
810 }
811
812 static inline struct page *shmem_alloc_page(gfp_t gfp,
813                         struct shmem_inode_info *info, pgoff_t index)
814 {
815         return alloc_page(gfp);
816 }
817 #endif /* CONFIG_NUMA */
818
819 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
820 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
821 {
822         return NULL;
823 }
824 #endif
825
826 /*
827  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
828  *
829  * If we allocate a new one we do not mark it dirty. That's up to the
830  * vm. If we swap it in we mark it dirty since we also free the swap
831  * entry since a page cannot live in both the swap and page cache
832  */
833 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
834         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
835 {
836         struct address_space *mapping = inode->i_mapping;
837         struct shmem_inode_info *info;
838         struct shmem_sb_info *sbinfo;
839         struct page *page;
840         swp_entry_t swap;
841         int error;
842         int once = 0;
843
844         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
845                 return -EFBIG;
846 repeat:
847         swap.val = 0;
848         page = find_lock_page(mapping, index);
849         if (radix_tree_exceptional_entry(page)) {
850                 swap = radix_to_swp_entry(page);
851                 page = NULL;
852         }
853
854         if (sgp != SGP_WRITE &&
855             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
856                 error = -EINVAL;
857                 goto failed;
858         }
859
860         if (page || (sgp == SGP_READ && !swap.val)) {
861                 /*
862                  * Once we can get the page lock, it must be uptodate:
863                  * if there were an error in reading back from swap,
864                  * the page would not be inserted into the filecache.
865                  */
866                 BUG_ON(page && !PageUptodate(page));
867                 *pagep = page;
868                 return 0;
869         }
870
871         /*
872          * Fast cache lookup did not find it:
873          * bring it back from swap or allocate.
874          */
875         info = SHMEM_I(inode);
876         sbinfo = SHMEM_SB(inode->i_sb);
877
878         if (swap.val) {
879                 /* Look it up and read it in.. */
880                 page = lookup_swap_cache(swap);
881                 if (!page) {
882                         /* here we actually do the io */
883                         if (fault_type)
884                                 *fault_type |= VM_FAULT_MAJOR;
885                         page = shmem_swapin(swap, gfp, info, index);
886                         if (!page) {
887                                 error = -ENOMEM;
888                                 goto failed;
889                         }
890                 }
891
892                 /* We have to do this with page locked to prevent races */
893                 lock_page(page);
894                 if (!PageUptodate(page)) {
895                         error = -EIO;
896                         goto failed;
897                 }
898                 wait_on_page_writeback(page);
899
900                 /* Someone may have already done it for us */
901                 if (page->mapping) {
902                         if (page->mapping == mapping &&
903                             page->index == index)
904                                 goto done;
905                         error = -EEXIST;
906                         goto failed;
907                 }
908
909                 error = mem_cgroup_cache_charge(page, current->mm,
910                                                 gfp & GFP_RECLAIM_MASK);
911                 if (!error)
912                         error = shmem_add_to_page_cache(page, mapping, index,
913                                                 gfp, swp_to_radix_entry(swap));
914                 if (error)
915                         goto failed;
916
917                 spin_lock(&info->lock);
918                 info->swapped--;
919                 shmem_recalc_inode(inode);
920                 spin_unlock(&info->lock);
921
922                 delete_from_swap_cache(page);
923                 set_page_dirty(page);
924                 swap_free(swap);
925
926         } else {
927                 if (shmem_acct_block(info->flags)) {
928                         error = -ENOSPC;
929                         goto failed;
930                 }
931                 if (sbinfo->max_blocks) {
932                         if (percpu_counter_compare(&sbinfo->used_blocks,
933                                                 sbinfo->max_blocks) >= 0) {
934                                 error = -ENOSPC;
935                                 goto unacct;
936                         }
937                         percpu_counter_inc(&sbinfo->used_blocks);
938                 }
939
940                 page = shmem_alloc_page(gfp, info, index);
941                 if (!page) {
942                         error = -ENOMEM;
943                         goto decused;
944                 }
945
946                 SetPageSwapBacked(page);
947                 __set_page_locked(page);
948                 error = mem_cgroup_cache_charge(page, current->mm,
949                                                 gfp & GFP_RECLAIM_MASK);
950                 if (!error)
951                         error = shmem_add_to_page_cache(page, mapping, index,
952                                                 gfp, NULL);
953                 if (error)
954                         goto decused;
955                 lru_cache_add_anon(page);
956
957                 spin_lock(&info->lock);
958                 info->alloced++;
959                 inode->i_blocks += BLOCKS_PER_PAGE;
960                 shmem_recalc_inode(inode);
961                 spin_unlock(&info->lock);
962
963                 clear_highpage(page);
964                 flush_dcache_page(page);
965                 SetPageUptodate(page);
966                 if (sgp == SGP_DIRTY)
967                         set_page_dirty(page);
968         }
969 done:
970         /* Perhaps the file has been truncated since we checked */
971         if (sgp != SGP_WRITE &&
972             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
973                 error = -EINVAL;
974                 goto trunc;
975         }
976         *pagep = page;
977         return 0;
978
979         /*
980          * Error recovery.
981          */
982 trunc:
983         ClearPageDirty(page);
984         delete_from_page_cache(page);
985         spin_lock(&info->lock);
986         info->alloced--;
987         inode->i_blocks -= BLOCKS_PER_PAGE;
988         spin_unlock(&info->lock);
989 decused:
990         if (sbinfo->max_blocks)
991                 percpu_counter_add(&sbinfo->used_blocks, -1);
992 unacct:
993         shmem_unacct_blocks(info->flags, 1);
994 failed:
995         if (swap.val && error != -EINVAL) {
996                 struct page *test = find_get_page(mapping, index);
997                 if (test && !radix_tree_exceptional_entry(test))
998                         page_cache_release(test);
999                 /* Have another try if the entry has changed */
1000                 if (test != swp_to_radix_entry(swap))
1001                         error = -EEXIST;
1002         }
1003         if (page) {
1004                 unlock_page(page);
1005                 page_cache_release(page);
1006         }
1007         if (error == -ENOSPC && !once++) {
1008                 info = SHMEM_I(inode);
1009                 spin_lock(&info->lock);
1010                 shmem_recalc_inode(inode);
1011                 spin_unlock(&info->lock);
1012                 goto repeat;
1013         }
1014         if (error == -EEXIST)
1015                 goto repeat;
1016         return error;
1017 }
1018
1019 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1020 {
1021         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1022         int error;
1023         int ret = VM_FAULT_LOCKED;
1024
1025         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1026         if (error)
1027                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1028
1029         if (ret & VM_FAULT_MAJOR) {
1030                 count_vm_event(PGMAJFAULT);
1031                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1032         }
1033         return ret;
1034 }
1035
1036 #ifdef CONFIG_NUMA
1037 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1038 {
1039         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1040         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1041 }
1042
1043 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1044                                           unsigned long addr)
1045 {
1046         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1047         pgoff_t index;
1048
1049         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1050         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1051 }
1052 #endif
1053
1054 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1055 {
1056         struct inode *inode = file->f_path.dentry->d_inode;
1057         struct shmem_inode_info *info = SHMEM_I(inode);
1058         int retval = -ENOMEM;
1059
1060         spin_lock(&info->lock);
1061         if (lock && !(info->flags & VM_LOCKED)) {
1062                 if (!user_shm_lock(inode->i_size, user))
1063                         goto out_nomem;
1064                 info->flags |= VM_LOCKED;
1065                 mapping_set_unevictable(file->f_mapping);
1066         }
1067         if (!lock && (info->flags & VM_LOCKED) && user) {
1068                 user_shm_unlock(inode->i_size, user);
1069                 info->flags &= ~VM_LOCKED;
1070                 mapping_clear_unevictable(file->f_mapping);
1071                 scan_mapping_unevictable_pages(file->f_mapping);
1072         }
1073         retval = 0;
1074
1075 out_nomem:
1076         spin_unlock(&info->lock);
1077         return retval;
1078 }
1079
1080 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1081 {
1082         file_accessed(file);
1083         vma->vm_ops = &shmem_vm_ops;
1084         vma->vm_flags |= VM_CAN_NONLINEAR;
1085         return 0;
1086 }
1087
1088 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1089                                      int mode, dev_t dev, unsigned long flags)
1090 {
1091         struct inode *inode;
1092         struct shmem_inode_info *info;
1093         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1094
1095         if (shmem_reserve_inode(sb))
1096                 return NULL;
1097
1098         inode = new_inode(sb);
1099         if (inode) {
1100                 inode->i_ino = get_next_ino();
1101                 inode_init_owner(inode, dir, mode);
1102                 inode->i_blocks = 0;
1103                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1104                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1105                 inode->i_generation = get_seconds();
1106                 info = SHMEM_I(inode);
1107                 memset(info, 0, (char *)inode - (char *)info);
1108                 spin_lock_init(&info->lock);
1109                 info->flags = flags & VM_NORESERVE;
1110                 INIT_LIST_HEAD(&info->swaplist);
1111                 INIT_LIST_HEAD(&info->xattr_list);
1112                 cache_no_acl(inode);
1113
1114                 switch (mode & S_IFMT) {
1115                 default:
1116                         inode->i_op = &shmem_special_inode_operations;
1117                         init_special_inode(inode, mode, dev);
1118                         break;
1119                 case S_IFREG:
1120                         inode->i_mapping->a_ops = &shmem_aops;
1121                         inode->i_op = &shmem_inode_operations;
1122                         inode->i_fop = &shmem_file_operations;
1123                         mpol_shared_policy_init(&info->policy,
1124                                                  shmem_get_sbmpol(sbinfo));
1125                         break;
1126                 case S_IFDIR:
1127                         inc_nlink(inode);
1128                         /* Some things misbehave if size == 0 on a directory */
1129                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1130                         inode->i_op = &shmem_dir_inode_operations;
1131                         inode->i_fop = &simple_dir_operations;
1132                         break;
1133                 case S_IFLNK:
1134                         /*
1135                          * Must not load anything in the rbtree,
1136                          * mpol_free_shared_policy will not be called.
1137                          */
1138                         mpol_shared_policy_init(&info->policy, NULL);
1139                         break;
1140                 }
1141         } else
1142                 shmem_free_inode(sb);
1143         return inode;
1144 }
1145
1146 #ifdef CONFIG_TMPFS
1147 static const struct inode_operations shmem_symlink_inode_operations;
1148 static const struct inode_operations shmem_short_symlink_operations;
1149
1150 static int
1151 shmem_write_begin(struct file *file, struct address_space *mapping,
1152                         loff_t pos, unsigned len, unsigned flags,
1153                         struct page **pagep, void **fsdata)
1154 {
1155         struct inode *inode = mapping->host;
1156         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1157         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1158 }
1159
1160 static int
1161 shmem_write_end(struct file *file, struct address_space *mapping,
1162                         loff_t pos, unsigned len, unsigned copied,
1163                         struct page *page, void *fsdata)
1164 {
1165         struct inode *inode = mapping->host;
1166
1167         if (pos + copied > inode->i_size)
1168                 i_size_write(inode, pos + copied);
1169
1170         set_page_dirty(page);
1171         unlock_page(page);
1172         page_cache_release(page);
1173
1174         return copied;
1175 }
1176
1177 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1178 {
1179         struct inode *inode = filp->f_path.dentry->d_inode;
1180         struct address_space *mapping = inode->i_mapping;
1181         pgoff_t index;
1182         unsigned long offset;
1183         enum sgp_type sgp = SGP_READ;
1184
1185         /*
1186          * Might this read be for a stacking filesystem?  Then when reading
1187          * holes of a sparse file, we actually need to allocate those pages,
1188          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1189          */
1190         if (segment_eq(get_fs(), KERNEL_DS))
1191                 sgp = SGP_DIRTY;
1192
1193         index = *ppos >> PAGE_CACHE_SHIFT;
1194         offset = *ppos & ~PAGE_CACHE_MASK;
1195
1196         for (;;) {
1197                 struct page *page = NULL;
1198                 pgoff_t end_index;
1199                 unsigned long nr, ret;
1200                 loff_t i_size = i_size_read(inode);
1201
1202                 end_index = i_size >> PAGE_CACHE_SHIFT;
1203                 if (index > end_index)
1204                         break;
1205                 if (index == end_index) {
1206                         nr = i_size & ~PAGE_CACHE_MASK;
1207                         if (nr <= offset)
1208                                 break;
1209                 }
1210
1211                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1212                 if (desc->error) {
1213                         if (desc->error == -EINVAL)
1214                                 desc->error = 0;
1215                         break;
1216                 }
1217                 if (page)
1218                         unlock_page(page);
1219
1220                 /*
1221                  * We must evaluate after, since reads (unlike writes)
1222                  * are called without i_mutex protection against truncate
1223                  */
1224                 nr = PAGE_CACHE_SIZE;
1225                 i_size = i_size_read(inode);
1226                 end_index = i_size >> PAGE_CACHE_SHIFT;
1227                 if (index == end_index) {
1228                         nr = i_size & ~PAGE_CACHE_MASK;
1229                         if (nr <= offset) {
1230                                 if (page)
1231                                         page_cache_release(page);
1232                                 break;
1233                         }
1234                 }
1235                 nr -= offset;
1236
1237                 if (page) {
1238                         /*
1239                          * If users can be writing to this page using arbitrary
1240                          * virtual addresses, take care about potential aliasing
1241                          * before reading the page on the kernel side.
1242                          */
1243                         if (mapping_writably_mapped(mapping))
1244                                 flush_dcache_page(page);
1245                         /*
1246                          * Mark the page accessed if we read the beginning.
1247                          */
1248                         if (!offset)
1249                                 mark_page_accessed(page);
1250                 } else {
1251                         page = ZERO_PAGE(0);
1252                         page_cache_get(page);
1253                 }
1254
1255                 /*
1256                  * Ok, we have the page, and it's up-to-date, so
1257                  * now we can copy it to user space...
1258                  *
1259                  * The actor routine returns how many bytes were actually used..
1260                  * NOTE! This may not be the same as how much of a user buffer
1261                  * we filled up (we may be padding etc), so we can only update
1262                  * "pos" here (the actor routine has to update the user buffer
1263                  * pointers and the remaining count).
1264                  */
1265                 ret = actor(desc, page, offset, nr);
1266                 offset += ret;
1267                 index += offset >> PAGE_CACHE_SHIFT;
1268                 offset &= ~PAGE_CACHE_MASK;
1269
1270                 page_cache_release(page);
1271                 if (ret != nr || !desc->count)
1272                         break;
1273
1274                 cond_resched();
1275         }
1276
1277         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1278         file_accessed(filp);
1279 }
1280
1281 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1282                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1283 {
1284         struct file *filp = iocb->ki_filp;
1285         ssize_t retval;
1286         unsigned long seg;
1287         size_t count;
1288         loff_t *ppos = &iocb->ki_pos;
1289
1290         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1291         if (retval)
1292                 return retval;
1293
1294         for (seg = 0; seg < nr_segs; seg++) {
1295                 read_descriptor_t desc;
1296
1297                 desc.written = 0;
1298                 desc.arg.buf = iov[seg].iov_base;
1299                 desc.count = iov[seg].iov_len;
1300                 if (desc.count == 0)
1301                         continue;
1302                 desc.error = 0;
1303                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1304                 retval += desc.written;
1305                 if (desc.error) {
1306                         retval = retval ?: desc.error;
1307                         break;
1308                 }
1309                 if (desc.count > 0)
1310                         break;
1311         }
1312         return retval;
1313 }
1314
1315 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1316                                 struct pipe_inode_info *pipe, size_t len,
1317                                 unsigned int flags)
1318 {
1319         struct address_space *mapping = in->f_mapping;
1320         struct inode *inode = mapping->host;
1321         unsigned int loff, nr_pages, req_pages;
1322         struct page *pages[PIPE_DEF_BUFFERS];
1323         struct partial_page partial[PIPE_DEF_BUFFERS];
1324         struct page *page;
1325         pgoff_t index, end_index;
1326         loff_t isize, left;
1327         int error, page_nr;
1328         struct splice_pipe_desc spd = {
1329                 .pages = pages,
1330                 .partial = partial,
1331                 .flags = flags,
1332                 .ops = &page_cache_pipe_buf_ops,
1333                 .spd_release = spd_release_page,
1334         };
1335
1336         isize = i_size_read(inode);
1337         if (unlikely(*ppos >= isize))
1338                 return 0;
1339
1340         left = isize - *ppos;
1341         if (unlikely(left < len))
1342                 len = left;
1343
1344         if (splice_grow_spd(pipe, &spd))
1345                 return -ENOMEM;
1346
1347         index = *ppos >> PAGE_CACHE_SHIFT;
1348         loff = *ppos & ~PAGE_CACHE_MASK;
1349         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1350         nr_pages = min(req_pages, pipe->buffers);
1351
1352         spd.nr_pages = find_get_pages_contig(mapping, index,
1353                                                 nr_pages, spd.pages);
1354         index += spd.nr_pages;
1355         error = 0;
1356
1357         while (spd.nr_pages < nr_pages) {
1358                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1359                 if (error)
1360                         break;
1361                 unlock_page(page);
1362                 spd.pages[spd.nr_pages++] = page;
1363                 index++;
1364         }
1365
1366         index = *ppos >> PAGE_CACHE_SHIFT;
1367         nr_pages = spd.nr_pages;
1368         spd.nr_pages = 0;
1369
1370         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1371                 unsigned int this_len;
1372
1373                 if (!len)
1374                         break;
1375
1376                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1377                 page = spd.pages[page_nr];
1378
1379                 if (!PageUptodate(page) || page->mapping != mapping) {
1380                         error = shmem_getpage(inode, index, &page,
1381                                                         SGP_CACHE, NULL);
1382                         if (error)
1383                                 break;
1384                         unlock_page(page);
1385                         page_cache_release(spd.pages[page_nr]);
1386                         spd.pages[page_nr] = page;
1387                 }
1388
1389                 isize = i_size_read(inode);
1390                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1391                 if (unlikely(!isize || index > end_index))
1392                         break;
1393
1394                 if (end_index == index) {
1395                         unsigned int plen;
1396
1397                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1398                         if (plen <= loff)
1399                                 break;
1400
1401                         this_len = min(this_len, plen - loff);
1402                         len = this_len;
1403                 }
1404
1405                 spd.partial[page_nr].offset = loff;
1406                 spd.partial[page_nr].len = this_len;
1407                 len -= this_len;
1408                 loff = 0;
1409                 spd.nr_pages++;
1410                 index++;
1411         }
1412
1413         while (page_nr < nr_pages)
1414                 page_cache_release(spd.pages[page_nr++]);
1415
1416         if (spd.nr_pages)
1417                 error = splice_to_pipe(pipe, &spd);
1418
1419         splice_shrink_spd(pipe, &spd);
1420
1421         if (error > 0) {
1422                 *ppos += error;
1423                 file_accessed(in);
1424         }
1425         return error;
1426 }
1427
1428 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1429 {
1430         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1431
1432         buf->f_type = TMPFS_MAGIC;
1433         buf->f_bsize = PAGE_CACHE_SIZE;
1434         buf->f_namelen = NAME_MAX;
1435         if (sbinfo->max_blocks) {
1436                 buf->f_blocks = sbinfo->max_blocks;
1437                 buf->f_bavail =
1438                 buf->f_bfree  = sbinfo->max_blocks -
1439                                 percpu_counter_sum(&sbinfo->used_blocks);
1440         }
1441         if (sbinfo->max_inodes) {
1442                 buf->f_files = sbinfo->max_inodes;
1443                 buf->f_ffree = sbinfo->free_inodes;
1444         }
1445         /* else leave those fields 0 like simple_statfs */
1446         return 0;
1447 }
1448
1449 /*
1450  * File creation. Allocate an inode, and we're done..
1451  */
1452 static int
1453 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1454 {
1455         struct inode *inode;
1456         int error = -ENOSPC;
1457
1458         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1459         if (inode) {
1460                 error = security_inode_init_security(inode, dir,
1461                                                      &dentry->d_name, NULL,
1462                                                      NULL, NULL);
1463                 if (error) {
1464                         if (error != -EOPNOTSUPP) {
1465                                 iput(inode);
1466                                 return error;
1467                         }
1468                 }
1469 #ifdef CONFIG_TMPFS_POSIX_ACL
1470                 error = generic_acl_init(inode, dir);
1471                 if (error) {
1472                         iput(inode);
1473                         return error;
1474                 }
1475 #else
1476                 error = 0;
1477 #endif
1478                 dir->i_size += BOGO_DIRENT_SIZE;
1479                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1480                 d_instantiate(dentry, inode);
1481                 dget(dentry); /* Extra count - pin the dentry in core */
1482         }
1483         return error;
1484 }
1485
1486 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1487 {
1488         int error;
1489
1490         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1491                 return error;
1492         inc_nlink(dir);
1493         return 0;
1494 }
1495
1496 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1497                 struct nameidata *nd)
1498 {
1499         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1500 }
1501
1502 /*
1503  * Link a file..
1504  */
1505 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1506 {
1507         struct inode *inode = old_dentry->d_inode;
1508         int ret;
1509
1510         /*
1511          * No ordinary (disk based) filesystem counts links as inodes;
1512          * but each new link needs a new dentry, pinning lowmem, and
1513          * tmpfs dentries cannot be pruned until they are unlinked.
1514          */
1515         ret = shmem_reserve_inode(inode->i_sb);
1516         if (ret)
1517                 goto out;
1518
1519         dir->i_size += BOGO_DIRENT_SIZE;
1520         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1521         inc_nlink(inode);
1522         ihold(inode);   /* New dentry reference */
1523         dget(dentry);           /* Extra pinning count for the created dentry */
1524         d_instantiate(dentry, inode);
1525 out:
1526         return ret;
1527 }
1528
1529 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1530 {
1531         struct inode *inode = dentry->d_inode;
1532
1533         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1534                 shmem_free_inode(inode->i_sb);
1535
1536         dir->i_size -= BOGO_DIRENT_SIZE;
1537         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1538         drop_nlink(inode);
1539         dput(dentry);   /* Undo the count from "create" - this does all the work */
1540         return 0;
1541 }
1542
1543 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1544 {
1545         if (!simple_empty(dentry))
1546                 return -ENOTEMPTY;
1547
1548         drop_nlink(dentry->d_inode);
1549         drop_nlink(dir);
1550         return shmem_unlink(dir, dentry);
1551 }
1552
1553 /*
1554  * The VFS layer already does all the dentry stuff for rename,
1555  * we just have to decrement the usage count for the target if
1556  * it exists so that the VFS layer correctly free's it when it
1557  * gets overwritten.
1558  */
1559 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1560 {
1561         struct inode *inode = old_dentry->d_inode;
1562         int they_are_dirs = S_ISDIR(inode->i_mode);
1563
1564         if (!simple_empty(new_dentry))
1565                 return -ENOTEMPTY;
1566
1567         if (new_dentry->d_inode) {
1568                 (void) shmem_unlink(new_dir, new_dentry);
1569                 if (they_are_dirs)
1570                         drop_nlink(old_dir);
1571         } else if (they_are_dirs) {
1572                 drop_nlink(old_dir);
1573                 inc_nlink(new_dir);
1574         }
1575
1576         old_dir->i_size -= BOGO_DIRENT_SIZE;
1577         new_dir->i_size += BOGO_DIRENT_SIZE;
1578         old_dir->i_ctime = old_dir->i_mtime =
1579         new_dir->i_ctime = new_dir->i_mtime =
1580         inode->i_ctime = CURRENT_TIME;
1581         return 0;
1582 }
1583
1584 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1585 {
1586         int error;
1587         int len;
1588         struct inode *inode;
1589         struct page *page;
1590         char *kaddr;
1591         struct shmem_inode_info *info;
1592
1593         len = strlen(symname) + 1;
1594         if (len > PAGE_CACHE_SIZE)
1595                 return -ENAMETOOLONG;
1596
1597         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1598         if (!inode)
1599                 return -ENOSPC;
1600
1601         error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1602                                              NULL, NULL);
1603         if (error) {
1604                 if (error != -EOPNOTSUPP) {
1605                         iput(inode);
1606                         return error;
1607                 }
1608                 error = 0;
1609         }
1610
1611         info = SHMEM_I(inode);
1612         inode->i_size = len-1;
1613         if (len <= SHORT_SYMLINK_LEN) {
1614                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1615                 if (!info->symlink) {
1616                         iput(inode);
1617                         return -ENOMEM;
1618                 }
1619                 inode->i_op = &shmem_short_symlink_operations;
1620         } else {
1621                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1622                 if (error) {
1623                         iput(inode);
1624                         return error;
1625                 }
1626                 inode->i_mapping->a_ops = &shmem_aops;
1627                 inode->i_op = &shmem_symlink_inode_operations;
1628                 kaddr = kmap_atomic(page, KM_USER0);
1629                 memcpy(kaddr, symname, len);
1630                 kunmap_atomic(kaddr, KM_USER0);
1631                 set_page_dirty(page);
1632                 unlock_page(page);
1633                 page_cache_release(page);
1634         }
1635         dir->i_size += BOGO_DIRENT_SIZE;
1636         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1637         d_instantiate(dentry, inode);
1638         dget(dentry);
1639         return 0;
1640 }
1641
1642 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1643 {
1644         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1645         return NULL;
1646 }
1647
1648 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1649 {
1650         struct page *page = NULL;
1651         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1652         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1653         if (page)
1654                 unlock_page(page);
1655         return page;
1656 }
1657
1658 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1659 {
1660         if (!IS_ERR(nd_get_link(nd))) {
1661                 struct page *page = cookie;
1662                 kunmap(page);
1663                 mark_page_accessed(page);
1664                 page_cache_release(page);
1665         }
1666 }
1667
1668 #ifdef CONFIG_TMPFS_XATTR
1669 /*
1670  * Superblocks without xattr inode operations may get some security.* xattr
1671  * support from the LSM "for free". As soon as we have any other xattrs
1672  * like ACLs, we also need to implement the security.* handlers at
1673  * filesystem level, though.
1674  */
1675
1676 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1677                            void *buffer, size_t size)
1678 {
1679         struct shmem_inode_info *info;
1680         struct shmem_xattr *xattr;
1681         int ret = -ENODATA;
1682
1683         info = SHMEM_I(dentry->d_inode);
1684
1685         spin_lock(&info->lock);
1686         list_for_each_entry(xattr, &info->xattr_list, list) {
1687                 if (strcmp(name, xattr->name))
1688                         continue;
1689
1690                 ret = xattr->size;
1691                 if (buffer) {
1692                         if (size < xattr->size)
1693                                 ret = -ERANGE;
1694                         else
1695                                 memcpy(buffer, xattr->value, xattr->size);
1696                 }
1697                 break;
1698         }
1699         spin_unlock(&info->lock);
1700         return ret;
1701 }
1702
1703 static int shmem_xattr_set(struct dentry *dentry, const char *name,
1704                            const void *value, size_t size, int flags)
1705 {
1706         struct inode *inode = dentry->d_inode;
1707         struct shmem_inode_info *info = SHMEM_I(inode);
1708         struct shmem_xattr *xattr;
1709         struct shmem_xattr *new_xattr = NULL;
1710         size_t len;
1711         int err = 0;
1712
1713         /* value == NULL means remove */
1714         if (value) {
1715                 /* wrap around? */
1716                 len = sizeof(*new_xattr) + size;
1717                 if (len <= sizeof(*new_xattr))
1718                         return -ENOMEM;
1719
1720                 new_xattr = kmalloc(len, GFP_KERNEL);
1721                 if (!new_xattr)
1722                         return -ENOMEM;
1723
1724                 new_xattr->name = kstrdup(name, GFP_KERNEL);
1725                 if (!new_xattr->name) {
1726                         kfree(new_xattr);
1727                         return -ENOMEM;
1728                 }
1729
1730                 new_xattr->size = size;
1731                 memcpy(new_xattr->value, value, size);
1732         }
1733
1734         spin_lock(&info->lock);
1735         list_for_each_entry(xattr, &info->xattr_list, list) {
1736                 if (!strcmp(name, xattr->name)) {
1737                         if (flags & XATTR_CREATE) {
1738                                 xattr = new_xattr;
1739                                 err = -EEXIST;
1740                         } else if (new_xattr) {
1741                                 list_replace(&xattr->list, &new_xattr->list);
1742                         } else {
1743                                 list_del(&xattr->list);
1744                         }
1745                         goto out;
1746                 }
1747         }
1748         if (flags & XATTR_REPLACE) {
1749                 xattr = new_xattr;
1750                 err = -ENODATA;
1751         } else {
1752                 list_add(&new_xattr->list, &info->xattr_list);
1753                 xattr = NULL;
1754         }
1755 out:
1756         spin_unlock(&info->lock);
1757         if (xattr)
1758                 kfree(xattr->name);
1759         kfree(xattr);
1760         return err;
1761 }
1762
1763 static const struct xattr_handler *shmem_xattr_handlers[] = {
1764 #ifdef CONFIG_TMPFS_POSIX_ACL
1765         &generic_acl_access_handler,
1766         &generic_acl_default_handler,
1767 #endif
1768         NULL
1769 };
1770
1771 static int shmem_xattr_validate(const char *name)
1772 {
1773         struct { const char *prefix; size_t len; } arr[] = {
1774                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1775                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1776         };
1777         int i;
1778
1779         for (i = 0; i < ARRAY_SIZE(arr); i++) {
1780                 size_t preflen = arr[i].len;
1781                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
1782                         if (!name[preflen])
1783                                 return -EINVAL;
1784                         return 0;
1785                 }
1786         }
1787         return -EOPNOTSUPP;
1788 }
1789
1790 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1791                               void *buffer, size_t size)
1792 {
1793         int err;
1794
1795         /*
1796          * If this is a request for a synthetic attribute in the system.*
1797          * namespace use the generic infrastructure to resolve a handler
1798          * for it via sb->s_xattr.
1799          */
1800         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1801                 return generic_getxattr(dentry, name, buffer, size);
1802
1803         err = shmem_xattr_validate(name);
1804         if (err)
1805                 return err;
1806
1807         return shmem_xattr_get(dentry, name, buffer, size);
1808 }
1809
1810 static int shmem_setxattr(struct dentry *dentry, const char *name,
1811                           const void *value, size_t size, int flags)
1812 {
1813         int err;
1814
1815         /*
1816          * If this is a request for a synthetic attribute in the system.*
1817          * namespace use the generic infrastructure to resolve a handler
1818          * for it via sb->s_xattr.
1819          */
1820         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1821                 return generic_setxattr(dentry, name, value, size, flags);
1822
1823         err = shmem_xattr_validate(name);
1824         if (err)
1825                 return err;
1826
1827         if (size == 0)
1828                 value = "";  /* empty EA, do not remove */
1829
1830         return shmem_xattr_set(dentry, name, value, size, flags);
1831
1832 }
1833
1834 static int shmem_removexattr(struct dentry *dentry, const char *name)
1835 {
1836         int err;
1837
1838         /*
1839          * If this is a request for a synthetic attribute in the system.*
1840          * namespace use the generic infrastructure to resolve a handler
1841          * for it via sb->s_xattr.
1842          */
1843         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1844                 return generic_removexattr(dentry, name);
1845
1846         err = shmem_xattr_validate(name);
1847         if (err)
1848                 return err;
1849
1850         return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1851 }
1852
1853 static bool xattr_is_trusted(const char *name)
1854 {
1855         return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1856 }
1857
1858 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1859 {
1860         bool trusted = capable(CAP_SYS_ADMIN);
1861         struct shmem_xattr *xattr;
1862         struct shmem_inode_info *info;
1863         size_t used = 0;
1864
1865         info = SHMEM_I(dentry->d_inode);
1866
1867         spin_lock(&info->lock);
1868         list_for_each_entry(xattr, &info->xattr_list, list) {
1869                 size_t len;
1870
1871                 /* skip "trusted." attributes for unprivileged callers */
1872                 if (!trusted && xattr_is_trusted(xattr->name))
1873                         continue;
1874
1875                 len = strlen(xattr->name) + 1;
1876                 used += len;
1877                 if (buffer) {
1878                         if (size < used) {
1879                                 used = -ERANGE;
1880                                 break;
1881                         }
1882                         memcpy(buffer, xattr->name, len);
1883                         buffer += len;
1884                 }
1885         }
1886         spin_unlock(&info->lock);
1887
1888         return used;
1889 }
1890 #endif /* CONFIG_TMPFS_XATTR */
1891
1892 static const struct inode_operations shmem_short_symlink_operations = {
1893         .readlink       = generic_readlink,
1894         .follow_link    = shmem_follow_short_symlink,
1895 #ifdef CONFIG_TMPFS_XATTR
1896         .setxattr       = shmem_setxattr,
1897         .getxattr       = shmem_getxattr,
1898         .listxattr      = shmem_listxattr,
1899         .removexattr    = shmem_removexattr,
1900 #endif
1901 };
1902
1903 static const struct inode_operations shmem_symlink_inode_operations = {
1904         .readlink       = generic_readlink,
1905         .follow_link    = shmem_follow_link,
1906         .put_link       = shmem_put_link,
1907 #ifdef CONFIG_TMPFS_XATTR
1908         .setxattr       = shmem_setxattr,
1909         .getxattr       = shmem_getxattr,
1910         .listxattr      = shmem_listxattr,
1911         .removexattr    = shmem_removexattr,
1912 #endif
1913 };
1914
1915 static struct dentry *shmem_get_parent(struct dentry *child)
1916 {
1917         return ERR_PTR(-ESTALE);
1918 }
1919
1920 static int shmem_match(struct inode *ino, void *vfh)
1921 {
1922         __u32 *fh = vfh;
1923         __u64 inum = fh[2];
1924         inum = (inum << 32) | fh[1];
1925         return ino->i_ino == inum && fh[0] == ino->i_generation;
1926 }
1927
1928 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1929                 struct fid *fid, int fh_len, int fh_type)
1930 {
1931         struct inode *inode;
1932         struct dentry *dentry = NULL;
1933         u64 inum = fid->raw[2];
1934         inum = (inum << 32) | fid->raw[1];
1935
1936         if (fh_len < 3)
1937                 return NULL;
1938
1939         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1940                         shmem_match, fid->raw);
1941         if (inode) {
1942                 dentry = d_find_alias(inode);
1943                 iput(inode);
1944         }
1945
1946         return dentry;
1947 }
1948
1949 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1950                                 int connectable)
1951 {
1952         struct inode *inode = dentry->d_inode;
1953
1954         if (*len < 3) {
1955                 *len = 3;
1956                 return 255;
1957         }
1958
1959         if (inode_unhashed(inode)) {
1960                 /* Unfortunately insert_inode_hash is not idempotent,
1961                  * so as we hash inodes here rather than at creation
1962                  * time, we need a lock to ensure we only try
1963                  * to do it once
1964                  */
1965                 static DEFINE_SPINLOCK(lock);
1966                 spin_lock(&lock);
1967                 if (inode_unhashed(inode))
1968                         __insert_inode_hash(inode,
1969                                             inode->i_ino + inode->i_generation);
1970                 spin_unlock(&lock);
1971         }
1972
1973         fh[0] = inode->i_generation;
1974         fh[1] = inode->i_ino;
1975         fh[2] = ((__u64)inode->i_ino) >> 32;
1976
1977         *len = 3;
1978         return 1;
1979 }
1980
1981 static const struct export_operations shmem_export_ops = {
1982         .get_parent     = shmem_get_parent,
1983         .encode_fh      = shmem_encode_fh,
1984         .fh_to_dentry   = shmem_fh_to_dentry,
1985 };
1986
1987 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
1988                                bool remount)
1989 {
1990         char *this_char, *value, *rest;
1991
1992         while (options != NULL) {
1993                 this_char = options;
1994                 for (;;) {
1995                         /*
1996                          * NUL-terminate this option: unfortunately,
1997                          * mount options form a comma-separated list,
1998                          * but mpol's nodelist may also contain commas.
1999                          */
2000                         options = strchr(options, ',');
2001                         if (options == NULL)
2002                                 break;
2003                         options++;
2004                         if (!isdigit(*options)) {
2005                                 options[-1] = '\0';
2006                                 break;
2007                         }
2008                 }
2009                 if (!*this_char)
2010                         continue;
2011                 if ((value = strchr(this_char,'=')) != NULL) {
2012                         *value++ = 0;
2013                 } else {
2014                         printk(KERN_ERR
2015                             "tmpfs: No value for mount option '%s'\n",
2016                             this_char);
2017                         return 1;
2018                 }
2019
2020                 if (!strcmp(this_char,"size")) {
2021                         unsigned long long size;
2022                         size = memparse(value,&rest);
2023                         if (*rest == '%') {
2024                                 size <<= PAGE_SHIFT;
2025                                 size *= totalram_pages;
2026                                 do_div(size, 100);
2027                                 rest++;
2028                         }
2029                         if (*rest)
2030                                 goto bad_val;
2031                         sbinfo->max_blocks =
2032                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2033                 } else if (!strcmp(this_char,"nr_blocks")) {
2034                         sbinfo->max_blocks = memparse(value, &rest);
2035                         if (*rest)
2036                                 goto bad_val;
2037                 } else if (!strcmp(this_char,"nr_inodes")) {
2038                         sbinfo->max_inodes = memparse(value, &rest);
2039                         if (*rest)
2040                                 goto bad_val;
2041                 } else if (!strcmp(this_char,"mode")) {
2042                         if (remount)
2043                                 continue;
2044                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2045                         if (*rest)
2046                                 goto bad_val;
2047                 } else if (!strcmp(this_char,"uid")) {
2048                         if (remount)
2049                                 continue;
2050                         sbinfo->uid = simple_strtoul(value, &rest, 0);
2051                         if (*rest)
2052                                 goto bad_val;
2053                 } else if (!strcmp(this_char,"gid")) {
2054                         if (remount)
2055                                 continue;
2056                         sbinfo->gid = simple_strtoul(value, &rest, 0);
2057                         if (*rest)
2058                                 goto bad_val;
2059                 } else if (!strcmp(this_char,"mpol")) {
2060                         if (mpol_parse_str(value, &sbinfo->mpol, 1))
2061                                 goto bad_val;
2062                 } else {
2063                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2064                                this_char);
2065                         return 1;
2066                 }
2067         }
2068         return 0;
2069
2070 bad_val:
2071         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2072                value, this_char);
2073         return 1;
2074
2075 }
2076
2077 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2078 {
2079         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2080         struct shmem_sb_info config = *sbinfo;
2081         unsigned long inodes;
2082         int error = -EINVAL;
2083
2084         if (shmem_parse_options(data, &config, true))
2085                 return error;
2086
2087         spin_lock(&sbinfo->stat_lock);
2088         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2089         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2090                 goto out;
2091         if (config.max_inodes < inodes)
2092                 goto out;
2093         /*
2094          * Those tests disallow limited->unlimited while any are in use;
2095          * but we must separately disallow unlimited->limited, because
2096          * in that case we have no record of how much is already in use.
2097          */
2098         if (config.max_blocks && !sbinfo->max_blocks)
2099                 goto out;
2100         if (config.max_inodes && !sbinfo->max_inodes)
2101                 goto out;
2102
2103         error = 0;
2104         sbinfo->max_blocks  = config.max_blocks;
2105         sbinfo->max_inodes  = config.max_inodes;
2106         sbinfo->free_inodes = config.max_inodes - inodes;
2107
2108         mpol_put(sbinfo->mpol);
2109         sbinfo->mpol        = config.mpol;      /* transfers initial ref */
2110 out:
2111         spin_unlock(&sbinfo->stat_lock);
2112         return error;
2113 }
2114
2115 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2116 {
2117         struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2118
2119         if (sbinfo->max_blocks != shmem_default_max_blocks())
2120                 seq_printf(seq, ",size=%luk",
2121                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2122         if (sbinfo->max_inodes != shmem_default_max_inodes())
2123                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2124         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2125                 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2126         if (sbinfo->uid != 0)
2127                 seq_printf(seq, ",uid=%u", sbinfo->uid);
2128         if (sbinfo->gid != 0)
2129                 seq_printf(seq, ",gid=%u", sbinfo->gid);
2130         shmem_show_mpol(seq, sbinfo->mpol);
2131         return 0;
2132 }
2133 #endif /* CONFIG_TMPFS */
2134
2135 static void shmem_put_super(struct super_block *sb)
2136 {
2137         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2138
2139         percpu_counter_destroy(&sbinfo->used_blocks);
2140         kfree(sbinfo);
2141         sb->s_fs_info = NULL;
2142 }
2143
2144 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2145 {
2146         struct inode *inode;
2147         struct dentry *root;
2148         struct shmem_sb_info *sbinfo;
2149         int err = -ENOMEM;
2150
2151         /* Round up to L1_CACHE_BYTES to resist false sharing */
2152         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2153                                 L1_CACHE_BYTES), GFP_KERNEL);
2154         if (!sbinfo)
2155                 return -ENOMEM;
2156
2157         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2158         sbinfo->uid = current_fsuid();
2159         sbinfo->gid = current_fsgid();
2160         sb->s_fs_info = sbinfo;
2161
2162 #ifdef CONFIG_TMPFS
2163         /*
2164          * Per default we only allow half of the physical ram per
2165          * tmpfs instance, limiting inodes to one per page of lowmem;
2166          * but the internal instance is left unlimited.
2167          */
2168         if (!(sb->s_flags & MS_NOUSER)) {
2169                 sbinfo->max_blocks = shmem_default_max_blocks();
2170                 sbinfo->max_inodes = shmem_default_max_inodes();
2171                 if (shmem_parse_options(data, sbinfo, false)) {
2172                         err = -EINVAL;
2173                         goto failed;
2174                 }
2175         }
2176         sb->s_export_op = &shmem_export_ops;
2177 #else
2178         sb->s_flags |= MS_NOUSER;
2179 #endif
2180
2181         spin_lock_init(&sbinfo->stat_lock);
2182         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2183                 goto failed;
2184         sbinfo->free_inodes = sbinfo->max_inodes;
2185
2186         sb->s_maxbytes = MAX_LFS_FILESIZE;
2187         sb->s_blocksize = PAGE_CACHE_SIZE;
2188         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2189         sb->s_magic = TMPFS_MAGIC;
2190         sb->s_op = &shmem_ops;
2191         sb->s_time_gran = 1;
2192 #ifdef CONFIG_TMPFS_XATTR
2193         sb->s_xattr = shmem_xattr_handlers;
2194 #endif
2195 #ifdef CONFIG_TMPFS_POSIX_ACL
2196         sb->s_flags |= MS_POSIXACL;
2197 #endif
2198
2199         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2200         if (!inode)
2201                 goto failed;
2202         inode->i_uid = sbinfo->uid;
2203         inode->i_gid = sbinfo->gid;
2204         root = d_alloc_root(inode);
2205         if (!root)
2206                 goto failed_iput;
2207         sb->s_root = root;
2208         return 0;
2209
2210 failed_iput:
2211         iput(inode);
2212 failed:
2213         shmem_put_super(sb);
2214         return err;
2215 }
2216
2217 static struct kmem_cache *shmem_inode_cachep;
2218
2219 static struct inode *shmem_alloc_inode(struct super_block *sb)
2220 {
2221         struct shmem_inode_info *info;
2222         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2223         if (!info)
2224                 return NULL;
2225         return &info->vfs_inode;
2226 }
2227
2228 static void shmem_destroy_callback(struct rcu_head *head)
2229 {
2230         struct inode *inode = container_of(head, struct inode, i_rcu);
2231         INIT_LIST_HEAD(&inode->i_dentry);
2232         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2233 }
2234
2235 static void shmem_destroy_inode(struct inode *inode)
2236 {
2237         if ((inode->i_mode & S_IFMT) == S_IFREG)
2238                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2239         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2240 }
2241
2242 static void shmem_init_inode(void *foo)
2243 {
2244         struct shmem_inode_info *info = foo;
2245         inode_init_once(&info->vfs_inode);
2246 }
2247
2248 static int shmem_init_inodecache(void)
2249 {
2250         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2251                                 sizeof(struct shmem_inode_info),
2252                                 0, SLAB_PANIC, shmem_init_inode);
2253         return 0;
2254 }
2255
2256 static void shmem_destroy_inodecache(void)
2257 {
2258         kmem_cache_destroy(shmem_inode_cachep);
2259 }
2260
2261 static const struct address_space_operations shmem_aops = {
2262         .writepage      = shmem_writepage,
2263         .set_page_dirty = __set_page_dirty_no_writeback,
2264 #ifdef CONFIG_TMPFS
2265         .write_begin    = shmem_write_begin,
2266         .write_end      = shmem_write_end,
2267 #endif
2268         .migratepage    = migrate_page,
2269         .error_remove_page = generic_error_remove_page,
2270 };
2271
2272 static const struct file_operations shmem_file_operations = {
2273         .mmap           = shmem_mmap,
2274 #ifdef CONFIG_TMPFS
2275         .llseek         = generic_file_llseek,
2276         .read           = do_sync_read,
2277         .write          = do_sync_write,
2278         .aio_read       = shmem_file_aio_read,
2279         .aio_write      = generic_file_aio_write,
2280         .fsync          = noop_fsync,
2281         .splice_read    = shmem_file_splice_read,
2282         .splice_write   = generic_file_splice_write,
2283 #endif
2284 };
2285
2286 static const struct inode_operations shmem_inode_operations = {
2287         .setattr        = shmem_setattr,
2288         .truncate_range = shmem_truncate_range,
2289 #ifdef CONFIG_TMPFS_XATTR
2290         .setxattr       = shmem_setxattr,
2291         .getxattr       = shmem_getxattr,
2292         .listxattr      = shmem_listxattr,
2293         .removexattr    = shmem_removexattr,
2294 #endif
2295 };
2296
2297 static const struct inode_operations shmem_dir_inode_operations = {
2298 #ifdef CONFIG_TMPFS
2299         .create         = shmem_create,
2300         .lookup         = simple_lookup,
2301         .link           = shmem_link,
2302         .unlink         = shmem_unlink,
2303         .symlink        = shmem_symlink,
2304         .mkdir          = shmem_mkdir,
2305         .rmdir          = shmem_rmdir,
2306         .mknod          = shmem_mknod,
2307         .rename         = shmem_rename,
2308 #endif
2309 #ifdef CONFIG_TMPFS_XATTR
2310         .setxattr       = shmem_setxattr,
2311         .getxattr       = shmem_getxattr,
2312         .listxattr      = shmem_listxattr,
2313         .removexattr    = shmem_removexattr,
2314 #endif
2315 #ifdef CONFIG_TMPFS_POSIX_ACL
2316         .setattr        = shmem_setattr,
2317 #endif
2318 };
2319
2320 static const struct inode_operations shmem_special_inode_operations = {
2321 #ifdef CONFIG_TMPFS_XATTR
2322         .setxattr       = shmem_setxattr,
2323         .getxattr       = shmem_getxattr,
2324         .listxattr      = shmem_listxattr,
2325         .removexattr    = shmem_removexattr,
2326 #endif
2327 #ifdef CONFIG_TMPFS_POSIX_ACL
2328         .setattr        = shmem_setattr,
2329 #endif
2330 };
2331
2332 static const struct super_operations shmem_ops = {
2333         .alloc_inode    = shmem_alloc_inode,
2334         .destroy_inode  = shmem_destroy_inode,
2335 #ifdef CONFIG_TMPFS
2336         .statfs         = shmem_statfs,
2337         .remount_fs     = shmem_remount_fs,
2338         .show_options   = shmem_show_options,
2339 #endif
2340         .evict_inode    = shmem_evict_inode,
2341         .drop_inode     = generic_delete_inode,
2342         .put_super      = shmem_put_super,
2343 };
2344
2345 static const struct vm_operations_struct shmem_vm_ops = {
2346         .fault          = shmem_fault,
2347 #ifdef CONFIG_NUMA
2348         .set_policy     = shmem_set_policy,
2349         .get_policy     = shmem_get_policy,
2350 #endif
2351 };
2352
2353 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2354         int flags, const char *dev_name, void *data)
2355 {
2356         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2357 }
2358
2359 static struct file_system_type shmem_fs_type = {
2360         .owner          = THIS_MODULE,
2361         .name           = "tmpfs",
2362         .mount          = shmem_mount,
2363         .kill_sb        = kill_litter_super,
2364 };
2365
2366 int __init shmem_init(void)
2367 {
2368         int error;
2369
2370         error = bdi_init(&shmem_backing_dev_info);
2371         if (error)
2372                 goto out4;
2373
2374         error = shmem_init_inodecache();
2375         if (error)
2376                 goto out3;
2377
2378         error = register_filesystem(&shmem_fs_type);
2379         if (error) {
2380                 printk(KERN_ERR "Could not register tmpfs\n");
2381                 goto out2;
2382         }
2383
2384         shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2385                                  shmem_fs_type.name, NULL);
2386         if (IS_ERR(shm_mnt)) {
2387                 error = PTR_ERR(shm_mnt);
2388                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2389                 goto out1;
2390         }
2391         return 0;
2392
2393 out1:
2394         unregister_filesystem(&shmem_fs_type);
2395 out2:
2396         shmem_destroy_inodecache();
2397 out3:
2398         bdi_destroy(&shmem_backing_dev_info);
2399 out4:
2400         shm_mnt = ERR_PTR(error);
2401         return error;
2402 }
2403
2404 #else /* !CONFIG_SHMEM */
2405
2406 /*
2407  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2408  *
2409  * This is intended for small system where the benefits of the full
2410  * shmem code (swap-backed and resource-limited) are outweighed by
2411  * their complexity. On systems without swap this code should be
2412  * effectively equivalent, but much lighter weight.
2413  */
2414
2415 #include <linux/ramfs.h>
2416
2417 static struct file_system_type shmem_fs_type = {
2418         .name           = "tmpfs",
2419         .mount          = ramfs_mount,
2420         .kill_sb        = kill_litter_super,
2421 };
2422
2423 int __init shmem_init(void)
2424 {
2425         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2426
2427         shm_mnt = kern_mount(&shmem_fs_type);
2428         BUG_ON(IS_ERR(shm_mnt));
2429
2430         return 0;
2431 }
2432
2433 int shmem_unuse(swp_entry_t swap, struct page *page)
2434 {
2435         return 0;
2436 }
2437
2438 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2439 {
2440         return 0;
2441 }
2442
2443 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2444 {
2445         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2446 }
2447 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2448
2449 #define shmem_vm_ops                            generic_file_vm_ops
2450 #define shmem_file_operations                   ramfs_file_operations
2451 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2452 #define shmem_acct_size(flags, size)            0
2453 #define shmem_unacct_size(flags, size)          do {} while (0)
2454
2455 #endif /* CONFIG_SHMEM */
2456
2457 /* common code */
2458
2459 /**
2460  * shmem_file_setup - get an unlinked file living in tmpfs
2461  * @name: name for dentry (to be seen in /proc/<pid>/maps
2462  * @size: size to be set for the file
2463  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2464  */
2465 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2466 {
2467         int error;
2468         struct file *file;
2469         struct inode *inode;
2470         struct path path;
2471         struct dentry *root;
2472         struct qstr this;
2473
2474         if (IS_ERR(shm_mnt))
2475                 return (void *)shm_mnt;
2476
2477         if (size < 0 || size > MAX_LFS_FILESIZE)
2478                 return ERR_PTR(-EINVAL);
2479
2480         if (shmem_acct_size(flags, size))
2481                 return ERR_PTR(-ENOMEM);
2482
2483         error = -ENOMEM;
2484         this.name = name;
2485         this.len = strlen(name);
2486         this.hash = 0; /* will go */
2487         root = shm_mnt->mnt_root;
2488         path.dentry = d_alloc(root, &this);
2489         if (!path.dentry)
2490                 goto put_memory;
2491         path.mnt = mntget(shm_mnt);
2492
2493         error = -ENOSPC;
2494         inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2495         if (!inode)
2496                 goto put_dentry;
2497
2498         d_instantiate(path.dentry, inode);
2499         inode->i_size = size;
2500         inode->i_nlink = 0;     /* It is unlinked */
2501 #ifndef CONFIG_MMU
2502         error = ramfs_nommu_expand_for_mapping(inode, size);
2503         if (error)
2504                 goto put_dentry;
2505 #endif
2506
2507         error = -ENFILE;
2508         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2509                   &shmem_file_operations);
2510         if (!file)
2511                 goto put_dentry;
2512
2513         return file;
2514
2515 put_dentry:
2516         path_put(&path);
2517 put_memory:
2518         shmem_unacct_size(flags, size);
2519         return ERR_PTR(error);
2520 }
2521 EXPORT_SYMBOL_GPL(shmem_file_setup);
2522
2523 /**
2524  * shmem_zero_setup - setup a shared anonymous mapping
2525  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2526  */
2527 int shmem_zero_setup(struct vm_area_struct *vma)
2528 {
2529         struct file *file;
2530         loff_t size = vma->vm_end - vma->vm_start;
2531
2532         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2533         if (IS_ERR(file))
2534                 return PTR_ERR(file);
2535
2536         if (vma->vm_file)
2537                 fput(vma->vm_file);
2538         vma->vm_file = file;
2539         vma->vm_ops = &shmem_vm_ops;
2540         vma->vm_flags |= VM_CAN_NONLINEAR;
2541         return 0;
2542 }
2543
2544 /**
2545  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2546  * @mapping:    the page's address_space
2547  * @index:      the page index
2548  * @gfp:        the page allocator flags to use if allocating
2549  *
2550  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2551  * with any new page allocations done using the specified allocation flags.
2552  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2553  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2554  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2555  *
2556  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2557  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2558  */
2559 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2560                                          pgoff_t index, gfp_t gfp)
2561 {
2562 #ifdef CONFIG_SHMEM
2563         struct inode *inode = mapping->host;
2564         struct page *page;
2565         int error;
2566
2567         BUG_ON(mapping->a_ops != &shmem_aops);
2568         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2569         if (error)
2570                 page = ERR_PTR(error);
2571         else
2572                 unlock_page(page);
2573         return page;
2574 #else
2575         /*
2576          * The tiny !SHMEM case uses ramfs without swap
2577          */
2578         return read_cache_page_gfp(mapping, index, gfp);
2579 #endif
2580 }
2581 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);