Merge branch 'linux-next' of git://git.infradead.org/ubi-2.6
[pandora-kernel.git] / mm / percpu-vm.c
1 /*
2  * mm/percpu-vm.c - vmalloc area based chunk allocation
3  *
4  * Copyright (C) 2010           SUSE Linux Products GmbH
5  * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * Chunks are mapped into vmalloc areas and populated page by page.
10  * This is the default chunk allocator.
11  */
12
13 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
14                                     unsigned int cpu, int page_idx)
15 {
16         /* must not be used on pre-mapped chunk */
17         WARN_ON(chunk->immutable);
18
19         return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
20 }
21
22 /**
23  * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
24  * @chunk: chunk of interest
25  * @bitmapp: output parameter for bitmap
26  * @may_alloc: may allocate the array
27  *
28  * Returns pointer to array of pointers to struct page and bitmap,
29  * both of which can be indexed with pcpu_page_idx().  The returned
30  * array is cleared to zero and *@bitmapp is copied from
31  * @chunk->populated.  Note that there is only one array and bitmap
32  * and access exclusion is the caller's responsibility.
33  *
34  * CONTEXT:
35  * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
36  * Otherwise, don't care.
37  *
38  * RETURNS:
39  * Pointer to temp pages array on success, NULL on failure.
40  */
41 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
42                                                unsigned long **bitmapp,
43                                                bool may_alloc)
44 {
45         static struct page **pages;
46         static unsigned long *bitmap;
47         size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
48         size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
49                              sizeof(unsigned long);
50
51         if (!pages || !bitmap) {
52                 if (may_alloc && !pages)
53                         pages = pcpu_mem_alloc(pages_size);
54                 if (may_alloc && !bitmap)
55                         bitmap = pcpu_mem_alloc(bitmap_size);
56                 if (!pages || !bitmap)
57                         return NULL;
58         }
59
60         memset(pages, 0, pages_size);
61         bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
62
63         *bitmapp = bitmap;
64         return pages;
65 }
66
67 /**
68  * pcpu_free_pages - free pages which were allocated for @chunk
69  * @chunk: chunk pages were allocated for
70  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
71  * @populated: populated bitmap
72  * @page_start: page index of the first page to be freed
73  * @page_end: page index of the last page to be freed + 1
74  *
75  * Free pages [@page_start and @page_end) in @pages for all units.
76  * The pages were allocated for @chunk.
77  */
78 static void pcpu_free_pages(struct pcpu_chunk *chunk,
79                             struct page **pages, unsigned long *populated,
80                             int page_start, int page_end)
81 {
82         unsigned int cpu;
83         int i;
84
85         for_each_possible_cpu(cpu) {
86                 for (i = page_start; i < page_end; i++) {
87                         struct page *page = pages[pcpu_page_idx(cpu, i)];
88
89                         if (page)
90                                 __free_page(page);
91                 }
92         }
93 }
94
95 /**
96  * pcpu_alloc_pages - allocates pages for @chunk
97  * @chunk: target chunk
98  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
99  * @populated: populated bitmap
100  * @page_start: page index of the first page to be allocated
101  * @page_end: page index of the last page to be allocated + 1
102  *
103  * Allocate pages [@page_start,@page_end) into @pages for all units.
104  * The allocation is for @chunk.  Percpu core doesn't care about the
105  * content of @pages and will pass it verbatim to pcpu_map_pages().
106  */
107 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
108                             struct page **pages, unsigned long *populated,
109                             int page_start, int page_end)
110 {
111         const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
112         unsigned int cpu;
113         int i;
114
115         for_each_possible_cpu(cpu) {
116                 for (i = page_start; i < page_end; i++) {
117                         struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
118
119                         *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
120                         if (!*pagep) {
121                                 pcpu_free_pages(chunk, pages, populated,
122                                                 page_start, page_end);
123                                 return -ENOMEM;
124                         }
125                 }
126         }
127         return 0;
128 }
129
130 /**
131  * pcpu_pre_unmap_flush - flush cache prior to unmapping
132  * @chunk: chunk the regions to be flushed belongs to
133  * @page_start: page index of the first page to be flushed
134  * @page_end: page index of the last page to be flushed + 1
135  *
136  * Pages in [@page_start,@page_end) of @chunk are about to be
137  * unmapped.  Flush cache.  As each flushing trial can be very
138  * expensive, issue flush on the whole region at once rather than
139  * doing it for each cpu.  This could be an overkill but is more
140  * scalable.
141  */
142 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
143                                  int page_start, int page_end)
144 {
145         flush_cache_vunmap(
146                 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
147                 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
148 }
149
150 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
151 {
152         unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
153 }
154
155 /**
156  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
157  * @chunk: chunk of interest
158  * @pages: pages array which can be used to pass information to free
159  * @populated: populated bitmap
160  * @page_start: page index of the first page to unmap
161  * @page_end: page index of the last page to unmap + 1
162  *
163  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
164  * Corresponding elements in @pages were cleared by the caller and can
165  * be used to carry information to pcpu_free_pages() which will be
166  * called after all unmaps are finished.  The caller should call
167  * proper pre/post flush functions.
168  */
169 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
170                              struct page **pages, unsigned long *populated,
171                              int page_start, int page_end)
172 {
173         unsigned int cpu;
174         int i;
175
176         for_each_possible_cpu(cpu) {
177                 for (i = page_start; i < page_end; i++) {
178                         struct page *page;
179
180                         page = pcpu_chunk_page(chunk, cpu, i);
181                         WARN_ON(!page);
182                         pages[pcpu_page_idx(cpu, i)] = page;
183                 }
184                 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
185                                    page_end - page_start);
186         }
187
188         for (i = page_start; i < page_end; i++)
189                 __clear_bit(i, populated);
190 }
191
192 /**
193  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
194  * @chunk: pcpu_chunk the regions to be flushed belong to
195  * @page_start: page index of the first page to be flushed
196  * @page_end: page index of the last page to be flushed + 1
197  *
198  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
199  * TLB for the regions.  This can be skipped if the area is to be
200  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
201  *
202  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
203  * for the whole region.
204  */
205 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
206                                       int page_start, int page_end)
207 {
208         flush_tlb_kernel_range(
209                 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
210                 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
211 }
212
213 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
214                             int nr_pages)
215 {
216         return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
217                                         PAGE_KERNEL, pages);
218 }
219
220 /**
221  * pcpu_map_pages - map pages into a pcpu_chunk
222  * @chunk: chunk of interest
223  * @pages: pages array containing pages to be mapped
224  * @populated: populated bitmap
225  * @page_start: page index of the first page to map
226  * @page_end: page index of the last page to map + 1
227  *
228  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
229  * caller is responsible for calling pcpu_post_map_flush() after all
230  * mappings are complete.
231  *
232  * This function is responsible for setting corresponding bits in
233  * @chunk->populated bitmap and whatever is necessary for reverse
234  * lookup (addr -> chunk).
235  */
236 static int pcpu_map_pages(struct pcpu_chunk *chunk,
237                           struct page **pages, unsigned long *populated,
238                           int page_start, int page_end)
239 {
240         unsigned int cpu, tcpu;
241         int i, err;
242
243         for_each_possible_cpu(cpu) {
244                 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
245                                        &pages[pcpu_page_idx(cpu, page_start)],
246                                        page_end - page_start);
247                 if (err < 0)
248                         goto err;
249         }
250
251         /* mapping successful, link chunk and mark populated */
252         for (i = page_start; i < page_end; i++) {
253                 for_each_possible_cpu(cpu)
254                         pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
255                                             chunk);
256                 __set_bit(i, populated);
257         }
258
259         return 0;
260
261 err:
262         for_each_possible_cpu(tcpu) {
263                 if (tcpu == cpu)
264                         break;
265                 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
266                                    page_end - page_start);
267         }
268         return err;
269 }
270
271 /**
272  * pcpu_post_map_flush - flush cache after mapping
273  * @chunk: pcpu_chunk the regions to be flushed belong to
274  * @page_start: page index of the first page to be flushed
275  * @page_end: page index of the last page to be flushed + 1
276  *
277  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
278  * cache.
279  *
280  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
281  * for the whole region.
282  */
283 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
284                                 int page_start, int page_end)
285 {
286         flush_cache_vmap(
287                 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
288                 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
289 }
290
291 /**
292  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
293  * @chunk: chunk of interest
294  * @off: offset to the area to populate
295  * @size: size of the area to populate in bytes
296  *
297  * For each cpu, populate and map pages [@page_start,@page_end) into
298  * @chunk.  The area is cleared on return.
299  *
300  * CONTEXT:
301  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
302  */
303 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
304 {
305         int page_start = PFN_DOWN(off);
306         int page_end = PFN_UP(off + size);
307         int free_end = page_start, unmap_end = page_start;
308         struct page **pages;
309         unsigned long *populated;
310         unsigned int cpu;
311         int rs, re, rc;
312
313         /* quick path, check whether all pages are already there */
314         rs = page_start;
315         pcpu_next_pop(chunk, &rs, &re, page_end);
316         if (rs == page_start && re == page_end)
317                 goto clear;
318
319         /* need to allocate and map pages, this chunk can't be immutable */
320         WARN_ON(chunk->immutable);
321
322         pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
323         if (!pages)
324                 return -ENOMEM;
325
326         /* alloc and map */
327         pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
328                 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
329                 if (rc)
330                         goto err_free;
331                 free_end = re;
332         }
333
334         pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
335                 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
336                 if (rc)
337                         goto err_unmap;
338                 unmap_end = re;
339         }
340         pcpu_post_map_flush(chunk, page_start, page_end);
341
342         /* commit new bitmap */
343         bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
344 clear:
345         for_each_possible_cpu(cpu)
346                 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
347         return 0;
348
349 err_unmap:
350         pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
351         pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
352                 pcpu_unmap_pages(chunk, pages, populated, rs, re);
353         pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
354 err_free:
355         pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
356                 pcpu_free_pages(chunk, pages, populated, rs, re);
357         return rc;
358 }
359
360 /**
361  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
362  * @chunk: chunk to depopulate
363  * @off: offset to the area to depopulate
364  * @size: size of the area to depopulate in bytes
365  * @flush: whether to flush cache and tlb or not
366  *
367  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
368  * from @chunk.  If @flush is true, vcache is flushed before unmapping
369  * and tlb after.
370  *
371  * CONTEXT:
372  * pcpu_alloc_mutex.
373  */
374 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
375 {
376         int page_start = PFN_DOWN(off);
377         int page_end = PFN_UP(off + size);
378         struct page **pages;
379         unsigned long *populated;
380         int rs, re;
381
382         /* quick path, check whether it's empty already */
383         rs = page_start;
384         pcpu_next_unpop(chunk, &rs, &re, page_end);
385         if (rs == page_start && re == page_end)
386                 return;
387
388         /* immutable chunks can't be depopulated */
389         WARN_ON(chunk->immutable);
390
391         /*
392          * If control reaches here, there must have been at least one
393          * successful population attempt so the temp pages array must
394          * be available now.
395          */
396         pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
397         BUG_ON(!pages);
398
399         /* unmap and free */
400         pcpu_pre_unmap_flush(chunk, page_start, page_end);
401
402         pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
403                 pcpu_unmap_pages(chunk, pages, populated, rs, re);
404
405         /* no need to flush tlb, vmalloc will handle it lazily */
406
407         pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
408                 pcpu_free_pages(chunk, pages, populated, rs, re);
409
410         /* commit new bitmap */
411         bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
412 }
413
414 static struct pcpu_chunk *pcpu_create_chunk(void)
415 {
416         struct pcpu_chunk *chunk;
417         struct vm_struct **vms;
418
419         chunk = pcpu_alloc_chunk();
420         if (!chunk)
421                 return NULL;
422
423         vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
424                                 pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL);
425         if (!vms) {
426                 pcpu_free_chunk(chunk);
427                 return NULL;
428         }
429
430         chunk->data = vms;
431         chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
432         return chunk;
433 }
434
435 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
436 {
437         if (chunk && chunk->data)
438                 pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
439         pcpu_free_chunk(chunk);
440 }
441
442 static struct page *pcpu_addr_to_page(void *addr)
443 {
444         return vmalloc_to_page(addr);
445 }
446
447 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
448 {
449         /* no extra restriction */
450         return 0;
451 }