Input: pwm-beeper - fix - scheduling while atomic
[pandora-kernel.git] / mm / percpu-vm.c
1 /*
2  * mm/percpu-vm.c - vmalloc area based chunk allocation
3  *
4  * Copyright (C) 2010           SUSE Linux Products GmbH
5  * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * Chunks are mapped into vmalloc areas and populated page by page.
10  * This is the default chunk allocator.
11  */
12
13 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
14                                     unsigned int cpu, int page_idx)
15 {
16         /* must not be used on pre-mapped chunk */
17         WARN_ON(chunk->immutable);
18
19         return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
20 }
21
22 /**
23  * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
24  * @chunk: chunk of interest
25  * @bitmapp: output parameter for bitmap
26  * @may_alloc: may allocate the array
27  *
28  * Returns pointer to array of pointers to struct page and bitmap,
29  * both of which can be indexed with pcpu_page_idx().  The returned
30  * array is cleared to zero and *@bitmapp is copied from
31  * @chunk->populated.  Note that there is only one array and bitmap
32  * and access exclusion is the caller's responsibility.
33  *
34  * CONTEXT:
35  * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
36  * Otherwise, don't care.
37  *
38  * RETURNS:
39  * Pointer to temp pages array on success, NULL on failure.
40  */
41 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
42                                                unsigned long **bitmapp,
43                                                bool may_alloc)
44 {
45         static struct page **pages;
46         static unsigned long *bitmap;
47         size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
48         size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
49                              sizeof(unsigned long);
50
51         if (!pages || !bitmap) {
52                 if (may_alloc && !pages)
53                         pages = pcpu_mem_zalloc(pages_size);
54                 if (may_alloc && !bitmap)
55                         bitmap = pcpu_mem_zalloc(bitmap_size);
56                 if (!pages || !bitmap)
57                         return NULL;
58         }
59
60         bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
61
62         *bitmapp = bitmap;
63         return pages;
64 }
65
66 /**
67  * pcpu_free_pages - free pages which were allocated for @chunk
68  * @chunk: chunk pages were allocated for
69  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
70  * @populated: populated bitmap
71  * @page_start: page index of the first page to be freed
72  * @page_end: page index of the last page to be freed + 1
73  *
74  * Free pages [@page_start and @page_end) in @pages for all units.
75  * The pages were allocated for @chunk.
76  */
77 static void pcpu_free_pages(struct pcpu_chunk *chunk,
78                             struct page **pages, unsigned long *populated,
79                             int page_start, int page_end)
80 {
81         unsigned int cpu;
82         int i;
83
84         for_each_possible_cpu(cpu) {
85                 for (i = page_start; i < page_end; i++) {
86                         struct page *page = pages[pcpu_page_idx(cpu, i)];
87
88                         if (page)
89                                 __free_page(page);
90                 }
91         }
92 }
93
94 /**
95  * pcpu_alloc_pages - allocates pages for @chunk
96  * @chunk: target chunk
97  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
98  * @populated: populated bitmap
99  * @page_start: page index of the first page to be allocated
100  * @page_end: page index of the last page to be allocated + 1
101  *
102  * Allocate pages [@page_start,@page_end) into @pages for all units.
103  * The allocation is for @chunk.  Percpu core doesn't care about the
104  * content of @pages and will pass it verbatim to pcpu_map_pages().
105  */
106 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
107                             struct page **pages, unsigned long *populated,
108                             int page_start, int page_end)
109 {
110         const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
111         unsigned int cpu, tcpu;
112         int i;
113
114         for_each_possible_cpu(cpu) {
115                 for (i = page_start; i < page_end; i++) {
116                         struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
117
118                         *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
119                         if (!*pagep)
120                                 goto err;
121                 }
122         }
123         return 0;
124
125 err:
126         while (--i >= page_start)
127                 __free_page(pages[pcpu_page_idx(cpu, i)]);
128
129         for_each_possible_cpu(tcpu) {
130                 if (tcpu == cpu)
131                         break;
132                 for (i = page_start; i < page_end; i++)
133                         __free_page(pages[pcpu_page_idx(tcpu, i)]);
134         }
135         return -ENOMEM;
136 }
137
138 /**
139  * pcpu_pre_unmap_flush - flush cache prior to unmapping
140  * @chunk: chunk the regions to be flushed belongs to
141  * @page_start: page index of the first page to be flushed
142  * @page_end: page index of the last page to be flushed + 1
143  *
144  * Pages in [@page_start,@page_end) of @chunk are about to be
145  * unmapped.  Flush cache.  As each flushing trial can be very
146  * expensive, issue flush on the whole region at once rather than
147  * doing it for each cpu.  This could be an overkill but is more
148  * scalable.
149  */
150 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
151                                  int page_start, int page_end)
152 {
153         flush_cache_vunmap(
154                 pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
155                 pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
156 }
157
158 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
159 {
160         unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
161 }
162
163 /**
164  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
165  * @chunk: chunk of interest
166  * @pages: pages array which can be used to pass information to free
167  * @populated: populated bitmap
168  * @page_start: page index of the first page to unmap
169  * @page_end: page index of the last page to unmap + 1
170  *
171  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
172  * Corresponding elements in @pages were cleared by the caller and can
173  * be used to carry information to pcpu_free_pages() which will be
174  * called after all unmaps are finished.  The caller should call
175  * proper pre/post flush functions.
176  */
177 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
178                              struct page **pages, unsigned long *populated,
179                              int page_start, int page_end)
180 {
181         unsigned int cpu;
182         int i;
183
184         for_each_possible_cpu(cpu) {
185                 for (i = page_start; i < page_end; i++) {
186                         struct page *page;
187
188                         page = pcpu_chunk_page(chunk, cpu, i);
189                         WARN_ON(!page);
190                         pages[pcpu_page_idx(cpu, i)] = page;
191                 }
192                 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
193                                    page_end - page_start);
194         }
195
196         for (i = page_start; i < page_end; i++)
197                 __clear_bit(i, populated);
198 }
199
200 /**
201  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
202  * @chunk: pcpu_chunk the regions to be flushed belong to
203  * @page_start: page index of the first page to be flushed
204  * @page_end: page index of the last page to be flushed + 1
205  *
206  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
207  * TLB for the regions.  This can be skipped if the area is to be
208  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
209  *
210  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
211  * for the whole region.
212  */
213 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
214                                       int page_start, int page_end)
215 {
216         flush_tlb_kernel_range(
217                 pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
218                 pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
219 }
220
221 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
222                             int nr_pages)
223 {
224         return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
225                                         PAGE_KERNEL, pages);
226 }
227
228 /**
229  * pcpu_map_pages - map pages into a pcpu_chunk
230  * @chunk: chunk of interest
231  * @pages: pages array containing pages to be mapped
232  * @populated: populated bitmap
233  * @page_start: page index of the first page to map
234  * @page_end: page index of the last page to map + 1
235  *
236  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
237  * caller is responsible for calling pcpu_post_map_flush() after all
238  * mappings are complete.
239  *
240  * This function is responsible for setting corresponding bits in
241  * @chunk->populated bitmap and whatever is necessary for reverse
242  * lookup (addr -> chunk).
243  */
244 static int pcpu_map_pages(struct pcpu_chunk *chunk,
245                           struct page **pages, unsigned long *populated,
246                           int page_start, int page_end)
247 {
248         unsigned int cpu, tcpu;
249         int i, err;
250
251         for_each_possible_cpu(cpu) {
252                 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
253                                        &pages[pcpu_page_idx(cpu, page_start)],
254                                        page_end - page_start);
255                 if (err < 0)
256                         goto err;
257         }
258
259         /* mapping successful, link chunk and mark populated */
260         for (i = page_start; i < page_end; i++) {
261                 for_each_possible_cpu(cpu)
262                         pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
263                                             chunk);
264                 __set_bit(i, populated);
265         }
266
267         return 0;
268
269 err:
270         for_each_possible_cpu(tcpu) {
271                 if (tcpu == cpu)
272                         break;
273                 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
274                                    page_end - page_start);
275         }
276         pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
277         return err;
278 }
279
280 /**
281  * pcpu_post_map_flush - flush cache after mapping
282  * @chunk: pcpu_chunk the regions to be flushed belong to
283  * @page_start: page index of the first page to be flushed
284  * @page_end: page index of the last page to be flushed + 1
285  *
286  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
287  * cache.
288  *
289  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
290  * for the whole region.
291  */
292 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
293                                 int page_start, int page_end)
294 {
295         flush_cache_vmap(
296                 pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
297                 pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
298 }
299
300 /**
301  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
302  * @chunk: chunk of interest
303  * @off: offset to the area to populate
304  * @size: size of the area to populate in bytes
305  *
306  * For each cpu, populate and map pages [@page_start,@page_end) into
307  * @chunk.  The area is cleared on return.
308  *
309  * CONTEXT:
310  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
311  */
312 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
313 {
314         int page_start = PFN_DOWN(off);
315         int page_end = PFN_UP(off + size);
316         int free_end = page_start, unmap_end = page_start;
317         struct page **pages;
318         unsigned long *populated;
319         unsigned int cpu;
320         int rs, re, rc;
321
322         /* quick path, check whether all pages are already there */
323         rs = page_start;
324         pcpu_next_pop(chunk, &rs, &re, page_end);
325         if (rs == page_start && re == page_end)
326                 goto clear;
327
328         /* need to allocate and map pages, this chunk can't be immutable */
329         WARN_ON(chunk->immutable);
330
331         pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
332         if (!pages)
333                 return -ENOMEM;
334
335         /* alloc and map */
336         pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
337                 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
338                 if (rc)
339                         goto err_free;
340                 free_end = re;
341         }
342
343         pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
344                 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
345                 if (rc)
346                         goto err_unmap;
347                 unmap_end = re;
348         }
349         pcpu_post_map_flush(chunk, page_start, page_end);
350
351         /* commit new bitmap */
352         bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
353 clear:
354         for_each_possible_cpu(cpu)
355                 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
356         return 0;
357
358 err_unmap:
359         pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
360         pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
361                 pcpu_unmap_pages(chunk, pages, populated, rs, re);
362         pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
363 err_free:
364         pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
365                 pcpu_free_pages(chunk, pages, populated, rs, re);
366         return rc;
367 }
368
369 /**
370  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
371  * @chunk: chunk to depopulate
372  * @off: offset to the area to depopulate
373  * @size: size of the area to depopulate in bytes
374  * @flush: whether to flush cache and tlb or not
375  *
376  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
377  * from @chunk.  If @flush is true, vcache is flushed before unmapping
378  * and tlb after.
379  *
380  * CONTEXT:
381  * pcpu_alloc_mutex.
382  */
383 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
384 {
385         int page_start = PFN_DOWN(off);
386         int page_end = PFN_UP(off + size);
387         struct page **pages;
388         unsigned long *populated;
389         int rs, re;
390
391         /* quick path, check whether it's empty already */
392         rs = page_start;
393         pcpu_next_unpop(chunk, &rs, &re, page_end);
394         if (rs == page_start && re == page_end)
395                 return;
396
397         /* immutable chunks can't be depopulated */
398         WARN_ON(chunk->immutable);
399
400         /*
401          * If control reaches here, there must have been at least one
402          * successful population attempt so the temp pages array must
403          * be available now.
404          */
405         pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
406         BUG_ON(!pages);
407
408         /* unmap and free */
409         pcpu_pre_unmap_flush(chunk, page_start, page_end);
410
411         pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
412                 pcpu_unmap_pages(chunk, pages, populated, rs, re);
413
414         /* no need to flush tlb, vmalloc will handle it lazily */
415
416         pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
417                 pcpu_free_pages(chunk, pages, populated, rs, re);
418
419         /* commit new bitmap */
420         bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
421 }
422
423 static struct pcpu_chunk *pcpu_create_chunk(void)
424 {
425         struct pcpu_chunk *chunk;
426         struct vm_struct **vms;
427
428         chunk = pcpu_alloc_chunk();
429         if (!chunk)
430                 return NULL;
431
432         vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
433                                 pcpu_nr_groups, pcpu_atom_size);
434         if (!vms) {
435                 pcpu_free_chunk(chunk);
436                 return NULL;
437         }
438
439         chunk->data = vms;
440         chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
441         return chunk;
442 }
443
444 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
445 {
446         if (chunk && chunk->data)
447                 pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
448         pcpu_free_chunk(chunk);
449 }
450
451 static struct page *pcpu_addr_to_page(void *addr)
452 {
453         return vmalloc_to_page(addr);
454 }
455
456 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
457 {
458         /* no extra restriction */
459         return 0;
460 }