Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE               max(HZ/5, 1)
43
44 /*
45  * Estimate write bandwidth at 200ms intervals.
46  */
47 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
48
49 #define RATELIMIT_CALC_SHIFT    10
50
51 /*
52  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53  * will look to see if it needs to force writeback or throttling.
54  */
55 static long ratelimit_pages = 32;
56
57 /* The following parameters are exported via /proc/sys/vm */
58
59 /*
60  * Start background writeback (via writeback threads) at this percentage
61  */
62 int dirty_background_ratio = 10;
63
64 /*
65  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66  * dirty_background_ratio * the amount of dirtyable memory
67  */
68 unsigned long dirty_background_bytes;
69
70 /*
71  * free highmem will not be subtracted from the total free memory
72  * for calculating free ratios if vm_highmem_is_dirtyable is true
73  */
74 int vm_highmem_is_dirtyable;
75
76 /*
77  * The generator of dirty data starts writeback at this percentage
78  */
79 int vm_dirty_ratio = 20;
80
81 /*
82  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83  * vm_dirty_ratio * the amount of dirtyable memory
84  */
85 unsigned long vm_dirty_bytes;
86
87 /*
88  * The interval between `kupdate'-style writebacks
89  */
90 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
91
92 /*
93  * The longest time for which data is allowed to remain dirty
94  */
95 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
96
97 /*
98  * Flag that makes the machine dump writes/reads and block dirtyings.
99  */
100 int block_dump;
101
102 /*
103  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104  * a full sync is triggered after this time elapses without any disk activity.
105  */
106 int laptop_mode;
107
108 EXPORT_SYMBOL(laptop_mode);
109
110 /* End of sysctl-exported parameters */
111
112 unsigned long global_dirty_limit;
113
114 /*
115  * Scale the writeback cache size proportional to the relative writeout speeds.
116  *
117  * We do this by keeping a floating proportion between BDIs, based on page
118  * writeback completions [end_page_writeback()]. Those devices that write out
119  * pages fastest will get the larger share, while the slower will get a smaller
120  * share.
121  *
122  * We use page writeout completions because we are interested in getting rid of
123  * dirty pages. Having them written out is the primary goal.
124  *
125  * We introduce a concept of time, a period over which we measure these events,
126  * because demand can/will vary over time. The length of this period itself is
127  * measured in page writeback completions.
128  *
129  */
130 static struct prop_descriptor vm_completions;
131
132 /*
133  * couple the period to the dirty_ratio:
134  *
135  *   period/2 ~ roundup_pow_of_two(dirty limit)
136  */
137 static int calc_period_shift(void)
138 {
139         unsigned long dirty_total;
140
141         if (vm_dirty_bytes)
142                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
143         else
144                 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
145                                 100;
146         return 2 + ilog2(dirty_total - 1);
147 }
148
149 /*
150  * update the period when the dirty threshold changes.
151  */
152 static void update_completion_period(void)
153 {
154         int shift = calc_period_shift();
155         prop_change_shift(&vm_completions, shift);
156
157         writeback_set_ratelimit();
158 }
159
160 int dirty_background_ratio_handler(struct ctl_table *table, int write,
161                 void __user *buffer, size_t *lenp,
162                 loff_t *ppos)
163 {
164         int ret;
165
166         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
167         if (ret == 0 && write)
168                 dirty_background_bytes = 0;
169         return ret;
170 }
171
172 int dirty_background_bytes_handler(struct ctl_table *table, int write,
173                 void __user *buffer, size_t *lenp,
174                 loff_t *ppos)
175 {
176         int ret;
177
178         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
179         if (ret == 0 && write)
180                 dirty_background_ratio = 0;
181         return ret;
182 }
183
184 int dirty_ratio_handler(struct ctl_table *table, int write,
185                 void __user *buffer, size_t *lenp,
186                 loff_t *ppos)
187 {
188         int old_ratio = vm_dirty_ratio;
189         int ret;
190
191         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
192         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
193                 update_completion_period();
194                 vm_dirty_bytes = 0;
195         }
196         return ret;
197 }
198
199
200 int dirty_bytes_handler(struct ctl_table *table, int write,
201                 void __user *buffer, size_t *lenp,
202                 loff_t *ppos)
203 {
204         unsigned long old_bytes = vm_dirty_bytes;
205         int ret;
206
207         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
208         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
209                 update_completion_period();
210                 vm_dirty_ratio = 0;
211         }
212         return ret;
213 }
214
215 /*
216  * Increment the BDI's writeout completion count and the global writeout
217  * completion count. Called from test_clear_page_writeback().
218  */
219 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
220 {
221         __inc_bdi_stat(bdi, BDI_WRITTEN);
222         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223                               bdi->max_prop_frac);
224 }
225
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
227 {
228         unsigned long flags;
229
230         local_irq_save(flags);
231         __bdi_writeout_inc(bdi);
232         local_irq_restore(flags);
233 }
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
236 /*
237  * Obtain an accurate fraction of the BDI's portion.
238  */
239 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
240                 long *numerator, long *denominator)
241 {
242         prop_fraction_percpu(&vm_completions, &bdi->completions,
243                                 numerator, denominator);
244 }
245
246 /*
247  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
248  * registered backing devices, which, for obvious reasons, can not
249  * exceed 100%.
250  */
251 static unsigned int bdi_min_ratio;
252
253 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
254 {
255         int ret = 0;
256
257         spin_lock_bh(&bdi_lock);
258         if (min_ratio > bdi->max_ratio) {
259                 ret = -EINVAL;
260         } else {
261                 min_ratio -= bdi->min_ratio;
262                 if (bdi_min_ratio + min_ratio < 100) {
263                         bdi_min_ratio += min_ratio;
264                         bdi->min_ratio += min_ratio;
265                 } else {
266                         ret = -EINVAL;
267                 }
268         }
269         spin_unlock_bh(&bdi_lock);
270
271         return ret;
272 }
273
274 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
275 {
276         int ret = 0;
277
278         if (max_ratio > 100)
279                 return -EINVAL;
280
281         spin_lock_bh(&bdi_lock);
282         if (bdi->min_ratio > max_ratio) {
283                 ret = -EINVAL;
284         } else {
285                 bdi->max_ratio = max_ratio;
286                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
287         }
288         spin_unlock_bh(&bdi_lock);
289
290         return ret;
291 }
292 EXPORT_SYMBOL(bdi_set_max_ratio);
293
294 /*
295  * Work out the current dirty-memory clamping and background writeout
296  * thresholds.
297  *
298  * The main aim here is to lower them aggressively if there is a lot of mapped
299  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
300  * pages.  It is better to clamp down on writers than to start swapping, and
301  * performing lots of scanning.
302  *
303  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
304  *
305  * We don't permit the clamping level to fall below 5% - that is getting rather
306  * excessive.
307  *
308  * We make sure that the background writeout level is below the adjusted
309  * clamping level.
310  */
311
312 static unsigned long highmem_dirtyable_memory(unsigned long total)
313 {
314 #ifdef CONFIG_HIGHMEM
315         int node;
316         unsigned long x = 0;
317
318         for_each_node_state(node, N_HIGH_MEMORY) {
319                 struct zone *z =
320                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
321
322                 x += zone_page_state(z, NR_FREE_PAGES) +
323                      zone_reclaimable_pages(z);
324         }
325         /*
326          * Make sure that the number of highmem pages is never larger
327          * than the number of the total dirtyable memory. This can only
328          * occur in very strange VM situations but we want to make sure
329          * that this does not occur.
330          */
331         return min(x, total);
332 #else
333         return 0;
334 #endif
335 }
336
337 /**
338  * determine_dirtyable_memory - amount of memory that may be used
339  *
340  * Returns the numebr of pages that can currently be freed and used
341  * by the kernel for direct mappings.
342  */
343 unsigned long determine_dirtyable_memory(void)
344 {
345         unsigned long x;
346
347         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
348
349         if (!vm_highmem_is_dirtyable)
350                 x -= highmem_dirtyable_memory(x);
351
352         return x + 1;   /* Ensure that we never return 0 */
353 }
354
355 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
356                                            unsigned long bg_thresh)
357 {
358         return (thresh + bg_thresh) / 2;
359 }
360
361 static unsigned long hard_dirty_limit(unsigned long thresh)
362 {
363         return max(thresh, global_dirty_limit);
364 }
365
366 /*
367  * global_dirty_limits - background-writeback and dirty-throttling thresholds
368  *
369  * Calculate the dirty thresholds based on sysctl parameters
370  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
371  * - vm.dirty_ratio             or  vm.dirty_bytes
372  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
373  * real-time tasks.
374  */
375 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
376 {
377         unsigned long background;
378         unsigned long dirty;
379         unsigned long uninitialized_var(available_memory);
380         struct task_struct *tsk;
381
382         if (!vm_dirty_bytes || !dirty_background_bytes)
383                 available_memory = determine_dirtyable_memory();
384
385         if (vm_dirty_bytes)
386                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
387         else
388                 dirty = (vm_dirty_ratio * available_memory) / 100;
389
390         if (dirty_background_bytes)
391                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
392         else
393                 background = (dirty_background_ratio * available_memory) / 100;
394
395         if (background >= dirty)
396                 background = dirty / 2;
397         tsk = current;
398         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
399                 background += background / 4;
400                 dirty += dirty / 4;
401         }
402         *pbackground = background;
403         *pdirty = dirty;
404         trace_global_dirty_state(background, dirty);
405 }
406
407 /**
408  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
409  * @bdi: the backing_dev_info to query
410  * @dirty: global dirty limit in pages
411  *
412  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
413  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
414  * And the "limit" in the name is not seriously taken as hard limit in
415  * balance_dirty_pages().
416  *
417  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
418  * - starving fast devices
419  * - piling up dirty pages (that will take long time to sync) on slow devices
420  *
421  * The bdi's share of dirty limit will be adapting to its throughput and
422  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
423  */
424 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
425 {
426         u64 bdi_dirty;
427         long numerator, denominator;
428
429         /*
430          * Calculate this BDI's share of the dirty ratio.
431          */
432         bdi_writeout_fraction(bdi, &numerator, &denominator);
433
434         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
435         bdi_dirty *= numerator;
436         do_div(bdi_dirty, denominator);
437
438         bdi_dirty += (dirty * bdi->min_ratio) / 100;
439         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
440                 bdi_dirty = dirty * bdi->max_ratio / 100;
441
442         return bdi_dirty;
443 }
444
445 /*
446  * Dirty position control.
447  *
448  * (o) global/bdi setpoints
449  *
450  * We want the dirty pages be balanced around the global/bdi setpoints.
451  * When the number of dirty pages is higher/lower than the setpoint, the
452  * dirty position control ratio (and hence task dirty ratelimit) will be
453  * decreased/increased to bring the dirty pages back to the setpoint.
454  *
455  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
456  *
457  *     if (dirty < setpoint) scale up   pos_ratio
458  *     if (dirty > setpoint) scale down pos_ratio
459  *
460  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
461  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
462  *
463  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
464  *
465  * (o) global control line
466  *
467  *     ^ pos_ratio
468  *     |
469  *     |            |<===== global dirty control scope ======>|
470  * 2.0 .............*
471  *     |            .*
472  *     |            . *
473  *     |            .   *
474  *     |            .     *
475  *     |            .        *
476  *     |            .            *
477  * 1.0 ................................*
478  *     |            .                  .     *
479  *     |            .                  .          *
480  *     |            .                  .              *
481  *     |            .                  .                 *
482  *     |            .                  .                    *
483  *   0 +------------.------------------.----------------------*------------->
484  *           freerun^          setpoint^                 limit^   dirty pages
485  *
486  * (o) bdi control line
487  *
488  *     ^ pos_ratio
489  *     |
490  *     |            *
491  *     |              *
492  *     |                *
493  *     |                  *
494  *     |                    * |<=========== span ============>|
495  * 1.0 .......................*
496  *     |                      . *
497  *     |                      .   *
498  *     |                      .     *
499  *     |                      .       *
500  *     |                      .         *
501  *     |                      .           *
502  *     |                      .             *
503  *     |                      .               *
504  *     |                      .                 *
505  *     |                      .                   *
506  *     |                      .                     *
507  * 1/4 ...............................................* * * * * * * * * * * *
508  *     |                      .                         .
509  *     |                      .                           .
510  *     |                      .                             .
511  *   0 +----------------------.-------------------------------.------------->
512  *                bdi_setpoint^                    x_intercept^
513  *
514  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
515  * be smoothly throttled down to normal if it starts high in situations like
516  * - start writing to a slow SD card and a fast disk at the same time. The SD
517  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
518  * - the bdi dirty thresh drops quickly due to change of JBOD workload
519  */
520 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
521                                         unsigned long thresh,
522                                         unsigned long bg_thresh,
523                                         unsigned long dirty,
524                                         unsigned long bdi_thresh,
525                                         unsigned long bdi_dirty)
526 {
527         unsigned long write_bw = bdi->avg_write_bandwidth;
528         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
529         unsigned long limit = hard_dirty_limit(thresh);
530         unsigned long x_intercept;
531         unsigned long setpoint;         /* dirty pages' target balance point */
532         unsigned long bdi_setpoint;
533         unsigned long span;
534         long long pos_ratio;            /* for scaling up/down the rate limit */
535         long x;
536
537         if (unlikely(dirty >= limit))
538                 return 0;
539
540         /*
541          * global setpoint
542          *
543          *                           setpoint - dirty 3
544          *        f(dirty) := 1.0 + (----------------)
545          *                           limit - setpoint
546          *
547          * it's a 3rd order polynomial that subjects to
548          *
549          * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
550          * (2) f(setpoint) = 1.0 => the balance point
551          * (3) f(limit)    = 0   => the hard limit
552          * (4) df/dx      <= 0   => negative feedback control
553          * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
554          *     => fast response on large errors; small oscillation near setpoint
555          */
556         setpoint = (freerun + limit) / 2;
557         x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
558                     limit - setpoint + 1);
559         pos_ratio = x;
560         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
561         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
562         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
563
564         /*
565          * We have computed basic pos_ratio above based on global situation. If
566          * the bdi is over/under its share of dirty pages, we want to scale
567          * pos_ratio further down/up. That is done by the following mechanism.
568          */
569
570         /*
571          * bdi setpoint
572          *
573          *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
574          *
575          *                        x_intercept - bdi_dirty
576          *                     := --------------------------
577          *                        x_intercept - bdi_setpoint
578          *
579          * The main bdi control line is a linear function that subjects to
580          *
581          * (1) f(bdi_setpoint) = 1.0
582          * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
583          *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
584          *
585          * For single bdi case, the dirty pages are observed to fluctuate
586          * regularly within range
587          *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
588          * for various filesystems, where (2) can yield in a reasonable 12.5%
589          * fluctuation range for pos_ratio.
590          *
591          * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
592          * own size, so move the slope over accordingly and choose a slope that
593          * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
594          */
595         if (unlikely(bdi_thresh > thresh))
596                 bdi_thresh = thresh;
597         bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
598         /*
599          * scale global setpoint to bdi's:
600          *      bdi_setpoint = setpoint * bdi_thresh / thresh
601          */
602         x = div_u64((u64)bdi_thresh << 16, thresh + 1);
603         bdi_setpoint = setpoint * (u64)x >> 16;
604         /*
605          * Use span=(8*write_bw) in single bdi case as indicated by
606          * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
607          *
608          *        bdi_thresh                    thresh - bdi_thresh
609          * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
610          *          thresh                            thresh
611          */
612         span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
613         x_intercept = bdi_setpoint + span;
614
615         if (bdi_dirty < x_intercept - span / 4) {
616                 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
617                                     x_intercept - bdi_setpoint + 1);
618         } else
619                 pos_ratio /= 4;
620
621         /*
622          * bdi reserve area, safeguard against dirty pool underrun and disk idle
623          * It may push the desired control point of global dirty pages higher
624          * than setpoint.
625          */
626         x_intercept = bdi_thresh / 2;
627         if (bdi_dirty < x_intercept) {
628                 if (bdi_dirty > x_intercept / 8)
629                         pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
630                 else
631                         pos_ratio *= 8;
632         }
633
634         return pos_ratio;
635 }
636
637 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
638                                        unsigned long elapsed,
639                                        unsigned long written)
640 {
641         const unsigned long period = roundup_pow_of_two(3 * HZ);
642         unsigned long avg = bdi->avg_write_bandwidth;
643         unsigned long old = bdi->write_bandwidth;
644         u64 bw;
645
646         /*
647          * bw = written * HZ / elapsed
648          *
649          *                   bw * elapsed + write_bandwidth * (period - elapsed)
650          * write_bandwidth = ---------------------------------------------------
651          *                                          period
652          */
653         bw = written - bdi->written_stamp;
654         bw *= HZ;
655         if (unlikely(elapsed > period)) {
656                 do_div(bw, elapsed);
657                 avg = bw;
658                 goto out;
659         }
660         bw += (u64)bdi->write_bandwidth * (period - elapsed);
661         bw >>= ilog2(period);
662
663         /*
664          * one more level of smoothing, for filtering out sudden spikes
665          */
666         if (avg > old && old >= (unsigned long)bw)
667                 avg -= (avg - old) >> 3;
668
669         if (avg < old && old <= (unsigned long)bw)
670                 avg += (old - avg) >> 3;
671
672 out:
673         bdi->write_bandwidth = bw;
674         bdi->avg_write_bandwidth = avg;
675 }
676
677 /*
678  * The global dirtyable memory and dirty threshold could be suddenly knocked
679  * down by a large amount (eg. on the startup of KVM in a swapless system).
680  * This may throw the system into deep dirty exceeded state and throttle
681  * heavy/light dirtiers alike. To retain good responsiveness, maintain
682  * global_dirty_limit for tracking slowly down to the knocked down dirty
683  * threshold.
684  */
685 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
686 {
687         unsigned long limit = global_dirty_limit;
688
689         /*
690          * Follow up in one step.
691          */
692         if (limit < thresh) {
693                 limit = thresh;
694                 goto update;
695         }
696
697         /*
698          * Follow down slowly. Use the higher one as the target, because thresh
699          * may drop below dirty. This is exactly the reason to introduce
700          * global_dirty_limit which is guaranteed to lie above the dirty pages.
701          */
702         thresh = max(thresh, dirty);
703         if (limit > thresh) {
704                 limit -= (limit - thresh) >> 5;
705                 goto update;
706         }
707         return;
708 update:
709         global_dirty_limit = limit;
710 }
711
712 static void global_update_bandwidth(unsigned long thresh,
713                                     unsigned long dirty,
714                                     unsigned long now)
715 {
716         static DEFINE_SPINLOCK(dirty_lock);
717         static unsigned long update_time;
718
719         /*
720          * check locklessly first to optimize away locking for the most time
721          */
722         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
723                 return;
724
725         spin_lock(&dirty_lock);
726         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
727                 update_dirty_limit(thresh, dirty);
728                 update_time = now;
729         }
730         spin_unlock(&dirty_lock);
731 }
732
733 /*
734  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
735  *
736  * Normal bdi tasks will be curbed at or below it in long term.
737  * Obviously it should be around (write_bw / N) when there are N dd tasks.
738  */
739 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
740                                        unsigned long thresh,
741                                        unsigned long bg_thresh,
742                                        unsigned long dirty,
743                                        unsigned long bdi_thresh,
744                                        unsigned long bdi_dirty,
745                                        unsigned long dirtied,
746                                        unsigned long elapsed)
747 {
748         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
749         unsigned long limit = hard_dirty_limit(thresh);
750         unsigned long setpoint = (freerun + limit) / 2;
751         unsigned long write_bw = bdi->avg_write_bandwidth;
752         unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
753         unsigned long dirty_rate;
754         unsigned long task_ratelimit;
755         unsigned long balanced_dirty_ratelimit;
756         unsigned long pos_ratio;
757         unsigned long step;
758         unsigned long x;
759
760         /*
761          * The dirty rate will match the writeout rate in long term, except
762          * when dirty pages are truncated by userspace or re-dirtied by FS.
763          */
764         dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
765
766         pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
767                                        bdi_thresh, bdi_dirty);
768         /*
769          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
770          */
771         task_ratelimit = (u64)dirty_ratelimit *
772                                         pos_ratio >> RATELIMIT_CALC_SHIFT;
773         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
774
775         /*
776          * A linear estimation of the "balanced" throttle rate. The theory is,
777          * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
778          * dirty_rate will be measured to be (N * task_ratelimit). So the below
779          * formula will yield the balanced rate limit (write_bw / N).
780          *
781          * Note that the expanded form is not a pure rate feedback:
782          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
783          * but also takes pos_ratio into account:
784          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
785          *
786          * (1) is not realistic because pos_ratio also takes part in balancing
787          * the dirty rate.  Consider the state
788          *      pos_ratio = 0.5                                              (3)
789          *      rate = 2 * (write_bw / N)                                    (4)
790          * If (1) is used, it will stuck in that state! Because each dd will
791          * be throttled at
792          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
793          * yielding
794          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
795          * put (6) into (1) we get
796          *      rate_(i+1) = rate_(i)                                        (7)
797          *
798          * So we end up using (2) to always keep
799          *      rate_(i+1) ~= (write_bw / N)                                 (8)
800          * regardless of the value of pos_ratio. As long as (8) is satisfied,
801          * pos_ratio is able to drive itself to 1.0, which is not only where
802          * the dirty count meet the setpoint, but also where the slope of
803          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
804          */
805         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
806                                            dirty_rate | 1);
807
808         /*
809          * We could safely do this and return immediately:
810          *
811          *      bdi->dirty_ratelimit = balanced_dirty_ratelimit;
812          *
813          * However to get a more stable dirty_ratelimit, the below elaborated
814          * code makes use of task_ratelimit to filter out sigular points and
815          * limit the step size.
816          *
817          * The below code essentially only uses the relative value of
818          *
819          *      task_ratelimit - dirty_ratelimit
820          *      = (pos_ratio - 1) * dirty_ratelimit
821          *
822          * which reflects the direction and size of dirty position error.
823          */
824
825         /*
826          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
827          * task_ratelimit is on the same side of dirty_ratelimit, too.
828          * For example, when
829          * - dirty_ratelimit > balanced_dirty_ratelimit
830          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
831          * lowering dirty_ratelimit will help meet both the position and rate
832          * control targets. Otherwise, don't update dirty_ratelimit if it will
833          * only help meet the rate target. After all, what the users ultimately
834          * feel and care are stable dirty rate and small position error.
835          *
836          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
837          * and filter out the sigular points of balanced_dirty_ratelimit. Which
838          * keeps jumping around randomly and can even leap far away at times
839          * due to the small 200ms estimation period of dirty_rate (we want to
840          * keep that period small to reduce time lags).
841          */
842         step = 0;
843         if (dirty < setpoint) {
844                 x = min(bdi->balanced_dirty_ratelimit,
845                          min(balanced_dirty_ratelimit, task_ratelimit));
846                 if (dirty_ratelimit < x)
847                         step = x - dirty_ratelimit;
848         } else {
849                 x = max(bdi->balanced_dirty_ratelimit,
850                          max(balanced_dirty_ratelimit, task_ratelimit));
851                 if (dirty_ratelimit > x)
852                         step = dirty_ratelimit - x;
853         }
854
855         /*
856          * Don't pursue 100% rate matching. It's impossible since the balanced
857          * rate itself is constantly fluctuating. So decrease the track speed
858          * when it gets close to the target. Helps eliminate pointless tremors.
859          */
860         step >>= dirty_ratelimit / (2 * step + 1);
861         /*
862          * Limit the tracking speed to avoid overshooting.
863          */
864         step = (step + 7) / 8;
865
866         if (dirty_ratelimit < balanced_dirty_ratelimit)
867                 dirty_ratelimit += step;
868         else
869                 dirty_ratelimit -= step;
870
871         bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
872         bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
873
874         trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
875 }
876
877 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
878                             unsigned long thresh,
879                             unsigned long bg_thresh,
880                             unsigned long dirty,
881                             unsigned long bdi_thresh,
882                             unsigned long bdi_dirty,
883                             unsigned long start_time)
884 {
885         unsigned long now = jiffies;
886         unsigned long elapsed = now - bdi->bw_time_stamp;
887         unsigned long dirtied;
888         unsigned long written;
889
890         /*
891          * rate-limit, only update once every 200ms.
892          */
893         if (elapsed < BANDWIDTH_INTERVAL)
894                 return;
895
896         dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
897         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
898
899         /*
900          * Skip quiet periods when disk bandwidth is under-utilized.
901          * (at least 1s idle time between two flusher runs)
902          */
903         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
904                 goto snapshot;
905
906         if (thresh) {
907                 global_update_bandwidth(thresh, dirty, now);
908                 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
909                                            bdi_thresh, bdi_dirty,
910                                            dirtied, elapsed);
911         }
912         bdi_update_write_bandwidth(bdi, elapsed, written);
913
914 snapshot:
915         bdi->dirtied_stamp = dirtied;
916         bdi->written_stamp = written;
917         bdi->bw_time_stamp = now;
918 }
919
920 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
921                                  unsigned long thresh,
922                                  unsigned long bg_thresh,
923                                  unsigned long dirty,
924                                  unsigned long bdi_thresh,
925                                  unsigned long bdi_dirty,
926                                  unsigned long start_time)
927 {
928         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
929                 return;
930         spin_lock(&bdi->wb.list_lock);
931         __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
932                                bdi_thresh, bdi_dirty, start_time);
933         spin_unlock(&bdi->wb.list_lock);
934 }
935
936 /*
937  * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
938  * will look to see if it needs to start dirty throttling.
939  *
940  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
941  * global_page_state() too often. So scale it near-sqrt to the safety margin
942  * (the number of pages we may dirty without exceeding the dirty limits).
943  */
944 static unsigned long dirty_poll_interval(unsigned long dirty,
945                                          unsigned long thresh)
946 {
947         if (thresh > dirty)
948                 return 1UL << (ilog2(thresh - dirty) >> 1);
949
950         return 1;
951 }
952
953 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
954                                    unsigned long bdi_dirty)
955 {
956         unsigned long bw = bdi->avg_write_bandwidth;
957         unsigned long hi = ilog2(bw);
958         unsigned long lo = ilog2(bdi->dirty_ratelimit);
959         unsigned long t;
960
961         /* target for 20ms max pause on 1-dd case */
962         t = HZ / 50;
963
964         /*
965          * Scale up pause time for concurrent dirtiers in order to reduce CPU
966          * overheads.
967          *
968          * (N * 20ms) on 2^N concurrent tasks.
969          */
970         if (hi > lo)
971                 t += (hi - lo) * (20 * HZ) / 1024;
972
973         /*
974          * Limit pause time for small memory systems. If sleeping for too long
975          * time, a small pool of dirty/writeback pages may go empty and disk go
976          * idle.
977          *
978          * 8 serves as the safety ratio.
979          */
980         if (bdi_dirty)
981                 t = min(t, bdi_dirty * HZ / (8 * bw + 1));
982
983         /*
984          * The pause time will be settled within range (max_pause/4, max_pause).
985          * Apply a minimal value of 4 to get a non-zero max_pause/4.
986          */
987         return clamp_val(t, 4, MAX_PAUSE);
988 }
989
990 /*
991  * balance_dirty_pages() must be called by processes which are generating dirty
992  * data.  It looks at the number of dirty pages in the machine and will force
993  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
994  * If we're over `background_thresh' then the writeback threads are woken to
995  * perform some writeout.
996  */
997 static void balance_dirty_pages(struct address_space *mapping,
998                                 unsigned long pages_dirtied)
999 {
1000         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1001         unsigned long bdi_reclaimable;
1002         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1003         unsigned long bdi_dirty;
1004         unsigned long freerun;
1005         unsigned long background_thresh;
1006         unsigned long dirty_thresh;
1007         unsigned long bdi_thresh;
1008         long pause = 0;
1009         long uninitialized_var(max_pause);
1010         bool dirty_exceeded = false;
1011         unsigned long task_ratelimit;
1012         unsigned long uninitialized_var(dirty_ratelimit);
1013         unsigned long pos_ratio;
1014         struct backing_dev_info *bdi = mapping->backing_dev_info;
1015         unsigned long start_time = jiffies;
1016
1017         for (;;) {
1018                 /*
1019                  * Unstable writes are a feature of certain networked
1020                  * filesystems (i.e. NFS) in which data may have been
1021                  * written to the server's write cache, but has not yet
1022                  * been flushed to permanent storage.
1023                  */
1024                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1025                                         global_page_state(NR_UNSTABLE_NFS);
1026                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1027
1028                 global_dirty_limits(&background_thresh, &dirty_thresh);
1029
1030                 /*
1031                  * Throttle it only when the background writeback cannot
1032                  * catch-up. This avoids (excessively) small writeouts
1033                  * when the bdi limits are ramping up.
1034                  */
1035                 freerun = dirty_freerun_ceiling(dirty_thresh,
1036                                                 background_thresh);
1037                 if (nr_dirty <= freerun)
1038                         break;
1039
1040                 if (unlikely(!writeback_in_progress(bdi)))
1041                         bdi_start_background_writeback(bdi);
1042
1043                 /*
1044                  * bdi_thresh is not treated as some limiting factor as
1045                  * dirty_thresh, due to reasons
1046                  * - in JBOD setup, bdi_thresh can fluctuate a lot
1047                  * - in a system with HDD and USB key, the USB key may somehow
1048                  *   go into state (bdi_dirty >> bdi_thresh) either because
1049                  *   bdi_dirty starts high, or because bdi_thresh drops low.
1050                  *   In this case we don't want to hard throttle the USB key
1051                  *   dirtiers for 100 seconds until bdi_dirty drops under
1052                  *   bdi_thresh. Instead the auxiliary bdi control line in
1053                  *   bdi_position_ratio() will let the dirtier task progress
1054                  *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1055                  */
1056                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1057
1058                 /*
1059                  * In order to avoid the stacked BDI deadlock we need
1060                  * to ensure we accurately count the 'dirty' pages when
1061                  * the threshold is low.
1062                  *
1063                  * Otherwise it would be possible to get thresh+n pages
1064                  * reported dirty, even though there are thresh-m pages
1065                  * actually dirty; with m+n sitting in the percpu
1066                  * deltas.
1067                  */
1068                 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1069                         bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1070                         bdi_dirty = bdi_reclaimable +
1071                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
1072                 } else {
1073                         bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1074                         bdi_dirty = bdi_reclaimable +
1075                                     bdi_stat(bdi, BDI_WRITEBACK);
1076                 }
1077
1078                 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1079                                   (nr_dirty > dirty_thresh);
1080                 if (dirty_exceeded && !bdi->dirty_exceeded)
1081                         bdi->dirty_exceeded = 1;
1082
1083                 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1084                                      nr_dirty, bdi_thresh, bdi_dirty,
1085                                      start_time);
1086
1087                 max_pause = bdi_max_pause(bdi, bdi_dirty);
1088
1089                 dirty_ratelimit = bdi->dirty_ratelimit;
1090                 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1091                                                background_thresh, nr_dirty,
1092                                                bdi_thresh, bdi_dirty);
1093                 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1094                                                         RATELIMIT_CALC_SHIFT;
1095                 if (unlikely(task_ratelimit == 0)) {
1096                         pause = max_pause;
1097                         goto pause;
1098                 }
1099                 pause = HZ * pages_dirtied / task_ratelimit;
1100                 if (unlikely(pause <= 0)) {
1101                         trace_balance_dirty_pages(bdi,
1102                                                   dirty_thresh,
1103                                                   background_thresh,
1104                                                   nr_dirty,
1105                                                   bdi_thresh,
1106                                                   bdi_dirty,
1107                                                   dirty_ratelimit,
1108                                                   task_ratelimit,
1109                                                   pages_dirtied,
1110                                                   pause,
1111                                                   start_time);
1112                         pause = 1; /* avoid resetting nr_dirtied_pause below */
1113                         break;
1114                 }
1115                 pause = min(pause, max_pause);
1116
1117 pause:
1118                 trace_balance_dirty_pages(bdi,
1119                                           dirty_thresh,
1120                                           background_thresh,
1121                                           nr_dirty,
1122                                           bdi_thresh,
1123                                           bdi_dirty,
1124                                           dirty_ratelimit,
1125                                           task_ratelimit,
1126                                           pages_dirtied,
1127                                           pause,
1128                                           start_time);
1129                 __set_current_state(TASK_KILLABLE);
1130                 io_schedule_timeout(pause);
1131
1132                 /*
1133                  * This is typically equal to (nr_dirty < dirty_thresh) and can
1134                  * also keep "1000+ dd on a slow USB stick" under control.
1135                  */
1136                 if (task_ratelimit)
1137                         break;
1138
1139                 if (fatal_signal_pending(current))
1140                         break;
1141         }
1142
1143         if (!dirty_exceeded && bdi->dirty_exceeded)
1144                 bdi->dirty_exceeded = 0;
1145
1146         current->nr_dirtied = 0;
1147         if (pause == 0) { /* in freerun area */
1148                 current->nr_dirtied_pause =
1149                                 dirty_poll_interval(nr_dirty, dirty_thresh);
1150         } else if (pause <= max_pause / 4 &&
1151                    pages_dirtied >= current->nr_dirtied_pause) {
1152                 current->nr_dirtied_pause = clamp_val(
1153                                         dirty_ratelimit * (max_pause / 2) / HZ,
1154                                         pages_dirtied + pages_dirtied / 8,
1155                                         pages_dirtied * 4);
1156         } else if (pause >= max_pause) {
1157                 current->nr_dirtied_pause = 1 | clamp_val(
1158                                         dirty_ratelimit * (max_pause / 2) / HZ,
1159                                         pages_dirtied / 4,
1160                                         pages_dirtied - pages_dirtied / 8);
1161         }
1162
1163         if (writeback_in_progress(bdi))
1164                 return;
1165
1166         /*
1167          * In laptop mode, we wait until hitting the higher threshold before
1168          * starting background writeout, and then write out all the way down
1169          * to the lower threshold.  So slow writers cause minimal disk activity.
1170          *
1171          * In normal mode, we start background writeout at the lower
1172          * background_thresh, to keep the amount of dirty memory low.
1173          */
1174         if (laptop_mode)
1175                 return;
1176
1177         if (nr_reclaimable > background_thresh)
1178                 bdi_start_background_writeback(bdi);
1179 }
1180
1181 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1182 {
1183         if (set_page_dirty(page) || page_mkwrite) {
1184                 struct address_space *mapping = page_mapping(page);
1185
1186                 if (mapping)
1187                         balance_dirty_pages_ratelimited(mapping);
1188         }
1189 }
1190
1191 static DEFINE_PER_CPU(int, bdp_ratelimits);
1192
1193 /**
1194  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1195  * @mapping: address_space which was dirtied
1196  * @nr_pages_dirtied: number of pages which the caller has just dirtied
1197  *
1198  * Processes which are dirtying memory should call in here once for each page
1199  * which was newly dirtied.  The function will periodically check the system's
1200  * dirty state and will initiate writeback if needed.
1201  *
1202  * On really big machines, get_writeback_state is expensive, so try to avoid
1203  * calling it too often (ratelimiting).  But once we're over the dirty memory
1204  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1205  * from overshooting the limit by (ratelimit_pages) each.
1206  */
1207 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1208                                         unsigned long nr_pages_dirtied)
1209 {
1210         struct backing_dev_info *bdi = mapping->backing_dev_info;
1211         int ratelimit;
1212         int *p;
1213
1214         if (!bdi_cap_account_dirty(bdi))
1215                 return;
1216
1217         ratelimit = current->nr_dirtied_pause;
1218         if (bdi->dirty_exceeded)
1219                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1220
1221         current->nr_dirtied += nr_pages_dirtied;
1222
1223         preempt_disable();
1224         /*
1225          * This prevents one CPU to accumulate too many dirtied pages without
1226          * calling into balance_dirty_pages(), which can happen when there are
1227          * 1000+ tasks, all of them start dirtying pages at exactly the same
1228          * time, hence all honoured too large initial task->nr_dirtied_pause.
1229          */
1230         p =  &__get_cpu_var(bdp_ratelimits);
1231         if (unlikely(current->nr_dirtied >= ratelimit))
1232                 *p = 0;
1233         else {
1234                 *p += nr_pages_dirtied;
1235                 if (unlikely(*p >= ratelimit_pages)) {
1236                         *p = 0;
1237                         ratelimit = 0;
1238                 }
1239         }
1240         preempt_enable();
1241
1242         if (unlikely(current->nr_dirtied >= ratelimit))
1243                 balance_dirty_pages(mapping, current->nr_dirtied);
1244 }
1245 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1246
1247 void throttle_vm_writeout(gfp_t gfp_mask)
1248 {
1249         unsigned long background_thresh;
1250         unsigned long dirty_thresh;
1251
1252         for ( ; ; ) {
1253                 global_dirty_limits(&background_thresh, &dirty_thresh);
1254
1255                 /*
1256                  * Boost the allowable dirty threshold a bit for page
1257                  * allocators so they don't get DoS'ed by heavy writers
1258                  */
1259                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1260
1261                 if (global_page_state(NR_UNSTABLE_NFS) +
1262                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1263                                 break;
1264                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1265
1266                 /*
1267                  * The caller might hold locks which can prevent IO completion
1268                  * or progress in the filesystem.  So we cannot just sit here
1269                  * waiting for IO to complete.
1270                  */
1271                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1272                         break;
1273         }
1274 }
1275
1276 /*
1277  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1278  */
1279 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1280         void __user *buffer, size_t *length, loff_t *ppos)
1281 {
1282         proc_dointvec(table, write, buffer, length, ppos);
1283         bdi_arm_supers_timer();
1284         return 0;
1285 }
1286
1287 #ifdef CONFIG_BLOCK
1288 void laptop_mode_timer_fn(unsigned long data)
1289 {
1290         struct request_queue *q = (struct request_queue *)data;
1291         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1292                 global_page_state(NR_UNSTABLE_NFS);
1293
1294         /*
1295          * We want to write everything out, not just down to the dirty
1296          * threshold
1297          */
1298         if (bdi_has_dirty_io(&q->backing_dev_info))
1299                 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1300                                         WB_REASON_LAPTOP_TIMER);
1301 }
1302
1303 /*
1304  * We've spun up the disk and we're in laptop mode: schedule writeback
1305  * of all dirty data a few seconds from now.  If the flush is already scheduled
1306  * then push it back - the user is still using the disk.
1307  */
1308 void laptop_io_completion(struct backing_dev_info *info)
1309 {
1310         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1311 }
1312
1313 /*
1314  * We're in laptop mode and we've just synced. The sync's writes will have
1315  * caused another writeback to be scheduled by laptop_io_completion.
1316  * Nothing needs to be written back anymore, so we unschedule the writeback.
1317  */
1318 void laptop_sync_completion(void)
1319 {
1320         struct backing_dev_info *bdi;
1321
1322         rcu_read_lock();
1323
1324         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1325                 del_timer(&bdi->laptop_mode_wb_timer);
1326
1327         rcu_read_unlock();
1328 }
1329 #endif
1330
1331 /*
1332  * If ratelimit_pages is too high then we can get into dirty-data overload
1333  * if a large number of processes all perform writes at the same time.
1334  * If it is too low then SMP machines will call the (expensive)
1335  * get_writeback_state too often.
1336  *
1337  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1338  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1339  * thresholds.
1340  */
1341
1342 void writeback_set_ratelimit(void)
1343 {
1344         unsigned long background_thresh;
1345         unsigned long dirty_thresh;
1346         global_dirty_limits(&background_thresh, &dirty_thresh);
1347         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1348         if (ratelimit_pages < 16)
1349                 ratelimit_pages = 16;
1350 }
1351
1352 static int __cpuinit
1353 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1354 {
1355         writeback_set_ratelimit();
1356         return NOTIFY_DONE;
1357 }
1358
1359 static struct notifier_block __cpuinitdata ratelimit_nb = {
1360         .notifier_call  = ratelimit_handler,
1361         .next           = NULL,
1362 };
1363
1364 /*
1365  * Called early on to tune the page writeback dirty limits.
1366  *
1367  * We used to scale dirty pages according to how total memory
1368  * related to pages that could be allocated for buffers (by
1369  * comparing nr_free_buffer_pages() to vm_total_pages.
1370  *
1371  * However, that was when we used "dirty_ratio" to scale with
1372  * all memory, and we don't do that any more. "dirty_ratio"
1373  * is now applied to total non-HIGHPAGE memory (by subtracting
1374  * totalhigh_pages from vm_total_pages), and as such we can't
1375  * get into the old insane situation any more where we had
1376  * large amounts of dirty pages compared to a small amount of
1377  * non-HIGHMEM memory.
1378  *
1379  * But we might still want to scale the dirty_ratio by how
1380  * much memory the box has..
1381  */
1382 void __init page_writeback_init(void)
1383 {
1384         int shift;
1385
1386         writeback_set_ratelimit();
1387         register_cpu_notifier(&ratelimit_nb);
1388
1389         shift = calc_period_shift();
1390         prop_descriptor_init(&vm_completions, shift);
1391 }
1392
1393 /**
1394  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1395  * @mapping: address space structure to write
1396  * @start: starting page index
1397  * @end: ending page index (inclusive)
1398  *
1399  * This function scans the page range from @start to @end (inclusive) and tags
1400  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1401  * that write_cache_pages (or whoever calls this function) will then use
1402  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1403  * used to avoid livelocking of writeback by a process steadily creating new
1404  * dirty pages in the file (thus it is important for this function to be quick
1405  * so that it can tag pages faster than a dirtying process can create them).
1406  */
1407 /*
1408  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1409  */
1410 void tag_pages_for_writeback(struct address_space *mapping,
1411                              pgoff_t start, pgoff_t end)
1412 {
1413 #define WRITEBACK_TAG_BATCH 4096
1414         unsigned long tagged;
1415
1416         do {
1417                 spin_lock_irq(&mapping->tree_lock);
1418                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1419                                 &start, end, WRITEBACK_TAG_BATCH,
1420                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1421                 spin_unlock_irq(&mapping->tree_lock);
1422                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1423                 cond_resched();
1424                 /* We check 'start' to handle wrapping when end == ~0UL */
1425         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1426 }
1427 EXPORT_SYMBOL(tag_pages_for_writeback);
1428
1429 /**
1430  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1431  * @mapping: address space structure to write
1432  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1433  * @writepage: function called for each page
1434  * @data: data passed to writepage function
1435  *
1436  * If a page is already under I/O, write_cache_pages() skips it, even
1437  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1438  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1439  * and msync() need to guarantee that all the data which was dirty at the time
1440  * the call was made get new I/O started against them.  If wbc->sync_mode is
1441  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1442  * existing IO to complete.
1443  *
1444  * To avoid livelocks (when other process dirties new pages), we first tag
1445  * pages which should be written back with TOWRITE tag and only then start
1446  * writing them. For data-integrity sync we have to be careful so that we do
1447  * not miss some pages (e.g., because some other process has cleared TOWRITE
1448  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1449  * by the process clearing the DIRTY tag (and submitting the page for IO).
1450  */
1451 int write_cache_pages(struct address_space *mapping,
1452                       struct writeback_control *wbc, writepage_t writepage,
1453                       void *data)
1454 {
1455         int ret = 0;
1456         int done = 0;
1457         struct pagevec pvec;
1458         int nr_pages;
1459         pgoff_t uninitialized_var(writeback_index);
1460         pgoff_t index;
1461         pgoff_t end;            /* Inclusive */
1462         pgoff_t done_index;
1463         int cycled;
1464         int range_whole = 0;
1465         int tag;
1466
1467         pagevec_init(&pvec, 0);
1468         if (wbc->range_cyclic) {
1469                 writeback_index = mapping->writeback_index; /* prev offset */
1470                 index = writeback_index;
1471                 if (index == 0)
1472                         cycled = 1;
1473                 else
1474                         cycled = 0;
1475                 end = -1;
1476         } else {
1477                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1478                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1479                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1480                         range_whole = 1;
1481                 cycled = 1; /* ignore range_cyclic tests */
1482         }
1483         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1484                 tag = PAGECACHE_TAG_TOWRITE;
1485         else
1486                 tag = PAGECACHE_TAG_DIRTY;
1487 retry:
1488         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1489                 tag_pages_for_writeback(mapping, index, end);
1490         done_index = index;
1491         while (!done && (index <= end)) {
1492                 int i;
1493
1494                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1495                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1496                 if (nr_pages == 0)
1497                         break;
1498
1499                 for (i = 0; i < nr_pages; i++) {
1500                         struct page *page = pvec.pages[i];
1501
1502                         /*
1503                          * At this point, the page may be truncated or
1504                          * invalidated (changing page->mapping to NULL), or
1505                          * even swizzled back from swapper_space to tmpfs file
1506                          * mapping. However, page->index will not change
1507                          * because we have a reference on the page.
1508                          */
1509                         if (page->index > end) {
1510                                 /*
1511                                  * can't be range_cyclic (1st pass) because
1512                                  * end == -1 in that case.
1513                                  */
1514                                 done = 1;
1515                                 break;
1516                         }
1517
1518                         done_index = page->index;
1519
1520                         lock_page(page);
1521
1522                         /*
1523                          * Page truncated or invalidated. We can freely skip it
1524                          * then, even for data integrity operations: the page
1525                          * has disappeared concurrently, so there could be no
1526                          * real expectation of this data interity operation
1527                          * even if there is now a new, dirty page at the same
1528                          * pagecache address.
1529                          */
1530                         if (unlikely(page->mapping != mapping)) {
1531 continue_unlock:
1532                                 unlock_page(page);
1533                                 continue;
1534                         }
1535
1536                         if (!PageDirty(page)) {
1537                                 /* someone wrote it for us */
1538                                 goto continue_unlock;
1539                         }
1540
1541                         if (PageWriteback(page)) {
1542                                 if (wbc->sync_mode != WB_SYNC_NONE)
1543                                         wait_on_page_writeback(page);
1544                                 else
1545                                         goto continue_unlock;
1546                         }
1547
1548                         BUG_ON(PageWriteback(page));
1549                         if (!clear_page_dirty_for_io(page))
1550                                 goto continue_unlock;
1551
1552                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
1553                         ret = (*writepage)(page, wbc, data);
1554                         if (unlikely(ret)) {
1555                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1556                                         unlock_page(page);
1557                                         ret = 0;
1558                                 } else {
1559                                         /*
1560                                          * done_index is set past this page,
1561                                          * so media errors will not choke
1562                                          * background writeout for the entire
1563                                          * file. This has consequences for
1564                                          * range_cyclic semantics (ie. it may
1565                                          * not be suitable for data integrity
1566                                          * writeout).
1567                                          */
1568                                         done_index = page->index + 1;
1569                                         done = 1;
1570                                         break;
1571                                 }
1572                         }
1573
1574                         /*
1575                          * We stop writing back only if we are not doing
1576                          * integrity sync. In case of integrity sync we have to
1577                          * keep going until we have written all the pages
1578                          * we tagged for writeback prior to entering this loop.
1579                          */
1580                         if (--wbc->nr_to_write <= 0 &&
1581                             wbc->sync_mode == WB_SYNC_NONE) {
1582                                 done = 1;
1583                                 break;
1584                         }
1585                 }
1586                 pagevec_release(&pvec);
1587                 cond_resched();
1588         }
1589         if (!cycled && !done) {
1590                 /*
1591                  * range_cyclic:
1592                  * We hit the last page and there is more work to be done: wrap
1593                  * back to the start of the file
1594                  */
1595                 cycled = 1;
1596                 index = 0;
1597                 end = writeback_index - 1;
1598                 goto retry;
1599         }
1600         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1601                 mapping->writeback_index = done_index;
1602
1603         return ret;
1604 }
1605 EXPORT_SYMBOL(write_cache_pages);
1606
1607 /*
1608  * Function used by generic_writepages to call the real writepage
1609  * function and set the mapping flags on error
1610  */
1611 static int __writepage(struct page *page, struct writeback_control *wbc,
1612                        void *data)
1613 {
1614         struct address_space *mapping = data;
1615         int ret = mapping->a_ops->writepage(page, wbc);
1616         mapping_set_error(mapping, ret);
1617         return ret;
1618 }
1619
1620 /**
1621  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1622  * @mapping: address space structure to write
1623  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1624  *
1625  * This is a library function, which implements the writepages()
1626  * address_space_operation.
1627  */
1628 int generic_writepages(struct address_space *mapping,
1629                        struct writeback_control *wbc)
1630 {
1631         struct blk_plug plug;
1632         int ret;
1633
1634         /* deal with chardevs and other special file */
1635         if (!mapping->a_ops->writepage)
1636                 return 0;
1637
1638         blk_start_plug(&plug);
1639         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1640         blk_finish_plug(&plug);
1641         return ret;
1642 }
1643
1644 EXPORT_SYMBOL(generic_writepages);
1645
1646 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1647 {
1648         int ret;
1649
1650         if (wbc->nr_to_write <= 0)
1651                 return 0;
1652         if (mapping->a_ops->writepages)
1653                 ret = mapping->a_ops->writepages(mapping, wbc);
1654         else
1655                 ret = generic_writepages(mapping, wbc);
1656         return ret;
1657 }
1658
1659 /**
1660  * write_one_page - write out a single page and optionally wait on I/O
1661  * @page: the page to write
1662  * @wait: if true, wait on writeout
1663  *
1664  * The page must be locked by the caller and will be unlocked upon return.
1665  *
1666  * write_one_page() returns a negative error code if I/O failed.
1667  */
1668 int write_one_page(struct page *page, int wait)
1669 {
1670         struct address_space *mapping = page->mapping;
1671         int ret = 0;
1672         struct writeback_control wbc = {
1673                 .sync_mode = WB_SYNC_ALL,
1674                 .nr_to_write = 1,
1675         };
1676
1677         BUG_ON(!PageLocked(page));
1678
1679         if (wait)
1680                 wait_on_page_writeback(page);
1681
1682         if (clear_page_dirty_for_io(page)) {
1683                 page_cache_get(page);
1684                 ret = mapping->a_ops->writepage(page, &wbc);
1685                 if (ret == 0 && wait) {
1686                         wait_on_page_writeback(page);
1687                         if (PageError(page))
1688                                 ret = -EIO;
1689                 }
1690                 page_cache_release(page);
1691         } else {
1692                 unlock_page(page);
1693         }
1694         return ret;
1695 }
1696 EXPORT_SYMBOL(write_one_page);
1697
1698 /*
1699  * For address_spaces which do not use buffers nor write back.
1700  */
1701 int __set_page_dirty_no_writeback(struct page *page)
1702 {
1703         if (!PageDirty(page))
1704                 return !TestSetPageDirty(page);
1705         return 0;
1706 }
1707
1708 /*
1709  * Helper function for set_page_dirty family.
1710  * NOTE: This relies on being atomic wrt interrupts.
1711  */
1712 void account_page_dirtied(struct page *page, struct address_space *mapping)
1713 {
1714         if (mapping_cap_account_dirty(mapping)) {
1715                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1716                 __inc_zone_page_state(page, NR_DIRTIED);
1717                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1718                 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1719                 task_io_account_write(PAGE_CACHE_SIZE);
1720         }
1721 }
1722 EXPORT_SYMBOL(account_page_dirtied);
1723
1724 /*
1725  * Helper function for set_page_writeback family.
1726  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1727  * wrt interrupts.
1728  */
1729 void account_page_writeback(struct page *page)
1730 {
1731         inc_zone_page_state(page, NR_WRITEBACK);
1732 }
1733 EXPORT_SYMBOL(account_page_writeback);
1734
1735 /*
1736  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1737  * its radix tree.
1738  *
1739  * This is also used when a single buffer is being dirtied: we want to set the
1740  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1741  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1742  *
1743  * Most callers have locked the page, which pins the address_space in memory.
1744  * But zap_pte_range() does not lock the page, however in that case the
1745  * mapping is pinned by the vma's ->vm_file reference.
1746  *
1747  * We take care to handle the case where the page was truncated from the
1748  * mapping by re-checking page_mapping() inside tree_lock.
1749  */
1750 int __set_page_dirty_nobuffers(struct page *page)
1751 {
1752         if (!TestSetPageDirty(page)) {
1753                 struct address_space *mapping = page_mapping(page);
1754                 struct address_space *mapping2;
1755
1756                 if (!mapping)
1757                         return 1;
1758
1759                 spin_lock_irq(&mapping->tree_lock);
1760                 mapping2 = page_mapping(page);
1761                 if (mapping2) { /* Race with truncate? */
1762                         BUG_ON(mapping2 != mapping);
1763                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1764                         account_page_dirtied(page, mapping);
1765                         radix_tree_tag_set(&mapping->page_tree,
1766                                 page_index(page), PAGECACHE_TAG_DIRTY);
1767                 }
1768                 spin_unlock_irq(&mapping->tree_lock);
1769                 if (mapping->host) {
1770                         /* !PageAnon && !swapper_space */
1771                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1772                 }
1773                 return 1;
1774         }
1775         return 0;
1776 }
1777 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1778
1779 /*
1780  * When a writepage implementation decides that it doesn't want to write this
1781  * page for some reason, it should redirty the locked page via
1782  * redirty_page_for_writepage() and it should then unlock the page and return 0
1783  */
1784 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1785 {
1786         wbc->pages_skipped++;
1787         return __set_page_dirty_nobuffers(page);
1788 }
1789 EXPORT_SYMBOL(redirty_page_for_writepage);
1790
1791 /*
1792  * Dirty a page.
1793  *
1794  * For pages with a mapping this should be done under the page lock
1795  * for the benefit of asynchronous memory errors who prefer a consistent
1796  * dirty state. This rule can be broken in some special cases,
1797  * but should be better not to.
1798  *
1799  * If the mapping doesn't provide a set_page_dirty a_op, then
1800  * just fall through and assume that it wants buffer_heads.
1801  */
1802 int set_page_dirty(struct page *page)
1803 {
1804         struct address_space *mapping = page_mapping(page);
1805
1806         if (likely(mapping)) {
1807                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1808                 /*
1809                  * readahead/lru_deactivate_page could remain
1810                  * PG_readahead/PG_reclaim due to race with end_page_writeback
1811                  * About readahead, if the page is written, the flags would be
1812                  * reset. So no problem.
1813                  * About lru_deactivate_page, if the page is redirty, the flag
1814                  * will be reset. So no problem. but if the page is used by readahead
1815                  * it will confuse readahead and make it restart the size rampup
1816                  * process. But it's a trivial problem.
1817                  */
1818                 ClearPageReclaim(page);
1819 #ifdef CONFIG_BLOCK
1820                 if (!spd)
1821                         spd = __set_page_dirty_buffers;
1822 #endif
1823                 return (*spd)(page);
1824         }
1825         if (!PageDirty(page)) {
1826                 if (!TestSetPageDirty(page))
1827                         return 1;
1828         }
1829         return 0;
1830 }
1831 EXPORT_SYMBOL(set_page_dirty);
1832
1833 /*
1834  * set_page_dirty() is racy if the caller has no reference against
1835  * page->mapping->host, and if the page is unlocked.  This is because another
1836  * CPU could truncate the page off the mapping and then free the mapping.
1837  *
1838  * Usually, the page _is_ locked, or the caller is a user-space process which
1839  * holds a reference on the inode by having an open file.
1840  *
1841  * In other cases, the page should be locked before running set_page_dirty().
1842  */
1843 int set_page_dirty_lock(struct page *page)
1844 {
1845         int ret;
1846
1847         lock_page(page);
1848         ret = set_page_dirty(page);
1849         unlock_page(page);
1850         return ret;
1851 }
1852 EXPORT_SYMBOL(set_page_dirty_lock);
1853
1854 /*
1855  * Clear a page's dirty flag, while caring for dirty memory accounting.
1856  * Returns true if the page was previously dirty.
1857  *
1858  * This is for preparing to put the page under writeout.  We leave the page
1859  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1860  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1861  * implementation will run either set_page_writeback() or set_page_dirty(),
1862  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1863  * back into sync.
1864  *
1865  * This incoherency between the page's dirty flag and radix-tree tag is
1866  * unfortunate, but it only exists while the page is locked.
1867  */
1868 int clear_page_dirty_for_io(struct page *page)
1869 {
1870         struct address_space *mapping = page_mapping(page);
1871
1872         BUG_ON(!PageLocked(page));
1873
1874         if (mapping && mapping_cap_account_dirty(mapping)) {
1875                 /*
1876                  * Yes, Virginia, this is indeed insane.
1877                  *
1878                  * We use this sequence to make sure that
1879                  *  (a) we account for dirty stats properly
1880                  *  (b) we tell the low-level filesystem to
1881                  *      mark the whole page dirty if it was
1882                  *      dirty in a pagetable. Only to then
1883                  *  (c) clean the page again and return 1 to
1884                  *      cause the writeback.
1885                  *
1886                  * This way we avoid all nasty races with the
1887                  * dirty bit in multiple places and clearing
1888                  * them concurrently from different threads.
1889                  *
1890                  * Note! Normally the "set_page_dirty(page)"
1891                  * has no effect on the actual dirty bit - since
1892                  * that will already usually be set. But we
1893                  * need the side effects, and it can help us
1894                  * avoid races.
1895                  *
1896                  * We basically use the page "master dirty bit"
1897                  * as a serialization point for all the different
1898                  * threads doing their things.
1899                  */
1900                 if (page_mkclean(page))
1901                         set_page_dirty(page);
1902                 /*
1903                  * We carefully synchronise fault handlers against
1904                  * installing a dirty pte and marking the page dirty
1905                  * at this point. We do this by having them hold the
1906                  * page lock at some point after installing their
1907                  * pte, but before marking the page dirty.
1908                  * Pages are always locked coming in here, so we get
1909                  * the desired exclusion. See mm/memory.c:do_wp_page()
1910                  * for more comments.
1911                  */
1912                 if (TestClearPageDirty(page)) {
1913                         dec_zone_page_state(page, NR_FILE_DIRTY);
1914                         dec_bdi_stat(mapping->backing_dev_info,
1915                                         BDI_RECLAIMABLE);
1916                         return 1;
1917                 }
1918                 return 0;
1919         }
1920         return TestClearPageDirty(page);
1921 }
1922 EXPORT_SYMBOL(clear_page_dirty_for_io);
1923
1924 int test_clear_page_writeback(struct page *page)
1925 {
1926         struct address_space *mapping = page_mapping(page);
1927         int ret;
1928
1929         if (mapping) {
1930                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1931                 unsigned long flags;
1932
1933                 spin_lock_irqsave(&mapping->tree_lock, flags);
1934                 ret = TestClearPageWriteback(page);
1935                 if (ret) {
1936                         radix_tree_tag_clear(&mapping->page_tree,
1937                                                 page_index(page),
1938                                                 PAGECACHE_TAG_WRITEBACK);
1939                         if (bdi_cap_account_writeback(bdi)) {
1940                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1941                                 __bdi_writeout_inc(bdi);
1942                         }
1943                 }
1944                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1945         } else {
1946                 ret = TestClearPageWriteback(page);
1947         }
1948         if (ret) {
1949                 dec_zone_page_state(page, NR_WRITEBACK);
1950                 inc_zone_page_state(page, NR_WRITTEN);
1951         }
1952         return ret;
1953 }
1954
1955 int test_set_page_writeback(struct page *page)
1956 {
1957         struct address_space *mapping = page_mapping(page);
1958         int ret;
1959
1960         if (mapping) {
1961                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1962                 unsigned long flags;
1963
1964                 spin_lock_irqsave(&mapping->tree_lock, flags);
1965                 ret = TestSetPageWriteback(page);
1966                 if (!ret) {
1967                         radix_tree_tag_set(&mapping->page_tree,
1968                                                 page_index(page),
1969                                                 PAGECACHE_TAG_WRITEBACK);
1970                         if (bdi_cap_account_writeback(bdi))
1971                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1972                 }
1973                 if (!PageDirty(page))
1974                         radix_tree_tag_clear(&mapping->page_tree,
1975                                                 page_index(page),
1976                                                 PAGECACHE_TAG_DIRTY);
1977                 radix_tree_tag_clear(&mapping->page_tree,
1978                                      page_index(page),
1979                                      PAGECACHE_TAG_TOWRITE);
1980                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1981         } else {
1982                 ret = TestSetPageWriteback(page);
1983         }
1984         if (!ret)
1985                 account_page_writeback(page);
1986         return ret;
1987
1988 }
1989 EXPORT_SYMBOL(test_set_page_writeback);
1990
1991 /*
1992  * Return true if any of the pages in the mapping are marked with the
1993  * passed tag.
1994  */
1995 int mapping_tagged(struct address_space *mapping, int tag)
1996 {
1997         return radix_tree_tagged(&mapping->page_tree, tag);
1998 }
1999 EXPORT_SYMBOL(mapping_tagged);