ALSA: pcm: potential uninitialized return values
[pandora-kernel.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38
39 #if 0
40 #define kenter(FMT, ...) \
41         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
42 #define kleave(FMT, ...) \
43         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
44 #define kdebug(FMT, ...) \
45         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
46 #else
47 #define kenter(FMT, ...) \
48         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
49 #define kleave(FMT, ...) \
50         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
51 #define kdebug(FMT, ...) \
52         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
53 #endif
54
55 void *high_memory;
56 struct page *mem_map;
57 unsigned long max_mapnr;
58 unsigned long num_physpages;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
65 int heap_stack_gap = 0;
66
67 atomic_long_t mmap_pages_allocated;
68
69 EXPORT_SYMBOL(mem_map);
70 EXPORT_SYMBOL(num_physpages);
71
72 /* list of mapped, potentially shareable regions */
73 static struct kmem_cache *vm_region_jar;
74 struct rb_root nommu_region_tree = RB_ROOT;
75 DECLARE_RWSEM(nommu_region_sem);
76
77 const struct vm_operations_struct generic_file_vm_ops = {
78 };
79
80 /*
81  * Return the total memory allocated for this pointer, not
82  * just what the caller asked for.
83  *
84  * Doesn't have to be accurate, i.e. may have races.
85  */
86 unsigned int kobjsize(const void *objp)
87 {
88         struct page *page;
89
90         /*
91          * If the object we have should not have ksize performed on it,
92          * return size of 0
93          */
94         if (!objp || !virt_addr_valid(objp))
95                 return 0;
96
97         page = virt_to_head_page(objp);
98
99         /*
100          * If the allocator sets PageSlab, we know the pointer came from
101          * kmalloc().
102          */
103         if (PageSlab(page))
104                 return ksize(objp);
105
106         /*
107          * If it's not a compound page, see if we have a matching VMA
108          * region. This test is intentionally done in reverse order,
109          * so if there's no VMA, we still fall through and hand back
110          * PAGE_SIZE for 0-order pages.
111          */
112         if (!PageCompound(page)) {
113                 struct vm_area_struct *vma;
114
115                 vma = find_vma(current->mm, (unsigned long)objp);
116                 if (vma)
117                         return vma->vm_end - vma->vm_start;
118         }
119
120         /*
121          * The ksize() function is only guaranteed to work for pointers
122          * returned by kmalloc(). So handle arbitrary pointers here.
123          */
124         return PAGE_SIZE << compound_order(page);
125 }
126
127 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
128                      unsigned long start, int nr_pages, unsigned int foll_flags,
129                      struct page **pages, struct vm_area_struct **vmas,
130                      int *retry)
131 {
132         struct vm_area_struct *vma;
133         unsigned long vm_flags;
134         int i;
135
136         /* calculate required read or write permissions.
137          * If FOLL_FORCE is set, we only require the "MAY" flags.
138          */
139         vm_flags  = (foll_flags & FOLL_WRITE) ?
140                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
141         vm_flags &= (foll_flags & FOLL_FORCE) ?
142                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
143
144         for (i = 0; i < nr_pages; i++) {
145                 vma = find_vma(mm, start);
146                 if (!vma)
147                         goto finish_or_fault;
148
149                 /* protect what we can, including chardevs */
150                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
151                     !(vm_flags & vma->vm_flags))
152                         goto finish_or_fault;
153
154                 if (pages) {
155                         pages[i] = virt_to_page(start);
156                         if (pages[i])
157                                 page_cache_get(pages[i]);
158                 }
159                 if (vmas)
160                         vmas[i] = vma;
161                 start = (start + PAGE_SIZE) & PAGE_MASK;
162         }
163
164         return i;
165
166 finish_or_fault:
167         return i ? : -EFAULT;
168 }
169
170 /*
171  * get a list of pages in an address range belonging to the specified process
172  * and indicate the VMA that covers each page
173  * - this is potentially dodgy as we may end incrementing the page count of a
174  *   slab page or a secondary page from a compound page
175  * - don't permit access to VMAs that don't support it, such as I/O mappings
176  */
177 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
178         unsigned long start, int nr_pages, int write, int force,
179         struct page **pages, struct vm_area_struct **vmas)
180 {
181         int flags = 0;
182
183         if (write)
184                 flags |= FOLL_WRITE;
185         if (force)
186                 flags |= FOLL_FORCE;
187
188         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
189                                 NULL);
190 }
191 EXPORT_SYMBOL(get_user_pages);
192
193 /**
194  * follow_pfn - look up PFN at a user virtual address
195  * @vma: memory mapping
196  * @address: user virtual address
197  * @pfn: location to store found PFN
198  *
199  * Only IO mappings and raw PFN mappings are allowed.
200  *
201  * Returns zero and the pfn at @pfn on success, -ve otherwise.
202  */
203 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
204         unsigned long *pfn)
205 {
206         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
207                 return -EINVAL;
208
209         *pfn = address >> PAGE_SHIFT;
210         return 0;
211 }
212 EXPORT_SYMBOL(follow_pfn);
213
214 DEFINE_RWLOCK(vmlist_lock);
215 struct vm_struct *vmlist;
216
217 void vfree(const void *addr)
218 {
219         kfree(addr);
220 }
221 EXPORT_SYMBOL(vfree);
222
223 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
224 {
225         /*
226          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
227          * returns only a logical address.
228          */
229         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
230 }
231 EXPORT_SYMBOL(__vmalloc);
232
233 void *vmalloc_user(unsigned long size)
234 {
235         void *ret;
236
237         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
238                         PAGE_KERNEL);
239         if (ret) {
240                 struct vm_area_struct *vma;
241
242                 down_write(&current->mm->mmap_sem);
243                 vma = find_vma(current->mm, (unsigned long)ret);
244                 if (vma)
245                         vma->vm_flags |= VM_USERMAP;
246                 up_write(&current->mm->mmap_sem);
247         }
248
249         return ret;
250 }
251 EXPORT_SYMBOL(vmalloc_user);
252
253 struct page *vmalloc_to_page(const void *addr)
254 {
255         return virt_to_page(addr);
256 }
257 EXPORT_SYMBOL(vmalloc_to_page);
258
259 unsigned long vmalloc_to_pfn(const void *addr)
260 {
261         return page_to_pfn(virt_to_page(addr));
262 }
263 EXPORT_SYMBOL(vmalloc_to_pfn);
264
265 long vread(char *buf, char *addr, unsigned long count)
266 {
267         memcpy(buf, addr, count);
268         return count;
269 }
270
271 long vwrite(char *buf, char *addr, unsigned long count)
272 {
273         /* Don't allow overflow */
274         if ((unsigned long) addr + count < count)
275                 count = -(unsigned long) addr;
276
277         memcpy(addr, buf, count);
278         return(count);
279 }
280
281 /*
282  *      vmalloc  -  allocate virtually continguos memory
283  *
284  *      @size:          allocation size
285  *
286  *      Allocate enough pages to cover @size from the page level
287  *      allocator and map them into continguos kernel virtual space.
288  *
289  *      For tight control over page level allocator and protection flags
290  *      use __vmalloc() instead.
291  */
292 void *vmalloc(unsigned long size)
293 {
294        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
295 }
296 EXPORT_SYMBOL(vmalloc);
297
298 /*
299  *      vzalloc - allocate virtually continguos memory with zero fill
300  *
301  *      @size:          allocation size
302  *
303  *      Allocate enough pages to cover @size from the page level
304  *      allocator and map them into continguos kernel virtual space.
305  *      The memory allocated is set to zero.
306  *
307  *      For tight control over page level allocator and protection flags
308  *      use __vmalloc() instead.
309  */
310 void *vzalloc(unsigned long size)
311 {
312         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
313                         PAGE_KERNEL);
314 }
315 EXPORT_SYMBOL(vzalloc);
316
317 /**
318  * vmalloc_node - allocate memory on a specific node
319  * @size:       allocation size
320  * @node:       numa node
321  *
322  * Allocate enough pages to cover @size from the page level
323  * allocator and map them into contiguous kernel virtual space.
324  *
325  * For tight control over page level allocator and protection flags
326  * use __vmalloc() instead.
327  */
328 void *vmalloc_node(unsigned long size, int node)
329 {
330         return vmalloc(size);
331 }
332 EXPORT_SYMBOL(vmalloc_node);
333
334 /**
335  * vzalloc_node - allocate memory on a specific node with zero fill
336  * @size:       allocation size
337  * @node:       numa node
338  *
339  * Allocate enough pages to cover @size from the page level
340  * allocator and map them into contiguous kernel virtual space.
341  * The memory allocated is set to zero.
342  *
343  * For tight control over page level allocator and protection flags
344  * use __vmalloc() instead.
345  */
346 void *vzalloc_node(unsigned long size, int node)
347 {
348         return vzalloc(size);
349 }
350 EXPORT_SYMBOL(vzalloc_node);
351
352 #ifndef PAGE_KERNEL_EXEC
353 # define PAGE_KERNEL_EXEC PAGE_KERNEL
354 #endif
355
356 /**
357  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
358  *      @size:          allocation size
359  *
360  *      Kernel-internal function to allocate enough pages to cover @size
361  *      the page level allocator and map them into contiguous and
362  *      executable kernel virtual space.
363  *
364  *      For tight control over page level allocator and protection flags
365  *      use __vmalloc() instead.
366  */
367
368 void *vmalloc_exec(unsigned long size)
369 {
370         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
371 }
372
373 /**
374  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
375  *      @size:          allocation size
376  *
377  *      Allocate enough 32bit PA addressable pages to cover @size from the
378  *      page level allocator and map them into continguos kernel virtual space.
379  */
380 void *vmalloc_32(unsigned long size)
381 {
382         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
383 }
384 EXPORT_SYMBOL(vmalloc_32);
385
386 /**
387  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
388  *      @size:          allocation size
389  *
390  * The resulting memory area is 32bit addressable and zeroed so it can be
391  * mapped to userspace without leaking data.
392  *
393  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
394  * remap_vmalloc_range() are permissible.
395  */
396 void *vmalloc_32_user(unsigned long size)
397 {
398         /*
399          * We'll have to sort out the ZONE_DMA bits for 64-bit,
400          * but for now this can simply use vmalloc_user() directly.
401          */
402         return vmalloc_user(size);
403 }
404 EXPORT_SYMBOL(vmalloc_32_user);
405
406 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
407 {
408         BUG();
409         return NULL;
410 }
411 EXPORT_SYMBOL(vmap);
412
413 void vunmap(const void *addr)
414 {
415         BUG();
416 }
417 EXPORT_SYMBOL(vunmap);
418
419 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
420 {
421         BUG();
422         return NULL;
423 }
424 EXPORT_SYMBOL(vm_map_ram);
425
426 void vm_unmap_ram(const void *mem, unsigned int count)
427 {
428         BUG();
429 }
430 EXPORT_SYMBOL(vm_unmap_ram);
431
432 void vm_unmap_aliases(void)
433 {
434 }
435 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
436
437 /*
438  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
439  * have one.
440  */
441 void  __attribute__((weak)) vmalloc_sync_all(void)
442 {
443 }
444
445 /**
446  *      alloc_vm_area - allocate a range of kernel address space
447  *      @size:          size of the area
448  *
449  *      Returns:        NULL on failure, vm_struct on success
450  *
451  *      This function reserves a range of kernel address space, and
452  *      allocates pagetables to map that range.  No actual mappings
453  *      are created.  If the kernel address space is not shared
454  *      between processes, it syncs the pagetable across all
455  *      processes.
456  */
457 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
458 {
459         BUG();
460         return NULL;
461 }
462 EXPORT_SYMBOL_GPL(alloc_vm_area);
463
464 void free_vm_area(struct vm_struct *area)
465 {
466         BUG();
467 }
468 EXPORT_SYMBOL_GPL(free_vm_area);
469
470 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
471                    struct page *page)
472 {
473         return -EINVAL;
474 }
475 EXPORT_SYMBOL(vm_insert_page);
476
477 /*
478  *  sys_brk() for the most part doesn't need the global kernel
479  *  lock, except when an application is doing something nasty
480  *  like trying to un-brk an area that has already been mapped
481  *  to a regular file.  in this case, the unmapping will need
482  *  to invoke file system routines that need the global lock.
483  */
484 SYSCALL_DEFINE1(brk, unsigned long, brk)
485 {
486         struct mm_struct *mm = current->mm;
487
488         if (brk < mm->start_brk || brk > mm->context.end_brk)
489                 return mm->brk;
490
491         if (mm->brk == brk)
492                 return mm->brk;
493
494         /*
495          * Always allow shrinking brk
496          */
497         if (brk <= mm->brk) {
498                 mm->brk = brk;
499                 return brk;
500         }
501
502         /*
503          * Ok, looks good - let it rip.
504          */
505         flush_icache_range(mm->brk, brk);
506         return mm->brk = brk;
507 }
508
509 /*
510  * initialise the VMA and region record slabs
511  */
512 void __init mmap_init(void)
513 {
514         int ret;
515
516         ret = percpu_counter_init(&vm_committed_as, 0);
517         VM_BUG_ON(ret);
518         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
519 }
520
521 /*
522  * validate the region tree
523  * - the caller must hold the region lock
524  */
525 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
526 static noinline void validate_nommu_regions(void)
527 {
528         struct vm_region *region, *last;
529         struct rb_node *p, *lastp;
530
531         lastp = rb_first(&nommu_region_tree);
532         if (!lastp)
533                 return;
534
535         last = rb_entry(lastp, struct vm_region, vm_rb);
536         BUG_ON(unlikely(last->vm_end <= last->vm_start));
537         BUG_ON(unlikely(last->vm_top < last->vm_end));
538
539         while ((p = rb_next(lastp))) {
540                 region = rb_entry(p, struct vm_region, vm_rb);
541                 last = rb_entry(lastp, struct vm_region, vm_rb);
542
543                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
544                 BUG_ON(unlikely(region->vm_top < region->vm_end));
545                 BUG_ON(unlikely(region->vm_start < last->vm_top));
546
547                 lastp = p;
548         }
549 }
550 #else
551 static void validate_nommu_regions(void)
552 {
553 }
554 #endif
555
556 /*
557  * add a region into the global tree
558  */
559 static void add_nommu_region(struct vm_region *region)
560 {
561         struct vm_region *pregion;
562         struct rb_node **p, *parent;
563
564         validate_nommu_regions();
565
566         parent = NULL;
567         p = &nommu_region_tree.rb_node;
568         while (*p) {
569                 parent = *p;
570                 pregion = rb_entry(parent, struct vm_region, vm_rb);
571                 if (region->vm_start < pregion->vm_start)
572                         p = &(*p)->rb_left;
573                 else if (region->vm_start > pregion->vm_start)
574                         p = &(*p)->rb_right;
575                 else if (pregion == region)
576                         return;
577                 else
578                         BUG();
579         }
580
581         rb_link_node(&region->vm_rb, parent, p);
582         rb_insert_color(&region->vm_rb, &nommu_region_tree);
583
584         validate_nommu_regions();
585 }
586
587 /*
588  * delete a region from the global tree
589  */
590 static void delete_nommu_region(struct vm_region *region)
591 {
592         BUG_ON(!nommu_region_tree.rb_node);
593
594         validate_nommu_regions();
595         rb_erase(&region->vm_rb, &nommu_region_tree);
596         validate_nommu_regions();
597 }
598
599 /*
600  * free a contiguous series of pages
601  */
602 static void free_page_series(unsigned long from, unsigned long to)
603 {
604         for (; from < to; from += PAGE_SIZE) {
605                 struct page *page = virt_to_page(from);
606
607                 kdebug("- free %lx", from);
608                 atomic_long_dec(&mmap_pages_allocated);
609                 if (page_count(page) != 1)
610                         kdebug("free page %p: refcount not one: %d",
611                                page, page_count(page));
612                 put_page(page);
613         }
614 }
615
616 /*
617  * release a reference to a region
618  * - the caller must hold the region semaphore for writing, which this releases
619  * - the region may not have been added to the tree yet, in which case vm_top
620  *   will equal vm_start
621  */
622 static void __put_nommu_region(struct vm_region *region)
623         __releases(nommu_region_sem)
624 {
625         kenter("%p{%d}", region, region->vm_usage);
626
627         BUG_ON(!nommu_region_tree.rb_node);
628
629         if (--region->vm_usage == 0) {
630                 if (region->vm_top > region->vm_start)
631                         delete_nommu_region(region);
632                 up_write(&nommu_region_sem);
633
634                 if (region->vm_file)
635                         fput(region->vm_file);
636
637                 /* IO memory and memory shared directly out of the pagecache
638                  * from ramfs/tmpfs mustn't be released here */
639                 if (region->vm_flags & VM_MAPPED_COPY) {
640                         kdebug("free series");
641                         free_page_series(region->vm_start, region->vm_top);
642                 }
643                 kmem_cache_free(vm_region_jar, region);
644         } else {
645                 up_write(&nommu_region_sem);
646         }
647 }
648
649 /*
650  * release a reference to a region
651  */
652 static void put_nommu_region(struct vm_region *region)
653 {
654         down_write(&nommu_region_sem);
655         __put_nommu_region(region);
656 }
657
658 /*
659  * update protection on a vma
660  */
661 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
662 {
663 #ifdef CONFIG_MPU
664         struct mm_struct *mm = vma->vm_mm;
665         long start = vma->vm_start & PAGE_MASK;
666         while (start < vma->vm_end) {
667                 protect_page(mm, start, flags);
668                 start += PAGE_SIZE;
669         }
670         update_protections(mm);
671 #endif
672 }
673
674 /*
675  * add a VMA into a process's mm_struct in the appropriate place in the list
676  * and tree and add to the address space's page tree also if not an anonymous
677  * page
678  * - should be called with mm->mmap_sem held writelocked
679  */
680 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
681 {
682         struct vm_area_struct *pvma, *prev;
683         struct address_space *mapping;
684         struct rb_node **p, *parent, *rb_prev;
685
686         kenter(",%p", vma);
687
688         BUG_ON(!vma->vm_region);
689
690         mm->map_count++;
691         vma->vm_mm = mm;
692
693         protect_vma(vma, vma->vm_flags);
694
695         /* add the VMA to the mapping */
696         if (vma->vm_file) {
697                 mapping = vma->vm_file->f_mapping;
698
699                 mutex_lock(&mapping->i_mmap_mutex);
700                 flush_dcache_mmap_lock(mapping);
701                 vma_prio_tree_insert(vma, &mapping->i_mmap);
702                 flush_dcache_mmap_unlock(mapping);
703                 mutex_unlock(&mapping->i_mmap_mutex);
704         }
705
706         /* add the VMA to the tree */
707         parent = rb_prev = NULL;
708         p = &mm->mm_rb.rb_node;
709         while (*p) {
710                 parent = *p;
711                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
712
713                 /* sort by: start addr, end addr, VMA struct addr in that order
714                  * (the latter is necessary as we may get identical VMAs) */
715                 if (vma->vm_start < pvma->vm_start)
716                         p = &(*p)->rb_left;
717                 else if (vma->vm_start > pvma->vm_start) {
718                         rb_prev = parent;
719                         p = &(*p)->rb_right;
720                 } else if (vma->vm_end < pvma->vm_end)
721                         p = &(*p)->rb_left;
722                 else if (vma->vm_end > pvma->vm_end) {
723                         rb_prev = parent;
724                         p = &(*p)->rb_right;
725                 } else if (vma < pvma)
726                         p = &(*p)->rb_left;
727                 else if (vma > pvma) {
728                         rb_prev = parent;
729                         p = &(*p)->rb_right;
730                 } else
731                         BUG();
732         }
733
734         rb_link_node(&vma->vm_rb, parent, p);
735         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
736
737         /* add VMA to the VMA list also */
738         prev = NULL;
739         if (rb_prev)
740                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
741
742         __vma_link_list(mm, vma, prev, parent);
743 }
744
745 /*
746  * delete a VMA from its owning mm_struct and address space
747  */
748 static void delete_vma_from_mm(struct vm_area_struct *vma)
749 {
750         struct address_space *mapping;
751         struct mm_struct *mm = vma->vm_mm;
752
753         kenter("%p", vma);
754
755         protect_vma(vma, 0);
756
757         mm->map_count--;
758         if (mm->mmap_cache == vma)
759                 mm->mmap_cache = NULL;
760
761         /* remove the VMA from the mapping */
762         if (vma->vm_file) {
763                 mapping = vma->vm_file->f_mapping;
764
765                 mutex_lock(&mapping->i_mmap_mutex);
766                 flush_dcache_mmap_lock(mapping);
767                 vma_prio_tree_remove(vma, &mapping->i_mmap);
768                 flush_dcache_mmap_unlock(mapping);
769                 mutex_unlock(&mapping->i_mmap_mutex);
770         }
771
772         /* remove from the MM's tree and list */
773         rb_erase(&vma->vm_rb, &mm->mm_rb);
774
775         if (vma->vm_prev)
776                 vma->vm_prev->vm_next = vma->vm_next;
777         else
778                 mm->mmap = vma->vm_next;
779
780         if (vma->vm_next)
781                 vma->vm_next->vm_prev = vma->vm_prev;
782 }
783
784 /*
785  * destroy a VMA record
786  */
787 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
788 {
789         kenter("%p", vma);
790         if (vma->vm_ops && vma->vm_ops->close)
791                 vma->vm_ops->close(vma);
792         if (vma->vm_file) {
793                 fput(vma->vm_file);
794                 if (vma->vm_flags & VM_EXECUTABLE)
795                         removed_exe_file_vma(mm);
796         }
797         put_nommu_region(vma->vm_region);
798         kmem_cache_free(vm_area_cachep, vma);
799 }
800
801 /*
802  * look up the first VMA in which addr resides, NULL if none
803  * - should be called with mm->mmap_sem at least held readlocked
804  */
805 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
806 {
807         struct vm_area_struct *vma;
808
809         /* check the cache first */
810         vma = ACCESS_ONCE(mm->mmap_cache);
811         if (vma && vma->vm_start <= addr && vma->vm_end > addr)
812                 return vma;
813
814         /* trawl the list (there may be multiple mappings in which addr
815          * resides) */
816         for (vma = mm->mmap; vma; vma = vma->vm_next) {
817                 if (vma->vm_start > addr)
818                         return NULL;
819                 if (vma->vm_end > addr) {
820                         mm->mmap_cache = vma;
821                         return vma;
822                 }
823         }
824
825         return NULL;
826 }
827 EXPORT_SYMBOL(find_vma);
828
829 /*
830  * find a VMA
831  * - we don't extend stack VMAs under NOMMU conditions
832  */
833 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
834 {
835         return find_vma(mm, addr);
836 }
837
838 /*
839  * expand a stack to a given address
840  * - not supported under NOMMU conditions
841  */
842 int expand_stack(struct vm_area_struct *vma, unsigned long address)
843 {
844         return -ENOMEM;
845 }
846
847 /*
848  * look up the first VMA exactly that exactly matches addr
849  * - should be called with mm->mmap_sem at least held readlocked
850  */
851 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
852                                              unsigned long addr,
853                                              unsigned long len)
854 {
855         struct vm_area_struct *vma;
856         unsigned long end = addr + len;
857
858         /* check the cache first */
859         vma = mm->mmap_cache;
860         if (vma && vma->vm_start == addr && vma->vm_end == end)
861                 return vma;
862
863         /* trawl the list (there may be multiple mappings in which addr
864          * resides) */
865         for (vma = mm->mmap; vma; vma = vma->vm_next) {
866                 if (vma->vm_start < addr)
867                         continue;
868                 if (vma->vm_start > addr)
869                         return NULL;
870                 if (vma->vm_end == end) {
871                         mm->mmap_cache = vma;
872                         return vma;
873                 }
874         }
875
876         return NULL;
877 }
878
879 /*
880  * determine whether a mapping should be permitted and, if so, what sort of
881  * mapping we're capable of supporting
882  */
883 static int validate_mmap_request(struct file *file,
884                                  unsigned long addr,
885                                  unsigned long len,
886                                  unsigned long prot,
887                                  unsigned long flags,
888                                  unsigned long pgoff,
889                                  unsigned long *_capabilities)
890 {
891         unsigned long capabilities, rlen;
892         unsigned long reqprot = prot;
893         int ret;
894
895         /* do the simple checks first */
896         if (flags & MAP_FIXED) {
897                 printk(KERN_DEBUG
898                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
899                        current->pid);
900                 return -EINVAL;
901         }
902
903         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
904             (flags & MAP_TYPE) != MAP_SHARED)
905                 return -EINVAL;
906
907         if (!len)
908                 return -EINVAL;
909
910         /* Careful about overflows.. */
911         rlen = PAGE_ALIGN(len);
912         if (!rlen || rlen > TASK_SIZE)
913                 return -ENOMEM;
914
915         /* offset overflow? */
916         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
917                 return -EOVERFLOW;
918
919         if (file) {
920                 /* validate file mapping requests */
921                 struct address_space *mapping;
922
923                 /* files must support mmap */
924                 if (!file->f_op || !file->f_op->mmap)
925                         return -ENODEV;
926
927                 /* work out if what we've got could possibly be shared
928                  * - we support chardevs that provide their own "memory"
929                  * - we support files/blockdevs that are memory backed
930                  */
931                 mapping = file->f_mapping;
932                 if (!mapping)
933                         mapping = file->f_path.dentry->d_inode->i_mapping;
934
935                 capabilities = 0;
936                 if (mapping && mapping->backing_dev_info)
937                         capabilities = mapping->backing_dev_info->capabilities;
938
939                 if (!capabilities) {
940                         /* no explicit capabilities set, so assume some
941                          * defaults */
942                         switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
943                         case S_IFREG:
944                         case S_IFBLK:
945                                 capabilities = BDI_CAP_MAP_COPY;
946                                 break;
947
948                         case S_IFCHR:
949                                 capabilities =
950                                         BDI_CAP_MAP_DIRECT |
951                                         BDI_CAP_READ_MAP |
952                                         BDI_CAP_WRITE_MAP;
953                                 break;
954
955                         default:
956                                 return -EINVAL;
957                         }
958                 }
959
960                 /* eliminate any capabilities that we can't support on this
961                  * device */
962                 if (!file->f_op->get_unmapped_area)
963                         capabilities &= ~BDI_CAP_MAP_DIRECT;
964                 if (!file->f_op->read)
965                         capabilities &= ~BDI_CAP_MAP_COPY;
966
967                 /* The file shall have been opened with read permission. */
968                 if (!(file->f_mode & FMODE_READ))
969                         return -EACCES;
970
971                 if (flags & MAP_SHARED) {
972                         /* do checks for writing, appending and locking */
973                         if ((prot & PROT_WRITE) &&
974                             !(file->f_mode & FMODE_WRITE))
975                                 return -EACCES;
976
977                         if (IS_APPEND(file->f_path.dentry->d_inode) &&
978                             (file->f_mode & FMODE_WRITE))
979                                 return -EACCES;
980
981                         if (locks_verify_locked(file->f_path.dentry->d_inode))
982                                 return -EAGAIN;
983
984                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
985                                 return -ENODEV;
986
987                         /* we mustn't privatise shared mappings */
988                         capabilities &= ~BDI_CAP_MAP_COPY;
989                 }
990                 else {
991                         /* we're going to read the file into private memory we
992                          * allocate */
993                         if (!(capabilities & BDI_CAP_MAP_COPY))
994                                 return -ENODEV;
995
996                         /* we don't permit a private writable mapping to be
997                          * shared with the backing device */
998                         if (prot & PROT_WRITE)
999                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1000                 }
1001
1002                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1003                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1004                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1005                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1006                             ) {
1007                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1008                                 if (flags & MAP_SHARED) {
1009                                         printk(KERN_WARNING
1010                                                "MAP_SHARED not completely supported on !MMU\n");
1011                                         return -EINVAL;
1012                                 }
1013                         }
1014                 }
1015
1016                 /* handle executable mappings and implied executable
1017                  * mappings */
1018                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1019                         if (prot & PROT_EXEC)
1020                                 return -EPERM;
1021                 }
1022                 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1023                         /* handle implication of PROT_EXEC by PROT_READ */
1024                         if (current->personality & READ_IMPLIES_EXEC) {
1025                                 if (capabilities & BDI_CAP_EXEC_MAP)
1026                                         prot |= PROT_EXEC;
1027                         }
1028                 }
1029                 else if ((prot & PROT_READ) &&
1030                          (prot & PROT_EXEC) &&
1031                          !(capabilities & BDI_CAP_EXEC_MAP)
1032                          ) {
1033                         /* backing file is not executable, try to copy */
1034                         capabilities &= ~BDI_CAP_MAP_DIRECT;
1035                 }
1036         }
1037         else {
1038                 /* anonymous mappings are always memory backed and can be
1039                  * privately mapped
1040                  */
1041                 capabilities = BDI_CAP_MAP_COPY;
1042
1043                 /* handle PROT_EXEC implication by PROT_READ */
1044                 if ((prot & PROT_READ) &&
1045                     (current->personality & READ_IMPLIES_EXEC))
1046                         prot |= PROT_EXEC;
1047         }
1048
1049         /* allow the security API to have its say */
1050         ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1051         if (ret < 0)
1052                 return ret;
1053
1054         /* looks okay */
1055         *_capabilities = capabilities;
1056         return 0;
1057 }
1058
1059 /*
1060  * we've determined that we can make the mapping, now translate what we
1061  * now know into VMA flags
1062  */
1063 static unsigned long determine_vm_flags(struct file *file,
1064                                         unsigned long prot,
1065                                         unsigned long flags,
1066                                         unsigned long capabilities)
1067 {
1068         unsigned long vm_flags;
1069
1070         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1071         /* vm_flags |= mm->def_flags; */
1072
1073         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1074                 /* attempt to share read-only copies of mapped file chunks */
1075                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1076                 if (file && !(prot & PROT_WRITE))
1077                         vm_flags |= VM_MAYSHARE;
1078         } else {
1079                 /* overlay a shareable mapping on the backing device or inode
1080                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1081                  * romfs/cramfs */
1082                 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1083                 if (flags & MAP_SHARED)
1084                         vm_flags |= VM_SHARED;
1085         }
1086
1087         /* refuse to let anyone share private mappings with this process if
1088          * it's being traced - otherwise breakpoints set in it may interfere
1089          * with another untraced process
1090          */
1091         if ((flags & MAP_PRIVATE) && current->ptrace)
1092                 vm_flags &= ~VM_MAYSHARE;
1093
1094         return vm_flags;
1095 }
1096
1097 /*
1098  * set up a shared mapping on a file (the driver or filesystem provides and
1099  * pins the storage)
1100  */
1101 static int do_mmap_shared_file(struct vm_area_struct *vma)
1102 {
1103         int ret;
1104
1105         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1106         if (ret == 0) {
1107                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1108                 return 0;
1109         }
1110         if (ret != -ENOSYS)
1111                 return ret;
1112
1113         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1114          * opposed to tried but failed) so we can only give a suitable error as
1115          * it's not possible to make a private copy if MAP_SHARED was given */
1116         return -ENODEV;
1117 }
1118
1119 /*
1120  * set up a private mapping or an anonymous shared mapping
1121  */
1122 static int do_mmap_private(struct vm_area_struct *vma,
1123                            struct vm_region *region,
1124                            unsigned long len,
1125                            unsigned long capabilities)
1126 {
1127         struct page *pages;
1128         unsigned long total, point, n;
1129         void *base;
1130         int ret, order;
1131
1132         /* invoke the file's mapping function so that it can keep track of
1133          * shared mappings on devices or memory
1134          * - VM_MAYSHARE will be set if it may attempt to share
1135          */
1136         if (capabilities & BDI_CAP_MAP_DIRECT) {
1137                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1138                 if (ret == 0) {
1139                         /* shouldn't return success if we're not sharing */
1140                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1141                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1142                         return 0;
1143                 }
1144                 if (ret != -ENOSYS)
1145                         return ret;
1146
1147                 /* getting an ENOSYS error indicates that direct mmap isn't
1148                  * possible (as opposed to tried but failed) so we'll try to
1149                  * make a private copy of the data and map that instead */
1150         }
1151
1152
1153         /* allocate some memory to hold the mapping
1154          * - note that this may not return a page-aligned address if the object
1155          *   we're allocating is smaller than a page
1156          */
1157         order = get_order(len);
1158         kdebug("alloc order %d for %lx", order, len);
1159
1160         pages = alloc_pages(GFP_KERNEL, order);
1161         if (!pages)
1162                 goto enomem;
1163
1164         total = 1 << order;
1165         atomic_long_add(total, &mmap_pages_allocated);
1166
1167         point = len >> PAGE_SHIFT;
1168
1169         /* we allocated a power-of-2 sized page set, so we may want to trim off
1170          * the excess */
1171         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1172                 while (total > point) {
1173                         order = ilog2(total - point);
1174                         n = 1 << order;
1175                         kdebug("shave %lu/%lu @%lu", n, total - point, total);
1176                         atomic_long_sub(n, &mmap_pages_allocated);
1177                         total -= n;
1178                         set_page_refcounted(pages + total);
1179                         __free_pages(pages + total, order);
1180                 }
1181         }
1182
1183         for (point = 1; point < total; point++)
1184                 set_page_refcounted(&pages[point]);
1185
1186         base = page_address(pages);
1187         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1188         region->vm_start = (unsigned long) base;
1189         region->vm_end   = region->vm_start + len;
1190         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1191
1192         vma->vm_start = region->vm_start;
1193         vma->vm_end   = region->vm_start + len;
1194
1195         if (vma->vm_file) {
1196                 /* read the contents of a file into the copy */
1197                 mm_segment_t old_fs;
1198                 loff_t fpos;
1199
1200                 fpos = vma->vm_pgoff;
1201                 fpos <<= PAGE_SHIFT;
1202
1203                 old_fs = get_fs();
1204                 set_fs(KERNEL_DS);
1205                 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1206                 set_fs(old_fs);
1207
1208                 if (ret < 0)
1209                         goto error_free;
1210
1211                 /* clear the last little bit */
1212                 if (ret < len)
1213                         memset(base + ret, 0, len - ret);
1214
1215         }
1216
1217         return 0;
1218
1219 error_free:
1220         free_page_series(region->vm_start, region->vm_top);
1221         region->vm_start = vma->vm_start = 0;
1222         region->vm_end   = vma->vm_end = 0;
1223         region->vm_top   = 0;
1224         return ret;
1225
1226 enomem:
1227         printk("Allocation of length %lu from process %d (%s) failed\n",
1228                len, current->pid, current->comm);
1229         show_free_areas(0);
1230         return -ENOMEM;
1231 }
1232
1233 /*
1234  * handle mapping creation for uClinux
1235  */
1236 unsigned long do_mmap_pgoff(struct file *file,
1237                             unsigned long addr,
1238                             unsigned long len,
1239                             unsigned long prot,
1240                             unsigned long flags,
1241                             unsigned long pgoff)
1242 {
1243         struct vm_area_struct *vma;
1244         struct vm_region *region;
1245         struct rb_node *rb;
1246         unsigned long capabilities, vm_flags, result;
1247         int ret;
1248
1249         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1250
1251         /* decide whether we should attempt the mapping, and if so what sort of
1252          * mapping */
1253         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1254                                     &capabilities);
1255         if (ret < 0) {
1256                 kleave(" = %d [val]", ret);
1257                 return ret;
1258         }
1259
1260         /* we ignore the address hint */
1261         addr = 0;
1262         len = PAGE_ALIGN(len);
1263
1264         /* we've determined that we can make the mapping, now translate what we
1265          * now know into VMA flags */
1266         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1267
1268         /* we're going to need to record the mapping */
1269         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1270         if (!region)
1271                 goto error_getting_region;
1272
1273         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1274         if (!vma)
1275                 goto error_getting_vma;
1276
1277         region->vm_usage = 1;
1278         region->vm_flags = vm_flags;
1279         region->vm_pgoff = pgoff;
1280
1281         INIT_LIST_HEAD(&vma->anon_vma_chain);
1282         vma->vm_flags = vm_flags;
1283         vma->vm_pgoff = pgoff;
1284
1285         if (file) {
1286                 region->vm_file = file;
1287                 get_file(file);
1288                 vma->vm_file = file;
1289                 get_file(file);
1290                 if (vm_flags & VM_EXECUTABLE) {
1291                         added_exe_file_vma(current->mm);
1292                         vma->vm_mm = current->mm;
1293                 }
1294         }
1295
1296         down_write(&nommu_region_sem);
1297
1298         /* if we want to share, we need to check for regions created by other
1299          * mmap() calls that overlap with our proposed mapping
1300          * - we can only share with a superset match on most regular files
1301          * - shared mappings on character devices and memory backed files are
1302          *   permitted to overlap inexactly as far as we are concerned for in
1303          *   these cases, sharing is handled in the driver or filesystem rather
1304          *   than here
1305          */
1306         if (vm_flags & VM_MAYSHARE) {
1307                 struct vm_region *pregion;
1308                 unsigned long pglen, rpglen, pgend, rpgend, start;
1309
1310                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1311                 pgend = pgoff + pglen;
1312
1313                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1314                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1315
1316                         if (!(pregion->vm_flags & VM_MAYSHARE))
1317                                 continue;
1318
1319                         /* search for overlapping mappings on the same file */
1320                         if (pregion->vm_file->f_path.dentry->d_inode !=
1321                             file->f_path.dentry->d_inode)
1322                                 continue;
1323
1324                         if (pregion->vm_pgoff >= pgend)
1325                                 continue;
1326
1327                         rpglen = pregion->vm_end - pregion->vm_start;
1328                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1329                         rpgend = pregion->vm_pgoff + rpglen;
1330                         if (pgoff >= rpgend)
1331                                 continue;
1332
1333                         /* handle inexactly overlapping matches between
1334                          * mappings */
1335                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1336                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1337                                 /* new mapping is not a subset of the region */
1338                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1339                                         goto sharing_violation;
1340                                 continue;
1341                         }
1342
1343                         /* we've found a region we can share */
1344                         pregion->vm_usage++;
1345                         vma->vm_region = pregion;
1346                         start = pregion->vm_start;
1347                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1348                         vma->vm_start = start;
1349                         vma->vm_end = start + len;
1350
1351                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1352                                 kdebug("share copy");
1353                                 vma->vm_flags |= VM_MAPPED_COPY;
1354                         } else {
1355                                 kdebug("share mmap");
1356                                 ret = do_mmap_shared_file(vma);
1357                                 if (ret < 0) {
1358                                         vma->vm_region = NULL;
1359                                         vma->vm_start = 0;
1360                                         vma->vm_end = 0;
1361                                         pregion->vm_usage--;
1362                                         pregion = NULL;
1363                                         goto error_just_free;
1364                                 }
1365                         }
1366                         fput(region->vm_file);
1367                         kmem_cache_free(vm_region_jar, region);
1368                         region = pregion;
1369                         result = start;
1370                         goto share;
1371                 }
1372
1373                 /* obtain the address at which to make a shared mapping
1374                  * - this is the hook for quasi-memory character devices to
1375                  *   tell us the location of a shared mapping
1376                  */
1377                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1378                         addr = file->f_op->get_unmapped_area(file, addr, len,
1379                                                              pgoff, flags);
1380                         if (IS_ERR_VALUE(addr)) {
1381                                 ret = addr;
1382                                 if (ret != -ENOSYS)
1383                                         goto error_just_free;
1384
1385                                 /* the driver refused to tell us where to site
1386                                  * the mapping so we'll have to attempt to copy
1387                                  * it */
1388                                 ret = -ENODEV;
1389                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1390                                         goto error_just_free;
1391
1392                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1393                         } else {
1394                                 vma->vm_start = region->vm_start = addr;
1395                                 vma->vm_end = region->vm_end = addr + len;
1396                         }
1397                 }
1398         }
1399
1400         vma->vm_region = region;
1401
1402         /* set up the mapping
1403          * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1404          */
1405         if (file && vma->vm_flags & VM_SHARED)
1406                 ret = do_mmap_shared_file(vma);
1407         else
1408                 ret = do_mmap_private(vma, region, len, capabilities);
1409         if (ret < 0)
1410                 goto error_just_free;
1411         add_nommu_region(region);
1412
1413         /* clear anonymous mappings that don't ask for uninitialized data */
1414         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1415                 memset((void *)region->vm_start, 0,
1416                        region->vm_end - region->vm_start);
1417
1418         /* okay... we have a mapping; now we have to register it */
1419         result = vma->vm_start;
1420
1421         current->mm->total_vm += len >> PAGE_SHIFT;
1422
1423 share:
1424         add_vma_to_mm(current->mm, vma);
1425
1426         /* we flush the region from the icache only when the first executable
1427          * mapping of it is made  */
1428         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1429                 flush_icache_range(region->vm_start, region->vm_end);
1430                 region->vm_icache_flushed = true;
1431         }
1432
1433         up_write(&nommu_region_sem);
1434
1435         kleave(" = %lx", result);
1436         return result;
1437
1438 error_just_free:
1439         up_write(&nommu_region_sem);
1440 error:
1441         if (region->vm_file)
1442                 fput(region->vm_file);
1443         kmem_cache_free(vm_region_jar, region);
1444         if (vma->vm_file)
1445                 fput(vma->vm_file);
1446         if (vma->vm_flags & VM_EXECUTABLE)
1447                 removed_exe_file_vma(vma->vm_mm);
1448         kmem_cache_free(vm_area_cachep, vma);
1449         kleave(" = %d", ret);
1450         return ret;
1451
1452 sharing_violation:
1453         up_write(&nommu_region_sem);
1454         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1455         ret = -EINVAL;
1456         goto error;
1457
1458 error_getting_vma:
1459         kmem_cache_free(vm_region_jar, region);
1460         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1461                " from process %d failed\n",
1462                len, current->pid);
1463         show_free_areas(0);
1464         return -ENOMEM;
1465
1466 error_getting_region:
1467         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1468                " from process %d failed\n",
1469                len, current->pid);
1470         show_free_areas(0);
1471         return -ENOMEM;
1472 }
1473 EXPORT_SYMBOL(do_mmap_pgoff);
1474
1475 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1476                 unsigned long, prot, unsigned long, flags,
1477                 unsigned long, fd, unsigned long, pgoff)
1478 {
1479         struct file *file = NULL;
1480         unsigned long retval = -EBADF;
1481
1482         audit_mmap_fd(fd, flags);
1483         if (!(flags & MAP_ANONYMOUS)) {
1484                 file = fget(fd);
1485                 if (!file)
1486                         goto out;
1487         }
1488
1489         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1490
1491         down_write(&current->mm->mmap_sem);
1492         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1493         up_write(&current->mm->mmap_sem);
1494
1495         if (file)
1496                 fput(file);
1497 out:
1498         return retval;
1499 }
1500
1501 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1502 struct mmap_arg_struct {
1503         unsigned long addr;
1504         unsigned long len;
1505         unsigned long prot;
1506         unsigned long flags;
1507         unsigned long fd;
1508         unsigned long offset;
1509 };
1510
1511 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1512 {
1513         struct mmap_arg_struct a;
1514
1515         if (copy_from_user(&a, arg, sizeof(a)))
1516                 return -EFAULT;
1517         if (a.offset & ~PAGE_MASK)
1518                 return -EINVAL;
1519
1520         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1521                               a.offset >> PAGE_SHIFT);
1522 }
1523 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1524
1525 /*
1526  * split a vma into two pieces at address 'addr', a new vma is allocated either
1527  * for the first part or the tail.
1528  */
1529 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1530               unsigned long addr, int new_below)
1531 {
1532         struct vm_area_struct *new;
1533         struct vm_region *region;
1534         unsigned long npages;
1535
1536         kenter("");
1537
1538         /* we're only permitted to split anonymous regions (these should have
1539          * only a single usage on the region) */
1540         if (vma->vm_file)
1541                 return -ENOMEM;
1542
1543         if (mm->map_count >= sysctl_max_map_count)
1544                 return -ENOMEM;
1545
1546         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1547         if (!region)
1548                 return -ENOMEM;
1549
1550         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1551         if (!new) {
1552                 kmem_cache_free(vm_region_jar, region);
1553                 return -ENOMEM;
1554         }
1555
1556         /* most fields are the same, copy all, and then fixup */
1557         *new = *vma;
1558         *region = *vma->vm_region;
1559         new->vm_region = region;
1560
1561         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1562
1563         if (new_below) {
1564                 region->vm_top = region->vm_end = new->vm_end = addr;
1565         } else {
1566                 region->vm_start = new->vm_start = addr;
1567                 region->vm_pgoff = new->vm_pgoff += npages;
1568         }
1569
1570         if (new->vm_ops && new->vm_ops->open)
1571                 new->vm_ops->open(new);
1572
1573         delete_vma_from_mm(vma);
1574         down_write(&nommu_region_sem);
1575         delete_nommu_region(vma->vm_region);
1576         if (new_below) {
1577                 vma->vm_region->vm_start = vma->vm_start = addr;
1578                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1579         } else {
1580                 vma->vm_region->vm_end = vma->vm_end = addr;
1581                 vma->vm_region->vm_top = addr;
1582         }
1583         add_nommu_region(vma->vm_region);
1584         add_nommu_region(new->vm_region);
1585         up_write(&nommu_region_sem);
1586         add_vma_to_mm(mm, vma);
1587         add_vma_to_mm(mm, new);
1588         return 0;
1589 }
1590
1591 /*
1592  * shrink a VMA by removing the specified chunk from either the beginning or
1593  * the end
1594  */
1595 static int shrink_vma(struct mm_struct *mm,
1596                       struct vm_area_struct *vma,
1597                       unsigned long from, unsigned long to)
1598 {
1599         struct vm_region *region;
1600
1601         kenter("");
1602
1603         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1604          * and list */
1605         delete_vma_from_mm(vma);
1606         if (from > vma->vm_start)
1607                 vma->vm_end = from;
1608         else
1609                 vma->vm_start = to;
1610         add_vma_to_mm(mm, vma);
1611
1612         /* cut the backing region down to size */
1613         region = vma->vm_region;
1614         BUG_ON(region->vm_usage != 1);
1615
1616         down_write(&nommu_region_sem);
1617         delete_nommu_region(region);
1618         if (from > region->vm_start) {
1619                 to = region->vm_top;
1620                 region->vm_top = region->vm_end = from;
1621         } else {
1622                 region->vm_start = to;
1623         }
1624         add_nommu_region(region);
1625         up_write(&nommu_region_sem);
1626
1627         free_page_series(from, to);
1628         return 0;
1629 }
1630
1631 /*
1632  * release a mapping
1633  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1634  *   VMA, though it need not cover the whole VMA
1635  */
1636 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1637 {
1638         struct vm_area_struct *vma;
1639         unsigned long end;
1640         int ret;
1641
1642         kenter(",%lx,%zx", start, len);
1643
1644         len = PAGE_ALIGN(len);
1645         if (len == 0)
1646                 return -EINVAL;
1647
1648         end = start + len;
1649
1650         /* find the first potentially overlapping VMA */
1651         vma = find_vma(mm, start);
1652         if (!vma) {
1653                 static int limit = 0;
1654                 if (limit < 5) {
1655                         printk(KERN_WARNING
1656                                "munmap of memory not mmapped by process %d"
1657                                " (%s): 0x%lx-0x%lx\n",
1658                                current->pid, current->comm,
1659                                start, start + len - 1);
1660                         limit++;
1661                 }
1662                 return -EINVAL;
1663         }
1664
1665         /* we're allowed to split an anonymous VMA but not a file-backed one */
1666         if (vma->vm_file) {
1667                 do {
1668                         if (start > vma->vm_start) {
1669                                 kleave(" = -EINVAL [miss]");
1670                                 return -EINVAL;
1671                         }
1672                         if (end == vma->vm_end)
1673                                 goto erase_whole_vma;
1674                         vma = vma->vm_next;
1675                 } while (vma);
1676                 kleave(" = -EINVAL [split file]");
1677                 return -EINVAL;
1678         } else {
1679                 /* the chunk must be a subset of the VMA found */
1680                 if (start == vma->vm_start && end == vma->vm_end)
1681                         goto erase_whole_vma;
1682                 if (start < vma->vm_start || end > vma->vm_end) {
1683                         kleave(" = -EINVAL [superset]");
1684                         return -EINVAL;
1685                 }
1686                 if (start & ~PAGE_MASK) {
1687                         kleave(" = -EINVAL [unaligned start]");
1688                         return -EINVAL;
1689                 }
1690                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1691                         kleave(" = -EINVAL [unaligned split]");
1692                         return -EINVAL;
1693                 }
1694                 if (start != vma->vm_start && end != vma->vm_end) {
1695                         ret = split_vma(mm, vma, start, 1);
1696                         if (ret < 0) {
1697                                 kleave(" = %d [split]", ret);
1698                                 return ret;
1699                         }
1700                 }
1701                 return shrink_vma(mm, vma, start, end);
1702         }
1703
1704 erase_whole_vma:
1705         delete_vma_from_mm(vma);
1706         delete_vma(mm, vma);
1707         kleave(" = 0");
1708         return 0;
1709 }
1710 EXPORT_SYMBOL(do_munmap);
1711
1712 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1713 {
1714         int ret;
1715         struct mm_struct *mm = current->mm;
1716
1717         down_write(&mm->mmap_sem);
1718         ret = do_munmap(mm, addr, len);
1719         up_write(&mm->mmap_sem);
1720         return ret;
1721 }
1722
1723 /*
1724  * release all the mappings made in a process's VM space
1725  */
1726 void exit_mmap(struct mm_struct *mm)
1727 {
1728         struct vm_area_struct *vma;
1729
1730         if (!mm)
1731                 return;
1732
1733         kenter("");
1734
1735         mm->total_vm = 0;
1736
1737         while ((vma = mm->mmap)) {
1738                 mm->mmap = vma->vm_next;
1739                 delete_vma_from_mm(vma);
1740                 delete_vma(mm, vma);
1741                 cond_resched();
1742         }
1743
1744         kleave("");
1745 }
1746
1747 unsigned long do_brk(unsigned long addr, unsigned long len)
1748 {
1749         return -ENOMEM;
1750 }
1751
1752 /*
1753  * expand (or shrink) an existing mapping, potentially moving it at the same
1754  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1755  *
1756  * under NOMMU conditions, we only permit changing a mapping's size, and only
1757  * as long as it stays within the region allocated by do_mmap_private() and the
1758  * block is not shareable
1759  *
1760  * MREMAP_FIXED is not supported under NOMMU conditions
1761  */
1762 unsigned long do_mremap(unsigned long addr,
1763                         unsigned long old_len, unsigned long new_len,
1764                         unsigned long flags, unsigned long new_addr)
1765 {
1766         struct vm_area_struct *vma;
1767
1768         /* insanity checks first */
1769         old_len = PAGE_ALIGN(old_len);
1770         new_len = PAGE_ALIGN(new_len);
1771         if (old_len == 0 || new_len == 0)
1772                 return (unsigned long) -EINVAL;
1773
1774         if (addr & ~PAGE_MASK)
1775                 return -EINVAL;
1776
1777         if (flags & MREMAP_FIXED && new_addr != addr)
1778                 return (unsigned long) -EINVAL;
1779
1780         vma = find_vma_exact(current->mm, addr, old_len);
1781         if (!vma)
1782                 return (unsigned long) -EINVAL;
1783
1784         if (vma->vm_end != vma->vm_start + old_len)
1785                 return (unsigned long) -EFAULT;
1786
1787         if (vma->vm_flags & VM_MAYSHARE)
1788                 return (unsigned long) -EPERM;
1789
1790         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1791                 return (unsigned long) -ENOMEM;
1792
1793         /* all checks complete - do it */
1794         vma->vm_end = vma->vm_start + new_len;
1795         return vma->vm_start;
1796 }
1797 EXPORT_SYMBOL(do_mremap);
1798
1799 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1800                 unsigned long, new_len, unsigned long, flags,
1801                 unsigned long, new_addr)
1802 {
1803         unsigned long ret;
1804
1805         down_write(&current->mm->mmap_sem);
1806         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1807         up_write(&current->mm->mmap_sem);
1808         return ret;
1809 }
1810
1811 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1812                         unsigned int foll_flags)
1813 {
1814         return NULL;
1815 }
1816
1817 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1818                 unsigned long pfn, unsigned long size, pgprot_t prot)
1819 {
1820         if (addr != (pfn << PAGE_SHIFT))
1821                 return -EINVAL;
1822
1823         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1824         return 0;
1825 }
1826 EXPORT_SYMBOL(remap_pfn_range);
1827
1828 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1829 {
1830         unsigned long pfn = start >> PAGE_SHIFT;
1831         unsigned long vm_len = vma->vm_end - vma->vm_start;
1832
1833         pfn += vma->vm_pgoff;
1834         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1835 }
1836 EXPORT_SYMBOL(vm_iomap_memory);
1837
1838 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1839                         unsigned long pgoff)
1840 {
1841         unsigned int size = vma->vm_end - vma->vm_start;
1842
1843         if (!(vma->vm_flags & VM_USERMAP))
1844                 return -EINVAL;
1845
1846         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1847         vma->vm_end = vma->vm_start + size;
1848
1849         return 0;
1850 }
1851 EXPORT_SYMBOL(remap_vmalloc_range);
1852
1853 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1854         unsigned long len, unsigned long pgoff, unsigned long flags)
1855 {
1856         return -ENOMEM;
1857 }
1858
1859 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1860 {
1861 }
1862
1863 void unmap_mapping_range(struct address_space *mapping,
1864                          loff_t const holebegin, loff_t const holelen,
1865                          int even_cows)
1866 {
1867 }
1868 EXPORT_SYMBOL(unmap_mapping_range);
1869
1870 /*
1871  * Check that a process has enough memory to allocate a new virtual
1872  * mapping. 0 means there is enough memory for the allocation to
1873  * succeed and -ENOMEM implies there is not.
1874  *
1875  * We currently support three overcommit policies, which are set via the
1876  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1877  *
1878  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1879  * Additional code 2002 Jul 20 by Robert Love.
1880  *
1881  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1882  *
1883  * Note this is a helper function intended to be used by LSMs which
1884  * wish to use this logic.
1885  */
1886 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1887 {
1888         long free, allowed;
1889
1890         vm_acct_memory(pages);
1891
1892         /*
1893          * Sometimes we want to use more memory than we have
1894          */
1895         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1896                 return 0;
1897
1898         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1899                 free = global_page_state(NR_FREE_PAGES);
1900                 free += global_page_state(NR_FILE_PAGES);
1901
1902                 /*
1903                  * shmem pages shouldn't be counted as free in this
1904                  * case, they can't be purged, only swapped out, and
1905                  * that won't affect the overall amount of available
1906                  * memory in the system.
1907                  */
1908                 free -= global_page_state(NR_SHMEM);
1909
1910                 free += nr_swap_pages;
1911
1912                 /*
1913                  * Any slabs which are created with the
1914                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1915                  * which are reclaimable, under pressure.  The dentry
1916                  * cache and most inode caches should fall into this
1917                  */
1918                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1919
1920                 /*
1921                  * Leave reserved pages. The pages are not for anonymous pages.
1922                  */
1923                 if (free <= totalreserve_pages)
1924                         goto error;
1925                 else
1926                         free -= totalreserve_pages;
1927
1928                 /*
1929                  * Leave the last 3% for root
1930                  */
1931                 if (!cap_sys_admin)
1932                         free -= free / 32;
1933
1934                 if (free > pages)
1935                         return 0;
1936
1937                 goto error;
1938         }
1939
1940         allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1941         /*
1942          * Leave the last 3% for root
1943          */
1944         if (!cap_sys_admin)
1945                 allowed -= allowed / 32;
1946         allowed += total_swap_pages;
1947
1948         /* Don't let a single process grow too big:
1949            leave 3% of the size of this process for other processes */
1950         if (mm)
1951                 allowed -= mm->total_vm / 32;
1952
1953         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1954                 return 0;
1955
1956 error:
1957         vm_unacct_memory(pages);
1958
1959         return -ENOMEM;
1960 }
1961
1962 int in_gate_area_no_mm(unsigned long addr)
1963 {
1964         return 0;
1965 }
1966
1967 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1968 {
1969         BUG();
1970         return 0;
1971 }
1972 EXPORT_SYMBOL(filemap_fault);
1973
1974 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1975                 unsigned long addr, void *buf, int len, int write)
1976 {
1977         struct vm_area_struct *vma;
1978
1979         down_read(&mm->mmap_sem);
1980
1981         /* the access must start within one of the target process's mappings */
1982         vma = find_vma(mm, addr);
1983         if (vma) {
1984                 /* don't overrun this mapping */
1985                 if (addr + len >= vma->vm_end)
1986                         len = vma->vm_end - addr;
1987
1988                 /* only read or write mappings where it is permitted */
1989                 if (write && vma->vm_flags & VM_MAYWRITE)
1990                         copy_to_user_page(vma, NULL, addr,
1991                                          (void *) addr, buf, len);
1992                 else if (!write && vma->vm_flags & VM_MAYREAD)
1993                         copy_from_user_page(vma, NULL, addr,
1994                                             buf, (void *) addr, len);
1995                 else
1996                         len = 0;
1997         } else {
1998                 len = 0;
1999         }
2000
2001         up_read(&mm->mmap_sem);
2002
2003         return len;
2004 }
2005
2006 /**
2007  * @access_remote_vm - access another process' address space
2008  * @mm:         the mm_struct of the target address space
2009  * @addr:       start address to access
2010  * @buf:        source or destination buffer
2011  * @len:        number of bytes to transfer
2012  * @write:      whether the access is a write
2013  *
2014  * The caller must hold a reference on @mm.
2015  */
2016 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2017                 void *buf, int len, int write)
2018 {
2019         return __access_remote_vm(NULL, mm, addr, buf, len, write);
2020 }
2021
2022 /*
2023  * Access another process' address space.
2024  * - source/target buffer must be kernel space
2025  */
2026 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2027 {
2028         struct mm_struct *mm;
2029
2030         if (addr + len < addr)
2031                 return 0;
2032
2033         mm = get_task_mm(tsk);
2034         if (!mm)
2035                 return 0;
2036
2037         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2038
2039         mmput(mm);
2040         return len;
2041 }
2042
2043 /**
2044  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2045  * @inode: The inode to check
2046  * @size: The current filesize of the inode
2047  * @newsize: The proposed filesize of the inode
2048  *
2049  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2050  * make sure that that any outstanding VMAs aren't broken and then shrink the
2051  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2052  * automatically grant mappings that are too large.
2053  */
2054 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2055                                 size_t newsize)
2056 {
2057         struct vm_area_struct *vma;
2058         struct prio_tree_iter iter;
2059         struct vm_region *region;
2060         pgoff_t low, high;
2061         size_t r_size, r_top;
2062
2063         low = newsize >> PAGE_SHIFT;
2064         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2065
2066         down_write(&nommu_region_sem);
2067         mutex_lock(&inode->i_mapping->i_mmap_mutex);
2068
2069         /* search for VMAs that fall within the dead zone */
2070         vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2071                               low, high) {
2072                 /* found one - only interested if it's shared out of the page
2073                  * cache */
2074                 if (vma->vm_flags & VM_SHARED) {
2075                         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2076                         up_write(&nommu_region_sem);
2077                         return -ETXTBSY; /* not quite true, but near enough */
2078                 }
2079         }
2080
2081         /* reduce any regions that overlap the dead zone - if in existence,
2082          * these will be pointed to by VMAs that don't overlap the dead zone
2083          *
2084          * we don't check for any regions that start beyond the EOF as there
2085          * shouldn't be any
2086          */
2087         vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2088                               0, ULONG_MAX) {
2089                 if (!(vma->vm_flags & VM_SHARED))
2090                         continue;
2091
2092                 region = vma->vm_region;
2093                 r_size = region->vm_top - region->vm_start;
2094                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2095
2096                 if (r_top > newsize) {
2097                         region->vm_top -= r_top - newsize;
2098                         if (region->vm_end > region->vm_top)
2099                                 region->vm_end = region->vm_top;
2100                 }
2101         }
2102
2103         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2104         up_write(&nommu_region_sem);
2105         return 0;
2106 }