mm: make the vma list be doubly linked
[pandora-kernel.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38
39 #if 0
40 #define kenter(FMT, ...) \
41         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
42 #define kleave(FMT, ...) \
43         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
44 #define kdebug(FMT, ...) \
45         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
46 #else
47 #define kenter(FMT, ...) \
48         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
49 #define kleave(FMT, ...) \
50         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
51 #define kdebug(FMT, ...) \
52         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
53 #endif
54
55 void *high_memory;
56 struct page *mem_map;
57 unsigned long max_mapnr;
58 unsigned long num_physpages;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
65 int heap_stack_gap = 0;
66
67 atomic_long_t mmap_pages_allocated;
68
69 EXPORT_SYMBOL(mem_map);
70 EXPORT_SYMBOL(num_physpages);
71
72 /* list of mapped, potentially shareable regions */
73 static struct kmem_cache *vm_region_jar;
74 struct rb_root nommu_region_tree = RB_ROOT;
75 DECLARE_RWSEM(nommu_region_sem);
76
77 const struct vm_operations_struct generic_file_vm_ops = {
78 };
79
80 /*
81  * Return the total memory allocated for this pointer, not
82  * just what the caller asked for.
83  *
84  * Doesn't have to be accurate, i.e. may have races.
85  */
86 unsigned int kobjsize(const void *objp)
87 {
88         struct page *page;
89
90         /*
91          * If the object we have should not have ksize performed on it,
92          * return size of 0
93          */
94         if (!objp || !virt_addr_valid(objp))
95                 return 0;
96
97         page = virt_to_head_page(objp);
98
99         /*
100          * If the allocator sets PageSlab, we know the pointer came from
101          * kmalloc().
102          */
103         if (PageSlab(page))
104                 return ksize(objp);
105
106         /*
107          * If it's not a compound page, see if we have a matching VMA
108          * region. This test is intentionally done in reverse order,
109          * so if there's no VMA, we still fall through and hand back
110          * PAGE_SIZE for 0-order pages.
111          */
112         if (!PageCompound(page)) {
113                 struct vm_area_struct *vma;
114
115                 vma = find_vma(current->mm, (unsigned long)objp);
116                 if (vma)
117                         return vma->vm_end - vma->vm_start;
118         }
119
120         /*
121          * The ksize() function is only guaranteed to work for pointers
122          * returned by kmalloc(). So handle arbitrary pointers here.
123          */
124         return PAGE_SIZE << compound_order(page);
125 }
126
127 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
128                      unsigned long start, int nr_pages, unsigned int foll_flags,
129                      struct page **pages, struct vm_area_struct **vmas)
130 {
131         struct vm_area_struct *vma;
132         unsigned long vm_flags;
133         int i;
134
135         /* calculate required read or write permissions.
136          * If FOLL_FORCE is set, we only require the "MAY" flags.
137          */
138         vm_flags  = (foll_flags & FOLL_WRITE) ?
139                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
140         vm_flags &= (foll_flags & FOLL_FORCE) ?
141                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
142
143         for (i = 0; i < nr_pages; i++) {
144                 vma = find_vma(mm, start);
145                 if (!vma)
146                         goto finish_or_fault;
147
148                 /* protect what we can, including chardevs */
149                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
150                     !(vm_flags & vma->vm_flags))
151                         goto finish_or_fault;
152
153                 if (pages) {
154                         pages[i] = virt_to_page(start);
155                         if (pages[i])
156                                 page_cache_get(pages[i]);
157                 }
158                 if (vmas)
159                         vmas[i] = vma;
160                 start = (start + PAGE_SIZE) & PAGE_MASK;
161         }
162
163         return i;
164
165 finish_or_fault:
166         return i ? : -EFAULT;
167 }
168
169 /*
170  * get a list of pages in an address range belonging to the specified process
171  * and indicate the VMA that covers each page
172  * - this is potentially dodgy as we may end incrementing the page count of a
173  *   slab page or a secondary page from a compound page
174  * - don't permit access to VMAs that don't support it, such as I/O mappings
175  */
176 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
177         unsigned long start, int nr_pages, int write, int force,
178         struct page **pages, struct vm_area_struct **vmas)
179 {
180         int flags = 0;
181
182         if (write)
183                 flags |= FOLL_WRITE;
184         if (force)
185                 flags |= FOLL_FORCE;
186
187         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
188 }
189 EXPORT_SYMBOL(get_user_pages);
190
191 /**
192  * follow_pfn - look up PFN at a user virtual address
193  * @vma: memory mapping
194  * @address: user virtual address
195  * @pfn: location to store found PFN
196  *
197  * Only IO mappings and raw PFN mappings are allowed.
198  *
199  * Returns zero and the pfn at @pfn on success, -ve otherwise.
200  */
201 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
202         unsigned long *pfn)
203 {
204         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
205                 return -EINVAL;
206
207         *pfn = address >> PAGE_SHIFT;
208         return 0;
209 }
210 EXPORT_SYMBOL(follow_pfn);
211
212 DEFINE_RWLOCK(vmlist_lock);
213 struct vm_struct *vmlist;
214
215 void vfree(const void *addr)
216 {
217         kfree(addr);
218 }
219 EXPORT_SYMBOL(vfree);
220
221 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
222 {
223         /*
224          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
225          * returns only a logical address.
226          */
227         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
228 }
229 EXPORT_SYMBOL(__vmalloc);
230
231 void *vmalloc_user(unsigned long size)
232 {
233         void *ret;
234
235         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
236                         PAGE_KERNEL);
237         if (ret) {
238                 struct vm_area_struct *vma;
239
240                 down_write(&current->mm->mmap_sem);
241                 vma = find_vma(current->mm, (unsigned long)ret);
242                 if (vma)
243                         vma->vm_flags |= VM_USERMAP;
244                 up_write(&current->mm->mmap_sem);
245         }
246
247         return ret;
248 }
249 EXPORT_SYMBOL(vmalloc_user);
250
251 struct page *vmalloc_to_page(const void *addr)
252 {
253         return virt_to_page(addr);
254 }
255 EXPORT_SYMBOL(vmalloc_to_page);
256
257 unsigned long vmalloc_to_pfn(const void *addr)
258 {
259         return page_to_pfn(virt_to_page(addr));
260 }
261 EXPORT_SYMBOL(vmalloc_to_pfn);
262
263 long vread(char *buf, char *addr, unsigned long count)
264 {
265         memcpy(buf, addr, count);
266         return count;
267 }
268
269 long vwrite(char *buf, char *addr, unsigned long count)
270 {
271         /* Don't allow overflow */
272         if ((unsigned long) addr + count < count)
273                 count = -(unsigned long) addr;
274
275         memcpy(addr, buf, count);
276         return(count);
277 }
278
279 /*
280  *      vmalloc  -  allocate virtually continguos memory
281  *
282  *      @size:          allocation size
283  *
284  *      Allocate enough pages to cover @size from the page level
285  *      allocator and map them into continguos kernel virtual space.
286  *
287  *      For tight control over page level allocator and protection flags
288  *      use __vmalloc() instead.
289  */
290 void *vmalloc(unsigned long size)
291 {
292        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc);
295
296 void *vmalloc_node(unsigned long size, int node)
297 {
298         return vmalloc(size);
299 }
300 EXPORT_SYMBOL(vmalloc_node);
301
302 #ifndef PAGE_KERNEL_EXEC
303 # define PAGE_KERNEL_EXEC PAGE_KERNEL
304 #endif
305
306 /**
307  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
308  *      @size:          allocation size
309  *
310  *      Kernel-internal function to allocate enough pages to cover @size
311  *      the page level allocator and map them into contiguous and
312  *      executable kernel virtual space.
313  *
314  *      For tight control over page level allocator and protection flags
315  *      use __vmalloc() instead.
316  */
317
318 void *vmalloc_exec(unsigned long size)
319 {
320         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
321 }
322
323 /**
324  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
325  *      @size:          allocation size
326  *
327  *      Allocate enough 32bit PA addressable pages to cover @size from the
328  *      page level allocator and map them into continguos kernel virtual space.
329  */
330 void *vmalloc_32(unsigned long size)
331 {
332         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
333 }
334 EXPORT_SYMBOL(vmalloc_32);
335
336 /**
337  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
338  *      @size:          allocation size
339  *
340  * The resulting memory area is 32bit addressable and zeroed so it can be
341  * mapped to userspace without leaking data.
342  *
343  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
344  * remap_vmalloc_range() are permissible.
345  */
346 void *vmalloc_32_user(unsigned long size)
347 {
348         /*
349          * We'll have to sort out the ZONE_DMA bits for 64-bit,
350          * but for now this can simply use vmalloc_user() directly.
351          */
352         return vmalloc_user(size);
353 }
354 EXPORT_SYMBOL(vmalloc_32_user);
355
356 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
357 {
358         BUG();
359         return NULL;
360 }
361 EXPORT_SYMBOL(vmap);
362
363 void vunmap(const void *addr)
364 {
365         BUG();
366 }
367 EXPORT_SYMBOL(vunmap);
368
369 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
370 {
371         BUG();
372         return NULL;
373 }
374 EXPORT_SYMBOL(vm_map_ram);
375
376 void vm_unmap_ram(const void *mem, unsigned int count)
377 {
378         BUG();
379 }
380 EXPORT_SYMBOL(vm_unmap_ram);
381
382 void vm_unmap_aliases(void)
383 {
384 }
385 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
386
387 /*
388  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
389  * have one.
390  */
391 void  __attribute__((weak)) vmalloc_sync_all(void)
392 {
393 }
394
395 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
396                    struct page *page)
397 {
398         return -EINVAL;
399 }
400 EXPORT_SYMBOL(vm_insert_page);
401
402 /*
403  *  sys_brk() for the most part doesn't need the global kernel
404  *  lock, except when an application is doing something nasty
405  *  like trying to un-brk an area that has already been mapped
406  *  to a regular file.  in this case, the unmapping will need
407  *  to invoke file system routines that need the global lock.
408  */
409 SYSCALL_DEFINE1(brk, unsigned long, brk)
410 {
411         struct mm_struct *mm = current->mm;
412
413         if (brk < mm->start_brk || brk > mm->context.end_brk)
414                 return mm->brk;
415
416         if (mm->brk == brk)
417                 return mm->brk;
418
419         /*
420          * Always allow shrinking brk
421          */
422         if (brk <= mm->brk) {
423                 mm->brk = brk;
424                 return brk;
425         }
426
427         /*
428          * Ok, looks good - let it rip.
429          */
430         flush_icache_range(mm->brk, brk);
431         return mm->brk = brk;
432 }
433
434 /*
435  * initialise the VMA and region record slabs
436  */
437 void __init mmap_init(void)
438 {
439         int ret;
440
441         ret = percpu_counter_init(&vm_committed_as, 0);
442         VM_BUG_ON(ret);
443         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
444 }
445
446 /*
447  * validate the region tree
448  * - the caller must hold the region lock
449  */
450 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
451 static noinline void validate_nommu_regions(void)
452 {
453         struct vm_region *region, *last;
454         struct rb_node *p, *lastp;
455
456         lastp = rb_first(&nommu_region_tree);
457         if (!lastp)
458                 return;
459
460         last = rb_entry(lastp, struct vm_region, vm_rb);
461         BUG_ON(unlikely(last->vm_end <= last->vm_start));
462         BUG_ON(unlikely(last->vm_top < last->vm_end));
463
464         while ((p = rb_next(lastp))) {
465                 region = rb_entry(p, struct vm_region, vm_rb);
466                 last = rb_entry(lastp, struct vm_region, vm_rb);
467
468                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
469                 BUG_ON(unlikely(region->vm_top < region->vm_end));
470                 BUG_ON(unlikely(region->vm_start < last->vm_top));
471
472                 lastp = p;
473         }
474 }
475 #else
476 static void validate_nommu_regions(void)
477 {
478 }
479 #endif
480
481 /*
482  * add a region into the global tree
483  */
484 static void add_nommu_region(struct vm_region *region)
485 {
486         struct vm_region *pregion;
487         struct rb_node **p, *parent;
488
489         validate_nommu_regions();
490
491         parent = NULL;
492         p = &nommu_region_tree.rb_node;
493         while (*p) {
494                 parent = *p;
495                 pregion = rb_entry(parent, struct vm_region, vm_rb);
496                 if (region->vm_start < pregion->vm_start)
497                         p = &(*p)->rb_left;
498                 else if (region->vm_start > pregion->vm_start)
499                         p = &(*p)->rb_right;
500                 else if (pregion == region)
501                         return;
502                 else
503                         BUG();
504         }
505
506         rb_link_node(&region->vm_rb, parent, p);
507         rb_insert_color(&region->vm_rb, &nommu_region_tree);
508
509         validate_nommu_regions();
510 }
511
512 /*
513  * delete a region from the global tree
514  */
515 static void delete_nommu_region(struct vm_region *region)
516 {
517         BUG_ON(!nommu_region_tree.rb_node);
518
519         validate_nommu_regions();
520         rb_erase(&region->vm_rb, &nommu_region_tree);
521         validate_nommu_regions();
522 }
523
524 /*
525  * free a contiguous series of pages
526  */
527 static void free_page_series(unsigned long from, unsigned long to)
528 {
529         for (; from < to; from += PAGE_SIZE) {
530                 struct page *page = virt_to_page(from);
531
532                 kdebug("- free %lx", from);
533                 atomic_long_dec(&mmap_pages_allocated);
534                 if (page_count(page) != 1)
535                         kdebug("free page %p: refcount not one: %d",
536                                page, page_count(page));
537                 put_page(page);
538         }
539 }
540
541 /*
542  * release a reference to a region
543  * - the caller must hold the region semaphore for writing, which this releases
544  * - the region may not have been added to the tree yet, in which case vm_top
545  *   will equal vm_start
546  */
547 static void __put_nommu_region(struct vm_region *region)
548         __releases(nommu_region_sem)
549 {
550         kenter("%p{%d}", region, region->vm_usage);
551
552         BUG_ON(!nommu_region_tree.rb_node);
553
554         if (--region->vm_usage == 0) {
555                 if (region->vm_top > region->vm_start)
556                         delete_nommu_region(region);
557                 up_write(&nommu_region_sem);
558
559                 if (region->vm_file)
560                         fput(region->vm_file);
561
562                 /* IO memory and memory shared directly out of the pagecache
563                  * from ramfs/tmpfs mustn't be released here */
564                 if (region->vm_flags & VM_MAPPED_COPY) {
565                         kdebug("free series");
566                         free_page_series(region->vm_start, region->vm_top);
567                 }
568                 kmem_cache_free(vm_region_jar, region);
569         } else {
570                 up_write(&nommu_region_sem);
571         }
572 }
573
574 /*
575  * release a reference to a region
576  */
577 static void put_nommu_region(struct vm_region *region)
578 {
579         down_write(&nommu_region_sem);
580         __put_nommu_region(region);
581 }
582
583 /*
584  * update protection on a vma
585  */
586 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
587 {
588 #ifdef CONFIG_MPU
589         struct mm_struct *mm = vma->vm_mm;
590         long start = vma->vm_start & PAGE_MASK;
591         while (start < vma->vm_end) {
592                 protect_page(mm, start, flags);
593                 start += PAGE_SIZE;
594         }
595         update_protections(mm);
596 #endif
597 }
598
599 /*
600  * add a VMA into a process's mm_struct in the appropriate place in the list
601  * and tree and add to the address space's page tree also if not an anonymous
602  * page
603  * - should be called with mm->mmap_sem held writelocked
604  */
605 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
606 {
607         struct vm_area_struct *pvma, **pp, *next;
608         struct address_space *mapping;
609         struct rb_node **p, *parent;
610
611         kenter(",%p", vma);
612
613         BUG_ON(!vma->vm_region);
614
615         mm->map_count++;
616         vma->vm_mm = mm;
617
618         protect_vma(vma, vma->vm_flags);
619
620         /* add the VMA to the mapping */
621         if (vma->vm_file) {
622                 mapping = vma->vm_file->f_mapping;
623
624                 flush_dcache_mmap_lock(mapping);
625                 vma_prio_tree_insert(vma, &mapping->i_mmap);
626                 flush_dcache_mmap_unlock(mapping);
627         }
628
629         /* add the VMA to the tree */
630         parent = NULL;
631         p = &mm->mm_rb.rb_node;
632         while (*p) {
633                 parent = *p;
634                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
635
636                 /* sort by: start addr, end addr, VMA struct addr in that order
637                  * (the latter is necessary as we may get identical VMAs) */
638                 if (vma->vm_start < pvma->vm_start)
639                         p = &(*p)->rb_left;
640                 else if (vma->vm_start > pvma->vm_start)
641                         p = &(*p)->rb_right;
642                 else if (vma->vm_end < pvma->vm_end)
643                         p = &(*p)->rb_left;
644                 else if (vma->vm_end > pvma->vm_end)
645                         p = &(*p)->rb_right;
646                 else if (vma < pvma)
647                         p = &(*p)->rb_left;
648                 else if (vma > pvma)
649                         p = &(*p)->rb_right;
650                 else
651                         BUG();
652         }
653
654         rb_link_node(&vma->vm_rb, parent, p);
655         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
656
657         /* add VMA to the VMA list also */
658         for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
659                 if (pvma->vm_start > vma->vm_start)
660                         break;
661                 if (pvma->vm_start < vma->vm_start)
662                         continue;
663                 if (pvma->vm_end < vma->vm_end)
664                         break;
665         }
666
667         next = *pp;
668         *pp = vma;
669         vma->vm_next = next;
670         if (next)
671                 next->vm_prev = vma;
672 }
673
674 /*
675  * delete a VMA from its owning mm_struct and address space
676  */
677 static void delete_vma_from_mm(struct vm_area_struct *vma)
678 {
679         struct vm_area_struct **pp;
680         struct address_space *mapping;
681         struct mm_struct *mm = vma->vm_mm;
682
683         kenter("%p", vma);
684
685         protect_vma(vma, 0);
686
687         mm->map_count--;
688         if (mm->mmap_cache == vma)
689                 mm->mmap_cache = NULL;
690
691         /* remove the VMA from the mapping */
692         if (vma->vm_file) {
693                 mapping = vma->vm_file->f_mapping;
694
695                 flush_dcache_mmap_lock(mapping);
696                 vma_prio_tree_remove(vma, &mapping->i_mmap);
697                 flush_dcache_mmap_unlock(mapping);
698         }
699
700         /* remove from the MM's tree and list */
701         rb_erase(&vma->vm_rb, &mm->mm_rb);
702         for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
703                 if (*pp == vma) {
704                         *pp = vma->vm_next;
705                         break;
706                 }
707         }
708
709         vma->vm_mm = NULL;
710 }
711
712 /*
713  * destroy a VMA record
714  */
715 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
716 {
717         kenter("%p", vma);
718         if (vma->vm_ops && vma->vm_ops->close)
719                 vma->vm_ops->close(vma);
720         if (vma->vm_file) {
721                 fput(vma->vm_file);
722                 if (vma->vm_flags & VM_EXECUTABLE)
723                         removed_exe_file_vma(mm);
724         }
725         put_nommu_region(vma->vm_region);
726         kmem_cache_free(vm_area_cachep, vma);
727 }
728
729 /*
730  * look up the first VMA in which addr resides, NULL if none
731  * - should be called with mm->mmap_sem at least held readlocked
732  */
733 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
734 {
735         struct vm_area_struct *vma;
736         struct rb_node *n = mm->mm_rb.rb_node;
737
738         /* check the cache first */
739         vma = mm->mmap_cache;
740         if (vma && vma->vm_start <= addr && vma->vm_end > addr)
741                 return vma;
742
743         /* trawl the tree (there may be multiple mappings in which addr
744          * resides) */
745         for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
746                 vma = rb_entry(n, struct vm_area_struct, vm_rb);
747                 if (vma->vm_start > addr)
748                         return NULL;
749                 if (vma->vm_end > addr) {
750                         mm->mmap_cache = vma;
751                         return vma;
752                 }
753         }
754
755         return NULL;
756 }
757 EXPORT_SYMBOL(find_vma);
758
759 /*
760  * find a VMA
761  * - we don't extend stack VMAs under NOMMU conditions
762  */
763 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
764 {
765         return find_vma(mm, addr);
766 }
767
768 /*
769  * expand a stack to a given address
770  * - not supported under NOMMU conditions
771  */
772 int expand_stack(struct vm_area_struct *vma, unsigned long address)
773 {
774         return -ENOMEM;
775 }
776
777 /*
778  * look up the first VMA exactly that exactly matches addr
779  * - should be called with mm->mmap_sem at least held readlocked
780  */
781 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
782                                              unsigned long addr,
783                                              unsigned long len)
784 {
785         struct vm_area_struct *vma;
786         struct rb_node *n = mm->mm_rb.rb_node;
787         unsigned long end = addr + len;
788
789         /* check the cache first */
790         vma = mm->mmap_cache;
791         if (vma && vma->vm_start == addr && vma->vm_end == end)
792                 return vma;
793
794         /* trawl the tree (there may be multiple mappings in which addr
795          * resides) */
796         for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
797                 vma = rb_entry(n, struct vm_area_struct, vm_rb);
798                 if (vma->vm_start < addr)
799                         continue;
800                 if (vma->vm_start > addr)
801                         return NULL;
802                 if (vma->vm_end == end) {
803                         mm->mmap_cache = vma;
804                         return vma;
805                 }
806         }
807
808         return NULL;
809 }
810
811 /*
812  * determine whether a mapping should be permitted and, if so, what sort of
813  * mapping we're capable of supporting
814  */
815 static int validate_mmap_request(struct file *file,
816                                  unsigned long addr,
817                                  unsigned long len,
818                                  unsigned long prot,
819                                  unsigned long flags,
820                                  unsigned long pgoff,
821                                  unsigned long *_capabilities)
822 {
823         unsigned long capabilities, rlen;
824         unsigned long reqprot = prot;
825         int ret;
826
827         /* do the simple checks first */
828         if (flags & MAP_FIXED) {
829                 printk(KERN_DEBUG
830                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
831                        current->pid);
832                 return -EINVAL;
833         }
834
835         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
836             (flags & MAP_TYPE) != MAP_SHARED)
837                 return -EINVAL;
838
839         if (!len)
840                 return -EINVAL;
841
842         /* Careful about overflows.. */
843         rlen = PAGE_ALIGN(len);
844         if (!rlen || rlen > TASK_SIZE)
845                 return -ENOMEM;
846
847         /* offset overflow? */
848         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
849                 return -EOVERFLOW;
850
851         if (file) {
852                 /* validate file mapping requests */
853                 struct address_space *mapping;
854
855                 /* files must support mmap */
856                 if (!file->f_op || !file->f_op->mmap)
857                         return -ENODEV;
858
859                 /* work out if what we've got could possibly be shared
860                  * - we support chardevs that provide their own "memory"
861                  * - we support files/blockdevs that are memory backed
862                  */
863                 mapping = file->f_mapping;
864                 if (!mapping)
865                         mapping = file->f_path.dentry->d_inode->i_mapping;
866
867                 capabilities = 0;
868                 if (mapping && mapping->backing_dev_info)
869                         capabilities = mapping->backing_dev_info->capabilities;
870
871                 if (!capabilities) {
872                         /* no explicit capabilities set, so assume some
873                          * defaults */
874                         switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
875                         case S_IFREG:
876                         case S_IFBLK:
877                                 capabilities = BDI_CAP_MAP_COPY;
878                                 break;
879
880                         case S_IFCHR:
881                                 capabilities =
882                                         BDI_CAP_MAP_DIRECT |
883                                         BDI_CAP_READ_MAP |
884                                         BDI_CAP_WRITE_MAP;
885                                 break;
886
887                         default:
888                                 return -EINVAL;
889                         }
890                 }
891
892                 /* eliminate any capabilities that we can't support on this
893                  * device */
894                 if (!file->f_op->get_unmapped_area)
895                         capabilities &= ~BDI_CAP_MAP_DIRECT;
896                 if (!file->f_op->read)
897                         capabilities &= ~BDI_CAP_MAP_COPY;
898
899                 /* The file shall have been opened with read permission. */
900                 if (!(file->f_mode & FMODE_READ))
901                         return -EACCES;
902
903                 if (flags & MAP_SHARED) {
904                         /* do checks for writing, appending and locking */
905                         if ((prot & PROT_WRITE) &&
906                             !(file->f_mode & FMODE_WRITE))
907                                 return -EACCES;
908
909                         if (IS_APPEND(file->f_path.dentry->d_inode) &&
910                             (file->f_mode & FMODE_WRITE))
911                                 return -EACCES;
912
913                         if (locks_verify_locked(file->f_path.dentry->d_inode))
914                                 return -EAGAIN;
915
916                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
917                                 return -ENODEV;
918
919                         /* we mustn't privatise shared mappings */
920                         capabilities &= ~BDI_CAP_MAP_COPY;
921                 }
922                 else {
923                         /* we're going to read the file into private memory we
924                          * allocate */
925                         if (!(capabilities & BDI_CAP_MAP_COPY))
926                                 return -ENODEV;
927
928                         /* we don't permit a private writable mapping to be
929                          * shared with the backing device */
930                         if (prot & PROT_WRITE)
931                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
932                 }
933
934                 if (capabilities & BDI_CAP_MAP_DIRECT) {
935                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
936                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
937                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
938                             ) {
939                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
940                                 if (flags & MAP_SHARED) {
941                                         printk(KERN_WARNING
942                                                "MAP_SHARED not completely supported on !MMU\n");
943                                         return -EINVAL;
944                                 }
945                         }
946                 }
947
948                 /* handle executable mappings and implied executable
949                  * mappings */
950                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
951                         if (prot & PROT_EXEC)
952                                 return -EPERM;
953                 }
954                 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
955                         /* handle implication of PROT_EXEC by PROT_READ */
956                         if (current->personality & READ_IMPLIES_EXEC) {
957                                 if (capabilities & BDI_CAP_EXEC_MAP)
958                                         prot |= PROT_EXEC;
959                         }
960                 }
961                 else if ((prot & PROT_READ) &&
962                          (prot & PROT_EXEC) &&
963                          !(capabilities & BDI_CAP_EXEC_MAP)
964                          ) {
965                         /* backing file is not executable, try to copy */
966                         capabilities &= ~BDI_CAP_MAP_DIRECT;
967                 }
968         }
969         else {
970                 /* anonymous mappings are always memory backed and can be
971                  * privately mapped
972                  */
973                 capabilities = BDI_CAP_MAP_COPY;
974
975                 /* handle PROT_EXEC implication by PROT_READ */
976                 if ((prot & PROT_READ) &&
977                     (current->personality & READ_IMPLIES_EXEC))
978                         prot |= PROT_EXEC;
979         }
980
981         /* allow the security API to have its say */
982         ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
983         if (ret < 0)
984                 return ret;
985
986         /* looks okay */
987         *_capabilities = capabilities;
988         return 0;
989 }
990
991 /*
992  * we've determined that we can make the mapping, now translate what we
993  * now know into VMA flags
994  */
995 static unsigned long determine_vm_flags(struct file *file,
996                                         unsigned long prot,
997                                         unsigned long flags,
998                                         unsigned long capabilities)
999 {
1000         unsigned long vm_flags;
1001
1002         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1003         /* vm_flags |= mm->def_flags; */
1004
1005         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1006                 /* attempt to share read-only copies of mapped file chunks */
1007                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1008                 if (file && !(prot & PROT_WRITE))
1009                         vm_flags |= VM_MAYSHARE;
1010         } else {
1011                 /* overlay a shareable mapping on the backing device or inode
1012                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1013                  * romfs/cramfs */
1014                 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1015                 if (flags & MAP_SHARED)
1016                         vm_flags |= VM_SHARED;
1017         }
1018
1019         /* refuse to let anyone share private mappings with this process if
1020          * it's being traced - otherwise breakpoints set in it may interfere
1021          * with another untraced process
1022          */
1023         if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1024                 vm_flags &= ~VM_MAYSHARE;
1025
1026         return vm_flags;
1027 }
1028
1029 /*
1030  * set up a shared mapping on a file (the driver or filesystem provides and
1031  * pins the storage)
1032  */
1033 static int do_mmap_shared_file(struct vm_area_struct *vma)
1034 {
1035         int ret;
1036
1037         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1038         if (ret == 0) {
1039                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1040                 return 0;
1041         }
1042         if (ret != -ENOSYS)
1043                 return ret;
1044
1045         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1046          * opposed to tried but failed) so we can only give a suitable error as
1047          * it's not possible to make a private copy if MAP_SHARED was given */
1048         return -ENODEV;
1049 }
1050
1051 /*
1052  * set up a private mapping or an anonymous shared mapping
1053  */
1054 static int do_mmap_private(struct vm_area_struct *vma,
1055                            struct vm_region *region,
1056                            unsigned long len,
1057                            unsigned long capabilities)
1058 {
1059         struct page *pages;
1060         unsigned long total, point, n, rlen;
1061         void *base;
1062         int ret, order;
1063
1064         /* invoke the file's mapping function so that it can keep track of
1065          * shared mappings on devices or memory
1066          * - VM_MAYSHARE will be set if it may attempt to share
1067          */
1068         if (capabilities & BDI_CAP_MAP_DIRECT) {
1069                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1070                 if (ret == 0) {
1071                         /* shouldn't return success if we're not sharing */
1072                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1073                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1074                         return 0;
1075                 }
1076                 if (ret != -ENOSYS)
1077                         return ret;
1078
1079                 /* getting an ENOSYS error indicates that direct mmap isn't
1080                  * possible (as opposed to tried but failed) so we'll try to
1081                  * make a private copy of the data and map that instead */
1082         }
1083
1084         rlen = PAGE_ALIGN(len);
1085
1086         /* allocate some memory to hold the mapping
1087          * - note that this may not return a page-aligned address if the object
1088          *   we're allocating is smaller than a page
1089          */
1090         order = get_order(rlen);
1091         kdebug("alloc order %d for %lx", order, len);
1092
1093         pages = alloc_pages(GFP_KERNEL, order);
1094         if (!pages)
1095                 goto enomem;
1096
1097         total = 1 << order;
1098         atomic_long_add(total, &mmap_pages_allocated);
1099
1100         point = rlen >> PAGE_SHIFT;
1101
1102         /* we allocated a power-of-2 sized page set, so we may want to trim off
1103          * the excess */
1104         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1105                 while (total > point) {
1106                         order = ilog2(total - point);
1107                         n = 1 << order;
1108                         kdebug("shave %lu/%lu @%lu", n, total - point, total);
1109                         atomic_long_sub(n, &mmap_pages_allocated);
1110                         total -= n;
1111                         set_page_refcounted(pages + total);
1112                         __free_pages(pages + total, order);
1113                 }
1114         }
1115
1116         for (point = 1; point < total; point++)
1117                 set_page_refcounted(&pages[point]);
1118
1119         base = page_address(pages);
1120         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1121         region->vm_start = (unsigned long) base;
1122         region->vm_end   = region->vm_start + rlen;
1123         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1124
1125         vma->vm_start = region->vm_start;
1126         vma->vm_end   = region->vm_start + len;
1127
1128         if (vma->vm_file) {
1129                 /* read the contents of a file into the copy */
1130                 mm_segment_t old_fs;
1131                 loff_t fpos;
1132
1133                 fpos = vma->vm_pgoff;
1134                 fpos <<= PAGE_SHIFT;
1135
1136                 old_fs = get_fs();
1137                 set_fs(KERNEL_DS);
1138                 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1139                 set_fs(old_fs);
1140
1141                 if (ret < 0)
1142                         goto error_free;
1143
1144                 /* clear the last little bit */
1145                 if (ret < rlen)
1146                         memset(base + ret, 0, rlen - ret);
1147
1148         }
1149
1150         return 0;
1151
1152 error_free:
1153         free_page_series(region->vm_start, region->vm_end);
1154         region->vm_start = vma->vm_start = 0;
1155         region->vm_end   = vma->vm_end = 0;
1156         region->vm_top   = 0;
1157         return ret;
1158
1159 enomem:
1160         printk("Allocation of length %lu from process %d (%s) failed\n",
1161                len, current->pid, current->comm);
1162         show_free_areas();
1163         return -ENOMEM;
1164 }
1165
1166 /*
1167  * handle mapping creation for uClinux
1168  */
1169 unsigned long do_mmap_pgoff(struct file *file,
1170                             unsigned long addr,
1171                             unsigned long len,
1172                             unsigned long prot,
1173                             unsigned long flags,
1174                             unsigned long pgoff)
1175 {
1176         struct vm_area_struct *vma;
1177         struct vm_region *region;
1178         struct rb_node *rb;
1179         unsigned long capabilities, vm_flags, result;
1180         int ret;
1181
1182         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1183
1184         /* decide whether we should attempt the mapping, and if so what sort of
1185          * mapping */
1186         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1187                                     &capabilities);
1188         if (ret < 0) {
1189                 kleave(" = %d [val]", ret);
1190                 return ret;
1191         }
1192
1193         /* we ignore the address hint */
1194         addr = 0;
1195
1196         /* we've determined that we can make the mapping, now translate what we
1197          * now know into VMA flags */
1198         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1199
1200         /* we're going to need to record the mapping */
1201         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1202         if (!region)
1203                 goto error_getting_region;
1204
1205         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1206         if (!vma)
1207                 goto error_getting_vma;
1208
1209         region->vm_usage = 1;
1210         region->vm_flags = vm_flags;
1211         region->vm_pgoff = pgoff;
1212
1213         INIT_LIST_HEAD(&vma->anon_vma_chain);
1214         vma->vm_flags = vm_flags;
1215         vma->vm_pgoff = pgoff;
1216
1217         if (file) {
1218                 region->vm_file = file;
1219                 get_file(file);
1220                 vma->vm_file = file;
1221                 get_file(file);
1222                 if (vm_flags & VM_EXECUTABLE) {
1223                         added_exe_file_vma(current->mm);
1224                         vma->vm_mm = current->mm;
1225                 }
1226         }
1227
1228         down_write(&nommu_region_sem);
1229
1230         /* if we want to share, we need to check for regions created by other
1231          * mmap() calls that overlap with our proposed mapping
1232          * - we can only share with a superset match on most regular files
1233          * - shared mappings on character devices and memory backed files are
1234          *   permitted to overlap inexactly as far as we are concerned for in
1235          *   these cases, sharing is handled in the driver or filesystem rather
1236          *   than here
1237          */
1238         if (vm_flags & VM_MAYSHARE) {
1239                 struct vm_region *pregion;
1240                 unsigned long pglen, rpglen, pgend, rpgend, start;
1241
1242                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1243                 pgend = pgoff + pglen;
1244
1245                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1246                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1247
1248                         if (!(pregion->vm_flags & VM_MAYSHARE))
1249                                 continue;
1250
1251                         /* search for overlapping mappings on the same file */
1252                         if (pregion->vm_file->f_path.dentry->d_inode !=
1253                             file->f_path.dentry->d_inode)
1254                                 continue;
1255
1256                         if (pregion->vm_pgoff >= pgend)
1257                                 continue;
1258
1259                         rpglen = pregion->vm_end - pregion->vm_start;
1260                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1261                         rpgend = pregion->vm_pgoff + rpglen;
1262                         if (pgoff >= rpgend)
1263                                 continue;
1264
1265                         /* handle inexactly overlapping matches between
1266                          * mappings */
1267                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1268                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1269                                 /* new mapping is not a subset of the region */
1270                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1271                                         goto sharing_violation;
1272                                 continue;
1273                         }
1274
1275                         /* we've found a region we can share */
1276                         pregion->vm_usage++;
1277                         vma->vm_region = pregion;
1278                         start = pregion->vm_start;
1279                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1280                         vma->vm_start = start;
1281                         vma->vm_end = start + len;
1282
1283                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1284                                 kdebug("share copy");
1285                                 vma->vm_flags |= VM_MAPPED_COPY;
1286                         } else {
1287                                 kdebug("share mmap");
1288                                 ret = do_mmap_shared_file(vma);
1289                                 if (ret < 0) {
1290                                         vma->vm_region = NULL;
1291                                         vma->vm_start = 0;
1292                                         vma->vm_end = 0;
1293                                         pregion->vm_usage--;
1294                                         pregion = NULL;
1295                                         goto error_just_free;
1296                                 }
1297                         }
1298                         fput(region->vm_file);
1299                         kmem_cache_free(vm_region_jar, region);
1300                         region = pregion;
1301                         result = start;
1302                         goto share;
1303                 }
1304
1305                 /* obtain the address at which to make a shared mapping
1306                  * - this is the hook for quasi-memory character devices to
1307                  *   tell us the location of a shared mapping
1308                  */
1309                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1310                         addr = file->f_op->get_unmapped_area(file, addr, len,
1311                                                              pgoff, flags);
1312                         if (IS_ERR((void *) addr)) {
1313                                 ret = addr;
1314                                 if (ret != (unsigned long) -ENOSYS)
1315                                         goto error_just_free;
1316
1317                                 /* the driver refused to tell us where to site
1318                                  * the mapping so we'll have to attempt to copy
1319                                  * it */
1320                                 ret = (unsigned long) -ENODEV;
1321                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1322                                         goto error_just_free;
1323
1324                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1325                         } else {
1326                                 vma->vm_start = region->vm_start = addr;
1327                                 vma->vm_end = region->vm_end = addr + len;
1328                         }
1329                 }
1330         }
1331
1332         vma->vm_region = region;
1333
1334         /* set up the mapping
1335          * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1336          */
1337         if (file && vma->vm_flags & VM_SHARED)
1338                 ret = do_mmap_shared_file(vma);
1339         else
1340                 ret = do_mmap_private(vma, region, len, capabilities);
1341         if (ret < 0)
1342                 goto error_just_free;
1343         add_nommu_region(region);
1344
1345         /* clear anonymous mappings that don't ask for uninitialized data */
1346         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1347                 memset((void *)region->vm_start, 0,
1348                        region->vm_end - region->vm_start);
1349
1350         /* okay... we have a mapping; now we have to register it */
1351         result = vma->vm_start;
1352
1353         current->mm->total_vm += len >> PAGE_SHIFT;
1354
1355 share:
1356         add_vma_to_mm(current->mm, vma);
1357
1358         /* we flush the region from the icache only when the first executable
1359          * mapping of it is made  */
1360         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1361                 flush_icache_range(region->vm_start, region->vm_end);
1362                 region->vm_icache_flushed = true;
1363         }
1364
1365         up_write(&nommu_region_sem);
1366
1367         kleave(" = %lx", result);
1368         return result;
1369
1370 error_just_free:
1371         up_write(&nommu_region_sem);
1372 error:
1373         if (region->vm_file)
1374                 fput(region->vm_file);
1375         kmem_cache_free(vm_region_jar, region);
1376         if (vma->vm_file)
1377                 fput(vma->vm_file);
1378         if (vma->vm_flags & VM_EXECUTABLE)
1379                 removed_exe_file_vma(vma->vm_mm);
1380         kmem_cache_free(vm_area_cachep, vma);
1381         kleave(" = %d", ret);
1382         return ret;
1383
1384 sharing_violation:
1385         up_write(&nommu_region_sem);
1386         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1387         ret = -EINVAL;
1388         goto error;
1389
1390 error_getting_vma:
1391         kmem_cache_free(vm_region_jar, region);
1392         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1393                " from process %d failed\n",
1394                len, current->pid);
1395         show_free_areas();
1396         return -ENOMEM;
1397
1398 error_getting_region:
1399         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1400                " from process %d failed\n",
1401                len, current->pid);
1402         show_free_areas();
1403         return -ENOMEM;
1404 }
1405 EXPORT_SYMBOL(do_mmap_pgoff);
1406
1407 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1408                 unsigned long, prot, unsigned long, flags,
1409                 unsigned long, fd, unsigned long, pgoff)
1410 {
1411         struct file *file = NULL;
1412         unsigned long retval = -EBADF;
1413
1414         if (!(flags & MAP_ANONYMOUS)) {
1415                 file = fget(fd);
1416                 if (!file)
1417                         goto out;
1418         }
1419
1420         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1421
1422         down_write(&current->mm->mmap_sem);
1423         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1424         up_write(&current->mm->mmap_sem);
1425
1426         if (file)
1427                 fput(file);
1428 out:
1429         return retval;
1430 }
1431
1432 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1433 struct mmap_arg_struct {
1434         unsigned long addr;
1435         unsigned long len;
1436         unsigned long prot;
1437         unsigned long flags;
1438         unsigned long fd;
1439         unsigned long offset;
1440 };
1441
1442 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1443 {
1444         struct mmap_arg_struct a;
1445
1446         if (copy_from_user(&a, arg, sizeof(a)))
1447                 return -EFAULT;
1448         if (a.offset & ~PAGE_MASK)
1449                 return -EINVAL;
1450
1451         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1452                               a.offset >> PAGE_SHIFT);
1453 }
1454 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1455
1456 /*
1457  * split a vma into two pieces at address 'addr', a new vma is allocated either
1458  * for the first part or the tail.
1459  */
1460 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1461               unsigned long addr, int new_below)
1462 {
1463         struct vm_area_struct *new;
1464         struct vm_region *region;
1465         unsigned long npages;
1466
1467         kenter("");
1468
1469         /* we're only permitted to split anonymous regions (these should have
1470          * only a single usage on the region) */
1471         if (vma->vm_file)
1472                 return -ENOMEM;
1473
1474         if (mm->map_count >= sysctl_max_map_count)
1475                 return -ENOMEM;
1476
1477         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1478         if (!region)
1479                 return -ENOMEM;
1480
1481         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1482         if (!new) {
1483                 kmem_cache_free(vm_region_jar, region);
1484                 return -ENOMEM;
1485         }
1486
1487         /* most fields are the same, copy all, and then fixup */
1488         *new = *vma;
1489         *region = *vma->vm_region;
1490         new->vm_region = region;
1491
1492         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1493
1494         if (new_below) {
1495                 region->vm_top = region->vm_end = new->vm_end = addr;
1496         } else {
1497                 region->vm_start = new->vm_start = addr;
1498                 region->vm_pgoff = new->vm_pgoff += npages;
1499         }
1500
1501         if (new->vm_ops && new->vm_ops->open)
1502                 new->vm_ops->open(new);
1503
1504         delete_vma_from_mm(vma);
1505         down_write(&nommu_region_sem);
1506         delete_nommu_region(vma->vm_region);
1507         if (new_below) {
1508                 vma->vm_region->vm_start = vma->vm_start = addr;
1509                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1510         } else {
1511                 vma->vm_region->vm_end = vma->vm_end = addr;
1512                 vma->vm_region->vm_top = addr;
1513         }
1514         add_nommu_region(vma->vm_region);
1515         add_nommu_region(new->vm_region);
1516         up_write(&nommu_region_sem);
1517         add_vma_to_mm(mm, vma);
1518         add_vma_to_mm(mm, new);
1519         return 0;
1520 }
1521
1522 /*
1523  * shrink a VMA by removing the specified chunk from either the beginning or
1524  * the end
1525  */
1526 static int shrink_vma(struct mm_struct *mm,
1527                       struct vm_area_struct *vma,
1528                       unsigned long from, unsigned long to)
1529 {
1530         struct vm_region *region;
1531
1532         kenter("");
1533
1534         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1535          * and list */
1536         delete_vma_from_mm(vma);
1537         if (from > vma->vm_start)
1538                 vma->vm_end = from;
1539         else
1540                 vma->vm_start = to;
1541         add_vma_to_mm(mm, vma);
1542
1543         /* cut the backing region down to size */
1544         region = vma->vm_region;
1545         BUG_ON(region->vm_usage != 1);
1546
1547         down_write(&nommu_region_sem);
1548         delete_nommu_region(region);
1549         if (from > region->vm_start) {
1550                 to = region->vm_top;
1551                 region->vm_top = region->vm_end = from;
1552         } else {
1553                 region->vm_start = to;
1554         }
1555         add_nommu_region(region);
1556         up_write(&nommu_region_sem);
1557
1558         free_page_series(from, to);
1559         return 0;
1560 }
1561
1562 /*
1563  * release a mapping
1564  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1565  *   VMA, though it need not cover the whole VMA
1566  */
1567 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1568 {
1569         struct vm_area_struct *vma;
1570         struct rb_node *rb;
1571         unsigned long end = start + len;
1572         int ret;
1573
1574         kenter(",%lx,%zx", start, len);
1575
1576         if (len == 0)
1577                 return -EINVAL;
1578
1579         /* find the first potentially overlapping VMA */
1580         vma = find_vma(mm, start);
1581         if (!vma) {
1582                 static int limit = 0;
1583                 if (limit < 5) {
1584                         printk(KERN_WARNING
1585                                "munmap of memory not mmapped by process %d"
1586                                " (%s): 0x%lx-0x%lx\n",
1587                                current->pid, current->comm,
1588                                start, start + len - 1);
1589                         limit++;
1590                 }
1591                 return -EINVAL;
1592         }
1593
1594         /* we're allowed to split an anonymous VMA but not a file-backed one */
1595         if (vma->vm_file) {
1596                 do {
1597                         if (start > vma->vm_start) {
1598                                 kleave(" = -EINVAL [miss]");
1599                                 return -EINVAL;
1600                         }
1601                         if (end == vma->vm_end)
1602                                 goto erase_whole_vma;
1603                         rb = rb_next(&vma->vm_rb);
1604                         vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1605                 } while (rb);
1606                 kleave(" = -EINVAL [split file]");
1607                 return -EINVAL;
1608         } else {
1609                 /* the chunk must be a subset of the VMA found */
1610                 if (start == vma->vm_start && end == vma->vm_end)
1611                         goto erase_whole_vma;
1612                 if (start < vma->vm_start || end > vma->vm_end) {
1613                         kleave(" = -EINVAL [superset]");
1614                         return -EINVAL;
1615                 }
1616                 if (start & ~PAGE_MASK) {
1617                         kleave(" = -EINVAL [unaligned start]");
1618                         return -EINVAL;
1619                 }
1620                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1621                         kleave(" = -EINVAL [unaligned split]");
1622                         return -EINVAL;
1623                 }
1624                 if (start != vma->vm_start && end != vma->vm_end) {
1625                         ret = split_vma(mm, vma, start, 1);
1626                         if (ret < 0) {
1627                                 kleave(" = %d [split]", ret);
1628                                 return ret;
1629                         }
1630                 }
1631                 return shrink_vma(mm, vma, start, end);
1632         }
1633
1634 erase_whole_vma:
1635         delete_vma_from_mm(vma);
1636         delete_vma(mm, vma);
1637         kleave(" = 0");
1638         return 0;
1639 }
1640 EXPORT_SYMBOL(do_munmap);
1641
1642 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1643 {
1644         int ret;
1645         struct mm_struct *mm = current->mm;
1646
1647         down_write(&mm->mmap_sem);
1648         ret = do_munmap(mm, addr, len);
1649         up_write(&mm->mmap_sem);
1650         return ret;
1651 }
1652
1653 /*
1654  * release all the mappings made in a process's VM space
1655  */
1656 void exit_mmap(struct mm_struct *mm)
1657 {
1658         struct vm_area_struct *vma;
1659
1660         if (!mm)
1661                 return;
1662
1663         kenter("");
1664
1665         mm->total_vm = 0;
1666
1667         while ((vma = mm->mmap)) {
1668                 mm->mmap = vma->vm_next;
1669                 delete_vma_from_mm(vma);
1670                 delete_vma(mm, vma);
1671         }
1672
1673         kleave("");
1674 }
1675
1676 unsigned long do_brk(unsigned long addr, unsigned long len)
1677 {
1678         return -ENOMEM;
1679 }
1680
1681 /*
1682  * expand (or shrink) an existing mapping, potentially moving it at the same
1683  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1684  *
1685  * under NOMMU conditions, we only permit changing a mapping's size, and only
1686  * as long as it stays within the region allocated by do_mmap_private() and the
1687  * block is not shareable
1688  *
1689  * MREMAP_FIXED is not supported under NOMMU conditions
1690  */
1691 unsigned long do_mremap(unsigned long addr,
1692                         unsigned long old_len, unsigned long new_len,
1693                         unsigned long flags, unsigned long new_addr)
1694 {
1695         struct vm_area_struct *vma;
1696
1697         /* insanity checks first */
1698         if (old_len == 0 || new_len == 0)
1699                 return (unsigned long) -EINVAL;
1700
1701         if (addr & ~PAGE_MASK)
1702                 return -EINVAL;
1703
1704         if (flags & MREMAP_FIXED && new_addr != addr)
1705                 return (unsigned long) -EINVAL;
1706
1707         vma = find_vma_exact(current->mm, addr, old_len);
1708         if (!vma)
1709                 return (unsigned long) -EINVAL;
1710
1711         if (vma->vm_end != vma->vm_start + old_len)
1712                 return (unsigned long) -EFAULT;
1713
1714         if (vma->vm_flags & VM_MAYSHARE)
1715                 return (unsigned long) -EPERM;
1716
1717         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1718                 return (unsigned long) -ENOMEM;
1719
1720         /* all checks complete - do it */
1721         vma->vm_end = vma->vm_start + new_len;
1722         return vma->vm_start;
1723 }
1724 EXPORT_SYMBOL(do_mremap);
1725
1726 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1727                 unsigned long, new_len, unsigned long, flags,
1728                 unsigned long, new_addr)
1729 {
1730         unsigned long ret;
1731
1732         down_write(&current->mm->mmap_sem);
1733         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1734         up_write(&current->mm->mmap_sem);
1735         return ret;
1736 }
1737
1738 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1739                         unsigned int foll_flags)
1740 {
1741         return NULL;
1742 }
1743
1744 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1745                 unsigned long to, unsigned long size, pgprot_t prot)
1746 {
1747         vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1748         return 0;
1749 }
1750 EXPORT_SYMBOL(remap_pfn_range);
1751
1752 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1753                         unsigned long pgoff)
1754 {
1755         unsigned int size = vma->vm_end - vma->vm_start;
1756
1757         if (!(vma->vm_flags & VM_USERMAP))
1758                 return -EINVAL;
1759
1760         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1761         vma->vm_end = vma->vm_start + size;
1762
1763         return 0;
1764 }
1765 EXPORT_SYMBOL(remap_vmalloc_range);
1766
1767 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1768 {
1769 }
1770
1771 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1772         unsigned long len, unsigned long pgoff, unsigned long flags)
1773 {
1774         return -ENOMEM;
1775 }
1776
1777 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1778 {
1779 }
1780
1781 void unmap_mapping_range(struct address_space *mapping,
1782                          loff_t const holebegin, loff_t const holelen,
1783                          int even_cows)
1784 {
1785 }
1786 EXPORT_SYMBOL(unmap_mapping_range);
1787
1788 /*
1789  * Check that a process has enough memory to allocate a new virtual
1790  * mapping. 0 means there is enough memory for the allocation to
1791  * succeed and -ENOMEM implies there is not.
1792  *
1793  * We currently support three overcommit policies, which are set via the
1794  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1795  *
1796  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1797  * Additional code 2002 Jul 20 by Robert Love.
1798  *
1799  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1800  *
1801  * Note this is a helper function intended to be used by LSMs which
1802  * wish to use this logic.
1803  */
1804 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1805 {
1806         unsigned long free, allowed;
1807
1808         vm_acct_memory(pages);
1809
1810         /*
1811          * Sometimes we want to use more memory than we have
1812          */
1813         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1814                 return 0;
1815
1816         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1817                 unsigned long n;
1818
1819                 free = global_page_state(NR_FILE_PAGES);
1820                 free += nr_swap_pages;
1821
1822                 /*
1823                  * Any slabs which are created with the
1824                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1825                  * which are reclaimable, under pressure.  The dentry
1826                  * cache and most inode caches should fall into this
1827                  */
1828                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1829
1830                 /*
1831                  * Leave the last 3% for root
1832                  */
1833                 if (!cap_sys_admin)
1834                         free -= free / 32;
1835
1836                 if (free > pages)
1837                         return 0;
1838
1839                 /*
1840                  * nr_free_pages() is very expensive on large systems,
1841                  * only call if we're about to fail.
1842                  */
1843                 n = nr_free_pages();
1844
1845                 /*
1846                  * Leave reserved pages. The pages are not for anonymous pages.
1847                  */
1848                 if (n <= totalreserve_pages)
1849                         goto error;
1850                 else
1851                         n -= totalreserve_pages;
1852
1853                 /*
1854                  * Leave the last 3% for root
1855                  */
1856                 if (!cap_sys_admin)
1857                         n -= n / 32;
1858                 free += n;
1859
1860                 if (free > pages)
1861                         return 0;
1862
1863                 goto error;
1864         }
1865
1866         allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1867         /*
1868          * Leave the last 3% for root
1869          */
1870         if (!cap_sys_admin)
1871                 allowed -= allowed / 32;
1872         allowed += total_swap_pages;
1873
1874         /* Don't let a single process grow too big:
1875            leave 3% of the size of this process for other processes */
1876         if (mm)
1877                 allowed -= mm->total_vm / 32;
1878
1879         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1880                 return 0;
1881
1882 error:
1883         vm_unacct_memory(pages);
1884
1885         return -ENOMEM;
1886 }
1887
1888 int in_gate_area_no_task(unsigned long addr)
1889 {
1890         return 0;
1891 }
1892
1893 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1894 {
1895         BUG();
1896         return 0;
1897 }
1898 EXPORT_SYMBOL(filemap_fault);
1899
1900 /*
1901  * Access another process' address space.
1902  * - source/target buffer must be kernel space
1903  */
1904 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1905 {
1906         struct vm_area_struct *vma;
1907         struct mm_struct *mm;
1908
1909         if (addr + len < addr)
1910                 return 0;
1911
1912         mm = get_task_mm(tsk);
1913         if (!mm)
1914                 return 0;
1915
1916         down_read(&mm->mmap_sem);
1917
1918         /* the access must start within one of the target process's mappings */
1919         vma = find_vma(mm, addr);
1920         if (vma) {
1921                 /* don't overrun this mapping */
1922                 if (addr + len >= vma->vm_end)
1923                         len = vma->vm_end - addr;
1924
1925                 /* only read or write mappings where it is permitted */
1926                 if (write && vma->vm_flags & VM_MAYWRITE)
1927                         copy_to_user_page(vma, NULL, addr,
1928                                          (void *) addr, buf, len);
1929                 else if (!write && vma->vm_flags & VM_MAYREAD)
1930                         copy_from_user_page(vma, NULL, addr,
1931                                             buf, (void *) addr, len);
1932                 else
1933                         len = 0;
1934         } else {
1935                 len = 0;
1936         }
1937
1938         up_read(&mm->mmap_sem);
1939         mmput(mm);
1940         return len;
1941 }
1942
1943 /**
1944  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1945  * @inode: The inode to check
1946  * @size: The current filesize of the inode
1947  * @newsize: The proposed filesize of the inode
1948  *
1949  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1950  * make sure that that any outstanding VMAs aren't broken and then shrink the
1951  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1952  * automatically grant mappings that are too large.
1953  */
1954 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1955                                 size_t newsize)
1956 {
1957         struct vm_area_struct *vma;
1958         struct prio_tree_iter iter;
1959         struct vm_region *region;
1960         pgoff_t low, high;
1961         size_t r_size, r_top;
1962
1963         low = newsize >> PAGE_SHIFT;
1964         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1965
1966         down_write(&nommu_region_sem);
1967
1968         /* search for VMAs that fall within the dead zone */
1969         vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
1970                               low, high) {
1971                 /* found one - only interested if it's shared out of the page
1972                  * cache */
1973                 if (vma->vm_flags & VM_SHARED) {
1974                         up_write(&nommu_region_sem);
1975                         return -ETXTBSY; /* not quite true, but near enough */
1976                 }
1977         }
1978
1979         /* reduce any regions that overlap the dead zone - if in existence,
1980          * these will be pointed to by VMAs that don't overlap the dead zone
1981          *
1982          * we don't check for any regions that start beyond the EOF as there
1983          * shouldn't be any
1984          */
1985         vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
1986                               0, ULONG_MAX) {
1987                 if (!(vma->vm_flags & VM_SHARED))
1988                         continue;
1989
1990                 region = vma->vm_region;
1991                 r_size = region->vm_top - region->vm_start;
1992                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1993
1994                 if (r_top > newsize) {
1995                         region->vm_top -= r_top - newsize;
1996                         if (region->vm_end > region->vm_top)
1997                                 region->vm_end = region->vm_top;
1998                 }
1999         }
2000
2001         up_write(&nommu_region_sem);
2002         return 0;
2003 }