mm: fix corner case in anon_vma endless growing prevention
[pandora-kernel.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38
39 #include "internal.h"
40
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)       (0)
43 #endif
44
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)              (addr)
47 #endif
48
49 static void unmap_region(struct mm_struct *mm,
50                 struct vm_area_struct *vma, struct vm_area_struct *prev,
51                 unsigned long start, unsigned long end);
52
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type     prot
64  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
65  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
66  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
68  *              
69  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81         return __pgprot(pgprot_val(protection_map[vm_flags &
82                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91  * Make sure vm_committed_as in one cacheline and not cacheline shared with
92  * other variables. It can be updated by several CPUs frequently.
93  */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95
96 /*
97  * Check that a process has enough memory to allocate a new virtual
98  * mapping. 0 means there is enough memory for the allocation to
99  * succeed and -ENOMEM implies there is not.
100  *
101  * We currently support three overcommit policies, which are set via the
102  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
103  *
104  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105  * Additional code 2002 Jul 20 by Robert Love.
106  *
107  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108  *
109  * Note this is a helper function intended to be used by LSMs which
110  * wish to use this logic.
111  */
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114         unsigned long free, allowed;
115
116         vm_acct_memory(pages);
117
118         /*
119          * Sometimes we want to use more memory than we have
120          */
121         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122                 return 0;
123
124         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125                 free = global_page_state(NR_FREE_PAGES);
126                 free += global_page_state(NR_FILE_PAGES);
127
128                 /*
129                  * shmem pages shouldn't be counted as free in this
130                  * case, they can't be purged, only swapped out, and
131                  * that won't affect the overall amount of available
132                  * memory in the system.
133                  */
134                 free -= global_page_state(NR_SHMEM);
135
136                 free += nr_swap_pages;
137
138                 /*
139                  * Any slabs which are created with the
140                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141                  * which are reclaimable, under pressure.  The dentry
142                  * cache and most inode caches should fall into this
143                  */
144                 free += global_page_state(NR_SLAB_RECLAIMABLE);
145
146                 /*
147                  * Leave reserved pages. The pages are not for anonymous pages.
148                  */
149                 if (free <= totalreserve_pages)
150                         goto error;
151                 else
152                         free -= totalreserve_pages;
153
154                 /*
155                  * Leave the last 3% for root
156                  */
157                 if (!cap_sys_admin)
158                         free -= free / 32;
159
160                 if (free > pages)
161                         return 0;
162
163                 goto error;
164         }
165
166         allowed = (totalram_pages - hugetlb_total_pages())
167                 * sysctl_overcommit_ratio / 100;
168         /*
169          * Leave the last 3% for root
170          */
171         if (!cap_sys_admin)
172                 allowed -= allowed / 32;
173         allowed += total_swap_pages;
174
175         /* Don't let a single process grow too big:
176            leave 3% of the size of this process for other processes */
177         if (mm)
178                 allowed -= mm->total_vm / 32;
179
180         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
181                 return 0;
182 error:
183         vm_unacct_memory(pages);
184
185         return -ENOMEM;
186 }
187
188 /*
189  * Requires inode->i_mapping->i_mmap_mutex
190  */
191 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192                 struct file *file, struct address_space *mapping)
193 {
194         if (vma->vm_flags & VM_DENYWRITE)
195                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196         if (vma->vm_flags & VM_SHARED)
197                 mapping->i_mmap_writable--;
198
199         flush_dcache_mmap_lock(mapping);
200         if (unlikely(vma->vm_flags & VM_NONLINEAR))
201                 list_del_init(&vma->shared.vm_set.list);
202         else
203                 vma_prio_tree_remove(vma, &mapping->i_mmap);
204         flush_dcache_mmap_unlock(mapping);
205 }
206
207 /*
208  * Unlink a file-based vm structure from its prio_tree, to hide
209  * vma from rmap and vmtruncate before freeing its page tables.
210  */
211 void unlink_file_vma(struct vm_area_struct *vma)
212 {
213         struct file *file = vma->vm_file;
214
215         if (file) {
216                 struct address_space *mapping = file->f_mapping;
217                 mutex_lock(&mapping->i_mmap_mutex);
218                 __remove_shared_vm_struct(vma, file, mapping);
219                 mutex_unlock(&mapping->i_mmap_mutex);
220         }
221 }
222
223 /*
224  * Close a vm structure and free it, returning the next.
225  */
226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
227 {
228         struct vm_area_struct *next = vma->vm_next;
229
230         might_sleep();
231         if (vma->vm_ops && vma->vm_ops->close)
232                 vma->vm_ops->close(vma);
233         if (vma->vm_file) {
234                 fput(vma->vm_file);
235                 if (vma->vm_flags & VM_EXECUTABLE)
236                         removed_exe_file_vma(vma->vm_mm);
237         }
238         mpol_put(vma_policy(vma));
239         kmem_cache_free(vm_area_cachep, vma);
240         return next;
241 }
242
243 SYSCALL_DEFINE1(brk, unsigned long, brk)
244 {
245         unsigned long rlim, retval;
246         unsigned long newbrk, oldbrk;
247         struct mm_struct *mm = current->mm;
248         unsigned long min_brk;
249
250         down_write(&mm->mmap_sem);
251
252 #ifdef CONFIG_COMPAT_BRK
253         /*
254          * CONFIG_COMPAT_BRK can still be overridden by setting
255          * randomize_va_space to 2, which will still cause mm->start_brk
256          * to be arbitrarily shifted
257          */
258         if (current->brk_randomized)
259                 min_brk = mm->start_brk;
260         else
261                 min_brk = mm->end_data;
262 #else
263         min_brk = mm->start_brk;
264 #endif
265         if (brk < min_brk)
266                 goto out;
267
268         /*
269          * Check against rlimit here. If this check is done later after the test
270          * of oldbrk with newbrk then it can escape the test and let the data
271          * segment grow beyond its set limit the in case where the limit is
272          * not page aligned -Ram Gupta
273          */
274         rlim = rlimit(RLIMIT_DATA);
275         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276                         (mm->end_data - mm->start_data) > rlim)
277                 goto out;
278
279         newbrk = PAGE_ALIGN(brk);
280         oldbrk = PAGE_ALIGN(mm->brk);
281         if (oldbrk == newbrk)
282                 goto set_brk;
283
284         /* Always allow shrinking brk. */
285         if (brk <= mm->brk) {
286                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287                         goto set_brk;
288                 goto out;
289         }
290
291         /* Check against existing mmap mappings. */
292         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293                 goto out;
294
295         /* Ok, looks good - let it rip. */
296         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297                 goto out;
298 set_brk:
299         mm->brk = brk;
300 out:
301         retval = mm->brk;
302         up_write(&mm->mmap_sem);
303         return retval;
304 }
305
306 #ifdef DEBUG_MM_RB
307 static int browse_rb(struct rb_root *root)
308 {
309         int i = 0, j;
310         struct rb_node *nd, *pn = NULL;
311         unsigned long prev = 0, pend = 0;
312
313         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314                 struct vm_area_struct *vma;
315                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316                 if (vma->vm_start < prev)
317                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318                 if (vma->vm_start < pend)
319                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320                 if (vma->vm_start > vma->vm_end)
321                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322                 i++;
323                 pn = nd;
324                 prev = vma->vm_start;
325                 pend = vma->vm_end;
326         }
327         j = 0;
328         for (nd = pn; nd; nd = rb_prev(nd)) {
329                 j++;
330         }
331         if (i != j)
332                 printk("backwards %d, forwards %d\n", j, i), i = 0;
333         return i;
334 }
335
336 void validate_mm(struct mm_struct *mm)
337 {
338         int bug = 0;
339         int i = 0;
340         struct vm_area_struct *tmp = mm->mmap;
341         while (tmp) {
342                 tmp = tmp->vm_next;
343                 i++;
344         }
345         if (i != mm->map_count)
346                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347         i = browse_rb(&mm->mm_rb);
348         if (i != mm->map_count)
349                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350         BUG_ON(bug);
351 }
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
355
356 static struct vm_area_struct *
357 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
358                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
359                 struct rb_node ** rb_parent)
360 {
361         struct vm_area_struct * vma;
362         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363
364         __rb_link = &mm->mm_rb.rb_node;
365         rb_prev = __rb_parent = NULL;
366         vma = NULL;
367
368         while (*__rb_link) {
369                 struct vm_area_struct *vma_tmp;
370
371                 __rb_parent = *__rb_link;
372                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373
374                 if (vma_tmp->vm_end > addr) {
375                         vma = vma_tmp;
376                         if (vma_tmp->vm_start <= addr)
377                                 break;
378                         __rb_link = &__rb_parent->rb_left;
379                 } else {
380                         rb_prev = __rb_parent;
381                         __rb_link = &__rb_parent->rb_right;
382                 }
383         }
384
385         *pprev = NULL;
386         if (rb_prev)
387                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
388         *rb_link = __rb_link;
389         *rb_parent = __rb_parent;
390         return vma;
391 }
392
393 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
394                 struct rb_node **rb_link, struct rb_node *rb_parent)
395 {
396         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
397         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
398 }
399
400 static void __vma_link_file(struct vm_area_struct *vma)
401 {
402         struct file *file;
403
404         file = vma->vm_file;
405         if (file) {
406                 struct address_space *mapping = file->f_mapping;
407
408                 if (vma->vm_flags & VM_DENYWRITE)
409                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
410                 if (vma->vm_flags & VM_SHARED)
411                         mapping->i_mmap_writable++;
412
413                 flush_dcache_mmap_lock(mapping);
414                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
415                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
416                 else
417                         vma_prio_tree_insert(vma, &mapping->i_mmap);
418                 flush_dcache_mmap_unlock(mapping);
419         }
420 }
421
422 static void
423 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
424         struct vm_area_struct *prev, struct rb_node **rb_link,
425         struct rb_node *rb_parent)
426 {
427         __vma_link_list(mm, vma, prev, rb_parent);
428         __vma_link_rb(mm, vma, rb_link, rb_parent);
429 }
430
431 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432                         struct vm_area_struct *prev, struct rb_node **rb_link,
433                         struct rb_node *rb_parent)
434 {
435         struct address_space *mapping = NULL;
436
437         if (vma->vm_file)
438                 mapping = vma->vm_file->f_mapping;
439
440         if (mapping)
441                 mutex_lock(&mapping->i_mmap_mutex);
442
443         __vma_link(mm, vma, prev, rb_link, rb_parent);
444         __vma_link_file(vma);
445
446         if (mapping)
447                 mutex_unlock(&mapping->i_mmap_mutex);
448
449         mm->map_count++;
450         validate_mm(mm);
451 }
452
453 /*
454  * Helper for vma_adjust in the split_vma insert case:
455  * insert vm structure into list and rbtree and anon_vma,
456  * but it has already been inserted into prio_tree earlier.
457  */
458 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
459 {
460         struct vm_area_struct *__vma, *prev;
461         struct rb_node **rb_link, *rb_parent;
462
463         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
464         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
465         __vma_link(mm, vma, prev, rb_link, rb_parent);
466         mm->map_count++;
467 }
468
469 static inline void
470 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
471                 struct vm_area_struct *prev)
472 {
473         struct vm_area_struct *next = vma->vm_next;
474
475         prev->vm_next = next;
476         if (next)
477                 next->vm_prev = prev;
478         rb_erase(&vma->vm_rb, &mm->mm_rb);
479         if (mm->mmap_cache == vma)
480                 mm->mmap_cache = prev;
481 }
482
483 /*
484  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
485  * is already present in an i_mmap tree without adjusting the tree.
486  * The following helper function should be used when such adjustments
487  * are necessary.  The "insert" vma (if any) is to be inserted
488  * before we drop the necessary locks.
489  */
490 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
491         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
492 {
493         struct mm_struct *mm = vma->vm_mm;
494         struct vm_area_struct *next = vma->vm_next;
495         struct vm_area_struct *importer = NULL;
496         struct address_space *mapping = NULL;
497         struct prio_tree_root *root = NULL;
498         struct anon_vma *anon_vma = NULL;
499         struct file *file = vma->vm_file;
500         long adjust_next = 0;
501         int remove_next = 0;
502
503         if (next && !insert) {
504                 struct vm_area_struct *exporter = NULL;
505
506                 if (end >= next->vm_end) {
507                         /*
508                          * vma expands, overlapping all the next, and
509                          * perhaps the one after too (mprotect case 6).
510                          */
511 again:                  remove_next = 1 + (end > next->vm_end);
512                         end = next->vm_end;
513                         exporter = next;
514                         importer = vma;
515                 } else if (end > next->vm_start) {
516                         /*
517                          * vma expands, overlapping part of the next:
518                          * mprotect case 5 shifting the boundary up.
519                          */
520                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
521                         exporter = next;
522                         importer = vma;
523                 } else if (end < vma->vm_end) {
524                         /*
525                          * vma shrinks, and !insert tells it's not
526                          * split_vma inserting another: so it must be
527                          * mprotect case 4 shifting the boundary down.
528                          */
529                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
530                         exporter = vma;
531                         importer = next;
532                 }
533
534                 /*
535                  * Easily overlooked: when mprotect shifts the boundary,
536                  * make sure the expanding vma has anon_vma set if the
537                  * shrinking vma had, to cover any anon pages imported.
538                  */
539                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
540                         int error;
541
542                         importer->anon_vma = exporter->anon_vma;
543                         error = anon_vma_clone(importer, exporter);
544                         if (error) {
545                                 importer->anon_vma = NULL;
546                                 return error;
547                         }
548                 }
549         }
550
551         if (file) {
552                 mapping = file->f_mapping;
553                 if (!(vma->vm_flags & VM_NONLINEAR))
554                         root = &mapping->i_mmap;
555                 mutex_lock(&mapping->i_mmap_mutex);
556                 if (insert) {
557                         /*
558                          * Put into prio_tree now, so instantiated pages
559                          * are visible to arm/parisc __flush_dcache_page
560                          * throughout; but we cannot insert into address
561                          * space until vma start or end is updated.
562                          */
563                         __vma_link_file(insert);
564                 }
565         }
566
567         vma_adjust_trans_huge(vma, start, end, adjust_next);
568
569         /*
570          * When changing only vma->vm_end, we don't really need anon_vma
571          * lock. This is a fairly rare case by itself, but the anon_vma
572          * lock may be shared between many sibling processes.  Skipping
573          * the lock for brk adjustments makes a difference sometimes.
574          */
575         if (vma->anon_vma && (importer || start != vma->vm_start)) {
576                 anon_vma = vma->anon_vma;
577                 anon_vma_lock(anon_vma);
578         }
579
580         if (root) {
581                 flush_dcache_mmap_lock(mapping);
582                 vma_prio_tree_remove(vma, root);
583                 if (adjust_next)
584                         vma_prio_tree_remove(next, root);
585         }
586
587         vma->vm_start = start;
588         vma->vm_end = end;
589         vma->vm_pgoff = pgoff;
590         if (adjust_next) {
591                 next->vm_start += adjust_next << PAGE_SHIFT;
592                 next->vm_pgoff += adjust_next;
593         }
594
595         if (root) {
596                 if (adjust_next)
597                         vma_prio_tree_insert(next, root);
598                 vma_prio_tree_insert(vma, root);
599                 flush_dcache_mmap_unlock(mapping);
600         }
601
602         if (remove_next) {
603                 /*
604                  * vma_merge has merged next into vma, and needs
605                  * us to remove next before dropping the locks.
606                  */
607                 __vma_unlink(mm, next, vma);
608                 if (file)
609                         __remove_shared_vm_struct(next, file, mapping);
610         } else if (insert) {
611                 /*
612                  * split_vma has split insert from vma, and needs
613                  * us to insert it before dropping the locks
614                  * (it may either follow vma or precede it).
615                  */
616                 __insert_vm_struct(mm, insert);
617         }
618
619         if (anon_vma)
620                 anon_vma_unlock(anon_vma);
621         if (mapping)
622                 mutex_unlock(&mapping->i_mmap_mutex);
623
624         if (remove_next) {
625                 if (file) {
626                         fput(file);
627                         if (next->vm_flags & VM_EXECUTABLE)
628                                 removed_exe_file_vma(mm);
629                 }
630                 if (next->anon_vma)
631                         anon_vma_merge(vma, next);
632                 mm->map_count--;
633                 mpol_put(vma_policy(next));
634                 kmem_cache_free(vm_area_cachep, next);
635                 /*
636                  * In mprotect's case 6 (see comments on vma_merge),
637                  * we must remove another next too. It would clutter
638                  * up the code too much to do both in one go.
639                  */
640                 if (remove_next == 2) {
641                         next = vma->vm_next;
642                         goto again;
643                 }
644         }
645
646         validate_mm(mm);
647
648         return 0;
649 }
650
651 /*
652  * If the vma has a ->close operation then the driver probably needs to release
653  * per-vma resources, so we don't attempt to merge those.
654  */
655 static inline int is_mergeable_vma(struct vm_area_struct *vma,
656                         struct file *file, unsigned long vm_flags)
657 {
658         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
659         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
660                 return 0;
661         if (vma->vm_file != file)
662                 return 0;
663         if (vma->vm_ops && vma->vm_ops->close)
664                 return 0;
665         return 1;
666 }
667
668 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
669                                         struct anon_vma *anon_vma2,
670                                         struct vm_area_struct *vma)
671 {
672         /*
673          * The list_is_singular() test is to avoid merging VMA cloned from
674          * parents. This can improve scalability caused by anon_vma lock.
675          */
676         if ((!anon_vma1 || !anon_vma2) && (!vma ||
677                 list_is_singular(&vma->anon_vma_chain)))
678                 return 1;
679         return anon_vma1 == anon_vma2;
680 }
681
682 /*
683  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
684  * in front of (at a lower virtual address and file offset than) the vma.
685  *
686  * We cannot merge two vmas if they have differently assigned (non-NULL)
687  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
688  *
689  * We don't check here for the merged mmap wrapping around the end of pagecache
690  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
691  * wrap, nor mmaps which cover the final page at index -1UL.
692  */
693 static int
694 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
695         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
696 {
697         if (is_mergeable_vma(vma, file, vm_flags) &&
698             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
699                 if (vma->vm_pgoff == vm_pgoff)
700                         return 1;
701         }
702         return 0;
703 }
704
705 /*
706  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
707  * beyond (at a higher virtual address and file offset than) the vma.
708  *
709  * We cannot merge two vmas if they have differently assigned (non-NULL)
710  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
711  */
712 static int
713 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
714         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
715 {
716         if (is_mergeable_vma(vma, file, vm_flags) &&
717             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
718                 pgoff_t vm_pglen;
719                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
720                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
721                         return 1;
722         }
723         return 0;
724 }
725
726 /*
727  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
728  * whether that can be merged with its predecessor or its successor.
729  * Or both (it neatly fills a hole).
730  *
731  * In most cases - when called for mmap, brk or mremap - [addr,end) is
732  * certain not to be mapped by the time vma_merge is called; but when
733  * called for mprotect, it is certain to be already mapped (either at
734  * an offset within prev, or at the start of next), and the flags of
735  * this area are about to be changed to vm_flags - and the no-change
736  * case has already been eliminated.
737  *
738  * The following mprotect cases have to be considered, where AAAA is
739  * the area passed down from mprotect_fixup, never extending beyond one
740  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
741  *
742  *     AAAA             AAAA                AAAA          AAAA
743  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
744  *    cannot merge    might become    might become    might become
745  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
746  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
747  *    mremap move:                                    PPPPNNNNNNNN 8
748  *        AAAA
749  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
750  *    might become    case 1 below    case 2 below    case 3 below
751  *
752  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
753  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
754  */
755 struct vm_area_struct *vma_merge(struct mm_struct *mm,
756                         struct vm_area_struct *prev, unsigned long addr,
757                         unsigned long end, unsigned long vm_flags,
758                         struct anon_vma *anon_vma, struct file *file,
759                         pgoff_t pgoff, struct mempolicy *policy)
760 {
761         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
762         struct vm_area_struct *area, *next;
763         int err;
764
765         /*
766          * We later require that vma->vm_flags == vm_flags,
767          * so this tests vma->vm_flags & VM_SPECIAL, too.
768          */
769         if (vm_flags & VM_SPECIAL)
770                 return NULL;
771
772         if (prev)
773                 next = prev->vm_next;
774         else
775                 next = mm->mmap;
776         area = next;
777         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
778                 next = next->vm_next;
779
780         /*
781          * Can it merge with the predecessor?
782          */
783         if (prev && prev->vm_end == addr &&
784                         mpol_equal(vma_policy(prev), policy) &&
785                         can_vma_merge_after(prev, vm_flags,
786                                                 anon_vma, file, pgoff)) {
787                 /*
788                  * OK, it can.  Can we now merge in the successor as well?
789                  */
790                 if (next && end == next->vm_start &&
791                                 mpol_equal(policy, vma_policy(next)) &&
792                                 can_vma_merge_before(next, vm_flags,
793                                         anon_vma, file, pgoff+pglen) &&
794                                 is_mergeable_anon_vma(prev->anon_vma,
795                                                       next->anon_vma, NULL)) {
796                                                         /* cases 1, 6 */
797                         err = vma_adjust(prev, prev->vm_start,
798                                 next->vm_end, prev->vm_pgoff, NULL);
799                 } else                                  /* cases 2, 5, 7 */
800                         err = vma_adjust(prev, prev->vm_start,
801                                 end, prev->vm_pgoff, NULL);
802                 if (err)
803                         return NULL;
804                 khugepaged_enter_vma_merge(prev, vm_flags);
805                 return prev;
806         }
807
808         /*
809          * Can this new request be merged in front of next?
810          */
811         if (next && end == next->vm_start &&
812                         mpol_equal(policy, vma_policy(next)) &&
813                         can_vma_merge_before(next, vm_flags,
814                                         anon_vma, file, pgoff+pglen)) {
815                 if (prev && addr < prev->vm_end)        /* case 4 */
816                         err = vma_adjust(prev, prev->vm_start,
817                                 addr, prev->vm_pgoff, NULL);
818                 else                                    /* cases 3, 8 */
819                         err = vma_adjust(area, addr, next->vm_end,
820                                 next->vm_pgoff - pglen, NULL);
821                 if (err)
822                         return NULL;
823                 khugepaged_enter_vma_merge(area, vm_flags);
824                 return area;
825         }
826
827         return NULL;
828 }
829
830 /*
831  * Rough compatbility check to quickly see if it's even worth looking
832  * at sharing an anon_vma.
833  *
834  * They need to have the same vm_file, and the flags can only differ
835  * in things that mprotect may change.
836  *
837  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
838  * we can merge the two vma's. For example, we refuse to merge a vma if
839  * there is a vm_ops->close() function, because that indicates that the
840  * driver is doing some kind of reference counting. But that doesn't
841  * really matter for the anon_vma sharing case.
842  */
843 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
844 {
845         return a->vm_end == b->vm_start &&
846                 mpol_equal(vma_policy(a), vma_policy(b)) &&
847                 a->vm_file == b->vm_file &&
848                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
849                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
850 }
851
852 /*
853  * Do some basic sanity checking to see if we can re-use the anon_vma
854  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
855  * the same as 'old', the other will be the new one that is trying
856  * to share the anon_vma.
857  *
858  * NOTE! This runs with mm_sem held for reading, so it is possible that
859  * the anon_vma of 'old' is concurrently in the process of being set up
860  * by another page fault trying to merge _that_. But that's ok: if it
861  * is being set up, that automatically means that it will be a singleton
862  * acceptable for merging, so we can do all of this optimistically. But
863  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
864  *
865  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
866  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
867  * is to return an anon_vma that is "complex" due to having gone through
868  * a fork).
869  *
870  * We also make sure that the two vma's are compatible (adjacent,
871  * and with the same memory policies). That's all stable, even with just
872  * a read lock on the mm_sem.
873  */
874 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
875 {
876         if (anon_vma_compatible(a, b)) {
877                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
878
879                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
880                         return anon_vma;
881         }
882         return NULL;
883 }
884
885 /*
886  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
887  * neighbouring vmas for a suitable anon_vma, before it goes off
888  * to allocate a new anon_vma.  It checks because a repetitive
889  * sequence of mprotects and faults may otherwise lead to distinct
890  * anon_vmas being allocated, preventing vma merge in subsequent
891  * mprotect.
892  */
893 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
894 {
895         struct anon_vma *anon_vma;
896         struct vm_area_struct *near;
897
898         near = vma->vm_next;
899         if (!near)
900                 goto try_prev;
901
902         anon_vma = reusable_anon_vma(near, vma, near);
903         if (anon_vma)
904                 return anon_vma;
905 try_prev:
906         near = vma->vm_prev;
907         if (!near)
908                 goto none;
909
910         anon_vma = reusable_anon_vma(near, near, vma);
911         if (anon_vma)
912                 return anon_vma;
913 none:
914         /*
915          * There's no absolute need to look only at touching neighbours:
916          * we could search further afield for "compatible" anon_vmas.
917          * But it would probably just be a waste of time searching,
918          * or lead to too many vmas hanging off the same anon_vma.
919          * We're trying to allow mprotect remerging later on,
920          * not trying to minimize memory used for anon_vmas.
921          */
922         return NULL;
923 }
924
925 #ifdef CONFIG_PROC_FS
926 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
927                                                 struct file *file, long pages)
928 {
929         const unsigned long stack_flags
930                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
931
932         if (file) {
933                 mm->shared_vm += pages;
934                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
935                         mm->exec_vm += pages;
936         } else if (flags & stack_flags)
937                 mm->stack_vm += pages;
938         if (flags & (VM_RESERVED|VM_IO))
939                 mm->reserved_vm += pages;
940 }
941 #endif /* CONFIG_PROC_FS */
942
943 /*
944  * The caller must hold down_write(&current->mm->mmap_sem).
945  */
946
947 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
948                         unsigned long len, unsigned long prot,
949                         unsigned long flags, unsigned long pgoff)
950 {
951         struct mm_struct * mm = current->mm;
952         struct inode *inode;
953         vm_flags_t vm_flags;
954         int error;
955         unsigned long reqprot = prot;
956
957         /*
958          * Does the application expect PROT_READ to imply PROT_EXEC?
959          *
960          * (the exception is when the underlying filesystem is noexec
961          *  mounted, in which case we dont add PROT_EXEC.)
962          */
963         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
964                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
965                         prot |= PROT_EXEC;
966
967         if (!len)
968                 return -EINVAL;
969
970         if (!(flags & MAP_FIXED))
971                 addr = round_hint_to_min(addr);
972
973         /* Careful about overflows.. */
974         len = PAGE_ALIGN(len);
975         if (!len)
976                 return -ENOMEM;
977
978         /* offset overflow? */
979         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
980                return -EOVERFLOW;
981
982         /* Too many mappings? */
983         if (mm->map_count > sysctl_max_map_count)
984                 return -ENOMEM;
985
986         /* Obtain the address to map to. we verify (or select) it and ensure
987          * that it represents a valid section of the address space.
988          */
989         addr = get_unmapped_area(file, addr, len, pgoff, flags);
990         if (addr & ~PAGE_MASK)
991                 return addr;
992
993         /* Do simple checking here so the lower-level routines won't have
994          * to. we assume access permissions have been handled by the open
995          * of the memory object, so we don't do any here.
996          */
997         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
998                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
999
1000         if (flags & MAP_LOCKED)
1001                 if (!can_do_mlock())
1002                         return -EPERM;
1003
1004         /* mlock MCL_FUTURE? */
1005         if (vm_flags & VM_LOCKED) {
1006                 unsigned long locked, lock_limit;
1007                 locked = len >> PAGE_SHIFT;
1008                 locked += mm->locked_vm;
1009                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1010                 lock_limit >>= PAGE_SHIFT;
1011                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1012                         return -EAGAIN;
1013         }
1014
1015         inode = file ? file->f_path.dentry->d_inode : NULL;
1016
1017         if (file) {
1018                 switch (flags & MAP_TYPE) {
1019                 case MAP_SHARED:
1020                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1021                                 return -EACCES;
1022
1023                         /*
1024                          * Make sure we don't allow writing to an append-only
1025                          * file..
1026                          */
1027                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1028                                 return -EACCES;
1029
1030                         /*
1031                          * Make sure there are no mandatory locks on the file.
1032                          */
1033                         if (locks_verify_locked(inode))
1034                                 return -EAGAIN;
1035
1036                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1037                         if (!(file->f_mode & FMODE_WRITE))
1038                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1039
1040                         /* fall through */
1041                 case MAP_PRIVATE:
1042                         if (!(file->f_mode & FMODE_READ))
1043                                 return -EACCES;
1044                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1045                                 if (vm_flags & VM_EXEC)
1046                                         return -EPERM;
1047                                 vm_flags &= ~VM_MAYEXEC;
1048                         }
1049
1050                         if (!file->f_op || !file->f_op->mmap)
1051                                 return -ENODEV;
1052                         break;
1053
1054                 default:
1055                         return -EINVAL;
1056                 }
1057         } else {
1058                 switch (flags & MAP_TYPE) {
1059                 case MAP_SHARED:
1060                         /*
1061                          * Ignore pgoff.
1062                          */
1063                         pgoff = 0;
1064                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1065                         break;
1066                 case MAP_PRIVATE:
1067                         /*
1068                          * Set pgoff according to addr for anon_vma.
1069                          */
1070                         pgoff = addr >> PAGE_SHIFT;
1071                         break;
1072                 default:
1073                         return -EINVAL;
1074                 }
1075         }
1076
1077         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1078         if (error)
1079                 return error;
1080
1081         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1082 }
1083 EXPORT_SYMBOL(do_mmap_pgoff);
1084
1085 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1086                 unsigned long, prot, unsigned long, flags,
1087                 unsigned long, fd, unsigned long, pgoff)
1088 {
1089         struct file *file = NULL;
1090         unsigned long retval = -EBADF;
1091
1092         if (!(flags & MAP_ANONYMOUS)) {
1093                 audit_mmap_fd(fd, flags);
1094                 if (unlikely(flags & MAP_HUGETLB))
1095                         return -EINVAL;
1096                 file = fget(fd);
1097                 if (!file)
1098                         goto out;
1099         } else if (flags & MAP_HUGETLB) {
1100                 struct user_struct *user = NULL;
1101                 /*
1102                  * VM_NORESERVE is used because the reservations will be
1103                  * taken when vm_ops->mmap() is called
1104                  * A dummy user value is used because we are not locking
1105                  * memory so no accounting is necessary
1106                  */
1107                 len = ALIGN(len, huge_page_size(&default_hstate));
1108                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1109                                                 &user, HUGETLB_ANONHUGE_INODE);
1110                 if (IS_ERR(file))
1111                         return PTR_ERR(file);
1112         }
1113
1114         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1115
1116         down_write(&current->mm->mmap_sem);
1117         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1118         up_write(&current->mm->mmap_sem);
1119
1120         if (file)
1121                 fput(file);
1122 out:
1123         return retval;
1124 }
1125
1126 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1127 struct mmap_arg_struct {
1128         unsigned long addr;
1129         unsigned long len;
1130         unsigned long prot;
1131         unsigned long flags;
1132         unsigned long fd;
1133         unsigned long offset;
1134 };
1135
1136 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1137 {
1138         struct mmap_arg_struct a;
1139
1140         if (copy_from_user(&a, arg, sizeof(a)))
1141                 return -EFAULT;
1142         if (a.offset & ~PAGE_MASK)
1143                 return -EINVAL;
1144
1145         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1146                               a.offset >> PAGE_SHIFT);
1147 }
1148 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1149
1150 /*
1151  * Some shared mappigns will want the pages marked read-only
1152  * to track write events. If so, we'll downgrade vm_page_prot
1153  * to the private version (using protection_map[] without the
1154  * VM_SHARED bit).
1155  */
1156 int vma_wants_writenotify(struct vm_area_struct *vma)
1157 {
1158         vm_flags_t vm_flags = vma->vm_flags;
1159
1160         /* If it was private or non-writable, the write bit is already clear */
1161         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1162                 return 0;
1163
1164         /* The backer wishes to know when pages are first written to? */
1165         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1166                 return 1;
1167
1168         /* The open routine did something to the protections already? */
1169         if (pgprot_val(vma->vm_page_prot) !=
1170             pgprot_val(vm_get_page_prot(vm_flags)))
1171                 return 0;
1172
1173         /* Specialty mapping? */
1174         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1175                 return 0;
1176
1177         /* Can the mapping track the dirty pages? */
1178         return vma->vm_file && vma->vm_file->f_mapping &&
1179                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1180 }
1181
1182 /*
1183  * We account for memory if it's a private writeable mapping,
1184  * not hugepages and VM_NORESERVE wasn't set.
1185  */
1186 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1187 {
1188         /*
1189          * hugetlb has its own accounting separate from the core VM
1190          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1191          */
1192         if (file && is_file_hugepages(file))
1193                 return 0;
1194
1195         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1196 }
1197
1198 unsigned long mmap_region(struct file *file, unsigned long addr,
1199                           unsigned long len, unsigned long flags,
1200                           vm_flags_t vm_flags, unsigned long pgoff)
1201 {
1202         struct mm_struct *mm = current->mm;
1203         struct vm_area_struct *vma, *prev;
1204         int correct_wcount = 0;
1205         int error;
1206         struct rb_node **rb_link, *rb_parent;
1207         unsigned long charged = 0;
1208         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1209
1210         /* Clear old maps */
1211         error = -ENOMEM;
1212 munmap_back:
1213         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1214         if (vma && vma->vm_start < addr + len) {
1215                 if (do_munmap(mm, addr, len))
1216                         return -ENOMEM;
1217                 goto munmap_back;
1218         }
1219
1220         /* Check against address space limit. */
1221         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1222                 return -ENOMEM;
1223
1224         /*
1225          * Set 'VM_NORESERVE' if we should not account for the
1226          * memory use of this mapping.
1227          */
1228         if ((flags & MAP_NORESERVE)) {
1229                 /* We honor MAP_NORESERVE if allowed to overcommit */
1230                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1231                         vm_flags |= VM_NORESERVE;
1232
1233                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1234                 if (file && is_file_hugepages(file))
1235                         vm_flags |= VM_NORESERVE;
1236         }
1237
1238         /*
1239          * Private writable mapping: check memory availability
1240          */
1241         if (accountable_mapping(file, vm_flags)) {
1242                 charged = len >> PAGE_SHIFT;
1243                 if (security_vm_enough_memory(charged))
1244                         return -ENOMEM;
1245                 vm_flags |= VM_ACCOUNT;
1246         }
1247
1248         /*
1249          * Can we just expand an old mapping?
1250          */
1251         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1252         if (vma)
1253                 goto out;
1254
1255         /*
1256          * Determine the object being mapped and call the appropriate
1257          * specific mapper. the address has already been validated, but
1258          * not unmapped, but the maps are removed from the list.
1259          */
1260         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1261         if (!vma) {
1262                 error = -ENOMEM;
1263                 goto unacct_error;
1264         }
1265
1266         vma->vm_mm = mm;
1267         vma->vm_start = addr;
1268         vma->vm_end = addr + len;
1269         vma->vm_flags = vm_flags;
1270         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1271         vma->vm_pgoff = pgoff;
1272         INIT_LIST_HEAD(&vma->anon_vma_chain);
1273
1274         if (file) {
1275                 error = -EINVAL;
1276                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1277                         goto free_vma;
1278                 if (vm_flags & VM_DENYWRITE) {
1279                         error = deny_write_access(file);
1280                         if (error)
1281                                 goto free_vma;
1282                         correct_wcount = 1;
1283                 }
1284                 vma->vm_file = file;
1285                 get_file(file);
1286                 error = file->f_op->mmap(file, vma);
1287                 if (error)
1288                         goto unmap_and_free_vma;
1289                 if (vm_flags & VM_EXECUTABLE)
1290                         added_exe_file_vma(mm);
1291
1292                 /* Can addr have changed??
1293                  *
1294                  * Answer: Yes, several device drivers can do it in their
1295                  *         f_op->mmap method. -DaveM
1296                  */
1297                 addr = vma->vm_start;
1298                 pgoff = vma->vm_pgoff;
1299                 vm_flags = vma->vm_flags;
1300         } else if (vm_flags & VM_SHARED) {
1301                 error = shmem_zero_setup(vma);
1302                 if (error)
1303                         goto free_vma;
1304         }
1305
1306         if (vma_wants_writenotify(vma)) {
1307                 pgprot_t pprot = vma->vm_page_prot;
1308
1309                 /* Can vma->vm_page_prot have changed??
1310                  *
1311                  * Answer: Yes, drivers may have changed it in their
1312                  *         f_op->mmap method.
1313                  *
1314                  * Ensures that vmas marked as uncached stay that way.
1315                  */
1316                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1317                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1318                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1319         }
1320
1321         vma_link(mm, vma, prev, rb_link, rb_parent);
1322         file = vma->vm_file;
1323
1324         /* Once vma denies write, undo our temporary denial count */
1325         if (correct_wcount)
1326                 atomic_inc(&inode->i_writecount);
1327 out:
1328         perf_event_mmap(vma);
1329
1330         mm->total_vm += len >> PAGE_SHIFT;
1331         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1332         if (vm_flags & VM_LOCKED) {
1333                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1334                         mm->locked_vm += (len >> PAGE_SHIFT);
1335         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1336                 make_pages_present(addr, addr + len);
1337         return addr;
1338
1339 unmap_and_free_vma:
1340         if (correct_wcount)
1341                 atomic_inc(&inode->i_writecount);
1342         vma->vm_file = NULL;
1343         fput(file);
1344
1345         /* Undo any partial mapping done by a device driver. */
1346         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1347         charged = 0;
1348 free_vma:
1349         kmem_cache_free(vm_area_cachep, vma);
1350 unacct_error:
1351         if (charged)
1352                 vm_unacct_memory(charged);
1353         return error;
1354 }
1355
1356 /* Get an address range which is currently unmapped.
1357  * For shmat() with addr=0.
1358  *
1359  * Ugly calling convention alert:
1360  * Return value with the low bits set means error value,
1361  * ie
1362  *      if (ret & ~PAGE_MASK)
1363  *              error = ret;
1364  *
1365  * This function "knows" that -ENOMEM has the bits set.
1366  */
1367 #ifndef HAVE_ARCH_UNMAPPED_AREA
1368 unsigned long
1369 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1370                 unsigned long len, unsigned long pgoff, unsigned long flags)
1371 {
1372         struct mm_struct *mm = current->mm;
1373         struct vm_area_struct *vma;
1374         unsigned long start_addr;
1375
1376         if (len > TASK_SIZE - mmap_min_addr)
1377                 return -ENOMEM;
1378
1379         if (flags & MAP_FIXED)
1380                 return addr;
1381
1382         if (addr) {
1383                 addr = PAGE_ALIGN(addr);
1384                 vma = find_vma(mm, addr);
1385                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1386                     (!vma || addr + len <= vma->vm_start))
1387                         return addr;
1388         }
1389         if (len > mm->cached_hole_size) {
1390                 start_addr = addr = mm->free_area_cache;
1391         } else {
1392                 start_addr = addr = TASK_UNMAPPED_BASE;
1393                 mm->cached_hole_size = 0;
1394         }
1395
1396 full_search:
1397         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1398                 /* At this point:  (!vma || addr < vma->vm_end). */
1399                 if (TASK_SIZE - len < addr) {
1400                         /*
1401                          * Start a new search - just in case we missed
1402                          * some holes.
1403                          */
1404                         if (start_addr != TASK_UNMAPPED_BASE) {
1405                                 addr = TASK_UNMAPPED_BASE;
1406                                 start_addr = addr;
1407                                 mm->cached_hole_size = 0;
1408                                 goto full_search;
1409                         }
1410                         return -ENOMEM;
1411                 }
1412                 if (!vma || addr + len <= vma->vm_start) {
1413                         /*
1414                          * Remember the place where we stopped the search:
1415                          */
1416                         mm->free_area_cache = addr + len;
1417                         return addr;
1418                 }
1419                 if (addr + mm->cached_hole_size < vma->vm_start)
1420                         mm->cached_hole_size = vma->vm_start - addr;
1421                 addr = vma->vm_end;
1422         }
1423 }
1424 #endif  
1425
1426 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1427 {
1428         /*
1429          * Is this a new hole at the lowest possible address?
1430          */
1431         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1432                 mm->free_area_cache = addr;
1433                 mm->cached_hole_size = ~0UL;
1434         }
1435 }
1436
1437 /*
1438  * This mmap-allocator allocates new areas top-down from below the
1439  * stack's low limit (the base):
1440  */
1441 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1442 unsigned long
1443 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1444                           const unsigned long len, const unsigned long pgoff,
1445                           const unsigned long flags)
1446 {
1447         struct vm_area_struct *vma;
1448         struct mm_struct *mm = current->mm;
1449         unsigned long addr = addr0;
1450         unsigned long low_limit = max(PAGE_SIZE, mmap_min_addr);
1451
1452         /* requested length too big for entire address space */
1453         if (len > TASK_SIZE - mmap_min_addr)
1454                 return -ENOMEM;
1455
1456         if (flags & MAP_FIXED)
1457                 return addr;
1458
1459         /* requesting a specific address */
1460         if (addr) {
1461                 addr = PAGE_ALIGN(addr);
1462                 vma = find_vma(mm, addr);
1463                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1464                                 (!vma || addr + len <= vma->vm_start))
1465                         return addr;
1466         }
1467
1468         /* check if free_area_cache is useful for us */
1469         if (len <= mm->cached_hole_size) {
1470                 mm->cached_hole_size = 0;
1471                 mm->free_area_cache = mm->mmap_base;
1472         }
1473
1474         /* either no address requested or can't fit in requested address hole */
1475         addr = mm->free_area_cache;
1476
1477         /* make sure it can fit in the remaining address space */
1478         if (addr >= low_limit + len) {
1479                 vma = find_vma(mm, addr-len);
1480                 if (!vma || addr <= vma->vm_start)
1481                         /* remember the address as a hint for next time */
1482                         return (mm->free_area_cache = addr-len);
1483         }
1484
1485         if (mm->mmap_base < low_limit + len)
1486                 goto bottomup;
1487
1488         addr = mm->mmap_base-len;
1489
1490         do {
1491                 /*
1492                  * Lookup failure means no vma is above this address,
1493                  * else if new region fits below vma->vm_start,
1494                  * return with success:
1495                  */
1496                 vma = find_vma(mm, addr);
1497                 if (!vma || addr+len <= vma->vm_start)
1498                         /* remember the address as a hint for next time */
1499                         return (mm->free_area_cache = addr);
1500
1501                 /* remember the largest hole we saw so far */
1502                 if (addr + mm->cached_hole_size < vma->vm_start)
1503                         mm->cached_hole_size = vma->vm_start - addr;
1504
1505                 /* try just below the current vma->vm_start */
1506                 addr = vma->vm_start-len;
1507         } while (vma->vm_start >= low_limit + len);
1508
1509 bottomup:
1510         /*
1511          * A failed mmap() very likely causes application failure,
1512          * so fall back to the bottom-up function here. This scenario
1513          * can happen with large stack limits and large mmap()
1514          * allocations.
1515          */
1516         mm->cached_hole_size = ~0UL;
1517         mm->free_area_cache = TASK_UNMAPPED_BASE;
1518         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1519         /*
1520          * Restore the topdown base:
1521          */
1522         mm->free_area_cache = mm->mmap_base;
1523         mm->cached_hole_size = ~0UL;
1524
1525         return addr;
1526 }
1527 #endif
1528
1529 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1530 {
1531         /*
1532          * Is this a new hole at the highest possible address?
1533          */
1534         if (addr > mm->free_area_cache)
1535                 mm->free_area_cache = addr;
1536
1537         /* dont allow allocations above current base */
1538         if (mm->free_area_cache > mm->mmap_base)
1539                 mm->free_area_cache = mm->mmap_base;
1540 }
1541
1542 unsigned long
1543 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1544                 unsigned long pgoff, unsigned long flags)
1545 {
1546         unsigned long (*get_area)(struct file *, unsigned long,
1547                                   unsigned long, unsigned long, unsigned long);
1548
1549         unsigned long error = arch_mmap_check(addr, len, flags);
1550         if (error)
1551                 return error;
1552
1553         /* Careful about overflows.. */
1554         if (len > TASK_SIZE)
1555                 return -ENOMEM;
1556
1557         get_area = current->mm->get_unmapped_area;
1558         if (file && file->f_op && file->f_op->get_unmapped_area)
1559                 get_area = file->f_op->get_unmapped_area;
1560         addr = get_area(file, addr, len, pgoff, flags);
1561         if (IS_ERR_VALUE(addr))
1562                 return addr;
1563
1564         if (addr > TASK_SIZE - len)
1565                 return -ENOMEM;
1566         if (addr & ~PAGE_MASK)
1567                 return -EINVAL;
1568
1569         return arch_rebalance_pgtables(addr, len);
1570 }
1571
1572 EXPORT_SYMBOL(get_unmapped_area);
1573
1574 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1575 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1576 {
1577         struct vm_area_struct *vma = NULL;
1578
1579         if (mm) {
1580                 /* Check the cache first. */
1581                 /* (Cache hit rate is typically around 35%.) */
1582                 vma = ACCESS_ONCE(mm->mmap_cache);
1583                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1584                         struct rb_node * rb_node;
1585
1586                         rb_node = mm->mm_rb.rb_node;
1587                         vma = NULL;
1588
1589                         while (rb_node) {
1590                                 struct vm_area_struct * vma_tmp;
1591
1592                                 vma_tmp = rb_entry(rb_node,
1593                                                 struct vm_area_struct, vm_rb);
1594
1595                                 if (vma_tmp->vm_end > addr) {
1596                                         vma = vma_tmp;
1597                                         if (vma_tmp->vm_start <= addr)
1598                                                 break;
1599                                         rb_node = rb_node->rb_left;
1600                                 } else
1601                                         rb_node = rb_node->rb_right;
1602                         }
1603                         if (vma)
1604                                 mm->mmap_cache = vma;
1605                 }
1606         }
1607         return vma;
1608 }
1609
1610 EXPORT_SYMBOL(find_vma);
1611
1612 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1613 struct vm_area_struct *
1614 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1615                         struct vm_area_struct **pprev)
1616 {
1617         struct vm_area_struct *vma = NULL, *prev = NULL;
1618         struct rb_node *rb_node;
1619         if (!mm)
1620                 goto out;
1621
1622         /* Guard against addr being lower than the first VMA */
1623         vma = mm->mmap;
1624
1625         /* Go through the RB tree quickly. */
1626         rb_node = mm->mm_rb.rb_node;
1627
1628         while (rb_node) {
1629                 struct vm_area_struct *vma_tmp;
1630                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1631
1632                 if (addr < vma_tmp->vm_end) {
1633                         rb_node = rb_node->rb_left;
1634                 } else {
1635                         prev = vma_tmp;
1636                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1637                                 break;
1638                         rb_node = rb_node->rb_right;
1639                 }
1640         }
1641
1642 out:
1643         *pprev = prev;
1644         return prev ? prev->vm_next : vma;
1645 }
1646
1647 /*
1648  * Verify that the stack growth is acceptable and
1649  * update accounting. This is shared with both the
1650  * grow-up and grow-down cases.
1651  */
1652 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1653 {
1654         struct mm_struct *mm = vma->vm_mm;
1655         struct rlimit *rlim = current->signal->rlim;
1656         unsigned long new_start, actual_size;
1657
1658         /* address space limit tests */
1659         if (!may_expand_vm(mm, grow))
1660                 return -ENOMEM;
1661
1662         /* Stack limit test */
1663         actual_size = size;
1664         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1665                 actual_size -= PAGE_SIZE;
1666         if (actual_size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1667                 return -ENOMEM;
1668
1669         /* mlock limit tests */
1670         if (vma->vm_flags & VM_LOCKED) {
1671                 unsigned long locked;
1672                 unsigned long limit;
1673                 locked = mm->locked_vm + grow;
1674                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1675                 limit >>= PAGE_SHIFT;
1676                 if (locked > limit && !capable(CAP_IPC_LOCK))
1677                         return -ENOMEM;
1678         }
1679
1680         /* Check to ensure the stack will not grow into a hugetlb-only region */
1681         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1682                         vma->vm_end - size;
1683         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1684                 return -EFAULT;
1685
1686         /*
1687          * Overcommit..  This must be the final test, as it will
1688          * update security statistics.
1689          */
1690         if (security_vm_enough_memory_mm(mm, grow))
1691                 return -ENOMEM;
1692
1693         /* Ok, everything looks good - let it rip */
1694         mm->total_vm += grow;
1695         if (vma->vm_flags & VM_LOCKED)
1696                 mm->locked_vm += grow;
1697         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1698         return 0;
1699 }
1700
1701 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1702 /*
1703  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1704  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1705  */
1706 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1707 {
1708         int error;
1709
1710         if (!(vma->vm_flags & VM_GROWSUP))
1711                 return -EFAULT;
1712
1713         /*
1714          * We must make sure the anon_vma is allocated
1715          * so that the anon_vma locking is not a noop.
1716          */
1717         if (unlikely(anon_vma_prepare(vma)))
1718                 return -ENOMEM;
1719         vma_lock_anon_vma(vma);
1720
1721         /*
1722          * vma->vm_start/vm_end cannot change under us because the caller
1723          * is required to hold the mmap_sem in read mode.  We need the
1724          * anon_vma lock to serialize against concurrent expand_stacks.
1725          * Also guard against wrapping around to address 0.
1726          */
1727         if (address < PAGE_ALIGN(address+4))
1728                 address = PAGE_ALIGN(address+4);
1729         else {
1730                 vma_unlock_anon_vma(vma);
1731                 return -ENOMEM;
1732         }
1733         error = 0;
1734
1735         /* Somebody else might have raced and expanded it already */
1736         if (address > vma->vm_end) {
1737                 unsigned long size, grow;
1738
1739                 size = address - vma->vm_start;
1740                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1741
1742                 error = -ENOMEM;
1743                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1744                         error = acct_stack_growth(vma, size, grow);
1745                         if (!error) {
1746                                 vma->vm_end = address;
1747                                 perf_event_mmap(vma);
1748                         }
1749                 }
1750         }
1751         vma_unlock_anon_vma(vma);
1752         khugepaged_enter_vma_merge(vma, vma->vm_flags);
1753         return error;
1754 }
1755 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1756
1757 /*
1758  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1759  */
1760 int expand_downwards(struct vm_area_struct *vma,
1761                                    unsigned long address)
1762 {
1763         int error;
1764
1765         /*
1766          * We must make sure the anon_vma is allocated
1767          * so that the anon_vma locking is not a noop.
1768          */
1769         if (unlikely(anon_vma_prepare(vma)))
1770                 return -ENOMEM;
1771
1772         address &= PAGE_MASK;
1773         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1774         if (error)
1775                 return error;
1776
1777         vma_lock_anon_vma(vma);
1778
1779         /*
1780          * vma->vm_start/vm_end cannot change under us because the caller
1781          * is required to hold the mmap_sem in read mode.  We need the
1782          * anon_vma lock to serialize against concurrent expand_stacks.
1783          */
1784
1785         /* Somebody else might have raced and expanded it already */
1786         if (address < vma->vm_start) {
1787                 unsigned long size, grow;
1788
1789                 size = vma->vm_end - address;
1790                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1791
1792                 error = -ENOMEM;
1793                 if (grow <= vma->vm_pgoff) {
1794                         error = acct_stack_growth(vma, size, grow);
1795                         if (!error) {
1796                                 vma->vm_start = address;
1797                                 vma->vm_pgoff -= grow;
1798                                 perf_event_mmap(vma);
1799                         }
1800                 }
1801         }
1802         vma_unlock_anon_vma(vma);
1803         khugepaged_enter_vma_merge(vma, vma->vm_flags);
1804         return error;
1805 }
1806
1807 #ifdef CONFIG_STACK_GROWSUP
1808 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1809 {
1810         return expand_upwards(vma, address);
1811 }
1812
1813 struct vm_area_struct *
1814 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1815 {
1816         struct vm_area_struct *vma, *prev;
1817
1818         addr &= PAGE_MASK;
1819         vma = find_vma_prev(mm, addr, &prev);
1820         if (vma && (vma->vm_start <= addr))
1821                 return vma;
1822         if (!prev || expand_stack(prev, addr))
1823                 return NULL;
1824         if (prev->vm_flags & VM_LOCKED) {
1825                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1826         }
1827         return prev;
1828 }
1829 #else
1830 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1831 {
1832         return expand_downwards(vma, address);
1833 }
1834
1835 struct vm_area_struct *
1836 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1837 {
1838         struct vm_area_struct * vma;
1839         unsigned long start;
1840
1841         addr &= PAGE_MASK;
1842         vma = find_vma(mm,addr);
1843         if (!vma)
1844                 return NULL;
1845         if (vma->vm_start <= addr)
1846                 return vma;
1847         if (!(vma->vm_flags & VM_GROWSDOWN))
1848                 return NULL;
1849         start = vma->vm_start;
1850         if (expand_stack(vma, addr))
1851                 return NULL;
1852         if (vma->vm_flags & VM_LOCKED) {
1853                 mlock_vma_pages_range(vma, addr, start);
1854         }
1855         return vma;
1856 }
1857 #endif
1858
1859 /*
1860  * Ok - we have the memory areas we should free on the vma list,
1861  * so release them, and do the vma updates.
1862  *
1863  * Called with the mm semaphore held.
1864  */
1865 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1866 {
1867         /* Update high watermark before we lower total_vm */
1868         update_hiwater_vm(mm);
1869         do {
1870                 long nrpages = vma_pages(vma);
1871
1872                 mm->total_vm -= nrpages;
1873                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1874                 vma = remove_vma(vma);
1875         } while (vma);
1876         validate_mm(mm);
1877 }
1878
1879 /*
1880  * Get rid of page table information in the indicated region.
1881  *
1882  * Called with the mm semaphore held.
1883  */
1884 static void unmap_region(struct mm_struct *mm,
1885                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1886                 unsigned long start, unsigned long end)
1887 {
1888         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1889         struct mmu_gather tlb;
1890         unsigned long nr_accounted = 0;
1891
1892         lru_add_drain();
1893         tlb_gather_mmu(&tlb, mm, 0);
1894         update_hiwater_rss(mm);
1895         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1896         vm_unacct_memory(nr_accounted);
1897         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1898                                  next ? next->vm_start : 0);
1899         tlb_finish_mmu(&tlb, start, end);
1900 }
1901
1902 /*
1903  * Create a list of vma's touched by the unmap, removing them from the mm's
1904  * vma list as we go..
1905  */
1906 static void
1907 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1908         struct vm_area_struct *prev, unsigned long end)
1909 {
1910         struct vm_area_struct **insertion_point;
1911         struct vm_area_struct *tail_vma = NULL;
1912         unsigned long addr;
1913
1914         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1915         vma->vm_prev = NULL;
1916         do {
1917                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1918                 mm->map_count--;
1919                 tail_vma = vma;
1920                 vma = vma->vm_next;
1921         } while (vma && vma->vm_start < end);
1922         *insertion_point = vma;
1923         if (vma)
1924                 vma->vm_prev = prev;
1925         tail_vma->vm_next = NULL;
1926         if (mm->unmap_area == arch_unmap_area)
1927                 addr = prev ? prev->vm_end : mm->mmap_base;
1928         else
1929                 addr = vma ?  vma->vm_start : mm->mmap_base;
1930         mm->unmap_area(mm, addr);
1931         mm->mmap_cache = NULL;          /* Kill the cache. */
1932 }
1933
1934 /*
1935  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1936  * munmap path where it doesn't make sense to fail.
1937  */
1938 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1939               unsigned long addr, int new_below)
1940 {
1941         struct mempolicy *pol;
1942         struct vm_area_struct *new;
1943         int err = -ENOMEM;
1944
1945         if (is_vm_hugetlb_page(vma) && (addr &
1946                                         ~(huge_page_mask(hstate_vma(vma)))))
1947                 return -EINVAL;
1948
1949         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1950         if (!new)
1951                 goto out_err;
1952
1953         /* most fields are the same, copy all, and then fixup */
1954         *new = *vma;
1955
1956         INIT_LIST_HEAD(&new->anon_vma_chain);
1957
1958         if (new_below)
1959                 new->vm_end = addr;
1960         else {
1961                 new->vm_start = addr;
1962                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1963         }
1964
1965         pol = mpol_dup(vma_policy(vma));
1966         if (IS_ERR(pol)) {
1967                 err = PTR_ERR(pol);
1968                 goto out_free_vma;
1969         }
1970         vma_set_policy(new, pol);
1971
1972         if (anon_vma_clone(new, vma))
1973                 goto out_free_mpol;
1974
1975         if (new->vm_file) {
1976                 get_file(new->vm_file);
1977                 if (vma->vm_flags & VM_EXECUTABLE)
1978                         added_exe_file_vma(mm);
1979         }
1980
1981         if (new->vm_ops && new->vm_ops->open)
1982                 new->vm_ops->open(new);
1983
1984         if (new_below)
1985                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1986                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1987         else
1988                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1989
1990         /* Success. */
1991         if (!err)
1992                 return 0;
1993
1994         /* Clean everything up if vma_adjust failed. */
1995         if (new->vm_ops && new->vm_ops->close)
1996                 new->vm_ops->close(new);
1997         if (new->vm_file) {
1998                 if (vma->vm_flags & VM_EXECUTABLE)
1999                         removed_exe_file_vma(mm);
2000                 fput(new->vm_file);
2001         }
2002         unlink_anon_vmas(new);
2003  out_free_mpol:
2004         mpol_put(pol);
2005  out_free_vma:
2006         kmem_cache_free(vm_area_cachep, new);
2007  out_err:
2008         return err;
2009 }
2010
2011 /*
2012  * Split a vma into two pieces at address 'addr', a new vma is allocated
2013  * either for the first part or the tail.
2014  */
2015 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2016               unsigned long addr, int new_below)
2017 {
2018         if (mm->map_count >= sysctl_max_map_count)
2019                 return -ENOMEM;
2020
2021         return __split_vma(mm, vma, addr, new_below);
2022 }
2023
2024 /* Munmap is split into 2 main parts -- this part which finds
2025  * what needs doing, and the areas themselves, which do the
2026  * work.  This now handles partial unmappings.
2027  * Jeremy Fitzhardinge <jeremy@goop.org>
2028  */
2029 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2030 {
2031         unsigned long end;
2032         struct vm_area_struct *vma, *prev, *last;
2033
2034         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2035                 return -EINVAL;
2036
2037         if ((len = PAGE_ALIGN(len)) == 0)
2038                 return -EINVAL;
2039
2040         /* Find the first overlapping VMA */
2041         vma = find_vma(mm, start);
2042         if (!vma)
2043                 return 0;
2044         prev = vma->vm_prev;
2045         /* we have  start < vma->vm_end  */
2046
2047         /* if it doesn't overlap, we have nothing.. */
2048         end = start + len;
2049         if (vma->vm_start >= end)
2050                 return 0;
2051
2052         /*
2053          * If we need to split any vma, do it now to save pain later.
2054          *
2055          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2056          * unmapped vm_area_struct will remain in use: so lower split_vma
2057          * places tmp vma above, and higher split_vma places tmp vma below.
2058          */
2059         if (start > vma->vm_start) {
2060                 int error;
2061
2062                 /*
2063                  * Make sure that map_count on return from munmap() will
2064                  * not exceed its limit; but let map_count go just above
2065                  * its limit temporarily, to help free resources as expected.
2066                  */
2067                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2068                         return -ENOMEM;
2069
2070                 error = __split_vma(mm, vma, start, 0);
2071                 if (error)
2072                         return error;
2073                 prev = vma;
2074         }
2075
2076         /* Does it split the last one? */
2077         last = find_vma(mm, end);
2078         if (last && end > last->vm_start) {
2079                 int error = __split_vma(mm, last, end, 1);
2080                 if (error)
2081                         return error;
2082         }
2083         vma = prev? prev->vm_next: mm->mmap;
2084
2085         /*
2086          * unlock any mlock()ed ranges before detaching vmas
2087          */
2088         if (mm->locked_vm) {
2089                 struct vm_area_struct *tmp = vma;
2090                 while (tmp && tmp->vm_start < end) {
2091                         if (tmp->vm_flags & VM_LOCKED) {
2092                                 mm->locked_vm -= vma_pages(tmp);
2093                                 munlock_vma_pages_all(tmp);
2094                         }
2095                         tmp = tmp->vm_next;
2096                 }
2097         }
2098
2099         /*
2100          * Remove the vma's, and unmap the actual pages
2101          */
2102         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2103         unmap_region(mm, vma, prev, start, end);
2104
2105         /* Fix up all other VM information */
2106         remove_vma_list(mm, vma);
2107
2108         return 0;
2109 }
2110
2111 EXPORT_SYMBOL(do_munmap);
2112
2113 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2114 {
2115         int ret;
2116         struct mm_struct *mm = current->mm;
2117
2118         profile_munmap(addr);
2119
2120         down_write(&mm->mmap_sem);
2121         ret = do_munmap(mm, addr, len);
2122         up_write(&mm->mmap_sem);
2123         return ret;
2124 }
2125
2126 static inline void verify_mm_writelocked(struct mm_struct *mm)
2127 {
2128 #ifdef CONFIG_DEBUG_VM
2129         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2130                 WARN_ON(1);
2131                 up_read(&mm->mmap_sem);
2132         }
2133 #endif
2134 }
2135
2136 /*
2137  *  this is really a simplified "do_mmap".  it only handles
2138  *  anonymous maps.  eventually we may be able to do some
2139  *  brk-specific accounting here.
2140  */
2141 unsigned long do_brk(unsigned long addr, unsigned long len)
2142 {
2143         struct mm_struct * mm = current->mm;
2144         struct vm_area_struct * vma, * prev;
2145         unsigned long flags;
2146         struct rb_node ** rb_link, * rb_parent;
2147         pgoff_t pgoff = addr >> PAGE_SHIFT;
2148         int error;
2149
2150         len = PAGE_ALIGN(len);
2151         if (!len)
2152                 return addr;
2153
2154         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2155         if (error)
2156                 return error;
2157
2158         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2159
2160         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2161         if (error & ~PAGE_MASK)
2162                 return error;
2163
2164         /*
2165          * mlock MCL_FUTURE?
2166          */
2167         if (mm->def_flags & VM_LOCKED) {
2168                 unsigned long locked, lock_limit;
2169                 locked = len >> PAGE_SHIFT;
2170                 locked += mm->locked_vm;
2171                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2172                 lock_limit >>= PAGE_SHIFT;
2173                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2174                         return -EAGAIN;
2175         }
2176
2177         /*
2178          * mm->mmap_sem is required to protect against another thread
2179          * changing the mappings in case we sleep.
2180          */
2181         verify_mm_writelocked(mm);
2182
2183         /*
2184          * Clear old maps.  this also does some error checking for us
2185          */
2186  munmap_back:
2187         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2188         if (vma && vma->vm_start < addr + len) {
2189                 if (do_munmap(mm, addr, len))
2190                         return -ENOMEM;
2191                 goto munmap_back;
2192         }
2193
2194         /* Check against address space limits *after* clearing old maps... */
2195         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2196                 return -ENOMEM;
2197
2198         if (mm->map_count > sysctl_max_map_count)
2199                 return -ENOMEM;
2200
2201         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2202                 return -ENOMEM;
2203
2204         /* Can we just expand an old private anonymous mapping? */
2205         vma = vma_merge(mm, prev, addr, addr + len, flags,
2206                                         NULL, NULL, pgoff, NULL);
2207         if (vma)
2208                 goto out;
2209
2210         /*
2211          * create a vma struct for an anonymous mapping
2212          */
2213         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2214         if (!vma) {
2215                 vm_unacct_memory(len >> PAGE_SHIFT);
2216                 return -ENOMEM;
2217         }
2218
2219         INIT_LIST_HEAD(&vma->anon_vma_chain);
2220         vma->vm_mm = mm;
2221         vma->vm_start = addr;
2222         vma->vm_end = addr + len;
2223         vma->vm_pgoff = pgoff;
2224         vma->vm_flags = flags;
2225         vma->vm_page_prot = vm_get_page_prot(flags);
2226         vma_link(mm, vma, prev, rb_link, rb_parent);
2227 out:
2228         perf_event_mmap(vma);
2229         mm->total_vm += len >> PAGE_SHIFT;
2230         if (flags & VM_LOCKED) {
2231                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2232                         mm->locked_vm += (len >> PAGE_SHIFT);
2233         }
2234         return addr;
2235 }
2236
2237 EXPORT_SYMBOL(do_brk);
2238
2239 /* Release all mmaps. */
2240 void exit_mmap(struct mm_struct *mm)
2241 {
2242         struct mmu_gather tlb;
2243         struct vm_area_struct *vma;
2244         unsigned long nr_accounted = 0;
2245         unsigned long end;
2246
2247         /* mm's last user has gone, and its about to be pulled down */
2248         mmu_notifier_release(mm);
2249
2250         if (mm->locked_vm) {
2251                 vma = mm->mmap;
2252                 while (vma) {
2253                         if (vma->vm_flags & VM_LOCKED)
2254                                 munlock_vma_pages_all(vma);
2255                         vma = vma->vm_next;
2256                 }
2257         }
2258
2259         arch_exit_mmap(mm);
2260
2261         vma = mm->mmap;
2262         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2263                 return;
2264
2265         lru_add_drain();
2266         flush_cache_mm(mm);
2267         tlb_gather_mmu(&tlb, mm, 1);
2268         /* update_hiwater_rss(mm) here? but nobody should be looking */
2269         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2270         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2271         vm_unacct_memory(nr_accounted);
2272
2273         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2274         tlb_finish_mmu(&tlb, 0, end);
2275
2276         /*
2277          * Walk the list again, actually closing and freeing it,
2278          * with preemption enabled, without holding any MM locks.
2279          */
2280         while (vma)
2281                 vma = remove_vma(vma);
2282
2283         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2284 }
2285
2286 /* Insert vm structure into process list sorted by address
2287  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2288  * then i_mmap_mutex is taken here.
2289  */
2290 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2291 {
2292         struct vm_area_struct * __vma, * prev;
2293         struct rb_node ** rb_link, * rb_parent;
2294
2295         /*
2296          * The vm_pgoff of a purely anonymous vma should be irrelevant
2297          * until its first write fault, when page's anon_vma and index
2298          * are set.  But now set the vm_pgoff it will almost certainly
2299          * end up with (unless mremap moves it elsewhere before that
2300          * first wfault), so /proc/pid/maps tells a consistent story.
2301          *
2302          * By setting it to reflect the virtual start address of the
2303          * vma, merges and splits can happen in a seamless way, just
2304          * using the existing file pgoff checks and manipulations.
2305          * Similarly in do_mmap_pgoff and in do_brk.
2306          */
2307         if (!vma->vm_file) {
2308                 BUG_ON(vma->anon_vma);
2309                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2310         }
2311         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2312         if (__vma && __vma->vm_start < vma->vm_end)
2313                 return -ENOMEM;
2314         if ((vma->vm_flags & VM_ACCOUNT) &&
2315              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2316                 return -ENOMEM;
2317         vma_link(mm, vma, prev, rb_link, rb_parent);
2318         return 0;
2319 }
2320
2321 /*
2322  * Copy the vma structure to a new location in the same mm,
2323  * prior to moving page table entries, to effect an mremap move.
2324  */
2325 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2326         unsigned long addr, unsigned long len, pgoff_t pgoff)
2327 {
2328         struct vm_area_struct *vma = *vmap;
2329         unsigned long vma_start = vma->vm_start;
2330         struct mm_struct *mm = vma->vm_mm;
2331         struct vm_area_struct *new_vma, *prev;
2332         struct rb_node **rb_link, *rb_parent;
2333         struct mempolicy *pol;
2334
2335         /*
2336          * If anonymous vma has not yet been faulted, update new pgoff
2337          * to match new location, to increase its chance of merging.
2338          */
2339         if (!vma->vm_file && !vma->anon_vma)
2340                 pgoff = addr >> PAGE_SHIFT;
2341
2342         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2343         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2344                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2345         if (new_vma) {
2346                 /*
2347                  * Source vma may have been merged into new_vma
2348                  */
2349                 if (vma_start >= new_vma->vm_start &&
2350                     vma_start < new_vma->vm_end)
2351                         *vmap = new_vma;
2352         } else {
2353                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2354                 if (new_vma) {
2355                         *new_vma = *vma;
2356                         pol = mpol_dup(vma_policy(vma));
2357                         if (IS_ERR(pol))
2358                                 goto out_free_vma;
2359                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2360                         if (anon_vma_clone(new_vma, vma))
2361                                 goto out_free_mempol;
2362                         vma_set_policy(new_vma, pol);
2363                         new_vma->vm_start = addr;
2364                         new_vma->vm_end = addr + len;
2365                         new_vma->vm_pgoff = pgoff;
2366                         if (new_vma->vm_file) {
2367                                 get_file(new_vma->vm_file);
2368                                 if (vma->vm_flags & VM_EXECUTABLE)
2369                                         added_exe_file_vma(mm);
2370                         }
2371                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2372                                 new_vma->vm_ops->open(new_vma);
2373                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2374                 }
2375         }
2376         return new_vma;
2377
2378  out_free_mempol:
2379         mpol_put(pol);
2380  out_free_vma:
2381         kmem_cache_free(vm_area_cachep, new_vma);
2382         return NULL;
2383 }
2384
2385 /*
2386  * Return true if the calling process may expand its vm space by the passed
2387  * number of pages
2388  */
2389 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2390 {
2391         unsigned long cur = mm->total_vm;       /* pages */
2392         unsigned long lim;
2393
2394         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2395
2396         if (cur + npages > lim)
2397                 return 0;
2398         return 1;
2399 }
2400
2401
2402 static int special_mapping_fault(struct vm_area_struct *vma,
2403                                 struct vm_fault *vmf)
2404 {
2405         pgoff_t pgoff;
2406         struct page **pages;
2407
2408         /*
2409          * special mappings have no vm_file, and in that case, the mm
2410          * uses vm_pgoff internally. So we have to subtract it from here.
2411          * We are allowed to do this because we are the mm; do not copy
2412          * this code into drivers!
2413          */
2414         pgoff = vmf->pgoff - vma->vm_pgoff;
2415
2416         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2417                 pgoff--;
2418
2419         if (*pages) {
2420                 struct page *page = *pages;
2421                 get_page(page);
2422                 vmf->page = page;
2423                 return 0;
2424         }
2425
2426         return VM_FAULT_SIGBUS;
2427 }
2428
2429 /*
2430  * Having a close hook prevents vma merging regardless of flags.
2431  */
2432 static void special_mapping_close(struct vm_area_struct *vma)
2433 {
2434 }
2435
2436 static const struct vm_operations_struct special_mapping_vmops = {
2437         .close = special_mapping_close,
2438         .fault = special_mapping_fault,
2439 };
2440
2441 /*
2442  * Called with mm->mmap_sem held for writing.
2443  * Insert a new vma covering the given region, with the given flags.
2444  * Its pages are supplied by the given array of struct page *.
2445  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2446  * The region past the last page supplied will always produce SIGBUS.
2447  * The array pointer and the pages it points to are assumed to stay alive
2448  * for as long as this mapping might exist.
2449  */
2450 int install_special_mapping(struct mm_struct *mm,
2451                             unsigned long addr, unsigned long len,
2452                             unsigned long vm_flags, struct page **pages)
2453 {
2454         int ret;
2455         struct vm_area_struct *vma;
2456
2457         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2458         if (unlikely(vma == NULL))
2459                 return -ENOMEM;
2460
2461         INIT_LIST_HEAD(&vma->anon_vma_chain);
2462         vma->vm_mm = mm;
2463         vma->vm_start = addr;
2464         vma->vm_end = addr + len;
2465
2466         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2467         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2468
2469         vma->vm_ops = &special_mapping_vmops;
2470         vma->vm_private_data = pages;
2471
2472         ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2473         if (ret)
2474                 goto out;
2475
2476         ret = insert_vm_struct(mm, vma);
2477         if (ret)
2478                 goto out;
2479
2480         mm->total_vm += len >> PAGE_SHIFT;
2481
2482         perf_event_mmap(vma);
2483
2484         return 0;
2485
2486 out:
2487         kmem_cache_free(vm_area_cachep, vma);
2488         return ret;
2489 }
2490
2491 static DEFINE_MUTEX(mm_all_locks_mutex);
2492
2493 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2494 {
2495         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2496                 /*
2497                  * The LSB of head.next can't change from under us
2498                  * because we hold the mm_all_locks_mutex.
2499                  */
2500                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2501                 /*
2502                  * We can safely modify head.next after taking the
2503                  * anon_vma->root->mutex. If some other vma in this mm shares
2504                  * the same anon_vma we won't take it again.
2505                  *
2506                  * No need of atomic instructions here, head.next
2507                  * can't change from under us thanks to the
2508                  * anon_vma->root->mutex.
2509                  */
2510                 if (__test_and_set_bit(0, (unsigned long *)
2511                                        &anon_vma->root->head.next))
2512                         BUG();
2513         }
2514 }
2515
2516 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2517 {
2518         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2519                 /*
2520                  * AS_MM_ALL_LOCKS can't change from under us because
2521                  * we hold the mm_all_locks_mutex.
2522                  *
2523                  * Operations on ->flags have to be atomic because
2524                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2525                  * mm_all_locks_mutex, there may be other cpus
2526                  * changing other bitflags in parallel to us.
2527                  */
2528                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2529                         BUG();
2530                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2531         }
2532 }
2533
2534 /*
2535  * This operation locks against the VM for all pte/vma/mm related
2536  * operations that could ever happen on a certain mm. This includes
2537  * vmtruncate, try_to_unmap, and all page faults.
2538  *
2539  * The caller must take the mmap_sem in write mode before calling
2540  * mm_take_all_locks(). The caller isn't allowed to release the
2541  * mmap_sem until mm_drop_all_locks() returns.
2542  *
2543  * mmap_sem in write mode is required in order to block all operations
2544  * that could modify pagetables and free pages without need of
2545  * altering the vma layout (for example populate_range() with
2546  * nonlinear vmas). It's also needed in write mode to avoid new
2547  * anon_vmas to be associated with existing vmas.
2548  *
2549  * A single task can't take more than one mm_take_all_locks() in a row
2550  * or it would deadlock.
2551  *
2552  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2553  * mapping->flags avoid to take the same lock twice, if more than one
2554  * vma in this mm is backed by the same anon_vma or address_space.
2555  *
2556  * We can take all the locks in random order because the VM code
2557  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2558  * takes more than one of them in a row. Secondly we're protected
2559  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2560  *
2561  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2562  * that may have to take thousand of locks.
2563  *
2564  * mm_take_all_locks() can fail if it's interrupted by signals.
2565  */
2566 int mm_take_all_locks(struct mm_struct *mm)
2567 {
2568         struct vm_area_struct *vma;
2569         struct anon_vma_chain *avc;
2570
2571         BUG_ON(down_read_trylock(&mm->mmap_sem));
2572
2573         mutex_lock(&mm_all_locks_mutex);
2574
2575         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2576                 if (signal_pending(current))
2577                         goto out_unlock;
2578                 if (vma->vm_file && vma->vm_file->f_mapping)
2579                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2580         }
2581
2582         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2583                 if (signal_pending(current))
2584                         goto out_unlock;
2585                 if (vma->anon_vma)
2586                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2587                                 vm_lock_anon_vma(mm, avc->anon_vma);
2588         }
2589
2590         return 0;
2591
2592 out_unlock:
2593         mm_drop_all_locks(mm);
2594         return -EINTR;
2595 }
2596
2597 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2598 {
2599         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2600                 /*
2601                  * The LSB of head.next can't change to 0 from under
2602                  * us because we hold the mm_all_locks_mutex.
2603                  *
2604                  * We must however clear the bitflag before unlocking
2605                  * the vma so the users using the anon_vma->head will
2606                  * never see our bitflag.
2607                  *
2608                  * No need of atomic instructions here, head.next
2609                  * can't change from under us until we release the
2610                  * anon_vma->root->mutex.
2611                  */
2612                 if (!__test_and_clear_bit(0, (unsigned long *)
2613                                           &anon_vma->root->head.next))
2614                         BUG();
2615                 anon_vma_unlock(anon_vma);
2616         }
2617 }
2618
2619 static void vm_unlock_mapping(struct address_space *mapping)
2620 {
2621         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2622                 /*
2623                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2624                  * because we hold the mm_all_locks_mutex.
2625                  */
2626                 mutex_unlock(&mapping->i_mmap_mutex);
2627                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2628                                         &mapping->flags))
2629                         BUG();
2630         }
2631 }
2632
2633 /*
2634  * The mmap_sem cannot be released by the caller until
2635  * mm_drop_all_locks() returns.
2636  */
2637 void mm_drop_all_locks(struct mm_struct *mm)
2638 {
2639         struct vm_area_struct *vma;
2640         struct anon_vma_chain *avc;
2641
2642         BUG_ON(down_read_trylock(&mm->mmap_sem));
2643         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2644
2645         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2646                 if (vma->anon_vma)
2647                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2648                                 vm_unlock_anon_vma(avc->anon_vma);
2649                 if (vma->vm_file && vma->vm_file->f_mapping)
2650                         vm_unlock_mapping(vma->vm_file->f_mapping);
2651         }
2652
2653         mutex_unlock(&mm_all_locks_mutex);
2654 }
2655
2656 /*
2657  * initialise the VMA slab
2658  */
2659 void __init mmap_init(void)
2660 {
2661         int ret;
2662
2663         ret = percpu_counter_init(&vm_committed_as, 0);
2664         VM_BUG_ON(ret);
2665 }