mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
[pandora-kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (task->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, task->rss_stat.count[i]);
135                         task->rss_stat.count[i] = 0;
136                 }
137         }
138         task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165         long val = 0;
166
167         /*
168          * Don't use task->mm here...for avoiding to use task_get_mm()..
169          * The caller must guarantee task->mm is not invalid.
170          */
171         val = atomic_long_read(&mm->rss_stat.count[member]);
172         /*
173          * counter is updated in asynchronous manner and may go to minus.
174          * But it's never be expected number for users.
175          */
176         if (val < 0)
177                 return 0;
178         return (unsigned long)val;
179 }
180
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183         __sync_task_rss_stat(task, mm);
184 }
185 #else /* SPLIT_RSS_COUNTING */
186
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193
194 #endif /* SPLIT_RSS_COUNTING */
195
196 #ifdef HAVE_GENERIC_MMU_GATHER
197
198 static int tlb_next_batch(struct mmu_gather *tlb)
199 {
200         struct mmu_gather_batch *batch;
201
202         batch = tlb->active;
203         if (batch->next) {
204                 tlb->active = batch->next;
205                 return 1;
206         }
207
208         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209         if (!batch)
210                 return 0;
211
212         batch->next = NULL;
213         batch->nr   = 0;
214         batch->max  = MAX_GATHER_BATCH;
215
216         tlb->active->next = batch;
217         tlb->active = batch;
218
219         return 1;
220 }
221
222 /* tlb_gather_mmu
223  *      Called to initialize an (on-stack) mmu_gather structure for page-table
224  *      tear-down from @mm. The @fullmm argument is used when @mm is without
225  *      users and we're going to destroy the full address space (exit/execve).
226  */
227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
228 {
229         tlb->mm = mm;
230
231         tlb->fullmm     = fullmm;
232         tlb->need_flush = 0;
233         tlb->fast_mode  = (num_possible_cpus() == 1);
234         tlb->local.next = NULL;
235         tlb->local.nr   = 0;
236         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
237         tlb->active     = &tlb->local;
238
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240         tlb->batch = NULL;
241 #endif
242 }
243
244 void tlb_flush_mmu(struct mmu_gather *tlb)
245 {
246         struct mmu_gather_batch *batch;
247
248         if (!tlb->need_flush)
249                 return;
250         tlb->need_flush = 0;
251         tlb_flush(tlb);
252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
253         tlb_table_flush(tlb);
254 #endif
255
256         if (tlb_fast_mode(tlb))
257                 return;
258
259         for (batch = &tlb->local; batch; batch = batch->next) {
260                 free_pages_and_swap_cache(batch->pages, batch->nr);
261                 batch->nr = 0;
262         }
263         tlb->active = &tlb->local;
264 }
265
266 /* tlb_finish_mmu
267  *      Called at the end of the shootdown operation to free up any resources
268  *      that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272         struct mmu_gather_batch *batch, *next;
273
274         tlb_flush_mmu(tlb);
275
276         /* keep the page table cache within bounds */
277         check_pgt_cache();
278
279         for (batch = tlb->local.next; batch; batch = next) {
280                 next = batch->next;
281                 free_pages((unsigned long)batch, 0);
282         }
283         tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *      handling the additional races in SMP caused by other CPUs caching valid
289  *      mappings in their TLBs. Returns the number of free page slots left.
290  *      When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294         struct mmu_gather_batch *batch;
295
296         tlb->need_flush = 1;
297
298         if (tlb_fast_mode(tlb)) {
299                 free_page_and_swap_cache(page);
300                 return 1; /* avoid calling tlb_flush_mmu() */
301         }
302
303         batch = tlb->active;
304         batch->pages[batch->nr++] = page;
305         if (batch->nr == batch->max) {
306                 if (!tlb_next_batch(tlb))
307                         return 0;
308                 batch = tlb->active;
309         }
310         VM_BUG_ON(batch->nr > batch->max);
311
312         return batch->max - batch->nr;
313 }
314
315 #endif /* HAVE_GENERIC_MMU_GATHER */
316
317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
318
319 /*
320  * See the comment near struct mmu_table_batch.
321  */
322
323 static void tlb_remove_table_smp_sync(void *arg)
324 {
325         /* Simply deliver the interrupt */
326 }
327
328 static void tlb_remove_table_one(void *table)
329 {
330         /*
331          * This isn't an RCU grace period and hence the page-tables cannot be
332          * assumed to be actually RCU-freed.
333          *
334          * It is however sufficient for software page-table walkers that rely on
335          * IRQ disabling. See the comment near struct mmu_table_batch.
336          */
337         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
338         __tlb_remove_table(table);
339 }
340
341 static void tlb_remove_table_rcu(struct rcu_head *head)
342 {
343         struct mmu_table_batch *batch;
344         int i;
345
346         batch = container_of(head, struct mmu_table_batch, rcu);
347
348         for (i = 0; i < batch->nr; i++)
349                 __tlb_remove_table(batch->tables[i]);
350
351         free_page((unsigned long)batch);
352 }
353
354 void tlb_table_flush(struct mmu_gather *tlb)
355 {
356         struct mmu_table_batch **batch = &tlb->batch;
357
358         if (*batch) {
359                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
360                 *batch = NULL;
361         }
362 }
363
364 void tlb_remove_table(struct mmu_gather *tlb, void *table)
365 {
366         struct mmu_table_batch **batch = &tlb->batch;
367
368         tlb->need_flush = 1;
369
370         /*
371          * When there's less then two users of this mm there cannot be a
372          * concurrent page-table walk.
373          */
374         if (atomic_read(&tlb->mm->mm_users) < 2) {
375                 __tlb_remove_table(table);
376                 return;
377         }
378
379         if (*batch == NULL) {
380                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
381                 if (*batch == NULL) {
382                         tlb_remove_table_one(table);
383                         return;
384                 }
385                 (*batch)->nr = 0;
386         }
387         (*batch)->tables[(*batch)->nr++] = table;
388         if ((*batch)->nr == MAX_TABLE_BATCH)
389                 tlb_table_flush(tlb);
390 }
391
392 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
393
394 /*
395  * If a p?d_bad entry is found while walking page tables, report
396  * the error, before resetting entry to p?d_none.  Usually (but
397  * very seldom) called out from the p?d_none_or_clear_bad macros.
398  */
399
400 void pgd_clear_bad(pgd_t *pgd)
401 {
402         pgd_ERROR(*pgd);
403         pgd_clear(pgd);
404 }
405
406 void pud_clear_bad(pud_t *pud)
407 {
408         pud_ERROR(*pud);
409         pud_clear(pud);
410 }
411
412 void pmd_clear_bad(pmd_t *pmd)
413 {
414         pmd_ERROR(*pmd);
415         pmd_clear(pmd);
416 }
417
418 /*
419  * Note: this doesn't free the actual pages themselves. That
420  * has been handled earlier when unmapping all the memory regions.
421  */
422 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
423                            unsigned long addr)
424 {
425         pgtable_t token = pmd_pgtable(*pmd);
426         pmd_clear(pmd);
427         pte_free_tlb(tlb, token, addr);
428         tlb->mm->nr_ptes--;
429 }
430
431 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
432                                 unsigned long addr, unsigned long end,
433                                 unsigned long floor, unsigned long ceiling)
434 {
435         pmd_t *pmd;
436         unsigned long next;
437         unsigned long start;
438
439         start = addr;
440         pmd = pmd_offset(pud, addr);
441         do {
442                 next = pmd_addr_end(addr, end);
443                 if (pmd_none_or_clear_bad(pmd))
444                         continue;
445                 free_pte_range(tlb, pmd, addr);
446         } while (pmd++, addr = next, addr != end);
447
448         start &= PUD_MASK;
449         if (start < floor)
450                 return;
451         if (ceiling) {
452                 ceiling &= PUD_MASK;
453                 if (!ceiling)
454                         return;
455         }
456         if (end - 1 > ceiling - 1)
457                 return;
458
459         pmd = pmd_offset(pud, start);
460         pud_clear(pud);
461         pmd_free_tlb(tlb, pmd, start);
462 }
463
464 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
465                                 unsigned long addr, unsigned long end,
466                                 unsigned long floor, unsigned long ceiling)
467 {
468         pud_t *pud;
469         unsigned long next;
470         unsigned long start;
471
472         start = addr;
473         pud = pud_offset(pgd, addr);
474         do {
475                 next = pud_addr_end(addr, end);
476                 if (pud_none_or_clear_bad(pud))
477                         continue;
478                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
479         } while (pud++, addr = next, addr != end);
480
481         start &= PGDIR_MASK;
482         if (start < floor)
483                 return;
484         if (ceiling) {
485                 ceiling &= PGDIR_MASK;
486                 if (!ceiling)
487                         return;
488         }
489         if (end - 1 > ceiling - 1)
490                 return;
491
492         pud = pud_offset(pgd, start);
493         pgd_clear(pgd);
494         pud_free_tlb(tlb, pud, start);
495 }
496
497 /*
498  * This function frees user-level page tables of a process.
499  *
500  * Must be called with pagetable lock held.
501  */
502 void free_pgd_range(struct mmu_gather *tlb,
503                         unsigned long addr, unsigned long end,
504                         unsigned long floor, unsigned long ceiling)
505 {
506         pgd_t *pgd;
507         unsigned long next;
508
509         /*
510          * The next few lines have given us lots of grief...
511          *
512          * Why are we testing PMD* at this top level?  Because often
513          * there will be no work to do at all, and we'd prefer not to
514          * go all the way down to the bottom just to discover that.
515          *
516          * Why all these "- 1"s?  Because 0 represents both the bottom
517          * of the address space and the top of it (using -1 for the
518          * top wouldn't help much: the masks would do the wrong thing).
519          * The rule is that addr 0 and floor 0 refer to the bottom of
520          * the address space, but end 0 and ceiling 0 refer to the top
521          * Comparisons need to use "end - 1" and "ceiling - 1" (though
522          * that end 0 case should be mythical).
523          *
524          * Wherever addr is brought up or ceiling brought down, we must
525          * be careful to reject "the opposite 0" before it confuses the
526          * subsequent tests.  But what about where end is brought down
527          * by PMD_SIZE below? no, end can't go down to 0 there.
528          *
529          * Whereas we round start (addr) and ceiling down, by different
530          * masks at different levels, in order to test whether a table
531          * now has no other vmas using it, so can be freed, we don't
532          * bother to round floor or end up - the tests don't need that.
533          */
534
535         addr &= PMD_MASK;
536         if (addr < floor) {
537                 addr += PMD_SIZE;
538                 if (!addr)
539                         return;
540         }
541         if (ceiling) {
542                 ceiling &= PMD_MASK;
543                 if (!ceiling)
544                         return;
545         }
546         if (end - 1 > ceiling - 1)
547                 end -= PMD_SIZE;
548         if (addr > end - 1)
549                 return;
550
551         pgd = pgd_offset(tlb->mm, addr);
552         do {
553                 next = pgd_addr_end(addr, end);
554                 if (pgd_none_or_clear_bad(pgd))
555                         continue;
556                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
557         } while (pgd++, addr = next, addr != end);
558 }
559
560 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
561                 unsigned long floor, unsigned long ceiling)
562 {
563         while (vma) {
564                 struct vm_area_struct *next = vma->vm_next;
565                 unsigned long addr = vma->vm_start;
566
567                 /*
568                  * Hide vma from rmap and truncate_pagecache before freeing
569                  * pgtables
570                  */
571                 unlink_anon_vmas(vma);
572                 unlink_file_vma(vma);
573
574                 if (is_vm_hugetlb_page(vma)) {
575                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
576                                 floor, next? next->vm_start: ceiling);
577                 } else {
578                         /*
579                          * Optimization: gather nearby vmas into one call down
580                          */
581                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
582                                && !is_vm_hugetlb_page(next)) {
583                                 vma = next;
584                                 next = vma->vm_next;
585                                 unlink_anon_vmas(vma);
586                                 unlink_file_vma(vma);
587                         }
588                         free_pgd_range(tlb, addr, vma->vm_end,
589                                 floor, next? next->vm_start: ceiling);
590                 }
591                 vma = next;
592         }
593 }
594
595 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
596                 pmd_t *pmd, unsigned long address)
597 {
598         pgtable_t new = pte_alloc_one(mm, address);
599         int wait_split_huge_page;
600         if (!new)
601                 return -ENOMEM;
602
603         /*
604          * Ensure all pte setup (eg. pte page lock and page clearing) are
605          * visible before the pte is made visible to other CPUs by being
606          * put into page tables.
607          *
608          * The other side of the story is the pointer chasing in the page
609          * table walking code (when walking the page table without locking;
610          * ie. most of the time). Fortunately, these data accesses consist
611          * of a chain of data-dependent loads, meaning most CPUs (alpha
612          * being the notable exception) will already guarantee loads are
613          * seen in-order. See the alpha page table accessors for the
614          * smp_read_barrier_depends() barriers in page table walking code.
615          */
616         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
617
618         spin_lock(&mm->page_table_lock);
619         wait_split_huge_page = 0;
620         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
621                 mm->nr_ptes++;
622                 pmd_populate(mm, pmd, new);
623                 new = NULL;
624         } else if (unlikely(pmd_trans_splitting(*pmd)))
625                 wait_split_huge_page = 1;
626         spin_unlock(&mm->page_table_lock);
627         if (new)
628                 pte_free(mm, new);
629         if (wait_split_huge_page)
630                 wait_split_huge_page(vma->anon_vma, pmd);
631         return 0;
632 }
633
634 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
635 {
636         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
637         if (!new)
638                 return -ENOMEM;
639
640         smp_wmb(); /* See comment in __pte_alloc */
641
642         spin_lock(&init_mm.page_table_lock);
643         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
644                 pmd_populate_kernel(&init_mm, pmd, new);
645                 new = NULL;
646         } else
647                 VM_BUG_ON(pmd_trans_splitting(*pmd));
648         spin_unlock(&init_mm.page_table_lock);
649         if (new)
650                 pte_free_kernel(&init_mm, new);
651         return 0;
652 }
653
654 static inline void init_rss_vec(int *rss)
655 {
656         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
657 }
658
659 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
660 {
661         int i;
662
663         if (current->mm == mm)
664                 sync_mm_rss(current, mm);
665         for (i = 0; i < NR_MM_COUNTERS; i++)
666                 if (rss[i])
667                         add_mm_counter(mm, i, rss[i]);
668 }
669
670 /*
671  * This function is called to print an error when a bad pte
672  * is found. For example, we might have a PFN-mapped pte in
673  * a region that doesn't allow it.
674  *
675  * The calling function must still handle the error.
676  */
677 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
678                           pte_t pte, struct page *page)
679 {
680         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
681         pud_t *pud = pud_offset(pgd, addr);
682         pmd_t *pmd = pmd_offset(pud, addr);
683         struct address_space *mapping;
684         pgoff_t index;
685         static unsigned long resume;
686         static unsigned long nr_shown;
687         static unsigned long nr_unshown;
688
689         /*
690          * Allow a burst of 60 reports, then keep quiet for that minute;
691          * or allow a steady drip of one report per second.
692          */
693         if (nr_shown == 60) {
694                 if (time_before(jiffies, resume)) {
695                         nr_unshown++;
696                         return;
697                 }
698                 if (nr_unshown) {
699                         printk(KERN_ALERT
700                                 "BUG: Bad page map: %lu messages suppressed\n",
701                                 nr_unshown);
702                         nr_unshown = 0;
703                 }
704                 nr_shown = 0;
705         }
706         if (nr_shown++ == 0)
707                 resume = jiffies + 60 * HZ;
708
709         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
710         index = linear_page_index(vma, addr);
711
712         printk(KERN_ALERT
713                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
714                 current->comm,
715                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
716         if (page)
717                 dump_page(page);
718         printk(KERN_ALERT
719                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
720                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
721         /*
722          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
723          */
724         if (vma->vm_ops)
725                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
726                                 (unsigned long)vma->vm_ops->fault);
727         if (vma->vm_file && vma->vm_file->f_op)
728                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
729                                 (unsigned long)vma->vm_file->f_op->mmap);
730         dump_stack();
731         add_taint(TAINT_BAD_PAGE);
732 }
733
734 static inline int is_cow_mapping(vm_flags_t flags)
735 {
736         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
737 }
738
739 #ifndef is_zero_pfn
740 static inline int is_zero_pfn(unsigned long pfn)
741 {
742         return pfn == zero_pfn;
743 }
744 #endif
745
746 #ifndef my_zero_pfn
747 static inline unsigned long my_zero_pfn(unsigned long addr)
748 {
749         return zero_pfn;
750 }
751 #endif
752
753 /*
754  * vm_normal_page -- This function gets the "struct page" associated with a pte.
755  *
756  * "Special" mappings do not wish to be associated with a "struct page" (either
757  * it doesn't exist, or it exists but they don't want to touch it). In this
758  * case, NULL is returned here. "Normal" mappings do have a struct page.
759  *
760  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
761  * pte bit, in which case this function is trivial. Secondly, an architecture
762  * may not have a spare pte bit, which requires a more complicated scheme,
763  * described below.
764  *
765  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
766  * special mapping (even if there are underlying and valid "struct pages").
767  * COWed pages of a VM_PFNMAP are always normal.
768  *
769  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
770  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
771  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
772  * mapping will always honor the rule
773  *
774  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
775  *
776  * And for normal mappings this is false.
777  *
778  * This restricts such mappings to be a linear translation from virtual address
779  * to pfn. To get around this restriction, we allow arbitrary mappings so long
780  * as the vma is not a COW mapping; in that case, we know that all ptes are
781  * special (because none can have been COWed).
782  *
783  *
784  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
785  *
786  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
787  * page" backing, however the difference is that _all_ pages with a struct
788  * page (that is, those where pfn_valid is true) are refcounted and considered
789  * normal pages by the VM. The disadvantage is that pages are refcounted
790  * (which can be slower and simply not an option for some PFNMAP users). The
791  * advantage is that we don't have to follow the strict linearity rule of
792  * PFNMAP mappings in order to support COWable mappings.
793  *
794  */
795 #ifdef __HAVE_ARCH_PTE_SPECIAL
796 # define HAVE_PTE_SPECIAL 1
797 #else
798 # define HAVE_PTE_SPECIAL 0
799 #endif
800 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
801                                 pte_t pte)
802 {
803         unsigned long pfn = pte_pfn(pte);
804
805         if (HAVE_PTE_SPECIAL) {
806                 if (likely(!pte_special(pte)))
807                         goto check_pfn;
808                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
809                         return NULL;
810                 if (!is_zero_pfn(pfn))
811                         print_bad_pte(vma, addr, pte, NULL);
812                 return NULL;
813         }
814
815         /* !HAVE_PTE_SPECIAL case follows: */
816
817         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818                 if (vma->vm_flags & VM_MIXEDMAP) {
819                         if (!pfn_valid(pfn))
820                                 return NULL;
821                         goto out;
822                 } else {
823                         unsigned long off;
824                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
825                         if (pfn == vma->vm_pgoff + off)
826                                 return NULL;
827                         if (!is_cow_mapping(vma->vm_flags))
828                                 return NULL;
829                 }
830         }
831
832         if (is_zero_pfn(pfn))
833                 return NULL;
834 check_pfn:
835         if (unlikely(pfn > highest_memmap_pfn)) {
836                 print_bad_pte(vma, addr, pte, NULL);
837                 return NULL;
838         }
839
840         /*
841          * NOTE! We still have PageReserved() pages in the page tables.
842          * eg. VDSO mappings can cause them to exist.
843          */
844 out:
845         return pfn_to_page(pfn);
846 }
847
848 /*
849  * copy one vm_area from one task to the other. Assumes the page tables
850  * already present in the new task to be cleared in the whole range
851  * covered by this vma.
852  */
853
854 static inline unsigned long
855 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
856                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
857                 unsigned long addr, int *rss)
858 {
859         unsigned long vm_flags = vma->vm_flags;
860         pte_t pte = *src_pte;
861         struct page *page;
862
863         /* pte contains position in swap or file, so copy. */
864         if (unlikely(!pte_present(pte))) {
865                 if (!pte_file(pte)) {
866                         swp_entry_t entry = pte_to_swp_entry(pte);
867
868                         if (swap_duplicate(entry) < 0)
869                                 return entry.val;
870
871                         /* make sure dst_mm is on swapoff's mmlist. */
872                         if (unlikely(list_empty(&dst_mm->mmlist))) {
873                                 spin_lock(&mmlist_lock);
874                                 if (list_empty(&dst_mm->mmlist))
875                                         list_add(&dst_mm->mmlist,
876                                                  &src_mm->mmlist);
877                                 spin_unlock(&mmlist_lock);
878                         }
879                         if (likely(!non_swap_entry(entry)))
880                                 rss[MM_SWAPENTS]++;
881                         else if (is_write_migration_entry(entry) &&
882                                         is_cow_mapping(vm_flags)) {
883                                 /*
884                                  * COW mappings require pages in both parent
885                                  * and child to be set to read.
886                                  */
887                                 make_migration_entry_read(&entry);
888                                 pte = swp_entry_to_pte(entry);
889                                 set_pte_at(src_mm, addr, src_pte, pte);
890                         }
891                 }
892                 goto out_set_pte;
893         }
894
895         /*
896          * If it's a COW mapping, write protect it both
897          * in the parent and the child
898          */
899         if (is_cow_mapping(vm_flags)) {
900                 ptep_set_wrprotect(src_mm, addr, src_pte);
901                 pte = pte_wrprotect(pte);
902         }
903
904         /*
905          * If it's a shared mapping, mark it clean in
906          * the child
907          */
908         if (vm_flags & VM_SHARED)
909                 pte = pte_mkclean(pte);
910         pte = pte_mkold(pte);
911
912         page = vm_normal_page(vma, addr, pte);
913         if (page) {
914                 get_page(page);
915                 page_dup_rmap(page);
916                 if (PageAnon(page))
917                         rss[MM_ANONPAGES]++;
918                 else
919                         rss[MM_FILEPAGES]++;
920         }
921
922 out_set_pte:
923         set_pte_at(dst_mm, addr, dst_pte, pte);
924         return 0;
925 }
926
927 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
929                    unsigned long addr, unsigned long end)
930 {
931         pte_t *orig_src_pte, *orig_dst_pte;
932         pte_t *src_pte, *dst_pte;
933         spinlock_t *src_ptl, *dst_ptl;
934         int progress = 0;
935         int rss[NR_MM_COUNTERS];
936         swp_entry_t entry = (swp_entry_t){0};
937
938 again:
939         init_rss_vec(rss);
940
941         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942         if (!dst_pte)
943                 return -ENOMEM;
944         src_pte = pte_offset_map(src_pmd, addr);
945         src_ptl = pte_lockptr(src_mm, src_pmd);
946         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
947         orig_src_pte = src_pte;
948         orig_dst_pte = dst_pte;
949         arch_enter_lazy_mmu_mode();
950
951         do {
952                 /*
953                  * We are holding two locks at this point - either of them
954                  * could generate latencies in another task on another CPU.
955                  */
956                 if (progress >= 32) {
957                         progress = 0;
958                         if (need_resched() ||
959                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
960                                 break;
961                 }
962                 if (pte_none(*src_pte)) {
963                         progress++;
964                         continue;
965                 }
966                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
967                                                         vma, addr, rss);
968                 if (entry.val)
969                         break;
970                 progress += 8;
971         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
972
973         arch_leave_lazy_mmu_mode();
974         spin_unlock(src_ptl);
975         pte_unmap(orig_src_pte);
976         add_mm_rss_vec(dst_mm, rss);
977         pte_unmap_unlock(orig_dst_pte, dst_ptl);
978         cond_resched();
979
980         if (entry.val) {
981                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
982                         return -ENOMEM;
983                 progress = 0;
984         }
985         if (addr != end)
986                 goto again;
987         return 0;
988 }
989
990 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
991                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
992                 unsigned long addr, unsigned long end)
993 {
994         pmd_t *src_pmd, *dst_pmd;
995         unsigned long next;
996
997         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
998         if (!dst_pmd)
999                 return -ENOMEM;
1000         src_pmd = pmd_offset(src_pud, addr);
1001         do {
1002                 next = pmd_addr_end(addr, end);
1003                 if (pmd_trans_huge(*src_pmd)) {
1004                         int err;
1005                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1006                         err = copy_huge_pmd(dst_mm, src_mm,
1007                                             dst_pmd, src_pmd, addr, vma);
1008                         if (err == -ENOMEM)
1009                                 return -ENOMEM;
1010                         if (!err)
1011                                 continue;
1012                         /* fall through */
1013                 }
1014                 if (pmd_none_or_clear_bad(src_pmd))
1015                         continue;
1016                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1017                                                 vma, addr, next))
1018                         return -ENOMEM;
1019         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1020         return 0;
1021 }
1022
1023 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1025                 unsigned long addr, unsigned long end)
1026 {
1027         pud_t *src_pud, *dst_pud;
1028         unsigned long next;
1029
1030         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1031         if (!dst_pud)
1032                 return -ENOMEM;
1033         src_pud = pud_offset(src_pgd, addr);
1034         do {
1035                 next = pud_addr_end(addr, end);
1036                 if (pud_none_or_clear_bad(src_pud))
1037                         continue;
1038                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1039                                                 vma, addr, next))
1040                         return -ENOMEM;
1041         } while (dst_pud++, src_pud++, addr = next, addr != end);
1042         return 0;
1043 }
1044
1045 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046                 struct vm_area_struct *vma)
1047 {
1048         pgd_t *src_pgd, *dst_pgd;
1049         unsigned long next;
1050         unsigned long addr = vma->vm_start;
1051         unsigned long end = vma->vm_end;
1052         int ret;
1053
1054         /*
1055          * Don't copy ptes where a page fault will fill them correctly.
1056          * Fork becomes much lighter when there are big shared or private
1057          * readonly mappings. The tradeoff is that copy_page_range is more
1058          * efficient than faulting.
1059          */
1060         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1061                 if (!vma->anon_vma)
1062                         return 0;
1063         }
1064
1065         if (is_vm_hugetlb_page(vma))
1066                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1067
1068         if (unlikely(is_pfn_mapping(vma))) {
1069                 /*
1070                  * We do not free on error cases below as remove_vma
1071                  * gets called on error from higher level routine
1072                  */
1073                 ret = track_pfn_vma_copy(vma);
1074                 if (ret)
1075                         return ret;
1076         }
1077
1078         /*
1079          * We need to invalidate the secondary MMU mappings only when
1080          * there could be a permission downgrade on the ptes of the
1081          * parent mm. And a permission downgrade will only happen if
1082          * is_cow_mapping() returns true.
1083          */
1084         if (is_cow_mapping(vma->vm_flags))
1085                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1086
1087         ret = 0;
1088         dst_pgd = pgd_offset(dst_mm, addr);
1089         src_pgd = pgd_offset(src_mm, addr);
1090         do {
1091                 next = pgd_addr_end(addr, end);
1092                 if (pgd_none_or_clear_bad(src_pgd))
1093                         continue;
1094                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1095                                             vma, addr, next))) {
1096                         ret = -ENOMEM;
1097                         break;
1098                 }
1099         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1100
1101         if (is_cow_mapping(vma->vm_flags))
1102                 mmu_notifier_invalidate_range_end(src_mm,
1103                                                   vma->vm_start, end);
1104         return ret;
1105 }
1106
1107 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1108                                 struct vm_area_struct *vma, pmd_t *pmd,
1109                                 unsigned long addr, unsigned long end,
1110                                 struct zap_details *details)
1111 {
1112         struct mm_struct *mm = tlb->mm;
1113         int force_flush = 0;
1114         int rss[NR_MM_COUNTERS];
1115         spinlock_t *ptl;
1116         pte_t *start_pte;
1117         pte_t *pte;
1118
1119 again:
1120         init_rss_vec(rss);
1121         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1122         pte = start_pte;
1123         arch_enter_lazy_mmu_mode();
1124         do {
1125                 pte_t ptent = *pte;
1126                 if (pte_none(ptent)) {
1127                         continue;
1128                 }
1129
1130                 if (pte_present(ptent)) {
1131                         struct page *page;
1132
1133                         page = vm_normal_page(vma, addr, ptent);
1134                         if (unlikely(details) && page) {
1135                                 /*
1136                                  * unmap_shared_mapping_pages() wants to
1137                                  * invalidate cache without truncating:
1138                                  * unmap shared but keep private pages.
1139                                  */
1140                                 if (details->check_mapping &&
1141                                     details->check_mapping != page->mapping)
1142                                         continue;
1143                                 /*
1144                                  * Each page->index must be checked when
1145                                  * invalidating or truncating nonlinear.
1146                                  */
1147                                 if (details->nonlinear_vma &&
1148                                     (page->index < details->first_index ||
1149                                      page->index > details->last_index))
1150                                         continue;
1151                         }
1152                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1153                                                         tlb->fullmm);
1154                         tlb_remove_tlb_entry(tlb, pte, addr);
1155                         if (unlikely(!page))
1156                                 continue;
1157                         if (unlikely(details) && details->nonlinear_vma
1158                             && linear_page_index(details->nonlinear_vma,
1159                                                 addr) != page->index)
1160                                 set_pte_at(mm, addr, pte,
1161                                            pgoff_to_pte(page->index));
1162                         if (PageAnon(page))
1163                                 rss[MM_ANONPAGES]--;
1164                         else {
1165                                 if (pte_dirty(ptent))
1166                                         set_page_dirty(page);
1167                                 if (pte_young(ptent) &&
1168                                     likely(!VM_SequentialReadHint(vma)))
1169                                         mark_page_accessed(page);
1170                                 rss[MM_FILEPAGES]--;
1171                         }
1172                         page_remove_rmap(page);
1173                         if (unlikely(page_mapcount(page) < 0))
1174                                 print_bad_pte(vma, addr, ptent, page);
1175                         force_flush = !__tlb_remove_page(tlb, page);
1176                         if (force_flush)
1177                                 break;
1178                         continue;
1179                 }
1180                 /*
1181                  * If details->check_mapping, we leave swap entries;
1182                  * if details->nonlinear_vma, we leave file entries.
1183                  */
1184                 if (unlikely(details))
1185                         continue;
1186                 if (pte_file(ptent)) {
1187                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1188                                 print_bad_pte(vma, addr, ptent, NULL);
1189                 } else {
1190                         swp_entry_t entry = pte_to_swp_entry(ptent);
1191
1192                         if (!non_swap_entry(entry))
1193                                 rss[MM_SWAPENTS]--;
1194                         if (unlikely(!free_swap_and_cache(entry)))
1195                                 print_bad_pte(vma, addr, ptent, NULL);
1196                 }
1197                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198         } while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200         add_mm_rss_vec(mm, rss);
1201         arch_leave_lazy_mmu_mode();
1202         pte_unmap_unlock(start_pte, ptl);
1203
1204         /*
1205          * mmu_gather ran out of room to batch pages, we break out of
1206          * the PTE lock to avoid doing the potential expensive TLB invalidate
1207          * and page-free while holding it.
1208          */
1209         if (force_flush) {
1210                 force_flush = 0;
1211                 tlb_flush_mmu(tlb);
1212                 if (addr != end)
1213                         goto again;
1214         }
1215
1216         return addr;
1217 }
1218
1219 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220                                 struct vm_area_struct *vma, pud_t *pud,
1221                                 unsigned long addr, unsigned long end,
1222                                 struct zap_details *details)
1223 {
1224         pmd_t *pmd;
1225         unsigned long next;
1226
1227         pmd = pmd_offset(pud, addr);
1228         do {
1229                 next = pmd_addr_end(addr, end);
1230                 if (pmd_trans_huge(*pmd)) {
1231                         if (next - addr != HPAGE_PMD_SIZE) {
1232                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1233                                 split_huge_page_pmd(vma->vm_mm, pmd);
1234                         } else if (zap_huge_pmd(tlb, vma, pmd))
1235                                 goto next;
1236                         /* fall through */
1237                 }
1238                 /*
1239                  * Here there can be other concurrent MADV_DONTNEED or
1240                  * trans huge page faults running, and if the pmd is
1241                  * none or trans huge it can change under us. This is
1242                  * because MADV_DONTNEED holds the mmap_sem in read
1243                  * mode.
1244                  */
1245                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1246                         goto next;
1247                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1248 next:
1249                 cond_resched();
1250         } while (pmd++, addr = next, addr != end);
1251
1252         return addr;
1253 }
1254
1255 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1256                                 struct vm_area_struct *vma, pgd_t *pgd,
1257                                 unsigned long addr, unsigned long end,
1258                                 struct zap_details *details)
1259 {
1260         pud_t *pud;
1261         unsigned long next;
1262
1263         pud = pud_offset(pgd, addr);
1264         do {
1265                 next = pud_addr_end(addr, end);
1266                 if (pud_none_or_clear_bad(pud))
1267                         continue;
1268                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1269         } while (pud++, addr = next, addr != end);
1270
1271         return addr;
1272 }
1273
1274 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1275                                 struct vm_area_struct *vma,
1276                                 unsigned long addr, unsigned long end,
1277                                 struct zap_details *details)
1278 {
1279         pgd_t *pgd;
1280         unsigned long next;
1281
1282         if (details && !details->check_mapping && !details->nonlinear_vma)
1283                 details = NULL;
1284
1285         BUG_ON(addr >= end);
1286         mem_cgroup_uncharge_start();
1287         tlb_start_vma(tlb, vma);
1288         pgd = pgd_offset(vma->vm_mm, addr);
1289         do {
1290                 next = pgd_addr_end(addr, end);
1291                 if (pgd_none_or_clear_bad(pgd))
1292                         continue;
1293                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1294         } while (pgd++, addr = next, addr != end);
1295         tlb_end_vma(tlb, vma);
1296         mem_cgroup_uncharge_end();
1297
1298         return addr;
1299 }
1300
1301 /**
1302  * unmap_vmas - unmap a range of memory covered by a list of vma's
1303  * @tlb: address of the caller's struct mmu_gather
1304  * @vma: the starting vma
1305  * @start_addr: virtual address at which to start unmapping
1306  * @end_addr: virtual address at which to end unmapping
1307  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1308  * @details: details of nonlinear truncation or shared cache invalidation
1309  *
1310  * Returns the end address of the unmapping (restart addr if interrupted).
1311  *
1312  * Unmap all pages in the vma list.
1313  *
1314  * Only addresses between `start' and `end' will be unmapped.
1315  *
1316  * The VMA list must be sorted in ascending virtual address order.
1317  *
1318  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1319  * range after unmap_vmas() returns.  So the only responsibility here is to
1320  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1321  * drops the lock and schedules.
1322  */
1323 unsigned long unmap_vmas(struct mmu_gather *tlb,
1324                 struct vm_area_struct *vma, unsigned long start_addr,
1325                 unsigned long end_addr, unsigned long *nr_accounted,
1326                 struct zap_details *details)
1327 {
1328         unsigned long start = start_addr;
1329         struct mm_struct *mm = vma->vm_mm;
1330
1331         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1332         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1333                 unsigned long end;
1334
1335                 start = max(vma->vm_start, start_addr);
1336                 if (start >= vma->vm_end)
1337                         continue;
1338                 end = min(vma->vm_end, end_addr);
1339                 if (end <= vma->vm_start)
1340                         continue;
1341
1342                 if (vma->vm_flags & VM_ACCOUNT)
1343                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1344
1345                 if (unlikely(is_pfn_mapping(vma)))
1346                         untrack_pfn_vma(vma, 0, 0);
1347
1348                 while (start != end) {
1349                         if (unlikely(is_vm_hugetlb_page(vma))) {
1350                                 /*
1351                                  * It is undesirable to test vma->vm_file as it
1352                                  * should be non-null for valid hugetlb area.
1353                                  * However, vm_file will be NULL in the error
1354                                  * cleanup path of do_mmap_pgoff. When
1355                                  * hugetlbfs ->mmap method fails,
1356                                  * do_mmap_pgoff() nullifies vma->vm_file
1357                                  * before calling this function to clean up.
1358                                  * Since no pte has actually been setup, it is
1359                                  * safe to do nothing in this case.
1360                                  */
1361                                 if (vma->vm_file)
1362                                         unmap_hugepage_range(vma, start, end, NULL);
1363
1364                                 start = end;
1365                         } else
1366                                 start = unmap_page_range(tlb, vma, start, end, details);
1367                 }
1368         }
1369
1370         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1371         return start;   /* which is now the end (or restart) address */
1372 }
1373
1374 /**
1375  * zap_page_range - remove user pages in a given range
1376  * @vma: vm_area_struct holding the applicable pages
1377  * @address: starting address of pages to zap
1378  * @size: number of bytes to zap
1379  * @details: details of nonlinear truncation or shared cache invalidation
1380  */
1381 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1382                 unsigned long size, struct zap_details *details)
1383 {
1384         struct mm_struct *mm = vma->vm_mm;
1385         struct mmu_gather tlb;
1386         unsigned long end = address + size;
1387         unsigned long nr_accounted = 0;
1388
1389         lru_add_drain();
1390         tlb_gather_mmu(&tlb, mm, 0);
1391         update_hiwater_rss(mm);
1392         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1393         tlb_finish_mmu(&tlb, address, end);
1394         return end;
1395 }
1396
1397 /**
1398  * zap_vma_ptes - remove ptes mapping the vma
1399  * @vma: vm_area_struct holding ptes to be zapped
1400  * @address: starting address of pages to zap
1401  * @size: number of bytes to zap
1402  *
1403  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1404  *
1405  * The entire address range must be fully contained within the vma.
1406  *
1407  * Returns 0 if successful.
1408  */
1409 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1410                 unsigned long size)
1411 {
1412         if (address < vma->vm_start || address + size > vma->vm_end ||
1413                         !(vma->vm_flags & VM_PFNMAP))
1414                 return -1;
1415         zap_page_range(vma, address, size, NULL);
1416         return 0;
1417 }
1418 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419
1420 /**
1421  * follow_page - look up a page descriptor from a user-virtual address
1422  * @vma: vm_area_struct mapping @address
1423  * @address: virtual address to look up
1424  * @flags: flags modifying lookup behaviour
1425  *
1426  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1427  *
1428  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1429  * an error pointer if there is a mapping to something not represented
1430  * by a page descriptor (see also vm_normal_page()).
1431  */
1432 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1433                         unsigned int flags)
1434 {
1435         pgd_t *pgd;
1436         pud_t *pud;
1437         pmd_t *pmd;
1438         pte_t *ptep, pte;
1439         spinlock_t *ptl;
1440         struct page *page;
1441         struct mm_struct *mm = vma->vm_mm;
1442
1443         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1444         if (!IS_ERR(page)) {
1445                 BUG_ON(flags & FOLL_GET);
1446                 goto out;
1447         }
1448
1449         page = NULL;
1450         pgd = pgd_offset(mm, address);
1451         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1452                 goto no_page_table;
1453
1454         pud = pud_offset(pgd, address);
1455         if (pud_none(*pud))
1456                 goto no_page_table;
1457         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1458                 BUG_ON(flags & FOLL_GET);
1459                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1460                 goto out;
1461         }
1462         if (unlikely(pud_bad(*pud)))
1463                 goto no_page_table;
1464
1465         pmd = pmd_offset(pud, address);
1466         if (pmd_none(*pmd))
1467                 goto no_page_table;
1468         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1469                 BUG_ON(flags & FOLL_GET);
1470                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1471                 goto out;
1472         }
1473         if (pmd_trans_huge(*pmd)) {
1474                 if (flags & FOLL_SPLIT) {
1475                         split_huge_page_pmd(mm, pmd);
1476                         goto split_fallthrough;
1477                 }
1478                 spin_lock(&mm->page_table_lock);
1479                 if (likely(pmd_trans_huge(*pmd))) {
1480                         if (unlikely(pmd_trans_splitting(*pmd))) {
1481                                 spin_unlock(&mm->page_table_lock);
1482                                 wait_split_huge_page(vma->anon_vma, pmd);
1483                         } else {
1484                                 page = follow_trans_huge_pmd(mm, address,
1485                                                              pmd, flags);
1486                                 spin_unlock(&mm->page_table_lock);
1487                                 goto out;
1488                         }
1489                 } else
1490                         spin_unlock(&mm->page_table_lock);
1491                 /* fall through */
1492         }
1493 split_fallthrough:
1494         if (unlikely(pmd_bad(*pmd)))
1495                 goto no_page_table;
1496
1497         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1498
1499         pte = *ptep;
1500         if (!pte_present(pte))
1501                 goto no_page;
1502         if ((flags & FOLL_WRITE) && !pte_write(pte))
1503                 goto unlock;
1504
1505         page = vm_normal_page(vma, address, pte);
1506         if (unlikely(!page)) {
1507                 if ((flags & FOLL_DUMP) ||
1508                     !is_zero_pfn(pte_pfn(pte)))
1509                         goto bad_page;
1510                 page = pte_page(pte);
1511         }
1512
1513         if (flags & FOLL_GET)
1514                 get_page_foll(page);
1515         if (flags & FOLL_TOUCH) {
1516                 if ((flags & FOLL_WRITE) &&
1517                     !pte_dirty(pte) && !PageDirty(page))
1518                         set_page_dirty(page);
1519                 /*
1520                  * pte_mkyoung() would be more correct here, but atomic care
1521                  * is needed to avoid losing the dirty bit: it is easier to use
1522                  * mark_page_accessed().
1523                  */
1524                 mark_page_accessed(page);
1525         }
1526         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1527                 /*
1528                  * The preliminary mapping check is mainly to avoid the
1529                  * pointless overhead of lock_page on the ZERO_PAGE
1530                  * which might bounce very badly if there is contention.
1531                  *
1532                  * If the page is already locked, we don't need to
1533                  * handle it now - vmscan will handle it later if and
1534                  * when it attempts to reclaim the page.
1535                  */
1536                 if (page->mapping && trylock_page(page)) {
1537                         lru_add_drain();  /* push cached pages to LRU */
1538                         /*
1539                          * Because we lock page here and migration is
1540                          * blocked by the pte's page reference, we need
1541                          * only check for file-cache page truncation.
1542                          */
1543                         if (page->mapping)
1544                                 mlock_vma_page(page);
1545                         unlock_page(page);
1546                 }
1547         }
1548 unlock:
1549         pte_unmap_unlock(ptep, ptl);
1550 out:
1551         return page;
1552
1553 bad_page:
1554         pte_unmap_unlock(ptep, ptl);
1555         return ERR_PTR(-EFAULT);
1556
1557 no_page:
1558         pte_unmap_unlock(ptep, ptl);
1559         if (!pte_none(pte))
1560                 return page;
1561
1562 no_page_table:
1563         /*
1564          * When core dumping an enormous anonymous area that nobody
1565          * has touched so far, we don't want to allocate unnecessary pages or
1566          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1567          * then get_dump_page() will return NULL to leave a hole in the dump.
1568          * But we can only make this optimization where a hole would surely
1569          * be zero-filled if handle_mm_fault() actually did handle it.
1570          */
1571         if ((flags & FOLL_DUMP) &&
1572             (!vma->vm_ops || !vma->vm_ops->fault))
1573                 return ERR_PTR(-EFAULT);
1574         return page;
1575 }
1576
1577 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1578 {
1579         return stack_guard_page_start(vma, addr) ||
1580                stack_guard_page_end(vma, addr+PAGE_SIZE);
1581 }
1582
1583 /**
1584  * __get_user_pages() - pin user pages in memory
1585  * @tsk:        task_struct of target task
1586  * @mm:         mm_struct of target mm
1587  * @start:      starting user address
1588  * @nr_pages:   number of pages from start to pin
1589  * @gup_flags:  flags modifying pin behaviour
1590  * @pages:      array that receives pointers to the pages pinned.
1591  *              Should be at least nr_pages long. Or NULL, if caller
1592  *              only intends to ensure the pages are faulted in.
1593  * @vmas:       array of pointers to vmas corresponding to each page.
1594  *              Or NULL if the caller does not require them.
1595  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1596  *
1597  * Returns number of pages pinned. This may be fewer than the number
1598  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1599  * were pinned, returns -errno. Each page returned must be released
1600  * with a put_page() call when it is finished with. vmas will only
1601  * remain valid while mmap_sem is held.
1602  *
1603  * Must be called with mmap_sem held for read or write.
1604  *
1605  * __get_user_pages walks a process's page tables and takes a reference to
1606  * each struct page that each user address corresponds to at a given
1607  * instant. That is, it takes the page that would be accessed if a user
1608  * thread accesses the given user virtual address at that instant.
1609  *
1610  * This does not guarantee that the page exists in the user mappings when
1611  * __get_user_pages returns, and there may even be a completely different
1612  * page there in some cases (eg. if mmapped pagecache has been invalidated
1613  * and subsequently re faulted). However it does guarantee that the page
1614  * won't be freed completely. And mostly callers simply care that the page
1615  * contains data that was valid *at some point in time*. Typically, an IO
1616  * or similar operation cannot guarantee anything stronger anyway because
1617  * locks can't be held over the syscall boundary.
1618  *
1619  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1620  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1621  * appropriate) must be called after the page is finished with, and
1622  * before put_page is called.
1623  *
1624  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1625  * or mmap_sem contention, and if waiting is needed to pin all pages,
1626  * *@nonblocking will be set to 0.
1627  *
1628  * In most cases, get_user_pages or get_user_pages_fast should be used
1629  * instead of __get_user_pages. __get_user_pages should be used only if
1630  * you need some special @gup_flags.
1631  */
1632 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1633                      unsigned long start, int nr_pages, unsigned int gup_flags,
1634                      struct page **pages, struct vm_area_struct **vmas,
1635                      int *nonblocking)
1636 {
1637         int i;
1638         unsigned long vm_flags;
1639
1640         if (nr_pages <= 0)
1641                 return 0;
1642
1643         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1644
1645         /* 
1646          * Require read or write permissions.
1647          * If FOLL_FORCE is set, we only require the "MAY" flags.
1648          */
1649         vm_flags  = (gup_flags & FOLL_WRITE) ?
1650                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1651         vm_flags &= (gup_flags & FOLL_FORCE) ?
1652                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1653         i = 0;
1654
1655         do {
1656                 struct vm_area_struct *vma;
1657
1658                 vma = find_extend_vma(mm, start);
1659                 if (!vma && in_gate_area(mm, start)) {
1660                         unsigned long pg = start & PAGE_MASK;
1661                         pgd_t *pgd;
1662                         pud_t *pud;
1663                         pmd_t *pmd;
1664                         pte_t *pte;
1665
1666                         /* user gate pages are read-only */
1667                         if (gup_flags & FOLL_WRITE)
1668                                 return i ? : -EFAULT;
1669                         if (pg > TASK_SIZE)
1670                                 pgd = pgd_offset_k(pg);
1671                         else
1672                                 pgd = pgd_offset_gate(mm, pg);
1673                         BUG_ON(pgd_none(*pgd));
1674                         pud = pud_offset(pgd, pg);
1675                         BUG_ON(pud_none(*pud));
1676                         pmd = pmd_offset(pud, pg);
1677                         if (pmd_none(*pmd))
1678                                 return i ? : -EFAULT;
1679                         VM_BUG_ON(pmd_trans_huge(*pmd));
1680                         pte = pte_offset_map(pmd, pg);
1681                         if (pte_none(*pte)) {
1682                                 pte_unmap(pte);
1683                                 return i ? : -EFAULT;
1684                         }
1685                         vma = get_gate_vma(mm);
1686                         if (pages) {
1687                                 struct page *page;
1688
1689                                 page = vm_normal_page(vma, start, *pte);
1690                                 if (!page) {
1691                                         if (!(gup_flags & FOLL_DUMP) &&
1692                                              is_zero_pfn(pte_pfn(*pte)))
1693                                                 page = pte_page(*pte);
1694                                         else {
1695                                                 pte_unmap(pte);
1696                                                 return i ? : -EFAULT;
1697                                         }
1698                                 }
1699                                 pages[i] = page;
1700                                 get_page(page);
1701                         }
1702                         pte_unmap(pte);
1703                         goto next_page;
1704                 }
1705
1706                 if (!vma ||
1707                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1708                     !(vm_flags & vma->vm_flags))
1709                         return i ? : -EFAULT;
1710
1711                 if (is_vm_hugetlb_page(vma)) {
1712                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1713                                         &start, &nr_pages, i, gup_flags);
1714                         continue;
1715                 }
1716
1717                 do {
1718                         struct page *page;
1719                         unsigned int foll_flags = gup_flags;
1720
1721                         /*
1722                          * If we have a pending SIGKILL, don't keep faulting
1723                          * pages and potentially allocating memory.
1724                          */
1725                         if (unlikely(fatal_signal_pending(current)))
1726                                 return i ? i : -ERESTARTSYS;
1727
1728                         cond_resched();
1729                         while (!(page = follow_page(vma, start, foll_flags))) {
1730                                 int ret;
1731                                 unsigned int fault_flags = 0;
1732
1733                                 /* For mlock, just skip the stack guard page. */
1734                                 if (foll_flags & FOLL_MLOCK) {
1735                                         if (stack_guard_page(vma, start))
1736                                                 goto next_page;
1737                                 }
1738                                 if (foll_flags & FOLL_WRITE)
1739                                         fault_flags |= FAULT_FLAG_WRITE;
1740                                 if (nonblocking)
1741                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1742                                 if (foll_flags & FOLL_NOWAIT)
1743                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1744
1745                                 ret = handle_mm_fault(mm, vma, start,
1746                                                         fault_flags);
1747
1748                                 if (ret & VM_FAULT_ERROR) {
1749                                         if (ret & VM_FAULT_OOM)
1750                                                 return i ? i : -ENOMEM;
1751                                         if (ret & (VM_FAULT_HWPOISON |
1752                                                    VM_FAULT_HWPOISON_LARGE)) {
1753                                                 if (i)
1754                                                         return i;
1755                                                 else if (gup_flags & FOLL_HWPOISON)
1756                                                         return -EHWPOISON;
1757                                                 else
1758                                                         return -EFAULT;
1759                                         }
1760                                         if (ret & VM_FAULT_SIGBUS)
1761                                                 return i ? i : -EFAULT;
1762                                         BUG();
1763                                 }
1764
1765                                 if (tsk) {
1766                                         if (ret & VM_FAULT_MAJOR)
1767                                                 tsk->maj_flt++;
1768                                         else
1769                                                 tsk->min_flt++;
1770                                 }
1771
1772                                 if (ret & VM_FAULT_RETRY) {
1773                                         if (nonblocking)
1774                                                 *nonblocking = 0;
1775                                         return i;
1776                                 }
1777
1778                                 /*
1779                                  * The VM_FAULT_WRITE bit tells us that
1780                                  * do_wp_page has broken COW when necessary,
1781                                  * even if maybe_mkwrite decided not to set
1782                                  * pte_write. We can thus safely do subsequent
1783                                  * page lookups as if they were reads. But only
1784                                  * do so when looping for pte_write is futile:
1785                                  * in some cases userspace may also be wanting
1786                                  * to write to the gotten user page, which a
1787                                  * read fault here might prevent (a readonly
1788                                  * page might get reCOWed by userspace write).
1789                                  */
1790                                 if ((ret & VM_FAULT_WRITE) &&
1791                                     !(vma->vm_flags & VM_WRITE))
1792                                         foll_flags &= ~FOLL_WRITE;
1793
1794                                 cond_resched();
1795                         }
1796                         if (IS_ERR(page))
1797                                 return i ? i : PTR_ERR(page);
1798                         if (pages) {
1799                                 pages[i] = page;
1800
1801                                 flush_anon_page(vma, page, start);
1802                                 flush_dcache_page(page);
1803                         }
1804 next_page:
1805                         if (vmas)
1806                                 vmas[i] = vma;
1807                         i++;
1808                         start += PAGE_SIZE;
1809                         nr_pages--;
1810                 } while (nr_pages && start < vma->vm_end);
1811         } while (nr_pages);
1812         return i;
1813 }
1814 EXPORT_SYMBOL(__get_user_pages);
1815
1816 /*
1817  * fixup_user_fault() - manually resolve a user page fault
1818  * @tsk:        the task_struct to use for page fault accounting, or
1819  *              NULL if faults are not to be recorded.
1820  * @mm:         mm_struct of target mm
1821  * @address:    user address
1822  * @fault_flags:flags to pass down to handle_mm_fault()
1823  *
1824  * This is meant to be called in the specific scenario where for locking reasons
1825  * we try to access user memory in atomic context (within a pagefault_disable()
1826  * section), this returns -EFAULT, and we want to resolve the user fault before
1827  * trying again.
1828  *
1829  * Typically this is meant to be used by the futex code.
1830  *
1831  * The main difference with get_user_pages() is that this function will
1832  * unconditionally call handle_mm_fault() which will in turn perform all the
1833  * necessary SW fixup of the dirty and young bits in the PTE, while
1834  * handle_mm_fault() only guarantees to update these in the struct page.
1835  *
1836  * This is important for some architectures where those bits also gate the
1837  * access permission to the page because they are maintained in software.  On
1838  * such architectures, gup() will not be enough to make a subsequent access
1839  * succeed.
1840  *
1841  * This should be called with the mm_sem held for read.
1842  */
1843 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1844                      unsigned long address, unsigned int fault_flags)
1845 {
1846         struct vm_area_struct *vma;
1847         int ret;
1848
1849         vma = find_extend_vma(mm, address);
1850         if (!vma || address < vma->vm_start)
1851                 return -EFAULT;
1852
1853         ret = handle_mm_fault(mm, vma, address, fault_flags);
1854         if (ret & VM_FAULT_ERROR) {
1855                 if (ret & VM_FAULT_OOM)
1856                         return -ENOMEM;
1857                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1858                         return -EHWPOISON;
1859                 if (ret & VM_FAULT_SIGBUS)
1860                         return -EFAULT;
1861                 BUG();
1862         }
1863         if (tsk) {
1864                 if (ret & VM_FAULT_MAJOR)
1865                         tsk->maj_flt++;
1866                 else
1867                         tsk->min_flt++;
1868         }
1869         return 0;
1870 }
1871
1872 /*
1873  * get_user_pages() - pin user pages in memory
1874  * @tsk:        the task_struct to use for page fault accounting, or
1875  *              NULL if faults are not to be recorded.
1876  * @mm:         mm_struct of target mm
1877  * @start:      starting user address
1878  * @nr_pages:   number of pages from start to pin
1879  * @write:      whether pages will be written to by the caller
1880  * @force:      whether to force write access even if user mapping is
1881  *              readonly. This will result in the page being COWed even
1882  *              in MAP_SHARED mappings. You do not want this.
1883  * @pages:      array that receives pointers to the pages pinned.
1884  *              Should be at least nr_pages long. Or NULL, if caller
1885  *              only intends to ensure the pages are faulted in.
1886  * @vmas:       array of pointers to vmas corresponding to each page.
1887  *              Or NULL if the caller does not require them.
1888  *
1889  * Returns number of pages pinned. This may be fewer than the number
1890  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1891  * were pinned, returns -errno. Each page returned must be released
1892  * with a put_page() call when it is finished with. vmas will only
1893  * remain valid while mmap_sem is held.
1894  *
1895  * Must be called with mmap_sem held for read or write.
1896  *
1897  * get_user_pages walks a process's page tables and takes a reference to
1898  * each struct page that each user address corresponds to at a given
1899  * instant. That is, it takes the page that would be accessed if a user
1900  * thread accesses the given user virtual address at that instant.
1901  *
1902  * This does not guarantee that the page exists in the user mappings when
1903  * get_user_pages returns, and there may even be a completely different
1904  * page there in some cases (eg. if mmapped pagecache has been invalidated
1905  * and subsequently re faulted). However it does guarantee that the page
1906  * won't be freed completely. And mostly callers simply care that the page
1907  * contains data that was valid *at some point in time*. Typically, an IO
1908  * or similar operation cannot guarantee anything stronger anyway because
1909  * locks can't be held over the syscall boundary.
1910  *
1911  * If write=0, the page must not be written to. If the page is written to,
1912  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1913  * after the page is finished with, and before put_page is called.
1914  *
1915  * get_user_pages is typically used for fewer-copy IO operations, to get a
1916  * handle on the memory by some means other than accesses via the user virtual
1917  * addresses. The pages may be submitted for DMA to devices or accessed via
1918  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1919  * use the correct cache flushing APIs.
1920  *
1921  * See also get_user_pages_fast, for performance critical applications.
1922  */
1923 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1924                 unsigned long start, int nr_pages, int write, int force,
1925                 struct page **pages, struct vm_area_struct **vmas)
1926 {
1927         int flags = FOLL_TOUCH;
1928
1929         if (pages)
1930                 flags |= FOLL_GET;
1931         if (write)
1932                 flags |= FOLL_WRITE;
1933         if (force)
1934                 flags |= FOLL_FORCE;
1935
1936         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1937                                 NULL);
1938 }
1939 EXPORT_SYMBOL(get_user_pages);
1940
1941 /**
1942  * get_dump_page() - pin user page in memory while writing it to core dump
1943  * @addr: user address
1944  *
1945  * Returns struct page pointer of user page pinned for dump,
1946  * to be freed afterwards by page_cache_release() or put_page().
1947  *
1948  * Returns NULL on any kind of failure - a hole must then be inserted into
1949  * the corefile, to preserve alignment with its headers; and also returns
1950  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1951  * allowing a hole to be left in the corefile to save diskspace.
1952  *
1953  * Called without mmap_sem, but after all other threads have been killed.
1954  */
1955 #ifdef CONFIG_ELF_CORE
1956 struct page *get_dump_page(unsigned long addr)
1957 {
1958         struct vm_area_struct *vma;
1959         struct page *page;
1960
1961         if (__get_user_pages(current, current->mm, addr, 1,
1962                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1963                              NULL) < 1)
1964                 return NULL;
1965         flush_cache_page(vma, addr, page_to_pfn(page));
1966         return page;
1967 }
1968 #endif /* CONFIG_ELF_CORE */
1969
1970 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1971                         spinlock_t **ptl)
1972 {
1973         pgd_t * pgd = pgd_offset(mm, addr);
1974         pud_t * pud = pud_alloc(mm, pgd, addr);
1975         if (pud) {
1976                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1977                 if (pmd) {
1978                         VM_BUG_ON(pmd_trans_huge(*pmd));
1979                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1980                 }
1981         }
1982         return NULL;
1983 }
1984
1985 /*
1986  * This is the old fallback for page remapping.
1987  *
1988  * For historical reasons, it only allows reserved pages. Only
1989  * old drivers should use this, and they needed to mark their
1990  * pages reserved for the old functions anyway.
1991  */
1992 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1993                         struct page *page, pgprot_t prot)
1994 {
1995         struct mm_struct *mm = vma->vm_mm;
1996         int retval;
1997         pte_t *pte;
1998         spinlock_t *ptl;
1999
2000         retval = -EINVAL;
2001         if (PageAnon(page))
2002                 goto out;
2003         retval = -ENOMEM;
2004         flush_dcache_page(page);
2005         pte = get_locked_pte(mm, addr, &ptl);
2006         if (!pte)
2007                 goto out;
2008         retval = -EBUSY;
2009         if (!pte_none(*pte))
2010                 goto out_unlock;
2011
2012         /* Ok, finally just insert the thing.. */
2013         get_page(page);
2014         inc_mm_counter_fast(mm, MM_FILEPAGES);
2015         page_add_file_rmap(page);
2016         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2017
2018         retval = 0;
2019         pte_unmap_unlock(pte, ptl);
2020         return retval;
2021 out_unlock:
2022         pte_unmap_unlock(pte, ptl);
2023 out:
2024         return retval;
2025 }
2026
2027 /**
2028  * vm_insert_page - insert single page into user vma
2029  * @vma: user vma to map to
2030  * @addr: target user address of this page
2031  * @page: source kernel page
2032  *
2033  * This allows drivers to insert individual pages they've allocated
2034  * into a user vma.
2035  *
2036  * The page has to be a nice clean _individual_ kernel allocation.
2037  * If you allocate a compound page, you need to have marked it as
2038  * such (__GFP_COMP), or manually just split the page up yourself
2039  * (see split_page()).
2040  *
2041  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2042  * took an arbitrary page protection parameter. This doesn't allow
2043  * that. Your vma protection will have to be set up correctly, which
2044  * means that if you want a shared writable mapping, you'd better
2045  * ask for a shared writable mapping!
2046  *
2047  * The page does not need to be reserved.
2048  */
2049 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2050                         struct page *page)
2051 {
2052         if (addr < vma->vm_start || addr >= vma->vm_end)
2053                 return -EFAULT;
2054         if (!page_count(page))
2055                 return -EINVAL;
2056         vma->vm_flags |= VM_INSERTPAGE;
2057         return insert_page(vma, addr, page, vma->vm_page_prot);
2058 }
2059 EXPORT_SYMBOL(vm_insert_page);
2060
2061 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2062                         unsigned long pfn, pgprot_t prot)
2063 {
2064         struct mm_struct *mm = vma->vm_mm;
2065         int retval;
2066         pte_t *pte, entry;
2067         spinlock_t *ptl;
2068
2069         retval = -ENOMEM;
2070         pte = get_locked_pte(mm, addr, &ptl);
2071         if (!pte)
2072                 goto out;
2073         retval = -EBUSY;
2074         if (!pte_none(*pte))
2075                 goto out_unlock;
2076
2077         /* Ok, finally just insert the thing.. */
2078         entry = pte_mkspecial(pfn_pte(pfn, prot));
2079         set_pte_at(mm, addr, pte, entry);
2080         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2081
2082         retval = 0;
2083 out_unlock:
2084         pte_unmap_unlock(pte, ptl);
2085 out:
2086         return retval;
2087 }
2088
2089 /**
2090  * vm_insert_pfn - insert single pfn into user vma
2091  * @vma: user vma to map to
2092  * @addr: target user address of this page
2093  * @pfn: source kernel pfn
2094  *
2095  * Similar to vm_inert_page, this allows drivers to insert individual pages
2096  * they've allocated into a user vma. Same comments apply.
2097  *
2098  * This function should only be called from a vm_ops->fault handler, and
2099  * in that case the handler should return NULL.
2100  *
2101  * vma cannot be a COW mapping.
2102  *
2103  * As this is called only for pages that do not currently exist, we
2104  * do not need to flush old virtual caches or the TLB.
2105  */
2106 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2107                         unsigned long pfn)
2108 {
2109         int ret;
2110         pgprot_t pgprot = vma->vm_page_prot;
2111         /*
2112          * Technically, architectures with pte_special can avoid all these
2113          * restrictions (same for remap_pfn_range).  However we would like
2114          * consistency in testing and feature parity among all, so we should
2115          * try to keep these invariants in place for everybody.
2116          */
2117         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2118         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2119                                                 (VM_PFNMAP|VM_MIXEDMAP));
2120         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2121         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2122
2123         if (addr < vma->vm_start || addr >= vma->vm_end)
2124                 return -EFAULT;
2125         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2126                 return -EINVAL;
2127
2128         ret = insert_pfn(vma, addr, pfn, pgprot);
2129
2130         if (ret)
2131                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2132
2133         return ret;
2134 }
2135 EXPORT_SYMBOL(vm_insert_pfn);
2136
2137 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2138                         unsigned long pfn)
2139 {
2140         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2141
2142         if (addr < vma->vm_start || addr >= vma->vm_end)
2143                 return -EFAULT;
2144
2145         /*
2146          * If we don't have pte special, then we have to use the pfn_valid()
2147          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2148          * refcount the page if pfn_valid is true (hence insert_page rather
2149          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2150          * without pte special, it would there be refcounted as a normal page.
2151          */
2152         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2153                 struct page *page;
2154
2155                 page = pfn_to_page(pfn);
2156                 return insert_page(vma, addr, page, vma->vm_page_prot);
2157         }
2158         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2159 }
2160 EXPORT_SYMBOL(vm_insert_mixed);
2161
2162 /*
2163  * maps a range of physical memory into the requested pages. the old
2164  * mappings are removed. any references to nonexistent pages results
2165  * in null mappings (currently treated as "copy-on-access")
2166  */
2167 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2168                         unsigned long addr, unsigned long end,
2169                         unsigned long pfn, pgprot_t prot)
2170 {
2171         pte_t *pte;
2172         spinlock_t *ptl;
2173
2174         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2175         if (!pte)
2176                 return -ENOMEM;
2177         arch_enter_lazy_mmu_mode();
2178         do {
2179                 BUG_ON(!pte_none(*pte));
2180                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2181                 pfn++;
2182         } while (pte++, addr += PAGE_SIZE, addr != end);
2183         arch_leave_lazy_mmu_mode();
2184         pte_unmap_unlock(pte - 1, ptl);
2185         return 0;
2186 }
2187
2188 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2189                         unsigned long addr, unsigned long end,
2190                         unsigned long pfn, pgprot_t prot)
2191 {
2192         pmd_t *pmd;
2193         unsigned long next;
2194
2195         pfn -= addr >> PAGE_SHIFT;
2196         pmd = pmd_alloc(mm, pud, addr);
2197         if (!pmd)
2198                 return -ENOMEM;
2199         VM_BUG_ON(pmd_trans_huge(*pmd));
2200         do {
2201                 next = pmd_addr_end(addr, end);
2202                 if (remap_pte_range(mm, pmd, addr, next,
2203                                 pfn + (addr >> PAGE_SHIFT), prot))
2204                         return -ENOMEM;
2205         } while (pmd++, addr = next, addr != end);
2206         return 0;
2207 }
2208
2209 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2210                         unsigned long addr, unsigned long end,
2211                         unsigned long pfn, pgprot_t prot)
2212 {
2213         pud_t *pud;
2214         unsigned long next;
2215
2216         pfn -= addr >> PAGE_SHIFT;
2217         pud = pud_alloc(mm, pgd, addr);
2218         if (!pud)
2219                 return -ENOMEM;
2220         do {
2221                 next = pud_addr_end(addr, end);
2222                 if (remap_pmd_range(mm, pud, addr, next,
2223                                 pfn + (addr >> PAGE_SHIFT), prot))
2224                         return -ENOMEM;
2225         } while (pud++, addr = next, addr != end);
2226         return 0;
2227 }
2228
2229 /**
2230  * remap_pfn_range - remap kernel memory to userspace
2231  * @vma: user vma to map to
2232  * @addr: target user address to start at
2233  * @pfn: physical address of kernel memory
2234  * @size: size of map area
2235  * @prot: page protection flags for this mapping
2236  *
2237  *  Note: this is only safe if the mm semaphore is held when called.
2238  */
2239 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2240                     unsigned long pfn, unsigned long size, pgprot_t prot)
2241 {
2242         pgd_t *pgd;
2243         unsigned long next;
2244         unsigned long end = addr + PAGE_ALIGN(size);
2245         struct mm_struct *mm = vma->vm_mm;
2246         int err;
2247
2248         /*
2249          * Physically remapped pages are special. Tell the
2250          * rest of the world about it:
2251          *   VM_IO tells people not to look at these pages
2252          *      (accesses can have side effects).
2253          *   VM_RESERVED is specified all over the place, because
2254          *      in 2.4 it kept swapout's vma scan off this vma; but
2255          *      in 2.6 the LRU scan won't even find its pages, so this
2256          *      flag means no more than count its pages in reserved_vm,
2257          *      and omit it from core dump, even when VM_IO turned off.
2258          *   VM_PFNMAP tells the core MM that the base pages are just
2259          *      raw PFN mappings, and do not have a "struct page" associated
2260          *      with them.
2261          *
2262          * There's a horrible special case to handle copy-on-write
2263          * behaviour that some programs depend on. We mark the "original"
2264          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2265          */
2266         if (addr == vma->vm_start && end == vma->vm_end) {
2267                 vma->vm_pgoff = pfn;
2268                 vma->vm_flags |= VM_PFN_AT_MMAP;
2269         } else if (is_cow_mapping(vma->vm_flags))
2270                 return -EINVAL;
2271
2272         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2273
2274         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2275         if (err) {
2276                 /*
2277                  * To indicate that track_pfn related cleanup is not
2278                  * needed from higher level routine calling unmap_vmas
2279                  */
2280                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2281                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2282                 return -EINVAL;
2283         }
2284
2285         BUG_ON(addr >= end);
2286         pfn -= addr >> PAGE_SHIFT;
2287         pgd = pgd_offset(mm, addr);
2288         flush_cache_range(vma, addr, end);
2289         do {
2290                 next = pgd_addr_end(addr, end);
2291                 err = remap_pud_range(mm, pgd, addr, next,
2292                                 pfn + (addr >> PAGE_SHIFT), prot);
2293                 if (err)
2294                         break;
2295         } while (pgd++, addr = next, addr != end);
2296
2297         if (err)
2298                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2299
2300         return err;
2301 }
2302 EXPORT_SYMBOL(remap_pfn_range);
2303
2304 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2305                                      unsigned long addr, unsigned long end,
2306                                      pte_fn_t fn, void *data)
2307 {
2308         pte_t *pte;
2309         int err;
2310         pgtable_t token;
2311         spinlock_t *uninitialized_var(ptl);
2312
2313         pte = (mm == &init_mm) ?
2314                 pte_alloc_kernel(pmd, addr) :
2315                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2316         if (!pte)
2317                 return -ENOMEM;
2318
2319         BUG_ON(pmd_huge(*pmd));
2320
2321         arch_enter_lazy_mmu_mode();
2322
2323         token = pmd_pgtable(*pmd);
2324
2325         do {
2326                 err = fn(pte++, token, addr, data);
2327                 if (err)
2328                         break;
2329         } while (addr += PAGE_SIZE, addr != end);
2330
2331         arch_leave_lazy_mmu_mode();
2332
2333         if (mm != &init_mm)
2334                 pte_unmap_unlock(pte-1, ptl);
2335         return err;
2336 }
2337
2338 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2339                                      unsigned long addr, unsigned long end,
2340                                      pte_fn_t fn, void *data)
2341 {
2342         pmd_t *pmd;
2343         unsigned long next;
2344         int err;
2345
2346         BUG_ON(pud_huge(*pud));
2347
2348         pmd = pmd_alloc(mm, pud, addr);
2349         if (!pmd)
2350                 return -ENOMEM;
2351         do {
2352                 next = pmd_addr_end(addr, end);
2353                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2354                 if (err)
2355                         break;
2356         } while (pmd++, addr = next, addr != end);
2357         return err;
2358 }
2359
2360 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2361                                      unsigned long addr, unsigned long end,
2362                                      pte_fn_t fn, void *data)
2363 {
2364         pud_t *pud;
2365         unsigned long next;
2366         int err;
2367
2368         pud = pud_alloc(mm, pgd, addr);
2369         if (!pud)
2370                 return -ENOMEM;
2371         do {
2372                 next = pud_addr_end(addr, end);
2373                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2374                 if (err)
2375                         break;
2376         } while (pud++, addr = next, addr != end);
2377         return err;
2378 }
2379
2380 /*
2381  * Scan a region of virtual memory, filling in page tables as necessary
2382  * and calling a provided function on each leaf page table.
2383  */
2384 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2385                         unsigned long size, pte_fn_t fn, void *data)
2386 {
2387         pgd_t *pgd;
2388         unsigned long next;
2389         unsigned long end = addr + size;
2390         int err;
2391
2392         BUG_ON(addr >= end);
2393         pgd = pgd_offset(mm, addr);
2394         do {
2395                 next = pgd_addr_end(addr, end);
2396                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2397                 if (err)
2398                         break;
2399         } while (pgd++, addr = next, addr != end);
2400
2401         return err;
2402 }
2403 EXPORT_SYMBOL_GPL(apply_to_page_range);
2404
2405 /*
2406  * handle_pte_fault chooses page fault handler according to an entry
2407  * which was read non-atomically.  Before making any commitment, on
2408  * those architectures or configurations (e.g. i386 with PAE) which
2409  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2410  * must check under lock before unmapping the pte and proceeding
2411  * (but do_wp_page is only called after already making such a check;
2412  * and do_anonymous_page can safely check later on).
2413  */
2414 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2415                                 pte_t *page_table, pte_t orig_pte)
2416 {
2417         int same = 1;
2418 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2419         if (sizeof(pte_t) > sizeof(unsigned long)) {
2420                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2421                 spin_lock(ptl);
2422                 same = pte_same(*page_table, orig_pte);
2423                 spin_unlock(ptl);
2424         }
2425 #endif
2426         pte_unmap(page_table);
2427         return same;
2428 }
2429
2430 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2431 {
2432         /*
2433          * If the source page was a PFN mapping, we don't have
2434          * a "struct page" for it. We do a best-effort copy by
2435          * just copying from the original user address. If that
2436          * fails, we just zero-fill it. Live with it.
2437          */
2438         if (unlikely(!src)) {
2439                 void *kaddr = kmap_atomic(dst, KM_USER0);
2440                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2441
2442                 /*
2443                  * This really shouldn't fail, because the page is there
2444                  * in the page tables. But it might just be unreadable,
2445                  * in which case we just give up and fill the result with
2446                  * zeroes.
2447                  */
2448                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2449                         clear_page(kaddr);
2450                 kunmap_atomic(kaddr, KM_USER0);
2451                 flush_dcache_page(dst);
2452         } else
2453                 copy_user_highpage(dst, src, va, vma);
2454 }
2455
2456 /*
2457  * This routine handles present pages, when users try to write
2458  * to a shared page. It is done by copying the page to a new address
2459  * and decrementing the shared-page counter for the old page.
2460  *
2461  * Note that this routine assumes that the protection checks have been
2462  * done by the caller (the low-level page fault routine in most cases).
2463  * Thus we can safely just mark it writable once we've done any necessary
2464  * COW.
2465  *
2466  * We also mark the page dirty at this point even though the page will
2467  * change only once the write actually happens. This avoids a few races,
2468  * and potentially makes it more efficient.
2469  *
2470  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2471  * but allow concurrent faults), with pte both mapped and locked.
2472  * We return with mmap_sem still held, but pte unmapped and unlocked.
2473  */
2474 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2475                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2476                 spinlock_t *ptl, pte_t orig_pte)
2477         __releases(ptl)
2478 {
2479         struct page *old_page, *new_page;
2480         pte_t entry;
2481         int ret = 0;
2482         int page_mkwrite = 0;
2483         struct page *dirty_page = NULL;
2484
2485         old_page = vm_normal_page(vma, address, orig_pte);
2486         if (!old_page) {
2487                 /*
2488                  * VM_MIXEDMAP !pfn_valid() case
2489                  *
2490                  * We should not cow pages in a shared writeable mapping.
2491                  * Just mark the pages writable as we can't do any dirty
2492                  * accounting on raw pfn maps.
2493                  */
2494                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2495                                      (VM_WRITE|VM_SHARED))
2496                         goto reuse;
2497                 goto gotten;
2498         }
2499
2500         /*
2501          * Take out anonymous pages first, anonymous shared vmas are
2502          * not dirty accountable.
2503          */
2504         if (PageAnon(old_page) && !PageKsm(old_page)) {
2505                 if (!trylock_page(old_page)) {
2506                         page_cache_get(old_page);
2507                         pte_unmap_unlock(page_table, ptl);
2508                         lock_page(old_page);
2509                         page_table = pte_offset_map_lock(mm, pmd, address,
2510                                                          &ptl);
2511                         if (!pte_same(*page_table, orig_pte)) {
2512                                 unlock_page(old_page);
2513                                 goto unlock;
2514                         }
2515                         page_cache_release(old_page);
2516                 }
2517                 if (reuse_swap_page(old_page)) {
2518                         /*
2519                          * The page is all ours.  Move it to our anon_vma so
2520                          * the rmap code will not search our parent or siblings.
2521                          * Protected against the rmap code by the page lock.
2522                          */
2523                         page_move_anon_rmap(old_page, vma, address);
2524                         unlock_page(old_page);
2525                         goto reuse;
2526                 }
2527                 unlock_page(old_page);
2528         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2529                                         (VM_WRITE|VM_SHARED))) {
2530                 /*
2531                  * Only catch write-faults on shared writable pages,
2532                  * read-only shared pages can get COWed by
2533                  * get_user_pages(.write=1, .force=1).
2534                  */
2535                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2536                         struct vm_fault vmf;
2537                         int tmp;
2538
2539                         vmf.virtual_address = (void __user *)(address &
2540                                                                 PAGE_MASK);
2541                         vmf.pgoff = old_page->index;
2542                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2543                         vmf.page = old_page;
2544
2545                         /*
2546                          * Notify the address space that the page is about to
2547                          * become writable so that it can prohibit this or wait
2548                          * for the page to get into an appropriate state.
2549                          *
2550                          * We do this without the lock held, so that it can
2551                          * sleep if it needs to.
2552                          */
2553                         page_cache_get(old_page);
2554                         pte_unmap_unlock(page_table, ptl);
2555
2556                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2557                         if (unlikely(tmp &
2558                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2559                                 ret = tmp;
2560                                 goto unwritable_page;
2561                         }
2562                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2563                                 lock_page(old_page);
2564                                 if (!old_page->mapping) {
2565                                         ret = 0; /* retry the fault */
2566                                         unlock_page(old_page);
2567                                         goto unwritable_page;
2568                                 }
2569                         } else
2570                                 VM_BUG_ON(!PageLocked(old_page));
2571
2572                         /*
2573                          * Since we dropped the lock we need to revalidate
2574                          * the PTE as someone else may have changed it.  If
2575                          * they did, we just return, as we can count on the
2576                          * MMU to tell us if they didn't also make it writable.
2577                          */
2578                         page_table = pte_offset_map_lock(mm, pmd, address,
2579                                                          &ptl);
2580                         if (!pte_same(*page_table, orig_pte)) {
2581                                 unlock_page(old_page);
2582                                 goto unlock;
2583                         }
2584
2585                         page_mkwrite = 1;
2586                 }
2587                 dirty_page = old_page;
2588                 get_page(dirty_page);
2589
2590 reuse:
2591                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2592                 entry = pte_mkyoung(orig_pte);
2593                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2594                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2595                         update_mmu_cache(vma, address, page_table);
2596                 pte_unmap_unlock(page_table, ptl);
2597                 ret |= VM_FAULT_WRITE;
2598
2599                 if (!dirty_page)
2600                         return ret;
2601
2602                 /*
2603                  * Yes, Virginia, this is actually required to prevent a race
2604                  * with clear_page_dirty_for_io() from clearing the page dirty
2605                  * bit after it clear all dirty ptes, but before a racing
2606                  * do_wp_page installs a dirty pte.
2607                  *
2608                  * __do_fault is protected similarly.
2609                  */
2610                 if (!page_mkwrite) {
2611                         wait_on_page_locked(dirty_page);
2612                         set_page_dirty_balance(dirty_page, page_mkwrite);
2613                 }
2614                 put_page(dirty_page);
2615                 if (page_mkwrite) {
2616                         struct address_space *mapping = dirty_page->mapping;
2617
2618                         set_page_dirty(dirty_page);
2619                         unlock_page(dirty_page);
2620                         page_cache_release(dirty_page);
2621                         if (mapping)    {
2622                                 /*
2623                                  * Some device drivers do not set page.mapping
2624                                  * but still dirty their pages
2625                                  */
2626                                 balance_dirty_pages_ratelimited(mapping);
2627                         }
2628                 }
2629
2630                 /* file_update_time outside page_lock */
2631                 if (vma->vm_file)
2632                         file_update_time(vma->vm_file);
2633
2634                 return ret;
2635         }
2636
2637         /*
2638          * Ok, we need to copy. Oh, well..
2639          */
2640         page_cache_get(old_page);
2641 gotten:
2642         pte_unmap_unlock(page_table, ptl);
2643
2644         if (unlikely(anon_vma_prepare(vma)))
2645                 goto oom;
2646
2647         if (is_zero_pfn(pte_pfn(orig_pte))) {
2648                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2649                 if (!new_page)
2650                         goto oom;
2651         } else {
2652                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2653                 if (!new_page)
2654                         goto oom;
2655                 cow_user_page(new_page, old_page, address, vma);
2656         }
2657         __SetPageUptodate(new_page);
2658
2659         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2660                 goto oom_free_new;
2661
2662         /*
2663          * Re-check the pte - we dropped the lock
2664          */
2665         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2666         if (likely(pte_same(*page_table, orig_pte))) {
2667                 if (old_page) {
2668                         if (!PageAnon(old_page)) {
2669                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2670                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2671                         }
2672                 } else
2673                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2674                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2675                 entry = mk_pte(new_page, vma->vm_page_prot);
2676                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2677                 /*
2678                  * Clear the pte entry and flush it first, before updating the
2679                  * pte with the new entry. This will avoid a race condition
2680                  * seen in the presence of one thread doing SMC and another
2681                  * thread doing COW.
2682                  */
2683                 ptep_clear_flush(vma, address, page_table);
2684                 page_add_new_anon_rmap(new_page, vma, address);
2685                 /*
2686                  * We call the notify macro here because, when using secondary
2687                  * mmu page tables (such as kvm shadow page tables), we want the
2688                  * new page to be mapped directly into the secondary page table.
2689                  */
2690                 set_pte_at_notify(mm, address, page_table, entry);
2691                 update_mmu_cache(vma, address, page_table);
2692                 if (old_page) {
2693                         /*
2694                          * Only after switching the pte to the new page may
2695                          * we remove the mapcount here. Otherwise another
2696                          * process may come and find the rmap count decremented
2697                          * before the pte is switched to the new page, and
2698                          * "reuse" the old page writing into it while our pte
2699                          * here still points into it and can be read by other
2700                          * threads.
2701                          *
2702                          * The critical issue is to order this
2703                          * page_remove_rmap with the ptp_clear_flush above.
2704                          * Those stores are ordered by (if nothing else,)
2705                          * the barrier present in the atomic_add_negative
2706                          * in page_remove_rmap.
2707                          *
2708                          * Then the TLB flush in ptep_clear_flush ensures that
2709                          * no process can access the old page before the
2710                          * decremented mapcount is visible. And the old page
2711                          * cannot be reused until after the decremented
2712                          * mapcount is visible. So transitively, TLBs to
2713                          * old page will be flushed before it can be reused.
2714                          */
2715                         page_remove_rmap(old_page);
2716                 }
2717
2718                 /* Free the old page.. */
2719                 new_page = old_page;
2720                 ret |= VM_FAULT_WRITE;
2721         } else
2722                 mem_cgroup_uncharge_page(new_page);
2723
2724         if (new_page)
2725                 page_cache_release(new_page);
2726 unlock:
2727         pte_unmap_unlock(page_table, ptl);
2728         if (old_page) {
2729                 /*
2730                  * Don't let another task, with possibly unlocked vma,
2731                  * keep the mlocked page.
2732                  */
2733                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2734                         lock_page(old_page);    /* LRU manipulation */
2735                         munlock_vma_page(old_page);
2736                         unlock_page(old_page);
2737                 }
2738                 page_cache_release(old_page);
2739         }
2740         return ret;
2741 oom_free_new:
2742         page_cache_release(new_page);
2743 oom:
2744         if (old_page) {
2745                 if (page_mkwrite) {
2746                         unlock_page(old_page);
2747                         page_cache_release(old_page);
2748                 }
2749                 page_cache_release(old_page);
2750         }
2751         return VM_FAULT_OOM;
2752
2753 unwritable_page:
2754         page_cache_release(old_page);
2755         return ret;
2756 }
2757
2758 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2759                 unsigned long start_addr, unsigned long end_addr,
2760                 struct zap_details *details)
2761 {
2762         zap_page_range(vma, start_addr, end_addr - start_addr, details);
2763 }
2764
2765 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2766                                             struct zap_details *details)
2767 {
2768         struct vm_area_struct *vma;
2769         struct prio_tree_iter iter;
2770         pgoff_t vba, vea, zba, zea;
2771
2772         vma_prio_tree_foreach(vma, &iter, root,
2773                         details->first_index, details->last_index) {
2774
2775                 vba = vma->vm_pgoff;
2776                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2777                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2778                 zba = details->first_index;
2779                 if (zba < vba)
2780                         zba = vba;
2781                 zea = details->last_index;
2782                 if (zea > vea)
2783                         zea = vea;
2784
2785                 unmap_mapping_range_vma(vma,
2786                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2787                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2788                                 details);
2789         }
2790 }
2791
2792 static inline void unmap_mapping_range_list(struct list_head *head,
2793                                             struct zap_details *details)
2794 {
2795         struct vm_area_struct *vma;
2796
2797         /*
2798          * In nonlinear VMAs there is no correspondence between virtual address
2799          * offset and file offset.  So we must perform an exhaustive search
2800          * across *all* the pages in each nonlinear VMA, not just the pages
2801          * whose virtual address lies outside the file truncation point.
2802          */
2803         list_for_each_entry(vma, head, shared.vm_set.list) {
2804                 details->nonlinear_vma = vma;
2805                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2806         }
2807 }
2808
2809 /**
2810  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2811  * @mapping: the address space containing mmaps to be unmapped.
2812  * @holebegin: byte in first page to unmap, relative to the start of
2813  * the underlying file.  This will be rounded down to a PAGE_SIZE
2814  * boundary.  Note that this is different from truncate_pagecache(), which
2815  * must keep the partial page.  In contrast, we must get rid of
2816  * partial pages.
2817  * @holelen: size of prospective hole in bytes.  This will be rounded
2818  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2819  * end of the file.
2820  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2821  * but 0 when invalidating pagecache, don't throw away private data.
2822  */
2823 void unmap_mapping_range(struct address_space *mapping,
2824                 loff_t const holebegin, loff_t const holelen, int even_cows)
2825 {
2826         struct zap_details details;
2827         pgoff_t hba = holebegin >> PAGE_SHIFT;
2828         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2829
2830         /* Check for overflow. */
2831         if (sizeof(holelen) > sizeof(hlen)) {
2832                 long long holeend =
2833                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2834                 if (holeend & ~(long long)ULONG_MAX)
2835                         hlen = ULONG_MAX - hba + 1;
2836         }
2837
2838         details.check_mapping = even_cows? NULL: mapping;
2839         details.nonlinear_vma = NULL;
2840         details.first_index = hba;
2841         details.last_index = hba + hlen - 1;
2842         if (details.last_index < details.first_index)
2843                 details.last_index = ULONG_MAX;
2844
2845
2846         mutex_lock(&mapping->i_mmap_mutex);
2847         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2848                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2849         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2850                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2851         mutex_unlock(&mapping->i_mmap_mutex);
2852 }
2853 EXPORT_SYMBOL(unmap_mapping_range);
2854
2855 /*
2856  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2857  * but allow concurrent faults), and pte mapped but not yet locked.
2858  * We return with mmap_sem still held, but pte unmapped and unlocked.
2859  */
2860 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2861                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2862                 unsigned int flags, pte_t orig_pte)
2863 {
2864         spinlock_t *ptl;
2865         struct page *page, *swapcache = NULL;
2866         swp_entry_t entry;
2867         pte_t pte;
2868         int locked;
2869         struct mem_cgroup *ptr;
2870         int exclusive = 0;
2871         int ret = 0;
2872
2873         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2874                 goto out;
2875
2876         entry = pte_to_swp_entry(orig_pte);
2877         if (unlikely(non_swap_entry(entry))) {
2878                 if (is_migration_entry(entry)) {
2879                         migration_entry_wait(mm, pmd, address);
2880                 } else if (is_hwpoison_entry(entry)) {
2881                         ret = VM_FAULT_HWPOISON;
2882                 } else {
2883                         print_bad_pte(vma, address, orig_pte, NULL);
2884                         ret = VM_FAULT_SIGBUS;
2885                 }
2886                 goto out;
2887         }
2888         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2889         page = lookup_swap_cache(entry);
2890         if (!page) {
2891                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2892                 page = swapin_readahead(entry,
2893                                         GFP_HIGHUSER_MOVABLE, vma, address);
2894                 if (!page) {
2895                         /*
2896                          * Back out if somebody else faulted in this pte
2897                          * while we released the pte lock.
2898                          */
2899                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2900                         if (likely(pte_same(*page_table, orig_pte)))
2901                                 ret = VM_FAULT_OOM;
2902                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2903                         goto unlock;
2904                 }
2905
2906                 /* Had to read the page from swap area: Major fault */
2907                 ret = VM_FAULT_MAJOR;
2908                 count_vm_event(PGMAJFAULT);
2909                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2910         } else if (PageHWPoison(page)) {
2911                 /*
2912                  * hwpoisoned dirty swapcache pages are kept for killing
2913                  * owner processes (which may be unknown at hwpoison time)
2914                  */
2915                 ret = VM_FAULT_HWPOISON;
2916                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2917                 goto out_release;
2918         }
2919
2920         locked = lock_page_or_retry(page, mm, flags);
2921         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2922         if (!locked) {
2923                 ret |= VM_FAULT_RETRY;
2924                 goto out_release;
2925         }
2926
2927         /*
2928          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2929          * release the swapcache from under us.  The page pin, and pte_same
2930          * test below, are not enough to exclude that.  Even if it is still
2931          * swapcache, we need to check that the page's swap has not changed.
2932          */
2933         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2934                 goto out_page;
2935
2936         if (ksm_might_need_to_copy(page, vma, address)) {
2937                 swapcache = page;
2938                 page = ksm_does_need_to_copy(page, vma, address);
2939
2940                 if (unlikely(!page)) {
2941                         ret = VM_FAULT_OOM;
2942                         page = swapcache;
2943                         swapcache = NULL;
2944                         goto out_page;
2945                 }
2946         }
2947
2948         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2949                 ret = VM_FAULT_OOM;
2950                 goto out_page;
2951         }
2952
2953         /*
2954          * Back out if somebody else already faulted in this pte.
2955          */
2956         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2957         if (unlikely(!pte_same(*page_table, orig_pte)))
2958                 goto out_nomap;
2959
2960         if (unlikely(!PageUptodate(page))) {
2961                 ret = VM_FAULT_SIGBUS;
2962                 goto out_nomap;
2963         }
2964
2965         /*
2966          * The page isn't present yet, go ahead with the fault.
2967          *
2968          * Be careful about the sequence of operations here.
2969          * To get its accounting right, reuse_swap_page() must be called
2970          * while the page is counted on swap but not yet in mapcount i.e.
2971          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2972          * must be called after the swap_free(), or it will never succeed.
2973          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2974          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2975          * in page->private. In this case, a record in swap_cgroup  is silently
2976          * discarded at swap_free().
2977          */
2978
2979         inc_mm_counter_fast(mm, MM_ANONPAGES);
2980         dec_mm_counter_fast(mm, MM_SWAPENTS);
2981         pte = mk_pte(page, vma->vm_page_prot);
2982         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2983                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2984                 flags &= ~FAULT_FLAG_WRITE;
2985                 ret |= VM_FAULT_WRITE;
2986                 exclusive = 1;
2987         }
2988         flush_icache_page(vma, page);
2989         set_pte_at(mm, address, page_table, pte);
2990         do_page_add_anon_rmap(page, vma, address, exclusive);
2991         /* It's better to call commit-charge after rmap is established */
2992         mem_cgroup_commit_charge_swapin(page, ptr);
2993
2994         swap_free(entry);
2995         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2996                 try_to_free_swap(page);
2997         unlock_page(page);
2998         if (swapcache) {
2999                 /*
3000                  * Hold the lock to avoid the swap entry to be reused
3001                  * until we take the PT lock for the pte_same() check
3002                  * (to avoid false positives from pte_same). For
3003                  * further safety release the lock after the swap_free
3004                  * so that the swap count won't change under a
3005                  * parallel locked swapcache.
3006                  */
3007                 unlock_page(swapcache);
3008                 page_cache_release(swapcache);
3009         }
3010
3011         if (flags & FAULT_FLAG_WRITE) {
3012                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3013                 if (ret & VM_FAULT_ERROR)
3014                         ret &= VM_FAULT_ERROR;
3015                 goto out;
3016         }
3017
3018         /* No need to invalidate - it was non-present before */
3019         update_mmu_cache(vma, address, page_table);
3020 unlock:
3021         pte_unmap_unlock(page_table, ptl);
3022 out:
3023         return ret;
3024 out_nomap:
3025         mem_cgroup_cancel_charge_swapin(ptr);
3026         pte_unmap_unlock(page_table, ptl);
3027 out_page:
3028         unlock_page(page);
3029 out_release:
3030         page_cache_release(page);
3031         if (swapcache) {
3032                 unlock_page(swapcache);
3033                 page_cache_release(swapcache);
3034         }
3035         return ret;
3036 }
3037
3038 /*
3039  * This is like a special single-page "expand_{down|up}wards()",
3040  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3041  * doesn't hit another vma.
3042  */
3043 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3044 {
3045         address &= PAGE_MASK;
3046         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3047                 struct vm_area_struct *prev = vma->vm_prev;
3048
3049                 /*
3050                  * Is there a mapping abutting this one below?
3051                  *
3052                  * That's only ok if it's the same stack mapping
3053                  * that has gotten split..
3054                  */
3055                 if (prev && prev->vm_end == address)
3056                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3057
3058                 expand_downwards(vma, address - PAGE_SIZE);
3059         }
3060         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3061                 struct vm_area_struct *next = vma->vm_next;
3062
3063                 /* As VM_GROWSDOWN but s/below/above/ */
3064                 if (next && next->vm_start == address + PAGE_SIZE)
3065                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3066
3067                 expand_upwards(vma, address + PAGE_SIZE);
3068         }
3069         return 0;
3070 }
3071
3072 /*
3073  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3074  * but allow concurrent faults), and pte mapped but not yet locked.
3075  * We return with mmap_sem still held, but pte unmapped and unlocked.
3076  */
3077 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3078                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3079                 unsigned int flags)
3080 {
3081         struct page *page;
3082         spinlock_t *ptl;
3083         pte_t entry;
3084
3085         pte_unmap(page_table);
3086
3087         /* Check if we need to add a guard page to the stack */
3088         if (check_stack_guard_page(vma, address) < 0)
3089                 return VM_FAULT_SIGBUS;
3090
3091         /* Use the zero-page for reads */
3092         if (!(flags & FAULT_FLAG_WRITE)) {
3093                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3094                                                 vma->vm_page_prot));
3095                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3096                 if (!pte_none(*page_table))
3097                         goto unlock;
3098                 goto setpte;
3099         }
3100
3101         /* Allocate our own private page. */
3102         if (unlikely(anon_vma_prepare(vma)))
3103                 goto oom;
3104         page = alloc_zeroed_user_highpage_movable(vma, address);
3105         if (!page)
3106                 goto oom;
3107         __SetPageUptodate(page);
3108
3109         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3110                 goto oom_free_page;
3111
3112         entry = mk_pte(page, vma->vm_page_prot);
3113         if (vma->vm_flags & VM_WRITE)
3114                 entry = pte_mkwrite(pte_mkdirty(entry));
3115
3116         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3117         if (!pte_none(*page_table))
3118                 goto release;
3119
3120         inc_mm_counter_fast(mm, MM_ANONPAGES);
3121         page_add_new_anon_rmap(page, vma, address);
3122 setpte:
3123         set_pte_at(mm, address, page_table, entry);
3124
3125         /* No need to invalidate - it was non-present before */
3126         update_mmu_cache(vma, address, page_table);
3127 unlock:
3128         pte_unmap_unlock(page_table, ptl);
3129         return 0;
3130 release:
3131         mem_cgroup_uncharge_page(page);
3132         page_cache_release(page);
3133         goto unlock;
3134 oom_free_page:
3135         page_cache_release(page);
3136 oom:
3137         return VM_FAULT_OOM;
3138 }
3139
3140 /*
3141  * __do_fault() tries to create a new page mapping. It aggressively
3142  * tries to share with existing pages, but makes a separate copy if
3143  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3144  * the next page fault.
3145  *
3146  * As this is called only for pages that do not currently exist, we
3147  * do not need to flush old virtual caches or the TLB.
3148  *
3149  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3150  * but allow concurrent faults), and pte neither mapped nor locked.
3151  * We return with mmap_sem still held, but pte unmapped and unlocked.
3152  */
3153 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3154                 unsigned long address, pmd_t *pmd,
3155                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3156 {
3157         pte_t *page_table;
3158         spinlock_t *ptl;
3159         struct page *page;
3160         struct page *cow_page;
3161         pte_t entry;
3162         int anon = 0;
3163         struct page *dirty_page = NULL;
3164         struct vm_fault vmf;
3165         int ret;
3166         int page_mkwrite = 0;
3167
3168         /*
3169          * If we do COW later, allocate page befor taking lock_page()
3170          * on the file cache page. This will reduce lock holding time.
3171          */
3172         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3173
3174                 if (unlikely(anon_vma_prepare(vma)))
3175                         return VM_FAULT_OOM;
3176
3177                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3178                 if (!cow_page)
3179                         return VM_FAULT_OOM;
3180
3181                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3182                         page_cache_release(cow_page);
3183                         return VM_FAULT_OOM;
3184                 }
3185         } else
3186                 cow_page = NULL;
3187
3188         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3189         vmf.pgoff = pgoff;
3190         vmf.flags = flags;
3191         vmf.page = NULL;
3192
3193         ret = vma->vm_ops->fault(vma, &vmf);
3194         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3195                             VM_FAULT_RETRY)))
3196                 goto uncharge_out;
3197
3198         if (unlikely(PageHWPoison(vmf.page))) {
3199                 if (ret & VM_FAULT_LOCKED)
3200                         unlock_page(vmf.page);
3201                 ret = VM_FAULT_HWPOISON;
3202                 goto uncharge_out;
3203         }
3204
3205         /*
3206          * For consistency in subsequent calls, make the faulted page always
3207          * locked.
3208          */
3209         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3210                 lock_page(vmf.page);
3211         else
3212                 VM_BUG_ON(!PageLocked(vmf.page));
3213
3214         /*
3215          * Should we do an early C-O-W break?
3216          */
3217         page = vmf.page;
3218         if (flags & FAULT_FLAG_WRITE) {
3219                 if (!(vma->vm_flags & VM_SHARED)) {
3220                         page = cow_page;
3221                         anon = 1;
3222                         copy_user_highpage(page, vmf.page, address, vma);
3223                         __SetPageUptodate(page);
3224                 } else {
3225                         /*
3226                          * If the page will be shareable, see if the backing
3227                          * address space wants to know that the page is about
3228                          * to become writable
3229                          */
3230                         if (vma->vm_ops->page_mkwrite) {
3231                                 int tmp;
3232
3233                                 unlock_page(page);
3234                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3235                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3236                                 if (unlikely(tmp &
3237                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3238                                         ret = tmp;
3239                                         goto unwritable_page;
3240                                 }
3241                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3242                                         lock_page(page);
3243                                         if (!page->mapping) {
3244                                                 ret = 0; /* retry the fault */
3245                                                 unlock_page(page);
3246                                                 goto unwritable_page;
3247                                         }
3248                                 } else
3249                                         VM_BUG_ON(!PageLocked(page));
3250                                 page_mkwrite = 1;
3251                         }
3252                 }
3253
3254         }
3255
3256         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3257
3258         /*
3259          * This silly early PAGE_DIRTY setting removes a race
3260          * due to the bad i386 page protection. But it's valid
3261          * for other architectures too.
3262          *
3263          * Note that if FAULT_FLAG_WRITE is set, we either now have
3264          * an exclusive copy of the page, or this is a shared mapping,
3265          * so we can make it writable and dirty to avoid having to
3266          * handle that later.
3267          */
3268         /* Only go through if we didn't race with anybody else... */
3269         if (likely(pte_same(*page_table, orig_pte))) {
3270                 flush_icache_page(vma, page);
3271                 entry = mk_pte(page, vma->vm_page_prot);
3272                 if (flags & FAULT_FLAG_WRITE)
3273                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3274                 if (anon) {
3275                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3276                         page_add_new_anon_rmap(page, vma, address);
3277                 } else {
3278                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3279                         page_add_file_rmap(page);
3280                         if (flags & FAULT_FLAG_WRITE) {
3281                                 dirty_page = page;
3282                                 get_page(dirty_page);
3283                         }
3284                 }
3285                 set_pte_at(mm, address, page_table, entry);
3286
3287                 /* no need to invalidate: a not-present page won't be cached */
3288                 update_mmu_cache(vma, address, page_table);
3289         } else {
3290                 if (cow_page)
3291                         mem_cgroup_uncharge_page(cow_page);
3292                 if (anon)
3293                         page_cache_release(page);
3294                 else
3295                         anon = 1; /* no anon but release faulted_page */
3296         }
3297
3298         pte_unmap_unlock(page_table, ptl);
3299
3300         if (dirty_page) {
3301                 struct address_space *mapping = page->mapping;
3302
3303                 if (set_page_dirty(dirty_page))
3304                         page_mkwrite = 1;
3305                 unlock_page(dirty_page);
3306                 put_page(dirty_page);
3307                 if (page_mkwrite && mapping) {
3308                         /*
3309                          * Some device drivers do not set page.mapping but still
3310                          * dirty their pages
3311                          */
3312                         balance_dirty_pages_ratelimited(mapping);
3313                 }
3314
3315                 /* file_update_time outside page_lock */
3316                 if (vma->vm_file)
3317                         file_update_time(vma->vm_file);
3318         } else {
3319                 unlock_page(vmf.page);
3320                 if (anon)
3321                         page_cache_release(vmf.page);
3322         }
3323
3324         return ret;
3325
3326 unwritable_page:
3327         page_cache_release(page);
3328         return ret;
3329 uncharge_out:
3330         /* fs's fault handler get error */
3331         if (cow_page) {
3332                 mem_cgroup_uncharge_page(cow_page);
3333                 page_cache_release(cow_page);
3334         }
3335         return ret;
3336 }
3337
3338 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3339                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3340                 unsigned int flags, pte_t orig_pte)
3341 {
3342         pgoff_t pgoff = (((address & PAGE_MASK)
3343                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3344
3345         pte_unmap(page_table);
3346         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3347 }
3348
3349 /*
3350  * Fault of a previously existing named mapping. Repopulate the pte
3351  * from the encoded file_pte if possible. This enables swappable
3352  * nonlinear vmas.
3353  *
3354  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3355  * but allow concurrent faults), and pte mapped but not yet locked.
3356  * We return with mmap_sem still held, but pte unmapped and unlocked.
3357  */
3358 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3359                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3360                 unsigned int flags, pte_t orig_pte)
3361 {
3362         pgoff_t pgoff;
3363
3364         flags |= FAULT_FLAG_NONLINEAR;
3365
3366         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3367                 return 0;
3368
3369         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3370                 /*
3371                  * Page table corrupted: show pte and kill process.
3372                  */
3373                 print_bad_pte(vma, address, orig_pte, NULL);
3374                 return VM_FAULT_SIGBUS;
3375         }
3376
3377         pgoff = pte_to_pgoff(orig_pte);
3378         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3379 }
3380
3381 /*
3382  * These routines also need to handle stuff like marking pages dirty
3383  * and/or accessed for architectures that don't do it in hardware (most
3384  * RISC architectures).  The early dirtying is also good on the i386.
3385  *
3386  * There is also a hook called "update_mmu_cache()" that architectures
3387  * with external mmu caches can use to update those (ie the Sparc or
3388  * PowerPC hashed page tables that act as extended TLBs).
3389  *
3390  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3391  * but allow concurrent faults), and pte mapped but not yet locked.
3392  * We return with mmap_sem still held, but pte unmapped and unlocked.
3393  */
3394 int handle_pte_fault(struct mm_struct *mm,
3395                      struct vm_area_struct *vma, unsigned long address,
3396                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3397 {
3398         pte_t entry;
3399         spinlock_t *ptl;
3400
3401         entry = *pte;
3402         if (!pte_present(entry)) {
3403                 if (pte_none(entry)) {
3404                         if (vma->vm_ops) {
3405                                 if (likely(vma->vm_ops->fault))
3406                                         return do_linear_fault(mm, vma, address,
3407                                                 pte, pmd, flags, entry);
3408                         }
3409                         return do_anonymous_page(mm, vma, address,
3410                                                  pte, pmd, flags);
3411                 }
3412                 if (pte_file(entry))
3413                         return do_nonlinear_fault(mm, vma, address,
3414                                         pte, pmd, flags, entry);
3415                 return do_swap_page(mm, vma, address,
3416                                         pte, pmd, flags, entry);
3417         }
3418
3419         ptl = pte_lockptr(mm, pmd);
3420         spin_lock(ptl);
3421         if (unlikely(!pte_same(*pte, entry)))
3422                 goto unlock;
3423         if (flags & FAULT_FLAG_WRITE) {
3424                 if (!pte_write(entry))
3425                         return do_wp_page(mm, vma, address,
3426                                         pte, pmd, ptl, entry);
3427                 entry = pte_mkdirty(entry);
3428         }
3429         entry = pte_mkyoung(entry);
3430         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3431                 update_mmu_cache(vma, address, pte);
3432         } else {
3433                 /*
3434                  * This is needed only for protection faults but the arch code
3435                  * is not yet telling us if this is a protection fault or not.
3436                  * This still avoids useless tlb flushes for .text page faults
3437                  * with threads.
3438                  */
3439                 if (flags & FAULT_FLAG_WRITE)
3440                         flush_tlb_fix_spurious_fault(vma, address);
3441         }
3442 unlock:
3443         pte_unmap_unlock(pte, ptl);
3444         return 0;
3445 }
3446
3447 /*
3448  * By the time we get here, we already hold the mm semaphore
3449  */
3450 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3451                 unsigned long address, unsigned int flags)
3452 {
3453         pgd_t *pgd;
3454         pud_t *pud;
3455         pmd_t *pmd;
3456         pte_t *pte;
3457
3458         __set_current_state(TASK_RUNNING);
3459
3460         count_vm_event(PGFAULT);
3461         mem_cgroup_count_vm_event(mm, PGFAULT);
3462
3463         /* do counter updates before entering really critical section. */
3464         check_sync_rss_stat(current);
3465
3466         if (unlikely(is_vm_hugetlb_page(vma)))
3467                 return hugetlb_fault(mm, vma, address, flags);
3468
3469         pgd = pgd_offset(mm, address);
3470         pud = pud_alloc(mm, pgd, address);
3471         if (!pud)
3472                 return VM_FAULT_OOM;
3473         pmd = pmd_alloc(mm, pud, address);
3474         if (!pmd)
3475                 return VM_FAULT_OOM;
3476         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3477                 if (!vma->vm_ops)
3478                         return do_huge_pmd_anonymous_page(mm, vma, address,
3479                                                           pmd, flags);
3480         } else {
3481                 pmd_t orig_pmd = *pmd;
3482                 barrier();
3483                 if (pmd_trans_huge(orig_pmd)) {
3484                         if (flags & FAULT_FLAG_WRITE &&
3485                             !pmd_write(orig_pmd) &&
3486                             !pmd_trans_splitting(orig_pmd))
3487                                 return do_huge_pmd_wp_page(mm, vma, address,
3488                                                            pmd, orig_pmd);
3489                         return 0;
3490                 }
3491         }
3492
3493         /*
3494          * Use __pte_alloc instead of pte_alloc_map, because we can't
3495          * run pte_offset_map on the pmd, if an huge pmd could
3496          * materialize from under us from a different thread.
3497          */
3498         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3499                 return VM_FAULT_OOM;
3500         /* if an huge pmd materialized from under us just retry later */
3501         if (unlikely(pmd_trans_huge(*pmd)))
3502                 return 0;
3503         /*
3504          * A regular pmd is established and it can't morph into a huge pmd
3505          * from under us anymore at this point because we hold the mmap_sem
3506          * read mode and khugepaged takes it in write mode. So now it's
3507          * safe to run pte_offset_map().
3508          */
3509         pte = pte_offset_map(pmd, address);
3510
3511         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3512 }
3513
3514 #ifndef __PAGETABLE_PUD_FOLDED
3515 /*
3516  * Allocate page upper directory.
3517  * We've already handled the fast-path in-line.
3518  */
3519 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3520 {
3521         pud_t *new = pud_alloc_one(mm, address);
3522         if (!new)
3523                 return -ENOMEM;
3524
3525         smp_wmb(); /* See comment in __pte_alloc */
3526
3527         spin_lock(&mm->page_table_lock);
3528         if (pgd_present(*pgd))          /* Another has populated it */
3529                 pud_free(mm, new);
3530         else
3531                 pgd_populate(mm, pgd, new);
3532         spin_unlock(&mm->page_table_lock);
3533         return 0;
3534 }
3535 #endif /* __PAGETABLE_PUD_FOLDED */
3536
3537 #ifndef __PAGETABLE_PMD_FOLDED
3538 /*
3539  * Allocate page middle directory.
3540  * We've already handled the fast-path in-line.
3541  */
3542 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3543 {
3544         pmd_t *new = pmd_alloc_one(mm, address);
3545         if (!new)
3546                 return -ENOMEM;
3547
3548         smp_wmb(); /* See comment in __pte_alloc */
3549
3550         spin_lock(&mm->page_table_lock);
3551 #ifndef __ARCH_HAS_4LEVEL_HACK
3552         if (pud_present(*pud))          /* Another has populated it */
3553                 pmd_free(mm, new);
3554         else
3555                 pud_populate(mm, pud, new);
3556 #else
3557         if (pgd_present(*pud))          /* Another has populated it */
3558                 pmd_free(mm, new);
3559         else
3560                 pgd_populate(mm, pud, new);
3561 #endif /* __ARCH_HAS_4LEVEL_HACK */
3562         spin_unlock(&mm->page_table_lock);
3563         return 0;
3564 }
3565 #endif /* __PAGETABLE_PMD_FOLDED */
3566
3567 int make_pages_present(unsigned long addr, unsigned long end)
3568 {
3569         int ret, len, write;
3570         struct vm_area_struct * vma;
3571
3572         vma = find_vma(current->mm, addr);
3573         if (!vma)
3574                 return -ENOMEM;
3575         /*
3576          * We want to touch writable mappings with a write fault in order
3577          * to break COW, except for shared mappings because these don't COW
3578          * and we would not want to dirty them for nothing.
3579          */
3580         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3581         BUG_ON(addr >= end);
3582         BUG_ON(end > vma->vm_end);
3583         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3584         ret = get_user_pages(current, current->mm, addr,
3585                         len, write, 0, NULL, NULL);
3586         if (ret < 0)
3587                 return ret;
3588         return ret == len ? 0 : -EFAULT;
3589 }
3590
3591 #if !defined(__HAVE_ARCH_GATE_AREA)
3592
3593 #if defined(AT_SYSINFO_EHDR)
3594 static struct vm_area_struct gate_vma;
3595
3596 static int __init gate_vma_init(void)
3597 {
3598         gate_vma.vm_mm = NULL;
3599         gate_vma.vm_start = FIXADDR_USER_START;
3600         gate_vma.vm_end = FIXADDR_USER_END;
3601         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3602         gate_vma.vm_page_prot = __P101;
3603         /*
3604          * Make sure the vDSO gets into every core dump.
3605          * Dumping its contents makes post-mortem fully interpretable later
3606          * without matching up the same kernel and hardware config to see
3607          * what PC values meant.
3608          */
3609         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3610         return 0;
3611 }
3612 __initcall(gate_vma_init);
3613 #endif
3614
3615 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3616 {
3617 #ifdef AT_SYSINFO_EHDR
3618         return &gate_vma;
3619 #else
3620         return NULL;
3621 #endif
3622 }
3623
3624 int in_gate_area_no_mm(unsigned long addr)
3625 {
3626 #ifdef AT_SYSINFO_EHDR
3627         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3628                 return 1;
3629 #endif
3630         return 0;
3631 }
3632
3633 #endif  /* __HAVE_ARCH_GATE_AREA */
3634
3635 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3636                 pte_t **ptepp, spinlock_t **ptlp)
3637 {
3638         pgd_t *pgd;
3639         pud_t *pud;
3640         pmd_t *pmd;
3641         pte_t *ptep;
3642
3643         pgd = pgd_offset(mm, address);
3644         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3645                 goto out;
3646
3647         pud = pud_offset(pgd, address);
3648         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3649                 goto out;
3650
3651         pmd = pmd_offset(pud, address);
3652         VM_BUG_ON(pmd_trans_huge(*pmd));
3653         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3654                 goto out;
3655
3656         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3657         if (pmd_huge(*pmd))
3658                 goto out;
3659
3660         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3661         if (!ptep)
3662                 goto out;
3663         if (!pte_present(*ptep))
3664                 goto unlock;
3665         *ptepp = ptep;
3666         return 0;
3667 unlock:
3668         pte_unmap_unlock(ptep, *ptlp);
3669 out:
3670         return -EINVAL;
3671 }
3672
3673 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3674                              pte_t **ptepp, spinlock_t **ptlp)
3675 {
3676         int res;
3677
3678         /* (void) is needed to make gcc happy */
3679         (void) __cond_lock(*ptlp,
3680                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3681         return res;
3682 }
3683
3684 /**
3685  * follow_pfn - look up PFN at a user virtual address
3686  * @vma: memory mapping
3687  * @address: user virtual address
3688  * @pfn: location to store found PFN
3689  *
3690  * Only IO mappings and raw PFN mappings are allowed.
3691  *
3692  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3693  */
3694 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3695         unsigned long *pfn)
3696 {
3697         int ret = -EINVAL;
3698         spinlock_t *ptl;
3699         pte_t *ptep;
3700
3701         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3702                 return ret;
3703
3704         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3705         if (ret)
3706                 return ret;
3707         *pfn = pte_pfn(*ptep);
3708         pte_unmap_unlock(ptep, ptl);
3709         return 0;
3710 }
3711 EXPORT_SYMBOL(follow_pfn);
3712
3713 #ifdef CONFIG_HAVE_IOREMAP_PROT
3714 int follow_phys(struct vm_area_struct *vma,
3715                 unsigned long address, unsigned int flags,
3716                 unsigned long *prot, resource_size_t *phys)
3717 {
3718         int ret = -EINVAL;
3719         pte_t *ptep, pte;
3720         spinlock_t *ptl;
3721
3722         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3723                 goto out;
3724
3725         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3726                 goto out;
3727         pte = *ptep;
3728
3729         if ((flags & FOLL_WRITE) && !pte_write(pte))
3730                 goto unlock;
3731
3732         *prot = pgprot_val(pte_pgprot(pte));
3733         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3734
3735         ret = 0;
3736 unlock:
3737         pte_unmap_unlock(ptep, ptl);
3738 out:
3739         return ret;
3740 }
3741
3742 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3743                         void *buf, int len, int write)
3744 {
3745         resource_size_t phys_addr;
3746         unsigned long prot = 0;
3747         void __iomem *maddr;
3748         int offset = addr & (PAGE_SIZE-1);
3749
3750         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3751                 return -EINVAL;
3752
3753         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3754         if (write)
3755                 memcpy_toio(maddr + offset, buf, len);
3756         else
3757                 memcpy_fromio(buf, maddr + offset, len);
3758         iounmap(maddr);
3759
3760         return len;
3761 }
3762 #endif
3763
3764 /*
3765  * Access another process' address space as given in mm.  If non-NULL, use the
3766  * given task for page fault accounting.
3767  */
3768 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3769                 unsigned long addr, void *buf, int len, int write)
3770 {
3771         struct vm_area_struct *vma;
3772         void *old_buf = buf;
3773
3774         down_read(&mm->mmap_sem);
3775         /* ignore errors, just check how much was successfully transferred */
3776         while (len) {
3777                 int bytes, ret, offset;
3778                 void *maddr;
3779                 struct page *page = NULL;
3780
3781                 ret = get_user_pages(tsk, mm, addr, 1,
3782                                 write, 1, &page, &vma);
3783                 if (ret <= 0) {
3784                         /*
3785                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3786                          * we can access using slightly different code.
3787                          */
3788 #ifdef CONFIG_HAVE_IOREMAP_PROT
3789                         vma = find_vma(mm, addr);
3790                         if (!vma || vma->vm_start > addr)
3791                                 break;
3792                         if (vma->vm_ops && vma->vm_ops->access)
3793                                 ret = vma->vm_ops->access(vma, addr, buf,
3794                                                           len, write);
3795                         if (ret <= 0)
3796 #endif
3797                                 break;
3798                         bytes = ret;
3799                 } else {
3800                         bytes = len;
3801                         offset = addr & (PAGE_SIZE-1);
3802                         if (bytes > PAGE_SIZE-offset)
3803                                 bytes = PAGE_SIZE-offset;
3804
3805                         maddr = kmap(page);
3806                         if (write) {
3807                                 copy_to_user_page(vma, page, addr,
3808                                                   maddr + offset, buf, bytes);
3809                                 set_page_dirty_lock(page);
3810                         } else {
3811                                 copy_from_user_page(vma, page, addr,
3812                                                     buf, maddr + offset, bytes);
3813                         }
3814                         kunmap(page);
3815                         page_cache_release(page);
3816                 }
3817                 len -= bytes;
3818                 buf += bytes;
3819                 addr += bytes;
3820         }
3821         up_read(&mm->mmap_sem);
3822
3823         return buf - old_buf;
3824 }
3825
3826 /**
3827  * access_remote_vm - access another process' address space
3828  * @mm:         the mm_struct of the target address space
3829  * @addr:       start address to access
3830  * @buf:        source or destination buffer
3831  * @len:        number of bytes to transfer
3832  * @write:      whether the access is a write
3833  *
3834  * The caller must hold a reference on @mm.
3835  */
3836 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3837                 void *buf, int len, int write)
3838 {
3839         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3840 }
3841
3842 /*
3843  * Access another process' address space.
3844  * Source/target buffer must be kernel space,
3845  * Do not walk the page table directly, use get_user_pages
3846  */
3847 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3848                 void *buf, int len, int write)
3849 {
3850         struct mm_struct *mm;
3851         int ret;
3852
3853         mm = get_task_mm(tsk);
3854         if (!mm)
3855                 return 0;
3856
3857         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3858         mmput(mm);
3859
3860         return ret;
3861 }
3862
3863 /*
3864  * Print the name of a VMA.
3865  */
3866 void print_vma_addr(char *prefix, unsigned long ip)
3867 {
3868         struct mm_struct *mm = current->mm;
3869         struct vm_area_struct *vma;
3870
3871         /*
3872          * Do not print if we are in atomic
3873          * contexts (in exception stacks, etc.):
3874          */
3875         if (preempt_count())
3876                 return;
3877
3878         down_read(&mm->mmap_sem);
3879         vma = find_vma(mm, ip);
3880         if (vma && vma->vm_file) {
3881                 struct file *f = vma->vm_file;
3882                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3883                 if (buf) {
3884                         char *p, *s;
3885
3886                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3887                         if (IS_ERR(p))
3888                                 p = "?";
3889                         s = strrchr(p, '/');
3890                         if (s)
3891                                 p = s+1;
3892                         printk("%s%s[%lx+%lx]", prefix, p,
3893                                         vma->vm_start,
3894                                         vma->vm_end - vma->vm_start);
3895                         free_page((unsigned long)buf);
3896                 }
3897         }
3898         up_read(&current->mm->mmap_sem);
3899 }
3900
3901 #ifdef CONFIG_PROVE_LOCKING
3902 void might_fault(void)
3903 {
3904         /*
3905          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3906          * holding the mmap_sem, this is safe because kernel memory doesn't
3907          * get paged out, therefore we'll never actually fault, and the
3908          * below annotations will generate false positives.
3909          */
3910         if (segment_eq(get_fs(), KERNEL_DS))
3911                 return;
3912
3913         might_sleep();
3914         /*
3915          * it would be nicer only to annotate paths which are not under
3916          * pagefault_disable, however that requires a larger audit and
3917          * providing helpers like get_user_atomic.
3918          */
3919         if (!in_atomic() && current->mm)
3920                 might_lock_read(&current->mm->mmap_sem);
3921 }
3922 EXPORT_SYMBOL(might_fault);
3923 #endif
3924
3925 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3926 static void clear_gigantic_page(struct page *page,
3927                                 unsigned long addr,
3928                                 unsigned int pages_per_huge_page)
3929 {
3930         int i;
3931         struct page *p = page;
3932
3933         might_sleep();
3934         for (i = 0; i < pages_per_huge_page;
3935              i++, p = mem_map_next(p, page, i)) {
3936                 cond_resched();
3937                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3938         }
3939 }
3940 void clear_huge_page(struct page *page,
3941                      unsigned long addr, unsigned int pages_per_huge_page)
3942 {
3943         int i;
3944
3945         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3946                 clear_gigantic_page(page, addr, pages_per_huge_page);
3947                 return;
3948         }
3949
3950         might_sleep();
3951         for (i = 0; i < pages_per_huge_page; i++) {
3952                 cond_resched();
3953                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3954         }
3955 }
3956
3957 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3958                                     unsigned long addr,
3959                                     struct vm_area_struct *vma,
3960                                     unsigned int pages_per_huge_page)
3961 {
3962         int i;
3963         struct page *dst_base = dst;
3964         struct page *src_base = src;
3965
3966         for (i = 0; i < pages_per_huge_page; ) {
3967                 cond_resched();
3968                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3969
3970                 i++;
3971                 dst = mem_map_next(dst, dst_base, i);
3972                 src = mem_map_next(src, src_base, i);
3973         }
3974 }
3975
3976 void copy_user_huge_page(struct page *dst, struct page *src,
3977                          unsigned long addr, struct vm_area_struct *vma,
3978                          unsigned int pages_per_huge_page)
3979 {
3980         int i;
3981
3982         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3983                 copy_user_gigantic_page(dst, src, addr, vma,
3984                                         pages_per_huge_page);
3985                 return;
3986         }
3987
3988         might_sleep();
3989         for (i = 0; i < pages_per_huge_page; i++) {
3990                 cond_resched();
3991                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3992         }
3993 }
3994 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */