Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (task->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, task->rss_stat.count[i]);
135                         task->rss_stat.count[i] = 0;
136                 }
137         }
138         task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165         long val = 0;
166
167         /*
168          * Don't use task->mm here...for avoiding to use task_get_mm()..
169          * The caller must guarantee task->mm is not invalid.
170          */
171         val = atomic_long_read(&mm->rss_stat.count[member]);
172         /*
173          * counter is updated in asynchronous manner and may go to minus.
174          * But it's never be expected number for users.
175          */
176         if (val < 0)
177                 return 0;
178         return (unsigned long)val;
179 }
180
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183         __sync_task_rss_stat(task, mm);
184 }
185 #else /* SPLIT_RSS_COUNTING */
186
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193
194 #endif /* SPLIT_RSS_COUNTING */
195
196 #ifdef HAVE_GENERIC_MMU_GATHER
197
198 static int tlb_next_batch(struct mmu_gather *tlb)
199 {
200         struct mmu_gather_batch *batch;
201
202         batch = tlb->active;
203         if (batch->next) {
204                 tlb->active = batch->next;
205                 return 1;
206         }
207
208         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
209                 return 0;
210
211         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
212         if (!batch)
213                 return 0;
214
215         tlb->batch_count++;
216         batch->next = NULL;
217         batch->nr   = 0;
218         batch->max  = MAX_GATHER_BATCH;
219
220         tlb->active->next = batch;
221         tlb->active = batch;
222
223         return 1;
224 }
225
226 /* tlb_gather_mmu
227  *      Called to initialize an (on-stack) mmu_gather structure for page-table
228  *      tear-down from @mm. The @fullmm argument is used when @mm is without
229  *      users and we're going to destroy the full address space (exit/execve).
230  */
231 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
232 {
233         tlb->mm = mm;
234
235         tlb->fullmm     = fullmm;
236         tlb->need_flush = 0;
237         tlb->fast_mode  = (num_possible_cpus() == 1);
238         tlb->local.next = NULL;
239         tlb->local.nr   = 0;
240         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
241         tlb->active     = &tlb->local;
242         tlb->batch_count = 0;
243
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245         tlb->batch = NULL;
246 #endif
247 }
248
249 void tlb_flush_mmu(struct mmu_gather *tlb)
250 {
251         struct mmu_gather_batch *batch;
252
253         if (!tlb->need_flush)
254                 return;
255         tlb->need_flush = 0;
256         tlb_flush(tlb);
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258         tlb_table_flush(tlb);
259 #endif
260
261         if (tlb_fast_mode(tlb))
262                 return;
263
264         for (batch = &tlb->local; batch; batch = batch->next) {
265                 free_pages_and_swap_cache(batch->pages, batch->nr);
266                 batch->nr = 0;
267         }
268         tlb->active = &tlb->local;
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
276 {
277         struct mmu_gather_batch *batch, *next;
278
279         tlb_flush_mmu(tlb);
280
281         /* keep the page table cache within bounds */
282         check_pgt_cache();
283
284         for (batch = tlb->local.next; batch; batch = next) {
285                 next = batch->next;
286                 free_pages((unsigned long)batch, 0);
287         }
288         tlb->local.next = NULL;
289 }
290
291 /* __tlb_remove_page
292  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293  *      handling the additional races in SMP caused by other CPUs caching valid
294  *      mappings in their TLBs. Returns the number of free page slots left.
295  *      When out of page slots we must call tlb_flush_mmu().
296  */
297 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
298 {
299         struct mmu_gather_batch *batch;
300
301         tlb->need_flush = 1;
302
303         if (tlb_fast_mode(tlb)) {
304                 free_page_and_swap_cache(page);
305                 return 1; /* avoid calling tlb_flush_mmu() */
306         }
307
308         batch = tlb->active;
309         batch->pages[batch->nr++] = page;
310         if (batch->nr == batch->max) {
311                 if (!tlb_next_batch(tlb))
312                         return 0;
313                 batch = tlb->active;
314         }
315         VM_BUG_ON(batch->nr > batch->max);
316
317         return batch->max - batch->nr;
318 }
319
320 #endif /* HAVE_GENERIC_MMU_GATHER */
321
322 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
323
324 /*
325  * See the comment near struct mmu_table_batch.
326  */
327
328 static void tlb_remove_table_smp_sync(void *arg)
329 {
330         /* Simply deliver the interrupt */
331 }
332
333 static void tlb_remove_table_one(void *table)
334 {
335         /*
336          * This isn't an RCU grace period and hence the page-tables cannot be
337          * assumed to be actually RCU-freed.
338          *
339          * It is however sufficient for software page-table walkers that rely on
340          * IRQ disabling. See the comment near struct mmu_table_batch.
341          */
342         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
343         __tlb_remove_table(table);
344 }
345
346 static void tlb_remove_table_rcu(struct rcu_head *head)
347 {
348         struct mmu_table_batch *batch;
349         int i;
350
351         batch = container_of(head, struct mmu_table_batch, rcu);
352
353         for (i = 0; i < batch->nr; i++)
354                 __tlb_remove_table(batch->tables[i]);
355
356         free_page((unsigned long)batch);
357 }
358
359 void tlb_table_flush(struct mmu_gather *tlb)
360 {
361         struct mmu_table_batch **batch = &tlb->batch;
362
363         if (*batch) {
364                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
365                 *batch = NULL;
366         }
367 }
368
369 void tlb_remove_table(struct mmu_gather *tlb, void *table)
370 {
371         struct mmu_table_batch **batch = &tlb->batch;
372
373         tlb->need_flush = 1;
374
375         /*
376          * When there's less then two users of this mm there cannot be a
377          * concurrent page-table walk.
378          */
379         if (atomic_read(&tlb->mm->mm_users) < 2) {
380                 __tlb_remove_table(table);
381                 return;
382         }
383
384         if (*batch == NULL) {
385                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
386                 if (*batch == NULL) {
387                         tlb_remove_table_one(table);
388                         return;
389                 }
390                 (*batch)->nr = 0;
391         }
392         (*batch)->tables[(*batch)->nr++] = table;
393         if ((*batch)->nr == MAX_TABLE_BATCH)
394                 tlb_table_flush(tlb);
395 }
396
397 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
398
399 /*
400  * If a p?d_bad entry is found while walking page tables, report
401  * the error, before resetting entry to p?d_none.  Usually (but
402  * very seldom) called out from the p?d_none_or_clear_bad macros.
403  */
404
405 void pgd_clear_bad(pgd_t *pgd)
406 {
407         pgd_ERROR(*pgd);
408         pgd_clear(pgd);
409 }
410
411 void pud_clear_bad(pud_t *pud)
412 {
413         pud_ERROR(*pud);
414         pud_clear(pud);
415 }
416
417 void pmd_clear_bad(pmd_t *pmd)
418 {
419         pmd_ERROR(*pmd);
420         pmd_clear(pmd);
421 }
422
423 /*
424  * Note: this doesn't free the actual pages themselves. That
425  * has been handled earlier when unmapping all the memory regions.
426  */
427 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
428                            unsigned long addr)
429 {
430         pgtable_t token = pmd_pgtable(*pmd);
431         pmd_clear(pmd);
432         pte_free_tlb(tlb, token, addr);
433         tlb->mm->nr_ptes--;
434 }
435
436 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
437                                 unsigned long addr, unsigned long end,
438                                 unsigned long floor, unsigned long ceiling)
439 {
440         pmd_t *pmd;
441         unsigned long next;
442         unsigned long start;
443
444         start = addr;
445         pmd = pmd_offset(pud, addr);
446         do {
447                 next = pmd_addr_end(addr, end);
448                 if (pmd_none_or_clear_bad(pmd))
449                         continue;
450                 free_pte_range(tlb, pmd, addr);
451         } while (pmd++, addr = next, addr != end);
452
453         start &= PUD_MASK;
454         if (start < floor)
455                 return;
456         if (ceiling) {
457                 ceiling &= PUD_MASK;
458                 if (!ceiling)
459                         return;
460         }
461         if (end - 1 > ceiling - 1)
462                 return;
463
464         pmd = pmd_offset(pud, start);
465         pud_clear(pud);
466         pmd_free_tlb(tlb, pmd, start);
467 }
468
469 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
470                                 unsigned long addr, unsigned long end,
471                                 unsigned long floor, unsigned long ceiling)
472 {
473         pud_t *pud;
474         unsigned long next;
475         unsigned long start;
476
477         start = addr;
478         pud = pud_offset(pgd, addr);
479         do {
480                 next = pud_addr_end(addr, end);
481                 if (pud_none_or_clear_bad(pud))
482                         continue;
483                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
484         } while (pud++, addr = next, addr != end);
485
486         start &= PGDIR_MASK;
487         if (start < floor)
488                 return;
489         if (ceiling) {
490                 ceiling &= PGDIR_MASK;
491                 if (!ceiling)
492                         return;
493         }
494         if (end - 1 > ceiling - 1)
495                 return;
496
497         pud = pud_offset(pgd, start);
498         pgd_clear(pgd);
499         pud_free_tlb(tlb, pud, start);
500 }
501
502 /*
503  * This function frees user-level page tables of a process.
504  *
505  * Must be called with pagetable lock held.
506  */
507 void free_pgd_range(struct mmu_gather *tlb,
508                         unsigned long addr, unsigned long end,
509                         unsigned long floor, unsigned long ceiling)
510 {
511         pgd_t *pgd;
512         unsigned long next;
513
514         /*
515          * The next few lines have given us lots of grief...
516          *
517          * Why are we testing PMD* at this top level?  Because often
518          * there will be no work to do at all, and we'd prefer not to
519          * go all the way down to the bottom just to discover that.
520          *
521          * Why all these "- 1"s?  Because 0 represents both the bottom
522          * of the address space and the top of it (using -1 for the
523          * top wouldn't help much: the masks would do the wrong thing).
524          * The rule is that addr 0 and floor 0 refer to the bottom of
525          * the address space, but end 0 and ceiling 0 refer to the top
526          * Comparisons need to use "end - 1" and "ceiling - 1" (though
527          * that end 0 case should be mythical).
528          *
529          * Wherever addr is brought up or ceiling brought down, we must
530          * be careful to reject "the opposite 0" before it confuses the
531          * subsequent tests.  But what about where end is brought down
532          * by PMD_SIZE below? no, end can't go down to 0 there.
533          *
534          * Whereas we round start (addr) and ceiling down, by different
535          * masks at different levels, in order to test whether a table
536          * now has no other vmas using it, so can be freed, we don't
537          * bother to round floor or end up - the tests don't need that.
538          */
539
540         addr &= PMD_MASK;
541         if (addr < floor) {
542                 addr += PMD_SIZE;
543                 if (!addr)
544                         return;
545         }
546         if (ceiling) {
547                 ceiling &= PMD_MASK;
548                 if (!ceiling)
549                         return;
550         }
551         if (end - 1 > ceiling - 1)
552                 end -= PMD_SIZE;
553         if (addr > end - 1)
554                 return;
555
556         pgd = pgd_offset(tlb->mm, addr);
557         do {
558                 next = pgd_addr_end(addr, end);
559                 if (pgd_none_or_clear_bad(pgd))
560                         continue;
561                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
562         } while (pgd++, addr = next, addr != end);
563 }
564
565 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
566                 unsigned long floor, unsigned long ceiling)
567 {
568         while (vma) {
569                 struct vm_area_struct *next = vma->vm_next;
570                 unsigned long addr = vma->vm_start;
571
572                 /*
573                  * Hide vma from rmap and truncate_pagecache before freeing
574                  * pgtables
575                  */
576                 unlink_anon_vmas(vma);
577                 unlink_file_vma(vma);
578
579                 if (is_vm_hugetlb_page(vma)) {
580                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
581                                 floor, next? next->vm_start: ceiling);
582                 } else {
583                         /*
584                          * Optimization: gather nearby vmas into one call down
585                          */
586                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
587                                && !is_vm_hugetlb_page(next)) {
588                                 vma = next;
589                                 next = vma->vm_next;
590                                 unlink_anon_vmas(vma);
591                                 unlink_file_vma(vma);
592                         }
593                         free_pgd_range(tlb, addr, vma->vm_end,
594                                 floor, next? next->vm_start: ceiling);
595                 }
596                 vma = next;
597         }
598 }
599
600 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
601                 pmd_t *pmd, unsigned long address)
602 {
603         pgtable_t new = pte_alloc_one(mm, address);
604         int wait_split_huge_page;
605         if (!new)
606                 return -ENOMEM;
607
608         /*
609          * Ensure all pte setup (eg. pte page lock and page clearing) are
610          * visible before the pte is made visible to other CPUs by being
611          * put into page tables.
612          *
613          * The other side of the story is the pointer chasing in the page
614          * table walking code (when walking the page table without locking;
615          * ie. most of the time). Fortunately, these data accesses consist
616          * of a chain of data-dependent loads, meaning most CPUs (alpha
617          * being the notable exception) will already guarantee loads are
618          * seen in-order. See the alpha page table accessors for the
619          * smp_read_barrier_depends() barriers in page table walking code.
620          */
621         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
622
623         spin_lock(&mm->page_table_lock);
624         wait_split_huge_page = 0;
625         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
626                 mm->nr_ptes++;
627                 pmd_populate(mm, pmd, new);
628                 new = NULL;
629         } else if (unlikely(pmd_trans_splitting(*pmd)))
630                 wait_split_huge_page = 1;
631         spin_unlock(&mm->page_table_lock);
632         if (new)
633                 pte_free(mm, new);
634         if (wait_split_huge_page)
635                 wait_split_huge_page(vma->anon_vma, pmd);
636         return 0;
637 }
638
639 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
640 {
641         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
642         if (!new)
643                 return -ENOMEM;
644
645         smp_wmb(); /* See comment in __pte_alloc */
646
647         spin_lock(&init_mm.page_table_lock);
648         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
649                 pmd_populate_kernel(&init_mm, pmd, new);
650                 new = NULL;
651         } else
652                 VM_BUG_ON(pmd_trans_splitting(*pmd));
653         spin_unlock(&init_mm.page_table_lock);
654         if (new)
655                 pte_free_kernel(&init_mm, new);
656         return 0;
657 }
658
659 static inline void init_rss_vec(int *rss)
660 {
661         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
662 }
663
664 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
665 {
666         int i;
667
668         if (current->mm == mm)
669                 sync_mm_rss(current, mm);
670         for (i = 0; i < NR_MM_COUNTERS; i++)
671                 if (rss[i])
672                         add_mm_counter(mm, i, rss[i]);
673 }
674
675 /*
676  * This function is called to print an error when a bad pte
677  * is found. For example, we might have a PFN-mapped pte in
678  * a region that doesn't allow it.
679  *
680  * The calling function must still handle the error.
681  */
682 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
683                           pte_t pte, struct page *page)
684 {
685         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
686         pud_t *pud = pud_offset(pgd, addr);
687         pmd_t *pmd = pmd_offset(pud, addr);
688         struct address_space *mapping;
689         pgoff_t index;
690         static unsigned long resume;
691         static unsigned long nr_shown;
692         static unsigned long nr_unshown;
693
694         /*
695          * Allow a burst of 60 reports, then keep quiet for that minute;
696          * or allow a steady drip of one report per second.
697          */
698         if (nr_shown == 60) {
699                 if (time_before(jiffies, resume)) {
700                         nr_unshown++;
701                         return;
702                 }
703                 if (nr_unshown) {
704                         printk(KERN_ALERT
705                                 "BUG: Bad page map: %lu messages suppressed\n",
706                                 nr_unshown);
707                         nr_unshown = 0;
708                 }
709                 nr_shown = 0;
710         }
711         if (nr_shown++ == 0)
712                 resume = jiffies + 60 * HZ;
713
714         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
715         index = linear_page_index(vma, addr);
716
717         printk(KERN_ALERT
718                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
719                 current->comm,
720                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
721         if (page)
722                 dump_page(page);
723         printk(KERN_ALERT
724                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
725                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
726         /*
727          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
728          */
729         if (vma->vm_ops)
730                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
731                                 (unsigned long)vma->vm_ops->fault);
732         if (vma->vm_file && vma->vm_file->f_op)
733                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
734                                 (unsigned long)vma->vm_file->f_op->mmap);
735         dump_stack();
736         add_taint(TAINT_BAD_PAGE);
737 }
738
739 static inline int is_cow_mapping(vm_flags_t flags)
740 {
741         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
742 }
743
744 #ifndef is_zero_pfn
745 static inline int is_zero_pfn(unsigned long pfn)
746 {
747         return pfn == zero_pfn;
748 }
749 #endif
750
751 #ifndef my_zero_pfn
752 static inline unsigned long my_zero_pfn(unsigned long addr)
753 {
754         return zero_pfn;
755 }
756 #endif
757
758 /*
759  * vm_normal_page -- This function gets the "struct page" associated with a pte.
760  *
761  * "Special" mappings do not wish to be associated with a "struct page" (either
762  * it doesn't exist, or it exists but they don't want to touch it). In this
763  * case, NULL is returned here. "Normal" mappings do have a struct page.
764  *
765  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
766  * pte bit, in which case this function is trivial. Secondly, an architecture
767  * may not have a spare pte bit, which requires a more complicated scheme,
768  * described below.
769  *
770  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
771  * special mapping (even if there are underlying and valid "struct pages").
772  * COWed pages of a VM_PFNMAP are always normal.
773  *
774  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
775  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
776  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
777  * mapping will always honor the rule
778  *
779  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
780  *
781  * And for normal mappings this is false.
782  *
783  * This restricts such mappings to be a linear translation from virtual address
784  * to pfn. To get around this restriction, we allow arbitrary mappings so long
785  * as the vma is not a COW mapping; in that case, we know that all ptes are
786  * special (because none can have been COWed).
787  *
788  *
789  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
790  *
791  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
792  * page" backing, however the difference is that _all_ pages with a struct
793  * page (that is, those where pfn_valid is true) are refcounted and considered
794  * normal pages by the VM. The disadvantage is that pages are refcounted
795  * (which can be slower and simply not an option for some PFNMAP users). The
796  * advantage is that we don't have to follow the strict linearity rule of
797  * PFNMAP mappings in order to support COWable mappings.
798  *
799  */
800 #ifdef __HAVE_ARCH_PTE_SPECIAL
801 # define HAVE_PTE_SPECIAL 1
802 #else
803 # define HAVE_PTE_SPECIAL 0
804 #endif
805 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
806                                 pte_t pte)
807 {
808         unsigned long pfn = pte_pfn(pte);
809
810         if (HAVE_PTE_SPECIAL) {
811                 if (likely(!pte_special(pte)))
812                         goto check_pfn;
813                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
814                         return NULL;
815                 if (!is_zero_pfn(pfn))
816                         print_bad_pte(vma, addr, pte, NULL);
817                 return NULL;
818         }
819
820         /* !HAVE_PTE_SPECIAL case follows: */
821
822         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
823                 if (vma->vm_flags & VM_MIXEDMAP) {
824                         if (!pfn_valid(pfn))
825                                 return NULL;
826                         goto out;
827                 } else {
828                         unsigned long off;
829                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
830                         if (pfn == vma->vm_pgoff + off)
831                                 return NULL;
832                         if (!is_cow_mapping(vma->vm_flags))
833                                 return NULL;
834                 }
835         }
836
837         if (is_zero_pfn(pfn))
838                 return NULL;
839 check_pfn:
840         if (unlikely(pfn > highest_memmap_pfn)) {
841                 print_bad_pte(vma, addr, pte, NULL);
842                 return NULL;
843         }
844
845         /*
846          * NOTE! We still have PageReserved() pages in the page tables.
847          * eg. VDSO mappings can cause them to exist.
848          */
849 out:
850         return pfn_to_page(pfn);
851 }
852
853 /*
854  * copy one vm_area from one task to the other. Assumes the page tables
855  * already present in the new task to be cleared in the whole range
856  * covered by this vma.
857  */
858
859 static inline unsigned long
860 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
861                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
862                 unsigned long addr, int *rss)
863 {
864         unsigned long vm_flags = vma->vm_flags;
865         pte_t pte = *src_pte;
866         struct page *page;
867
868         /* pte contains position in swap or file, so copy. */
869         if (unlikely(!pte_present(pte))) {
870                 if (!pte_file(pte)) {
871                         swp_entry_t entry = pte_to_swp_entry(pte);
872
873                         if (swap_duplicate(entry) < 0)
874                                 return entry.val;
875
876                         /* make sure dst_mm is on swapoff's mmlist. */
877                         if (unlikely(list_empty(&dst_mm->mmlist))) {
878                                 spin_lock(&mmlist_lock);
879                                 if (list_empty(&dst_mm->mmlist))
880                                         list_add(&dst_mm->mmlist,
881                                                  &src_mm->mmlist);
882                                 spin_unlock(&mmlist_lock);
883                         }
884                         if (likely(!non_swap_entry(entry)))
885                                 rss[MM_SWAPENTS]++;
886                         else if (is_write_migration_entry(entry) &&
887                                         is_cow_mapping(vm_flags)) {
888                                 /*
889                                  * COW mappings require pages in both parent
890                                  * and child to be set to read.
891                                  */
892                                 make_migration_entry_read(&entry);
893                                 pte = swp_entry_to_pte(entry);
894                                 set_pte_at(src_mm, addr, src_pte, pte);
895                         }
896                 }
897                 goto out_set_pte;
898         }
899
900         /*
901          * If it's a COW mapping, write protect it both
902          * in the parent and the child
903          */
904         if (is_cow_mapping(vm_flags)) {
905                 ptep_set_wrprotect(src_mm, addr, src_pte);
906                 pte = pte_wrprotect(pte);
907         }
908
909         /*
910          * If it's a shared mapping, mark it clean in
911          * the child
912          */
913         if (vm_flags & VM_SHARED)
914                 pte = pte_mkclean(pte);
915         pte = pte_mkold(pte);
916
917         page = vm_normal_page(vma, addr, pte);
918         if (page) {
919                 get_page(page);
920                 page_dup_rmap(page);
921                 if (PageAnon(page))
922                         rss[MM_ANONPAGES]++;
923                 else
924                         rss[MM_FILEPAGES]++;
925         }
926
927 out_set_pte:
928         set_pte_at(dst_mm, addr, dst_pte, pte);
929         return 0;
930 }
931
932 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
933                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
934                    unsigned long addr, unsigned long end)
935 {
936         pte_t *orig_src_pte, *orig_dst_pte;
937         pte_t *src_pte, *dst_pte;
938         spinlock_t *src_ptl, *dst_ptl;
939         int progress = 0;
940         int rss[NR_MM_COUNTERS];
941         swp_entry_t entry = (swp_entry_t){0};
942
943 again:
944         init_rss_vec(rss);
945
946         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
947         if (!dst_pte)
948                 return -ENOMEM;
949         src_pte = pte_offset_map(src_pmd, addr);
950         src_ptl = pte_lockptr(src_mm, src_pmd);
951         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
952         orig_src_pte = src_pte;
953         orig_dst_pte = dst_pte;
954         arch_enter_lazy_mmu_mode();
955
956         do {
957                 /*
958                  * We are holding two locks at this point - either of them
959                  * could generate latencies in another task on another CPU.
960                  */
961                 if (progress >= 32) {
962                         progress = 0;
963                         if (need_resched() ||
964                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
965                                 break;
966                 }
967                 if (pte_none(*src_pte)) {
968                         progress++;
969                         continue;
970                 }
971                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
972                                                         vma, addr, rss);
973                 if (entry.val)
974                         break;
975                 progress += 8;
976         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
977
978         arch_leave_lazy_mmu_mode();
979         spin_unlock(src_ptl);
980         pte_unmap(orig_src_pte);
981         add_mm_rss_vec(dst_mm, rss);
982         pte_unmap_unlock(orig_dst_pte, dst_ptl);
983         cond_resched();
984
985         if (entry.val) {
986                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
987                         return -ENOMEM;
988                 progress = 0;
989         }
990         if (addr != end)
991                 goto again;
992         return 0;
993 }
994
995 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
997                 unsigned long addr, unsigned long end)
998 {
999         pmd_t *src_pmd, *dst_pmd;
1000         unsigned long next;
1001
1002         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1003         if (!dst_pmd)
1004                 return -ENOMEM;
1005         src_pmd = pmd_offset(src_pud, addr);
1006         do {
1007                 next = pmd_addr_end(addr, end);
1008                 if (pmd_trans_huge(*src_pmd)) {
1009                         int err;
1010                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1011                         err = copy_huge_pmd(dst_mm, src_mm,
1012                                             dst_pmd, src_pmd, addr, vma);
1013                         if (err == -ENOMEM)
1014                                 return -ENOMEM;
1015                         if (!err)
1016                                 continue;
1017                         /* fall through */
1018                 }
1019                 if (pmd_none_or_clear_bad(src_pmd))
1020                         continue;
1021                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1022                                                 vma, addr, next))
1023                         return -ENOMEM;
1024         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1025         return 0;
1026 }
1027
1028 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1029                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1030                 unsigned long addr, unsigned long end)
1031 {
1032         pud_t *src_pud, *dst_pud;
1033         unsigned long next;
1034
1035         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1036         if (!dst_pud)
1037                 return -ENOMEM;
1038         src_pud = pud_offset(src_pgd, addr);
1039         do {
1040                 next = pud_addr_end(addr, end);
1041                 if (pud_none_or_clear_bad(src_pud))
1042                         continue;
1043                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1044                                                 vma, addr, next))
1045                         return -ENOMEM;
1046         } while (dst_pud++, src_pud++, addr = next, addr != end);
1047         return 0;
1048 }
1049
1050 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1051                 struct vm_area_struct *vma)
1052 {
1053         pgd_t *src_pgd, *dst_pgd;
1054         unsigned long next;
1055         unsigned long addr = vma->vm_start;
1056         unsigned long end = vma->vm_end;
1057         int ret;
1058
1059         /*
1060          * Don't copy ptes where a page fault will fill them correctly.
1061          * Fork becomes much lighter when there are big shared or private
1062          * readonly mappings. The tradeoff is that copy_page_range is more
1063          * efficient than faulting.
1064          */
1065         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1066                 if (!vma->anon_vma)
1067                         return 0;
1068         }
1069
1070         if (is_vm_hugetlb_page(vma))
1071                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1072
1073         if (unlikely(is_pfn_mapping(vma))) {
1074                 /*
1075                  * We do not free on error cases below as remove_vma
1076                  * gets called on error from higher level routine
1077                  */
1078                 ret = track_pfn_vma_copy(vma);
1079                 if (ret)
1080                         return ret;
1081         }
1082
1083         /*
1084          * We need to invalidate the secondary MMU mappings only when
1085          * there could be a permission downgrade on the ptes of the
1086          * parent mm. And a permission downgrade will only happen if
1087          * is_cow_mapping() returns true.
1088          */
1089         if (is_cow_mapping(vma->vm_flags))
1090                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1091
1092         ret = 0;
1093         dst_pgd = pgd_offset(dst_mm, addr);
1094         src_pgd = pgd_offset(src_mm, addr);
1095         do {
1096                 next = pgd_addr_end(addr, end);
1097                 if (pgd_none_or_clear_bad(src_pgd))
1098                         continue;
1099                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100                                             vma, addr, next))) {
1101                         ret = -ENOMEM;
1102                         break;
1103                 }
1104         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1105
1106         if (is_cow_mapping(vma->vm_flags))
1107                 mmu_notifier_invalidate_range_end(src_mm,
1108                                                   vma->vm_start, end);
1109         return ret;
1110 }
1111
1112 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1113                                 struct vm_area_struct *vma, pmd_t *pmd,
1114                                 unsigned long addr, unsigned long end,
1115                                 struct zap_details *details)
1116 {
1117         struct mm_struct *mm = tlb->mm;
1118         int force_flush = 0;
1119         int rss[NR_MM_COUNTERS];
1120         spinlock_t *ptl;
1121         pte_t *start_pte;
1122         pte_t *pte;
1123
1124 again:
1125         init_rss_vec(rss);
1126         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1127         pte = start_pte;
1128         arch_enter_lazy_mmu_mode();
1129         do {
1130                 pte_t ptent = *pte;
1131                 if (pte_none(ptent)) {
1132                         continue;
1133                 }
1134
1135                 if (pte_present(ptent)) {
1136                         struct page *page;
1137
1138                         page = vm_normal_page(vma, addr, ptent);
1139                         if (unlikely(details) && page) {
1140                                 /*
1141                                  * unmap_shared_mapping_pages() wants to
1142                                  * invalidate cache without truncating:
1143                                  * unmap shared but keep private pages.
1144                                  */
1145                                 if (details->check_mapping &&
1146                                     details->check_mapping != page->mapping)
1147                                         continue;
1148                                 /*
1149                                  * Each page->index must be checked when
1150                                  * invalidating or truncating nonlinear.
1151                                  */
1152                                 if (details->nonlinear_vma &&
1153                                     (page->index < details->first_index ||
1154                                      page->index > details->last_index))
1155                                         continue;
1156                         }
1157                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1158                                                         tlb->fullmm);
1159                         tlb_remove_tlb_entry(tlb, pte, addr);
1160                         if (unlikely(!page))
1161                                 continue;
1162                         if (unlikely(details) && details->nonlinear_vma
1163                             && linear_page_index(details->nonlinear_vma,
1164                                                 addr) != page->index)
1165                                 set_pte_at(mm, addr, pte,
1166                                            pgoff_to_pte(page->index));
1167                         if (PageAnon(page))
1168                                 rss[MM_ANONPAGES]--;
1169                         else {
1170                                 if (pte_dirty(ptent))
1171                                         set_page_dirty(page);
1172                                 if (pte_young(ptent) &&
1173                                     likely(!VM_SequentialReadHint(vma)))
1174                                         mark_page_accessed(page);
1175                                 rss[MM_FILEPAGES]--;
1176                         }
1177                         page_remove_rmap(page);
1178                         if (unlikely(page_mapcount(page) < 0))
1179                                 print_bad_pte(vma, addr, ptent, page);
1180                         force_flush = !__tlb_remove_page(tlb, page);
1181                         if (force_flush)
1182                                 break;
1183                         continue;
1184                 }
1185                 /*
1186                  * If details->check_mapping, we leave swap entries;
1187                  * if details->nonlinear_vma, we leave file entries.
1188                  */
1189                 if (unlikely(details))
1190                         continue;
1191                 if (pte_file(ptent)) {
1192                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1193                                 print_bad_pte(vma, addr, ptent, NULL);
1194                 } else {
1195                         swp_entry_t entry = pte_to_swp_entry(ptent);
1196
1197                         if (!non_swap_entry(entry))
1198                                 rss[MM_SWAPENTS]--;
1199                         if (unlikely(!free_swap_and_cache(entry)))
1200                                 print_bad_pte(vma, addr, ptent, NULL);
1201                 }
1202                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1203         } while (pte++, addr += PAGE_SIZE, addr != end);
1204
1205         add_mm_rss_vec(mm, rss);
1206         arch_leave_lazy_mmu_mode();
1207         pte_unmap_unlock(start_pte, ptl);
1208
1209         /*
1210          * mmu_gather ran out of room to batch pages, we break out of
1211          * the PTE lock to avoid doing the potential expensive TLB invalidate
1212          * and page-free while holding it.
1213          */
1214         if (force_flush) {
1215                 force_flush = 0;
1216                 tlb_flush_mmu(tlb);
1217                 if (addr != end)
1218                         goto again;
1219         }
1220
1221         return addr;
1222 }
1223
1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225                                 struct vm_area_struct *vma, pud_t *pud,
1226                                 unsigned long addr, unsigned long end,
1227                                 struct zap_details *details)
1228 {
1229         pmd_t *pmd;
1230         unsigned long next;
1231
1232         pmd = pmd_offset(pud, addr);
1233         do {
1234                 next = pmd_addr_end(addr, end);
1235                 if (pmd_trans_huge(*pmd)) {
1236                         if (next - addr != HPAGE_PMD_SIZE) {
1237                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1238                                 split_huge_page_pmd(vma->vm_mm, pmd);
1239                         } else if (zap_huge_pmd(tlb, vma, pmd))
1240                                 goto next;
1241                         /* fall through */
1242                 }
1243                 /*
1244                  * Here there can be other concurrent MADV_DONTNEED or
1245                  * trans huge page faults running, and if the pmd is
1246                  * none or trans huge it can change under us. This is
1247                  * because MADV_DONTNEED holds the mmap_sem in read
1248                  * mode.
1249                  */
1250                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1251                         goto next;
1252                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1253 next:
1254                 cond_resched();
1255         } while (pmd++, addr = next, addr != end);
1256
1257         return addr;
1258 }
1259
1260 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1261                                 struct vm_area_struct *vma, pgd_t *pgd,
1262                                 unsigned long addr, unsigned long end,
1263                                 struct zap_details *details)
1264 {
1265         pud_t *pud;
1266         unsigned long next;
1267
1268         pud = pud_offset(pgd, addr);
1269         do {
1270                 next = pud_addr_end(addr, end);
1271                 if (pud_none_or_clear_bad(pud))
1272                         continue;
1273                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1274         } while (pud++, addr = next, addr != end);
1275
1276         return addr;
1277 }
1278
1279 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1280                                 struct vm_area_struct *vma,
1281                                 unsigned long addr, unsigned long end,
1282                                 struct zap_details *details)
1283 {
1284         pgd_t *pgd;
1285         unsigned long next;
1286
1287         if (details && !details->check_mapping && !details->nonlinear_vma)
1288                 details = NULL;
1289
1290         BUG_ON(addr >= end);
1291         mem_cgroup_uncharge_start();
1292         tlb_start_vma(tlb, vma);
1293         pgd = pgd_offset(vma->vm_mm, addr);
1294         do {
1295                 next = pgd_addr_end(addr, end);
1296                 if (pgd_none_or_clear_bad(pgd))
1297                         continue;
1298                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1299         } while (pgd++, addr = next, addr != end);
1300         tlb_end_vma(tlb, vma);
1301         mem_cgroup_uncharge_end();
1302
1303         return addr;
1304 }
1305
1306 /**
1307  * unmap_vmas - unmap a range of memory covered by a list of vma's
1308  * @tlb: address of the caller's struct mmu_gather
1309  * @vma: the starting vma
1310  * @start_addr: virtual address at which to start unmapping
1311  * @end_addr: virtual address at which to end unmapping
1312  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1313  * @details: details of nonlinear truncation or shared cache invalidation
1314  *
1315  * Returns the end address of the unmapping (restart addr if interrupted).
1316  *
1317  * Unmap all pages in the vma list.
1318  *
1319  * Only addresses between `start' and `end' will be unmapped.
1320  *
1321  * The VMA list must be sorted in ascending virtual address order.
1322  *
1323  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1324  * range after unmap_vmas() returns.  So the only responsibility here is to
1325  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1326  * drops the lock and schedules.
1327  */
1328 unsigned long unmap_vmas(struct mmu_gather *tlb,
1329                 struct vm_area_struct *vma, unsigned long start_addr,
1330                 unsigned long end_addr, unsigned long *nr_accounted,
1331                 struct zap_details *details)
1332 {
1333         unsigned long start = start_addr;
1334         struct mm_struct *mm = vma->vm_mm;
1335
1336         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1337         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1338                 unsigned long end;
1339
1340                 start = max(vma->vm_start, start_addr);
1341                 if (start >= vma->vm_end)
1342                         continue;
1343                 end = min(vma->vm_end, end_addr);
1344                 if (end <= vma->vm_start)
1345                         continue;
1346
1347                 if (vma->vm_flags & VM_ACCOUNT)
1348                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1349
1350                 if (unlikely(is_pfn_mapping(vma)))
1351                         untrack_pfn_vma(vma, 0, 0);
1352
1353                 while (start != end) {
1354                         if (unlikely(is_vm_hugetlb_page(vma))) {
1355                                 /*
1356                                  * It is undesirable to test vma->vm_file as it
1357                                  * should be non-null for valid hugetlb area.
1358                                  * However, vm_file will be NULL in the error
1359                                  * cleanup path of do_mmap_pgoff. When
1360                                  * hugetlbfs ->mmap method fails,
1361                                  * do_mmap_pgoff() nullifies vma->vm_file
1362                                  * before calling this function to clean up.
1363                                  * Since no pte has actually been setup, it is
1364                                  * safe to do nothing in this case.
1365                                  */
1366                                 if (vma->vm_file) {
1367                                         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1368                                         __unmap_hugepage_range_final(vma, start, end, NULL);
1369                                         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1370                                 }
1371
1372                                 start = end;
1373                         } else
1374                                 start = unmap_page_range(tlb, vma, start, end, details);
1375                 }
1376         }
1377
1378         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1379         return start;   /* which is now the end (or restart) address */
1380 }
1381
1382 /**
1383  * zap_page_range - remove user pages in a given range
1384  * @vma: vm_area_struct holding the applicable pages
1385  * @address: starting address of pages to zap
1386  * @size: number of bytes to zap
1387  * @details: details of nonlinear truncation or shared cache invalidation
1388  */
1389 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1390                 unsigned long size, struct zap_details *details)
1391 {
1392         struct mm_struct *mm = vma->vm_mm;
1393         struct mmu_gather tlb;
1394         unsigned long end = address + size;
1395         unsigned long nr_accounted = 0;
1396
1397         lru_add_drain();
1398         tlb_gather_mmu(&tlb, mm, 0);
1399         update_hiwater_rss(mm);
1400         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1401         tlb_finish_mmu(&tlb, address, end);
1402         return end;
1403 }
1404 EXPORT_SYMBOL_GPL(zap_page_range);
1405
1406 /**
1407  * zap_vma_ptes - remove ptes mapping the vma
1408  * @vma: vm_area_struct holding ptes to be zapped
1409  * @address: starting address of pages to zap
1410  * @size: number of bytes to zap
1411  *
1412  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1413  *
1414  * The entire address range must be fully contained within the vma.
1415  *
1416  * Returns 0 if successful.
1417  */
1418 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1419                 unsigned long size)
1420 {
1421         if (address < vma->vm_start || address + size > vma->vm_end ||
1422                         !(vma->vm_flags & VM_PFNMAP))
1423                 return -1;
1424         zap_page_range(vma, address, size, NULL);
1425         return 0;
1426 }
1427 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1428
1429 /**
1430  * follow_page - look up a page descriptor from a user-virtual address
1431  * @vma: vm_area_struct mapping @address
1432  * @address: virtual address to look up
1433  * @flags: flags modifying lookup behaviour
1434  *
1435  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1436  *
1437  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1438  * an error pointer if there is a mapping to something not represented
1439  * by a page descriptor (see also vm_normal_page()).
1440  */
1441 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1442                         unsigned int flags)
1443 {
1444         pgd_t *pgd;
1445         pud_t *pud;
1446         pmd_t *pmd;
1447         pte_t *ptep, pte;
1448         spinlock_t *ptl;
1449         struct page *page;
1450         struct mm_struct *mm = vma->vm_mm;
1451
1452         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1453         if (!IS_ERR(page)) {
1454                 BUG_ON(flags & FOLL_GET);
1455                 goto out;
1456         }
1457
1458         page = NULL;
1459         pgd = pgd_offset(mm, address);
1460         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1461                 goto no_page_table;
1462
1463         pud = pud_offset(pgd, address);
1464         if (pud_none(*pud))
1465                 goto no_page_table;
1466         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1467                 BUG_ON(flags & FOLL_GET);
1468                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1469                 goto out;
1470         }
1471         if (unlikely(pud_bad(*pud)))
1472                 goto no_page_table;
1473
1474         pmd = pmd_offset(pud, address);
1475         if (pmd_none(*pmd))
1476                 goto no_page_table;
1477         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1478                 BUG_ON(flags & FOLL_GET);
1479                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1480                 goto out;
1481         }
1482         if (pmd_trans_huge(*pmd)) {
1483                 if (flags & FOLL_SPLIT) {
1484                         split_huge_page_pmd(mm, pmd);
1485                         goto split_fallthrough;
1486                 }
1487                 spin_lock(&mm->page_table_lock);
1488                 if (likely(pmd_trans_huge(*pmd))) {
1489                         if (unlikely(pmd_trans_splitting(*pmd))) {
1490                                 spin_unlock(&mm->page_table_lock);
1491                                 wait_split_huge_page(vma->anon_vma, pmd);
1492                         } else {
1493                                 page = follow_trans_huge_pmd(mm, address,
1494                                                              pmd, flags);
1495                                 spin_unlock(&mm->page_table_lock);
1496                                 goto out;
1497                         }
1498                 } else
1499                         spin_unlock(&mm->page_table_lock);
1500                 /* fall through */
1501         }
1502 split_fallthrough:
1503         if (unlikely(pmd_bad(*pmd)))
1504                 goto no_page_table;
1505
1506         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1507
1508         pte = *ptep;
1509         if (!pte_present(pte))
1510                 goto no_page;
1511         if ((flags & FOLL_WRITE) && !pte_write(pte))
1512                 goto unlock;
1513
1514         page = vm_normal_page(vma, address, pte);
1515         if (unlikely(!page)) {
1516                 if ((flags & FOLL_DUMP) ||
1517                     !is_zero_pfn(pte_pfn(pte)))
1518                         goto bad_page;
1519                 page = pte_page(pte);
1520         }
1521
1522         if (flags & FOLL_GET)
1523                 get_page_foll(page);
1524         if (flags & FOLL_TOUCH) {
1525                 if ((flags & FOLL_WRITE) &&
1526                     !pte_dirty(pte) && !PageDirty(page))
1527                         set_page_dirty(page);
1528                 /*
1529                  * pte_mkyoung() would be more correct here, but atomic care
1530                  * is needed to avoid losing the dirty bit: it is easier to use
1531                  * mark_page_accessed().
1532                  */
1533                 mark_page_accessed(page);
1534         }
1535         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1536                 /*
1537                  * The preliminary mapping check is mainly to avoid the
1538                  * pointless overhead of lock_page on the ZERO_PAGE
1539                  * which might bounce very badly if there is contention.
1540                  *
1541                  * If the page is already locked, we don't need to
1542                  * handle it now - vmscan will handle it later if and
1543                  * when it attempts to reclaim the page.
1544                  */
1545                 if (page->mapping && trylock_page(page)) {
1546                         lru_add_drain();  /* push cached pages to LRU */
1547                         /*
1548                          * Because we lock page here and migration is
1549                          * blocked by the pte's page reference, we need
1550                          * only check for file-cache page truncation.
1551                          */
1552                         if (page->mapping)
1553                                 mlock_vma_page(page);
1554                         unlock_page(page);
1555                 }
1556         }
1557 unlock:
1558         pte_unmap_unlock(ptep, ptl);
1559 out:
1560         return page;
1561
1562 bad_page:
1563         pte_unmap_unlock(ptep, ptl);
1564         return ERR_PTR(-EFAULT);
1565
1566 no_page:
1567         pte_unmap_unlock(ptep, ptl);
1568         if (!pte_none(pte))
1569                 return page;
1570
1571 no_page_table:
1572         /*
1573          * When core dumping an enormous anonymous area that nobody
1574          * has touched so far, we don't want to allocate unnecessary pages or
1575          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1576          * then get_dump_page() will return NULL to leave a hole in the dump.
1577          * But we can only make this optimization where a hole would surely
1578          * be zero-filled if handle_mm_fault() actually did handle it.
1579          */
1580         if ((flags & FOLL_DUMP) &&
1581             (!vma->vm_ops || !vma->vm_ops->fault))
1582                 return ERR_PTR(-EFAULT);
1583         return page;
1584 }
1585
1586 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1587 {
1588         return stack_guard_page_start(vma, addr) ||
1589                stack_guard_page_end(vma, addr+PAGE_SIZE);
1590 }
1591
1592 /**
1593  * __get_user_pages() - pin user pages in memory
1594  * @tsk:        task_struct of target task
1595  * @mm:         mm_struct of target mm
1596  * @start:      starting user address
1597  * @nr_pages:   number of pages from start to pin
1598  * @gup_flags:  flags modifying pin behaviour
1599  * @pages:      array that receives pointers to the pages pinned.
1600  *              Should be at least nr_pages long. Or NULL, if caller
1601  *              only intends to ensure the pages are faulted in.
1602  * @vmas:       array of pointers to vmas corresponding to each page.
1603  *              Or NULL if the caller does not require them.
1604  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1605  *
1606  * Returns number of pages pinned. This may be fewer than the number
1607  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1608  * were pinned, returns -errno. Each page returned must be released
1609  * with a put_page() call when it is finished with. vmas will only
1610  * remain valid while mmap_sem is held.
1611  *
1612  * Must be called with mmap_sem held for read or write.
1613  *
1614  * __get_user_pages walks a process's page tables and takes a reference to
1615  * each struct page that each user address corresponds to at a given
1616  * instant. That is, it takes the page that would be accessed if a user
1617  * thread accesses the given user virtual address at that instant.
1618  *
1619  * This does not guarantee that the page exists in the user mappings when
1620  * __get_user_pages returns, and there may even be a completely different
1621  * page there in some cases (eg. if mmapped pagecache has been invalidated
1622  * and subsequently re faulted). However it does guarantee that the page
1623  * won't be freed completely. And mostly callers simply care that the page
1624  * contains data that was valid *at some point in time*. Typically, an IO
1625  * or similar operation cannot guarantee anything stronger anyway because
1626  * locks can't be held over the syscall boundary.
1627  *
1628  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1629  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1630  * appropriate) must be called after the page is finished with, and
1631  * before put_page is called.
1632  *
1633  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1634  * or mmap_sem contention, and if waiting is needed to pin all pages,
1635  * *@nonblocking will be set to 0.
1636  *
1637  * In most cases, get_user_pages or get_user_pages_fast should be used
1638  * instead of __get_user_pages. __get_user_pages should be used only if
1639  * you need some special @gup_flags.
1640  */
1641 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1642                      unsigned long start, int nr_pages, unsigned int gup_flags,
1643                      struct page **pages, struct vm_area_struct **vmas,
1644                      int *nonblocking)
1645 {
1646         int i;
1647         unsigned long vm_flags;
1648
1649         if (nr_pages <= 0)
1650                 return 0;
1651
1652         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1653
1654         /* 
1655          * Require read or write permissions.
1656          * If FOLL_FORCE is set, we only require the "MAY" flags.
1657          */
1658         vm_flags  = (gup_flags & FOLL_WRITE) ?
1659                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1660         vm_flags &= (gup_flags & FOLL_FORCE) ?
1661                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1662         i = 0;
1663
1664         do {
1665                 struct vm_area_struct *vma;
1666
1667                 vma = find_extend_vma(mm, start);
1668                 if (!vma && in_gate_area(mm, start)) {
1669                         unsigned long pg = start & PAGE_MASK;
1670                         pgd_t *pgd;
1671                         pud_t *pud;
1672                         pmd_t *pmd;
1673                         pte_t *pte;
1674
1675                         /* user gate pages are read-only */
1676                         if (gup_flags & FOLL_WRITE)
1677                                 return i ? : -EFAULT;
1678                         if (pg > TASK_SIZE)
1679                                 pgd = pgd_offset_k(pg);
1680                         else
1681                                 pgd = pgd_offset_gate(mm, pg);
1682                         BUG_ON(pgd_none(*pgd));
1683                         pud = pud_offset(pgd, pg);
1684                         BUG_ON(pud_none(*pud));
1685                         pmd = pmd_offset(pud, pg);
1686                         if (pmd_none(*pmd))
1687                                 return i ? : -EFAULT;
1688                         VM_BUG_ON(pmd_trans_huge(*pmd));
1689                         pte = pte_offset_map(pmd, pg);
1690                         if (pte_none(*pte)) {
1691                                 pte_unmap(pte);
1692                                 return i ? : -EFAULT;
1693                         }
1694                         vma = get_gate_vma(mm);
1695                         if (pages) {
1696                                 struct page *page;
1697
1698                                 page = vm_normal_page(vma, start, *pte);
1699                                 if (!page) {
1700                                         if (!(gup_flags & FOLL_DUMP) &&
1701                                              is_zero_pfn(pte_pfn(*pte)))
1702                                                 page = pte_page(*pte);
1703                                         else {
1704                                                 pte_unmap(pte);
1705                                                 return i ? : -EFAULT;
1706                                         }
1707                                 }
1708                                 pages[i] = page;
1709                                 get_page(page);
1710                         }
1711                         pte_unmap(pte);
1712                         goto next_page;
1713                 }
1714
1715                 if (!vma ||
1716                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1717                     !(vm_flags & vma->vm_flags))
1718                         return i ? : -EFAULT;
1719
1720                 if (is_vm_hugetlb_page(vma)) {
1721                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1722                                         &start, &nr_pages, i, gup_flags);
1723                         continue;
1724                 }
1725
1726                 do {
1727                         struct page *page;
1728                         unsigned int foll_flags = gup_flags;
1729
1730                         /*
1731                          * If we have a pending SIGKILL, don't keep faulting
1732                          * pages and potentially allocating memory.
1733                          */
1734                         if (unlikely(fatal_signal_pending(current)))
1735                                 return i ? i : -ERESTARTSYS;
1736
1737                         cond_resched();
1738                         while (!(page = follow_page(vma, start, foll_flags))) {
1739                                 int ret;
1740                                 unsigned int fault_flags = 0;
1741
1742                                 /* For mlock, just skip the stack guard page. */
1743                                 if (foll_flags & FOLL_MLOCK) {
1744                                         if (stack_guard_page(vma, start))
1745                                                 goto next_page;
1746                                 }
1747                                 if (foll_flags & FOLL_WRITE)
1748                                         fault_flags |= FAULT_FLAG_WRITE;
1749                                 if (nonblocking)
1750                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1751                                 if (foll_flags & FOLL_NOWAIT)
1752                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1753
1754                                 ret = handle_mm_fault(mm, vma, start,
1755                                                         fault_flags);
1756
1757                                 if (ret & VM_FAULT_ERROR) {
1758                                         if (ret & VM_FAULT_OOM)
1759                                                 return i ? i : -ENOMEM;
1760                                         if (ret & (VM_FAULT_HWPOISON |
1761                                                    VM_FAULT_HWPOISON_LARGE)) {
1762                                                 if (i)
1763                                                         return i;
1764                                                 else if (gup_flags & FOLL_HWPOISON)
1765                                                         return -EHWPOISON;
1766                                                 else
1767                                                         return -EFAULT;
1768                                         }
1769                                         if (ret & VM_FAULT_SIGBUS)
1770                                                 return i ? i : -EFAULT;
1771                                         BUG();
1772                                 }
1773
1774                                 if (tsk) {
1775                                         if (ret & VM_FAULT_MAJOR)
1776                                                 tsk->maj_flt++;
1777                                         else
1778                                                 tsk->min_flt++;
1779                                 }
1780
1781                                 if (ret & VM_FAULT_RETRY) {
1782                                         if (nonblocking)
1783                                                 *nonblocking = 0;
1784                                         return i;
1785                                 }
1786
1787                                 /*
1788                                  * The VM_FAULT_WRITE bit tells us that
1789                                  * do_wp_page has broken COW when necessary,
1790                                  * even if maybe_mkwrite decided not to set
1791                                  * pte_write. We can thus safely do subsequent
1792                                  * page lookups as if they were reads. But only
1793                                  * do so when looping for pte_write is futile:
1794                                  * in some cases userspace may also be wanting
1795                                  * to write to the gotten user page, which a
1796                                  * read fault here might prevent (a readonly
1797                                  * page might get reCOWed by userspace write).
1798                                  */
1799                                 if ((ret & VM_FAULT_WRITE) &&
1800                                     !(vma->vm_flags & VM_WRITE))
1801                                         foll_flags &= ~FOLL_WRITE;
1802
1803                                 cond_resched();
1804                         }
1805                         if (IS_ERR(page))
1806                                 return i ? i : PTR_ERR(page);
1807                         if (pages) {
1808                                 pages[i] = page;
1809
1810                                 flush_anon_page(vma, page, start);
1811                                 flush_dcache_page(page);
1812                         }
1813 next_page:
1814                         if (vmas)
1815                                 vmas[i] = vma;
1816                         i++;
1817                         start += PAGE_SIZE;
1818                         nr_pages--;
1819                 } while (nr_pages && start < vma->vm_end);
1820         } while (nr_pages);
1821         return i;
1822 }
1823 EXPORT_SYMBOL(__get_user_pages);
1824
1825 /*
1826  * fixup_user_fault() - manually resolve a user page fault
1827  * @tsk:        the task_struct to use for page fault accounting, or
1828  *              NULL if faults are not to be recorded.
1829  * @mm:         mm_struct of target mm
1830  * @address:    user address
1831  * @fault_flags:flags to pass down to handle_mm_fault()
1832  *
1833  * This is meant to be called in the specific scenario where for locking reasons
1834  * we try to access user memory in atomic context (within a pagefault_disable()
1835  * section), this returns -EFAULT, and we want to resolve the user fault before
1836  * trying again.
1837  *
1838  * Typically this is meant to be used by the futex code.
1839  *
1840  * The main difference with get_user_pages() is that this function will
1841  * unconditionally call handle_mm_fault() which will in turn perform all the
1842  * necessary SW fixup of the dirty and young bits in the PTE, while
1843  * handle_mm_fault() only guarantees to update these in the struct page.
1844  *
1845  * This is important for some architectures where those bits also gate the
1846  * access permission to the page because they are maintained in software.  On
1847  * such architectures, gup() will not be enough to make a subsequent access
1848  * succeed.
1849  *
1850  * This should be called with the mm_sem held for read.
1851  */
1852 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1853                      unsigned long address, unsigned int fault_flags)
1854 {
1855         struct vm_area_struct *vma;
1856         vm_flags_t vm_flags;
1857         int ret;
1858
1859         vma = find_extend_vma(mm, address);
1860         if (!vma || address < vma->vm_start)
1861                 return -EFAULT;
1862
1863         vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1864         if (!(vm_flags & vma->vm_flags))
1865                 return -EFAULT;
1866
1867         ret = handle_mm_fault(mm, vma, address, fault_flags);
1868         if (ret & VM_FAULT_ERROR) {
1869                 if (ret & VM_FAULT_OOM)
1870                         return -ENOMEM;
1871                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1872                         return -EHWPOISON;
1873                 if (ret & VM_FAULT_SIGBUS)
1874                         return -EFAULT;
1875                 BUG();
1876         }
1877         if (tsk) {
1878                 if (ret & VM_FAULT_MAJOR)
1879                         tsk->maj_flt++;
1880                 else
1881                         tsk->min_flt++;
1882         }
1883         return 0;
1884 }
1885
1886 /*
1887  * get_user_pages() - pin user pages in memory
1888  * @tsk:        the task_struct to use for page fault accounting, or
1889  *              NULL if faults are not to be recorded.
1890  * @mm:         mm_struct of target mm
1891  * @start:      starting user address
1892  * @nr_pages:   number of pages from start to pin
1893  * @write:      whether pages will be written to by the caller
1894  * @force:      whether to force write access even if user mapping is
1895  *              readonly. This will result in the page being COWed even
1896  *              in MAP_SHARED mappings. You do not want this.
1897  * @pages:      array that receives pointers to the pages pinned.
1898  *              Should be at least nr_pages long. Or NULL, if caller
1899  *              only intends to ensure the pages are faulted in.
1900  * @vmas:       array of pointers to vmas corresponding to each page.
1901  *              Or NULL if the caller does not require them.
1902  *
1903  * Returns number of pages pinned. This may be fewer than the number
1904  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1905  * were pinned, returns -errno. Each page returned must be released
1906  * with a put_page() call when it is finished with. vmas will only
1907  * remain valid while mmap_sem is held.
1908  *
1909  * Must be called with mmap_sem held for read or write.
1910  *
1911  * get_user_pages walks a process's page tables and takes a reference to
1912  * each struct page that each user address corresponds to at a given
1913  * instant. That is, it takes the page that would be accessed if a user
1914  * thread accesses the given user virtual address at that instant.
1915  *
1916  * This does not guarantee that the page exists in the user mappings when
1917  * get_user_pages returns, and there may even be a completely different
1918  * page there in some cases (eg. if mmapped pagecache has been invalidated
1919  * and subsequently re faulted). However it does guarantee that the page
1920  * won't be freed completely. And mostly callers simply care that the page
1921  * contains data that was valid *at some point in time*. Typically, an IO
1922  * or similar operation cannot guarantee anything stronger anyway because
1923  * locks can't be held over the syscall boundary.
1924  *
1925  * If write=0, the page must not be written to. If the page is written to,
1926  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1927  * after the page is finished with, and before put_page is called.
1928  *
1929  * get_user_pages is typically used for fewer-copy IO operations, to get a
1930  * handle on the memory by some means other than accesses via the user virtual
1931  * addresses. The pages may be submitted for DMA to devices or accessed via
1932  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1933  * use the correct cache flushing APIs.
1934  *
1935  * See also get_user_pages_fast, for performance critical applications.
1936  */
1937 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1938                 unsigned long start, int nr_pages, int write, int force,
1939                 struct page **pages, struct vm_area_struct **vmas)
1940 {
1941         int flags = FOLL_TOUCH;
1942
1943         if (pages)
1944                 flags |= FOLL_GET;
1945         if (write)
1946                 flags |= FOLL_WRITE;
1947         if (force)
1948                 flags |= FOLL_FORCE;
1949
1950         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1951                                 NULL);
1952 }
1953 EXPORT_SYMBOL(get_user_pages);
1954
1955 /**
1956  * get_dump_page() - pin user page in memory while writing it to core dump
1957  * @addr: user address
1958  *
1959  * Returns struct page pointer of user page pinned for dump,
1960  * to be freed afterwards by page_cache_release() or put_page().
1961  *
1962  * Returns NULL on any kind of failure - a hole must then be inserted into
1963  * the corefile, to preserve alignment with its headers; and also returns
1964  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1965  * allowing a hole to be left in the corefile to save diskspace.
1966  *
1967  * Called without mmap_sem, but after all other threads have been killed.
1968  */
1969 #ifdef CONFIG_ELF_CORE
1970 struct page *get_dump_page(unsigned long addr)
1971 {
1972         struct vm_area_struct *vma;
1973         struct page *page;
1974
1975         if (__get_user_pages(current, current->mm, addr, 1,
1976                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1977                              NULL) < 1)
1978                 return NULL;
1979         flush_cache_page(vma, addr, page_to_pfn(page));
1980         return page;
1981 }
1982 #endif /* CONFIG_ELF_CORE */
1983
1984 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1985                         spinlock_t **ptl)
1986 {
1987         pgd_t * pgd = pgd_offset(mm, addr);
1988         pud_t * pud = pud_alloc(mm, pgd, addr);
1989         if (pud) {
1990                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1991                 if (pmd) {
1992                         VM_BUG_ON(pmd_trans_huge(*pmd));
1993                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1994                 }
1995         }
1996         return NULL;
1997 }
1998
1999 /*
2000  * This is the old fallback for page remapping.
2001  *
2002  * For historical reasons, it only allows reserved pages. Only
2003  * old drivers should use this, and they needed to mark their
2004  * pages reserved for the old functions anyway.
2005  */
2006 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2007                         struct page *page, pgprot_t prot)
2008 {
2009         struct mm_struct *mm = vma->vm_mm;
2010         int retval;
2011         pte_t *pte;
2012         spinlock_t *ptl;
2013
2014         retval = -EINVAL;
2015         if (PageAnon(page))
2016                 goto out;
2017         retval = -ENOMEM;
2018         flush_dcache_page(page);
2019         pte = get_locked_pte(mm, addr, &ptl);
2020         if (!pte)
2021                 goto out;
2022         retval = -EBUSY;
2023         if (!pte_none(*pte))
2024                 goto out_unlock;
2025
2026         /* Ok, finally just insert the thing.. */
2027         get_page(page);
2028         inc_mm_counter_fast(mm, MM_FILEPAGES);
2029         page_add_file_rmap(page);
2030         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2031
2032         retval = 0;
2033         pte_unmap_unlock(pte, ptl);
2034         return retval;
2035 out_unlock:
2036         pte_unmap_unlock(pte, ptl);
2037 out:
2038         return retval;
2039 }
2040
2041 /**
2042  * vm_insert_page - insert single page into user vma
2043  * @vma: user vma to map to
2044  * @addr: target user address of this page
2045  * @page: source kernel page
2046  *
2047  * This allows drivers to insert individual pages they've allocated
2048  * into a user vma.
2049  *
2050  * The page has to be a nice clean _individual_ kernel allocation.
2051  * If you allocate a compound page, you need to have marked it as
2052  * such (__GFP_COMP), or manually just split the page up yourself
2053  * (see split_page()).
2054  *
2055  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2056  * took an arbitrary page protection parameter. This doesn't allow
2057  * that. Your vma protection will have to be set up correctly, which
2058  * means that if you want a shared writable mapping, you'd better
2059  * ask for a shared writable mapping!
2060  *
2061  * The page does not need to be reserved.
2062  */
2063 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2064                         struct page *page)
2065 {
2066         if (addr < vma->vm_start || addr >= vma->vm_end)
2067                 return -EFAULT;
2068         if (!page_count(page))
2069                 return -EINVAL;
2070         vma->vm_flags |= VM_INSERTPAGE;
2071         return insert_page(vma, addr, page, vma->vm_page_prot);
2072 }
2073 EXPORT_SYMBOL(vm_insert_page);
2074
2075 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2076                         unsigned long pfn, pgprot_t prot)
2077 {
2078         struct mm_struct *mm = vma->vm_mm;
2079         int retval;
2080         pte_t *pte, entry;
2081         spinlock_t *ptl;
2082
2083         retval = -ENOMEM;
2084         pte = get_locked_pte(mm, addr, &ptl);
2085         if (!pte)
2086                 goto out;
2087         retval = -EBUSY;
2088         if (!pte_none(*pte))
2089                 goto out_unlock;
2090
2091         /* Ok, finally just insert the thing.. */
2092         entry = pte_mkspecial(pfn_pte(pfn, prot));
2093         set_pte_at(mm, addr, pte, entry);
2094         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2095
2096         retval = 0;
2097 out_unlock:
2098         pte_unmap_unlock(pte, ptl);
2099 out:
2100         return retval;
2101 }
2102
2103 /**
2104  * vm_insert_pfn - insert single pfn into user vma
2105  * @vma: user vma to map to
2106  * @addr: target user address of this page
2107  * @pfn: source kernel pfn
2108  *
2109  * Similar to vm_inert_page, this allows drivers to insert individual pages
2110  * they've allocated into a user vma. Same comments apply.
2111  *
2112  * This function should only be called from a vm_ops->fault handler, and
2113  * in that case the handler should return NULL.
2114  *
2115  * vma cannot be a COW mapping.
2116  *
2117  * As this is called only for pages that do not currently exist, we
2118  * do not need to flush old virtual caches or the TLB.
2119  */
2120 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2121                         unsigned long pfn)
2122 {
2123         int ret;
2124         pgprot_t pgprot = vma->vm_page_prot;
2125         /*
2126          * Technically, architectures with pte_special can avoid all these
2127          * restrictions (same for remap_pfn_range).  However we would like
2128          * consistency in testing and feature parity among all, so we should
2129          * try to keep these invariants in place for everybody.
2130          */
2131         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2132         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2133                                                 (VM_PFNMAP|VM_MIXEDMAP));
2134         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2135         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2136
2137         if (addr < vma->vm_start || addr >= vma->vm_end)
2138                 return -EFAULT;
2139         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2140                 return -EINVAL;
2141
2142         ret = insert_pfn(vma, addr, pfn, pgprot);
2143
2144         if (ret)
2145                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2146
2147         return ret;
2148 }
2149 EXPORT_SYMBOL(vm_insert_pfn);
2150
2151 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2152                         unsigned long pfn)
2153 {
2154         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2155
2156         if (addr < vma->vm_start || addr >= vma->vm_end)
2157                 return -EFAULT;
2158
2159         /*
2160          * If we don't have pte special, then we have to use the pfn_valid()
2161          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2162          * refcount the page if pfn_valid is true (hence insert_page rather
2163          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2164          * without pte special, it would there be refcounted as a normal page.
2165          */
2166         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2167                 struct page *page;
2168
2169                 page = pfn_to_page(pfn);
2170                 return insert_page(vma, addr, page, vma->vm_page_prot);
2171         }
2172         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2173 }
2174 EXPORT_SYMBOL(vm_insert_mixed);
2175
2176 /*
2177  * maps a range of physical memory into the requested pages. the old
2178  * mappings are removed. any references to nonexistent pages results
2179  * in null mappings (currently treated as "copy-on-access")
2180  */
2181 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2182                         unsigned long addr, unsigned long end,
2183                         unsigned long pfn, pgprot_t prot)
2184 {
2185         pte_t *pte;
2186         spinlock_t *ptl;
2187
2188         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2189         if (!pte)
2190                 return -ENOMEM;
2191         arch_enter_lazy_mmu_mode();
2192         do {
2193                 BUG_ON(!pte_none(*pte));
2194                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2195                 pfn++;
2196         } while (pte++, addr += PAGE_SIZE, addr != end);
2197         arch_leave_lazy_mmu_mode();
2198         pte_unmap_unlock(pte - 1, ptl);
2199         return 0;
2200 }
2201
2202 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2203                         unsigned long addr, unsigned long end,
2204                         unsigned long pfn, pgprot_t prot)
2205 {
2206         pmd_t *pmd;
2207         unsigned long next;
2208
2209         pfn -= addr >> PAGE_SHIFT;
2210         pmd = pmd_alloc(mm, pud, addr);
2211         if (!pmd)
2212                 return -ENOMEM;
2213         VM_BUG_ON(pmd_trans_huge(*pmd));
2214         do {
2215                 next = pmd_addr_end(addr, end);
2216                 if (remap_pte_range(mm, pmd, addr, next,
2217                                 pfn + (addr >> PAGE_SHIFT), prot))
2218                         return -ENOMEM;
2219         } while (pmd++, addr = next, addr != end);
2220         return 0;
2221 }
2222
2223 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2224                         unsigned long addr, unsigned long end,
2225                         unsigned long pfn, pgprot_t prot)
2226 {
2227         pud_t *pud;
2228         unsigned long next;
2229
2230         pfn -= addr >> PAGE_SHIFT;
2231         pud = pud_alloc(mm, pgd, addr);
2232         if (!pud)
2233                 return -ENOMEM;
2234         do {
2235                 next = pud_addr_end(addr, end);
2236                 if (remap_pmd_range(mm, pud, addr, next,
2237                                 pfn + (addr >> PAGE_SHIFT), prot))
2238                         return -ENOMEM;
2239         } while (pud++, addr = next, addr != end);
2240         return 0;
2241 }
2242
2243 /**
2244  * remap_pfn_range - remap kernel memory to userspace
2245  * @vma: user vma to map to
2246  * @addr: target user address to start at
2247  * @pfn: physical address of kernel memory
2248  * @size: size of map area
2249  * @prot: page protection flags for this mapping
2250  *
2251  *  Note: this is only safe if the mm semaphore is held when called.
2252  */
2253 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2254                     unsigned long pfn, unsigned long size, pgprot_t prot)
2255 {
2256         pgd_t *pgd;
2257         unsigned long next;
2258         unsigned long end = addr + PAGE_ALIGN(size);
2259         struct mm_struct *mm = vma->vm_mm;
2260         int err;
2261
2262         /*
2263          * Physically remapped pages are special. Tell the
2264          * rest of the world about it:
2265          *   VM_IO tells people not to look at these pages
2266          *      (accesses can have side effects).
2267          *   VM_RESERVED is specified all over the place, because
2268          *      in 2.4 it kept swapout's vma scan off this vma; but
2269          *      in 2.6 the LRU scan won't even find its pages, so this
2270          *      flag means no more than count its pages in reserved_vm,
2271          *      and omit it from core dump, even when VM_IO turned off.
2272          *   VM_PFNMAP tells the core MM that the base pages are just
2273          *      raw PFN mappings, and do not have a "struct page" associated
2274          *      with them.
2275          *
2276          * There's a horrible special case to handle copy-on-write
2277          * behaviour that some programs depend on. We mark the "original"
2278          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2279          */
2280         if (addr == vma->vm_start && end == vma->vm_end) {
2281                 vma->vm_pgoff = pfn;
2282                 vma->vm_flags |= VM_PFN_AT_MMAP;
2283         } else if (is_cow_mapping(vma->vm_flags))
2284                 return -EINVAL;
2285
2286         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2287
2288         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2289         if (err) {
2290                 /*
2291                  * To indicate that track_pfn related cleanup is not
2292                  * needed from higher level routine calling unmap_vmas
2293                  */
2294                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2295                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2296                 return -EINVAL;
2297         }
2298
2299         BUG_ON(addr >= end);
2300         pfn -= addr >> PAGE_SHIFT;
2301         pgd = pgd_offset(mm, addr);
2302         flush_cache_range(vma, addr, end);
2303         do {
2304                 next = pgd_addr_end(addr, end);
2305                 err = remap_pud_range(mm, pgd, addr, next,
2306                                 pfn + (addr >> PAGE_SHIFT), prot);
2307                 if (err)
2308                         break;
2309         } while (pgd++, addr = next, addr != end);
2310
2311         if (err)
2312                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2313
2314         return err;
2315 }
2316 EXPORT_SYMBOL(remap_pfn_range);
2317
2318 /**
2319  * vm_iomap_memory - remap memory to userspace
2320  * @vma: user vma to map to
2321  * @start: start of area
2322  * @len: size of area
2323  *
2324  * This is a simplified io_remap_pfn_range() for common driver use. The
2325  * driver just needs to give us the physical memory range to be mapped,
2326  * we'll figure out the rest from the vma information.
2327  *
2328  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2329  * whatever write-combining details or similar.
2330  */
2331 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2332 {
2333         unsigned long vm_len, pfn, pages;
2334
2335         /* Check that the physical memory area passed in looks valid */
2336         if (start + len < start)
2337                 return -EINVAL;
2338         /*
2339          * You *really* shouldn't map things that aren't page-aligned,
2340          * but we've historically allowed it because IO memory might
2341          * just have smaller alignment.
2342          */
2343         len += start & ~PAGE_MASK;
2344         pfn = start >> PAGE_SHIFT;
2345         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2346         if (pfn + pages < pfn)
2347                 return -EINVAL;
2348
2349         /* We start the mapping 'vm_pgoff' pages into the area */
2350         if (vma->vm_pgoff > pages)
2351                 return -EINVAL;
2352         pfn += vma->vm_pgoff;
2353         pages -= vma->vm_pgoff;
2354
2355         /* Can we fit all of the mapping? */
2356         vm_len = vma->vm_end - vma->vm_start;
2357         if (vm_len >> PAGE_SHIFT > pages)
2358                 return -EINVAL;
2359
2360         /* Ok, let it rip */
2361         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2362 }
2363 EXPORT_SYMBOL(vm_iomap_memory);
2364
2365 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2366                                      unsigned long addr, unsigned long end,
2367                                      pte_fn_t fn, void *data)
2368 {
2369         pte_t *pte;
2370         int err;
2371         pgtable_t token;
2372         spinlock_t *uninitialized_var(ptl);
2373
2374         pte = (mm == &init_mm) ?
2375                 pte_alloc_kernel(pmd, addr) :
2376                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2377         if (!pte)
2378                 return -ENOMEM;
2379
2380         BUG_ON(pmd_huge(*pmd));
2381
2382         arch_enter_lazy_mmu_mode();
2383
2384         token = pmd_pgtable(*pmd);
2385
2386         do {
2387                 err = fn(pte++, token, addr, data);
2388                 if (err)
2389                         break;
2390         } while (addr += PAGE_SIZE, addr != end);
2391
2392         arch_leave_lazy_mmu_mode();
2393
2394         if (mm != &init_mm)
2395                 pte_unmap_unlock(pte-1, ptl);
2396         return err;
2397 }
2398
2399 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2400                                      unsigned long addr, unsigned long end,
2401                                      pte_fn_t fn, void *data)
2402 {
2403         pmd_t *pmd;
2404         unsigned long next;
2405         int err;
2406
2407         BUG_ON(pud_huge(*pud));
2408
2409         pmd = pmd_alloc(mm, pud, addr);
2410         if (!pmd)
2411                 return -ENOMEM;
2412         do {
2413                 next = pmd_addr_end(addr, end);
2414                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2415                 if (err)
2416                         break;
2417         } while (pmd++, addr = next, addr != end);
2418         return err;
2419 }
2420
2421 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2422                                      unsigned long addr, unsigned long end,
2423                                      pte_fn_t fn, void *data)
2424 {
2425         pud_t *pud;
2426         unsigned long next;
2427         int err;
2428
2429         pud = pud_alloc(mm, pgd, addr);
2430         if (!pud)
2431                 return -ENOMEM;
2432         do {
2433                 next = pud_addr_end(addr, end);
2434                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2435                 if (err)
2436                         break;
2437         } while (pud++, addr = next, addr != end);
2438         return err;
2439 }
2440
2441 /*
2442  * Scan a region of virtual memory, filling in page tables as necessary
2443  * and calling a provided function on each leaf page table.
2444  */
2445 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2446                         unsigned long size, pte_fn_t fn, void *data)
2447 {
2448         pgd_t *pgd;
2449         unsigned long next;
2450         unsigned long end = addr + size;
2451         int err;
2452
2453         BUG_ON(addr >= end);
2454         pgd = pgd_offset(mm, addr);
2455         do {
2456                 next = pgd_addr_end(addr, end);
2457                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2458                 if (err)
2459                         break;
2460         } while (pgd++, addr = next, addr != end);
2461
2462         return err;
2463 }
2464 EXPORT_SYMBOL_GPL(apply_to_page_range);
2465
2466 /*
2467  * handle_pte_fault chooses page fault handler according to an entry
2468  * which was read non-atomically.  Before making any commitment, on
2469  * those architectures or configurations (e.g. i386 with PAE) which
2470  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2471  * must check under lock before unmapping the pte and proceeding
2472  * (but do_wp_page is only called after already making such a check;
2473  * and do_anonymous_page can safely check later on).
2474  */
2475 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2476                                 pte_t *page_table, pte_t orig_pte)
2477 {
2478         int same = 1;
2479 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2480         if (sizeof(pte_t) > sizeof(unsigned long)) {
2481                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2482                 spin_lock(ptl);
2483                 same = pte_same(*page_table, orig_pte);
2484                 spin_unlock(ptl);
2485         }
2486 #endif
2487         pte_unmap(page_table);
2488         return same;
2489 }
2490
2491 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2492 {
2493         /*
2494          * If the source page was a PFN mapping, we don't have
2495          * a "struct page" for it. We do a best-effort copy by
2496          * just copying from the original user address. If that
2497          * fails, we just zero-fill it. Live with it.
2498          */
2499         if (unlikely(!src)) {
2500                 void *kaddr = kmap_atomic(dst, KM_USER0);
2501                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2502
2503                 /*
2504                  * This really shouldn't fail, because the page is there
2505                  * in the page tables. But it might just be unreadable,
2506                  * in which case we just give up and fill the result with
2507                  * zeroes.
2508                  */
2509                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2510                         clear_page(kaddr);
2511                 kunmap_atomic(kaddr, KM_USER0);
2512                 flush_dcache_page(dst);
2513         } else
2514                 copy_user_highpage(dst, src, va, vma);
2515 }
2516
2517 /*
2518  * This routine handles present pages, when users try to write
2519  * to a shared page. It is done by copying the page to a new address
2520  * and decrementing the shared-page counter for the old page.
2521  *
2522  * Note that this routine assumes that the protection checks have been
2523  * done by the caller (the low-level page fault routine in most cases).
2524  * Thus we can safely just mark it writable once we've done any necessary
2525  * COW.
2526  *
2527  * We also mark the page dirty at this point even though the page will
2528  * change only once the write actually happens. This avoids a few races,
2529  * and potentially makes it more efficient.
2530  *
2531  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2532  * but allow concurrent faults), with pte both mapped and locked.
2533  * We return with mmap_sem still held, but pte unmapped and unlocked.
2534  */
2535 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2536                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2537                 spinlock_t *ptl, pte_t orig_pte)
2538         __releases(ptl)
2539 {
2540         struct page *old_page, *new_page;
2541         pte_t entry;
2542         int ret = 0;
2543         int page_mkwrite = 0;
2544         struct page *dirty_page = NULL;
2545
2546         old_page = vm_normal_page(vma, address, orig_pte);
2547         if (!old_page) {
2548                 /*
2549                  * VM_MIXEDMAP !pfn_valid() case
2550                  *
2551                  * We should not cow pages in a shared writeable mapping.
2552                  * Just mark the pages writable as we can't do any dirty
2553                  * accounting on raw pfn maps.
2554                  */
2555                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2556                                      (VM_WRITE|VM_SHARED))
2557                         goto reuse;
2558                 goto gotten;
2559         }
2560
2561         /*
2562          * Take out anonymous pages first, anonymous shared vmas are
2563          * not dirty accountable.
2564          */
2565         if (PageAnon(old_page) && !PageKsm(old_page)) {
2566                 if (!trylock_page(old_page)) {
2567                         page_cache_get(old_page);
2568                         pte_unmap_unlock(page_table, ptl);
2569                         lock_page(old_page);
2570                         page_table = pte_offset_map_lock(mm, pmd, address,
2571                                                          &ptl);
2572                         if (!pte_same(*page_table, orig_pte)) {
2573                                 unlock_page(old_page);
2574                                 goto unlock;
2575                         }
2576                         page_cache_release(old_page);
2577                 }
2578                 if (reuse_swap_page(old_page)) {
2579                         /*
2580                          * The page is all ours.  Move it to our anon_vma so
2581                          * the rmap code will not search our parent or siblings.
2582                          * Protected against the rmap code by the page lock.
2583                          */
2584                         page_move_anon_rmap(old_page, vma, address);
2585                         unlock_page(old_page);
2586                         goto reuse;
2587                 }
2588                 unlock_page(old_page);
2589         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2590                                         (VM_WRITE|VM_SHARED))) {
2591                 /*
2592                  * Only catch write-faults on shared writable pages,
2593                  * read-only shared pages can get COWed by
2594                  * get_user_pages(.write=1, .force=1).
2595                  */
2596                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2597                         struct vm_fault vmf;
2598                         int tmp;
2599
2600                         vmf.virtual_address = (void __user *)(address &
2601                                                                 PAGE_MASK);
2602                         vmf.pgoff = old_page->index;
2603                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2604                         vmf.page = old_page;
2605
2606                         /*
2607                          * Notify the address space that the page is about to
2608                          * become writable so that it can prohibit this or wait
2609                          * for the page to get into an appropriate state.
2610                          *
2611                          * We do this without the lock held, so that it can
2612                          * sleep if it needs to.
2613                          */
2614                         page_cache_get(old_page);
2615                         pte_unmap_unlock(page_table, ptl);
2616
2617                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2618                         if (unlikely(tmp &
2619                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2620                                 ret = tmp;
2621                                 goto unwritable_page;
2622                         }
2623                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2624                                 lock_page(old_page);
2625                                 if (!old_page->mapping) {
2626                                         ret = 0; /* retry the fault */
2627                                         unlock_page(old_page);
2628                                         goto unwritable_page;
2629                                 }
2630                         } else
2631                                 VM_BUG_ON(!PageLocked(old_page));
2632
2633                         /*
2634                          * Since we dropped the lock we need to revalidate
2635                          * the PTE as someone else may have changed it.  If
2636                          * they did, we just return, as we can count on the
2637                          * MMU to tell us if they didn't also make it writable.
2638                          */
2639                         page_table = pte_offset_map_lock(mm, pmd, address,
2640                                                          &ptl);
2641                         if (!pte_same(*page_table, orig_pte)) {
2642                                 unlock_page(old_page);
2643                                 goto unlock;
2644                         }
2645
2646                         page_mkwrite = 1;
2647                 }
2648                 dirty_page = old_page;
2649                 get_page(dirty_page);
2650
2651 reuse:
2652                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2653                 entry = pte_mkyoung(orig_pte);
2654                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2655                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2656                         update_mmu_cache(vma, address, page_table);
2657                 pte_unmap_unlock(page_table, ptl);
2658                 ret |= VM_FAULT_WRITE;
2659
2660                 if (!dirty_page)
2661                         return ret;
2662
2663                 /*
2664                  * Yes, Virginia, this is actually required to prevent a race
2665                  * with clear_page_dirty_for_io() from clearing the page dirty
2666                  * bit after it clear all dirty ptes, but before a racing
2667                  * do_wp_page installs a dirty pte.
2668                  *
2669                  * __do_fault is protected similarly.
2670                  */
2671                 if (!page_mkwrite) {
2672                         wait_on_page_locked(dirty_page);
2673                         set_page_dirty_balance(dirty_page, page_mkwrite);
2674                 }
2675                 put_page(dirty_page);
2676                 if (page_mkwrite) {
2677                         struct address_space *mapping = dirty_page->mapping;
2678
2679                         set_page_dirty(dirty_page);
2680                         unlock_page(dirty_page);
2681                         page_cache_release(dirty_page);
2682                         if (mapping)    {
2683                                 /*
2684                                  * Some device drivers do not set page.mapping
2685                                  * but still dirty their pages
2686                                  */
2687                                 balance_dirty_pages_ratelimited(mapping);
2688                         }
2689                 }
2690
2691                 /* file_update_time outside page_lock */
2692                 if (vma->vm_file)
2693                         file_update_time(vma->vm_file);
2694
2695                 return ret;
2696         }
2697
2698         /*
2699          * Ok, we need to copy. Oh, well..
2700          */
2701         page_cache_get(old_page);
2702 gotten:
2703         pte_unmap_unlock(page_table, ptl);
2704
2705         if (unlikely(anon_vma_prepare(vma)))
2706                 goto oom;
2707
2708         if (is_zero_pfn(pte_pfn(orig_pte))) {
2709                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2710                 if (!new_page)
2711                         goto oom;
2712         } else {
2713                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2714                 if (!new_page)
2715                         goto oom;
2716                 cow_user_page(new_page, old_page, address, vma);
2717         }
2718         __SetPageUptodate(new_page);
2719
2720         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2721                 goto oom_free_new;
2722
2723         /*
2724          * Re-check the pte - we dropped the lock
2725          */
2726         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2727         if (likely(pte_same(*page_table, orig_pte))) {
2728                 if (old_page) {
2729                         if (!PageAnon(old_page)) {
2730                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2731                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2732                         }
2733                 } else
2734                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2735                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2736                 entry = mk_pte(new_page, vma->vm_page_prot);
2737                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2738                 /*
2739                  * Clear the pte entry and flush it first, before updating the
2740                  * pte with the new entry. This will avoid a race condition
2741                  * seen in the presence of one thread doing SMC and another
2742                  * thread doing COW.
2743                  */
2744                 ptep_clear_flush(vma, address, page_table);
2745                 page_add_new_anon_rmap(new_page, vma, address);
2746                 /*
2747                  * We call the notify macro here because, when using secondary
2748                  * mmu page tables (such as kvm shadow page tables), we want the
2749                  * new page to be mapped directly into the secondary page table.
2750                  */
2751                 set_pte_at_notify(mm, address, page_table, entry);
2752                 update_mmu_cache(vma, address, page_table);
2753                 if (old_page) {
2754                         /*
2755                          * Only after switching the pte to the new page may
2756                          * we remove the mapcount here. Otherwise another
2757                          * process may come and find the rmap count decremented
2758                          * before the pte is switched to the new page, and
2759                          * "reuse" the old page writing into it while our pte
2760                          * here still points into it and can be read by other
2761                          * threads.
2762                          *
2763                          * The critical issue is to order this
2764                          * page_remove_rmap with the ptp_clear_flush above.
2765                          * Those stores are ordered by (if nothing else,)
2766                          * the barrier present in the atomic_add_negative
2767                          * in page_remove_rmap.
2768                          *
2769                          * Then the TLB flush in ptep_clear_flush ensures that
2770                          * no process can access the old page before the
2771                          * decremented mapcount is visible. And the old page
2772                          * cannot be reused until after the decremented
2773                          * mapcount is visible. So transitively, TLBs to
2774                          * old page will be flushed before it can be reused.
2775                          */
2776                         page_remove_rmap(old_page);
2777                 }
2778
2779                 /* Free the old page.. */
2780                 new_page = old_page;
2781                 ret |= VM_FAULT_WRITE;
2782         } else
2783                 mem_cgroup_uncharge_page(new_page);
2784
2785         if (new_page)
2786                 page_cache_release(new_page);
2787 unlock:
2788         pte_unmap_unlock(page_table, ptl);
2789         if (old_page) {
2790                 /*
2791                  * Don't let another task, with possibly unlocked vma,
2792                  * keep the mlocked page.
2793                  */
2794                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2795                         lock_page(old_page);    /* LRU manipulation */
2796                         munlock_vma_page(old_page);
2797                         unlock_page(old_page);
2798                 }
2799                 page_cache_release(old_page);
2800         }
2801         return ret;
2802 oom_free_new:
2803         page_cache_release(new_page);
2804 oom:
2805         if (old_page) {
2806                 if (page_mkwrite) {
2807                         unlock_page(old_page);
2808                         page_cache_release(old_page);
2809                 }
2810                 page_cache_release(old_page);
2811         }
2812         return VM_FAULT_OOM;
2813
2814 unwritable_page:
2815         page_cache_release(old_page);
2816         return ret;
2817 }
2818
2819 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2820                 unsigned long start_addr, unsigned long end_addr,
2821                 struct zap_details *details)
2822 {
2823         zap_page_range(vma, start_addr, end_addr - start_addr, details);
2824 }
2825
2826 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2827                                             struct zap_details *details)
2828 {
2829         struct vm_area_struct *vma;
2830         struct prio_tree_iter iter;
2831         pgoff_t vba, vea, zba, zea;
2832
2833         vma_prio_tree_foreach(vma, &iter, root,
2834                         details->first_index, details->last_index) {
2835
2836                 vba = vma->vm_pgoff;
2837                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2838                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2839                 zba = details->first_index;
2840                 if (zba < vba)
2841                         zba = vba;
2842                 zea = details->last_index;
2843                 if (zea > vea)
2844                         zea = vea;
2845
2846                 unmap_mapping_range_vma(vma,
2847                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2848                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2849                                 details);
2850         }
2851 }
2852
2853 static inline void unmap_mapping_range_list(struct list_head *head,
2854                                             struct zap_details *details)
2855 {
2856         struct vm_area_struct *vma;
2857
2858         /*
2859          * In nonlinear VMAs there is no correspondence between virtual address
2860          * offset and file offset.  So we must perform an exhaustive search
2861          * across *all* the pages in each nonlinear VMA, not just the pages
2862          * whose virtual address lies outside the file truncation point.
2863          */
2864         list_for_each_entry(vma, head, shared.vm_set.list) {
2865                 details->nonlinear_vma = vma;
2866                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2867         }
2868 }
2869
2870 /**
2871  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2872  * @mapping: the address space containing mmaps to be unmapped.
2873  * @holebegin: byte in first page to unmap, relative to the start of
2874  * the underlying file.  This will be rounded down to a PAGE_SIZE
2875  * boundary.  Note that this is different from truncate_pagecache(), which
2876  * must keep the partial page.  In contrast, we must get rid of
2877  * partial pages.
2878  * @holelen: size of prospective hole in bytes.  This will be rounded
2879  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2880  * end of the file.
2881  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2882  * but 0 when invalidating pagecache, don't throw away private data.
2883  */
2884 void unmap_mapping_range(struct address_space *mapping,
2885                 loff_t const holebegin, loff_t const holelen, int even_cows)
2886 {
2887         struct zap_details details;
2888         pgoff_t hba = holebegin >> PAGE_SHIFT;
2889         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2890
2891         /* Check for overflow. */
2892         if (sizeof(holelen) > sizeof(hlen)) {
2893                 long long holeend =
2894                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2895                 if (holeend & ~(long long)ULONG_MAX)
2896                         hlen = ULONG_MAX - hba + 1;
2897         }
2898
2899         details.check_mapping = even_cows? NULL: mapping;
2900         details.nonlinear_vma = NULL;
2901         details.first_index = hba;
2902         details.last_index = hba + hlen - 1;
2903         if (details.last_index < details.first_index)
2904                 details.last_index = ULONG_MAX;
2905
2906
2907         mutex_lock(&mapping->i_mmap_mutex);
2908         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2909                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2910         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2911                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2912         mutex_unlock(&mapping->i_mmap_mutex);
2913 }
2914 EXPORT_SYMBOL(unmap_mapping_range);
2915
2916 /*
2917  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2918  * but allow concurrent faults), and pte mapped but not yet locked.
2919  * We return with mmap_sem still held, but pte unmapped and unlocked.
2920  */
2921 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2922                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2923                 unsigned int flags, pte_t orig_pte)
2924 {
2925         spinlock_t *ptl;
2926         struct page *page, *swapcache = NULL;
2927         swp_entry_t entry;
2928         pte_t pte;
2929         int locked;
2930         struct mem_cgroup *ptr;
2931         int exclusive = 0;
2932         int ret = 0;
2933
2934         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2935                 goto out;
2936
2937         entry = pte_to_swp_entry(orig_pte);
2938         if (unlikely(non_swap_entry(entry))) {
2939                 if (is_migration_entry(entry)) {
2940                         migration_entry_wait(mm, pmd, address);
2941                 } else if (is_hwpoison_entry(entry)) {
2942                         ret = VM_FAULT_HWPOISON;
2943                 } else {
2944                         print_bad_pte(vma, address, orig_pte, NULL);
2945                         ret = VM_FAULT_SIGBUS;
2946                 }
2947                 goto out;
2948         }
2949         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2950         page = lookup_swap_cache(entry);
2951         if (!page) {
2952                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2953                 page = swapin_readahead(entry,
2954                                         GFP_HIGHUSER_MOVABLE, vma, address);
2955                 if (!page) {
2956                         /*
2957                          * Back out if somebody else faulted in this pte
2958                          * while we released the pte lock.
2959                          */
2960                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2961                         if (likely(pte_same(*page_table, orig_pte)))
2962                                 ret = VM_FAULT_OOM;
2963                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2964                         goto unlock;
2965                 }
2966
2967                 /* Had to read the page from swap area: Major fault */
2968                 ret = VM_FAULT_MAJOR;
2969                 count_vm_event(PGMAJFAULT);
2970                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2971         } else if (PageHWPoison(page)) {
2972                 /*
2973                  * hwpoisoned dirty swapcache pages are kept for killing
2974                  * owner processes (which may be unknown at hwpoison time)
2975                  */
2976                 ret = VM_FAULT_HWPOISON;
2977                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2978                 goto out_release;
2979         }
2980
2981         locked = lock_page_or_retry(page, mm, flags);
2982         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2983         if (!locked) {
2984                 ret |= VM_FAULT_RETRY;
2985                 goto out_release;
2986         }
2987
2988         /*
2989          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2990          * release the swapcache from under us.  The page pin, and pte_same
2991          * test below, are not enough to exclude that.  Even if it is still
2992          * swapcache, we need to check that the page's swap has not changed.
2993          */
2994         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2995                 goto out_page;
2996
2997         if (ksm_might_need_to_copy(page, vma, address)) {
2998                 swapcache = page;
2999                 page = ksm_does_need_to_copy(page, vma, address);
3000
3001                 if (unlikely(!page)) {
3002                         ret = VM_FAULT_OOM;
3003                         page = swapcache;
3004                         swapcache = NULL;
3005                         goto out_page;
3006                 }
3007         }
3008
3009         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3010                 ret = VM_FAULT_OOM;
3011                 goto out_page;
3012         }
3013
3014         /*
3015          * Back out if somebody else already faulted in this pte.
3016          */
3017         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3018         if (unlikely(!pte_same(*page_table, orig_pte)))
3019                 goto out_nomap;
3020
3021         if (unlikely(!PageUptodate(page))) {
3022                 ret = VM_FAULT_SIGBUS;
3023                 goto out_nomap;
3024         }
3025
3026         /*
3027          * The page isn't present yet, go ahead with the fault.
3028          *
3029          * Be careful about the sequence of operations here.
3030          * To get its accounting right, reuse_swap_page() must be called
3031          * while the page is counted on swap but not yet in mapcount i.e.
3032          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3033          * must be called after the swap_free(), or it will never succeed.
3034          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3035          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3036          * in page->private. In this case, a record in swap_cgroup  is silently
3037          * discarded at swap_free().
3038          */
3039
3040         inc_mm_counter_fast(mm, MM_ANONPAGES);
3041         dec_mm_counter_fast(mm, MM_SWAPENTS);
3042         pte = mk_pte(page, vma->vm_page_prot);
3043         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3044                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3045                 flags &= ~FAULT_FLAG_WRITE;
3046                 ret |= VM_FAULT_WRITE;
3047                 exclusive = 1;
3048         }
3049         flush_icache_page(vma, page);
3050         set_pte_at(mm, address, page_table, pte);
3051         do_page_add_anon_rmap(page, vma, address, exclusive);
3052         /* It's better to call commit-charge after rmap is established */
3053         mem_cgroup_commit_charge_swapin(page, ptr);
3054
3055         swap_free(entry);
3056         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3057                 try_to_free_swap(page);
3058         unlock_page(page);
3059         if (swapcache) {
3060                 /*
3061                  * Hold the lock to avoid the swap entry to be reused
3062                  * until we take the PT lock for the pte_same() check
3063                  * (to avoid false positives from pte_same). For
3064                  * further safety release the lock after the swap_free
3065                  * so that the swap count won't change under a
3066                  * parallel locked swapcache.
3067                  */
3068                 unlock_page(swapcache);
3069                 page_cache_release(swapcache);
3070         }
3071
3072         if (flags & FAULT_FLAG_WRITE) {
3073                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3074                 if (ret & VM_FAULT_ERROR)
3075                         ret &= VM_FAULT_ERROR;
3076                 goto out;
3077         }
3078
3079         /* No need to invalidate - it was non-present before */
3080         update_mmu_cache(vma, address, page_table);
3081 unlock:
3082         pte_unmap_unlock(page_table, ptl);
3083 out:
3084         return ret;
3085 out_nomap:
3086         mem_cgroup_cancel_charge_swapin(ptr);
3087         pte_unmap_unlock(page_table, ptl);
3088 out_page:
3089         unlock_page(page);
3090 out_release:
3091         page_cache_release(page);
3092         if (swapcache) {
3093                 unlock_page(swapcache);
3094                 page_cache_release(swapcache);
3095         }
3096         return ret;
3097 }
3098
3099 /*
3100  * This is like a special single-page "expand_{down|up}wards()",
3101  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3102  * doesn't hit another vma.
3103  */
3104 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3105 {
3106         address &= PAGE_MASK;
3107         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3108                 struct vm_area_struct *prev = vma->vm_prev;
3109
3110                 /*
3111                  * Is there a mapping abutting this one below?
3112                  *
3113                  * That's only ok if it's the same stack mapping
3114                  * that has gotten split..
3115                  */
3116                 if (prev && prev->vm_end == address)
3117                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3118
3119                 expand_downwards(vma, address - PAGE_SIZE);
3120         }
3121         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3122                 struct vm_area_struct *next = vma->vm_next;
3123
3124                 /* As VM_GROWSDOWN but s/below/above/ */
3125                 if (next && next->vm_start == address + PAGE_SIZE)
3126                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3127
3128                 expand_upwards(vma, address + PAGE_SIZE);
3129         }
3130         return 0;
3131 }
3132
3133 /*
3134  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3135  * but allow concurrent faults), and pte mapped but not yet locked.
3136  * We return with mmap_sem still held, but pte unmapped and unlocked.
3137  */
3138 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3139                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3140                 unsigned int flags)
3141 {
3142         struct page *page;
3143         spinlock_t *ptl;
3144         pte_t entry;
3145
3146         pte_unmap(page_table);
3147
3148         /* Check if we need to add a guard page to the stack */
3149         if (check_stack_guard_page(vma, address) < 0)
3150                 return VM_FAULT_SIGBUS;
3151
3152         /* Use the zero-page for reads */
3153         if (!(flags & FAULT_FLAG_WRITE)) {
3154                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3155                                                 vma->vm_page_prot));
3156                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3157                 if (!pte_none(*page_table))
3158                         goto unlock;
3159                 goto setpte;
3160         }
3161
3162         /* Allocate our own private page. */
3163         if (unlikely(anon_vma_prepare(vma)))
3164                 goto oom;
3165         page = alloc_zeroed_user_highpage_movable(vma, address);
3166         if (!page)
3167                 goto oom;
3168         __SetPageUptodate(page);
3169
3170         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3171                 goto oom_free_page;
3172
3173         entry = mk_pte(page, vma->vm_page_prot);
3174         if (vma->vm_flags & VM_WRITE)
3175                 entry = pte_mkwrite(pte_mkdirty(entry));
3176
3177         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3178         if (!pte_none(*page_table))
3179                 goto release;
3180
3181         inc_mm_counter_fast(mm, MM_ANONPAGES);
3182         page_add_new_anon_rmap(page, vma, address);
3183 setpte:
3184         set_pte_at(mm, address, page_table, entry);
3185
3186         /* No need to invalidate - it was non-present before */
3187         update_mmu_cache(vma, address, page_table);
3188 unlock:
3189         pte_unmap_unlock(page_table, ptl);
3190         return 0;
3191 release:
3192         mem_cgroup_uncharge_page(page);
3193         page_cache_release(page);
3194         goto unlock;
3195 oom_free_page:
3196         page_cache_release(page);
3197 oom:
3198         return VM_FAULT_OOM;
3199 }
3200
3201 /*
3202  * __do_fault() tries to create a new page mapping. It aggressively
3203  * tries to share with existing pages, but makes a separate copy if
3204  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3205  * the next page fault.
3206  *
3207  * As this is called only for pages that do not currently exist, we
3208  * do not need to flush old virtual caches or the TLB.
3209  *
3210  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3211  * but allow concurrent faults), and pte neither mapped nor locked.
3212  * We return with mmap_sem still held, but pte unmapped and unlocked.
3213  */
3214 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3215                 unsigned long address, pmd_t *pmd,
3216                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3217 {
3218         pte_t *page_table;
3219         spinlock_t *ptl;
3220         struct page *page;
3221         struct page *cow_page;
3222         pte_t entry;
3223         int anon = 0;
3224         struct page *dirty_page = NULL;
3225         struct vm_fault vmf;
3226         int ret;
3227         int page_mkwrite = 0;
3228
3229         /*
3230          * If we do COW later, allocate page befor taking lock_page()
3231          * on the file cache page. This will reduce lock holding time.
3232          */
3233         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3234
3235                 if (unlikely(anon_vma_prepare(vma)))
3236                         return VM_FAULT_OOM;
3237
3238                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3239                 if (!cow_page)
3240                         return VM_FAULT_OOM;
3241
3242                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3243                         page_cache_release(cow_page);
3244                         return VM_FAULT_OOM;
3245                 }
3246         } else
3247                 cow_page = NULL;
3248
3249         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3250         vmf.pgoff = pgoff;
3251         vmf.flags = flags;
3252         vmf.page = NULL;
3253
3254         ret = vma->vm_ops->fault(vma, &vmf);
3255         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3256                             VM_FAULT_RETRY)))
3257                 goto uncharge_out;
3258
3259         if (unlikely(PageHWPoison(vmf.page))) {
3260                 if (ret & VM_FAULT_LOCKED)
3261                         unlock_page(vmf.page);
3262                 ret = VM_FAULT_HWPOISON;
3263                 goto uncharge_out;
3264         }
3265
3266         /*
3267          * For consistency in subsequent calls, make the faulted page always
3268          * locked.
3269          */
3270         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3271                 lock_page(vmf.page);
3272         else
3273                 VM_BUG_ON(!PageLocked(vmf.page));
3274
3275         /*
3276          * Should we do an early C-O-W break?
3277          */
3278         page = vmf.page;
3279         if (flags & FAULT_FLAG_WRITE) {
3280                 if (!(vma->vm_flags & VM_SHARED)) {
3281                         page = cow_page;
3282                         anon = 1;
3283                         copy_user_highpage(page, vmf.page, address, vma);
3284                         __SetPageUptodate(page);
3285                 } else {
3286                         /*
3287                          * If the page will be shareable, see if the backing
3288                          * address space wants to know that the page is about
3289                          * to become writable
3290                          */
3291                         if (vma->vm_ops->page_mkwrite) {
3292                                 int tmp;
3293
3294                                 unlock_page(page);
3295                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3296                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3297                                 if (unlikely(tmp &
3298                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3299                                         ret = tmp;
3300                                         goto unwritable_page;
3301                                 }
3302                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3303                                         lock_page(page);
3304                                         if (!page->mapping) {
3305                                                 ret = 0; /* retry the fault */
3306                                                 unlock_page(page);
3307                                                 goto unwritable_page;
3308                                         }
3309                                 } else
3310                                         VM_BUG_ON(!PageLocked(page));
3311                                 page_mkwrite = 1;
3312                         }
3313                 }
3314
3315         }
3316
3317         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3318
3319         /*
3320          * This silly early PAGE_DIRTY setting removes a race
3321          * due to the bad i386 page protection. But it's valid
3322          * for other architectures too.
3323          *
3324          * Note that if FAULT_FLAG_WRITE is set, we either now have
3325          * an exclusive copy of the page, or this is a shared mapping,
3326          * so we can make it writable and dirty to avoid having to
3327          * handle that later.
3328          */
3329         /* Only go through if we didn't race with anybody else... */
3330         if (likely(pte_same(*page_table, orig_pte))) {
3331                 flush_icache_page(vma, page);
3332                 entry = mk_pte(page, vma->vm_page_prot);
3333                 if (flags & FAULT_FLAG_WRITE)
3334                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3335                 if (anon) {
3336                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3337                         page_add_new_anon_rmap(page, vma, address);
3338                 } else {
3339                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3340                         page_add_file_rmap(page);
3341                         if (flags & FAULT_FLAG_WRITE) {
3342                                 dirty_page = page;
3343                                 get_page(dirty_page);
3344                         }
3345                 }
3346                 set_pte_at(mm, address, page_table, entry);
3347
3348                 /* no need to invalidate: a not-present page won't be cached */
3349                 update_mmu_cache(vma, address, page_table);
3350         } else {
3351                 if (cow_page)
3352                         mem_cgroup_uncharge_page(cow_page);
3353                 if (anon)
3354                         page_cache_release(page);
3355                 else
3356                         anon = 1; /* no anon but release faulted_page */
3357         }
3358
3359         pte_unmap_unlock(page_table, ptl);
3360
3361         if (dirty_page) {
3362                 struct address_space *mapping = page->mapping;
3363
3364                 if (set_page_dirty(dirty_page))
3365                         page_mkwrite = 1;
3366                 unlock_page(dirty_page);
3367                 put_page(dirty_page);
3368                 if (page_mkwrite && mapping) {
3369                         /*
3370                          * Some device drivers do not set page.mapping but still
3371                          * dirty their pages
3372                          */
3373                         balance_dirty_pages_ratelimited(mapping);
3374                 }
3375
3376                 /* file_update_time outside page_lock */
3377                 if (vma->vm_file)
3378                         file_update_time(vma->vm_file);
3379         } else {
3380                 unlock_page(vmf.page);
3381                 if (anon)
3382                         page_cache_release(vmf.page);
3383         }
3384
3385         return ret;
3386
3387 unwritable_page:
3388         page_cache_release(page);
3389         return ret;
3390 uncharge_out:
3391         /* fs's fault handler get error */
3392         if (cow_page) {
3393                 mem_cgroup_uncharge_page(cow_page);
3394                 page_cache_release(cow_page);
3395         }
3396         return ret;
3397 }
3398
3399 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3400                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3401                 unsigned int flags, pte_t orig_pte)
3402 {
3403         pgoff_t pgoff = (((address & PAGE_MASK)
3404                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3405
3406         pte_unmap(page_table);
3407         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3408 }
3409
3410 /*
3411  * Fault of a previously existing named mapping. Repopulate the pte
3412  * from the encoded file_pte if possible. This enables swappable
3413  * nonlinear vmas.
3414  *
3415  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3416  * but allow concurrent faults), and pte mapped but not yet locked.
3417  * We return with mmap_sem still held, but pte unmapped and unlocked.
3418  */
3419 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3420                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3421                 unsigned int flags, pte_t orig_pte)
3422 {
3423         pgoff_t pgoff;
3424
3425         flags |= FAULT_FLAG_NONLINEAR;
3426
3427         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3428                 return 0;
3429
3430         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3431                 /*
3432                  * Page table corrupted: show pte and kill process.
3433                  */
3434                 print_bad_pte(vma, address, orig_pte, NULL);
3435                 return VM_FAULT_SIGBUS;
3436         }
3437
3438         pgoff = pte_to_pgoff(orig_pte);
3439         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3440 }
3441
3442 /*
3443  * These routines also need to handle stuff like marking pages dirty
3444  * and/or accessed for architectures that don't do it in hardware (most
3445  * RISC architectures).  The early dirtying is also good on the i386.
3446  *
3447  * There is also a hook called "update_mmu_cache()" that architectures
3448  * with external mmu caches can use to update those (ie the Sparc or
3449  * PowerPC hashed page tables that act as extended TLBs).
3450  *
3451  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3452  * but allow concurrent faults), and pte mapped but not yet locked.
3453  * We return with mmap_sem still held, but pte unmapped and unlocked.
3454  */
3455 int handle_pte_fault(struct mm_struct *mm,
3456                      struct vm_area_struct *vma, unsigned long address,
3457                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3458 {
3459         pte_t entry;
3460         spinlock_t *ptl;
3461
3462         entry = *pte;
3463         if (!pte_present(entry)) {
3464                 if (pte_none(entry)) {
3465                         if (vma->vm_ops) {
3466                                 if (likely(vma->vm_ops->fault))
3467                                         return do_linear_fault(mm, vma, address,
3468                                                 pte, pmd, flags, entry);
3469                         }
3470                         return do_anonymous_page(mm, vma, address,
3471                                                  pte, pmd, flags);
3472                 }
3473                 if (pte_file(entry))
3474                         return do_nonlinear_fault(mm, vma, address,
3475                                         pte, pmd, flags, entry);
3476                 return do_swap_page(mm, vma, address,
3477                                         pte, pmd, flags, entry);
3478         }
3479
3480         ptl = pte_lockptr(mm, pmd);
3481         spin_lock(ptl);
3482         if (unlikely(!pte_same(*pte, entry)))
3483                 goto unlock;
3484         if (flags & FAULT_FLAG_WRITE) {
3485                 if (!pte_write(entry))
3486                         return do_wp_page(mm, vma, address,
3487                                         pte, pmd, ptl, entry);
3488                 entry = pte_mkdirty(entry);
3489         }
3490         entry = pte_mkyoung(entry);
3491         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3492                 update_mmu_cache(vma, address, pte);
3493         } else {
3494                 /*
3495                  * This is needed only for protection faults but the arch code
3496                  * is not yet telling us if this is a protection fault or not.
3497                  * This still avoids useless tlb flushes for .text page faults
3498                  * with threads.
3499                  */
3500                 if (flags & FAULT_FLAG_WRITE)
3501                         flush_tlb_fix_spurious_fault(vma, address);
3502         }
3503 unlock:
3504         pte_unmap_unlock(pte, ptl);
3505         return 0;
3506 }
3507
3508 /*
3509  * By the time we get here, we already hold the mm semaphore
3510  */
3511 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3512                 unsigned long address, unsigned int flags)
3513 {
3514         pgd_t *pgd;
3515         pud_t *pud;
3516         pmd_t *pmd;
3517         pte_t *pte;
3518
3519         __set_current_state(TASK_RUNNING);
3520
3521         count_vm_event(PGFAULT);
3522         mem_cgroup_count_vm_event(mm, PGFAULT);
3523
3524         /* do counter updates before entering really critical section. */
3525         check_sync_rss_stat(current);
3526
3527         if (unlikely(is_vm_hugetlb_page(vma)))
3528                 return hugetlb_fault(mm, vma, address, flags);
3529
3530 retry:
3531         pgd = pgd_offset(mm, address);
3532         pud = pud_alloc(mm, pgd, address);
3533         if (!pud)
3534                 return VM_FAULT_OOM;
3535         pmd = pmd_alloc(mm, pud, address);
3536         if (!pmd)
3537                 return VM_FAULT_OOM;
3538         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3539                 if (!vma->vm_ops)
3540                         return do_huge_pmd_anonymous_page(mm, vma, address,
3541                                                           pmd, flags);
3542         } else {
3543                 pmd_t orig_pmd = *pmd;
3544                 int ret;
3545
3546                 barrier();
3547                 if (pmd_trans_huge(orig_pmd)) {
3548                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3549
3550                         if (dirty && !pmd_write(orig_pmd) &&
3551                             !pmd_trans_splitting(orig_pmd)) {
3552                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3553                                                           orig_pmd);
3554                                 /*
3555                                  * If COW results in an oom, the huge pmd will
3556                                  * have been split, so retry the fault on the
3557                                  * pte for a smaller charge.
3558                                  */
3559                                 if (unlikely(ret & VM_FAULT_OOM))
3560                                         goto retry;
3561                                 return ret;
3562                         } else {
3563                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3564                                                       orig_pmd, dirty);
3565                         }
3566                         return 0;
3567                 }
3568         }
3569
3570         /*
3571          * Use __pte_alloc instead of pte_alloc_map, because we can't
3572          * run pte_offset_map on the pmd, if an huge pmd could
3573          * materialize from under us from a different thread.
3574          */
3575         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3576                 return VM_FAULT_OOM;
3577         /* if an huge pmd materialized from under us just retry later */
3578         if (unlikely(pmd_trans_huge(*pmd)))
3579                 return 0;
3580         /*
3581          * A regular pmd is established and it can't morph into a huge pmd
3582          * from under us anymore at this point because we hold the mmap_sem
3583          * read mode and khugepaged takes it in write mode. So now it's
3584          * safe to run pte_offset_map().
3585          */
3586         pte = pte_offset_map(pmd, address);
3587
3588         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3589 }
3590
3591 #ifndef __PAGETABLE_PUD_FOLDED
3592 /*
3593  * Allocate page upper directory.
3594  * We've already handled the fast-path in-line.
3595  */
3596 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3597 {
3598         pud_t *new = pud_alloc_one(mm, address);
3599         if (!new)
3600                 return -ENOMEM;
3601
3602         smp_wmb(); /* See comment in __pte_alloc */
3603
3604         spin_lock(&mm->page_table_lock);
3605         if (pgd_present(*pgd))          /* Another has populated it */
3606                 pud_free(mm, new);
3607         else
3608                 pgd_populate(mm, pgd, new);
3609         spin_unlock(&mm->page_table_lock);
3610         return 0;
3611 }
3612 #endif /* __PAGETABLE_PUD_FOLDED */
3613
3614 #ifndef __PAGETABLE_PMD_FOLDED
3615 /*
3616  * Allocate page middle directory.
3617  * We've already handled the fast-path in-line.
3618  */
3619 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3620 {
3621         pmd_t *new = pmd_alloc_one(mm, address);
3622         if (!new)
3623                 return -ENOMEM;
3624
3625         smp_wmb(); /* See comment in __pte_alloc */
3626
3627         spin_lock(&mm->page_table_lock);
3628 #ifndef __ARCH_HAS_4LEVEL_HACK
3629         if (pud_present(*pud))          /* Another has populated it */
3630                 pmd_free(mm, new);
3631         else
3632                 pud_populate(mm, pud, new);
3633 #else
3634         if (pgd_present(*pud))          /* Another has populated it */
3635                 pmd_free(mm, new);
3636         else
3637                 pgd_populate(mm, pud, new);
3638 #endif /* __ARCH_HAS_4LEVEL_HACK */
3639         spin_unlock(&mm->page_table_lock);
3640         return 0;
3641 }
3642 #endif /* __PAGETABLE_PMD_FOLDED */
3643
3644 int make_pages_present(unsigned long addr, unsigned long end)
3645 {
3646         int ret, len, write;
3647         struct vm_area_struct * vma;
3648
3649         vma = find_vma(current->mm, addr);
3650         if (!vma)
3651                 return -ENOMEM;
3652         /*
3653          * We want to touch writable mappings with a write fault in order
3654          * to break COW, except for shared mappings because these don't COW
3655          * and we would not want to dirty them for nothing.
3656          */
3657         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3658         BUG_ON(addr >= end);
3659         BUG_ON(end > vma->vm_end);
3660         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3661         ret = get_user_pages(current, current->mm, addr,
3662                         len, write, 0, NULL, NULL);
3663         if (ret < 0)
3664                 return ret;
3665         return ret == len ? 0 : -EFAULT;
3666 }
3667
3668 #if !defined(__HAVE_ARCH_GATE_AREA)
3669
3670 #if defined(AT_SYSINFO_EHDR)
3671 static struct vm_area_struct gate_vma;
3672
3673 static int __init gate_vma_init(void)
3674 {
3675         gate_vma.vm_mm = NULL;
3676         gate_vma.vm_start = FIXADDR_USER_START;
3677         gate_vma.vm_end = FIXADDR_USER_END;
3678         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3679         gate_vma.vm_page_prot = __P101;
3680         /*
3681          * Make sure the vDSO gets into every core dump.
3682          * Dumping its contents makes post-mortem fully interpretable later
3683          * without matching up the same kernel and hardware config to see
3684          * what PC values meant.
3685          */
3686         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3687         return 0;
3688 }
3689 __initcall(gate_vma_init);
3690 #endif
3691
3692 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3693 {
3694 #ifdef AT_SYSINFO_EHDR
3695         return &gate_vma;
3696 #else
3697         return NULL;
3698 #endif
3699 }
3700
3701 int in_gate_area_no_mm(unsigned long addr)
3702 {
3703 #ifdef AT_SYSINFO_EHDR
3704         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3705                 return 1;
3706 #endif
3707         return 0;
3708 }
3709
3710 #endif  /* __HAVE_ARCH_GATE_AREA */
3711
3712 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3713                 pte_t **ptepp, spinlock_t **ptlp)
3714 {
3715         pgd_t *pgd;
3716         pud_t *pud;
3717         pmd_t *pmd;
3718         pte_t *ptep;
3719
3720         pgd = pgd_offset(mm, address);
3721         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3722                 goto out;
3723
3724         pud = pud_offset(pgd, address);
3725         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3726                 goto out;
3727
3728         pmd = pmd_offset(pud, address);
3729         VM_BUG_ON(pmd_trans_huge(*pmd));
3730         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3731                 goto out;
3732
3733         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3734         if (pmd_huge(*pmd))
3735                 goto out;
3736
3737         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3738         if (!ptep)
3739                 goto out;
3740         if (!pte_present(*ptep))
3741                 goto unlock;
3742         *ptepp = ptep;
3743         return 0;
3744 unlock:
3745         pte_unmap_unlock(ptep, *ptlp);
3746 out:
3747         return -EINVAL;
3748 }
3749
3750 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3751                              pte_t **ptepp, spinlock_t **ptlp)
3752 {
3753         int res;
3754
3755         /* (void) is needed to make gcc happy */
3756         (void) __cond_lock(*ptlp,
3757                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3758         return res;
3759 }
3760
3761 /**
3762  * follow_pfn - look up PFN at a user virtual address
3763  * @vma: memory mapping
3764  * @address: user virtual address
3765  * @pfn: location to store found PFN
3766  *
3767  * Only IO mappings and raw PFN mappings are allowed.
3768  *
3769  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3770  */
3771 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3772         unsigned long *pfn)
3773 {
3774         int ret = -EINVAL;
3775         spinlock_t *ptl;
3776         pte_t *ptep;
3777
3778         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3779                 return ret;
3780
3781         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3782         if (ret)
3783                 return ret;
3784         *pfn = pte_pfn(*ptep);
3785         pte_unmap_unlock(ptep, ptl);
3786         return 0;
3787 }
3788 EXPORT_SYMBOL(follow_pfn);
3789
3790 #ifdef CONFIG_HAVE_IOREMAP_PROT
3791 int follow_phys(struct vm_area_struct *vma,
3792                 unsigned long address, unsigned int flags,
3793                 unsigned long *prot, resource_size_t *phys)
3794 {
3795         int ret = -EINVAL;
3796         pte_t *ptep, pte;
3797         spinlock_t *ptl;
3798
3799         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3800                 goto out;
3801
3802         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3803                 goto out;
3804         pte = *ptep;
3805
3806         if ((flags & FOLL_WRITE) && !pte_write(pte))
3807                 goto unlock;
3808
3809         *prot = pgprot_val(pte_pgprot(pte));
3810         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3811
3812         ret = 0;
3813 unlock:
3814         pte_unmap_unlock(ptep, ptl);
3815 out:
3816         return ret;
3817 }
3818
3819 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3820                         void *buf, int len, int write)
3821 {
3822         resource_size_t phys_addr;
3823         unsigned long prot = 0;
3824         void __iomem *maddr;
3825         int offset = addr & (PAGE_SIZE-1);
3826
3827         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3828                 return -EINVAL;
3829
3830         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3831         if (write)
3832                 memcpy_toio(maddr + offset, buf, len);
3833         else
3834                 memcpy_fromio(buf, maddr + offset, len);
3835         iounmap(maddr);
3836
3837         return len;
3838 }
3839 #endif
3840
3841 /*
3842  * Access another process' address space as given in mm.  If non-NULL, use the
3843  * given task for page fault accounting.
3844  */
3845 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3846                 unsigned long addr, void *buf, int len, int write)
3847 {
3848         struct vm_area_struct *vma;
3849         void *old_buf = buf;
3850
3851         down_read(&mm->mmap_sem);
3852         /* ignore errors, just check how much was successfully transferred */
3853         while (len) {
3854                 int bytes, ret, offset;
3855                 void *maddr;
3856                 struct page *page = NULL;
3857
3858                 ret = get_user_pages(tsk, mm, addr, 1,
3859                                 write, 1, &page, &vma);
3860                 if (ret <= 0) {
3861                         /*
3862                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3863                          * we can access using slightly different code.
3864                          */
3865 #ifdef CONFIG_HAVE_IOREMAP_PROT
3866                         vma = find_vma(mm, addr);
3867                         if (!vma || vma->vm_start > addr)
3868                                 break;
3869                         if (vma->vm_ops && vma->vm_ops->access)
3870                                 ret = vma->vm_ops->access(vma, addr, buf,
3871                                                           len, write);
3872                         if (ret <= 0)
3873 #endif
3874                                 break;
3875                         bytes = ret;
3876                 } else {
3877                         bytes = len;
3878                         offset = addr & (PAGE_SIZE-1);
3879                         if (bytes > PAGE_SIZE-offset)
3880                                 bytes = PAGE_SIZE-offset;
3881
3882                         maddr = kmap(page);
3883                         if (write) {
3884                                 copy_to_user_page(vma, page, addr,
3885                                                   maddr + offset, buf, bytes);
3886                                 set_page_dirty_lock(page);
3887                         } else {
3888                                 copy_from_user_page(vma, page, addr,
3889                                                     buf, maddr + offset, bytes);
3890                         }
3891                         kunmap(page);
3892                         page_cache_release(page);
3893                 }
3894                 len -= bytes;
3895                 buf += bytes;
3896                 addr += bytes;
3897         }
3898         up_read(&mm->mmap_sem);
3899
3900         return buf - old_buf;
3901 }
3902
3903 /**
3904  * access_remote_vm - access another process' address space
3905  * @mm:         the mm_struct of the target address space
3906  * @addr:       start address to access
3907  * @buf:        source or destination buffer
3908  * @len:        number of bytes to transfer
3909  * @write:      whether the access is a write
3910  *
3911  * The caller must hold a reference on @mm.
3912  */
3913 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3914                 void *buf, int len, int write)
3915 {
3916         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3917 }
3918
3919 /*
3920  * Access another process' address space.
3921  * Source/target buffer must be kernel space,
3922  * Do not walk the page table directly, use get_user_pages
3923  */
3924 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3925                 void *buf, int len, int write)
3926 {
3927         struct mm_struct *mm;
3928         int ret;
3929
3930         mm = get_task_mm(tsk);
3931         if (!mm)
3932                 return 0;
3933
3934         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3935         mmput(mm);
3936
3937         return ret;
3938 }
3939
3940 /*
3941  * Print the name of a VMA.
3942  */
3943 void print_vma_addr(char *prefix, unsigned long ip)
3944 {
3945         struct mm_struct *mm = current->mm;
3946         struct vm_area_struct *vma;
3947
3948         /*
3949          * Do not print if we are in atomic
3950          * contexts (in exception stacks, etc.):
3951          */
3952         if (preempt_count())
3953                 return;
3954
3955         down_read(&mm->mmap_sem);
3956         vma = find_vma(mm, ip);
3957         if (vma && vma->vm_file) {
3958                 struct file *f = vma->vm_file;
3959                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3960                 if (buf) {
3961                         char *p, *s;
3962
3963                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3964                         if (IS_ERR(p))
3965                                 p = "?";
3966                         s = strrchr(p, '/');
3967                         if (s)
3968                                 p = s+1;
3969                         printk("%s%s[%lx+%lx]", prefix, p,
3970                                         vma->vm_start,
3971                                         vma->vm_end - vma->vm_start);
3972                         free_page((unsigned long)buf);
3973                 }
3974         }
3975         up_read(&current->mm->mmap_sem);
3976 }
3977
3978 #ifdef CONFIG_PROVE_LOCKING
3979 void might_fault(void)
3980 {
3981         /*
3982          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3983          * holding the mmap_sem, this is safe because kernel memory doesn't
3984          * get paged out, therefore we'll never actually fault, and the
3985          * below annotations will generate false positives.
3986          */
3987         if (segment_eq(get_fs(), KERNEL_DS))
3988                 return;
3989
3990         might_sleep();
3991         /*
3992          * it would be nicer only to annotate paths which are not under
3993          * pagefault_disable, however that requires a larger audit and
3994          * providing helpers like get_user_atomic.
3995          */
3996         if (!in_atomic() && current->mm)
3997                 might_lock_read(&current->mm->mmap_sem);
3998 }
3999 EXPORT_SYMBOL(might_fault);
4000 #endif
4001
4002 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4003 static void clear_gigantic_page(struct page *page,
4004                                 unsigned long addr,
4005                                 unsigned int pages_per_huge_page)
4006 {
4007         int i;
4008         struct page *p = page;
4009
4010         might_sleep();
4011         for (i = 0; i < pages_per_huge_page;
4012              i++, p = mem_map_next(p, page, i)) {
4013                 cond_resched();
4014                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4015         }
4016 }
4017 void clear_huge_page(struct page *page,
4018                      unsigned long addr, unsigned int pages_per_huge_page)
4019 {
4020         int i;
4021
4022         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4023                 clear_gigantic_page(page, addr, pages_per_huge_page);
4024                 return;
4025         }
4026
4027         might_sleep();
4028         for (i = 0; i < pages_per_huge_page; i++) {
4029                 cond_resched();
4030                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4031         }
4032 }
4033
4034 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4035                                     unsigned long addr,
4036                                     struct vm_area_struct *vma,
4037                                     unsigned int pages_per_huge_page)
4038 {
4039         int i;
4040         struct page *dst_base = dst;
4041         struct page *src_base = src;
4042
4043         for (i = 0; i < pages_per_huge_page; ) {
4044                 cond_resched();
4045                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4046
4047                 i++;
4048                 dst = mem_map_next(dst, dst_base, i);
4049                 src = mem_map_next(src, src_base, i);
4050         }
4051 }
4052
4053 void copy_user_huge_page(struct page *dst, struct page *src,
4054                          unsigned long addr, struct vm_area_struct *vma,
4055                          unsigned int pages_per_huge_page)
4056 {
4057         int i;
4058
4059         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4060                 copy_user_gigantic_page(dst, src, addr, vma,
4061                                         pages_per_huge_page);
4062                 return;
4063         }
4064
4065         might_sleep();
4066         for (i = 0; i < pages_per_huge_page; i++) {
4067                 cond_resched();
4068                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4069         }
4070 }
4071 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */