mm: hugetlb: call huge_pte_alloc() only if ptep is null
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 int seg_from;
277                 int seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440                         struct vm_area_struct *vma)
441 {
442         if (vma->vm_flags & VM_NORESERVE)
443                 return;
444
445         if (vma->vm_flags & VM_MAYSHARE) {
446                 /* Shared mappings always use reserves */
447                 h->resv_huge_pages--;
448         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449                 /*
450                  * Only the process that called mmap() has reserves for
451                  * private mappings.
452                  */
453                 h->resv_huge_pages--;
454         }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460         VM_BUG_ON(!is_vm_hugetlb_page(vma));
461         if (!(vma->vm_flags & VM_MAYSHARE))
462                 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468         if (vma->vm_flags & VM_MAYSHARE)
469                 return 1;
470         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471                 return 1;
472         return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477         int i;
478         struct hstate *h = page_hstate(src);
479         struct page *dst_base = dst;
480         struct page *src_base = src;
481
482         for (i = 0; i < pages_per_huge_page(h); ) {
483                 cond_resched();
484                 copy_highpage(dst, src);
485
486                 i++;
487                 dst = mem_map_next(dst, dst_base, i);
488                 src = mem_map_next(src, src_base, i);
489         }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494         int i;
495         struct hstate *h = page_hstate(src);
496
497         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498                 copy_gigantic_page(dst, src);
499                 return;
500         }
501
502         might_sleep();
503         for (i = 0; i < pages_per_huge_page(h); i++) {
504                 cond_resched();
505                 copy_highpage(dst + i, src + i);
506         }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511         int nid = page_to_nid(page);
512         list_add(&page->lru, &h->hugepage_freelists[nid]);
513         h->free_huge_pages++;
514         h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519         struct page *page;
520
521         if (list_empty(&h->hugepage_freelists[nid]))
522                 return NULL;
523         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524         list_del(&page->lru);
525         set_page_refcounted(page);
526         h->free_huge_pages--;
527         h->free_huge_pages_node[nid]--;
528         return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532                                 struct vm_area_struct *vma,
533                                 unsigned long address, int avoid_reserve)
534 {
535         struct page *page = NULL;
536         struct mempolicy *mpol;
537         nodemask_t *nodemask;
538         struct zonelist *zonelist;
539         struct zone *zone;
540         struct zoneref *z;
541         unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544         cpuset_mems_cookie = get_mems_allowed();
545         zonelist = huge_zonelist(vma, address,
546                                         htlb_alloc_mask, &mpol, &nodemask);
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560         for_each_zone_zonelist_nodemask(zone, z, zonelist,
561                                                 MAX_NR_ZONES - 1, nodemask) {
562                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
564                         if (page) {
565                                 if (!avoid_reserve)
566                                         decrement_hugepage_resv_vma(h, vma);
567                                 break;
568                         }
569                 }
570         }
571
572         mpol_cond_put(mpol);
573         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574                 goto retry_cpuset;
575         return page;
576
577 err:
578         mpol_cond_put(mpol);
579         return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584         int i;
585
586         VM_BUG_ON(h->order >= MAX_ORDER);
587
588         h->nr_huge_pages--;
589         h->nr_huge_pages_node[page_to_nid(page)]--;
590         for (i = 0; i < pages_per_huge_page(h); i++) {
591                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592                                 1 << PG_referenced | 1 << PG_dirty |
593                                 1 << PG_active | 1 << PG_reserved |
594                                 1 << PG_private | 1 << PG_writeback);
595         }
596         set_compound_page_dtor(page, NULL);
597         set_page_refcounted(page);
598         arch_release_hugepage(page);
599         __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604         struct hstate *h;
605
606         for_each_hstate(h) {
607                 if (huge_page_size(h) == size)
608                         return h;
609         }
610         return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615         /*
616          * Can't pass hstate in here because it is called from the
617          * compound page destructor.
618          */
619         struct hstate *h = page_hstate(page);
620         int nid = page_to_nid(page);
621         struct hugepage_subpool *spool =
622                 (struct hugepage_subpool *)page_private(page);
623
624         set_page_private(page, 0);
625         page->mapping = NULL;
626         BUG_ON(page_count(page));
627         BUG_ON(page_mapcount(page));
628         INIT_LIST_HEAD(&page->lru);
629
630         spin_lock(&hugetlb_lock);
631         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632                 update_and_free_page(h, page);
633                 h->surplus_huge_pages--;
634                 h->surplus_huge_pages_node[nid]--;
635         } else {
636                 enqueue_huge_page(h, page);
637         }
638         spin_unlock(&hugetlb_lock);
639         hugepage_subpool_put_pages(spool, 1);
640 }
641
642 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
643 {
644         set_compound_page_dtor(page, free_huge_page);
645         spin_lock(&hugetlb_lock);
646         h->nr_huge_pages++;
647         h->nr_huge_pages_node[nid]++;
648         spin_unlock(&hugetlb_lock);
649         put_page(page); /* free it into the hugepage allocator */
650 }
651
652 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
653 {
654         int i;
655         int nr_pages = 1 << order;
656         struct page *p = page + 1;
657
658         /* we rely on prep_new_huge_page to set the destructor */
659         set_compound_order(page, order);
660         __SetPageHead(page);
661         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662                 __SetPageTail(p);
663                 set_page_count(p, 0);
664                 p->first_page = page;
665         }
666 }
667
668 int PageHuge(struct page *page)
669 {
670         compound_page_dtor *dtor;
671
672         if (!PageCompound(page))
673                 return 0;
674
675         page = compound_head(page);
676         dtor = get_compound_page_dtor(page);
677
678         return dtor == free_huge_page;
679 }
680 EXPORT_SYMBOL_GPL(PageHuge);
681
682 /*
683  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
684  * normal or transparent huge pages.
685  */
686 int PageHeadHuge(struct page *page_head)
687 {
688         compound_page_dtor *dtor;
689
690         if (!PageHead(page_head))
691                 return 0;
692
693         dtor = get_compound_page_dtor(page_head);
694
695         return dtor == free_huge_page;
696 }
697 EXPORT_SYMBOL_GPL(PageHeadHuge);
698
699 pgoff_t __basepage_index(struct page *page)
700 {
701         struct page *page_head = compound_head(page);
702         pgoff_t index = page_index(page_head);
703         unsigned long compound_idx;
704
705         if (!PageHuge(page_head))
706                 return page_index(page);
707
708         if (compound_order(page_head) >= MAX_ORDER)
709                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
710         else
711                 compound_idx = page - page_head;
712
713         return (index << compound_order(page_head)) + compound_idx;
714 }
715
716 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
717 {
718         struct page *page;
719
720         if (h->order >= MAX_ORDER)
721                 return NULL;
722
723         page = alloc_pages_exact_node(nid,
724                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
725                                                 __GFP_REPEAT|__GFP_NOWARN,
726                 huge_page_order(h));
727         if (page) {
728                 if (arch_prepare_hugepage(page)) {
729                         __free_pages(page, huge_page_order(h));
730                         return NULL;
731                 }
732                 prep_new_huge_page(h, page, nid);
733         }
734
735         return page;
736 }
737
738 /*
739  * common helper functions for hstate_next_node_to_{alloc|free}.
740  * We may have allocated or freed a huge page based on a different
741  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
742  * be outside of *nodes_allowed.  Ensure that we use an allowed
743  * node for alloc or free.
744  */
745 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
746 {
747         nid = next_node(nid, *nodes_allowed);
748         if (nid == MAX_NUMNODES)
749                 nid = first_node(*nodes_allowed);
750         VM_BUG_ON(nid >= MAX_NUMNODES);
751
752         return nid;
753 }
754
755 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
756 {
757         if (!node_isset(nid, *nodes_allowed))
758                 nid = next_node_allowed(nid, nodes_allowed);
759         return nid;
760 }
761
762 /*
763  * returns the previously saved node ["this node"] from which to
764  * allocate a persistent huge page for the pool and advance the
765  * next node from which to allocate, handling wrap at end of node
766  * mask.
767  */
768 static int hstate_next_node_to_alloc(struct hstate *h,
769                                         nodemask_t *nodes_allowed)
770 {
771         int nid;
772
773         VM_BUG_ON(!nodes_allowed);
774
775         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
776         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
777
778         return nid;
779 }
780
781 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
782 {
783         struct page *page;
784         int start_nid;
785         int next_nid;
786         int ret = 0;
787
788         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
789         next_nid = start_nid;
790
791         do {
792                 page = alloc_fresh_huge_page_node(h, next_nid);
793                 if (page) {
794                         ret = 1;
795                         break;
796                 }
797                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
798         } while (next_nid != start_nid);
799
800         if (ret)
801                 count_vm_event(HTLB_BUDDY_PGALLOC);
802         else
803                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
804
805         return ret;
806 }
807
808 /*
809  * helper for free_pool_huge_page() - return the previously saved
810  * node ["this node"] from which to free a huge page.  Advance the
811  * next node id whether or not we find a free huge page to free so
812  * that the next attempt to free addresses the next node.
813  */
814 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
815 {
816         int nid;
817
818         VM_BUG_ON(!nodes_allowed);
819
820         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
821         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
822
823         return nid;
824 }
825
826 /*
827  * Free huge page from pool from next node to free.
828  * Attempt to keep persistent huge pages more or less
829  * balanced over allowed nodes.
830  * Called with hugetlb_lock locked.
831  */
832 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
833                                                          bool acct_surplus)
834 {
835         int start_nid;
836         int next_nid;
837         int ret = 0;
838
839         start_nid = hstate_next_node_to_free(h, nodes_allowed);
840         next_nid = start_nid;
841
842         do {
843                 /*
844                  * If we're returning unused surplus pages, only examine
845                  * nodes with surplus pages.
846                  */
847                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
848                     !list_empty(&h->hugepage_freelists[next_nid])) {
849                         struct page *page =
850                                 list_entry(h->hugepage_freelists[next_nid].next,
851                                           struct page, lru);
852                         list_del(&page->lru);
853                         h->free_huge_pages--;
854                         h->free_huge_pages_node[next_nid]--;
855                         if (acct_surplus) {
856                                 h->surplus_huge_pages--;
857                                 h->surplus_huge_pages_node[next_nid]--;
858                         }
859                         update_and_free_page(h, page);
860                         ret = 1;
861                         break;
862                 }
863                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
864         } while (next_nid != start_nid);
865
866         return ret;
867 }
868
869 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
870 {
871         struct page *page;
872         unsigned int r_nid;
873
874         if (h->order >= MAX_ORDER)
875                 return NULL;
876
877         /*
878          * Assume we will successfully allocate the surplus page to
879          * prevent racing processes from causing the surplus to exceed
880          * overcommit
881          *
882          * This however introduces a different race, where a process B
883          * tries to grow the static hugepage pool while alloc_pages() is
884          * called by process A. B will only examine the per-node
885          * counters in determining if surplus huge pages can be
886          * converted to normal huge pages in adjust_pool_surplus(). A
887          * won't be able to increment the per-node counter, until the
888          * lock is dropped by B, but B doesn't drop hugetlb_lock until
889          * no more huge pages can be converted from surplus to normal
890          * state (and doesn't try to convert again). Thus, we have a
891          * case where a surplus huge page exists, the pool is grown, and
892          * the surplus huge page still exists after, even though it
893          * should just have been converted to a normal huge page. This
894          * does not leak memory, though, as the hugepage will be freed
895          * once it is out of use. It also does not allow the counters to
896          * go out of whack in adjust_pool_surplus() as we don't modify
897          * the node values until we've gotten the hugepage and only the
898          * per-node value is checked there.
899          */
900         spin_lock(&hugetlb_lock);
901         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
902                 spin_unlock(&hugetlb_lock);
903                 return NULL;
904         } else {
905                 h->nr_huge_pages++;
906                 h->surplus_huge_pages++;
907         }
908         spin_unlock(&hugetlb_lock);
909
910         if (nid == NUMA_NO_NODE)
911                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
912                                    __GFP_REPEAT|__GFP_NOWARN,
913                                    huge_page_order(h));
914         else
915                 page = alloc_pages_exact_node(nid,
916                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
917                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
918
919         if (page && arch_prepare_hugepage(page)) {
920                 __free_pages(page, huge_page_order(h));
921                 return NULL;
922         }
923
924         spin_lock(&hugetlb_lock);
925         if (page) {
926                 r_nid = page_to_nid(page);
927                 set_compound_page_dtor(page, free_huge_page);
928                 /*
929                  * We incremented the global counters already
930                  */
931                 h->nr_huge_pages_node[r_nid]++;
932                 h->surplus_huge_pages_node[r_nid]++;
933                 __count_vm_event(HTLB_BUDDY_PGALLOC);
934         } else {
935                 h->nr_huge_pages--;
936                 h->surplus_huge_pages--;
937                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
938         }
939         spin_unlock(&hugetlb_lock);
940
941         return page;
942 }
943
944 /*
945  * This allocation function is useful in the context where vma is irrelevant.
946  * E.g. soft-offlining uses this function because it only cares physical
947  * address of error page.
948  */
949 struct page *alloc_huge_page_node(struct hstate *h, int nid)
950 {
951         struct page *page;
952
953         spin_lock(&hugetlb_lock);
954         page = dequeue_huge_page_node(h, nid);
955         spin_unlock(&hugetlb_lock);
956
957         if (!page)
958                 page = alloc_buddy_huge_page(h, nid);
959
960         return page;
961 }
962
963 /*
964  * Increase the hugetlb pool such that it can accommodate a reservation
965  * of size 'delta'.
966  */
967 static int gather_surplus_pages(struct hstate *h, int delta)
968 {
969         struct list_head surplus_list;
970         struct page *page, *tmp;
971         int ret, i;
972         int needed, allocated;
973
974         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
975         if (needed <= 0) {
976                 h->resv_huge_pages += delta;
977                 return 0;
978         }
979
980         allocated = 0;
981         INIT_LIST_HEAD(&surplus_list);
982
983         ret = -ENOMEM;
984 retry:
985         spin_unlock(&hugetlb_lock);
986         for (i = 0; i < needed; i++) {
987                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
988                 if (!page)
989                         /*
990                          * We were not able to allocate enough pages to
991                          * satisfy the entire reservation so we free what
992                          * we've allocated so far.
993                          */
994                         goto free;
995
996                 list_add(&page->lru, &surplus_list);
997         }
998         allocated += needed;
999
1000         /*
1001          * After retaking hugetlb_lock, we need to recalculate 'needed'
1002          * because either resv_huge_pages or free_huge_pages may have changed.
1003          */
1004         spin_lock(&hugetlb_lock);
1005         needed = (h->resv_huge_pages + delta) -
1006                         (h->free_huge_pages + allocated);
1007         if (needed > 0)
1008                 goto retry;
1009
1010         /*
1011          * The surplus_list now contains _at_least_ the number of extra pages
1012          * needed to accommodate the reservation.  Add the appropriate number
1013          * of pages to the hugetlb pool and free the extras back to the buddy
1014          * allocator.  Commit the entire reservation here to prevent another
1015          * process from stealing the pages as they are added to the pool but
1016          * before they are reserved.
1017          */
1018         needed += allocated;
1019         h->resv_huge_pages += delta;
1020         ret = 0;
1021
1022         /* Free the needed pages to the hugetlb pool */
1023         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1024                 if ((--needed) < 0)
1025                         break;
1026                 list_del(&page->lru);
1027                 /*
1028                  * This page is now managed by the hugetlb allocator and has
1029                  * no users -- drop the buddy allocator's reference.
1030                  */
1031                 put_page_testzero(page);
1032                 VM_BUG_ON(page_count(page));
1033                 enqueue_huge_page(h, page);
1034         }
1035         spin_unlock(&hugetlb_lock);
1036
1037         /* Free unnecessary surplus pages to the buddy allocator */
1038 free:
1039         if (!list_empty(&surplus_list)) {
1040                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1041                         list_del(&page->lru);
1042                         put_page(page);
1043                 }
1044         }
1045         spin_lock(&hugetlb_lock);
1046
1047         return ret;
1048 }
1049
1050 /*
1051  * When releasing a hugetlb pool reservation, any surplus pages that were
1052  * allocated to satisfy the reservation must be explicitly freed if they were
1053  * never used.
1054  * Called with hugetlb_lock held.
1055  */
1056 static void return_unused_surplus_pages(struct hstate *h,
1057                                         unsigned long unused_resv_pages)
1058 {
1059         unsigned long nr_pages;
1060
1061         /* Uncommit the reservation */
1062         h->resv_huge_pages -= unused_resv_pages;
1063
1064         /* Cannot return gigantic pages currently */
1065         if (h->order >= MAX_ORDER)
1066                 return;
1067
1068         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1069
1070         /*
1071          * We want to release as many surplus pages as possible, spread
1072          * evenly across all nodes with memory. Iterate across these nodes
1073          * until we can no longer free unreserved surplus pages. This occurs
1074          * when the nodes with surplus pages have no free pages.
1075          * free_pool_huge_page() will balance the the freed pages across the
1076          * on-line nodes with memory and will handle the hstate accounting.
1077          */
1078         while (nr_pages--) {
1079                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1080                         break;
1081                 cond_resched_lock(&hugetlb_lock);
1082         }
1083 }
1084
1085 /*
1086  * Determine if the huge page at addr within the vma has an associated
1087  * reservation.  Where it does not we will need to logically increase
1088  * reservation and actually increase subpool usage before an allocation
1089  * can occur.  Where any new reservation would be required the
1090  * reservation change is prepared, but not committed.  Once the page
1091  * has been allocated from the subpool and instantiated the change should
1092  * be committed via vma_commit_reservation.  No action is required on
1093  * failure.
1094  */
1095 static long vma_needs_reservation(struct hstate *h,
1096                         struct vm_area_struct *vma, unsigned long addr)
1097 {
1098         struct address_space *mapping = vma->vm_file->f_mapping;
1099         struct inode *inode = mapping->host;
1100
1101         if (vma->vm_flags & VM_MAYSHARE) {
1102                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103                 return region_chg(&inode->i_mapping->private_list,
1104                                                         idx, idx + 1);
1105
1106         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1107                 return 1;
1108
1109         } else  {
1110                 long err;
1111                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1112                 struct resv_map *reservations = vma_resv_map(vma);
1113
1114                 err = region_chg(&reservations->regions, idx, idx + 1);
1115                 if (err < 0)
1116                         return err;
1117                 return 0;
1118         }
1119 }
1120 static void vma_commit_reservation(struct hstate *h,
1121                         struct vm_area_struct *vma, unsigned long addr)
1122 {
1123         struct address_space *mapping = vma->vm_file->f_mapping;
1124         struct inode *inode = mapping->host;
1125
1126         if (vma->vm_flags & VM_MAYSHARE) {
1127                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1128                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1129
1130         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1131                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1132                 struct resv_map *reservations = vma_resv_map(vma);
1133
1134                 /* Mark this page used in the map. */
1135                 region_add(&reservations->regions, idx, idx + 1);
1136         }
1137 }
1138
1139 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1140                                     unsigned long addr, int avoid_reserve)
1141 {
1142         struct hugepage_subpool *spool = subpool_vma(vma);
1143         struct hstate *h = hstate_vma(vma);
1144         struct page *page;
1145         long chg;
1146
1147         /*
1148          * Processes that did not create the mapping will have no
1149          * reserves and will not have accounted against subpool
1150          * limit. Check that the subpool limit can be made before
1151          * satisfying the allocation MAP_NORESERVE mappings may also
1152          * need pages and subpool limit allocated allocated if no reserve
1153          * mapping overlaps.
1154          */
1155         chg = vma_needs_reservation(h, vma, addr);
1156         if (chg < 0)
1157                 return ERR_PTR(-VM_FAULT_OOM);
1158         if (chg)
1159                 if (hugepage_subpool_get_pages(spool, chg))
1160                         return ERR_PTR(-VM_FAULT_SIGBUS);
1161
1162         spin_lock(&hugetlb_lock);
1163         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1164         spin_unlock(&hugetlb_lock);
1165
1166         if (!page) {
1167                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1168                 if (!page) {
1169                         hugepage_subpool_put_pages(spool, chg);
1170                         return ERR_PTR(-VM_FAULT_SIGBUS);
1171                 }
1172         }
1173
1174         set_page_private(page, (unsigned long)spool);
1175
1176         vma_commit_reservation(h, vma, addr);
1177
1178         return page;
1179 }
1180
1181 int __weak alloc_bootmem_huge_page(struct hstate *h)
1182 {
1183         struct huge_bootmem_page *m;
1184         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1185
1186         while (nr_nodes) {
1187                 void *addr;
1188
1189                 addr = __alloc_bootmem_node_nopanic(
1190                                 NODE_DATA(hstate_next_node_to_alloc(h,
1191                                                 &node_states[N_HIGH_MEMORY])),
1192                                 huge_page_size(h), huge_page_size(h), 0);
1193
1194                 if (addr) {
1195                         /*
1196                          * Use the beginning of the huge page to store the
1197                          * huge_bootmem_page struct (until gather_bootmem
1198                          * puts them into the mem_map).
1199                          */
1200                         m = addr;
1201                         goto found;
1202                 }
1203                 nr_nodes--;
1204         }
1205         return 0;
1206
1207 found:
1208         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1209         /* Put them into a private list first because mem_map is not up yet */
1210         list_add(&m->list, &huge_boot_pages);
1211         m->hstate = h;
1212         return 1;
1213 }
1214
1215 static void prep_compound_huge_page(struct page *page, int order)
1216 {
1217         if (unlikely(order > (MAX_ORDER - 1)))
1218                 prep_compound_gigantic_page(page, order);
1219         else
1220                 prep_compound_page(page, order);
1221 }
1222
1223 /* Put bootmem huge pages into the standard lists after mem_map is up */
1224 static void __init gather_bootmem_prealloc(void)
1225 {
1226         struct huge_bootmem_page *m;
1227
1228         list_for_each_entry(m, &huge_boot_pages, list) {
1229                 struct hstate *h = m->hstate;
1230                 struct page *page;
1231
1232 #ifdef CONFIG_HIGHMEM
1233                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1234                 free_bootmem_late((unsigned long)m,
1235                                   sizeof(struct huge_bootmem_page));
1236 #else
1237                 page = virt_to_page(m);
1238 #endif
1239                 __ClearPageReserved(page);
1240                 WARN_ON(page_count(page) != 1);
1241                 prep_compound_huge_page(page, h->order);
1242                 prep_new_huge_page(h, page, page_to_nid(page));
1243                 /*
1244                  * If we had gigantic hugepages allocated at boot time, we need
1245                  * to restore the 'stolen' pages to totalram_pages in order to
1246                  * fix confusing memory reports from free(1) and another
1247                  * side-effects, like CommitLimit going negative.
1248                  */
1249                 if (h->order > (MAX_ORDER - 1))
1250                         totalram_pages += 1 << h->order;
1251         }
1252 }
1253
1254 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1255 {
1256         unsigned long i;
1257
1258         for (i = 0; i < h->max_huge_pages; ++i) {
1259                 if (h->order >= MAX_ORDER) {
1260                         if (!alloc_bootmem_huge_page(h))
1261                                 break;
1262                 } else if (!alloc_fresh_huge_page(h,
1263                                          &node_states[N_HIGH_MEMORY]))
1264                         break;
1265         }
1266         h->max_huge_pages = i;
1267 }
1268
1269 static void __init hugetlb_init_hstates(void)
1270 {
1271         struct hstate *h;
1272
1273         for_each_hstate(h) {
1274                 /* oversize hugepages were init'ed in early boot */
1275                 if (h->order < MAX_ORDER)
1276                         hugetlb_hstate_alloc_pages(h);
1277         }
1278 }
1279
1280 static char * __init memfmt(char *buf, unsigned long n)
1281 {
1282         if (n >= (1UL << 30))
1283                 sprintf(buf, "%lu GB", n >> 30);
1284         else if (n >= (1UL << 20))
1285                 sprintf(buf, "%lu MB", n >> 20);
1286         else
1287                 sprintf(buf, "%lu KB", n >> 10);
1288         return buf;
1289 }
1290
1291 static void __init report_hugepages(void)
1292 {
1293         struct hstate *h;
1294
1295         for_each_hstate(h) {
1296                 char buf[32];
1297                 printk(KERN_INFO "HugeTLB registered %s page size, "
1298                                  "pre-allocated %ld pages\n",
1299                         memfmt(buf, huge_page_size(h)),
1300                         h->free_huge_pages);
1301         }
1302 }
1303
1304 #ifdef CONFIG_HIGHMEM
1305 static void try_to_free_low(struct hstate *h, unsigned long count,
1306                                                 nodemask_t *nodes_allowed)
1307 {
1308         int i;
1309
1310         if (h->order >= MAX_ORDER)
1311                 return;
1312
1313         for_each_node_mask(i, *nodes_allowed) {
1314                 struct page *page, *next;
1315                 struct list_head *freel = &h->hugepage_freelists[i];
1316                 list_for_each_entry_safe(page, next, freel, lru) {
1317                         if (count >= h->nr_huge_pages)
1318                                 return;
1319                         if (PageHighMem(page))
1320                                 continue;
1321                         list_del(&page->lru);
1322                         update_and_free_page(h, page);
1323                         h->free_huge_pages--;
1324                         h->free_huge_pages_node[page_to_nid(page)]--;
1325                 }
1326         }
1327 }
1328 #else
1329 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1330                                                 nodemask_t *nodes_allowed)
1331 {
1332 }
1333 #endif
1334
1335 /*
1336  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1337  * balanced by operating on them in a round-robin fashion.
1338  * Returns 1 if an adjustment was made.
1339  */
1340 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1341                                 int delta)
1342 {
1343         int start_nid, next_nid;
1344         int ret = 0;
1345
1346         VM_BUG_ON(delta != -1 && delta != 1);
1347
1348         if (delta < 0)
1349                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1350         else
1351                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1352         next_nid = start_nid;
1353
1354         do {
1355                 int nid = next_nid;
1356                 if (delta < 0)  {
1357                         /*
1358                          * To shrink on this node, there must be a surplus page
1359                          */
1360                         if (!h->surplus_huge_pages_node[nid]) {
1361                                 next_nid = hstate_next_node_to_alloc(h,
1362                                                                 nodes_allowed);
1363                                 continue;
1364                         }
1365                 }
1366                 if (delta > 0) {
1367                         /*
1368                          * Surplus cannot exceed the total number of pages
1369                          */
1370                         if (h->surplus_huge_pages_node[nid] >=
1371                                                 h->nr_huge_pages_node[nid]) {
1372                                 next_nid = hstate_next_node_to_free(h,
1373                                                                 nodes_allowed);
1374                                 continue;
1375                         }
1376                 }
1377
1378                 h->surplus_huge_pages += delta;
1379                 h->surplus_huge_pages_node[nid] += delta;
1380                 ret = 1;
1381                 break;
1382         } while (next_nid != start_nid);
1383
1384         return ret;
1385 }
1386
1387 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1388 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1389                                                 nodemask_t *nodes_allowed)
1390 {
1391         unsigned long min_count, ret;
1392
1393         if (h->order >= MAX_ORDER)
1394                 return h->max_huge_pages;
1395
1396         /*
1397          * Increase the pool size
1398          * First take pages out of surplus state.  Then make up the
1399          * remaining difference by allocating fresh huge pages.
1400          *
1401          * We might race with alloc_buddy_huge_page() here and be unable
1402          * to convert a surplus huge page to a normal huge page. That is
1403          * not critical, though, it just means the overall size of the
1404          * pool might be one hugepage larger than it needs to be, but
1405          * within all the constraints specified by the sysctls.
1406          */
1407         spin_lock(&hugetlb_lock);
1408         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1409                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1410                         break;
1411         }
1412
1413         while (count > persistent_huge_pages(h)) {
1414                 /*
1415                  * If this allocation races such that we no longer need the
1416                  * page, free_huge_page will handle it by freeing the page
1417                  * and reducing the surplus.
1418                  */
1419                 spin_unlock(&hugetlb_lock);
1420                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1421                 spin_lock(&hugetlb_lock);
1422                 if (!ret)
1423                         goto out;
1424
1425                 /* Bail for signals. Probably ctrl-c from user */
1426                 if (signal_pending(current))
1427                         goto out;
1428         }
1429
1430         /*
1431          * Decrease the pool size
1432          * First return free pages to the buddy allocator (being careful
1433          * to keep enough around to satisfy reservations).  Then place
1434          * pages into surplus state as needed so the pool will shrink
1435          * to the desired size as pages become free.
1436          *
1437          * By placing pages into the surplus state independent of the
1438          * overcommit value, we are allowing the surplus pool size to
1439          * exceed overcommit. There are few sane options here. Since
1440          * alloc_buddy_huge_page() is checking the global counter,
1441          * though, we'll note that we're not allowed to exceed surplus
1442          * and won't grow the pool anywhere else. Not until one of the
1443          * sysctls are changed, or the surplus pages go out of use.
1444          */
1445         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1446         min_count = max(count, min_count);
1447         try_to_free_low(h, min_count, nodes_allowed);
1448         while (min_count < persistent_huge_pages(h)) {
1449                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1450                         break;
1451                 cond_resched_lock(&hugetlb_lock);
1452         }
1453         while (count < persistent_huge_pages(h)) {
1454                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1455                         break;
1456         }
1457 out:
1458         ret = persistent_huge_pages(h);
1459         spin_unlock(&hugetlb_lock);
1460         return ret;
1461 }
1462
1463 #define HSTATE_ATTR_RO(_name) \
1464         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1465
1466 #define HSTATE_ATTR(_name) \
1467         static struct kobj_attribute _name##_attr = \
1468                 __ATTR(_name, 0644, _name##_show, _name##_store)
1469
1470 static struct kobject *hugepages_kobj;
1471 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1472
1473 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1474
1475 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1476 {
1477         int i;
1478
1479         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1480                 if (hstate_kobjs[i] == kobj) {
1481                         if (nidp)
1482                                 *nidp = NUMA_NO_NODE;
1483                         return &hstates[i];
1484                 }
1485
1486         return kobj_to_node_hstate(kobj, nidp);
1487 }
1488
1489 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1490                                         struct kobj_attribute *attr, char *buf)
1491 {
1492         struct hstate *h;
1493         unsigned long nr_huge_pages;
1494         int nid;
1495
1496         h = kobj_to_hstate(kobj, &nid);
1497         if (nid == NUMA_NO_NODE)
1498                 nr_huge_pages = h->nr_huge_pages;
1499         else
1500                 nr_huge_pages = h->nr_huge_pages_node[nid];
1501
1502         return sprintf(buf, "%lu\n", nr_huge_pages);
1503 }
1504
1505 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1506                         struct kobject *kobj, struct kobj_attribute *attr,
1507                         const char *buf, size_t len)
1508 {
1509         int err;
1510         int nid;
1511         unsigned long count;
1512         struct hstate *h;
1513         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1514
1515         err = strict_strtoul(buf, 10, &count);
1516         if (err)
1517                 goto out;
1518
1519         h = kobj_to_hstate(kobj, &nid);
1520         if (h->order >= MAX_ORDER) {
1521                 err = -EINVAL;
1522                 goto out;
1523         }
1524
1525         if (nid == NUMA_NO_NODE) {
1526                 /*
1527                  * global hstate attribute
1528                  */
1529                 if (!(obey_mempolicy &&
1530                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1531                         NODEMASK_FREE(nodes_allowed);
1532                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1533                 }
1534         } else if (nodes_allowed) {
1535                 /*
1536                  * per node hstate attribute: adjust count to global,
1537                  * but restrict alloc/free to the specified node.
1538                  */
1539                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1540                 init_nodemask_of_node(nodes_allowed, nid);
1541         } else
1542                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1543
1544         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1545
1546         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1547                 NODEMASK_FREE(nodes_allowed);
1548
1549         return len;
1550 out:
1551         NODEMASK_FREE(nodes_allowed);
1552         return err;
1553 }
1554
1555 static ssize_t nr_hugepages_show(struct kobject *kobj,
1556                                        struct kobj_attribute *attr, char *buf)
1557 {
1558         return nr_hugepages_show_common(kobj, attr, buf);
1559 }
1560
1561 static ssize_t nr_hugepages_store(struct kobject *kobj,
1562                struct kobj_attribute *attr, const char *buf, size_t len)
1563 {
1564         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1565 }
1566 HSTATE_ATTR(nr_hugepages);
1567
1568 #ifdef CONFIG_NUMA
1569
1570 /*
1571  * hstate attribute for optionally mempolicy-based constraint on persistent
1572  * huge page alloc/free.
1573  */
1574 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1575                                        struct kobj_attribute *attr, char *buf)
1576 {
1577         return nr_hugepages_show_common(kobj, attr, buf);
1578 }
1579
1580 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1581                struct kobj_attribute *attr, const char *buf, size_t len)
1582 {
1583         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1584 }
1585 HSTATE_ATTR(nr_hugepages_mempolicy);
1586 #endif
1587
1588
1589 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1590                                         struct kobj_attribute *attr, char *buf)
1591 {
1592         struct hstate *h = kobj_to_hstate(kobj, NULL);
1593         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1594 }
1595
1596 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1597                 struct kobj_attribute *attr, const char *buf, size_t count)
1598 {
1599         int err;
1600         unsigned long input;
1601         struct hstate *h = kobj_to_hstate(kobj, NULL);
1602
1603         if (h->order >= MAX_ORDER)
1604                 return -EINVAL;
1605
1606         err = strict_strtoul(buf, 10, &input);
1607         if (err)
1608                 return err;
1609
1610         spin_lock(&hugetlb_lock);
1611         h->nr_overcommit_huge_pages = input;
1612         spin_unlock(&hugetlb_lock);
1613
1614         return count;
1615 }
1616 HSTATE_ATTR(nr_overcommit_hugepages);
1617
1618 static ssize_t free_hugepages_show(struct kobject *kobj,
1619                                         struct kobj_attribute *attr, char *buf)
1620 {
1621         struct hstate *h;
1622         unsigned long free_huge_pages;
1623         int nid;
1624
1625         h = kobj_to_hstate(kobj, &nid);
1626         if (nid == NUMA_NO_NODE)
1627                 free_huge_pages = h->free_huge_pages;
1628         else
1629                 free_huge_pages = h->free_huge_pages_node[nid];
1630
1631         return sprintf(buf, "%lu\n", free_huge_pages);
1632 }
1633 HSTATE_ATTR_RO(free_hugepages);
1634
1635 static ssize_t resv_hugepages_show(struct kobject *kobj,
1636                                         struct kobj_attribute *attr, char *buf)
1637 {
1638         struct hstate *h = kobj_to_hstate(kobj, NULL);
1639         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1640 }
1641 HSTATE_ATTR_RO(resv_hugepages);
1642
1643 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1644                                         struct kobj_attribute *attr, char *buf)
1645 {
1646         struct hstate *h;
1647         unsigned long surplus_huge_pages;
1648         int nid;
1649
1650         h = kobj_to_hstate(kobj, &nid);
1651         if (nid == NUMA_NO_NODE)
1652                 surplus_huge_pages = h->surplus_huge_pages;
1653         else
1654                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1655
1656         return sprintf(buf, "%lu\n", surplus_huge_pages);
1657 }
1658 HSTATE_ATTR_RO(surplus_hugepages);
1659
1660 static struct attribute *hstate_attrs[] = {
1661         &nr_hugepages_attr.attr,
1662         &nr_overcommit_hugepages_attr.attr,
1663         &free_hugepages_attr.attr,
1664         &resv_hugepages_attr.attr,
1665         &surplus_hugepages_attr.attr,
1666 #ifdef CONFIG_NUMA
1667         &nr_hugepages_mempolicy_attr.attr,
1668 #endif
1669         NULL,
1670 };
1671
1672 static struct attribute_group hstate_attr_group = {
1673         .attrs = hstate_attrs,
1674 };
1675
1676 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1677                                     struct kobject **hstate_kobjs,
1678                                     struct attribute_group *hstate_attr_group)
1679 {
1680         int retval;
1681         int hi = h - hstates;
1682
1683         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1684         if (!hstate_kobjs[hi])
1685                 return -ENOMEM;
1686
1687         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1688         if (retval)
1689                 kobject_put(hstate_kobjs[hi]);
1690
1691         return retval;
1692 }
1693
1694 static void __init hugetlb_sysfs_init(void)
1695 {
1696         struct hstate *h;
1697         int err;
1698
1699         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1700         if (!hugepages_kobj)
1701                 return;
1702
1703         for_each_hstate(h) {
1704                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1705                                          hstate_kobjs, &hstate_attr_group);
1706                 if (err)
1707                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1708                                                                 h->name);
1709         }
1710 }
1711
1712 #ifdef CONFIG_NUMA
1713
1714 /*
1715  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1716  * with node sysdevs in node_devices[] using a parallel array.  The array
1717  * index of a node sysdev or _hstate == node id.
1718  * This is here to avoid any static dependency of the node sysdev driver, in
1719  * the base kernel, on the hugetlb module.
1720  */
1721 struct node_hstate {
1722         struct kobject          *hugepages_kobj;
1723         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1724 };
1725 struct node_hstate node_hstates[MAX_NUMNODES];
1726
1727 /*
1728  * A subset of global hstate attributes for node sysdevs
1729  */
1730 static struct attribute *per_node_hstate_attrs[] = {
1731         &nr_hugepages_attr.attr,
1732         &free_hugepages_attr.attr,
1733         &surplus_hugepages_attr.attr,
1734         NULL,
1735 };
1736
1737 static struct attribute_group per_node_hstate_attr_group = {
1738         .attrs = per_node_hstate_attrs,
1739 };
1740
1741 /*
1742  * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1743  * Returns node id via non-NULL nidp.
1744  */
1745 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1746 {
1747         int nid;
1748
1749         for (nid = 0; nid < nr_node_ids; nid++) {
1750                 struct node_hstate *nhs = &node_hstates[nid];
1751                 int i;
1752                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1753                         if (nhs->hstate_kobjs[i] == kobj) {
1754                                 if (nidp)
1755                                         *nidp = nid;
1756                                 return &hstates[i];
1757                         }
1758         }
1759
1760         BUG();
1761         return NULL;
1762 }
1763
1764 /*
1765  * Unregister hstate attributes from a single node sysdev.
1766  * No-op if no hstate attributes attached.
1767  */
1768 void hugetlb_unregister_node(struct node *node)
1769 {
1770         struct hstate *h;
1771         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1772
1773         if (!nhs->hugepages_kobj)
1774                 return;         /* no hstate attributes */
1775
1776         for_each_hstate(h)
1777                 if (nhs->hstate_kobjs[h - hstates]) {
1778                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1779                         nhs->hstate_kobjs[h - hstates] = NULL;
1780                 }
1781
1782         kobject_put(nhs->hugepages_kobj);
1783         nhs->hugepages_kobj = NULL;
1784 }
1785
1786 /*
1787  * hugetlb module exit:  unregister hstate attributes from node sysdevs
1788  * that have them.
1789  */
1790 static void hugetlb_unregister_all_nodes(void)
1791 {
1792         int nid;
1793
1794         /*
1795          * disable node sysdev registrations.
1796          */
1797         register_hugetlbfs_with_node(NULL, NULL);
1798
1799         /*
1800          * remove hstate attributes from any nodes that have them.
1801          */
1802         for (nid = 0; nid < nr_node_ids; nid++)
1803                 hugetlb_unregister_node(&node_devices[nid]);
1804 }
1805
1806 /*
1807  * Register hstate attributes for a single node sysdev.
1808  * No-op if attributes already registered.
1809  */
1810 void hugetlb_register_node(struct node *node)
1811 {
1812         struct hstate *h;
1813         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1814         int err;
1815
1816         if (nhs->hugepages_kobj)
1817                 return;         /* already allocated */
1818
1819         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1820                                                         &node->sysdev.kobj);
1821         if (!nhs->hugepages_kobj)
1822                 return;
1823
1824         for_each_hstate(h) {
1825                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1826                                                 nhs->hstate_kobjs,
1827                                                 &per_node_hstate_attr_group);
1828                 if (err) {
1829                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1830                                         " for node %d\n",
1831                                                 h->name, node->sysdev.id);
1832                         hugetlb_unregister_node(node);
1833                         break;
1834                 }
1835         }
1836 }
1837
1838 /*
1839  * hugetlb init time:  register hstate attributes for all registered node
1840  * sysdevs of nodes that have memory.  All on-line nodes should have
1841  * registered their associated sysdev by this time.
1842  */
1843 static void hugetlb_register_all_nodes(void)
1844 {
1845         int nid;
1846
1847         for_each_node_state(nid, N_HIGH_MEMORY) {
1848                 struct node *node = &node_devices[nid];
1849                 if (node->sysdev.id == nid)
1850                         hugetlb_register_node(node);
1851         }
1852
1853         /*
1854          * Let the node sysdev driver know we're here so it can
1855          * [un]register hstate attributes on node hotplug.
1856          */
1857         register_hugetlbfs_with_node(hugetlb_register_node,
1858                                      hugetlb_unregister_node);
1859 }
1860 #else   /* !CONFIG_NUMA */
1861
1862 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1863 {
1864         BUG();
1865         if (nidp)
1866                 *nidp = -1;
1867         return NULL;
1868 }
1869
1870 static void hugetlb_unregister_all_nodes(void) { }
1871
1872 static void hugetlb_register_all_nodes(void) { }
1873
1874 #endif
1875
1876 static void __exit hugetlb_exit(void)
1877 {
1878         struct hstate *h;
1879
1880         hugetlb_unregister_all_nodes();
1881
1882         for_each_hstate(h) {
1883                 kobject_put(hstate_kobjs[h - hstates]);
1884         }
1885
1886         kobject_put(hugepages_kobj);
1887 }
1888 module_exit(hugetlb_exit);
1889
1890 static int __init hugetlb_init(void)
1891 {
1892         /* Some platform decide whether they support huge pages at boot
1893          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1894          * there is no such support
1895          */
1896         if (HPAGE_SHIFT == 0)
1897                 return 0;
1898
1899         if (!size_to_hstate(default_hstate_size)) {
1900                 default_hstate_size = HPAGE_SIZE;
1901                 if (!size_to_hstate(default_hstate_size))
1902                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1903         }
1904         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1905         if (default_hstate_max_huge_pages)
1906                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1907
1908         hugetlb_init_hstates();
1909
1910         gather_bootmem_prealloc();
1911
1912         report_hugepages();
1913
1914         hugetlb_sysfs_init();
1915
1916         hugetlb_register_all_nodes();
1917
1918         return 0;
1919 }
1920 module_init(hugetlb_init);
1921
1922 /* Should be called on processing a hugepagesz=... option */
1923 void __init hugetlb_add_hstate(unsigned order)
1924 {
1925         struct hstate *h;
1926         unsigned long i;
1927
1928         if (size_to_hstate(PAGE_SIZE << order)) {
1929                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1930                 return;
1931         }
1932         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1933         BUG_ON(order == 0);
1934         h = &hstates[max_hstate++];
1935         h->order = order;
1936         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1937         h->nr_huge_pages = 0;
1938         h->free_huge_pages = 0;
1939         for (i = 0; i < MAX_NUMNODES; ++i)
1940                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1941         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1942         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1943         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1944                                         huge_page_size(h)/1024);
1945
1946         parsed_hstate = h;
1947 }
1948
1949 static int __init hugetlb_nrpages_setup(char *s)
1950 {
1951         unsigned long *mhp;
1952         static unsigned long *last_mhp;
1953
1954         /*
1955          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1956          * so this hugepages= parameter goes to the "default hstate".
1957          */
1958         if (!max_hstate)
1959                 mhp = &default_hstate_max_huge_pages;
1960         else
1961                 mhp = &parsed_hstate->max_huge_pages;
1962
1963         if (mhp == last_mhp) {
1964                 printk(KERN_WARNING "hugepages= specified twice without "
1965                         "interleaving hugepagesz=, ignoring\n");
1966                 return 1;
1967         }
1968
1969         if (sscanf(s, "%lu", mhp) <= 0)
1970                 *mhp = 0;
1971
1972         /*
1973          * Global state is always initialized later in hugetlb_init.
1974          * But we need to allocate >= MAX_ORDER hstates here early to still
1975          * use the bootmem allocator.
1976          */
1977         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1978                 hugetlb_hstate_alloc_pages(parsed_hstate);
1979
1980         last_mhp = mhp;
1981
1982         return 1;
1983 }
1984 __setup("hugepages=", hugetlb_nrpages_setup);
1985
1986 static int __init hugetlb_default_setup(char *s)
1987 {
1988         default_hstate_size = memparse(s, &s);
1989         return 1;
1990 }
1991 __setup("default_hugepagesz=", hugetlb_default_setup);
1992
1993 static unsigned int cpuset_mems_nr(unsigned int *array)
1994 {
1995         int node;
1996         unsigned int nr = 0;
1997
1998         for_each_node_mask(node, cpuset_current_mems_allowed)
1999                 nr += array[node];
2000
2001         return nr;
2002 }
2003
2004 #ifdef CONFIG_SYSCTL
2005 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2006                          struct ctl_table *table, int write,
2007                          void __user *buffer, size_t *length, loff_t *ppos)
2008 {
2009         struct hstate *h = &default_hstate;
2010         unsigned long tmp;
2011         int ret;
2012
2013         tmp = h->max_huge_pages;
2014
2015         if (write && h->order >= MAX_ORDER)
2016                 return -EINVAL;
2017
2018         table->data = &tmp;
2019         table->maxlen = sizeof(unsigned long);
2020         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2021         if (ret)
2022                 goto out;
2023
2024         if (write) {
2025                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2026                                                 GFP_KERNEL | __GFP_NORETRY);
2027                 if (!(obey_mempolicy &&
2028                                init_nodemask_of_mempolicy(nodes_allowed))) {
2029                         NODEMASK_FREE(nodes_allowed);
2030                         nodes_allowed = &node_states[N_HIGH_MEMORY];
2031                 }
2032                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2033
2034                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2035                         NODEMASK_FREE(nodes_allowed);
2036         }
2037 out:
2038         return ret;
2039 }
2040
2041 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2042                           void __user *buffer, size_t *length, loff_t *ppos)
2043 {
2044
2045         return hugetlb_sysctl_handler_common(false, table, write,
2046                                                         buffer, length, ppos);
2047 }
2048
2049 #ifdef CONFIG_NUMA
2050 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2051                           void __user *buffer, size_t *length, loff_t *ppos)
2052 {
2053         return hugetlb_sysctl_handler_common(true, table, write,
2054                                                         buffer, length, ppos);
2055 }
2056 #endif /* CONFIG_NUMA */
2057
2058 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2059                         void __user *buffer,
2060                         size_t *length, loff_t *ppos)
2061 {
2062         proc_dointvec(table, write, buffer, length, ppos);
2063         if (hugepages_treat_as_movable)
2064                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2065         else
2066                 htlb_alloc_mask = GFP_HIGHUSER;
2067         return 0;
2068 }
2069
2070 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2071                         void __user *buffer,
2072                         size_t *length, loff_t *ppos)
2073 {
2074         struct hstate *h = &default_hstate;
2075         unsigned long tmp;
2076         int ret;
2077
2078         tmp = h->nr_overcommit_huge_pages;
2079
2080         if (write && h->order >= MAX_ORDER)
2081                 return -EINVAL;
2082
2083         table->data = &tmp;
2084         table->maxlen = sizeof(unsigned long);
2085         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2086         if (ret)
2087                 goto out;
2088
2089         if (write) {
2090                 spin_lock(&hugetlb_lock);
2091                 h->nr_overcommit_huge_pages = tmp;
2092                 spin_unlock(&hugetlb_lock);
2093         }
2094 out:
2095         return ret;
2096 }
2097
2098 #endif /* CONFIG_SYSCTL */
2099
2100 void hugetlb_report_meminfo(struct seq_file *m)
2101 {
2102         struct hstate *h = &default_hstate;
2103         seq_printf(m,
2104                         "HugePages_Total:   %5lu\n"
2105                         "HugePages_Free:    %5lu\n"
2106                         "HugePages_Rsvd:    %5lu\n"
2107                         "HugePages_Surp:    %5lu\n"
2108                         "Hugepagesize:   %8lu kB\n",
2109                         h->nr_huge_pages,
2110                         h->free_huge_pages,
2111                         h->resv_huge_pages,
2112                         h->surplus_huge_pages,
2113                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2114 }
2115
2116 int hugetlb_report_node_meminfo(int nid, char *buf)
2117 {
2118         struct hstate *h = &default_hstate;
2119         return sprintf(buf,
2120                 "Node %d HugePages_Total: %5u\n"
2121                 "Node %d HugePages_Free:  %5u\n"
2122                 "Node %d HugePages_Surp:  %5u\n",
2123                 nid, h->nr_huge_pages_node[nid],
2124                 nid, h->free_huge_pages_node[nid],
2125                 nid, h->surplus_huge_pages_node[nid]);
2126 }
2127
2128 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2129 unsigned long hugetlb_total_pages(void)
2130 {
2131         struct hstate *h;
2132         unsigned long nr_total_pages = 0;
2133
2134         for_each_hstate(h)
2135                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2136         return nr_total_pages;
2137 }
2138
2139 static int hugetlb_acct_memory(struct hstate *h, long delta)
2140 {
2141         int ret = -ENOMEM;
2142
2143         spin_lock(&hugetlb_lock);
2144         /*
2145          * When cpuset is configured, it breaks the strict hugetlb page
2146          * reservation as the accounting is done on a global variable. Such
2147          * reservation is completely rubbish in the presence of cpuset because
2148          * the reservation is not checked against page availability for the
2149          * current cpuset. Application can still potentially OOM'ed by kernel
2150          * with lack of free htlb page in cpuset that the task is in.
2151          * Attempt to enforce strict accounting with cpuset is almost
2152          * impossible (or too ugly) because cpuset is too fluid that
2153          * task or memory node can be dynamically moved between cpusets.
2154          *
2155          * The change of semantics for shared hugetlb mapping with cpuset is
2156          * undesirable. However, in order to preserve some of the semantics,
2157          * we fall back to check against current free page availability as
2158          * a best attempt and hopefully to minimize the impact of changing
2159          * semantics that cpuset has.
2160          */
2161         if (delta > 0) {
2162                 if (gather_surplus_pages(h, delta) < 0)
2163                         goto out;
2164
2165                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2166                         return_unused_surplus_pages(h, delta);
2167                         goto out;
2168                 }
2169         }
2170
2171         ret = 0;
2172         if (delta < 0)
2173                 return_unused_surplus_pages(h, (unsigned long) -delta);
2174
2175 out:
2176         spin_unlock(&hugetlb_lock);
2177         return ret;
2178 }
2179
2180 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2181 {
2182         struct resv_map *reservations = vma_resv_map(vma);
2183
2184         /*
2185          * This new VMA should share its siblings reservation map if present.
2186          * The VMA will only ever have a valid reservation map pointer where
2187          * it is being copied for another still existing VMA.  As that VMA
2188          * has a reference to the reservation map it cannot disappear until
2189          * after this open call completes.  It is therefore safe to take a
2190          * new reference here without additional locking.
2191          */
2192         if (reservations)
2193                 kref_get(&reservations->refs);
2194 }
2195
2196 static void resv_map_put(struct vm_area_struct *vma)
2197 {
2198         struct resv_map *reservations = vma_resv_map(vma);
2199
2200         if (!reservations)
2201                 return;
2202         kref_put(&reservations->refs, resv_map_release);
2203 }
2204
2205 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2206 {
2207         struct hstate *h = hstate_vma(vma);
2208         struct resv_map *reservations = vma_resv_map(vma);
2209         struct hugepage_subpool *spool = subpool_vma(vma);
2210         unsigned long reserve;
2211         unsigned long start;
2212         unsigned long end;
2213
2214         if (reservations) {
2215                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2216                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2217
2218                 reserve = (end - start) -
2219                         region_count(&reservations->regions, start, end);
2220
2221                 resv_map_put(vma);
2222
2223                 if (reserve) {
2224                         hugetlb_acct_memory(h, -reserve);
2225                         hugepage_subpool_put_pages(spool, reserve);
2226                 }
2227         }
2228 }
2229
2230 /*
2231  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2232  * handle_mm_fault() to try to instantiate regular-sized pages in the
2233  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2234  * this far.
2235  */
2236 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2237 {
2238         BUG();
2239         return 0;
2240 }
2241
2242 const struct vm_operations_struct hugetlb_vm_ops = {
2243         .fault = hugetlb_vm_op_fault,
2244         .open = hugetlb_vm_op_open,
2245         .close = hugetlb_vm_op_close,
2246 };
2247
2248 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2249                                 int writable)
2250 {
2251         pte_t entry;
2252
2253         if (writable) {
2254                 entry =
2255                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2256         } else {
2257                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2258         }
2259         entry = pte_mkyoung(entry);
2260         entry = pte_mkhuge(entry);
2261
2262         return entry;
2263 }
2264
2265 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2266                                    unsigned long address, pte_t *ptep)
2267 {
2268         pte_t entry;
2269
2270         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2271         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2272                 update_mmu_cache(vma, address, ptep);
2273 }
2274
2275 static int is_hugetlb_entry_migration(pte_t pte)
2276 {
2277         swp_entry_t swp;
2278
2279         if (huge_pte_none(pte) || pte_present(pte))
2280                 return 0;
2281         swp = pte_to_swp_entry(pte);
2282         if (non_swap_entry(swp) && is_migration_entry(swp))
2283                 return 1;
2284         else
2285                 return 0;
2286 }
2287
2288 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2289 {
2290         swp_entry_t swp;
2291
2292         if (huge_pte_none(pte) || pte_present(pte))
2293                 return 0;
2294         swp = pte_to_swp_entry(pte);
2295         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2296                 return 1;
2297         else
2298                 return 0;
2299 }
2300
2301 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2302                             struct vm_area_struct *vma)
2303 {
2304         pte_t *src_pte, *dst_pte, entry;
2305         struct page *ptepage;
2306         unsigned long addr;
2307         int cow;
2308         struct hstate *h = hstate_vma(vma);
2309         unsigned long sz = huge_page_size(h);
2310
2311         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2312
2313         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2314                 src_pte = huge_pte_offset(src, addr);
2315                 if (!src_pte)
2316                         continue;
2317                 dst_pte = huge_pte_alloc(dst, addr, sz);
2318                 if (!dst_pte)
2319                         goto nomem;
2320
2321                 /* If the pagetables are shared don't copy or take references */
2322                 if (dst_pte == src_pte)
2323                         continue;
2324
2325                 spin_lock(&dst->page_table_lock);
2326                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2327                 entry = huge_ptep_get(src_pte);
2328                 if (huge_pte_none(entry)) { /* skip none entry */
2329                         ;
2330                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2331                                     is_hugetlb_entry_hwpoisoned(entry))) {
2332                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2333
2334                         if (is_write_migration_entry(swp_entry) && cow) {
2335                                 /*
2336                                  * COW mappings require pages in both
2337                                  * parent and child to be set to read.
2338                                  */
2339                                 make_migration_entry_read(&swp_entry);
2340                                 entry = swp_entry_to_pte(swp_entry);
2341                                 set_huge_pte_at(src, addr, src_pte, entry);
2342                         }
2343                         set_huge_pte_at(dst, addr, dst_pte, entry);
2344                 } else {
2345                         if (cow)
2346                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2347                         entry = huge_ptep_get(src_pte);
2348                         ptepage = pte_page(entry);
2349                         get_page(ptepage);
2350                         page_dup_rmap(ptepage);
2351                         set_huge_pte_at(dst, addr, dst_pte, entry);
2352                 }
2353                 spin_unlock(&src->page_table_lock);
2354                 spin_unlock(&dst->page_table_lock);
2355         }
2356         return 0;
2357
2358 nomem:
2359         return -ENOMEM;
2360 }
2361
2362 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2363                             unsigned long end, struct page *ref_page)
2364 {
2365         struct mm_struct *mm = vma->vm_mm;
2366         unsigned long address;
2367         pte_t *ptep;
2368         pte_t pte;
2369         struct page *page;
2370         struct page *tmp;
2371         struct hstate *h = hstate_vma(vma);
2372         unsigned long sz = huge_page_size(h);
2373
2374         /*
2375          * A page gathering list, protected by per file i_mmap_mutex. The
2376          * lock is used to avoid list corruption from multiple unmapping
2377          * of the same page since we are using page->lru.
2378          */
2379         LIST_HEAD(page_list);
2380
2381         WARN_ON(!is_vm_hugetlb_page(vma));
2382         BUG_ON(start & ~huge_page_mask(h));
2383         BUG_ON(end & ~huge_page_mask(h));
2384
2385         mmu_notifier_invalidate_range_start(mm, start, end);
2386         spin_lock(&mm->page_table_lock);
2387         for (address = start; address < end; address += sz) {
2388                 ptep = huge_pte_offset(mm, address);
2389                 if (!ptep)
2390                         continue;
2391
2392                 if (huge_pmd_unshare(mm, &address, ptep))
2393                         continue;
2394
2395                 /*
2396                  * If a reference page is supplied, it is because a specific
2397                  * page is being unmapped, not a range. Ensure the page we
2398                  * are about to unmap is the actual page of interest.
2399                  */
2400                 if (ref_page) {
2401                         pte = huge_ptep_get(ptep);
2402                         if (huge_pte_none(pte))
2403                                 continue;
2404                         page = pte_page(pte);
2405                         if (page != ref_page)
2406                                 continue;
2407
2408                         /*
2409                          * Mark the VMA as having unmapped its page so that
2410                          * future faults in this VMA will fail rather than
2411                          * looking like data was lost
2412                          */
2413                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2414                 }
2415
2416                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2417                 if (huge_pte_none(pte))
2418                         continue;
2419
2420                 /*
2421                  * Migrating hugepage or HWPoisoned hugepage is already
2422                  * unmapped and its refcount is dropped
2423                  */
2424                 if (unlikely(!pte_present(pte)))
2425                         continue;
2426
2427                 page = pte_page(pte);
2428                 if (pte_dirty(pte))
2429                         set_page_dirty(page);
2430                 list_add(&page->lru, &page_list);
2431         }
2432         spin_unlock(&mm->page_table_lock);
2433         flush_tlb_range(vma, start, end);
2434         mmu_notifier_invalidate_range_end(mm, start, end);
2435         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2436                 page_remove_rmap(page);
2437                 list_del(&page->lru);
2438                 put_page(page);
2439         }
2440 }
2441
2442 void __unmap_hugepage_range_final(struct vm_area_struct *vma,
2443                           unsigned long start, unsigned long end,
2444                           struct page *ref_page)
2445 {
2446         __unmap_hugepage_range(vma, start, end, ref_page);
2447
2448         /*
2449          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2450          * test will fail on a vma being torn down, and not grab a page table
2451          * on its way out.  We're lucky that the flag has such an appropriate
2452          * name, and can in fact be safely cleared here. We could clear it
2453          * before the __unmap_hugepage_range above, but all that's necessary
2454          * is to clear it before releasing the i_mmap_mutex. This works
2455          * because in the context this is called, the VMA is about to be
2456          * destroyed and the i_mmap_mutex is held.
2457          */
2458         vma->vm_flags &= ~VM_MAYSHARE;
2459 }
2460
2461 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2462                           unsigned long end, struct page *ref_page)
2463 {
2464         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2465         __unmap_hugepage_range(vma, start, end, ref_page);
2466         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2467 }
2468
2469 /*
2470  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2471  * mappping it owns the reserve page for. The intention is to unmap the page
2472  * from other VMAs and let the children be SIGKILLed if they are faulting the
2473  * same region.
2474  */
2475 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2476                                 struct page *page, unsigned long address)
2477 {
2478         struct hstate *h = hstate_vma(vma);
2479         struct vm_area_struct *iter_vma;
2480         struct address_space *mapping;
2481         struct prio_tree_iter iter;
2482         pgoff_t pgoff;
2483
2484         /*
2485          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2486          * from page cache lookup which is in HPAGE_SIZE units.
2487          */
2488         address = address & huge_page_mask(h);
2489         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2490                         vma->vm_pgoff;
2491         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2492
2493         /*
2494          * Take the mapping lock for the duration of the table walk. As
2495          * this mapping should be shared between all the VMAs,
2496          * __unmap_hugepage_range() is called as the lock is already held
2497          */
2498         mutex_lock(&mapping->i_mmap_mutex);
2499         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2500                 /* Do not unmap the current VMA */
2501                 if (iter_vma == vma)
2502                         continue;
2503
2504                 /*
2505                  * Shared VMAs have their own reserves and do not affect
2506                  * MAP_PRIVATE accounting but it is possible that a shared
2507                  * VMA is using the same page so check and skip such VMAs.
2508                  */
2509                 if (iter_vma->vm_flags & VM_MAYSHARE)
2510                         continue;
2511
2512                 /*
2513                  * Unmap the page from other VMAs without their own reserves.
2514                  * They get marked to be SIGKILLed if they fault in these
2515                  * areas. This is because a future no-page fault on this VMA
2516                  * could insert a zeroed page instead of the data existing
2517                  * from the time of fork. This would look like data corruption
2518                  */
2519                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2520                         __unmap_hugepage_range(iter_vma,
2521                                 address, address + huge_page_size(h),
2522                                 page);
2523         }
2524         mutex_unlock(&mapping->i_mmap_mutex);
2525
2526         return 1;
2527 }
2528
2529 /*
2530  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2531  */
2532 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2533                         unsigned long address, pte_t *ptep, pte_t pte,
2534                         struct page *pagecache_page)
2535 {
2536         struct hstate *h = hstate_vma(vma);
2537         struct page *old_page, *new_page;
2538         int avoidcopy;
2539         int outside_reserve = 0;
2540
2541         old_page = pte_page(pte);
2542
2543 retry_avoidcopy:
2544         /* If no-one else is actually using this page, avoid the copy
2545          * and just make the page writable */
2546         avoidcopy = (page_mapcount(old_page) == 1);
2547         if (avoidcopy) {
2548                 if (PageAnon(old_page))
2549                         page_move_anon_rmap(old_page, vma, address);
2550                 set_huge_ptep_writable(vma, address, ptep);
2551                 return 0;
2552         }
2553
2554         /*
2555          * If the process that created a MAP_PRIVATE mapping is about to
2556          * perform a COW due to a shared page count, attempt to satisfy
2557          * the allocation without using the existing reserves. The pagecache
2558          * page is used to determine if the reserve at this address was
2559          * consumed or not. If reserves were used, a partial faulted mapping
2560          * at the time of fork() could consume its reserves on COW instead
2561          * of the full address range.
2562          */
2563         if (!(vma->vm_flags & VM_MAYSHARE) &&
2564                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2565                         old_page != pagecache_page)
2566                 outside_reserve = 1;
2567
2568         page_cache_get(old_page);
2569
2570         /* Drop page_table_lock as buddy allocator may be called */
2571         spin_unlock(&mm->page_table_lock);
2572         new_page = alloc_huge_page(vma, address, outside_reserve);
2573
2574         if (IS_ERR(new_page)) {
2575                 page_cache_release(old_page);
2576
2577                 /*
2578                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2579                  * it is due to references held by a child and an insufficient
2580                  * huge page pool. To guarantee the original mappers
2581                  * reliability, unmap the page from child processes. The child
2582                  * may get SIGKILLed if it later faults.
2583                  */
2584                 if (outside_reserve) {
2585                         BUG_ON(huge_pte_none(pte));
2586                         if (unmap_ref_private(mm, vma, old_page, address)) {
2587                                 BUG_ON(huge_pte_none(pte));
2588                                 spin_lock(&mm->page_table_lock);
2589                                 goto retry_avoidcopy;
2590                         }
2591                         WARN_ON_ONCE(1);
2592                 }
2593
2594                 /* Caller expects lock to be held */
2595                 spin_lock(&mm->page_table_lock);
2596                 return -PTR_ERR(new_page);
2597         }
2598
2599         /*
2600          * When the original hugepage is shared one, it does not have
2601          * anon_vma prepared.
2602          */
2603         if (unlikely(anon_vma_prepare(vma))) {
2604                 page_cache_release(new_page);
2605                 page_cache_release(old_page);
2606                 /* Caller expects lock to be held */
2607                 spin_lock(&mm->page_table_lock);
2608                 return VM_FAULT_OOM;
2609         }
2610
2611         copy_user_huge_page(new_page, old_page, address, vma,
2612                             pages_per_huge_page(h));
2613         __SetPageUptodate(new_page);
2614
2615         /*
2616          * Retake the page_table_lock to check for racing updates
2617          * before the page tables are altered
2618          */
2619         spin_lock(&mm->page_table_lock);
2620         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2621         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2622                 /* Break COW */
2623                 mmu_notifier_invalidate_range_start(mm,
2624                         address & huge_page_mask(h),
2625                         (address & huge_page_mask(h)) + huge_page_size(h));
2626                 huge_ptep_clear_flush(vma, address, ptep);
2627                 set_huge_pte_at(mm, address, ptep,
2628                                 make_huge_pte(vma, new_page, 1));
2629                 page_remove_rmap(old_page);
2630                 hugepage_add_new_anon_rmap(new_page, vma, address);
2631                 /* Make the old page be freed below */
2632                 new_page = old_page;
2633                 mmu_notifier_invalidate_range_end(mm,
2634                         address & huge_page_mask(h),
2635                         (address & huge_page_mask(h)) + huge_page_size(h));
2636         }
2637         page_cache_release(new_page);
2638         page_cache_release(old_page);
2639         return 0;
2640 }
2641
2642 /* Return the pagecache page at a given address within a VMA */
2643 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2644                         struct vm_area_struct *vma, unsigned long address)
2645 {
2646         struct address_space *mapping;
2647         pgoff_t idx;
2648
2649         mapping = vma->vm_file->f_mapping;
2650         idx = vma_hugecache_offset(h, vma, address);
2651
2652         return find_lock_page(mapping, idx);
2653 }
2654
2655 /*
2656  * Return whether there is a pagecache page to back given address within VMA.
2657  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2658  */
2659 static bool hugetlbfs_pagecache_present(struct hstate *h,
2660                         struct vm_area_struct *vma, unsigned long address)
2661 {
2662         struct address_space *mapping;
2663         pgoff_t idx;
2664         struct page *page;
2665
2666         mapping = vma->vm_file->f_mapping;
2667         idx = vma_hugecache_offset(h, vma, address);
2668
2669         page = find_get_page(mapping, idx);
2670         if (page)
2671                 put_page(page);
2672         return page != NULL;
2673 }
2674
2675 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2676                         unsigned long address, pte_t *ptep, unsigned int flags)
2677 {
2678         struct hstate *h = hstate_vma(vma);
2679         int ret = VM_FAULT_SIGBUS;
2680         pgoff_t idx;
2681         unsigned long size;
2682         struct page *page;
2683         struct address_space *mapping;
2684         pte_t new_pte;
2685
2686         /*
2687          * Currently, we are forced to kill the process in the event the
2688          * original mapper has unmapped pages from the child due to a failed
2689          * COW. Warn that such a situation has occurred as it may not be obvious
2690          */
2691         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2692                 printk(KERN_WARNING
2693                         "PID %d killed due to inadequate hugepage pool\n",
2694                         current->pid);
2695                 return ret;
2696         }
2697
2698         mapping = vma->vm_file->f_mapping;
2699         idx = vma_hugecache_offset(h, vma, address);
2700
2701         /*
2702          * Use page lock to guard against racing truncation
2703          * before we get page_table_lock.
2704          */
2705 retry:
2706         page = find_lock_page(mapping, idx);
2707         if (!page) {
2708                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2709                 if (idx >= size)
2710                         goto out;
2711                 page = alloc_huge_page(vma, address, 0);
2712                 if (IS_ERR(page)) {
2713                         ret = -PTR_ERR(page);
2714                         goto out;
2715                 }
2716                 clear_huge_page(page, address, pages_per_huge_page(h));
2717                 __SetPageUptodate(page);
2718
2719                 if (vma->vm_flags & VM_MAYSHARE) {
2720                         int err;
2721                         struct inode *inode = mapping->host;
2722
2723                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2724                         if (err) {
2725                                 put_page(page);
2726                                 if (err == -EEXIST)
2727                                         goto retry;
2728                                 goto out;
2729                         }
2730
2731                         spin_lock(&inode->i_lock);
2732                         inode->i_blocks += blocks_per_huge_page(h);
2733                         spin_unlock(&inode->i_lock);
2734                         page_dup_rmap(page);
2735                 } else {
2736                         lock_page(page);
2737                         if (unlikely(anon_vma_prepare(vma))) {
2738                                 ret = VM_FAULT_OOM;
2739                                 goto backout_unlocked;
2740                         }
2741                         hugepage_add_new_anon_rmap(page, vma, address);
2742                 }
2743         } else {
2744                 /*
2745                  * If memory error occurs between mmap() and fault, some process
2746                  * don't have hwpoisoned swap entry for errored virtual address.
2747                  * So we need to block hugepage fault by PG_hwpoison bit check.
2748                  */
2749                 if (unlikely(PageHWPoison(page))) {
2750                         ret = VM_FAULT_HWPOISON |
2751                               VM_FAULT_SET_HINDEX(h - hstates);
2752                         goto backout_unlocked;
2753                 }
2754                 page_dup_rmap(page);
2755         }
2756
2757         /*
2758          * If we are going to COW a private mapping later, we examine the
2759          * pending reservations for this page now. This will ensure that
2760          * any allocations necessary to record that reservation occur outside
2761          * the spinlock.
2762          */
2763         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2764                 if (vma_needs_reservation(h, vma, address) < 0) {
2765                         ret = VM_FAULT_OOM;
2766                         goto backout_unlocked;
2767                 }
2768
2769         spin_lock(&mm->page_table_lock);
2770         size = i_size_read(mapping->host) >> huge_page_shift(h);
2771         if (idx >= size)
2772                 goto backout;
2773
2774         ret = 0;
2775         if (!huge_pte_none(huge_ptep_get(ptep)))
2776                 goto backout;
2777
2778         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2779                                 && (vma->vm_flags & VM_SHARED)));
2780         set_huge_pte_at(mm, address, ptep, new_pte);
2781
2782         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2783                 /* Optimization, do the COW without a second fault */
2784                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2785         }
2786
2787         spin_unlock(&mm->page_table_lock);
2788         unlock_page(page);
2789 out:
2790         return ret;
2791
2792 backout:
2793         spin_unlock(&mm->page_table_lock);
2794 backout_unlocked:
2795         unlock_page(page);
2796         put_page(page);
2797         goto out;
2798 }
2799
2800 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2801                         unsigned long address, unsigned int flags)
2802 {
2803         pte_t *ptep;
2804         pte_t entry;
2805         int ret;
2806         struct page *page = NULL;
2807         struct page *pagecache_page = NULL;
2808         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2809         struct hstate *h = hstate_vma(vma);
2810         int need_wait_lock = 0;
2811
2812         ptep = huge_pte_offset(mm, address);
2813         if (ptep) {
2814                 entry = huge_ptep_get(ptep);
2815                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2816                         migration_entry_wait_huge(mm, ptep);
2817                         return 0;
2818                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2819                         return VM_FAULT_HWPOISON_LARGE |
2820                                VM_FAULT_SET_HINDEX(h - hstates);
2821         } else {
2822                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2823                 if (!ptep)
2824                         return VM_FAULT_OOM;
2825         }
2826
2827         /*
2828          * Serialize hugepage allocation and instantiation, so that we don't
2829          * get spurious allocation failures if two CPUs race to instantiate
2830          * the same page in the page cache.
2831          */
2832         mutex_lock(&hugetlb_instantiation_mutex);
2833         entry = huge_ptep_get(ptep);
2834         if (huge_pte_none(entry)) {
2835                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2836                 goto out_mutex;
2837         }
2838
2839         ret = 0;
2840
2841         /*
2842          * entry could be a migration/hwpoison entry at this point, so this
2843          * check prevents the kernel from going below assuming that we have
2844          * a active hugepage in pagecache. This goto expects the 2nd page fault,
2845          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
2846          * handle it.
2847          */
2848         if (!pte_present(entry))
2849                 goto out_mutex;
2850
2851         /*
2852          * If we are going to COW the mapping later, we examine the pending
2853          * reservations for this page now. This will ensure that any
2854          * allocations necessary to record that reservation occur outside the
2855          * spinlock. For private mappings, we also lookup the pagecache
2856          * page now as it is used to determine if a reservation has been
2857          * consumed.
2858          */
2859         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2860                 if (vma_needs_reservation(h, vma, address) < 0) {
2861                         ret = VM_FAULT_OOM;
2862                         goto out_mutex;
2863                 }
2864
2865                 if (!(vma->vm_flags & VM_MAYSHARE))
2866                         pagecache_page = hugetlbfs_pagecache_page(h,
2867                                                                 vma, address);
2868         }
2869
2870         spin_lock(&mm->page_table_lock);
2871         /* Check for a racing update before calling hugetlb_cow */
2872         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2873                 goto out_page_table_lock;
2874
2875         /*
2876          * hugetlb_cow() requires page locks of pte_page(entry) and
2877          * pagecache_page, so here we need take the former one
2878          * when page != pagecache_page or !pagecache_page.
2879          */
2880         page = pte_page(entry);
2881         if (page != pagecache_page)
2882                 if (!trylock_page(page)) {
2883                         need_wait_lock = 1;
2884                         goto out_page_table_lock;
2885                 }
2886
2887         get_page(page);
2888
2889         if (flags & FAULT_FLAG_WRITE) {
2890                 if (!pte_write(entry)) {
2891                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2892                                                         pagecache_page);
2893                         goto out_put_page;
2894                 }
2895                 entry = pte_mkdirty(entry);
2896         }
2897         entry = pte_mkyoung(entry);
2898         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2899                                                 flags & FAULT_FLAG_WRITE))
2900                 update_mmu_cache(vma, address, ptep);
2901 out_put_page:
2902         if (page != pagecache_page)
2903                 unlock_page(page);
2904         put_page(page);
2905 out_page_table_lock:
2906         spin_unlock(&mm->page_table_lock);
2907
2908         if (pagecache_page) {
2909                 unlock_page(pagecache_page);
2910                 put_page(pagecache_page);
2911         }
2912 out_mutex:
2913         mutex_unlock(&hugetlb_instantiation_mutex);
2914
2915         /*
2916          * Generally it's safe to hold refcount during waiting page lock. But
2917          * here we just wait to defer the next page fault to avoid busy loop and
2918          * the page is not used after unlocked before returning from the current
2919          * page fault. So we are safe from accessing freed page, even if we wait
2920          * here without taking refcount.
2921          */
2922         if (need_wait_lock)
2923                 wait_on_page_locked(page);
2924         return ret;
2925 }
2926
2927 /* Can be overriden by architectures */
2928 __attribute__((weak)) struct page *
2929 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2930                pud_t *pud, int write)
2931 {
2932         BUG();
2933         return NULL;
2934 }
2935
2936 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2937                         struct page **pages, struct vm_area_struct **vmas,
2938                         unsigned long *position, int *length, int i,
2939                         unsigned int flags)
2940 {
2941         unsigned long pfn_offset;
2942         unsigned long vaddr = *position;
2943         int remainder = *length;
2944         struct hstate *h = hstate_vma(vma);
2945
2946         spin_lock(&mm->page_table_lock);
2947         while (vaddr < vma->vm_end && remainder) {
2948                 pte_t *pte;
2949                 int absent;
2950                 struct page *page;
2951
2952                 /*
2953                  * Some archs (sparc64, sh*) have multiple pte_ts to
2954                  * each hugepage.  We have to make sure we get the
2955                  * first, for the page indexing below to work.
2956                  */
2957                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2958                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2959
2960                 /*
2961                  * When coredumping, it suits get_dump_page if we just return
2962                  * an error where there's an empty slot with no huge pagecache
2963                  * to back it.  This way, we avoid allocating a hugepage, and
2964                  * the sparse dumpfile avoids allocating disk blocks, but its
2965                  * huge holes still show up with zeroes where they need to be.
2966                  */
2967                 if (absent && (flags & FOLL_DUMP) &&
2968                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2969                         remainder = 0;
2970                         break;
2971                 }
2972
2973                 /*
2974                  * We need call hugetlb_fault for both hugepages under migration
2975                  * (in which case hugetlb_fault waits for the migration,) and
2976                  * hwpoisoned hugepages (in which case we need to prevent the
2977                  * caller from accessing to them.) In order to do this, we use
2978                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2979                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2980                  * both cases, and because we can't follow correct pages
2981                  * directly from any kind of swap entries.
2982                  */
2983                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2984                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2985                         int ret;
2986
2987                         spin_unlock(&mm->page_table_lock);
2988                         ret = hugetlb_fault(mm, vma, vaddr,
2989                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2990                         spin_lock(&mm->page_table_lock);
2991                         if (!(ret & VM_FAULT_ERROR))
2992                                 continue;
2993
2994                         remainder = 0;
2995                         break;
2996                 }
2997
2998                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2999                 page = pte_page(huge_ptep_get(pte));
3000 same_page:
3001                 if (pages) {
3002                         pages[i] = mem_map_offset(page, pfn_offset);
3003                         get_page(pages[i]);
3004                 }
3005
3006                 if (vmas)
3007                         vmas[i] = vma;
3008
3009                 vaddr += PAGE_SIZE;
3010                 ++pfn_offset;
3011                 --remainder;
3012                 ++i;
3013                 if (vaddr < vma->vm_end && remainder &&
3014                                 pfn_offset < pages_per_huge_page(h)) {
3015                         /*
3016                          * We use pfn_offset to avoid touching the pageframes
3017                          * of this compound page.
3018                          */
3019                         goto same_page;
3020                 }
3021         }
3022         spin_unlock(&mm->page_table_lock);
3023         *length = remainder;
3024         *position = vaddr;
3025
3026         return i ? i : -EFAULT;
3027 }
3028
3029 void hugetlb_change_protection(struct vm_area_struct *vma,
3030                 unsigned long address, unsigned long end, pgprot_t newprot)
3031 {
3032         struct mm_struct *mm = vma->vm_mm;
3033         unsigned long start = address;
3034         pte_t *ptep;
3035         pte_t pte;
3036         struct hstate *h = hstate_vma(vma);
3037
3038         BUG_ON(address >= end);
3039         flush_cache_range(vma, address, end);
3040
3041         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3042         spin_lock(&mm->page_table_lock);
3043         for (; address < end; address += huge_page_size(h)) {
3044                 ptep = huge_pte_offset(mm, address);
3045                 if (!ptep)
3046                         continue;
3047                 if (huge_pmd_unshare(mm, &address, ptep))
3048                         continue;
3049                 pte = huge_ptep_get(ptep);
3050                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
3051                         continue;
3052                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3053                         swp_entry_t entry = pte_to_swp_entry(pte);
3054
3055                         if (is_write_migration_entry(entry)) {
3056                                 pte_t newpte;
3057
3058                                 make_migration_entry_read(&entry);
3059                                 newpte = swp_entry_to_pte(entry);
3060                                 set_huge_pte_at(mm, address, ptep, newpte);
3061                         }
3062                         continue;
3063                 }
3064                 if (!huge_pte_none(pte)) {
3065                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3066                         pte = pte_mkhuge(pte_modify(pte, newprot));
3067                         set_huge_pte_at(mm, address, ptep, pte);
3068                 }
3069         }
3070         spin_unlock(&mm->page_table_lock);
3071         /*
3072          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3073          * may have cleared our pud entry and done put_page on the page table:
3074          * once we release i_mmap_mutex, another task can do the final put_page
3075          * and that page table be reused and filled with junk.
3076          */
3077         flush_tlb_range(vma, start, end);
3078         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3079 }
3080
3081 int hugetlb_reserve_pages(struct inode *inode,
3082                                         long from, long to,
3083                                         struct vm_area_struct *vma,
3084                                         vm_flags_t vm_flags)
3085 {
3086         long ret, chg;
3087         struct hstate *h = hstate_inode(inode);
3088         struct hugepage_subpool *spool = subpool_inode(inode);
3089
3090         /*
3091          * Only apply hugepage reservation if asked. At fault time, an
3092          * attempt will be made for VM_NORESERVE to allocate a page
3093          * without using reserves
3094          */
3095         if (vm_flags & VM_NORESERVE)
3096                 return 0;
3097
3098         /*
3099          * Shared mappings base their reservation on the number of pages that
3100          * are already allocated on behalf of the file. Private mappings need
3101          * to reserve the full area even if read-only as mprotect() may be
3102          * called to make the mapping read-write. Assume !vma is a shm mapping
3103          */
3104         if (!vma || vma->vm_flags & VM_MAYSHARE)
3105                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3106         else {
3107                 struct resv_map *resv_map = resv_map_alloc();
3108                 if (!resv_map)
3109                         return -ENOMEM;
3110
3111                 chg = to - from;
3112
3113                 set_vma_resv_map(vma, resv_map);
3114                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3115         }
3116
3117         if (chg < 0) {
3118                 ret = chg;
3119                 goto out_err;
3120         }
3121
3122         /* There must be enough pages in the subpool for the mapping */
3123         if (hugepage_subpool_get_pages(spool, chg)) {
3124                 ret = -ENOSPC;
3125                 goto out_err;
3126         }
3127
3128         /*
3129          * Check enough hugepages are available for the reservation.
3130          * Hand the pages back to the subpool if there are not
3131          */
3132         ret = hugetlb_acct_memory(h, chg);
3133         if (ret < 0) {
3134                 hugepage_subpool_put_pages(spool, chg);
3135                 goto out_err;
3136         }
3137
3138         /*
3139          * Account for the reservations made. Shared mappings record regions
3140          * that have reservations as they are shared by multiple VMAs.
3141          * When the last VMA disappears, the region map says how much
3142          * the reservation was and the page cache tells how much of
3143          * the reservation was consumed. Private mappings are per-VMA and
3144          * only the consumed reservations are tracked. When the VMA
3145          * disappears, the original reservation is the VMA size and the
3146          * consumed reservations are stored in the map. Hence, nothing
3147          * else has to be done for private mappings here
3148          */
3149         if (!vma || vma->vm_flags & VM_MAYSHARE)
3150                 region_add(&inode->i_mapping->private_list, from, to);
3151         return 0;
3152 out_err:
3153         if (vma)
3154                 resv_map_put(vma);
3155         return ret;
3156 }
3157
3158 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3159 {
3160         struct hstate *h = hstate_inode(inode);
3161         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3162         struct hugepage_subpool *spool = subpool_inode(inode);
3163
3164         spin_lock(&inode->i_lock);
3165         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3166         spin_unlock(&inode->i_lock);
3167
3168         hugepage_subpool_put_pages(spool, (chg - freed));
3169         hugetlb_acct_memory(h, -(chg - freed));
3170 }
3171
3172 #ifdef CONFIG_MEMORY_FAILURE
3173
3174 /* Should be called in hugetlb_lock */
3175 static int is_hugepage_on_freelist(struct page *hpage)
3176 {
3177         struct page *page;
3178         struct page *tmp;
3179         struct hstate *h = page_hstate(hpage);
3180         int nid = page_to_nid(hpage);
3181
3182         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3183                 if (page == hpage)
3184                         return 1;
3185         return 0;
3186 }
3187
3188 /*
3189  * This function is called from memory failure code.
3190  * Assume the caller holds page lock of the head page.
3191  */
3192 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3193 {
3194         struct hstate *h = page_hstate(hpage);
3195         int nid = page_to_nid(hpage);
3196         int ret = -EBUSY;
3197
3198         spin_lock(&hugetlb_lock);
3199         if (is_hugepage_on_freelist(hpage)) {
3200                 list_del(&hpage->lru);
3201                 set_page_refcounted(hpage);
3202                 h->free_huge_pages--;
3203                 h->free_huge_pages_node[nid]--;
3204                 ret = 0;
3205         }
3206         spin_unlock(&hugetlb_lock);
3207         return ret;
3208 }
3209 #endif