Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[pandora-kernel.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock               (truncate_pagecache)
62  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock             (exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
72  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page               (access_process_vm)
76  *
77  *  ->i_mutex                   (generic_file_buffered_write)
78  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock                 (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
102  *    ->inode_lock              (zap_pte_range->set_page_dirty)
103  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock             (proc_pid_lookup)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_lock
111  */
112
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120         struct address_space *mapping = page->mapping;
121
122         radix_tree_delete(&mapping->page_tree, page->index);
123         page->mapping = NULL;
124         mapping->nrpages--;
125         __dec_zone_page_state(page, NR_FILE_PAGES);
126         if (PageSwapBacked(page))
127                 __dec_zone_page_state(page, NR_SHMEM);
128         BUG_ON(page_mapped(page));
129
130         /*
131          * Some filesystems seem to re-dirty the page even after
132          * the VM has canceled the dirty bit (eg ext3 journaling).
133          *
134          * Fix it up by doing a final dirty accounting check after
135          * having removed the page entirely.
136          */
137         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138                 dec_zone_page_state(page, NR_FILE_DIRTY);
139                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140         }
141 }
142
143 void remove_from_page_cache(struct page *page)
144 {
145         struct address_space *mapping = page->mapping;
146
147         BUG_ON(!PageLocked(page));
148
149         spin_lock_irq(&mapping->tree_lock);
150         __remove_from_page_cache(page);
151         spin_unlock_irq(&mapping->tree_lock);
152         mem_cgroup_uncharge_cache_page(page);
153 }
154 EXPORT_SYMBOL(remove_from_page_cache);
155
156 static int sync_page(void *word)
157 {
158         struct address_space *mapping;
159         struct page *page;
160
161         page = container_of((unsigned long *)word, struct page, flags);
162
163         /*
164          * page_mapping() is being called without PG_locked held.
165          * Some knowledge of the state and use of the page is used to
166          * reduce the requirements down to a memory barrier.
167          * The danger here is of a stale page_mapping() return value
168          * indicating a struct address_space different from the one it's
169          * associated with when it is associated with one.
170          * After smp_mb(), it's either the correct page_mapping() for
171          * the page, or an old page_mapping() and the page's own
172          * page_mapping() has gone NULL.
173          * The ->sync_page() address_space operation must tolerate
174          * page_mapping() going NULL. By an amazing coincidence,
175          * this comes about because none of the users of the page
176          * in the ->sync_page() methods make essential use of the
177          * page_mapping(), merely passing the page down to the backing
178          * device's unplug functions when it's non-NULL, which in turn
179          * ignore it for all cases but swap, where only page_private(page) is
180          * of interest. When page_mapping() does go NULL, the entire
181          * call stack gracefully ignores the page and returns.
182          * -- wli
183          */
184         smp_mb();
185         mapping = page_mapping(page);
186         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
187                 mapping->a_ops->sync_page(page);
188         io_schedule();
189         return 0;
190 }
191
192 static int sync_page_killable(void *word)
193 {
194         sync_page(word);
195         return fatal_signal_pending(current) ? -EINTR : 0;
196 }
197
198 /**
199  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
200  * @mapping:    address space structure to write
201  * @start:      offset in bytes where the range starts
202  * @end:        offset in bytes where the range ends (inclusive)
203  * @sync_mode:  enable synchronous operation
204  *
205  * Start writeback against all of a mapping's dirty pages that lie
206  * within the byte offsets <start, end> inclusive.
207  *
208  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
209  * opposed to a regular memory cleansing writeback.  The difference between
210  * these two operations is that if a dirty page/buffer is encountered, it must
211  * be waited upon, and not just skipped over.
212  */
213 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
214                                 loff_t end, int sync_mode)
215 {
216         int ret;
217         struct writeback_control wbc = {
218                 .sync_mode = sync_mode,
219                 .nr_to_write = LONG_MAX,
220                 .range_start = start,
221                 .range_end = end,
222         };
223
224         if (!mapping_cap_writeback_dirty(mapping))
225                 return 0;
226
227         ret = do_writepages(mapping, &wbc);
228         return ret;
229 }
230
231 static inline int __filemap_fdatawrite(struct address_space *mapping,
232         int sync_mode)
233 {
234         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
235 }
236
237 int filemap_fdatawrite(struct address_space *mapping)
238 {
239         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
240 }
241 EXPORT_SYMBOL(filemap_fdatawrite);
242
243 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
244                                 loff_t end)
245 {
246         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
247 }
248 EXPORT_SYMBOL(filemap_fdatawrite_range);
249
250 /**
251  * filemap_flush - mostly a non-blocking flush
252  * @mapping:    target address_space
253  *
254  * This is a mostly non-blocking flush.  Not suitable for data-integrity
255  * purposes - I/O may not be started against all dirty pages.
256  */
257 int filemap_flush(struct address_space *mapping)
258 {
259         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
260 }
261 EXPORT_SYMBOL(filemap_flush);
262
263 /**
264  * filemap_fdatawait_range - wait for writeback to complete
265  * @mapping:            address space structure to wait for
266  * @start_byte:         offset in bytes where the range starts
267  * @end_byte:           offset in bytes where the range ends (inclusive)
268  *
269  * Walk the list of under-writeback pages of the given address space
270  * in the given range and wait for all of them.
271  */
272 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
273                             loff_t end_byte)
274 {
275         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
276         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
277         struct pagevec pvec;
278         int nr_pages;
279         int ret = 0;
280
281         if (end_byte < start_byte)
282                 return 0;
283
284         pagevec_init(&pvec, 0);
285         while ((index <= end) &&
286                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
287                         PAGECACHE_TAG_WRITEBACK,
288                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
289                 unsigned i;
290
291                 for (i = 0; i < nr_pages; i++) {
292                         struct page *page = pvec.pages[i];
293
294                         /* until radix tree lookup accepts end_index */
295                         if (page->index > end)
296                                 continue;
297
298                         wait_on_page_writeback(page);
299                         if (PageError(page))
300                                 ret = -EIO;
301                 }
302                 pagevec_release(&pvec);
303                 cond_resched();
304         }
305
306         /* Check for outstanding write errors */
307         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
308                 ret = -ENOSPC;
309         if (test_and_clear_bit(AS_EIO, &mapping->flags))
310                 ret = -EIO;
311
312         return ret;
313 }
314 EXPORT_SYMBOL(filemap_fdatawait_range);
315
316 /**
317  * filemap_fdatawait - wait for all under-writeback pages to complete
318  * @mapping: address space structure to wait for
319  *
320  * Walk the list of under-writeback pages of the given address space
321  * and wait for all of them.
322  */
323 int filemap_fdatawait(struct address_space *mapping)
324 {
325         loff_t i_size = i_size_read(mapping->host);
326
327         if (i_size == 0)
328                 return 0;
329
330         return filemap_fdatawait_range(mapping, 0, i_size - 1);
331 }
332 EXPORT_SYMBOL(filemap_fdatawait);
333
334 int filemap_write_and_wait(struct address_space *mapping)
335 {
336         int err = 0;
337
338         if (mapping->nrpages) {
339                 err = filemap_fdatawrite(mapping);
340                 /*
341                  * Even if the above returned error, the pages may be
342                  * written partially (e.g. -ENOSPC), so we wait for it.
343                  * But the -EIO is special case, it may indicate the worst
344                  * thing (e.g. bug) happened, so we avoid waiting for it.
345                  */
346                 if (err != -EIO) {
347                         int err2 = filemap_fdatawait(mapping);
348                         if (!err)
349                                 err = err2;
350                 }
351         }
352         return err;
353 }
354 EXPORT_SYMBOL(filemap_write_and_wait);
355
356 /**
357  * filemap_write_and_wait_range - write out & wait on a file range
358  * @mapping:    the address_space for the pages
359  * @lstart:     offset in bytes where the range starts
360  * @lend:       offset in bytes where the range ends (inclusive)
361  *
362  * Write out and wait upon file offsets lstart->lend, inclusive.
363  *
364  * Note that `lend' is inclusive (describes the last byte to be written) so
365  * that this function can be used to write to the very end-of-file (end = -1).
366  */
367 int filemap_write_and_wait_range(struct address_space *mapping,
368                                  loff_t lstart, loff_t lend)
369 {
370         int err = 0;
371
372         if (mapping->nrpages) {
373                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
374                                                  WB_SYNC_ALL);
375                 /* See comment of filemap_write_and_wait() */
376                 if (err != -EIO) {
377                         int err2 = filemap_fdatawait_range(mapping,
378                                                 lstart, lend);
379                         if (!err)
380                                 err = err2;
381                 }
382         }
383         return err;
384 }
385 EXPORT_SYMBOL(filemap_write_and_wait_range);
386
387 /**
388  * add_to_page_cache_locked - add a locked page to the pagecache
389  * @page:       page to add
390  * @mapping:    the page's address_space
391  * @offset:     page index
392  * @gfp_mask:   page allocation mode
393  *
394  * This function is used to add a page to the pagecache. It must be locked.
395  * This function does not add the page to the LRU.  The caller must do that.
396  */
397 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
398                 pgoff_t offset, gfp_t gfp_mask)
399 {
400         int error;
401
402         VM_BUG_ON(!PageLocked(page));
403
404         error = mem_cgroup_cache_charge(page, current->mm,
405                                         gfp_mask & GFP_RECLAIM_MASK);
406         if (error)
407                 goto out;
408
409         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
410         if (error == 0) {
411                 page_cache_get(page);
412                 page->mapping = mapping;
413                 page->index = offset;
414
415                 spin_lock_irq(&mapping->tree_lock);
416                 error = radix_tree_insert(&mapping->page_tree, offset, page);
417                 if (likely(!error)) {
418                         mapping->nrpages++;
419                         __inc_zone_page_state(page, NR_FILE_PAGES);
420                         if (PageSwapBacked(page))
421                                 __inc_zone_page_state(page, NR_SHMEM);
422                         spin_unlock_irq(&mapping->tree_lock);
423                 } else {
424                         page->mapping = NULL;
425                         spin_unlock_irq(&mapping->tree_lock);
426                         mem_cgroup_uncharge_cache_page(page);
427                         page_cache_release(page);
428                 }
429                 radix_tree_preload_end();
430         } else
431                 mem_cgroup_uncharge_cache_page(page);
432 out:
433         return error;
434 }
435 EXPORT_SYMBOL(add_to_page_cache_locked);
436
437 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
438                                 pgoff_t offset, gfp_t gfp_mask)
439 {
440         int ret;
441
442         /*
443          * Splice_read and readahead add shmem/tmpfs pages into the page cache
444          * before shmem_readpage has a chance to mark them as SwapBacked: they
445          * need to go on the anon lru below, and mem_cgroup_cache_charge
446          * (called in add_to_page_cache) needs to know where they're going too.
447          */
448         if (mapping_cap_swap_backed(mapping))
449                 SetPageSwapBacked(page);
450
451         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
452         if (ret == 0) {
453                 if (page_is_file_cache(page))
454                         lru_cache_add_file(page);
455                 else
456                         lru_cache_add_anon(page);
457         }
458         return ret;
459 }
460 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
461
462 #ifdef CONFIG_NUMA
463 struct page *__page_cache_alloc(gfp_t gfp)
464 {
465         int n;
466         struct page *page;
467
468         if (cpuset_do_page_mem_spread()) {
469                 get_mems_allowed();
470                 n = cpuset_mem_spread_node();
471                 page = alloc_pages_exact_node(n, gfp, 0);
472                 put_mems_allowed();
473                 return page;
474         }
475         return alloc_pages(gfp, 0);
476 }
477 EXPORT_SYMBOL(__page_cache_alloc);
478 #endif
479
480 static int __sleep_on_page_lock(void *word)
481 {
482         io_schedule();
483         return 0;
484 }
485
486 /*
487  * In order to wait for pages to become available there must be
488  * waitqueues associated with pages. By using a hash table of
489  * waitqueues where the bucket discipline is to maintain all
490  * waiters on the same queue and wake all when any of the pages
491  * become available, and for the woken contexts to check to be
492  * sure the appropriate page became available, this saves space
493  * at a cost of "thundering herd" phenomena during rare hash
494  * collisions.
495  */
496 static wait_queue_head_t *page_waitqueue(struct page *page)
497 {
498         const struct zone *zone = page_zone(page);
499
500         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
501 }
502
503 static inline void wake_up_page(struct page *page, int bit)
504 {
505         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
506 }
507
508 void wait_on_page_bit(struct page *page, int bit_nr)
509 {
510         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
511
512         if (test_bit(bit_nr, &page->flags))
513                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
514                                                         TASK_UNINTERRUPTIBLE);
515 }
516 EXPORT_SYMBOL(wait_on_page_bit);
517
518 /**
519  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
520  * @page: Page defining the wait queue of interest
521  * @waiter: Waiter to add to the queue
522  *
523  * Add an arbitrary @waiter to the wait queue for the nominated @page.
524  */
525 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
526 {
527         wait_queue_head_t *q = page_waitqueue(page);
528         unsigned long flags;
529
530         spin_lock_irqsave(&q->lock, flags);
531         __add_wait_queue(q, waiter);
532         spin_unlock_irqrestore(&q->lock, flags);
533 }
534 EXPORT_SYMBOL_GPL(add_page_wait_queue);
535
536 /**
537  * unlock_page - unlock a locked page
538  * @page: the page
539  *
540  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
541  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
542  * mechananism between PageLocked pages and PageWriteback pages is shared.
543  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
544  *
545  * The mb is necessary to enforce ordering between the clear_bit and the read
546  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
547  */
548 void unlock_page(struct page *page)
549 {
550         VM_BUG_ON(!PageLocked(page));
551         clear_bit_unlock(PG_locked, &page->flags);
552         smp_mb__after_clear_bit();
553         wake_up_page(page, PG_locked);
554 }
555 EXPORT_SYMBOL(unlock_page);
556
557 /**
558  * end_page_writeback - end writeback against a page
559  * @page: the page
560  */
561 void end_page_writeback(struct page *page)
562 {
563         if (TestClearPageReclaim(page))
564                 rotate_reclaimable_page(page);
565
566         if (!test_clear_page_writeback(page))
567                 BUG();
568
569         smp_mb__after_clear_bit();
570         wake_up_page(page, PG_writeback);
571 }
572 EXPORT_SYMBOL(end_page_writeback);
573
574 /**
575  * __lock_page - get a lock on the page, assuming we need to sleep to get it
576  * @page: the page to lock
577  *
578  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
579  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
580  * chances are that on the second loop, the block layer's plug list is empty,
581  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
582  */
583 void __lock_page(struct page *page)
584 {
585         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
586
587         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
588                                                         TASK_UNINTERRUPTIBLE);
589 }
590 EXPORT_SYMBOL(__lock_page);
591
592 int __lock_page_killable(struct page *page)
593 {
594         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
595
596         return __wait_on_bit_lock(page_waitqueue(page), &wait,
597                                         sync_page_killable, TASK_KILLABLE);
598 }
599 EXPORT_SYMBOL_GPL(__lock_page_killable);
600
601 /**
602  * __lock_page_nosync - get a lock on the page, without calling sync_page()
603  * @page: the page to lock
604  *
605  * Variant of lock_page that does not require the caller to hold a reference
606  * on the page's mapping.
607  */
608 void __lock_page_nosync(struct page *page)
609 {
610         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
611         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
612                                                         TASK_UNINTERRUPTIBLE);
613 }
614
615 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
616                          unsigned int flags)
617 {
618         if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
619                 __lock_page(page);
620                 return 1;
621         } else {
622                 up_read(&mm->mmap_sem);
623                 wait_on_page_locked(page);
624                 return 0;
625         }
626 }
627
628 /**
629  * find_get_page - find and get a page reference
630  * @mapping: the address_space to search
631  * @offset: the page index
632  *
633  * Is there a pagecache struct page at the given (mapping, offset) tuple?
634  * If yes, increment its refcount and return it; if no, return NULL.
635  */
636 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
637 {
638         void **pagep;
639         struct page *page;
640
641         rcu_read_lock();
642 repeat:
643         page = NULL;
644         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
645         if (pagep) {
646                 page = radix_tree_deref_slot(pagep);
647                 if (unlikely(!page))
648                         goto out;
649                 if (radix_tree_deref_retry(page))
650                         goto repeat;
651
652                 if (!page_cache_get_speculative(page))
653                         goto repeat;
654
655                 /*
656                  * Has the page moved?
657                  * This is part of the lockless pagecache protocol. See
658                  * include/linux/pagemap.h for details.
659                  */
660                 if (unlikely(page != *pagep)) {
661                         page_cache_release(page);
662                         goto repeat;
663                 }
664         }
665 out:
666         rcu_read_unlock();
667
668         return page;
669 }
670 EXPORT_SYMBOL(find_get_page);
671
672 /**
673  * find_lock_page - locate, pin and lock a pagecache page
674  * @mapping: the address_space to search
675  * @offset: the page index
676  *
677  * Locates the desired pagecache page, locks it, increments its reference
678  * count and returns its address.
679  *
680  * Returns zero if the page was not present. find_lock_page() may sleep.
681  */
682 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
683 {
684         struct page *page;
685
686 repeat:
687         page = find_get_page(mapping, offset);
688         if (page) {
689                 lock_page(page);
690                 /* Has the page been truncated? */
691                 if (unlikely(page->mapping != mapping)) {
692                         unlock_page(page);
693                         page_cache_release(page);
694                         goto repeat;
695                 }
696                 VM_BUG_ON(page->index != offset);
697         }
698         return page;
699 }
700 EXPORT_SYMBOL(find_lock_page);
701
702 /**
703  * find_or_create_page - locate or add a pagecache page
704  * @mapping: the page's address_space
705  * @index: the page's index into the mapping
706  * @gfp_mask: page allocation mode
707  *
708  * Locates a page in the pagecache.  If the page is not present, a new page
709  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
710  * LRU list.  The returned page is locked and has its reference count
711  * incremented.
712  *
713  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
714  * allocation!
715  *
716  * find_or_create_page() returns the desired page's address, or zero on
717  * memory exhaustion.
718  */
719 struct page *find_or_create_page(struct address_space *mapping,
720                 pgoff_t index, gfp_t gfp_mask)
721 {
722         struct page *page;
723         int err;
724 repeat:
725         page = find_lock_page(mapping, index);
726         if (!page) {
727                 page = __page_cache_alloc(gfp_mask);
728                 if (!page)
729                         return NULL;
730                 /*
731                  * We want a regular kernel memory (not highmem or DMA etc)
732                  * allocation for the radix tree nodes, but we need to honour
733                  * the context-specific requirements the caller has asked for.
734                  * GFP_RECLAIM_MASK collects those requirements.
735                  */
736                 err = add_to_page_cache_lru(page, mapping, index,
737                         (gfp_mask & GFP_RECLAIM_MASK));
738                 if (unlikely(err)) {
739                         page_cache_release(page);
740                         page = NULL;
741                         if (err == -EEXIST)
742                                 goto repeat;
743                 }
744         }
745         return page;
746 }
747 EXPORT_SYMBOL(find_or_create_page);
748
749 /**
750  * find_get_pages - gang pagecache lookup
751  * @mapping:    The address_space to search
752  * @start:      The starting page index
753  * @nr_pages:   The maximum number of pages
754  * @pages:      Where the resulting pages are placed
755  *
756  * find_get_pages() will search for and return a group of up to
757  * @nr_pages pages in the mapping.  The pages are placed at @pages.
758  * find_get_pages() takes a reference against the returned pages.
759  *
760  * The search returns a group of mapping-contiguous pages with ascending
761  * indexes.  There may be holes in the indices due to not-present pages.
762  *
763  * find_get_pages() returns the number of pages which were found.
764  */
765 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
766                             unsigned int nr_pages, struct page **pages)
767 {
768         unsigned int i;
769         unsigned int ret;
770         unsigned int nr_found;
771
772         rcu_read_lock();
773 restart:
774         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
775                                 (void ***)pages, start, nr_pages);
776         ret = 0;
777         for (i = 0; i < nr_found; i++) {
778                 struct page *page;
779 repeat:
780                 page = radix_tree_deref_slot((void **)pages[i]);
781                 if (unlikely(!page))
782                         continue;
783                 if (radix_tree_deref_retry(page)) {
784                         if (ret)
785                                 start = pages[ret-1]->index;
786                         goto restart;
787                 }
788
789                 if (!page_cache_get_speculative(page))
790                         goto repeat;
791
792                 /* Has the page moved? */
793                 if (unlikely(page != *((void **)pages[i]))) {
794                         page_cache_release(page);
795                         goto repeat;
796                 }
797
798                 pages[ret] = page;
799                 ret++;
800         }
801         rcu_read_unlock();
802         return ret;
803 }
804
805 /**
806  * find_get_pages_contig - gang contiguous pagecache lookup
807  * @mapping:    The address_space to search
808  * @index:      The starting page index
809  * @nr_pages:   The maximum number of pages
810  * @pages:      Where the resulting pages are placed
811  *
812  * find_get_pages_contig() works exactly like find_get_pages(), except
813  * that the returned number of pages are guaranteed to be contiguous.
814  *
815  * find_get_pages_contig() returns the number of pages which were found.
816  */
817 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
818                                unsigned int nr_pages, struct page **pages)
819 {
820         unsigned int i;
821         unsigned int ret;
822         unsigned int nr_found;
823
824         rcu_read_lock();
825 restart:
826         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
827                                 (void ***)pages, index, nr_pages);
828         ret = 0;
829         for (i = 0; i < nr_found; i++) {
830                 struct page *page;
831 repeat:
832                 page = radix_tree_deref_slot((void **)pages[i]);
833                 if (unlikely(!page))
834                         continue;
835                 if (radix_tree_deref_retry(page))
836                         goto restart;
837
838                 if (page->mapping == NULL || page->index != index)
839                         break;
840
841                 if (!page_cache_get_speculative(page))
842                         goto repeat;
843
844                 /* Has the page moved? */
845                 if (unlikely(page != *((void **)pages[i]))) {
846                         page_cache_release(page);
847                         goto repeat;
848                 }
849
850                 pages[ret] = page;
851                 ret++;
852                 index++;
853         }
854         rcu_read_unlock();
855         return ret;
856 }
857 EXPORT_SYMBOL(find_get_pages_contig);
858
859 /**
860  * find_get_pages_tag - find and return pages that match @tag
861  * @mapping:    the address_space to search
862  * @index:      the starting page index
863  * @tag:        the tag index
864  * @nr_pages:   the maximum number of pages
865  * @pages:      where the resulting pages are placed
866  *
867  * Like find_get_pages, except we only return pages which are tagged with
868  * @tag.   We update @index to index the next page for the traversal.
869  */
870 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
871                         int tag, unsigned int nr_pages, struct page **pages)
872 {
873         unsigned int i;
874         unsigned int ret;
875         unsigned int nr_found;
876
877         rcu_read_lock();
878 restart:
879         nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
880                                 (void ***)pages, *index, nr_pages, tag);
881         ret = 0;
882         for (i = 0; i < nr_found; i++) {
883                 struct page *page;
884 repeat:
885                 page = radix_tree_deref_slot((void **)pages[i]);
886                 if (unlikely(!page))
887                         continue;
888                 if (radix_tree_deref_retry(page))
889                         goto restart;
890
891                 if (!page_cache_get_speculative(page))
892                         goto repeat;
893
894                 /* Has the page moved? */
895                 if (unlikely(page != *((void **)pages[i]))) {
896                         page_cache_release(page);
897                         goto repeat;
898                 }
899
900                 pages[ret] = page;
901                 ret++;
902         }
903         rcu_read_unlock();
904
905         if (ret)
906                 *index = pages[ret - 1]->index + 1;
907
908         return ret;
909 }
910 EXPORT_SYMBOL(find_get_pages_tag);
911
912 /**
913  * grab_cache_page_nowait - returns locked page at given index in given cache
914  * @mapping: target address_space
915  * @index: the page index
916  *
917  * Same as grab_cache_page(), but do not wait if the page is unavailable.
918  * This is intended for speculative data generators, where the data can
919  * be regenerated if the page couldn't be grabbed.  This routine should
920  * be safe to call while holding the lock for another page.
921  *
922  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
923  * and deadlock against the caller's locked page.
924  */
925 struct page *
926 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
927 {
928         struct page *page = find_get_page(mapping, index);
929
930         if (page) {
931                 if (trylock_page(page))
932                         return page;
933                 page_cache_release(page);
934                 return NULL;
935         }
936         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
937         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
938                 page_cache_release(page);
939                 page = NULL;
940         }
941         return page;
942 }
943 EXPORT_SYMBOL(grab_cache_page_nowait);
944
945 /*
946  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
947  * a _large_ part of the i/o request. Imagine the worst scenario:
948  *
949  *      ---R__________________________________________B__________
950  *         ^ reading here                             ^ bad block(assume 4k)
951  *
952  * read(R) => miss => readahead(R...B) => media error => frustrating retries
953  * => failing the whole request => read(R) => read(R+1) =>
954  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
955  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
956  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
957  *
958  * It is going insane. Fix it by quickly scaling down the readahead size.
959  */
960 static void shrink_readahead_size_eio(struct file *filp,
961                                         struct file_ra_state *ra)
962 {
963         ra->ra_pages /= 4;
964 }
965
966 /**
967  * do_generic_file_read - generic file read routine
968  * @filp:       the file to read
969  * @ppos:       current file position
970  * @desc:       read_descriptor
971  * @actor:      read method
972  *
973  * This is a generic file read routine, and uses the
974  * mapping->a_ops->readpage() function for the actual low-level stuff.
975  *
976  * This is really ugly. But the goto's actually try to clarify some
977  * of the logic when it comes to error handling etc.
978  */
979 static void do_generic_file_read(struct file *filp, loff_t *ppos,
980                 read_descriptor_t *desc, read_actor_t actor)
981 {
982         struct address_space *mapping = filp->f_mapping;
983         struct inode *inode = mapping->host;
984         struct file_ra_state *ra = &filp->f_ra;
985         pgoff_t index;
986         pgoff_t last_index;
987         pgoff_t prev_index;
988         unsigned long offset;      /* offset into pagecache page */
989         unsigned int prev_offset;
990         int error;
991
992         index = *ppos >> PAGE_CACHE_SHIFT;
993         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
994         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
995         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
996         offset = *ppos & ~PAGE_CACHE_MASK;
997
998         for (;;) {
999                 struct page *page;
1000                 pgoff_t end_index;
1001                 loff_t isize;
1002                 unsigned long nr, ret;
1003
1004                 cond_resched();
1005 find_page:
1006                 page = find_get_page(mapping, index);
1007                 if (!page) {
1008                         page_cache_sync_readahead(mapping,
1009                                         ra, filp,
1010                                         index, last_index - index);
1011                         page = find_get_page(mapping, index);
1012                         if (unlikely(page == NULL))
1013                                 goto no_cached_page;
1014                 }
1015                 if (PageReadahead(page)) {
1016                         page_cache_async_readahead(mapping,
1017                                         ra, filp, page,
1018                                         index, last_index - index);
1019                 }
1020                 if (!PageUptodate(page)) {
1021                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1022                                         !mapping->a_ops->is_partially_uptodate)
1023                                 goto page_not_up_to_date;
1024                         if (!trylock_page(page))
1025                                 goto page_not_up_to_date;
1026                         /* Did it get truncated before we got the lock? */
1027                         if (!page->mapping)
1028                                 goto page_not_up_to_date_locked;
1029                         if (!mapping->a_ops->is_partially_uptodate(page,
1030                                                                 desc, offset))
1031                                 goto page_not_up_to_date_locked;
1032                         unlock_page(page);
1033                 }
1034 page_ok:
1035                 /*
1036                  * i_size must be checked after we know the page is Uptodate.
1037                  *
1038                  * Checking i_size after the check allows us to calculate
1039                  * the correct value for "nr", which means the zero-filled
1040                  * part of the page is not copied back to userspace (unless
1041                  * another truncate extends the file - this is desired though).
1042                  */
1043
1044                 isize = i_size_read(inode);
1045                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1046                 if (unlikely(!isize || index > end_index)) {
1047                         page_cache_release(page);
1048                         goto out;
1049                 }
1050
1051                 /* nr is the maximum number of bytes to copy from this page */
1052                 nr = PAGE_CACHE_SIZE;
1053                 if (index == end_index) {
1054                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1055                         if (nr <= offset) {
1056                                 page_cache_release(page);
1057                                 goto out;
1058                         }
1059                 }
1060                 nr = nr - offset;
1061
1062                 /* If users can be writing to this page using arbitrary
1063                  * virtual addresses, take care about potential aliasing
1064                  * before reading the page on the kernel side.
1065                  */
1066                 if (mapping_writably_mapped(mapping))
1067                         flush_dcache_page(page);
1068
1069                 /*
1070                  * When a sequential read accesses a page several times,
1071                  * only mark it as accessed the first time.
1072                  */
1073                 if (prev_index != index || offset != prev_offset)
1074                         mark_page_accessed(page);
1075                 prev_index = index;
1076
1077                 /*
1078                  * Ok, we have the page, and it's up-to-date, so
1079                  * now we can copy it to user space...
1080                  *
1081                  * The actor routine returns how many bytes were actually used..
1082                  * NOTE! This may not be the same as how much of a user buffer
1083                  * we filled up (we may be padding etc), so we can only update
1084                  * "pos" here (the actor routine has to update the user buffer
1085                  * pointers and the remaining count).
1086                  */
1087                 ret = actor(desc, page, offset, nr);
1088                 offset += ret;
1089                 index += offset >> PAGE_CACHE_SHIFT;
1090                 offset &= ~PAGE_CACHE_MASK;
1091                 prev_offset = offset;
1092
1093                 page_cache_release(page);
1094                 if (ret == nr && desc->count)
1095                         continue;
1096                 goto out;
1097
1098 page_not_up_to_date:
1099                 /* Get exclusive access to the page ... */
1100                 error = lock_page_killable(page);
1101                 if (unlikely(error))
1102                         goto readpage_error;
1103
1104 page_not_up_to_date_locked:
1105                 /* Did it get truncated before we got the lock? */
1106                 if (!page->mapping) {
1107                         unlock_page(page);
1108                         page_cache_release(page);
1109                         continue;
1110                 }
1111
1112                 /* Did somebody else fill it already? */
1113                 if (PageUptodate(page)) {
1114                         unlock_page(page);
1115                         goto page_ok;
1116                 }
1117
1118 readpage:
1119                 /*
1120                  * A previous I/O error may have been due to temporary
1121                  * failures, eg. multipath errors.
1122                  * PG_error will be set again if readpage fails.
1123                  */
1124                 ClearPageError(page);
1125                 /* Start the actual read. The read will unlock the page. */
1126                 error = mapping->a_ops->readpage(filp, page);
1127
1128                 if (unlikely(error)) {
1129                         if (error == AOP_TRUNCATED_PAGE) {
1130                                 page_cache_release(page);
1131                                 goto find_page;
1132                         }
1133                         goto readpage_error;
1134                 }
1135
1136                 if (!PageUptodate(page)) {
1137                         error = lock_page_killable(page);
1138                         if (unlikely(error))
1139                                 goto readpage_error;
1140                         if (!PageUptodate(page)) {
1141                                 if (page->mapping == NULL) {
1142                                         /*
1143                                          * invalidate_mapping_pages got it
1144                                          */
1145                                         unlock_page(page);
1146                                         page_cache_release(page);
1147                                         goto find_page;
1148                                 }
1149                                 unlock_page(page);
1150                                 shrink_readahead_size_eio(filp, ra);
1151                                 error = -EIO;
1152                                 goto readpage_error;
1153                         }
1154                         unlock_page(page);
1155                 }
1156
1157                 goto page_ok;
1158
1159 readpage_error:
1160                 /* UHHUH! A synchronous read error occurred. Report it */
1161                 desc->error = error;
1162                 page_cache_release(page);
1163                 goto out;
1164
1165 no_cached_page:
1166                 /*
1167                  * Ok, it wasn't cached, so we need to create a new
1168                  * page..
1169                  */
1170                 page = page_cache_alloc_cold(mapping);
1171                 if (!page) {
1172                         desc->error = -ENOMEM;
1173                         goto out;
1174                 }
1175                 error = add_to_page_cache_lru(page, mapping,
1176                                                 index, GFP_KERNEL);
1177                 if (error) {
1178                         page_cache_release(page);
1179                         if (error == -EEXIST)
1180                                 goto find_page;
1181                         desc->error = error;
1182                         goto out;
1183                 }
1184                 goto readpage;
1185         }
1186
1187 out:
1188         ra->prev_pos = prev_index;
1189         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1190         ra->prev_pos |= prev_offset;
1191
1192         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1193         file_accessed(filp);
1194 }
1195
1196 int file_read_actor(read_descriptor_t *desc, struct page *page,
1197                         unsigned long offset, unsigned long size)
1198 {
1199         char *kaddr;
1200         unsigned long left, count = desc->count;
1201
1202         if (size > count)
1203                 size = count;
1204
1205         /*
1206          * Faults on the destination of a read are common, so do it before
1207          * taking the kmap.
1208          */
1209         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1210                 kaddr = kmap_atomic(page, KM_USER0);
1211                 left = __copy_to_user_inatomic(desc->arg.buf,
1212                                                 kaddr + offset, size);
1213                 kunmap_atomic(kaddr, KM_USER0);
1214                 if (left == 0)
1215                         goto success;
1216         }
1217
1218         /* Do it the slow way */
1219         kaddr = kmap(page);
1220         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1221         kunmap(page);
1222
1223         if (left) {
1224                 size -= left;
1225                 desc->error = -EFAULT;
1226         }
1227 success:
1228         desc->count = count - size;
1229         desc->written += size;
1230         desc->arg.buf += size;
1231         return size;
1232 }
1233
1234 /*
1235  * Performs necessary checks before doing a write
1236  * @iov:        io vector request
1237  * @nr_segs:    number of segments in the iovec
1238  * @count:      number of bytes to write
1239  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1240  *
1241  * Adjust number of segments and amount of bytes to write (nr_segs should be
1242  * properly initialized first). Returns appropriate error code that caller
1243  * should return or zero in case that write should be allowed.
1244  */
1245 int generic_segment_checks(const struct iovec *iov,
1246                         unsigned long *nr_segs, size_t *count, int access_flags)
1247 {
1248         unsigned long   seg;
1249         size_t cnt = 0;
1250         for (seg = 0; seg < *nr_segs; seg++) {
1251                 const struct iovec *iv = &iov[seg];
1252
1253                 /*
1254                  * If any segment has a negative length, or the cumulative
1255                  * length ever wraps negative then return -EINVAL.
1256                  */
1257                 cnt += iv->iov_len;
1258                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1259                         return -EINVAL;
1260                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1261                         continue;
1262                 if (seg == 0)
1263                         return -EFAULT;
1264                 *nr_segs = seg;
1265                 cnt -= iv->iov_len;     /* This segment is no good */
1266                 break;
1267         }
1268         *count = cnt;
1269         return 0;
1270 }
1271 EXPORT_SYMBOL(generic_segment_checks);
1272
1273 /**
1274  * generic_file_aio_read - generic filesystem read routine
1275  * @iocb:       kernel I/O control block
1276  * @iov:        io vector request
1277  * @nr_segs:    number of segments in the iovec
1278  * @pos:        current file position
1279  *
1280  * This is the "read()" routine for all filesystems
1281  * that can use the page cache directly.
1282  */
1283 ssize_t
1284 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1285                 unsigned long nr_segs, loff_t pos)
1286 {
1287         struct file *filp = iocb->ki_filp;
1288         ssize_t retval;
1289         unsigned long seg = 0;
1290         size_t count;
1291         loff_t *ppos = &iocb->ki_pos;
1292
1293         count = 0;
1294         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1295         if (retval)
1296                 return retval;
1297
1298         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1299         if (filp->f_flags & O_DIRECT) {
1300                 loff_t size;
1301                 struct address_space *mapping;
1302                 struct inode *inode;
1303
1304                 mapping = filp->f_mapping;
1305                 inode = mapping->host;
1306                 if (!count)
1307                         goto out; /* skip atime */
1308                 size = i_size_read(inode);
1309                 if (pos < size) {
1310                         retval = filemap_write_and_wait_range(mapping, pos,
1311                                         pos + iov_length(iov, nr_segs) - 1);
1312                         if (!retval) {
1313                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1314                                                         iov, pos, nr_segs);
1315                         }
1316                         if (retval > 0) {
1317                                 *ppos = pos + retval;
1318                                 count -= retval;
1319                         }
1320
1321                         /*
1322                          * Btrfs can have a short DIO read if we encounter
1323                          * compressed extents, so if there was an error, or if
1324                          * we've already read everything we wanted to, or if
1325                          * there was a short read because we hit EOF, go ahead
1326                          * and return.  Otherwise fallthrough to buffered io for
1327                          * the rest of the read.
1328                          */
1329                         if (retval < 0 || !count || *ppos >= size) {
1330                                 file_accessed(filp);
1331                                 goto out;
1332                         }
1333                 }
1334         }
1335
1336         count = retval;
1337         for (seg = 0; seg < nr_segs; seg++) {
1338                 read_descriptor_t desc;
1339                 loff_t offset = 0;
1340
1341                 /*
1342                  * If we did a short DIO read we need to skip the section of the
1343                  * iov that we've already read data into.
1344                  */
1345                 if (count) {
1346                         if (count > iov[seg].iov_len) {
1347                                 count -= iov[seg].iov_len;
1348                                 continue;
1349                         }
1350                         offset = count;
1351                         count = 0;
1352                 }
1353
1354                 desc.written = 0;
1355                 desc.arg.buf = iov[seg].iov_base + offset;
1356                 desc.count = iov[seg].iov_len - offset;
1357                 if (desc.count == 0)
1358                         continue;
1359                 desc.error = 0;
1360                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1361                 retval += desc.written;
1362                 if (desc.error) {
1363                         retval = retval ?: desc.error;
1364                         break;
1365                 }
1366                 if (desc.count > 0)
1367                         break;
1368         }
1369 out:
1370         return retval;
1371 }
1372 EXPORT_SYMBOL(generic_file_aio_read);
1373
1374 static ssize_t
1375 do_readahead(struct address_space *mapping, struct file *filp,
1376              pgoff_t index, unsigned long nr)
1377 {
1378         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1379                 return -EINVAL;
1380
1381         force_page_cache_readahead(mapping, filp, index, nr);
1382         return 0;
1383 }
1384
1385 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1386 {
1387         ssize_t ret;
1388         struct file *file;
1389
1390         ret = -EBADF;
1391         file = fget(fd);
1392         if (file) {
1393                 if (file->f_mode & FMODE_READ) {
1394                         struct address_space *mapping = file->f_mapping;
1395                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1396                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1397                         unsigned long len = end - start + 1;
1398                         ret = do_readahead(mapping, file, start, len);
1399                 }
1400                 fput(file);
1401         }
1402         return ret;
1403 }
1404 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1405 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1406 {
1407         return SYSC_readahead((int) fd, offset, (size_t) count);
1408 }
1409 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1410 #endif
1411
1412 #ifdef CONFIG_MMU
1413 /**
1414  * page_cache_read - adds requested page to the page cache if not already there
1415  * @file:       file to read
1416  * @offset:     page index
1417  *
1418  * This adds the requested page to the page cache if it isn't already there,
1419  * and schedules an I/O to read in its contents from disk.
1420  */
1421 static int page_cache_read(struct file *file, pgoff_t offset)
1422 {
1423         struct address_space *mapping = file->f_mapping;
1424         struct page *page; 
1425         int ret;
1426
1427         do {
1428                 page = page_cache_alloc_cold(mapping);
1429                 if (!page)
1430                         return -ENOMEM;
1431
1432                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1433                 if (ret == 0)
1434                         ret = mapping->a_ops->readpage(file, page);
1435                 else if (ret == -EEXIST)
1436                         ret = 0; /* losing race to add is OK */
1437
1438                 page_cache_release(page);
1439
1440         } while (ret == AOP_TRUNCATED_PAGE);
1441                 
1442         return ret;
1443 }
1444
1445 #define MMAP_LOTSAMISS  (100)
1446
1447 /*
1448  * Synchronous readahead happens when we don't even find
1449  * a page in the page cache at all.
1450  */
1451 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1452                                    struct file_ra_state *ra,
1453                                    struct file *file,
1454                                    pgoff_t offset)
1455 {
1456         unsigned long ra_pages;
1457         struct address_space *mapping = file->f_mapping;
1458
1459         /* If we don't want any read-ahead, don't bother */
1460         if (VM_RandomReadHint(vma))
1461                 return;
1462
1463         if (VM_SequentialReadHint(vma) ||
1464                         offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1465                 page_cache_sync_readahead(mapping, ra, file, offset,
1466                                           ra->ra_pages);
1467                 return;
1468         }
1469
1470         if (ra->mmap_miss < INT_MAX)
1471                 ra->mmap_miss++;
1472
1473         /*
1474          * Do we miss much more than hit in this file? If so,
1475          * stop bothering with read-ahead. It will only hurt.
1476          */
1477         if (ra->mmap_miss > MMAP_LOTSAMISS)
1478                 return;
1479
1480         /*
1481          * mmap read-around
1482          */
1483         ra_pages = max_sane_readahead(ra->ra_pages);
1484         if (ra_pages) {
1485                 ra->start = max_t(long, 0, offset - ra_pages/2);
1486                 ra->size = ra_pages;
1487                 ra->async_size = 0;
1488                 ra_submit(ra, mapping, file);
1489         }
1490 }
1491
1492 /*
1493  * Asynchronous readahead happens when we find the page and PG_readahead,
1494  * so we want to possibly extend the readahead further..
1495  */
1496 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1497                                     struct file_ra_state *ra,
1498                                     struct file *file,
1499                                     struct page *page,
1500                                     pgoff_t offset)
1501 {
1502         struct address_space *mapping = file->f_mapping;
1503
1504         /* If we don't want any read-ahead, don't bother */
1505         if (VM_RandomReadHint(vma))
1506                 return;
1507         if (ra->mmap_miss > 0)
1508                 ra->mmap_miss--;
1509         if (PageReadahead(page))
1510                 page_cache_async_readahead(mapping, ra, file,
1511                                            page, offset, ra->ra_pages);
1512 }
1513
1514 /**
1515  * filemap_fault - read in file data for page fault handling
1516  * @vma:        vma in which the fault was taken
1517  * @vmf:        struct vm_fault containing details of the fault
1518  *
1519  * filemap_fault() is invoked via the vma operations vector for a
1520  * mapped memory region to read in file data during a page fault.
1521  *
1522  * The goto's are kind of ugly, but this streamlines the normal case of having
1523  * it in the page cache, and handles the special cases reasonably without
1524  * having a lot of duplicated code.
1525  */
1526 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1527 {
1528         int error;
1529         struct file *file = vma->vm_file;
1530         struct address_space *mapping = file->f_mapping;
1531         struct file_ra_state *ra = &file->f_ra;
1532         struct inode *inode = mapping->host;
1533         pgoff_t offset = vmf->pgoff;
1534         struct page *page;
1535         pgoff_t size;
1536         int ret = 0;
1537
1538         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1539         if (offset >= size)
1540                 return VM_FAULT_SIGBUS;
1541
1542         /*
1543          * Do we have something in the page cache already?
1544          */
1545         page = find_get_page(mapping, offset);
1546         if (likely(page)) {
1547                 /*
1548                  * We found the page, so try async readahead before
1549                  * waiting for the lock.
1550                  */
1551                 do_async_mmap_readahead(vma, ra, file, page, offset);
1552         } else {
1553                 /* No page in the page cache at all */
1554                 do_sync_mmap_readahead(vma, ra, file, offset);
1555                 count_vm_event(PGMAJFAULT);
1556                 ret = VM_FAULT_MAJOR;
1557 retry_find:
1558                 page = find_get_page(mapping, offset);
1559                 if (!page)
1560                         goto no_cached_page;
1561         }
1562
1563         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1564                 page_cache_release(page);
1565                 return ret | VM_FAULT_RETRY;
1566         }
1567
1568         /* Did it get truncated? */
1569         if (unlikely(page->mapping != mapping)) {
1570                 unlock_page(page);
1571                 put_page(page);
1572                 goto retry_find;
1573         }
1574         VM_BUG_ON(page->index != offset);
1575
1576         /*
1577          * We have a locked page in the page cache, now we need to check
1578          * that it's up-to-date. If not, it is going to be due to an error.
1579          */
1580         if (unlikely(!PageUptodate(page)))
1581                 goto page_not_uptodate;
1582
1583         /*
1584          * Found the page and have a reference on it.
1585          * We must recheck i_size under page lock.
1586          */
1587         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1588         if (unlikely(offset >= size)) {
1589                 unlock_page(page);
1590                 page_cache_release(page);
1591                 return VM_FAULT_SIGBUS;
1592         }
1593
1594         ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1595         vmf->page = page;
1596         return ret | VM_FAULT_LOCKED;
1597
1598 no_cached_page:
1599         /*
1600          * We're only likely to ever get here if MADV_RANDOM is in
1601          * effect.
1602          */
1603         error = page_cache_read(file, offset);
1604
1605         /*
1606          * The page we want has now been added to the page cache.
1607          * In the unlikely event that someone removed it in the
1608          * meantime, we'll just come back here and read it again.
1609          */
1610         if (error >= 0)
1611                 goto retry_find;
1612
1613         /*
1614          * An error return from page_cache_read can result if the
1615          * system is low on memory, or a problem occurs while trying
1616          * to schedule I/O.
1617          */
1618         if (error == -ENOMEM)
1619                 return VM_FAULT_OOM;
1620         return VM_FAULT_SIGBUS;
1621
1622 page_not_uptodate:
1623         /*
1624          * Umm, take care of errors if the page isn't up-to-date.
1625          * Try to re-read it _once_. We do this synchronously,
1626          * because there really aren't any performance issues here
1627          * and we need to check for errors.
1628          */
1629         ClearPageError(page);
1630         error = mapping->a_ops->readpage(file, page);
1631         if (!error) {
1632                 wait_on_page_locked(page);
1633                 if (!PageUptodate(page))
1634                         error = -EIO;
1635         }
1636         page_cache_release(page);
1637
1638         if (!error || error == AOP_TRUNCATED_PAGE)
1639                 goto retry_find;
1640
1641         /* Things didn't work out. Return zero to tell the mm layer so. */
1642         shrink_readahead_size_eio(file, ra);
1643         return VM_FAULT_SIGBUS;
1644 }
1645 EXPORT_SYMBOL(filemap_fault);
1646
1647 const struct vm_operations_struct generic_file_vm_ops = {
1648         .fault          = filemap_fault,
1649 };
1650
1651 /* This is used for a general mmap of a disk file */
1652
1653 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1654 {
1655         struct address_space *mapping = file->f_mapping;
1656
1657         if (!mapping->a_ops->readpage)
1658                 return -ENOEXEC;
1659         file_accessed(file);
1660         vma->vm_ops = &generic_file_vm_ops;
1661         vma->vm_flags |= VM_CAN_NONLINEAR;
1662         return 0;
1663 }
1664
1665 /*
1666  * This is for filesystems which do not implement ->writepage.
1667  */
1668 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1669 {
1670         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1671                 return -EINVAL;
1672         return generic_file_mmap(file, vma);
1673 }
1674 #else
1675 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1676 {
1677         return -ENOSYS;
1678 }
1679 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1680 {
1681         return -ENOSYS;
1682 }
1683 #endif /* CONFIG_MMU */
1684
1685 EXPORT_SYMBOL(generic_file_mmap);
1686 EXPORT_SYMBOL(generic_file_readonly_mmap);
1687
1688 static struct page *__read_cache_page(struct address_space *mapping,
1689                                 pgoff_t index,
1690                                 int (*filler)(void *,struct page*),
1691                                 void *data,
1692                                 gfp_t gfp)
1693 {
1694         struct page *page;
1695         int err;
1696 repeat:
1697         page = find_get_page(mapping, index);
1698         if (!page) {
1699                 page = __page_cache_alloc(gfp | __GFP_COLD);
1700                 if (!page)
1701                         return ERR_PTR(-ENOMEM);
1702                 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1703                 if (unlikely(err)) {
1704                         page_cache_release(page);
1705                         if (err == -EEXIST)
1706                                 goto repeat;
1707                         /* Presumably ENOMEM for radix tree node */
1708                         return ERR_PTR(err);
1709                 }
1710                 err = filler(data, page);
1711                 if (err < 0) {
1712                         page_cache_release(page);
1713                         page = ERR_PTR(err);
1714                 }
1715         }
1716         return page;
1717 }
1718
1719 static struct page *do_read_cache_page(struct address_space *mapping,
1720                                 pgoff_t index,
1721                                 int (*filler)(void *,struct page*),
1722                                 void *data,
1723                                 gfp_t gfp)
1724
1725 {
1726         struct page *page;
1727         int err;
1728
1729 retry:
1730         page = __read_cache_page(mapping, index, filler, data, gfp);
1731         if (IS_ERR(page))
1732                 return page;
1733         if (PageUptodate(page))
1734                 goto out;
1735
1736         lock_page(page);
1737         if (!page->mapping) {
1738                 unlock_page(page);
1739                 page_cache_release(page);
1740                 goto retry;
1741         }
1742         if (PageUptodate(page)) {
1743                 unlock_page(page);
1744                 goto out;
1745         }
1746         err = filler(data, page);
1747         if (err < 0) {
1748                 page_cache_release(page);
1749                 return ERR_PTR(err);
1750         }
1751 out:
1752         mark_page_accessed(page);
1753         return page;
1754 }
1755
1756 /**
1757  * read_cache_page_async - read into page cache, fill it if needed
1758  * @mapping:    the page's address_space
1759  * @index:      the page index
1760  * @filler:     function to perform the read
1761  * @data:       destination for read data
1762  *
1763  * Same as read_cache_page, but don't wait for page to become unlocked
1764  * after submitting it to the filler.
1765  *
1766  * Read into the page cache. If a page already exists, and PageUptodate() is
1767  * not set, try to fill the page but don't wait for it to become unlocked.
1768  *
1769  * If the page does not get brought uptodate, return -EIO.
1770  */
1771 struct page *read_cache_page_async(struct address_space *mapping,
1772                                 pgoff_t index,
1773                                 int (*filler)(void *,struct page*),
1774                                 void *data)
1775 {
1776         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1777 }
1778 EXPORT_SYMBOL(read_cache_page_async);
1779
1780 static struct page *wait_on_page_read(struct page *page)
1781 {
1782         if (!IS_ERR(page)) {
1783                 wait_on_page_locked(page);
1784                 if (!PageUptodate(page)) {
1785                         page_cache_release(page);
1786                         page = ERR_PTR(-EIO);
1787                 }
1788         }
1789         return page;
1790 }
1791
1792 /**
1793  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1794  * @mapping:    the page's address_space
1795  * @index:      the page index
1796  * @gfp:        the page allocator flags to use if allocating
1797  *
1798  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1799  * any new page allocations done using the specified allocation flags. Note
1800  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1801  * expect to do this atomically or anything like that - but you can pass in
1802  * other page requirements.
1803  *
1804  * If the page does not get brought uptodate, return -EIO.
1805  */
1806 struct page *read_cache_page_gfp(struct address_space *mapping,
1807                                 pgoff_t index,
1808                                 gfp_t gfp)
1809 {
1810         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1811
1812         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1813 }
1814 EXPORT_SYMBOL(read_cache_page_gfp);
1815
1816 /**
1817  * read_cache_page - read into page cache, fill it if needed
1818  * @mapping:    the page's address_space
1819  * @index:      the page index
1820  * @filler:     function to perform the read
1821  * @data:       destination for read data
1822  *
1823  * Read into the page cache. If a page already exists, and PageUptodate() is
1824  * not set, try to fill the page then wait for it to become unlocked.
1825  *
1826  * If the page does not get brought uptodate, return -EIO.
1827  */
1828 struct page *read_cache_page(struct address_space *mapping,
1829                                 pgoff_t index,
1830                                 int (*filler)(void *,struct page*),
1831                                 void *data)
1832 {
1833         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1834 }
1835 EXPORT_SYMBOL(read_cache_page);
1836
1837 /*
1838  * The logic we want is
1839  *
1840  *      if suid or (sgid and xgrp)
1841  *              remove privs
1842  */
1843 int should_remove_suid(struct dentry *dentry)
1844 {
1845         mode_t mode = dentry->d_inode->i_mode;
1846         int kill = 0;
1847
1848         /* suid always must be killed */
1849         if (unlikely(mode & S_ISUID))
1850                 kill = ATTR_KILL_SUID;
1851
1852         /*
1853          * sgid without any exec bits is just a mandatory locking mark; leave
1854          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1855          */
1856         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1857                 kill |= ATTR_KILL_SGID;
1858
1859         if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1860                 return kill;
1861
1862         return 0;
1863 }
1864 EXPORT_SYMBOL(should_remove_suid);
1865
1866 static int __remove_suid(struct dentry *dentry, int kill)
1867 {
1868         struct iattr newattrs;
1869
1870         newattrs.ia_valid = ATTR_FORCE | kill;
1871         return notify_change(dentry, &newattrs);
1872 }
1873
1874 int file_remove_suid(struct file *file)
1875 {
1876         struct dentry *dentry = file->f_path.dentry;
1877         int killsuid = should_remove_suid(dentry);
1878         int killpriv = security_inode_need_killpriv(dentry);
1879         int error = 0;
1880
1881         if (killpriv < 0)
1882                 return killpriv;
1883         if (killpriv)
1884                 error = security_inode_killpriv(dentry);
1885         if (!error && killsuid)
1886                 error = __remove_suid(dentry, killsuid);
1887
1888         return error;
1889 }
1890 EXPORT_SYMBOL(file_remove_suid);
1891
1892 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1893                         const struct iovec *iov, size_t base, size_t bytes)
1894 {
1895         size_t copied = 0, left = 0;
1896
1897         while (bytes) {
1898                 char __user *buf = iov->iov_base + base;
1899                 int copy = min(bytes, iov->iov_len - base);
1900
1901                 base = 0;
1902                 left = __copy_from_user_inatomic(vaddr, buf, copy);
1903                 copied += copy;
1904                 bytes -= copy;
1905                 vaddr += copy;
1906                 iov++;
1907
1908                 if (unlikely(left))
1909                         break;
1910         }
1911         return copied - left;
1912 }
1913
1914 /*
1915  * Copy as much as we can into the page and return the number of bytes which
1916  * were successfully copied.  If a fault is encountered then return the number of
1917  * bytes which were copied.
1918  */
1919 size_t iov_iter_copy_from_user_atomic(struct page *page,
1920                 struct iov_iter *i, unsigned long offset, size_t bytes)
1921 {
1922         char *kaddr;
1923         size_t copied;
1924
1925         BUG_ON(!in_atomic());
1926         kaddr = kmap_atomic(page, KM_USER0);
1927         if (likely(i->nr_segs == 1)) {
1928                 int left;
1929                 char __user *buf = i->iov->iov_base + i->iov_offset;
1930                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1931                 copied = bytes - left;
1932         } else {
1933                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1934                                                 i->iov, i->iov_offset, bytes);
1935         }
1936         kunmap_atomic(kaddr, KM_USER0);
1937
1938         return copied;
1939 }
1940 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1941
1942 /*
1943  * This has the same sideeffects and return value as
1944  * iov_iter_copy_from_user_atomic().
1945  * The difference is that it attempts to resolve faults.
1946  * Page must not be locked.
1947  */
1948 size_t iov_iter_copy_from_user(struct page *page,
1949                 struct iov_iter *i, unsigned long offset, size_t bytes)
1950 {
1951         char *kaddr;
1952         size_t copied;
1953
1954         kaddr = kmap(page);
1955         if (likely(i->nr_segs == 1)) {
1956                 int left;
1957                 char __user *buf = i->iov->iov_base + i->iov_offset;
1958                 left = __copy_from_user(kaddr + offset, buf, bytes);
1959                 copied = bytes - left;
1960         } else {
1961                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1962                                                 i->iov, i->iov_offset, bytes);
1963         }
1964         kunmap(page);
1965         return copied;
1966 }
1967 EXPORT_SYMBOL(iov_iter_copy_from_user);
1968
1969 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1970 {
1971         BUG_ON(i->count < bytes);
1972
1973         if (likely(i->nr_segs == 1)) {
1974                 i->iov_offset += bytes;
1975                 i->count -= bytes;
1976         } else {
1977                 const struct iovec *iov = i->iov;
1978                 size_t base = i->iov_offset;
1979
1980                 /*
1981                  * The !iov->iov_len check ensures we skip over unlikely
1982                  * zero-length segments (without overruning the iovec).
1983                  */
1984                 while (bytes || unlikely(i->count && !iov->iov_len)) {
1985                         int copy;
1986
1987                         copy = min(bytes, iov->iov_len - base);
1988                         BUG_ON(!i->count || i->count < copy);
1989                         i->count -= copy;
1990                         bytes -= copy;
1991                         base += copy;
1992                         if (iov->iov_len == base) {
1993                                 iov++;
1994                                 base = 0;
1995                         }
1996                 }
1997                 i->iov = iov;
1998                 i->iov_offset = base;
1999         }
2000 }
2001 EXPORT_SYMBOL(iov_iter_advance);
2002
2003 /*
2004  * Fault in the first iovec of the given iov_iter, to a maximum length
2005  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2006  * accessed (ie. because it is an invalid address).
2007  *
2008  * writev-intensive code may want this to prefault several iovecs -- that
2009  * would be possible (callers must not rely on the fact that _only_ the
2010  * first iovec will be faulted with the current implementation).
2011  */
2012 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2013 {
2014         char __user *buf = i->iov->iov_base + i->iov_offset;
2015         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2016         return fault_in_pages_readable(buf, bytes);
2017 }
2018 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2019
2020 /*
2021  * Return the count of just the current iov_iter segment.
2022  */
2023 size_t iov_iter_single_seg_count(struct iov_iter *i)
2024 {
2025         const struct iovec *iov = i->iov;
2026         if (i->nr_segs == 1)
2027                 return i->count;
2028         else
2029                 return min(i->count, iov->iov_len - i->iov_offset);
2030 }
2031 EXPORT_SYMBOL(iov_iter_single_seg_count);
2032
2033 /*
2034  * Performs necessary checks before doing a write
2035  *
2036  * Can adjust writing position or amount of bytes to write.
2037  * Returns appropriate error code that caller should return or
2038  * zero in case that write should be allowed.
2039  */
2040 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2041 {
2042         struct inode *inode = file->f_mapping->host;
2043         unsigned long limit = rlimit(RLIMIT_FSIZE);
2044
2045         if (unlikely(*pos < 0))
2046                 return -EINVAL;
2047
2048         if (!isblk) {
2049                 /* FIXME: this is for backwards compatibility with 2.4 */
2050                 if (file->f_flags & O_APPEND)
2051                         *pos = i_size_read(inode);
2052
2053                 if (limit != RLIM_INFINITY) {
2054                         if (*pos >= limit) {
2055                                 send_sig(SIGXFSZ, current, 0);
2056                                 return -EFBIG;
2057                         }
2058                         if (*count > limit - (typeof(limit))*pos) {
2059                                 *count = limit - (typeof(limit))*pos;
2060                         }
2061                 }
2062         }
2063
2064         /*
2065          * LFS rule
2066          */
2067         if (unlikely(*pos + *count > MAX_NON_LFS &&
2068                                 !(file->f_flags & O_LARGEFILE))) {
2069                 if (*pos >= MAX_NON_LFS) {
2070                         return -EFBIG;
2071                 }
2072                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2073                         *count = MAX_NON_LFS - (unsigned long)*pos;
2074                 }
2075         }
2076
2077         /*
2078          * Are we about to exceed the fs block limit ?
2079          *
2080          * If we have written data it becomes a short write.  If we have
2081          * exceeded without writing data we send a signal and return EFBIG.
2082          * Linus frestrict idea will clean these up nicely..
2083          */
2084         if (likely(!isblk)) {
2085                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2086                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2087                                 return -EFBIG;
2088                         }
2089                         /* zero-length writes at ->s_maxbytes are OK */
2090                 }
2091
2092                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2093                         *count = inode->i_sb->s_maxbytes - *pos;
2094         } else {
2095 #ifdef CONFIG_BLOCK
2096                 loff_t isize;
2097                 if (bdev_read_only(I_BDEV(inode)))
2098                         return -EPERM;
2099                 isize = i_size_read(inode);
2100                 if (*pos >= isize) {
2101                         if (*count || *pos > isize)
2102                                 return -ENOSPC;
2103                 }
2104
2105                 if (*pos + *count > isize)
2106                         *count = isize - *pos;
2107 #else
2108                 return -EPERM;
2109 #endif
2110         }
2111         return 0;
2112 }
2113 EXPORT_SYMBOL(generic_write_checks);
2114
2115 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2116                                 loff_t pos, unsigned len, unsigned flags,
2117                                 struct page **pagep, void **fsdata)
2118 {
2119         const struct address_space_operations *aops = mapping->a_ops;
2120
2121         return aops->write_begin(file, mapping, pos, len, flags,
2122                                                         pagep, fsdata);
2123 }
2124 EXPORT_SYMBOL(pagecache_write_begin);
2125
2126 int pagecache_write_end(struct file *file, struct address_space *mapping,
2127                                 loff_t pos, unsigned len, unsigned copied,
2128                                 struct page *page, void *fsdata)
2129 {
2130         const struct address_space_operations *aops = mapping->a_ops;
2131
2132         mark_page_accessed(page);
2133         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2134 }
2135 EXPORT_SYMBOL(pagecache_write_end);
2136
2137 ssize_t
2138 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2139                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2140                 size_t count, size_t ocount)
2141 {
2142         struct file     *file = iocb->ki_filp;
2143         struct address_space *mapping = file->f_mapping;
2144         struct inode    *inode = mapping->host;
2145         ssize_t         written;
2146         size_t          write_len;
2147         pgoff_t         end;
2148
2149         if (count != ocount)
2150                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2151
2152         write_len = iov_length(iov, *nr_segs);
2153         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2154
2155         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2156         if (written)
2157                 goto out;
2158
2159         /*
2160          * After a write we want buffered reads to be sure to go to disk to get
2161          * the new data.  We invalidate clean cached page from the region we're
2162          * about to write.  We do this *before* the write so that we can return
2163          * without clobbering -EIOCBQUEUED from ->direct_IO().
2164          */
2165         if (mapping->nrpages) {
2166                 written = invalidate_inode_pages2_range(mapping,
2167                                         pos >> PAGE_CACHE_SHIFT, end);
2168                 /*
2169                  * If a page can not be invalidated, return 0 to fall back
2170                  * to buffered write.
2171                  */
2172                 if (written) {
2173                         if (written == -EBUSY)
2174                                 return 0;
2175                         goto out;
2176                 }
2177         }
2178
2179         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2180
2181         /*
2182          * Finally, try again to invalidate clean pages which might have been
2183          * cached by non-direct readahead, or faulted in by get_user_pages()
2184          * if the source of the write was an mmap'ed region of the file
2185          * we're writing.  Either one is a pretty crazy thing to do,
2186          * so we don't support it 100%.  If this invalidation
2187          * fails, tough, the write still worked...
2188          */
2189         if (mapping->nrpages) {
2190                 invalidate_inode_pages2_range(mapping,
2191                                               pos >> PAGE_CACHE_SHIFT, end);
2192         }
2193
2194         if (written > 0) {
2195                 pos += written;
2196                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2197                         i_size_write(inode, pos);
2198                         mark_inode_dirty(inode);
2199                 }
2200                 *ppos = pos;
2201         }
2202 out:
2203         return written;
2204 }
2205 EXPORT_SYMBOL(generic_file_direct_write);
2206
2207 /*
2208  * Find or create a page at the given pagecache position. Return the locked
2209  * page. This function is specifically for buffered writes.
2210  */
2211 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2212                                         pgoff_t index, unsigned flags)
2213 {
2214         int status;
2215         struct page *page;
2216         gfp_t gfp_notmask = 0;
2217         if (flags & AOP_FLAG_NOFS)
2218                 gfp_notmask = __GFP_FS;
2219 repeat:
2220         page = find_lock_page(mapping, index);
2221         if (likely(page))
2222                 return page;
2223
2224         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2225         if (!page)
2226                 return NULL;
2227         status = add_to_page_cache_lru(page, mapping, index,
2228                                                 GFP_KERNEL & ~gfp_notmask);
2229         if (unlikely(status)) {
2230                 page_cache_release(page);
2231                 if (status == -EEXIST)
2232                         goto repeat;
2233                 return NULL;
2234         }
2235         return page;
2236 }
2237 EXPORT_SYMBOL(grab_cache_page_write_begin);
2238
2239 static ssize_t generic_perform_write(struct file *file,
2240                                 struct iov_iter *i, loff_t pos)
2241 {
2242         struct address_space *mapping = file->f_mapping;
2243         const struct address_space_operations *a_ops = mapping->a_ops;
2244         long status = 0;
2245         ssize_t written = 0;
2246         unsigned int flags = 0;
2247
2248         /*
2249          * Copies from kernel address space cannot fail (NFSD is a big user).
2250          */
2251         if (segment_eq(get_fs(), KERNEL_DS))
2252                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2253
2254         do {
2255                 struct page *page;
2256                 unsigned long offset;   /* Offset into pagecache page */
2257                 unsigned long bytes;    /* Bytes to write to page */
2258                 size_t copied;          /* Bytes copied from user */
2259                 void *fsdata;
2260
2261                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2262                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2263                                                 iov_iter_count(i));
2264
2265 again:
2266
2267                 /*
2268                  * Bring in the user page that we will copy from _first_.
2269                  * Otherwise there's a nasty deadlock on copying from the
2270                  * same page as we're writing to, without it being marked
2271                  * up-to-date.
2272                  *
2273                  * Not only is this an optimisation, but it is also required
2274                  * to check that the address is actually valid, when atomic
2275                  * usercopies are used, below.
2276                  */
2277                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2278                         status = -EFAULT;
2279                         break;
2280                 }
2281
2282                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2283                                                 &page, &fsdata);
2284                 if (unlikely(status))
2285                         break;
2286
2287                 if (mapping_writably_mapped(mapping))
2288                         flush_dcache_page(page);
2289
2290                 pagefault_disable();
2291                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2292                 pagefault_enable();
2293                 flush_dcache_page(page);
2294
2295                 mark_page_accessed(page);
2296                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2297                                                 page, fsdata);
2298                 if (unlikely(status < 0))
2299                         break;
2300                 copied = status;
2301
2302                 cond_resched();
2303
2304                 iov_iter_advance(i, copied);
2305                 if (unlikely(copied == 0)) {
2306                         /*
2307                          * If we were unable to copy any data at all, we must
2308                          * fall back to a single segment length write.
2309                          *
2310                          * If we didn't fallback here, we could livelock
2311                          * because not all segments in the iov can be copied at
2312                          * once without a pagefault.
2313                          */
2314                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2315                                                 iov_iter_single_seg_count(i));
2316                         goto again;
2317                 }
2318                 pos += copied;
2319                 written += copied;
2320
2321                 balance_dirty_pages_ratelimited(mapping);
2322
2323         } while (iov_iter_count(i));
2324
2325         return written ? written : status;
2326 }
2327
2328 ssize_t
2329 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2330                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2331                 size_t count, ssize_t written)
2332 {
2333         struct file *file = iocb->ki_filp;
2334         ssize_t status;
2335         struct iov_iter i;
2336
2337         iov_iter_init(&i, iov, nr_segs, count, written);
2338         status = generic_perform_write(file, &i, pos);
2339
2340         if (likely(status >= 0)) {
2341                 written += status;
2342                 *ppos = pos + status;
2343         }
2344         
2345         return written ? written : status;
2346 }
2347 EXPORT_SYMBOL(generic_file_buffered_write);
2348
2349 /**
2350  * __generic_file_aio_write - write data to a file
2351  * @iocb:       IO state structure (file, offset, etc.)
2352  * @iov:        vector with data to write
2353  * @nr_segs:    number of segments in the vector
2354  * @ppos:       position where to write
2355  *
2356  * This function does all the work needed for actually writing data to a
2357  * file. It does all basic checks, removes SUID from the file, updates
2358  * modification times and calls proper subroutines depending on whether we
2359  * do direct IO or a standard buffered write.
2360  *
2361  * It expects i_mutex to be grabbed unless we work on a block device or similar
2362  * object which does not need locking at all.
2363  *
2364  * This function does *not* take care of syncing data in case of O_SYNC write.
2365  * A caller has to handle it. This is mainly due to the fact that we want to
2366  * avoid syncing under i_mutex.
2367  */
2368 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2369                                  unsigned long nr_segs, loff_t *ppos)
2370 {
2371         struct file *file = iocb->ki_filp;
2372         struct address_space * mapping = file->f_mapping;
2373         size_t ocount;          /* original count */
2374         size_t count;           /* after file limit checks */
2375         struct inode    *inode = mapping->host;
2376         loff_t          pos;
2377         ssize_t         written;
2378         ssize_t         err;
2379
2380         ocount = 0;
2381         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2382         if (err)
2383                 return err;
2384
2385         count = ocount;
2386         pos = *ppos;
2387
2388         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2389
2390         /* We can write back this queue in page reclaim */
2391         current->backing_dev_info = mapping->backing_dev_info;
2392         written = 0;
2393
2394         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2395         if (err)
2396                 goto out;
2397
2398         if (count == 0)
2399                 goto out;
2400
2401         err = file_remove_suid(file);
2402         if (err)
2403                 goto out;
2404
2405         file_update_time(file);
2406
2407         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2408         if (unlikely(file->f_flags & O_DIRECT)) {
2409                 loff_t endbyte;
2410                 ssize_t written_buffered;
2411
2412                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2413                                                         ppos, count, ocount);
2414                 if (written < 0 || written == count)
2415                         goto out;
2416                 /*
2417                  * direct-io write to a hole: fall through to buffered I/O
2418                  * for completing the rest of the request.
2419                  */
2420                 pos += written;
2421                 count -= written;
2422                 written_buffered = generic_file_buffered_write(iocb, iov,
2423                                                 nr_segs, pos, ppos, count,
2424                                                 written);
2425                 /*
2426                  * If generic_file_buffered_write() retuned a synchronous error
2427                  * then we want to return the number of bytes which were
2428                  * direct-written, or the error code if that was zero.  Note
2429                  * that this differs from normal direct-io semantics, which
2430                  * will return -EFOO even if some bytes were written.
2431                  */
2432                 if (written_buffered < 0) {
2433                         err = written_buffered;
2434                         goto out;
2435                 }
2436
2437                 /*
2438                  * We need to ensure that the page cache pages are written to
2439                  * disk and invalidated to preserve the expected O_DIRECT
2440                  * semantics.
2441                  */
2442                 endbyte = pos + written_buffered - written - 1;
2443                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2444                 if (err == 0) {
2445                         written = written_buffered;
2446                         invalidate_mapping_pages(mapping,
2447                                                  pos >> PAGE_CACHE_SHIFT,
2448                                                  endbyte >> PAGE_CACHE_SHIFT);
2449                 } else {
2450                         /*
2451                          * We don't know how much we wrote, so just return
2452                          * the number of bytes which were direct-written
2453                          */
2454                 }
2455         } else {
2456                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2457                                 pos, ppos, count, written);
2458         }
2459 out:
2460         current->backing_dev_info = NULL;
2461         return written ? written : err;
2462 }
2463 EXPORT_SYMBOL(__generic_file_aio_write);
2464
2465 /**
2466  * generic_file_aio_write - write data to a file
2467  * @iocb:       IO state structure
2468  * @iov:        vector with data to write
2469  * @nr_segs:    number of segments in the vector
2470  * @pos:        position in file where to write
2471  *
2472  * This is a wrapper around __generic_file_aio_write() to be used by most
2473  * filesystems. It takes care of syncing the file in case of O_SYNC file
2474  * and acquires i_mutex as needed.
2475  */
2476 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2477                 unsigned long nr_segs, loff_t pos)
2478 {
2479         struct file *file = iocb->ki_filp;
2480         struct inode *inode = file->f_mapping->host;
2481         ssize_t ret;
2482
2483         BUG_ON(iocb->ki_pos != pos);
2484
2485         mutex_lock(&inode->i_mutex);
2486         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2487         mutex_unlock(&inode->i_mutex);
2488
2489         if (ret > 0 || ret == -EIOCBQUEUED) {
2490                 ssize_t err;
2491
2492                 err = generic_write_sync(file, pos, ret);
2493                 if (err < 0 && ret > 0)
2494                         ret = err;
2495         }
2496         return ret;
2497 }
2498 EXPORT_SYMBOL(generic_file_aio_write);
2499
2500 /**
2501  * try_to_release_page() - release old fs-specific metadata on a page
2502  *
2503  * @page: the page which the kernel is trying to free
2504  * @gfp_mask: memory allocation flags (and I/O mode)
2505  *
2506  * The address_space is to try to release any data against the page
2507  * (presumably at page->private).  If the release was successful, return `1'.
2508  * Otherwise return zero.
2509  *
2510  * This may also be called if PG_fscache is set on a page, indicating that the
2511  * page is known to the local caching routines.
2512  *
2513  * The @gfp_mask argument specifies whether I/O may be performed to release
2514  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2515  *
2516  */
2517 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2518 {
2519         struct address_space * const mapping = page->mapping;
2520
2521         BUG_ON(!PageLocked(page));
2522         if (PageWriteback(page))
2523                 return 0;
2524
2525         if (mapping && mapping->a_ops->releasepage)
2526                 return mapping->a_ops->releasepage(page, gfp_mask);
2527         return try_to_free_buffers(page);
2528 }
2529
2530 EXPORT_SYMBOL(try_to_release_page);