klist: Fix object alignment on 64-bit.
[pandora-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
23
24 #include <asm/local.h>
25 #include "trace.h"
26
27 /*
28  * The ring buffer header is special. We must manually up keep it.
29  */
30 int ring_buffer_print_entry_header(struct trace_seq *s)
31 {
32         int ret;
33
34         ret = trace_seq_printf(s, "# compressed entry header\n");
35         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
36         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
37         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
38         ret = trace_seq_printf(s, "\n");
39         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
40                                RINGBUF_TYPE_PADDING);
41         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42                                RINGBUF_TYPE_TIME_EXTEND);
43         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
44                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45
46         return ret;
47 }
48
49 /*
50  * The ring buffer is made up of a list of pages. A separate list of pages is
51  * allocated for each CPU. A writer may only write to a buffer that is
52  * associated with the CPU it is currently executing on.  A reader may read
53  * from any per cpu buffer.
54  *
55  * The reader is special. For each per cpu buffer, the reader has its own
56  * reader page. When a reader has read the entire reader page, this reader
57  * page is swapped with another page in the ring buffer.
58  *
59  * Now, as long as the writer is off the reader page, the reader can do what
60  * ever it wants with that page. The writer will never write to that page
61  * again (as long as it is out of the ring buffer).
62  *
63  * Here's some silly ASCII art.
64  *
65  *   +------+
66  *   |reader|          RING BUFFER
67  *   |page  |
68  *   +------+        +---+   +---+   +---+
69  *                   |   |-->|   |-->|   |
70  *                   +---+   +---+   +---+
71  *                     ^               |
72  *                     |               |
73  *                     +---------------+
74  *
75  *
76  *   +------+
77  *   |reader|          RING BUFFER
78  *   |page  |------------------v
79  *   +------+        +---+   +---+   +---+
80  *                   |   |-->|   |-->|   |
81  *                   +---+   +---+   +---+
82  *                     ^               |
83  *                     |               |
84  *                     +---------------+
85  *
86  *
87  *   +------+
88  *   |reader|          RING BUFFER
89  *   |page  |------------------v
90  *   +------+        +---+   +---+   +---+
91  *      ^            |   |-->|   |-->|   |
92  *      |            +---+   +---+   +---+
93  *      |                              |
94  *      |                              |
95  *      +------------------------------+
96  *
97  *
98  *   +------+
99  *   |buffer|          RING BUFFER
100  *   |page  |------------------v
101  *   +------+        +---+   +---+   +---+
102  *      ^            |   |   |   |-->|   |
103  *      |   New      +---+   +---+   +---+
104  *      |  Reader------^               |
105  *      |   page                       |
106  *      +------------------------------+
107  *
108  *
109  * After we make this swap, the reader can hand this page off to the splice
110  * code and be done with it. It can even allocate a new page if it needs to
111  * and swap that into the ring buffer.
112  *
113  * We will be using cmpxchg soon to make all this lockless.
114  *
115  */
116
117 /*
118  * A fast way to enable or disable all ring buffers is to
119  * call tracing_on or tracing_off. Turning off the ring buffers
120  * prevents all ring buffers from being recorded to.
121  * Turning this switch on, makes it OK to write to the
122  * ring buffer, if the ring buffer is enabled itself.
123  *
124  * There's three layers that must be on in order to write
125  * to the ring buffer.
126  *
127  * 1) This global flag must be set.
128  * 2) The ring buffer must be enabled for recording.
129  * 3) The per cpu buffer must be enabled for recording.
130  *
131  * In case of an anomaly, this global flag has a bit set that
132  * will permantly disable all ring buffers.
133  */
134
135 /*
136  * Global flag to disable all recording to ring buffers
137  *  This has two bits: ON, DISABLED
138  *
139  *  ON   DISABLED
140  * ---- ----------
141  *   0      0        : ring buffers are off
142  *   1      0        : ring buffers are on
143  *   X      1        : ring buffers are permanently disabled
144  */
145
146 enum {
147         RB_BUFFERS_ON_BIT       = 0,
148         RB_BUFFERS_DISABLED_BIT = 1,
149 };
150
151 enum {
152         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
153         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
154 };
155
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159
160 /**
161  * tracing_on - enable all tracing buffers
162  *
163  * This function enables all tracing buffers that may have been
164  * disabled with tracing_off.
165  */
166 void tracing_on(void)
167 {
168         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 }
170 EXPORT_SYMBOL_GPL(tracing_on);
171
172 /**
173  * tracing_off - turn off all tracing buffers
174  *
175  * This function stops all tracing buffers from recording data.
176  * It does not disable any overhead the tracers themselves may
177  * be causing. This function simply causes all recording to
178  * the ring buffers to fail.
179  */
180 void tracing_off(void)
181 {
182         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 }
184 EXPORT_SYMBOL_GPL(tracing_off);
185
186 /**
187  * tracing_off_permanent - permanently disable ring buffers
188  *
189  * This function, once called, will disable all ring buffers
190  * permanently.
191  */
192 void tracing_off_permanent(void)
193 {
194         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
195 }
196
197 /**
198  * tracing_is_on - show state of ring buffers enabled
199  */
200 int tracing_is_on(void)
201 {
202         return ring_buffer_flags == RB_BUFFERS_ON;
203 }
204 EXPORT_SYMBOL_GPL(tracing_is_on);
205
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT            4U
208 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
210
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT       0
213 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT       1
216 # define RB_ARCH_ALIGNMENT              8U
217 #endif
218
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221
222 enum {
223         RB_LEN_TIME_EXTEND = 8,
224         RB_LEN_TIME_STAMP = 16,
225 };
226
227 #define skip_time_extend(event) \
228         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
229
230 static inline int rb_null_event(struct ring_buffer_event *event)
231 {
232         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
233 }
234
235 static void rb_event_set_padding(struct ring_buffer_event *event)
236 {
237         /* padding has a NULL time_delta */
238         event->type_len = RINGBUF_TYPE_PADDING;
239         event->time_delta = 0;
240 }
241
242 static unsigned
243 rb_event_data_length(struct ring_buffer_event *event)
244 {
245         unsigned length;
246
247         if (event->type_len)
248                 length = event->type_len * RB_ALIGNMENT;
249         else
250                 length = event->array[0];
251         return length + RB_EVNT_HDR_SIZE;
252 }
253
254 /*
255  * Return the length of the given event. Will return
256  * the length of the time extend if the event is a
257  * time extend.
258  */
259 static inline unsigned
260 rb_event_length(struct ring_buffer_event *event)
261 {
262         switch (event->type_len) {
263         case RINGBUF_TYPE_PADDING:
264                 if (rb_null_event(event))
265                         /* undefined */
266                         return -1;
267                 return  event->array[0] + RB_EVNT_HDR_SIZE;
268
269         case RINGBUF_TYPE_TIME_EXTEND:
270                 return RB_LEN_TIME_EXTEND;
271
272         case RINGBUF_TYPE_TIME_STAMP:
273                 return RB_LEN_TIME_STAMP;
274
275         case RINGBUF_TYPE_DATA:
276                 return rb_event_data_length(event);
277         default:
278                 BUG();
279         }
280         /* not hit */
281         return 0;
282 }
283
284 /*
285  * Return total length of time extend and data,
286  *   or just the event length for all other events.
287  */
288 static inline unsigned
289 rb_event_ts_length(struct ring_buffer_event *event)
290 {
291         unsigned len = 0;
292
293         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
294                 /* time extends include the data event after it */
295                 len = RB_LEN_TIME_EXTEND;
296                 event = skip_time_extend(event);
297         }
298         return len + rb_event_length(event);
299 }
300
301 /**
302  * ring_buffer_event_length - return the length of the event
303  * @event: the event to get the length of
304  *
305  * Returns the size of the data load of a data event.
306  * If the event is something other than a data event, it
307  * returns the size of the event itself. With the exception
308  * of a TIME EXTEND, where it still returns the size of the
309  * data load of the data event after it.
310  */
311 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
312 {
313         unsigned length;
314
315         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
316                 event = skip_time_extend(event);
317
318         length = rb_event_length(event);
319         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
320                 return length;
321         length -= RB_EVNT_HDR_SIZE;
322         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
323                 length -= sizeof(event->array[0]);
324         return length;
325 }
326 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
327
328 /* inline for ring buffer fast paths */
329 static void *
330 rb_event_data(struct ring_buffer_event *event)
331 {
332         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
333                 event = skip_time_extend(event);
334         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
335         /* If length is in len field, then array[0] has the data */
336         if (event->type_len)
337                 return (void *)&event->array[0];
338         /* Otherwise length is in array[0] and array[1] has the data */
339         return (void *)&event->array[1];
340 }
341
342 /**
343  * ring_buffer_event_data - return the data of the event
344  * @event: the event to get the data from
345  */
346 void *ring_buffer_event_data(struct ring_buffer_event *event)
347 {
348         return rb_event_data(event);
349 }
350 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
351
352 #define for_each_buffer_cpu(buffer, cpu)                \
353         for_each_cpu(cpu, buffer->cpumask)
354
355 #define TS_SHIFT        27
356 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
357 #define TS_DELTA_TEST   (~TS_MASK)
358
359 /* Flag when events were overwritten */
360 #define RB_MISSED_EVENTS        (1 << 31)
361 /* Missed count stored at end */
362 #define RB_MISSED_STORED        (1 << 30)
363
364 struct buffer_data_page {
365         u64              time_stamp;    /* page time stamp */
366         local_t          commit;        /* write committed index */
367         unsigned char    data[];        /* data of buffer page */
368 };
369
370 /*
371  * Note, the buffer_page list must be first. The buffer pages
372  * are allocated in cache lines, which means that each buffer
373  * page will be at the beginning of a cache line, and thus
374  * the least significant bits will be zero. We use this to
375  * add flags in the list struct pointers, to make the ring buffer
376  * lockless.
377  */
378 struct buffer_page {
379         struct list_head list;          /* list of buffer pages */
380         local_t          write;         /* index for next write */
381         unsigned         read;          /* index for next read */
382         local_t          entries;       /* entries on this page */
383         unsigned long    real_end;      /* real end of data */
384         struct buffer_data_page *page;  /* Actual data page */
385 };
386
387 /*
388  * The buffer page counters, write and entries, must be reset
389  * atomically when crossing page boundaries. To synchronize this
390  * update, two counters are inserted into the number. One is
391  * the actual counter for the write position or count on the page.
392  *
393  * The other is a counter of updaters. Before an update happens
394  * the update partition of the counter is incremented. This will
395  * allow the updater to update the counter atomically.
396  *
397  * The counter is 20 bits, and the state data is 12.
398  */
399 #define RB_WRITE_MASK           0xfffff
400 #define RB_WRITE_INTCNT         (1 << 20)
401
402 static void rb_init_page(struct buffer_data_page *bpage)
403 {
404         local_set(&bpage->commit, 0);
405 }
406
407 /**
408  * ring_buffer_page_len - the size of data on the page.
409  * @page: The page to read
410  *
411  * Returns the amount of data on the page, including buffer page header.
412  */
413 size_t ring_buffer_page_len(void *page)
414 {
415         return local_read(&((struct buffer_data_page *)page)->commit)
416                 + BUF_PAGE_HDR_SIZE;
417 }
418
419 /*
420  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
421  * this issue out.
422  */
423 static void free_buffer_page(struct buffer_page *bpage)
424 {
425         free_page((unsigned long)bpage->page);
426         kfree(bpage);
427 }
428
429 /*
430  * We need to fit the time_stamp delta into 27 bits.
431  */
432 static inline int test_time_stamp(u64 delta)
433 {
434         if (delta & TS_DELTA_TEST)
435                 return 1;
436         return 0;
437 }
438
439 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
440
441 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
442 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
443
444 int ring_buffer_print_page_header(struct trace_seq *s)
445 {
446         struct buffer_data_page field;
447         int ret;
448
449         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
450                                "offset:0;\tsize:%u;\tsigned:%u;\n",
451                                (unsigned int)sizeof(field.time_stamp),
452                                (unsigned int)is_signed_type(u64));
453
454         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
455                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
456                                (unsigned int)offsetof(typeof(field), commit),
457                                (unsigned int)sizeof(field.commit),
458                                (unsigned int)is_signed_type(long));
459
460         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
461                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
462                                (unsigned int)offsetof(typeof(field), commit),
463                                1,
464                                (unsigned int)is_signed_type(long));
465
466         ret = trace_seq_printf(s, "\tfield: char data;\t"
467                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
468                                (unsigned int)offsetof(typeof(field), data),
469                                (unsigned int)BUF_PAGE_SIZE,
470                                (unsigned int)is_signed_type(char));
471
472         return ret;
473 }
474
475 /*
476  * head_page == tail_page && head == tail then buffer is empty.
477  */
478 struct ring_buffer_per_cpu {
479         int                             cpu;
480         atomic_t                        record_disabled;
481         struct ring_buffer              *buffer;
482         spinlock_t                      reader_lock;    /* serialize readers */
483         arch_spinlock_t                 lock;
484         struct lock_class_key           lock_key;
485         struct list_head                *pages;
486         struct buffer_page              *head_page;     /* read from head */
487         struct buffer_page              *tail_page;     /* write to tail */
488         struct buffer_page              *commit_page;   /* committed pages */
489         struct buffer_page              *reader_page;
490         unsigned long                   lost_events;
491         unsigned long                   last_overrun;
492         local_t                         commit_overrun;
493         local_t                         overrun;
494         local_t                         entries;
495         local_t                         committing;
496         local_t                         commits;
497         unsigned long                   read;
498         u64                             write_stamp;
499         u64                             read_stamp;
500 };
501
502 struct ring_buffer {
503         unsigned                        pages;
504         unsigned                        flags;
505         int                             cpus;
506         atomic_t                        record_disabled;
507         cpumask_var_t                   cpumask;
508
509         struct lock_class_key           *reader_lock_key;
510
511         struct mutex                    mutex;
512
513         struct ring_buffer_per_cpu      **buffers;
514
515 #ifdef CONFIG_HOTPLUG_CPU
516         struct notifier_block           cpu_notify;
517 #endif
518         u64                             (*clock)(void);
519 };
520
521 struct ring_buffer_iter {
522         struct ring_buffer_per_cpu      *cpu_buffer;
523         unsigned long                   head;
524         struct buffer_page              *head_page;
525         struct buffer_page              *cache_reader_page;
526         unsigned long                   cache_read;
527         u64                             read_stamp;
528 };
529
530 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
531 #define RB_WARN_ON(b, cond)                                             \
532         ({                                                              \
533                 int _____ret = unlikely(cond);                          \
534                 if (_____ret) {                                         \
535                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
536                                 struct ring_buffer_per_cpu *__b =       \
537                                         (void *)b;                      \
538                                 atomic_inc(&__b->buffer->record_disabled); \
539                         } else                                          \
540                                 atomic_inc(&b->record_disabled);        \
541                         WARN_ON(1);                                     \
542                 }                                                       \
543                 _____ret;                                               \
544         })
545
546 /* Up this if you want to test the TIME_EXTENTS and normalization */
547 #define DEBUG_SHIFT 0
548
549 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
550 {
551         /* shift to debug/test normalization and TIME_EXTENTS */
552         return buffer->clock() << DEBUG_SHIFT;
553 }
554
555 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
556 {
557         u64 time;
558
559         preempt_disable_notrace();
560         time = rb_time_stamp(buffer);
561         preempt_enable_no_resched_notrace();
562
563         return time;
564 }
565 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
566
567 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
568                                       int cpu, u64 *ts)
569 {
570         /* Just stupid testing the normalize function and deltas */
571         *ts >>= DEBUG_SHIFT;
572 }
573 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
574
575 /*
576  * Making the ring buffer lockless makes things tricky.
577  * Although writes only happen on the CPU that they are on,
578  * and they only need to worry about interrupts. Reads can
579  * happen on any CPU.
580  *
581  * The reader page is always off the ring buffer, but when the
582  * reader finishes with a page, it needs to swap its page with
583  * a new one from the buffer. The reader needs to take from
584  * the head (writes go to the tail). But if a writer is in overwrite
585  * mode and wraps, it must push the head page forward.
586  *
587  * Here lies the problem.
588  *
589  * The reader must be careful to replace only the head page, and
590  * not another one. As described at the top of the file in the
591  * ASCII art, the reader sets its old page to point to the next
592  * page after head. It then sets the page after head to point to
593  * the old reader page. But if the writer moves the head page
594  * during this operation, the reader could end up with the tail.
595  *
596  * We use cmpxchg to help prevent this race. We also do something
597  * special with the page before head. We set the LSB to 1.
598  *
599  * When the writer must push the page forward, it will clear the
600  * bit that points to the head page, move the head, and then set
601  * the bit that points to the new head page.
602  *
603  * We also don't want an interrupt coming in and moving the head
604  * page on another writer. Thus we use the second LSB to catch
605  * that too. Thus:
606  *
607  * head->list->prev->next        bit 1          bit 0
608  *                              -------        -------
609  * Normal page                     0              0
610  * Points to head page             0              1
611  * New head page                   1              0
612  *
613  * Note we can not trust the prev pointer of the head page, because:
614  *
615  * +----+       +-----+        +-----+
616  * |    |------>|  T  |---X--->|  N  |
617  * |    |<------|     |        |     |
618  * +----+       +-----+        +-----+
619  *   ^                           ^ |
620  *   |          +-----+          | |
621  *   +----------|  R  |----------+ |
622  *              |     |<-----------+
623  *              +-----+
624  *
625  * Key:  ---X-->  HEAD flag set in pointer
626  *         T      Tail page
627  *         R      Reader page
628  *         N      Next page
629  *
630  * (see __rb_reserve_next() to see where this happens)
631  *
632  *  What the above shows is that the reader just swapped out
633  *  the reader page with a page in the buffer, but before it
634  *  could make the new header point back to the new page added
635  *  it was preempted by a writer. The writer moved forward onto
636  *  the new page added by the reader and is about to move forward
637  *  again.
638  *
639  *  You can see, it is legitimate for the previous pointer of
640  *  the head (or any page) not to point back to itself. But only
641  *  temporarially.
642  */
643
644 #define RB_PAGE_NORMAL          0UL
645 #define RB_PAGE_HEAD            1UL
646 #define RB_PAGE_UPDATE          2UL
647
648
649 #define RB_FLAG_MASK            3UL
650
651 /* PAGE_MOVED is not part of the mask */
652 #define RB_PAGE_MOVED           4UL
653
654 /*
655  * rb_list_head - remove any bit
656  */
657 static struct list_head *rb_list_head(struct list_head *list)
658 {
659         unsigned long val = (unsigned long)list;
660
661         return (struct list_head *)(val & ~RB_FLAG_MASK);
662 }
663
664 /*
665  * rb_is_head_page - test if the given page is the head page
666  *
667  * Because the reader may move the head_page pointer, we can
668  * not trust what the head page is (it may be pointing to
669  * the reader page). But if the next page is a header page,
670  * its flags will be non zero.
671  */
672 static int inline
673 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
674                 struct buffer_page *page, struct list_head *list)
675 {
676         unsigned long val;
677
678         val = (unsigned long)list->next;
679
680         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
681                 return RB_PAGE_MOVED;
682
683         return val & RB_FLAG_MASK;
684 }
685
686 /*
687  * rb_is_reader_page
688  *
689  * The unique thing about the reader page, is that, if the
690  * writer is ever on it, the previous pointer never points
691  * back to the reader page.
692  */
693 static int rb_is_reader_page(struct buffer_page *page)
694 {
695         struct list_head *list = page->list.prev;
696
697         return rb_list_head(list->next) != &page->list;
698 }
699
700 /*
701  * rb_set_list_to_head - set a list_head to be pointing to head.
702  */
703 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
704                                 struct list_head *list)
705 {
706         unsigned long *ptr;
707
708         ptr = (unsigned long *)&list->next;
709         *ptr |= RB_PAGE_HEAD;
710         *ptr &= ~RB_PAGE_UPDATE;
711 }
712
713 /*
714  * rb_head_page_activate - sets up head page
715  */
716 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
717 {
718         struct buffer_page *head;
719
720         head = cpu_buffer->head_page;
721         if (!head)
722                 return;
723
724         /*
725          * Set the previous list pointer to have the HEAD flag.
726          */
727         rb_set_list_to_head(cpu_buffer, head->list.prev);
728 }
729
730 static void rb_list_head_clear(struct list_head *list)
731 {
732         unsigned long *ptr = (unsigned long *)&list->next;
733
734         *ptr &= ~RB_FLAG_MASK;
735 }
736
737 /*
738  * rb_head_page_dactivate - clears head page ptr (for free list)
739  */
740 static void
741 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
742 {
743         struct list_head *hd;
744
745         /* Go through the whole list and clear any pointers found. */
746         rb_list_head_clear(cpu_buffer->pages);
747
748         list_for_each(hd, cpu_buffer->pages)
749                 rb_list_head_clear(hd);
750 }
751
752 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
753                             struct buffer_page *head,
754                             struct buffer_page *prev,
755                             int old_flag, int new_flag)
756 {
757         struct list_head *list;
758         unsigned long val = (unsigned long)&head->list;
759         unsigned long ret;
760
761         list = &prev->list;
762
763         val &= ~RB_FLAG_MASK;
764
765         ret = cmpxchg((unsigned long *)&list->next,
766                       val | old_flag, val | new_flag);
767
768         /* check if the reader took the page */
769         if ((ret & ~RB_FLAG_MASK) != val)
770                 return RB_PAGE_MOVED;
771
772         return ret & RB_FLAG_MASK;
773 }
774
775 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
776                                    struct buffer_page *head,
777                                    struct buffer_page *prev,
778                                    int old_flag)
779 {
780         return rb_head_page_set(cpu_buffer, head, prev,
781                                 old_flag, RB_PAGE_UPDATE);
782 }
783
784 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
785                                  struct buffer_page *head,
786                                  struct buffer_page *prev,
787                                  int old_flag)
788 {
789         return rb_head_page_set(cpu_buffer, head, prev,
790                                 old_flag, RB_PAGE_HEAD);
791 }
792
793 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
794                                    struct buffer_page *head,
795                                    struct buffer_page *prev,
796                                    int old_flag)
797 {
798         return rb_head_page_set(cpu_buffer, head, prev,
799                                 old_flag, RB_PAGE_NORMAL);
800 }
801
802 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
803                                struct buffer_page **bpage)
804 {
805         struct list_head *p = rb_list_head((*bpage)->list.next);
806
807         *bpage = list_entry(p, struct buffer_page, list);
808 }
809
810 static struct buffer_page *
811 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
812 {
813         struct buffer_page *head;
814         struct buffer_page *page;
815         struct list_head *list;
816         int i;
817
818         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
819                 return NULL;
820
821         /* sanity check */
822         list = cpu_buffer->pages;
823         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
824                 return NULL;
825
826         page = head = cpu_buffer->head_page;
827         /*
828          * It is possible that the writer moves the header behind
829          * where we started, and we miss in one loop.
830          * A second loop should grab the header, but we'll do
831          * three loops just because I'm paranoid.
832          */
833         for (i = 0; i < 3; i++) {
834                 do {
835                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
836                                 cpu_buffer->head_page = page;
837                                 return page;
838                         }
839                         rb_inc_page(cpu_buffer, &page);
840                 } while (page != head);
841         }
842
843         RB_WARN_ON(cpu_buffer, 1);
844
845         return NULL;
846 }
847
848 static int rb_head_page_replace(struct buffer_page *old,
849                                 struct buffer_page *new)
850 {
851         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
852         unsigned long val;
853         unsigned long ret;
854
855         val = *ptr & ~RB_FLAG_MASK;
856         val |= RB_PAGE_HEAD;
857
858         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
859
860         return ret == val;
861 }
862
863 /*
864  * rb_tail_page_update - move the tail page forward
865  *
866  * Returns 1 if moved tail page, 0 if someone else did.
867  */
868 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
869                                struct buffer_page *tail_page,
870                                struct buffer_page *next_page)
871 {
872         struct buffer_page *old_tail;
873         unsigned long old_entries;
874         unsigned long old_write;
875         int ret = 0;
876
877         /*
878          * The tail page now needs to be moved forward.
879          *
880          * We need to reset the tail page, but without messing
881          * with possible erasing of data brought in by interrupts
882          * that have moved the tail page and are currently on it.
883          *
884          * We add a counter to the write field to denote this.
885          */
886         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
887         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
888
889         /*
890          * Just make sure we have seen our old_write and synchronize
891          * with any interrupts that come in.
892          */
893         barrier();
894
895         /*
896          * If the tail page is still the same as what we think
897          * it is, then it is up to us to update the tail
898          * pointer.
899          */
900         if (tail_page == cpu_buffer->tail_page) {
901                 /* Zero the write counter */
902                 unsigned long val = old_write & ~RB_WRITE_MASK;
903                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
904
905                 /*
906                  * This will only succeed if an interrupt did
907                  * not come in and change it. In which case, we
908                  * do not want to modify it.
909                  *
910                  * We add (void) to let the compiler know that we do not care
911                  * about the return value of these functions. We use the
912                  * cmpxchg to only update if an interrupt did not already
913                  * do it for us. If the cmpxchg fails, we don't care.
914                  */
915                 (void)local_cmpxchg(&next_page->write, old_write, val);
916                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
917
918                 /*
919                  * No need to worry about races with clearing out the commit.
920                  * it only can increment when a commit takes place. But that
921                  * only happens in the outer most nested commit.
922                  */
923                 local_set(&next_page->page->commit, 0);
924
925                 old_tail = cmpxchg(&cpu_buffer->tail_page,
926                                    tail_page, next_page);
927
928                 if (old_tail == tail_page)
929                         ret = 1;
930         }
931
932         return ret;
933 }
934
935 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
936                           struct buffer_page *bpage)
937 {
938         unsigned long val = (unsigned long)bpage;
939
940         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
941                 return 1;
942
943         return 0;
944 }
945
946 /**
947  * rb_check_list - make sure a pointer to a list has the last bits zero
948  */
949 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
950                          struct list_head *list)
951 {
952         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
953                 return 1;
954         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
955                 return 1;
956         return 0;
957 }
958
959 /**
960  * check_pages - integrity check of buffer pages
961  * @cpu_buffer: CPU buffer with pages to test
962  *
963  * As a safety measure we check to make sure the data pages have not
964  * been corrupted.
965  */
966 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
967 {
968         struct list_head *head = cpu_buffer->pages;
969         struct buffer_page *bpage, *tmp;
970
971         rb_head_page_deactivate(cpu_buffer);
972
973         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
974                 return -1;
975         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
976                 return -1;
977
978         if (rb_check_list(cpu_buffer, head))
979                 return -1;
980
981         list_for_each_entry_safe(bpage, tmp, head, list) {
982                 if (RB_WARN_ON(cpu_buffer,
983                                bpage->list.next->prev != &bpage->list))
984                         return -1;
985                 if (RB_WARN_ON(cpu_buffer,
986                                bpage->list.prev->next != &bpage->list))
987                         return -1;
988                 if (rb_check_list(cpu_buffer, &bpage->list))
989                         return -1;
990         }
991
992         rb_head_page_activate(cpu_buffer);
993
994         return 0;
995 }
996
997 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
998                              unsigned nr_pages)
999 {
1000         struct buffer_page *bpage, *tmp;
1001         unsigned long addr;
1002         LIST_HEAD(pages);
1003         unsigned i;
1004
1005         WARN_ON(!nr_pages);
1006
1007         for (i = 0; i < nr_pages; i++) {
1008                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1009                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
1010                 if (!bpage)
1011                         goto free_pages;
1012
1013                 rb_check_bpage(cpu_buffer, bpage);
1014
1015                 list_add(&bpage->list, &pages);
1016
1017                 addr = __get_free_page(GFP_KERNEL);
1018                 if (!addr)
1019                         goto free_pages;
1020                 bpage->page = (void *)addr;
1021                 rb_init_page(bpage->page);
1022         }
1023
1024         /*
1025          * The ring buffer page list is a circular list that does not
1026          * start and end with a list head. All page list items point to
1027          * other pages.
1028          */
1029         cpu_buffer->pages = pages.next;
1030         list_del(&pages);
1031
1032         rb_check_pages(cpu_buffer);
1033
1034         return 0;
1035
1036  free_pages:
1037         list_for_each_entry_safe(bpage, tmp, &pages, list) {
1038                 list_del_init(&bpage->list);
1039                 free_buffer_page(bpage);
1040         }
1041         return -ENOMEM;
1042 }
1043
1044 static struct ring_buffer_per_cpu *
1045 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1046 {
1047         struct ring_buffer_per_cpu *cpu_buffer;
1048         struct buffer_page *bpage;
1049         unsigned long addr;
1050         int ret;
1051
1052         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1053                                   GFP_KERNEL, cpu_to_node(cpu));
1054         if (!cpu_buffer)
1055                 return NULL;
1056
1057         cpu_buffer->cpu = cpu;
1058         cpu_buffer->buffer = buffer;
1059         spin_lock_init(&cpu_buffer->reader_lock);
1060         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1061         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1062
1063         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064                             GFP_KERNEL, cpu_to_node(cpu));
1065         if (!bpage)
1066                 goto fail_free_buffer;
1067
1068         rb_check_bpage(cpu_buffer, bpage);
1069
1070         cpu_buffer->reader_page = bpage;
1071         addr = __get_free_page(GFP_KERNEL);
1072         if (!addr)
1073                 goto fail_free_reader;
1074         bpage->page = (void *)addr;
1075         rb_init_page(bpage->page);
1076
1077         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078
1079         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1080         if (ret < 0)
1081                 goto fail_free_reader;
1082
1083         cpu_buffer->head_page
1084                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1085         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1086
1087         rb_head_page_activate(cpu_buffer);
1088
1089         return cpu_buffer;
1090
1091  fail_free_reader:
1092         free_buffer_page(cpu_buffer->reader_page);
1093
1094  fail_free_buffer:
1095         kfree(cpu_buffer);
1096         return NULL;
1097 }
1098
1099 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101         struct list_head *head = cpu_buffer->pages;
1102         struct buffer_page *bpage, *tmp;
1103
1104         free_buffer_page(cpu_buffer->reader_page);
1105
1106         rb_head_page_deactivate(cpu_buffer);
1107
1108         if (head) {
1109                 list_for_each_entry_safe(bpage, tmp, head, list) {
1110                         list_del_init(&bpage->list);
1111                         free_buffer_page(bpage);
1112                 }
1113                 bpage = list_entry(head, struct buffer_page, list);
1114                 free_buffer_page(bpage);
1115         }
1116
1117         kfree(cpu_buffer);
1118 }
1119
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 static int rb_cpu_notify(struct notifier_block *self,
1122                          unsigned long action, void *hcpu);
1123 #endif
1124
1125 /**
1126  * ring_buffer_alloc - allocate a new ring_buffer
1127  * @size: the size in bytes per cpu that is needed.
1128  * @flags: attributes to set for the ring buffer.
1129  *
1130  * Currently the only flag that is available is the RB_FL_OVERWRITE
1131  * flag. This flag means that the buffer will overwrite old data
1132  * when the buffer wraps. If this flag is not set, the buffer will
1133  * drop data when the tail hits the head.
1134  */
1135 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1136                                         struct lock_class_key *key)
1137 {
1138         struct ring_buffer *buffer;
1139         int bsize;
1140         int cpu;
1141
1142         /* keep it in its own cache line */
1143         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1144                          GFP_KERNEL);
1145         if (!buffer)
1146                 return NULL;
1147
1148         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1149                 goto fail_free_buffer;
1150
1151         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1152         buffer->flags = flags;
1153         buffer->clock = trace_clock_local;
1154         buffer->reader_lock_key = key;
1155
1156         /* need at least two pages */
1157         if (buffer->pages < 2)
1158                 buffer->pages = 2;
1159
1160         /*
1161          * In case of non-hotplug cpu, if the ring-buffer is allocated
1162          * in early initcall, it will not be notified of secondary cpus.
1163          * In that off case, we need to allocate for all possible cpus.
1164          */
1165 #ifdef CONFIG_HOTPLUG_CPU
1166         get_online_cpus();
1167         cpumask_copy(buffer->cpumask, cpu_online_mask);
1168 #else
1169         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1170 #endif
1171         buffer->cpus = nr_cpu_ids;
1172
1173         bsize = sizeof(void *) * nr_cpu_ids;
1174         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1175                                   GFP_KERNEL);
1176         if (!buffer->buffers)
1177                 goto fail_free_cpumask;
1178
1179         for_each_buffer_cpu(buffer, cpu) {
1180                 buffer->buffers[cpu] =
1181                         rb_allocate_cpu_buffer(buffer, cpu);
1182                 if (!buffer->buffers[cpu])
1183                         goto fail_free_buffers;
1184         }
1185
1186 #ifdef CONFIG_HOTPLUG_CPU
1187         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1188         buffer->cpu_notify.priority = 0;
1189         register_cpu_notifier(&buffer->cpu_notify);
1190 #endif
1191
1192         put_online_cpus();
1193         mutex_init(&buffer->mutex);
1194
1195         return buffer;
1196
1197  fail_free_buffers:
1198         for_each_buffer_cpu(buffer, cpu) {
1199                 if (buffer->buffers[cpu])
1200                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1201         }
1202         kfree(buffer->buffers);
1203
1204  fail_free_cpumask:
1205         free_cpumask_var(buffer->cpumask);
1206         put_online_cpus();
1207
1208  fail_free_buffer:
1209         kfree(buffer);
1210         return NULL;
1211 }
1212 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1213
1214 /**
1215  * ring_buffer_free - free a ring buffer.
1216  * @buffer: the buffer to free.
1217  */
1218 void
1219 ring_buffer_free(struct ring_buffer *buffer)
1220 {
1221         int cpu;
1222
1223         get_online_cpus();
1224
1225 #ifdef CONFIG_HOTPLUG_CPU
1226         unregister_cpu_notifier(&buffer->cpu_notify);
1227 #endif
1228
1229         for_each_buffer_cpu(buffer, cpu)
1230                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1231
1232         put_online_cpus();
1233
1234         kfree(buffer->buffers);
1235         free_cpumask_var(buffer->cpumask);
1236
1237         kfree(buffer);
1238 }
1239 EXPORT_SYMBOL_GPL(ring_buffer_free);
1240
1241 void ring_buffer_set_clock(struct ring_buffer *buffer,
1242                            u64 (*clock)(void))
1243 {
1244         buffer->clock = clock;
1245 }
1246
1247 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1248
1249 static void
1250 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1251 {
1252         struct buffer_page *bpage;
1253         struct list_head *p;
1254         unsigned i;
1255
1256         spin_lock_irq(&cpu_buffer->reader_lock);
1257         rb_head_page_deactivate(cpu_buffer);
1258
1259         for (i = 0; i < nr_pages; i++) {
1260                 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1261                         goto out;
1262                 p = cpu_buffer->pages->next;
1263                 bpage = list_entry(p, struct buffer_page, list);
1264                 list_del_init(&bpage->list);
1265                 free_buffer_page(bpage);
1266         }
1267         if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1268                 goto out;
1269
1270         rb_reset_cpu(cpu_buffer);
1271         rb_check_pages(cpu_buffer);
1272
1273 out:
1274         spin_unlock_irq(&cpu_buffer->reader_lock);
1275 }
1276
1277 static void
1278 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1279                 struct list_head *pages, unsigned nr_pages)
1280 {
1281         struct buffer_page *bpage;
1282         struct list_head *p;
1283         unsigned i;
1284
1285         spin_lock_irq(&cpu_buffer->reader_lock);
1286         rb_head_page_deactivate(cpu_buffer);
1287
1288         for (i = 0; i < nr_pages; i++) {
1289                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1290                         goto out;
1291                 p = pages->next;
1292                 bpage = list_entry(p, struct buffer_page, list);
1293                 list_del_init(&bpage->list);
1294                 list_add_tail(&bpage->list, cpu_buffer->pages);
1295         }
1296         rb_reset_cpu(cpu_buffer);
1297         rb_check_pages(cpu_buffer);
1298
1299 out:
1300         spin_unlock_irq(&cpu_buffer->reader_lock);
1301 }
1302
1303 /**
1304  * ring_buffer_resize - resize the ring buffer
1305  * @buffer: the buffer to resize.
1306  * @size: the new size.
1307  *
1308  * Minimum size is 2 * BUF_PAGE_SIZE.
1309  *
1310  * Returns -1 on failure.
1311  */
1312 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1313 {
1314         struct ring_buffer_per_cpu *cpu_buffer;
1315         unsigned nr_pages, rm_pages, new_pages;
1316         struct buffer_page *bpage, *tmp;
1317         unsigned long buffer_size;
1318         unsigned long addr;
1319         LIST_HEAD(pages);
1320         int i, cpu;
1321
1322         /*
1323          * Always succeed at resizing a non-existent buffer:
1324          */
1325         if (!buffer)
1326                 return size;
1327
1328         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1329         size *= BUF_PAGE_SIZE;
1330         buffer_size = buffer->pages * BUF_PAGE_SIZE;
1331
1332         /* we need a minimum of two pages */
1333         if (size < BUF_PAGE_SIZE * 2)
1334                 size = BUF_PAGE_SIZE * 2;
1335
1336         if (size == buffer_size)
1337                 return size;
1338
1339         atomic_inc(&buffer->record_disabled);
1340
1341         /* Make sure all writers are done with this buffer. */
1342         synchronize_sched();
1343
1344         mutex_lock(&buffer->mutex);
1345         get_online_cpus();
1346
1347         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1348
1349         if (size < buffer_size) {
1350
1351                 /* easy case, just free pages */
1352                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1353                         goto out_fail;
1354
1355                 rm_pages = buffer->pages - nr_pages;
1356
1357                 for_each_buffer_cpu(buffer, cpu) {
1358                         cpu_buffer = buffer->buffers[cpu];
1359                         rb_remove_pages(cpu_buffer, rm_pages);
1360                 }
1361                 goto out;
1362         }
1363
1364         /*
1365          * This is a bit more difficult. We only want to add pages
1366          * when we can allocate enough for all CPUs. We do this
1367          * by allocating all the pages and storing them on a local
1368          * link list. If we succeed in our allocation, then we
1369          * add these pages to the cpu_buffers. Otherwise we just free
1370          * them all and return -ENOMEM;
1371          */
1372         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1373                 goto out_fail;
1374
1375         new_pages = nr_pages - buffer->pages;
1376
1377         for_each_buffer_cpu(buffer, cpu) {
1378                 for (i = 0; i < new_pages; i++) {
1379                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1380                                                   cache_line_size()),
1381                                             GFP_KERNEL, cpu_to_node(cpu));
1382                         if (!bpage)
1383                                 goto free_pages;
1384                         list_add(&bpage->list, &pages);
1385                         addr = __get_free_page(GFP_KERNEL);
1386                         if (!addr)
1387                                 goto free_pages;
1388                         bpage->page = (void *)addr;
1389                         rb_init_page(bpage->page);
1390                 }
1391         }
1392
1393         for_each_buffer_cpu(buffer, cpu) {
1394                 cpu_buffer = buffer->buffers[cpu];
1395                 rb_insert_pages(cpu_buffer, &pages, new_pages);
1396         }
1397
1398         if (RB_WARN_ON(buffer, !list_empty(&pages)))
1399                 goto out_fail;
1400
1401  out:
1402         buffer->pages = nr_pages;
1403         put_online_cpus();
1404         mutex_unlock(&buffer->mutex);
1405
1406         atomic_dec(&buffer->record_disabled);
1407
1408         return size;
1409
1410  free_pages:
1411         list_for_each_entry_safe(bpage, tmp, &pages, list) {
1412                 list_del_init(&bpage->list);
1413                 free_buffer_page(bpage);
1414         }
1415         put_online_cpus();
1416         mutex_unlock(&buffer->mutex);
1417         atomic_dec(&buffer->record_disabled);
1418         return -ENOMEM;
1419
1420         /*
1421          * Something went totally wrong, and we are too paranoid
1422          * to even clean up the mess.
1423          */
1424  out_fail:
1425         put_online_cpus();
1426         mutex_unlock(&buffer->mutex);
1427         atomic_dec(&buffer->record_disabled);
1428         return -1;
1429 }
1430 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1431
1432 static inline void *
1433 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1434 {
1435         return bpage->data + index;
1436 }
1437
1438 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1439 {
1440         return bpage->page->data + index;
1441 }
1442
1443 static inline struct ring_buffer_event *
1444 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1445 {
1446         return __rb_page_index(cpu_buffer->reader_page,
1447                                cpu_buffer->reader_page->read);
1448 }
1449
1450 static inline struct ring_buffer_event *
1451 rb_iter_head_event(struct ring_buffer_iter *iter)
1452 {
1453         return __rb_page_index(iter->head_page, iter->head);
1454 }
1455
1456 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1457 {
1458         return local_read(&bpage->write) & RB_WRITE_MASK;
1459 }
1460
1461 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1462 {
1463         return local_read(&bpage->page->commit);
1464 }
1465
1466 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1467 {
1468         return local_read(&bpage->entries) & RB_WRITE_MASK;
1469 }
1470
1471 /* Size is determined by what has been commited */
1472 static inline unsigned rb_page_size(struct buffer_page *bpage)
1473 {
1474         return rb_page_commit(bpage);
1475 }
1476
1477 static inline unsigned
1478 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1479 {
1480         return rb_page_commit(cpu_buffer->commit_page);
1481 }
1482
1483 static inline unsigned
1484 rb_event_index(struct ring_buffer_event *event)
1485 {
1486         unsigned long addr = (unsigned long)event;
1487
1488         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1489 }
1490
1491 static inline int
1492 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1493                    struct ring_buffer_event *event)
1494 {
1495         unsigned long addr = (unsigned long)event;
1496         unsigned long index;
1497
1498         index = rb_event_index(event);
1499         addr &= PAGE_MASK;
1500
1501         return cpu_buffer->commit_page->page == (void *)addr &&
1502                 rb_commit_index(cpu_buffer) == index;
1503 }
1504
1505 static void
1506 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1507 {
1508         unsigned long max_count;
1509
1510         /*
1511          * We only race with interrupts and NMIs on this CPU.
1512          * If we own the commit event, then we can commit
1513          * all others that interrupted us, since the interruptions
1514          * are in stack format (they finish before they come
1515          * back to us). This allows us to do a simple loop to
1516          * assign the commit to the tail.
1517          */
1518  again:
1519         max_count = cpu_buffer->buffer->pages * 100;
1520
1521         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1522                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1523                         return;
1524                 if (RB_WARN_ON(cpu_buffer,
1525                                rb_is_reader_page(cpu_buffer->tail_page)))
1526                         return;
1527                 local_set(&cpu_buffer->commit_page->page->commit,
1528                           rb_page_write(cpu_buffer->commit_page));
1529                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1530                 cpu_buffer->write_stamp =
1531                         cpu_buffer->commit_page->page->time_stamp;
1532                 /* add barrier to keep gcc from optimizing too much */
1533                 barrier();
1534         }
1535         while (rb_commit_index(cpu_buffer) !=
1536                rb_page_write(cpu_buffer->commit_page)) {
1537
1538                 local_set(&cpu_buffer->commit_page->page->commit,
1539                           rb_page_write(cpu_buffer->commit_page));
1540                 RB_WARN_ON(cpu_buffer,
1541                            local_read(&cpu_buffer->commit_page->page->commit) &
1542                            ~RB_WRITE_MASK);
1543                 barrier();
1544         }
1545
1546         /* again, keep gcc from optimizing */
1547         barrier();
1548
1549         /*
1550          * If an interrupt came in just after the first while loop
1551          * and pushed the tail page forward, we will be left with
1552          * a dangling commit that will never go forward.
1553          */
1554         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1555                 goto again;
1556 }
1557
1558 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1559 {
1560         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1561         cpu_buffer->reader_page->read = 0;
1562 }
1563
1564 static void rb_inc_iter(struct ring_buffer_iter *iter)
1565 {
1566         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1567
1568         /*
1569          * The iterator could be on the reader page (it starts there).
1570          * But the head could have moved, since the reader was
1571          * found. Check for this case and assign the iterator
1572          * to the head page instead of next.
1573          */
1574         if (iter->head_page == cpu_buffer->reader_page)
1575                 iter->head_page = rb_set_head_page(cpu_buffer);
1576         else
1577                 rb_inc_page(cpu_buffer, &iter->head_page);
1578
1579         iter->read_stamp = iter->head_page->page->time_stamp;
1580         iter->head = 0;
1581 }
1582
1583 /* Slow path, do not inline */
1584 static noinline struct ring_buffer_event *
1585 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1586 {
1587         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1588
1589         /* Not the first event on the page? */
1590         if (rb_event_index(event)) {
1591                 event->time_delta = delta & TS_MASK;
1592                 event->array[0] = delta >> TS_SHIFT;
1593         } else {
1594                 /* nope, just zero it */
1595                 event->time_delta = 0;
1596                 event->array[0] = 0;
1597         }
1598
1599         return skip_time_extend(event);
1600 }
1601
1602 /**
1603  * ring_buffer_update_event - update event type and data
1604  * @event: the even to update
1605  * @type: the type of event
1606  * @length: the size of the event field in the ring buffer
1607  *
1608  * Update the type and data fields of the event. The length
1609  * is the actual size that is written to the ring buffer,
1610  * and with this, we can determine what to place into the
1611  * data field.
1612  */
1613 static void
1614 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1615                 struct ring_buffer_event *event, unsigned length,
1616                 int add_timestamp, u64 delta)
1617 {
1618         /* Only a commit updates the timestamp */
1619         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1620                 delta = 0;
1621
1622         /*
1623          * If we need to add a timestamp, then we
1624          * add it to the start of the resevered space.
1625          */
1626         if (unlikely(add_timestamp)) {
1627                 event = rb_add_time_stamp(event, delta);
1628                 length -= RB_LEN_TIME_EXTEND;
1629                 delta = 0;
1630         }
1631
1632         event->time_delta = delta;
1633         length -= RB_EVNT_HDR_SIZE;
1634         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1635                 event->type_len = 0;
1636                 event->array[0] = length;
1637         } else
1638                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1639 }
1640
1641 /*
1642  * rb_handle_head_page - writer hit the head page
1643  *
1644  * Returns: +1 to retry page
1645  *           0 to continue
1646  *          -1 on error
1647  */
1648 static int
1649 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1650                     struct buffer_page *tail_page,
1651                     struct buffer_page *next_page)
1652 {
1653         struct buffer_page *new_head;
1654         int entries;
1655         int type;
1656         int ret;
1657
1658         entries = rb_page_entries(next_page);
1659
1660         /*
1661          * The hard part is here. We need to move the head
1662          * forward, and protect against both readers on
1663          * other CPUs and writers coming in via interrupts.
1664          */
1665         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1666                                        RB_PAGE_HEAD);
1667
1668         /*
1669          * type can be one of four:
1670          *  NORMAL - an interrupt already moved it for us
1671          *  HEAD   - we are the first to get here.
1672          *  UPDATE - we are the interrupt interrupting
1673          *           a current move.
1674          *  MOVED  - a reader on another CPU moved the next
1675          *           pointer to its reader page. Give up
1676          *           and try again.
1677          */
1678
1679         switch (type) {
1680         case RB_PAGE_HEAD:
1681                 /*
1682                  * We changed the head to UPDATE, thus
1683                  * it is our responsibility to update
1684                  * the counters.
1685                  */
1686                 local_add(entries, &cpu_buffer->overrun);
1687
1688                 /*
1689                  * The entries will be zeroed out when we move the
1690                  * tail page.
1691                  */
1692
1693                 /* still more to do */
1694                 break;
1695
1696         case RB_PAGE_UPDATE:
1697                 /*
1698                  * This is an interrupt that interrupt the
1699                  * previous update. Still more to do.
1700                  */
1701                 break;
1702         case RB_PAGE_NORMAL:
1703                 /*
1704                  * An interrupt came in before the update
1705                  * and processed this for us.
1706                  * Nothing left to do.
1707                  */
1708                 return 1;
1709         case RB_PAGE_MOVED:
1710                 /*
1711                  * The reader is on another CPU and just did
1712                  * a swap with our next_page.
1713                  * Try again.
1714                  */
1715                 return 1;
1716         default:
1717                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1718                 return -1;
1719         }
1720
1721         /*
1722          * Now that we are here, the old head pointer is
1723          * set to UPDATE. This will keep the reader from
1724          * swapping the head page with the reader page.
1725          * The reader (on another CPU) will spin till
1726          * we are finished.
1727          *
1728          * We just need to protect against interrupts
1729          * doing the job. We will set the next pointer
1730          * to HEAD. After that, we set the old pointer
1731          * to NORMAL, but only if it was HEAD before.
1732          * otherwise we are an interrupt, and only
1733          * want the outer most commit to reset it.
1734          */
1735         new_head = next_page;
1736         rb_inc_page(cpu_buffer, &new_head);
1737
1738         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1739                                     RB_PAGE_NORMAL);
1740
1741         /*
1742          * Valid returns are:
1743          *  HEAD   - an interrupt came in and already set it.
1744          *  NORMAL - One of two things:
1745          *            1) We really set it.
1746          *            2) A bunch of interrupts came in and moved
1747          *               the page forward again.
1748          */
1749         switch (ret) {
1750         case RB_PAGE_HEAD:
1751         case RB_PAGE_NORMAL:
1752                 /* OK */
1753                 break;
1754         default:
1755                 RB_WARN_ON(cpu_buffer, 1);
1756                 return -1;
1757         }
1758
1759         /*
1760          * It is possible that an interrupt came in,
1761          * set the head up, then more interrupts came in
1762          * and moved it again. When we get back here,
1763          * the page would have been set to NORMAL but we
1764          * just set it back to HEAD.
1765          *
1766          * How do you detect this? Well, if that happened
1767          * the tail page would have moved.
1768          */
1769         if (ret == RB_PAGE_NORMAL) {
1770                 /*
1771                  * If the tail had moved passed next, then we need
1772                  * to reset the pointer.
1773                  */
1774                 if (cpu_buffer->tail_page != tail_page &&
1775                     cpu_buffer->tail_page != next_page)
1776                         rb_head_page_set_normal(cpu_buffer, new_head,
1777                                                 next_page,
1778                                                 RB_PAGE_HEAD);
1779         }
1780
1781         /*
1782          * If this was the outer most commit (the one that
1783          * changed the original pointer from HEAD to UPDATE),
1784          * then it is up to us to reset it to NORMAL.
1785          */
1786         if (type == RB_PAGE_HEAD) {
1787                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1788                                               tail_page,
1789                                               RB_PAGE_UPDATE);
1790                 if (RB_WARN_ON(cpu_buffer,
1791                                ret != RB_PAGE_UPDATE))
1792                         return -1;
1793         }
1794
1795         return 0;
1796 }
1797
1798 static unsigned rb_calculate_event_length(unsigned length)
1799 {
1800         struct ring_buffer_event event; /* Used only for sizeof array */
1801
1802         /* zero length can cause confusions */
1803         if (!length)
1804                 length = 1;
1805
1806         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1807                 length += sizeof(event.array[0]);
1808
1809         length += RB_EVNT_HDR_SIZE;
1810         length = ALIGN(length, RB_ARCH_ALIGNMENT);
1811
1812         return length;
1813 }
1814
1815 static inline void
1816 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1817               struct buffer_page *tail_page,
1818               unsigned long tail, unsigned long length)
1819 {
1820         struct ring_buffer_event *event;
1821
1822         /*
1823          * Only the event that crossed the page boundary
1824          * must fill the old tail_page with padding.
1825          */
1826         if (tail >= BUF_PAGE_SIZE) {
1827                 /*
1828                  * If the page was filled, then we still need
1829                  * to update the real_end. Reset it to zero
1830                  * and the reader will ignore it.
1831                  */
1832                 if (tail == BUF_PAGE_SIZE)
1833                         tail_page->real_end = 0;
1834
1835                 local_sub(length, &tail_page->write);
1836                 return;
1837         }
1838
1839         event = __rb_page_index(tail_page, tail);
1840         kmemcheck_annotate_bitfield(event, bitfield);
1841
1842         /*
1843          * Save the original length to the meta data.
1844          * This will be used by the reader to add lost event
1845          * counter.
1846          */
1847         tail_page->real_end = tail;
1848
1849         /*
1850          * If this event is bigger than the minimum size, then
1851          * we need to be careful that we don't subtract the
1852          * write counter enough to allow another writer to slip
1853          * in on this page.
1854          * We put in a discarded commit instead, to make sure
1855          * that this space is not used again.
1856          *
1857          * If we are less than the minimum size, we don't need to
1858          * worry about it.
1859          */
1860         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1861                 /* No room for any events */
1862
1863                 /* Mark the rest of the page with padding */
1864                 rb_event_set_padding(event);
1865
1866                 /* Set the write back to the previous setting */
1867                 local_sub(length, &tail_page->write);
1868                 return;
1869         }
1870
1871         /* Put in a discarded event */
1872         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1873         event->type_len = RINGBUF_TYPE_PADDING;
1874         /* time delta must be non zero */
1875         event->time_delta = 1;
1876
1877         /* Set write to end of buffer */
1878         length = (tail + length) - BUF_PAGE_SIZE;
1879         local_sub(length, &tail_page->write);
1880 }
1881
1882 /*
1883  * This is the slow path, force gcc not to inline it.
1884  */
1885 static noinline struct ring_buffer_event *
1886 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1887              unsigned long length, unsigned long tail,
1888              struct buffer_page *tail_page, u64 ts)
1889 {
1890         struct buffer_page *commit_page = cpu_buffer->commit_page;
1891         struct ring_buffer *buffer = cpu_buffer->buffer;
1892         struct buffer_page *next_page;
1893         int ret;
1894
1895         next_page = tail_page;
1896
1897         rb_inc_page(cpu_buffer, &next_page);
1898
1899         /*
1900          * If for some reason, we had an interrupt storm that made
1901          * it all the way around the buffer, bail, and warn
1902          * about it.
1903          */
1904         if (unlikely(next_page == commit_page)) {
1905                 local_inc(&cpu_buffer->commit_overrun);
1906                 goto out_reset;
1907         }
1908
1909         /*
1910          * This is where the fun begins!
1911          *
1912          * We are fighting against races between a reader that
1913          * could be on another CPU trying to swap its reader
1914          * page with the buffer head.
1915          *
1916          * We are also fighting against interrupts coming in and
1917          * moving the head or tail on us as well.
1918          *
1919          * If the next page is the head page then we have filled
1920          * the buffer, unless the commit page is still on the
1921          * reader page.
1922          */
1923         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1924
1925                 /*
1926                  * If the commit is not on the reader page, then
1927                  * move the header page.
1928                  */
1929                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1930                         /*
1931                          * If we are not in overwrite mode,
1932                          * this is easy, just stop here.
1933                          */
1934                         if (!(buffer->flags & RB_FL_OVERWRITE))
1935                                 goto out_reset;
1936
1937                         ret = rb_handle_head_page(cpu_buffer,
1938                                                   tail_page,
1939                                                   next_page);
1940                         if (ret < 0)
1941                                 goto out_reset;
1942                         if (ret)
1943                                 goto out_again;
1944                 } else {
1945                         /*
1946                          * We need to be careful here too. The
1947                          * commit page could still be on the reader
1948                          * page. We could have a small buffer, and
1949                          * have filled up the buffer with events
1950                          * from interrupts and such, and wrapped.
1951                          *
1952                          * Note, if the tail page is also the on the
1953                          * reader_page, we let it move out.
1954                          */
1955                         if (unlikely((cpu_buffer->commit_page !=
1956                                       cpu_buffer->tail_page) &&
1957                                      (cpu_buffer->commit_page ==
1958                                       cpu_buffer->reader_page))) {
1959                                 local_inc(&cpu_buffer->commit_overrun);
1960                                 goto out_reset;
1961                         }
1962                 }
1963         }
1964
1965         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1966         if (ret) {
1967                 /*
1968                  * Nested commits always have zero deltas, so
1969                  * just reread the time stamp
1970                  */
1971                 ts = rb_time_stamp(buffer);
1972                 next_page->page->time_stamp = ts;
1973         }
1974
1975  out_again:
1976
1977         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1978
1979         /* fail and let the caller try again */
1980         return ERR_PTR(-EAGAIN);
1981
1982  out_reset:
1983         /* reset write */
1984         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1985
1986         return NULL;
1987 }
1988
1989 static struct ring_buffer_event *
1990 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1991                   unsigned long length, u64 ts,
1992                   u64 delta, int add_timestamp)
1993 {
1994         struct buffer_page *tail_page;
1995         struct ring_buffer_event *event;
1996         unsigned long tail, write;
1997
1998         /*
1999          * If the time delta since the last event is too big to
2000          * hold in the time field of the event, then we append a
2001          * TIME EXTEND event ahead of the data event.
2002          */
2003         if (unlikely(add_timestamp))
2004                 length += RB_LEN_TIME_EXTEND;
2005
2006         tail_page = cpu_buffer->tail_page;
2007         write = local_add_return(length, &tail_page->write);
2008
2009         /* set write to only the index of the write */
2010         write &= RB_WRITE_MASK;
2011         tail = write - length;
2012
2013         /* See if we shot pass the end of this buffer page */
2014         if (unlikely(write > BUF_PAGE_SIZE))
2015                 return rb_move_tail(cpu_buffer, length, tail,
2016                                     tail_page, ts);
2017
2018         /* We reserved something on the buffer */
2019
2020         event = __rb_page_index(tail_page, tail);
2021         kmemcheck_annotate_bitfield(event, bitfield);
2022         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2023
2024         local_inc(&tail_page->entries);
2025
2026         /*
2027          * If this is the first commit on the page, then update
2028          * its timestamp.
2029          */
2030         if (!tail)
2031                 tail_page->page->time_stamp = ts;
2032
2033         return event;
2034 }
2035
2036 static inline int
2037 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2038                   struct ring_buffer_event *event)
2039 {
2040         unsigned long new_index, old_index;
2041         struct buffer_page *bpage;
2042         unsigned long index;
2043         unsigned long addr;
2044
2045         new_index = rb_event_index(event);
2046         old_index = new_index + rb_event_ts_length(event);
2047         addr = (unsigned long)event;
2048         addr &= PAGE_MASK;
2049
2050         bpage = cpu_buffer->tail_page;
2051
2052         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2053                 unsigned long write_mask =
2054                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2055                 /*
2056                  * This is on the tail page. It is possible that
2057                  * a write could come in and move the tail page
2058                  * and write to the next page. That is fine
2059                  * because we just shorten what is on this page.
2060                  */
2061                 old_index += write_mask;
2062                 new_index += write_mask;
2063                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2064                 if (index == old_index)
2065                         return 1;
2066         }
2067
2068         /* could not discard */
2069         return 0;
2070 }
2071
2072 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2073 {
2074         local_inc(&cpu_buffer->committing);
2075         local_inc(&cpu_buffer->commits);
2076 }
2077
2078 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2079 {
2080         unsigned long commits;
2081
2082         if (RB_WARN_ON(cpu_buffer,
2083                        !local_read(&cpu_buffer->committing)))
2084                 return;
2085
2086  again:
2087         commits = local_read(&cpu_buffer->commits);
2088         /* synchronize with interrupts */
2089         barrier();
2090         if (local_read(&cpu_buffer->committing) == 1)
2091                 rb_set_commit_to_write(cpu_buffer);
2092
2093         local_dec(&cpu_buffer->committing);
2094
2095         /* synchronize with interrupts */
2096         barrier();
2097
2098         /*
2099          * Need to account for interrupts coming in between the
2100          * updating of the commit page and the clearing of the
2101          * committing counter.
2102          */
2103         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2104             !local_read(&cpu_buffer->committing)) {
2105                 local_inc(&cpu_buffer->committing);
2106                 goto again;
2107         }
2108 }
2109
2110 static struct ring_buffer_event *
2111 rb_reserve_next_event(struct ring_buffer *buffer,
2112                       struct ring_buffer_per_cpu *cpu_buffer,
2113                       unsigned long length)
2114 {
2115         struct ring_buffer_event *event;
2116         u64 ts, delta;
2117         int nr_loops = 0;
2118         int add_timestamp;
2119         u64 diff;
2120
2121         rb_start_commit(cpu_buffer);
2122
2123 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2124         /*
2125          * Due to the ability to swap a cpu buffer from a buffer
2126          * it is possible it was swapped before we committed.
2127          * (committing stops a swap). We check for it here and
2128          * if it happened, we have to fail the write.
2129          */
2130         barrier();
2131         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2132                 local_dec(&cpu_buffer->committing);
2133                 local_dec(&cpu_buffer->commits);
2134                 return NULL;
2135         }
2136 #endif
2137
2138         length = rb_calculate_event_length(length);
2139  again:
2140         add_timestamp = 0;
2141         delta = 0;
2142
2143         /*
2144          * We allow for interrupts to reenter here and do a trace.
2145          * If one does, it will cause this original code to loop
2146          * back here. Even with heavy interrupts happening, this
2147          * should only happen a few times in a row. If this happens
2148          * 1000 times in a row, there must be either an interrupt
2149          * storm or we have something buggy.
2150          * Bail!
2151          */
2152         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2153                 goto out_fail;
2154
2155         ts = rb_time_stamp(cpu_buffer->buffer);
2156         diff = ts - cpu_buffer->write_stamp;
2157
2158         /* make sure this diff is calculated here */
2159         barrier();
2160
2161         /* Did the write stamp get updated already? */
2162         if (likely(ts >= cpu_buffer->write_stamp)) {
2163                 delta = diff;
2164                 if (unlikely(test_time_stamp(delta))) {
2165                         WARN_ONCE(delta > (1ULL << 59),
2166                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n",
2167                                   (unsigned long long)delta,
2168                                   (unsigned long long)ts,
2169                                   (unsigned long long)cpu_buffer->write_stamp);
2170                         add_timestamp = 1;
2171                 }
2172         }
2173
2174         event = __rb_reserve_next(cpu_buffer, length, ts,
2175                                   delta, add_timestamp);
2176         if (unlikely(PTR_ERR(event) == -EAGAIN))
2177                 goto again;
2178
2179         if (!event)
2180                 goto out_fail;
2181
2182         return event;
2183
2184  out_fail:
2185         rb_end_commit(cpu_buffer);
2186         return NULL;
2187 }
2188
2189 #ifdef CONFIG_TRACING
2190
2191 #define TRACE_RECURSIVE_DEPTH 16
2192
2193 /* Keep this code out of the fast path cache */
2194 static noinline void trace_recursive_fail(void)
2195 {
2196         /* Disable all tracing before we do anything else */
2197         tracing_off_permanent();
2198
2199         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2200                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2201                     current->trace_recursion,
2202                     hardirq_count() >> HARDIRQ_SHIFT,
2203                     softirq_count() >> SOFTIRQ_SHIFT,
2204                     in_nmi());
2205
2206         WARN_ON_ONCE(1);
2207 }
2208
2209 static inline int trace_recursive_lock(void)
2210 {
2211         current->trace_recursion++;
2212
2213         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2214                 return 0;
2215
2216         trace_recursive_fail();
2217
2218         return -1;
2219 }
2220
2221 static inline void trace_recursive_unlock(void)
2222 {
2223         WARN_ON_ONCE(!current->trace_recursion);
2224
2225         current->trace_recursion--;
2226 }
2227
2228 #else
2229
2230 #define trace_recursive_lock()          (0)
2231 #define trace_recursive_unlock()        do { } while (0)
2232
2233 #endif
2234
2235 /**
2236  * ring_buffer_lock_reserve - reserve a part of the buffer
2237  * @buffer: the ring buffer to reserve from
2238  * @length: the length of the data to reserve (excluding event header)
2239  *
2240  * Returns a reseverd event on the ring buffer to copy directly to.
2241  * The user of this interface will need to get the body to write into
2242  * and can use the ring_buffer_event_data() interface.
2243  *
2244  * The length is the length of the data needed, not the event length
2245  * which also includes the event header.
2246  *
2247  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2248  * If NULL is returned, then nothing has been allocated or locked.
2249  */
2250 struct ring_buffer_event *
2251 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2252 {
2253         struct ring_buffer_per_cpu *cpu_buffer;
2254         struct ring_buffer_event *event;
2255         int cpu;
2256
2257         if (ring_buffer_flags != RB_BUFFERS_ON)
2258                 return NULL;
2259
2260         /* If we are tracing schedule, we don't want to recurse */
2261         preempt_disable_notrace();
2262
2263         if (atomic_read(&buffer->record_disabled))
2264                 goto out_nocheck;
2265
2266         if (trace_recursive_lock())
2267                 goto out_nocheck;
2268
2269         cpu = raw_smp_processor_id();
2270
2271         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2272                 goto out;
2273
2274         cpu_buffer = buffer->buffers[cpu];
2275
2276         if (atomic_read(&cpu_buffer->record_disabled))
2277                 goto out;
2278
2279         if (length > BUF_MAX_DATA_SIZE)
2280                 goto out;
2281
2282         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2283         if (!event)
2284                 goto out;
2285
2286         return event;
2287
2288  out:
2289         trace_recursive_unlock();
2290
2291  out_nocheck:
2292         preempt_enable_notrace();
2293         return NULL;
2294 }
2295 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2296
2297 static void
2298 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2299                       struct ring_buffer_event *event)
2300 {
2301         u64 delta;
2302
2303         /*
2304          * The event first in the commit queue updates the
2305          * time stamp.
2306          */
2307         if (rb_event_is_commit(cpu_buffer, event)) {
2308                 /*
2309                  * A commit event that is first on a page
2310                  * updates the write timestamp with the page stamp
2311                  */
2312                 if (!rb_event_index(event))
2313                         cpu_buffer->write_stamp =
2314                                 cpu_buffer->commit_page->page->time_stamp;
2315                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2316                         delta = event->array[0];
2317                         delta <<= TS_SHIFT;
2318                         delta += event->time_delta;
2319                         cpu_buffer->write_stamp += delta;
2320                 } else
2321                         cpu_buffer->write_stamp += event->time_delta;
2322         }
2323 }
2324
2325 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2326                       struct ring_buffer_event *event)
2327 {
2328         local_inc(&cpu_buffer->entries);
2329         rb_update_write_stamp(cpu_buffer, event);
2330         rb_end_commit(cpu_buffer);
2331 }
2332
2333 /**
2334  * ring_buffer_unlock_commit - commit a reserved
2335  * @buffer: The buffer to commit to
2336  * @event: The event pointer to commit.
2337  *
2338  * This commits the data to the ring buffer, and releases any locks held.
2339  *
2340  * Must be paired with ring_buffer_lock_reserve.
2341  */
2342 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2343                               struct ring_buffer_event *event)
2344 {
2345         struct ring_buffer_per_cpu *cpu_buffer;
2346         int cpu = raw_smp_processor_id();
2347
2348         cpu_buffer = buffer->buffers[cpu];
2349
2350         rb_commit(cpu_buffer, event);
2351
2352         trace_recursive_unlock();
2353
2354         preempt_enable_notrace();
2355
2356         return 0;
2357 }
2358 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2359
2360 static inline void rb_event_discard(struct ring_buffer_event *event)
2361 {
2362         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2363                 event = skip_time_extend(event);
2364
2365         /* array[0] holds the actual length for the discarded event */
2366         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2367         event->type_len = RINGBUF_TYPE_PADDING;
2368         /* time delta must be non zero */
2369         if (!event->time_delta)
2370                 event->time_delta = 1;
2371 }
2372
2373 /*
2374  * Decrement the entries to the page that an event is on.
2375  * The event does not even need to exist, only the pointer
2376  * to the page it is on. This may only be called before the commit
2377  * takes place.
2378  */
2379 static inline void
2380 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2381                    struct ring_buffer_event *event)
2382 {
2383         unsigned long addr = (unsigned long)event;
2384         struct buffer_page *bpage = cpu_buffer->commit_page;
2385         struct buffer_page *start;
2386
2387         addr &= PAGE_MASK;
2388
2389         /* Do the likely case first */
2390         if (likely(bpage->page == (void *)addr)) {
2391                 local_dec(&bpage->entries);
2392                 return;
2393         }
2394
2395         /*
2396          * Because the commit page may be on the reader page we
2397          * start with the next page and check the end loop there.
2398          */
2399         rb_inc_page(cpu_buffer, &bpage);
2400         start = bpage;
2401         do {
2402                 if (bpage->page == (void *)addr) {
2403                         local_dec(&bpage->entries);
2404                         return;
2405                 }
2406                 rb_inc_page(cpu_buffer, &bpage);
2407         } while (bpage != start);
2408
2409         /* commit not part of this buffer?? */
2410         RB_WARN_ON(cpu_buffer, 1);
2411 }
2412
2413 /**
2414  * ring_buffer_commit_discard - discard an event that has not been committed
2415  * @buffer: the ring buffer
2416  * @event: non committed event to discard
2417  *
2418  * Sometimes an event that is in the ring buffer needs to be ignored.
2419  * This function lets the user discard an event in the ring buffer
2420  * and then that event will not be read later.
2421  *
2422  * This function only works if it is called before the the item has been
2423  * committed. It will try to free the event from the ring buffer
2424  * if another event has not been added behind it.
2425  *
2426  * If another event has been added behind it, it will set the event
2427  * up as discarded, and perform the commit.
2428  *
2429  * If this function is called, do not call ring_buffer_unlock_commit on
2430  * the event.
2431  */
2432 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2433                                 struct ring_buffer_event *event)
2434 {
2435         struct ring_buffer_per_cpu *cpu_buffer;
2436         int cpu;
2437
2438         /* The event is discarded regardless */
2439         rb_event_discard(event);
2440
2441         cpu = smp_processor_id();
2442         cpu_buffer = buffer->buffers[cpu];
2443
2444         /*
2445          * This must only be called if the event has not been
2446          * committed yet. Thus we can assume that preemption
2447          * is still disabled.
2448          */
2449         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2450
2451         rb_decrement_entry(cpu_buffer, event);
2452         if (rb_try_to_discard(cpu_buffer, event))
2453                 goto out;
2454
2455         /*
2456          * The commit is still visible by the reader, so we
2457          * must still update the timestamp.
2458          */
2459         rb_update_write_stamp(cpu_buffer, event);
2460  out:
2461         rb_end_commit(cpu_buffer);
2462
2463         trace_recursive_unlock();
2464
2465         preempt_enable_notrace();
2466
2467 }
2468 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2469
2470 /**
2471  * ring_buffer_write - write data to the buffer without reserving
2472  * @buffer: The ring buffer to write to.
2473  * @length: The length of the data being written (excluding the event header)
2474  * @data: The data to write to the buffer.
2475  *
2476  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2477  * one function. If you already have the data to write to the buffer, it
2478  * may be easier to simply call this function.
2479  *
2480  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2481  * and not the length of the event which would hold the header.
2482  */
2483 int ring_buffer_write(struct ring_buffer *buffer,
2484                         unsigned long length,
2485                         void *data)
2486 {
2487         struct ring_buffer_per_cpu *cpu_buffer;
2488         struct ring_buffer_event *event;
2489         void *body;
2490         int ret = -EBUSY;
2491         int cpu;
2492
2493         if (ring_buffer_flags != RB_BUFFERS_ON)
2494                 return -EBUSY;
2495
2496         preempt_disable_notrace();
2497
2498         if (atomic_read(&buffer->record_disabled))
2499                 goto out;
2500
2501         cpu = raw_smp_processor_id();
2502
2503         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2504                 goto out;
2505
2506         cpu_buffer = buffer->buffers[cpu];
2507
2508         if (atomic_read(&cpu_buffer->record_disabled))
2509                 goto out;
2510
2511         if (length > BUF_MAX_DATA_SIZE)
2512                 goto out;
2513
2514         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2515         if (!event)
2516                 goto out;
2517
2518         body = rb_event_data(event);
2519
2520         memcpy(body, data, length);
2521
2522         rb_commit(cpu_buffer, event);
2523
2524         ret = 0;
2525  out:
2526         preempt_enable_notrace();
2527
2528         return ret;
2529 }
2530 EXPORT_SYMBOL_GPL(ring_buffer_write);
2531
2532 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2533 {
2534         struct buffer_page *reader = cpu_buffer->reader_page;
2535         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2536         struct buffer_page *commit = cpu_buffer->commit_page;
2537
2538         /* In case of error, head will be NULL */
2539         if (unlikely(!head))
2540                 return 1;
2541
2542         return reader->read == rb_page_commit(reader) &&
2543                 (commit == reader ||
2544                  (commit == head &&
2545                   head->read == rb_page_commit(commit)));
2546 }
2547
2548 /**
2549  * ring_buffer_record_disable - stop all writes into the buffer
2550  * @buffer: The ring buffer to stop writes to.
2551  *
2552  * This prevents all writes to the buffer. Any attempt to write
2553  * to the buffer after this will fail and return NULL.
2554  *
2555  * The caller should call synchronize_sched() after this.
2556  */
2557 void ring_buffer_record_disable(struct ring_buffer *buffer)
2558 {
2559         atomic_inc(&buffer->record_disabled);
2560 }
2561 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2562
2563 /**
2564  * ring_buffer_record_enable - enable writes to the buffer
2565  * @buffer: The ring buffer to enable writes
2566  *
2567  * Note, multiple disables will need the same number of enables
2568  * to truly enable the writing (much like preempt_disable).
2569  */
2570 void ring_buffer_record_enable(struct ring_buffer *buffer)
2571 {
2572         atomic_dec(&buffer->record_disabled);
2573 }
2574 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2575
2576 /**
2577  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2578  * @buffer: The ring buffer to stop writes to.
2579  * @cpu: The CPU buffer to stop
2580  *
2581  * This prevents all writes to the buffer. Any attempt to write
2582  * to the buffer after this will fail and return NULL.
2583  *
2584  * The caller should call synchronize_sched() after this.
2585  */
2586 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2587 {
2588         struct ring_buffer_per_cpu *cpu_buffer;
2589
2590         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2591                 return;
2592
2593         cpu_buffer = buffer->buffers[cpu];
2594         atomic_inc(&cpu_buffer->record_disabled);
2595 }
2596 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2597
2598 /**
2599  * ring_buffer_record_enable_cpu - enable writes to the buffer
2600  * @buffer: The ring buffer to enable writes
2601  * @cpu: The CPU to enable.
2602  *
2603  * Note, multiple disables will need the same number of enables
2604  * to truly enable the writing (much like preempt_disable).
2605  */
2606 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2607 {
2608         struct ring_buffer_per_cpu *cpu_buffer;
2609
2610         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2611                 return;
2612
2613         cpu_buffer = buffer->buffers[cpu];
2614         atomic_dec(&cpu_buffer->record_disabled);
2615 }
2616 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2617
2618 /*
2619  * The total entries in the ring buffer is the running counter
2620  * of entries entered into the ring buffer, minus the sum of
2621  * the entries read from the ring buffer and the number of
2622  * entries that were overwritten.
2623  */
2624 static inline unsigned long
2625 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2626 {
2627         return local_read(&cpu_buffer->entries) -
2628                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2629 }
2630
2631 /**
2632  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2633  * @buffer: The ring buffer
2634  * @cpu: The per CPU buffer to get the entries from.
2635  */
2636 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2637 {
2638         struct ring_buffer_per_cpu *cpu_buffer;
2639
2640         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2641                 return 0;
2642
2643         cpu_buffer = buffer->buffers[cpu];
2644
2645         return rb_num_of_entries(cpu_buffer);
2646 }
2647 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2648
2649 /**
2650  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2651  * @buffer: The ring buffer
2652  * @cpu: The per CPU buffer to get the number of overruns from
2653  */
2654 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2655 {
2656         struct ring_buffer_per_cpu *cpu_buffer;
2657         unsigned long ret;
2658
2659         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2660                 return 0;
2661
2662         cpu_buffer = buffer->buffers[cpu];
2663         ret = local_read(&cpu_buffer->overrun);
2664
2665         return ret;
2666 }
2667 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2668
2669 /**
2670  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2671  * @buffer: The ring buffer
2672  * @cpu: The per CPU buffer to get the number of overruns from
2673  */
2674 unsigned long
2675 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2676 {
2677         struct ring_buffer_per_cpu *cpu_buffer;
2678         unsigned long ret;
2679
2680         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2681                 return 0;
2682
2683         cpu_buffer = buffer->buffers[cpu];
2684         ret = local_read(&cpu_buffer->commit_overrun);
2685
2686         return ret;
2687 }
2688 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2689
2690 /**
2691  * ring_buffer_entries - get the number of entries in a buffer
2692  * @buffer: The ring buffer
2693  *
2694  * Returns the total number of entries in the ring buffer
2695  * (all CPU entries)
2696  */
2697 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2698 {
2699         struct ring_buffer_per_cpu *cpu_buffer;
2700         unsigned long entries = 0;
2701         int cpu;
2702
2703         /* if you care about this being correct, lock the buffer */
2704         for_each_buffer_cpu(buffer, cpu) {
2705                 cpu_buffer = buffer->buffers[cpu];
2706                 entries += rb_num_of_entries(cpu_buffer);
2707         }
2708
2709         return entries;
2710 }
2711 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2712
2713 /**
2714  * ring_buffer_overruns - get the number of overruns in buffer
2715  * @buffer: The ring buffer
2716  *
2717  * Returns the total number of overruns in the ring buffer
2718  * (all CPU entries)
2719  */
2720 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2721 {
2722         struct ring_buffer_per_cpu *cpu_buffer;
2723         unsigned long overruns = 0;
2724         int cpu;
2725
2726         /* if you care about this being correct, lock the buffer */
2727         for_each_buffer_cpu(buffer, cpu) {
2728                 cpu_buffer = buffer->buffers[cpu];
2729                 overruns += local_read(&cpu_buffer->overrun);
2730         }
2731
2732         return overruns;
2733 }
2734 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2735
2736 static void rb_iter_reset(struct ring_buffer_iter *iter)
2737 {
2738         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2739
2740         /* Iterator usage is expected to have record disabled */
2741         if (list_empty(&cpu_buffer->reader_page->list)) {
2742                 iter->head_page = rb_set_head_page(cpu_buffer);
2743                 if (unlikely(!iter->head_page))
2744                         return;
2745                 iter->head = iter->head_page->read;
2746         } else {
2747                 iter->head_page = cpu_buffer->reader_page;
2748                 iter->head = cpu_buffer->reader_page->read;
2749         }
2750         if (iter->head)
2751                 iter->read_stamp = cpu_buffer->read_stamp;
2752         else
2753                 iter->read_stamp = iter->head_page->page->time_stamp;
2754         iter->cache_reader_page = cpu_buffer->reader_page;
2755         iter->cache_read = cpu_buffer->read;
2756 }
2757
2758 /**
2759  * ring_buffer_iter_reset - reset an iterator
2760  * @iter: The iterator to reset
2761  *
2762  * Resets the iterator, so that it will start from the beginning
2763  * again.
2764  */
2765 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2766 {
2767         struct ring_buffer_per_cpu *cpu_buffer;
2768         unsigned long flags;
2769
2770         if (!iter)
2771                 return;
2772
2773         cpu_buffer = iter->cpu_buffer;
2774
2775         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2776         rb_iter_reset(iter);
2777         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2778 }
2779 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2780
2781 /**
2782  * ring_buffer_iter_empty - check if an iterator has no more to read
2783  * @iter: The iterator to check
2784  */
2785 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2786 {
2787         struct ring_buffer_per_cpu *cpu_buffer;
2788
2789         cpu_buffer = iter->cpu_buffer;
2790
2791         return iter->head_page == cpu_buffer->commit_page &&
2792                 iter->head == rb_commit_index(cpu_buffer);
2793 }
2794 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2795
2796 static void
2797 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2798                      struct ring_buffer_event *event)
2799 {
2800         u64 delta;
2801
2802         switch (event->type_len) {
2803         case RINGBUF_TYPE_PADDING:
2804                 return;
2805
2806         case RINGBUF_TYPE_TIME_EXTEND:
2807                 delta = event->array[0];
2808                 delta <<= TS_SHIFT;
2809                 delta += event->time_delta;
2810                 cpu_buffer->read_stamp += delta;
2811                 return;
2812
2813         case RINGBUF_TYPE_TIME_STAMP:
2814                 /* FIXME: not implemented */
2815                 return;
2816
2817         case RINGBUF_TYPE_DATA:
2818                 cpu_buffer->read_stamp += event->time_delta;
2819                 return;
2820
2821         default:
2822                 BUG();
2823         }
2824         return;
2825 }
2826
2827 static void
2828 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2829                           struct ring_buffer_event *event)
2830 {
2831         u64 delta;
2832
2833         switch (event->type_len) {
2834         case RINGBUF_TYPE_PADDING:
2835                 return;
2836
2837         case RINGBUF_TYPE_TIME_EXTEND:
2838                 delta = event->array[0];
2839                 delta <<= TS_SHIFT;
2840                 delta += event->time_delta;
2841                 iter->read_stamp += delta;
2842                 return;
2843
2844         case RINGBUF_TYPE_TIME_STAMP:
2845                 /* FIXME: not implemented */
2846                 return;
2847
2848         case RINGBUF_TYPE_DATA:
2849                 iter->read_stamp += event->time_delta;
2850                 return;
2851
2852         default:
2853                 BUG();
2854         }
2855         return;
2856 }
2857
2858 static struct buffer_page *
2859 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2860 {
2861         struct buffer_page *reader = NULL;
2862         unsigned long overwrite;
2863         unsigned long flags;
2864         int nr_loops = 0;
2865         int ret;
2866
2867         local_irq_save(flags);
2868         arch_spin_lock(&cpu_buffer->lock);
2869
2870  again:
2871         /*
2872          * This should normally only loop twice. But because the
2873          * start of the reader inserts an empty page, it causes
2874          * a case where we will loop three times. There should be no
2875          * reason to loop four times (that I know of).
2876          */
2877         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2878                 reader = NULL;
2879                 goto out;
2880         }
2881
2882         reader = cpu_buffer->reader_page;
2883
2884         /* If there's more to read, return this page */
2885         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2886                 goto out;
2887
2888         /* Never should we have an index greater than the size */
2889         if (RB_WARN_ON(cpu_buffer,
2890                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2891                 goto out;
2892
2893         /* check if we caught up to the tail */
2894         reader = NULL;
2895         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2896                 goto out;
2897
2898         /*
2899          * Reset the reader page to size zero.
2900          */
2901         local_set(&cpu_buffer->reader_page->write, 0);
2902         local_set(&cpu_buffer->reader_page->entries, 0);
2903         local_set(&cpu_buffer->reader_page->page->commit, 0);
2904         cpu_buffer->reader_page->real_end = 0;
2905
2906  spin:
2907         /*
2908          * Splice the empty reader page into the list around the head.
2909          */
2910         reader = rb_set_head_page(cpu_buffer);
2911         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2912         cpu_buffer->reader_page->list.prev = reader->list.prev;
2913
2914         /*
2915          * cpu_buffer->pages just needs to point to the buffer, it
2916          *  has no specific buffer page to point to. Lets move it out
2917          *  of our way so we don't accidently swap it.
2918          */
2919         cpu_buffer->pages = reader->list.prev;
2920
2921         /* The reader page will be pointing to the new head */
2922         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2923
2924         /*
2925          * We want to make sure we read the overruns after we set up our
2926          * pointers to the next object. The writer side does a
2927          * cmpxchg to cross pages which acts as the mb on the writer
2928          * side. Note, the reader will constantly fail the swap
2929          * while the writer is updating the pointers, so this
2930          * guarantees that the overwrite recorded here is the one we
2931          * want to compare with the last_overrun.
2932          */
2933         smp_mb();
2934         overwrite = local_read(&(cpu_buffer->overrun));
2935
2936         /*
2937          * Here's the tricky part.
2938          *
2939          * We need to move the pointer past the header page.
2940          * But we can only do that if a writer is not currently
2941          * moving it. The page before the header page has the
2942          * flag bit '1' set if it is pointing to the page we want.
2943          * but if the writer is in the process of moving it
2944          * than it will be '2' or already moved '0'.
2945          */
2946
2947         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2948
2949         /*
2950          * If we did not convert it, then we must try again.
2951          */
2952         if (!ret)
2953                 goto spin;
2954
2955         /*
2956          * Yeah! We succeeded in replacing the page.
2957          *
2958          * Now make the new head point back to the reader page.
2959          */
2960         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2961         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2962
2963         /* Finally update the reader page to the new head */
2964         cpu_buffer->reader_page = reader;
2965         rb_reset_reader_page(cpu_buffer);
2966
2967         if (overwrite != cpu_buffer->last_overrun) {
2968                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2969                 cpu_buffer->last_overrun = overwrite;
2970         }
2971
2972         goto again;
2973
2974  out:
2975         arch_spin_unlock(&cpu_buffer->lock);
2976         local_irq_restore(flags);
2977
2978         return reader;
2979 }
2980
2981 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2982 {
2983         struct ring_buffer_event *event;
2984         struct buffer_page *reader;
2985         unsigned length;
2986
2987         reader = rb_get_reader_page(cpu_buffer);
2988
2989         /* This function should not be called when buffer is empty */
2990         if (RB_WARN_ON(cpu_buffer, !reader))
2991                 return;
2992
2993         event = rb_reader_event(cpu_buffer);
2994
2995         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2996                 cpu_buffer->read++;
2997
2998         rb_update_read_stamp(cpu_buffer, event);
2999
3000         length = rb_event_length(event);
3001         cpu_buffer->reader_page->read += length;
3002 }
3003
3004 static void rb_advance_iter(struct ring_buffer_iter *iter)
3005 {
3006         struct ring_buffer_per_cpu *cpu_buffer;
3007         struct ring_buffer_event *event;
3008         unsigned length;
3009
3010         cpu_buffer = iter->cpu_buffer;
3011
3012         /*
3013          * Check if we are at the end of the buffer.
3014          */
3015         if (iter->head >= rb_page_size(iter->head_page)) {
3016                 /* discarded commits can make the page empty */
3017                 if (iter->head_page == cpu_buffer->commit_page)
3018                         return;
3019                 rb_inc_iter(iter);
3020                 return;
3021         }
3022
3023         event = rb_iter_head_event(iter);
3024
3025         length = rb_event_length(event);
3026
3027         /*
3028          * This should not be called to advance the header if we are
3029          * at the tail of the buffer.
3030          */
3031         if (RB_WARN_ON(cpu_buffer,
3032                        (iter->head_page == cpu_buffer->commit_page) &&
3033                        (iter->head + length > rb_commit_index(cpu_buffer))))
3034                 return;
3035
3036         rb_update_iter_read_stamp(iter, event);
3037
3038         iter->head += length;
3039
3040         /* check for end of page padding */
3041         if ((iter->head >= rb_page_size(iter->head_page)) &&
3042             (iter->head_page != cpu_buffer->commit_page))
3043                 rb_advance_iter(iter);
3044 }
3045
3046 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3047 {
3048         return cpu_buffer->lost_events;
3049 }
3050
3051 static struct ring_buffer_event *
3052 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3053                unsigned long *lost_events)
3054 {
3055         struct ring_buffer_event *event;
3056         struct buffer_page *reader;
3057         int nr_loops = 0;
3058
3059  again:
3060         /*
3061          * We repeat when a time extend is encountered.
3062          * Since the time extend is always attached to a data event,
3063          * we should never loop more than once.
3064          * (We never hit the following condition more than twice).
3065          */
3066         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3067                 return NULL;
3068
3069         reader = rb_get_reader_page(cpu_buffer);
3070         if (!reader)
3071                 return NULL;
3072
3073         event = rb_reader_event(cpu_buffer);
3074
3075         switch (event->type_len) {
3076         case RINGBUF_TYPE_PADDING:
3077                 if (rb_null_event(event))
3078                         RB_WARN_ON(cpu_buffer, 1);
3079                 /*
3080                  * Because the writer could be discarding every
3081                  * event it creates (which would probably be bad)
3082                  * if we were to go back to "again" then we may never
3083                  * catch up, and will trigger the warn on, or lock
3084                  * the box. Return the padding, and we will release
3085                  * the current locks, and try again.
3086                  */
3087                 return event;
3088
3089         case RINGBUF_TYPE_TIME_EXTEND:
3090                 /* Internal data, OK to advance */
3091                 rb_advance_reader(cpu_buffer);
3092                 goto again;
3093
3094         case RINGBUF_TYPE_TIME_STAMP:
3095                 /* FIXME: not implemented */
3096                 rb_advance_reader(cpu_buffer);
3097                 goto again;
3098
3099         case RINGBUF_TYPE_DATA:
3100                 if (ts) {
3101                         *ts = cpu_buffer->read_stamp + event->time_delta;
3102                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3103                                                          cpu_buffer->cpu, ts);
3104                 }
3105                 if (lost_events)
3106                         *lost_events = rb_lost_events(cpu_buffer);
3107                 return event;
3108
3109         default:
3110                 BUG();
3111         }
3112
3113         return NULL;
3114 }
3115 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3116
3117 static struct ring_buffer_event *
3118 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3119 {
3120         struct ring_buffer *buffer;
3121         struct ring_buffer_per_cpu *cpu_buffer;
3122         struct ring_buffer_event *event;
3123         int nr_loops = 0;
3124
3125         cpu_buffer = iter->cpu_buffer;
3126         buffer = cpu_buffer->buffer;
3127
3128         /*
3129          * Check if someone performed a consuming read to
3130          * the buffer. A consuming read invalidates the iterator
3131          * and we need to reset the iterator in this case.
3132          */
3133         if (unlikely(iter->cache_read != cpu_buffer->read ||
3134                      iter->cache_reader_page != cpu_buffer->reader_page))
3135                 rb_iter_reset(iter);
3136
3137  again:
3138         if (ring_buffer_iter_empty(iter))
3139                 return NULL;
3140
3141         /*
3142          * We repeat when a time extend is encountered.
3143          * Since the time extend is always attached to a data event,
3144          * we should never loop more than once.
3145          * (We never hit the following condition more than twice).
3146          */
3147         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3148                 return NULL;
3149
3150         if (rb_per_cpu_empty(cpu_buffer))
3151                 return NULL;
3152
3153         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3154                 rb_inc_iter(iter);
3155                 goto again;
3156         }
3157
3158         event = rb_iter_head_event(iter);
3159
3160         switch (event->type_len) {
3161         case RINGBUF_TYPE_PADDING:
3162                 if (rb_null_event(event)) {
3163                         rb_inc_iter(iter);
3164                         goto again;
3165                 }
3166                 rb_advance_iter(iter);
3167                 return event;
3168
3169         case RINGBUF_TYPE_TIME_EXTEND:
3170                 /* Internal data, OK to advance */
3171                 rb_advance_iter(iter);
3172                 goto again;
3173
3174         case RINGBUF_TYPE_TIME_STAMP:
3175                 /* FIXME: not implemented */
3176                 rb_advance_iter(iter);
3177                 goto again;
3178
3179         case RINGBUF_TYPE_DATA:
3180                 if (ts) {
3181                         *ts = iter->read_stamp + event->time_delta;
3182                         ring_buffer_normalize_time_stamp(buffer,
3183                                                          cpu_buffer->cpu, ts);
3184                 }
3185                 return event;
3186
3187         default:
3188                 BUG();
3189         }
3190
3191         return NULL;
3192 }
3193 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3194
3195 static inline int rb_ok_to_lock(void)
3196 {
3197         /*
3198          * If an NMI die dumps out the content of the ring buffer
3199          * do not grab locks. We also permanently disable the ring
3200          * buffer too. A one time deal is all you get from reading
3201          * the ring buffer from an NMI.
3202          */
3203         if (likely(!in_nmi()))
3204                 return 1;
3205
3206         tracing_off_permanent();
3207         return 0;
3208 }
3209
3210 /**
3211  * ring_buffer_peek - peek at the next event to be read
3212  * @buffer: The ring buffer to read
3213  * @cpu: The cpu to peak at
3214  * @ts: The timestamp counter of this event.
3215  * @lost_events: a variable to store if events were lost (may be NULL)
3216  *
3217  * This will return the event that will be read next, but does
3218  * not consume the data.
3219  */
3220 struct ring_buffer_event *
3221 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3222                  unsigned long *lost_events)
3223 {
3224         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3225         struct ring_buffer_event *event;
3226         unsigned long flags;
3227         int dolock;
3228
3229         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3230                 return NULL;
3231
3232         dolock = rb_ok_to_lock();
3233  again:
3234         local_irq_save(flags);
3235         if (dolock)
3236                 spin_lock(&cpu_buffer->reader_lock);
3237         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3238         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3239                 rb_advance_reader(cpu_buffer);
3240         if (dolock)
3241                 spin_unlock(&cpu_buffer->reader_lock);
3242         local_irq_restore(flags);
3243
3244         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3245                 goto again;
3246
3247         return event;
3248 }
3249
3250 /**
3251  * ring_buffer_iter_peek - peek at the next event to be read
3252  * @iter: The ring buffer iterator
3253  * @ts: The timestamp counter of this event.
3254  *
3255  * This will return the event that will be read next, but does
3256  * not increment the iterator.
3257  */
3258 struct ring_buffer_event *
3259 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3260 {
3261         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3262         struct ring_buffer_event *event;
3263         unsigned long flags;
3264
3265  again:
3266         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3267         event = rb_iter_peek(iter, ts);
3268         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3269
3270         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3271                 goto again;
3272
3273         return event;
3274 }
3275
3276 /**
3277  * ring_buffer_consume - return an event and consume it
3278  * @buffer: The ring buffer to get the next event from
3279  * @cpu: the cpu to read the buffer from
3280  * @ts: a variable to store the timestamp (may be NULL)
3281  * @lost_events: a variable to store if events were lost (may be NULL)
3282  *
3283  * Returns the next event in the ring buffer, and that event is consumed.
3284  * Meaning, that sequential reads will keep returning a different event,
3285  * and eventually empty the ring buffer if the producer is slower.
3286  */
3287 struct ring_buffer_event *
3288 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3289                     unsigned long *lost_events)
3290 {
3291         struct ring_buffer_per_cpu *cpu_buffer;
3292         struct ring_buffer_event *event = NULL;
3293         unsigned long flags;
3294         int dolock;
3295
3296         dolock = rb_ok_to_lock();
3297
3298  again:
3299         /* might be called in atomic */
3300         preempt_disable();
3301
3302         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3303                 goto out;
3304
3305         cpu_buffer = buffer->buffers[cpu];
3306         local_irq_save(flags);
3307         if (dolock)
3308                 spin_lock(&cpu_buffer->reader_lock);
3309
3310         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3311         if (event) {
3312                 cpu_buffer->lost_events = 0;
3313                 rb_advance_reader(cpu_buffer);
3314         }
3315
3316         if (dolock)
3317                 spin_unlock(&cpu_buffer->reader_lock);
3318         local_irq_restore(flags);
3319
3320  out:
3321         preempt_enable();
3322
3323         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3324                 goto again;
3325
3326         return event;
3327 }
3328 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3329
3330 /**
3331  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3332  * @buffer: The ring buffer to read from
3333  * @cpu: The cpu buffer to iterate over
3334  *
3335  * This performs the initial preparations necessary to iterate
3336  * through the buffer.  Memory is allocated, buffer recording
3337  * is disabled, and the iterator pointer is returned to the caller.
3338  *
3339  * Disabling buffer recordng prevents the reading from being
3340  * corrupted. This is not a consuming read, so a producer is not
3341  * expected.
3342  *
3343  * After a sequence of ring_buffer_read_prepare calls, the user is
3344  * expected to make at least one call to ring_buffer_prepare_sync.
3345  * Afterwards, ring_buffer_read_start is invoked to get things going
3346  * for real.
3347  *
3348  * This overall must be paired with ring_buffer_finish.
3349  */
3350 struct ring_buffer_iter *
3351 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3352 {
3353         struct ring_buffer_per_cpu *cpu_buffer;
3354         struct ring_buffer_iter *iter;
3355
3356         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3357                 return NULL;
3358
3359         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3360         if (!iter)
3361                 return NULL;
3362
3363         cpu_buffer = buffer->buffers[cpu];
3364
3365         iter->cpu_buffer = cpu_buffer;
3366
3367         atomic_inc(&cpu_buffer->record_disabled);
3368
3369         return iter;
3370 }
3371 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3372
3373 /**
3374  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3375  *
3376  * All previously invoked ring_buffer_read_prepare calls to prepare
3377  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3378  * calls on those iterators are allowed.
3379  */
3380 void
3381 ring_buffer_read_prepare_sync(void)
3382 {
3383         synchronize_sched();
3384 }
3385 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3386
3387 /**
3388  * ring_buffer_read_start - start a non consuming read of the buffer
3389  * @iter: The iterator returned by ring_buffer_read_prepare
3390  *
3391  * This finalizes the startup of an iteration through the buffer.
3392  * The iterator comes from a call to ring_buffer_read_prepare and
3393  * an intervening ring_buffer_read_prepare_sync must have been
3394  * performed.
3395  *
3396  * Must be paired with ring_buffer_finish.
3397  */
3398 void
3399 ring_buffer_read_start(struct ring_buffer_iter *iter)
3400 {
3401         struct ring_buffer_per_cpu *cpu_buffer;
3402         unsigned long flags;
3403
3404         if (!iter)
3405                 return;
3406
3407         cpu_buffer = iter->cpu_buffer;
3408
3409         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3410         arch_spin_lock(&cpu_buffer->lock);
3411         rb_iter_reset(iter);
3412         arch_spin_unlock(&cpu_buffer->lock);
3413         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3414 }
3415 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3416
3417 /**
3418  * ring_buffer_finish - finish reading the iterator of the buffer
3419  * @iter: The iterator retrieved by ring_buffer_start
3420  *
3421  * This re-enables the recording to the buffer, and frees the
3422  * iterator.
3423  */
3424 void
3425 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3426 {
3427         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3428
3429         atomic_dec(&cpu_buffer->record_disabled);
3430         kfree(iter);
3431 }
3432 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3433
3434 /**
3435  * ring_buffer_read - read the next item in the ring buffer by the iterator
3436  * @iter: The ring buffer iterator
3437  * @ts: The time stamp of the event read.
3438  *
3439  * This reads the next event in the ring buffer and increments the iterator.
3440  */
3441 struct ring_buffer_event *
3442 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3443 {
3444         struct ring_buffer_event *event;
3445         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3446         unsigned long flags;
3447
3448         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3449  again:
3450         event = rb_iter_peek(iter, ts);
3451         if (!event)
3452                 goto out;
3453
3454         if (event->type_len == RINGBUF_TYPE_PADDING)
3455                 goto again;
3456
3457         rb_advance_iter(iter);
3458  out:
3459         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3460
3461         return event;
3462 }
3463 EXPORT_SYMBOL_GPL(ring_buffer_read);
3464
3465 /**
3466  * ring_buffer_size - return the size of the ring buffer (in bytes)
3467  * @buffer: The ring buffer.
3468  */
3469 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3470 {
3471         return BUF_PAGE_SIZE * buffer->pages;
3472 }
3473 EXPORT_SYMBOL_GPL(ring_buffer_size);
3474
3475 static void
3476 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3477 {
3478         rb_head_page_deactivate(cpu_buffer);
3479
3480         cpu_buffer->head_page
3481                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3482         local_set(&cpu_buffer->head_page->write, 0);
3483         local_set(&cpu_buffer->head_page->entries, 0);
3484         local_set(&cpu_buffer->head_page->page->commit, 0);
3485
3486         cpu_buffer->head_page->read = 0;
3487
3488         cpu_buffer->tail_page = cpu_buffer->head_page;
3489         cpu_buffer->commit_page = cpu_buffer->head_page;
3490
3491         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3492         local_set(&cpu_buffer->reader_page->write, 0);
3493         local_set(&cpu_buffer->reader_page->entries, 0);
3494         local_set(&cpu_buffer->reader_page->page->commit, 0);
3495         cpu_buffer->reader_page->read = 0;
3496
3497         local_set(&cpu_buffer->commit_overrun, 0);
3498         local_set(&cpu_buffer->overrun, 0);
3499         local_set(&cpu_buffer->entries, 0);
3500         local_set(&cpu_buffer->committing, 0);
3501         local_set(&cpu_buffer->commits, 0);
3502         cpu_buffer->read = 0;
3503
3504         cpu_buffer->write_stamp = 0;
3505         cpu_buffer->read_stamp = 0;
3506
3507         cpu_buffer->lost_events = 0;
3508         cpu_buffer->last_overrun = 0;
3509
3510         rb_head_page_activate(cpu_buffer);
3511 }
3512
3513 /**
3514  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3515  * @buffer: The ring buffer to reset a per cpu buffer of
3516  * @cpu: The CPU buffer to be reset
3517  */
3518 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3519 {
3520         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3521         unsigned long flags;
3522
3523         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3524                 return;
3525
3526         atomic_inc(&cpu_buffer->record_disabled);
3527
3528         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3529
3530         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3531                 goto out;
3532
3533         arch_spin_lock(&cpu_buffer->lock);
3534
3535         rb_reset_cpu(cpu_buffer);
3536
3537         arch_spin_unlock(&cpu_buffer->lock);
3538
3539  out:
3540         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3541
3542         atomic_dec(&cpu_buffer->record_disabled);
3543 }
3544 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3545
3546 /**
3547  * ring_buffer_reset - reset a ring buffer
3548  * @buffer: The ring buffer to reset all cpu buffers
3549  */
3550 void ring_buffer_reset(struct ring_buffer *buffer)
3551 {
3552         int cpu;
3553
3554         for_each_buffer_cpu(buffer, cpu)
3555                 ring_buffer_reset_cpu(buffer, cpu);
3556 }
3557 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3558
3559 /**
3560  * rind_buffer_empty - is the ring buffer empty?
3561  * @buffer: The ring buffer to test
3562  */
3563 int ring_buffer_empty(struct ring_buffer *buffer)
3564 {
3565         struct ring_buffer_per_cpu *cpu_buffer;
3566         unsigned long flags;
3567         int dolock;
3568         int cpu;
3569         int ret;
3570
3571         dolock = rb_ok_to_lock();
3572
3573         /* yes this is racy, but if you don't like the race, lock the buffer */
3574         for_each_buffer_cpu(buffer, cpu) {
3575                 cpu_buffer = buffer->buffers[cpu];
3576                 local_irq_save(flags);
3577                 if (dolock)
3578                         spin_lock(&cpu_buffer->reader_lock);
3579                 ret = rb_per_cpu_empty(cpu_buffer);
3580                 if (dolock)
3581                         spin_unlock(&cpu_buffer->reader_lock);
3582                 local_irq_restore(flags);
3583
3584                 if (!ret)
3585                         return 0;
3586         }
3587
3588         return 1;
3589 }
3590 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3591
3592 /**
3593  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3594  * @buffer: The ring buffer
3595  * @cpu: The CPU buffer to test
3596  */
3597 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3598 {
3599         struct ring_buffer_per_cpu *cpu_buffer;
3600         unsigned long flags;
3601         int dolock;
3602         int ret;
3603
3604         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3605                 return 1;
3606
3607         dolock = rb_ok_to_lock();
3608
3609         cpu_buffer = buffer->buffers[cpu];
3610         local_irq_save(flags);
3611         if (dolock)
3612                 spin_lock(&cpu_buffer->reader_lock);
3613         ret = rb_per_cpu_empty(cpu_buffer);
3614         if (dolock)
3615                 spin_unlock(&cpu_buffer->reader_lock);
3616         local_irq_restore(flags);
3617
3618         return ret;
3619 }
3620 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3621
3622 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3623 /**
3624  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3625  * @buffer_a: One buffer to swap with
3626  * @buffer_b: The other buffer to swap with
3627  *
3628  * This function is useful for tracers that want to take a "snapshot"
3629  * of a CPU buffer and has another back up buffer lying around.
3630  * it is expected that the tracer handles the cpu buffer not being
3631  * used at the moment.
3632  */
3633 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3634                          struct ring_buffer *buffer_b, int cpu)
3635 {
3636         struct ring_buffer_per_cpu *cpu_buffer_a;
3637         struct ring_buffer_per_cpu *cpu_buffer_b;
3638         int ret = -EINVAL;
3639
3640         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3641             !cpumask_test_cpu(cpu, buffer_b->cpumask))
3642                 goto out;
3643
3644         /* At least make sure the two buffers are somewhat the same */
3645         if (buffer_a->pages != buffer_b->pages)
3646                 goto out;
3647
3648         ret = -EAGAIN;
3649
3650         if (ring_buffer_flags != RB_BUFFERS_ON)
3651                 goto out;
3652
3653         if (atomic_read(&buffer_a->record_disabled))
3654                 goto out;
3655
3656         if (atomic_read(&buffer_b->record_disabled))
3657                 goto out;
3658
3659         cpu_buffer_a = buffer_a->buffers[cpu];
3660         cpu_buffer_b = buffer_b->buffers[cpu];
3661
3662         if (atomic_read(&cpu_buffer_a->record_disabled))
3663                 goto out;
3664
3665         if (atomic_read(&cpu_buffer_b->record_disabled))
3666                 goto out;
3667
3668         /*
3669          * We can't do a synchronize_sched here because this
3670          * function can be called in atomic context.
3671          * Normally this will be called from the same CPU as cpu.
3672          * If not it's up to the caller to protect this.
3673          */
3674         atomic_inc(&cpu_buffer_a->record_disabled);
3675         atomic_inc(&cpu_buffer_b->record_disabled);
3676
3677         ret = -EBUSY;
3678         if (local_read(&cpu_buffer_a->committing))
3679                 goto out_dec;
3680         if (local_read(&cpu_buffer_b->committing))
3681                 goto out_dec;
3682
3683         buffer_a->buffers[cpu] = cpu_buffer_b;
3684         buffer_b->buffers[cpu] = cpu_buffer_a;
3685
3686         cpu_buffer_b->buffer = buffer_a;
3687         cpu_buffer_a->buffer = buffer_b;
3688
3689         ret = 0;
3690
3691 out_dec:
3692         atomic_dec(&cpu_buffer_a->record_disabled);
3693         atomic_dec(&cpu_buffer_b->record_disabled);
3694 out:
3695         return ret;
3696 }
3697 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3698 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3699
3700 /**
3701  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3702  * @buffer: the buffer to allocate for.
3703  *
3704  * This function is used in conjunction with ring_buffer_read_page.
3705  * When reading a full page from the ring buffer, these functions
3706  * can be used to speed up the process. The calling function should
3707  * allocate a few pages first with this function. Then when it
3708  * needs to get pages from the ring buffer, it passes the result
3709  * of this function into ring_buffer_read_page, which will swap
3710  * the page that was allocated, with the read page of the buffer.
3711  *
3712  * Returns:
3713  *  The page allocated, or NULL on error.
3714  */
3715 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3716 {
3717         struct buffer_data_page *bpage;
3718         unsigned long addr;
3719
3720         addr = __get_free_page(GFP_KERNEL);
3721         if (!addr)
3722                 return NULL;
3723
3724         bpage = (void *)addr;
3725
3726         rb_init_page(bpage);
3727
3728         return bpage;
3729 }
3730 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3731
3732 /**
3733  * ring_buffer_free_read_page - free an allocated read page
3734  * @buffer: the buffer the page was allocate for
3735  * @data: the page to free
3736  *
3737  * Free a page allocated from ring_buffer_alloc_read_page.
3738  */
3739 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3740 {
3741         free_page((unsigned long)data);
3742 }
3743 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3744
3745 /**
3746  * ring_buffer_read_page - extract a page from the ring buffer
3747  * @buffer: buffer to extract from
3748  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3749  * @len: amount to extract
3750  * @cpu: the cpu of the buffer to extract
3751  * @full: should the extraction only happen when the page is full.
3752  *
3753  * This function will pull out a page from the ring buffer and consume it.
3754  * @data_page must be the address of the variable that was returned
3755  * from ring_buffer_alloc_read_page. This is because the page might be used
3756  * to swap with a page in the ring buffer.
3757  *
3758  * for example:
3759  *      rpage = ring_buffer_alloc_read_page(buffer);
3760  *      if (!rpage)
3761  *              return error;
3762  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3763  *      if (ret >= 0)
3764  *              process_page(rpage, ret);
3765  *
3766  * When @full is set, the function will not return true unless
3767  * the writer is off the reader page.
3768  *
3769  * Note: it is up to the calling functions to handle sleeps and wakeups.
3770  *  The ring buffer can be used anywhere in the kernel and can not
3771  *  blindly call wake_up. The layer that uses the ring buffer must be
3772  *  responsible for that.
3773  *
3774  * Returns:
3775  *  >=0 if data has been transferred, returns the offset of consumed data.
3776  *  <0 if no data has been transferred.
3777  */
3778 int ring_buffer_read_page(struct ring_buffer *buffer,
3779                           void **data_page, size_t len, int cpu, int full)
3780 {
3781         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3782         struct ring_buffer_event *event;
3783         struct buffer_data_page *bpage;
3784         struct buffer_page *reader;
3785         unsigned long missed_events;
3786         unsigned long flags;
3787         unsigned int commit;
3788         unsigned int read;
3789         u64 save_timestamp;
3790         int ret = -1;
3791
3792         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3793                 goto out;
3794
3795         /*
3796          * If len is not big enough to hold the page header, then
3797          * we can not copy anything.
3798          */
3799         if (len <= BUF_PAGE_HDR_SIZE)
3800                 goto out;
3801
3802         len -= BUF_PAGE_HDR_SIZE;
3803
3804         if (!data_page)
3805                 goto out;
3806
3807         bpage = *data_page;
3808         if (!bpage)
3809                 goto out;
3810
3811         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3812
3813         reader = rb_get_reader_page(cpu_buffer);
3814         if (!reader)
3815                 goto out_unlock;
3816
3817         event = rb_reader_event(cpu_buffer);
3818
3819         read = reader->read;
3820         commit = rb_page_commit(reader);
3821
3822         /* Check if any events were dropped */
3823         missed_events = cpu_buffer->lost_events;
3824
3825         /*
3826          * If this page has been partially read or
3827          * if len is not big enough to read the rest of the page or
3828          * a writer is still on the page, then
3829          * we must copy the data from the page to the buffer.
3830          * Otherwise, we can simply swap the page with the one passed in.
3831          */
3832         if (read || (len < (commit - read)) ||
3833             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3834                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3835                 unsigned int rpos = read;
3836                 unsigned int pos = 0;
3837                 unsigned int size;
3838
3839                 if (full)
3840                         goto out_unlock;
3841
3842                 if (len > (commit - read))
3843                         len = (commit - read);
3844
3845                 /* Always keep the time extend and data together */
3846                 size = rb_event_ts_length(event);
3847
3848                 if (len < size)
3849                         goto out_unlock;
3850
3851                 /* save the current timestamp, since the user will need it */
3852                 save_timestamp = cpu_buffer->read_stamp;
3853
3854                 /* Need to copy one event at a time */
3855                 do {
3856                         /* We need the size of one event, because
3857                          * rb_advance_reader only advances by one event,
3858                          * whereas rb_event_ts_length may include the size of
3859                          * one or two events.
3860                          * We have already ensured there's enough space if this
3861                          * is a time extend. */
3862                         size = rb_event_length(event);
3863                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3864
3865                         len -= size;
3866
3867                         rb_advance_reader(cpu_buffer);
3868                         rpos = reader->read;
3869                         pos += size;
3870
3871                         if (rpos >= commit)
3872                                 break;
3873
3874                         event = rb_reader_event(cpu_buffer);
3875                         /* Always keep the time extend and data together */
3876                         size = rb_event_ts_length(event);
3877                 } while (len >= size);
3878
3879                 /* update bpage */
3880                 local_set(&bpage->commit, pos);
3881                 bpage->time_stamp = save_timestamp;
3882
3883                 /* we copied everything to the beginning */
3884                 read = 0;
3885         } else {
3886                 /* update the entry counter */
3887                 cpu_buffer->read += rb_page_entries(reader);
3888
3889                 /* swap the pages */
3890                 rb_init_page(bpage);
3891                 bpage = reader->page;
3892                 reader->page = *data_page;
3893                 local_set(&reader->write, 0);
3894                 local_set(&reader->entries, 0);
3895                 reader->read = 0;
3896                 *data_page = bpage;
3897
3898                 /*
3899                  * Use the real_end for the data size,
3900                  * This gives us a chance to store the lost events
3901                  * on the page.
3902                  */
3903                 if (reader->real_end)
3904                         local_set(&bpage->commit, reader->real_end);
3905         }
3906         ret = read;
3907
3908         cpu_buffer->lost_events = 0;
3909
3910         commit = local_read(&bpage->commit);
3911         /*
3912          * Set a flag in the commit field if we lost events
3913          */
3914         if (missed_events) {
3915                 /* If there is room at the end of the page to save the
3916                  * missed events, then record it there.
3917                  */
3918                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3919                         memcpy(&bpage->data[commit], &missed_events,
3920                                sizeof(missed_events));
3921                         local_add(RB_MISSED_STORED, &bpage->commit);
3922                         commit += sizeof(missed_events);
3923                 }
3924                 local_add(RB_MISSED_EVENTS, &bpage->commit);
3925         }
3926
3927         /*
3928          * This page may be off to user land. Zero it out here.
3929          */
3930         if (commit < BUF_PAGE_SIZE)
3931                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3932
3933  out_unlock:
3934         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3935
3936  out:
3937         return ret;
3938 }
3939 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3940
3941 #ifdef CONFIG_TRACING
3942 static ssize_t
3943 rb_simple_read(struct file *filp, char __user *ubuf,
3944                size_t cnt, loff_t *ppos)
3945 {
3946         unsigned long *p = filp->private_data;
3947         char buf[64];
3948         int r;
3949
3950         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3951                 r = sprintf(buf, "permanently disabled\n");
3952         else
3953                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3954
3955         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3956 }
3957
3958 static ssize_t
3959 rb_simple_write(struct file *filp, const char __user *ubuf,
3960                 size_t cnt, loff_t *ppos)
3961 {
3962         unsigned long *p = filp->private_data;
3963         char buf[64];
3964         unsigned long val;
3965         int ret;
3966
3967         if (cnt >= sizeof(buf))
3968                 return -EINVAL;
3969
3970         if (copy_from_user(&buf, ubuf, cnt))
3971                 return -EFAULT;
3972
3973         buf[cnt] = 0;
3974
3975         ret = strict_strtoul(buf, 10, &val);
3976         if (ret < 0)
3977                 return ret;
3978
3979         if (val)
3980                 set_bit(RB_BUFFERS_ON_BIT, p);
3981         else
3982                 clear_bit(RB_BUFFERS_ON_BIT, p);
3983
3984         (*ppos)++;
3985
3986         return cnt;
3987 }
3988
3989 static const struct file_operations rb_simple_fops = {
3990         .open           = tracing_open_generic,
3991         .read           = rb_simple_read,
3992         .write          = rb_simple_write,
3993         .llseek         = default_llseek,
3994 };
3995
3996
3997 static __init int rb_init_debugfs(void)
3998 {
3999         struct dentry *d_tracer;
4000
4001         d_tracer = tracing_init_dentry();
4002
4003         trace_create_file("tracing_on", 0644, d_tracer,
4004                             &ring_buffer_flags, &rb_simple_fops);
4005
4006         return 0;
4007 }
4008
4009 fs_initcall(rb_init_debugfs);
4010 #endif
4011
4012 #ifdef CONFIG_HOTPLUG_CPU
4013 static int rb_cpu_notify(struct notifier_block *self,
4014                          unsigned long action, void *hcpu)
4015 {
4016         struct ring_buffer *buffer =
4017                 container_of(self, struct ring_buffer, cpu_notify);
4018         long cpu = (long)hcpu;
4019
4020         switch (action) {
4021         case CPU_UP_PREPARE:
4022         case CPU_UP_PREPARE_FROZEN:
4023                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4024                         return NOTIFY_OK;
4025
4026                 buffer->buffers[cpu] =
4027                         rb_allocate_cpu_buffer(buffer, cpu);
4028                 if (!buffer->buffers[cpu]) {
4029                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4030                              cpu);
4031                         return NOTIFY_OK;
4032                 }
4033                 smp_wmb();
4034                 cpumask_set_cpu(cpu, buffer->cpumask);
4035                 break;
4036         case CPU_DOWN_PREPARE:
4037         case CPU_DOWN_PREPARE_FROZEN:
4038                 /*
4039                  * Do nothing.
4040                  *  If we were to free the buffer, then the user would
4041                  *  lose any trace that was in the buffer.
4042                  */
4043                 break;
4044         default:
4045                 break;
4046         }
4047         return NOTIFY_OK;
4048 }
4049 #endif