4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
23 #include <asm/local.h>
27 * The ring buffer header is special. We must manually up keep it.
29 int ring_buffer_print_entry_header(struct trace_seq *s)
33 ret = trace_seq_printf(s, "# compressed entry header\n");
34 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
35 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
36 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
37 ret = trace_seq_printf(s, "\n");
38 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
39 RINGBUF_TYPE_PADDING);
40 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 RINGBUF_TYPE_TIME_EXTEND);
42 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
49 * The ring buffer is made up of a list of pages. A separate list of pages is
50 * allocated for each CPU. A writer may only write to a buffer that is
51 * associated with the CPU it is currently executing on. A reader may read
52 * from any per cpu buffer.
54 * The reader is special. For each per cpu buffer, the reader has its own
55 * reader page. When a reader has read the entire reader page, this reader
56 * page is swapped with another page in the ring buffer.
58 * Now, as long as the writer is off the reader page, the reader can do what
59 * ever it wants with that page. The writer will never write to that page
60 * again (as long as it is out of the ring buffer).
62 * Here's some silly ASCII art.
65 * |reader| RING BUFFER
67 * +------+ +---+ +---+ +---+
76 * |reader| RING BUFFER
77 * |page |------------------v
78 * +------+ +---+ +---+ +---+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
94 * +------------------------------+
98 * |buffer| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
102 * | New +---+ +---+ +---+
105 * +------------------------------+
108 * After we make this swap, the reader can hand this page off to the splice
109 * code and be done with it. It can even allocate a new page if it needs to
110 * and swap that into the ring buffer.
112 * We will be using cmpxchg soon to make all this lockless.
117 * A fast way to enable or disable all ring buffers is to
118 * call tracing_on or tracing_off. Turning off the ring buffers
119 * prevents all ring buffers from being recorded to.
120 * Turning this switch on, makes it OK to write to the
121 * ring buffer, if the ring buffer is enabled itself.
123 * There's three layers that must be on in order to write
124 * to the ring buffer.
126 * 1) This global flag must be set.
127 * 2) The ring buffer must be enabled for recording.
128 * 3) The per cpu buffer must be enabled for recording.
130 * In case of an anomaly, this global flag has a bit set that
131 * will permantly disable all ring buffers.
135 * Global flag to disable all recording to ring buffers
136 * This has two bits: ON, DISABLED
140 * 0 0 : ring buffers are off
141 * 1 0 : ring buffers are on
142 * X 1 : ring buffers are permanently disabled
146 RB_BUFFERS_ON_BIT = 0,
147 RB_BUFFERS_DISABLED_BIT = 1,
151 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
152 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
160 * tracing_on - enable all tracing buffers
162 * This function enables all tracing buffers that may have been
163 * disabled with tracing_off.
165 void tracing_on(void)
167 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 EXPORT_SYMBOL_GPL(tracing_on);
172 * tracing_off - turn off all tracing buffers
174 * This function stops all tracing buffers from recording data.
175 * It does not disable any overhead the tracers themselves may
176 * be causing. This function simply causes all recording to
177 * the ring buffers to fail.
179 void tracing_off(void)
181 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 EXPORT_SYMBOL_GPL(tracing_off);
186 * tracing_off_permanent - permanently disable ring buffers
188 * This function, once called, will disable all ring buffers
191 void tracing_off_permanent(void)
193 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
197 * tracing_is_on - show state of ring buffers enabled
199 int tracing_is_on(void)
201 return ring_buffer_flags == RB_BUFFERS_ON;
203 EXPORT_SYMBOL_GPL(tracing_is_on);
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT 4U
207 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211 # define RB_FORCE_8BYTE_ALIGNMENT 0
212 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
214 # define RB_FORCE_8BYTE_ALIGNMENT 1
215 # define RB_ARCH_ALIGNMENT 8U
218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
222 RB_LEN_TIME_EXTEND = 8,
223 RB_LEN_TIME_STAMP = 16,
226 #define skip_time_extend(event) \
227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
229 static inline int rb_null_event(struct ring_buffer_event *event)
231 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
234 static void rb_event_set_padding(struct ring_buffer_event *event)
236 /* padding has a NULL time_delta */
237 event->type_len = RINGBUF_TYPE_PADDING;
238 event->time_delta = 0;
242 rb_event_data_length(struct ring_buffer_event *event)
247 length = event->type_len * RB_ALIGNMENT;
249 length = event->array[0];
250 return length + RB_EVNT_HDR_SIZE;
254 * Return the length of the given event. Will return
255 * the length of the time extend if the event is a
258 static inline unsigned
259 rb_event_length(struct ring_buffer_event *event)
261 switch (event->type_len) {
262 case RINGBUF_TYPE_PADDING:
263 if (rb_null_event(event))
266 return event->array[0] + RB_EVNT_HDR_SIZE;
268 case RINGBUF_TYPE_TIME_EXTEND:
269 return RB_LEN_TIME_EXTEND;
271 case RINGBUF_TYPE_TIME_STAMP:
272 return RB_LEN_TIME_STAMP;
274 case RINGBUF_TYPE_DATA:
275 return rb_event_data_length(event);
284 * Return total length of time extend and data,
285 * or just the event length for all other events.
287 static inline unsigned
288 rb_event_ts_length(struct ring_buffer_event *event)
292 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
293 /* time extends include the data event after it */
294 len = RB_LEN_TIME_EXTEND;
295 event = skip_time_extend(event);
297 return len + rb_event_length(event);
301 * ring_buffer_event_length - return the length of the event
302 * @event: the event to get the length of
304 * Returns the size of the data load of a data event.
305 * If the event is something other than a data event, it
306 * returns the size of the event itself. With the exception
307 * of a TIME EXTEND, where it still returns the size of the
308 * data load of the data event after it.
310 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
314 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
315 event = skip_time_extend(event);
317 length = rb_event_length(event);
318 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
320 length -= RB_EVNT_HDR_SIZE;
321 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
322 length -= sizeof(event->array[0]);
325 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
327 /* inline for ring buffer fast paths */
329 rb_event_data(struct ring_buffer_event *event)
331 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
332 event = skip_time_extend(event);
333 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
334 /* If length is in len field, then array[0] has the data */
336 return (void *)&event->array[0];
337 /* Otherwise length is in array[0] and array[1] has the data */
338 return (void *)&event->array[1];
342 * ring_buffer_event_data - return the data of the event
343 * @event: the event to get the data from
345 void *ring_buffer_event_data(struct ring_buffer_event *event)
347 return rb_event_data(event);
349 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
351 #define for_each_buffer_cpu(buffer, cpu) \
352 for_each_cpu(cpu, buffer->cpumask)
355 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
356 #define TS_DELTA_TEST (~TS_MASK)
358 /* Flag when events were overwritten */
359 #define RB_MISSED_EVENTS (1 << 31)
360 /* Missed count stored at end */
361 #define RB_MISSED_STORED (1 << 30)
363 struct buffer_data_page {
364 u64 time_stamp; /* page time stamp */
365 local_t commit; /* write committed index */
366 unsigned char data[]; /* data of buffer page */
370 * Note, the buffer_page list must be first. The buffer pages
371 * are allocated in cache lines, which means that each buffer
372 * page will be at the beginning of a cache line, and thus
373 * the least significant bits will be zero. We use this to
374 * add flags in the list struct pointers, to make the ring buffer
378 struct list_head list; /* list of buffer pages */
379 local_t write; /* index for next write */
380 unsigned read; /* index for next read */
381 local_t entries; /* entries on this page */
382 unsigned long real_end; /* real end of data */
383 struct buffer_data_page *page; /* Actual data page */
387 * The buffer page counters, write and entries, must be reset
388 * atomically when crossing page boundaries. To synchronize this
389 * update, two counters are inserted into the number. One is
390 * the actual counter for the write position or count on the page.
392 * The other is a counter of updaters. Before an update happens
393 * the update partition of the counter is incremented. This will
394 * allow the updater to update the counter atomically.
396 * The counter is 20 bits, and the state data is 12.
398 #define RB_WRITE_MASK 0xfffff
399 #define RB_WRITE_INTCNT (1 << 20)
401 static void rb_init_page(struct buffer_data_page *bpage)
403 local_set(&bpage->commit, 0);
407 * ring_buffer_page_len - the size of data on the page.
408 * @page: The page to read
410 * Returns the amount of data on the page, including buffer page header.
412 size_t ring_buffer_page_len(void *page)
414 return local_read(&((struct buffer_data_page *)page)->commit)
419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
422 static void free_buffer_page(struct buffer_page *bpage)
424 free_page((unsigned long)bpage->page);
429 * We need to fit the time_stamp delta into 27 bits.
431 static inline int test_time_stamp(u64 delta)
433 if (delta & TS_DELTA_TEST)
438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
443 int ring_buffer_print_page_header(struct trace_seq *s)
445 struct buffer_data_page field;
448 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
449 "offset:0;\tsize:%u;\tsigned:%u;\n",
450 (unsigned int)sizeof(field.time_stamp),
451 (unsigned int)is_signed_type(u64));
453 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
454 "offset:%u;\tsize:%u;\tsigned:%u;\n",
455 (unsigned int)offsetof(typeof(field), commit),
456 (unsigned int)sizeof(field.commit),
457 (unsigned int)is_signed_type(long));
459 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
460 "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 (unsigned int)offsetof(typeof(field), commit),
463 (unsigned int)is_signed_type(long));
465 ret = trace_seq_printf(s, "\tfield: char data;\t"
466 "offset:%u;\tsize:%u;\tsigned:%u;\n",
467 (unsigned int)offsetof(typeof(field), data),
468 (unsigned int)BUF_PAGE_SIZE,
469 (unsigned int)is_signed_type(char));
475 * head_page == tail_page && head == tail then buffer is empty.
477 struct ring_buffer_per_cpu {
479 atomic_t record_disabled;
480 struct ring_buffer *buffer;
481 raw_spinlock_t reader_lock; /* serialize readers */
482 arch_spinlock_t lock;
483 struct lock_class_key lock_key;
484 struct list_head *pages;
485 struct buffer_page *head_page; /* read from head */
486 struct buffer_page *tail_page; /* write to tail */
487 struct buffer_page *commit_page; /* committed pages */
488 struct buffer_page *reader_page;
489 unsigned long lost_events;
490 unsigned long last_overrun;
491 local_t entries_bytes;
492 local_t commit_overrun;
498 unsigned long read_bytes;
507 atomic_t record_disabled;
508 cpumask_var_t cpumask;
510 struct lock_class_key *reader_lock_key;
514 struct ring_buffer_per_cpu **buffers;
516 #ifdef CONFIG_HOTPLUG_CPU
517 struct notifier_block cpu_notify;
522 struct ring_buffer_iter {
523 struct ring_buffer_per_cpu *cpu_buffer;
525 struct buffer_page *head_page;
526 struct buffer_page *cache_reader_page;
527 unsigned long cache_read;
531 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
532 #define RB_WARN_ON(b, cond) \
534 int _____ret = unlikely(cond); \
536 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
537 struct ring_buffer_per_cpu *__b = \
539 atomic_inc(&__b->buffer->record_disabled); \
541 atomic_inc(&b->record_disabled); \
547 /* Up this if you want to test the TIME_EXTENTS and normalization */
548 #define DEBUG_SHIFT 0
550 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
552 /* shift to debug/test normalization and TIME_EXTENTS */
553 return buffer->clock() << DEBUG_SHIFT;
556 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
560 preempt_disable_notrace();
561 time = rb_time_stamp(buffer);
562 preempt_enable_no_resched_notrace();
566 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
568 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
571 /* Just stupid testing the normalize function and deltas */
574 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
577 * Making the ring buffer lockless makes things tricky.
578 * Although writes only happen on the CPU that they are on,
579 * and they only need to worry about interrupts. Reads can
582 * The reader page is always off the ring buffer, but when the
583 * reader finishes with a page, it needs to swap its page with
584 * a new one from the buffer. The reader needs to take from
585 * the head (writes go to the tail). But if a writer is in overwrite
586 * mode and wraps, it must push the head page forward.
588 * Here lies the problem.
590 * The reader must be careful to replace only the head page, and
591 * not another one. As described at the top of the file in the
592 * ASCII art, the reader sets its old page to point to the next
593 * page after head. It then sets the page after head to point to
594 * the old reader page. But if the writer moves the head page
595 * during this operation, the reader could end up with the tail.
597 * We use cmpxchg to help prevent this race. We also do something
598 * special with the page before head. We set the LSB to 1.
600 * When the writer must push the page forward, it will clear the
601 * bit that points to the head page, move the head, and then set
602 * the bit that points to the new head page.
604 * We also don't want an interrupt coming in and moving the head
605 * page on another writer. Thus we use the second LSB to catch
608 * head->list->prev->next bit 1 bit 0
611 * Points to head page 0 1
614 * Note we can not trust the prev pointer of the head page, because:
616 * +----+ +-----+ +-----+
617 * | |------>| T |---X--->| N |
619 * +----+ +-----+ +-----+
622 * +----------| R |----------+ |
626 * Key: ---X--> HEAD flag set in pointer
631 * (see __rb_reserve_next() to see where this happens)
633 * What the above shows is that the reader just swapped out
634 * the reader page with a page in the buffer, but before it
635 * could make the new header point back to the new page added
636 * it was preempted by a writer. The writer moved forward onto
637 * the new page added by the reader and is about to move forward
640 * You can see, it is legitimate for the previous pointer of
641 * the head (or any page) not to point back to itself. But only
645 #define RB_PAGE_NORMAL 0UL
646 #define RB_PAGE_HEAD 1UL
647 #define RB_PAGE_UPDATE 2UL
650 #define RB_FLAG_MASK 3UL
652 /* PAGE_MOVED is not part of the mask */
653 #define RB_PAGE_MOVED 4UL
656 * rb_list_head - remove any bit
658 static struct list_head *rb_list_head(struct list_head *list)
660 unsigned long val = (unsigned long)list;
662 return (struct list_head *)(val & ~RB_FLAG_MASK);
666 * rb_is_head_page - test if the given page is the head page
668 * Because the reader may move the head_page pointer, we can
669 * not trust what the head page is (it may be pointing to
670 * the reader page). But if the next page is a header page,
671 * its flags will be non zero.
674 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
675 struct buffer_page *page, struct list_head *list)
679 val = (unsigned long)list->next;
681 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
682 return RB_PAGE_MOVED;
684 return val & RB_FLAG_MASK;
690 * The unique thing about the reader page, is that, if the
691 * writer is ever on it, the previous pointer never points
692 * back to the reader page.
694 static int rb_is_reader_page(struct buffer_page *page)
696 struct list_head *list = page->list.prev;
698 return rb_list_head(list->next) != &page->list;
702 * rb_set_list_to_head - set a list_head to be pointing to head.
704 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
705 struct list_head *list)
709 ptr = (unsigned long *)&list->next;
710 *ptr |= RB_PAGE_HEAD;
711 *ptr &= ~RB_PAGE_UPDATE;
715 * rb_head_page_activate - sets up head page
717 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
719 struct buffer_page *head;
721 head = cpu_buffer->head_page;
726 * Set the previous list pointer to have the HEAD flag.
728 rb_set_list_to_head(cpu_buffer, head->list.prev);
731 static void rb_list_head_clear(struct list_head *list)
733 unsigned long *ptr = (unsigned long *)&list->next;
735 *ptr &= ~RB_FLAG_MASK;
739 * rb_head_page_dactivate - clears head page ptr (for free list)
742 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
744 struct list_head *hd;
746 /* Go through the whole list and clear any pointers found. */
747 rb_list_head_clear(cpu_buffer->pages);
749 list_for_each(hd, cpu_buffer->pages)
750 rb_list_head_clear(hd);
753 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
754 struct buffer_page *head,
755 struct buffer_page *prev,
756 int old_flag, int new_flag)
758 struct list_head *list;
759 unsigned long val = (unsigned long)&head->list;
764 val &= ~RB_FLAG_MASK;
766 ret = cmpxchg((unsigned long *)&list->next,
767 val | old_flag, val | new_flag);
769 /* check if the reader took the page */
770 if ((ret & ~RB_FLAG_MASK) != val)
771 return RB_PAGE_MOVED;
773 return ret & RB_FLAG_MASK;
776 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
777 struct buffer_page *head,
778 struct buffer_page *prev,
781 return rb_head_page_set(cpu_buffer, head, prev,
782 old_flag, RB_PAGE_UPDATE);
785 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
786 struct buffer_page *head,
787 struct buffer_page *prev,
790 return rb_head_page_set(cpu_buffer, head, prev,
791 old_flag, RB_PAGE_HEAD);
794 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
795 struct buffer_page *head,
796 struct buffer_page *prev,
799 return rb_head_page_set(cpu_buffer, head, prev,
800 old_flag, RB_PAGE_NORMAL);
803 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
804 struct buffer_page **bpage)
806 struct list_head *p = rb_list_head((*bpage)->list.next);
808 *bpage = list_entry(p, struct buffer_page, list);
811 static struct buffer_page *
812 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
814 struct buffer_page *head;
815 struct buffer_page *page;
816 struct list_head *list;
819 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
823 list = cpu_buffer->pages;
824 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
827 page = head = cpu_buffer->head_page;
829 * It is possible that the writer moves the header behind
830 * where we started, and we miss in one loop.
831 * A second loop should grab the header, but we'll do
832 * three loops just because I'm paranoid.
834 for (i = 0; i < 3; i++) {
836 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
837 cpu_buffer->head_page = page;
840 rb_inc_page(cpu_buffer, &page);
841 } while (page != head);
844 RB_WARN_ON(cpu_buffer, 1);
849 static int rb_head_page_replace(struct buffer_page *old,
850 struct buffer_page *new)
852 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
856 val = *ptr & ~RB_FLAG_MASK;
859 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
865 * rb_tail_page_update - move the tail page forward
867 * Returns 1 if moved tail page, 0 if someone else did.
869 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
870 struct buffer_page *tail_page,
871 struct buffer_page *next_page)
873 struct buffer_page *old_tail;
874 unsigned long old_entries;
875 unsigned long old_write;
879 * The tail page now needs to be moved forward.
881 * We need to reset the tail page, but without messing
882 * with possible erasing of data brought in by interrupts
883 * that have moved the tail page and are currently on it.
885 * We add a counter to the write field to denote this.
887 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
888 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
891 * Just make sure we have seen our old_write and synchronize
892 * with any interrupts that come in.
897 * If the tail page is still the same as what we think
898 * it is, then it is up to us to update the tail
901 if (tail_page == cpu_buffer->tail_page) {
902 /* Zero the write counter */
903 unsigned long val = old_write & ~RB_WRITE_MASK;
904 unsigned long eval = old_entries & ~RB_WRITE_MASK;
907 * This will only succeed if an interrupt did
908 * not come in and change it. In which case, we
909 * do not want to modify it.
911 * We add (void) to let the compiler know that we do not care
912 * about the return value of these functions. We use the
913 * cmpxchg to only update if an interrupt did not already
914 * do it for us. If the cmpxchg fails, we don't care.
916 (void)local_cmpxchg(&next_page->write, old_write, val);
917 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
920 * No need to worry about races with clearing out the commit.
921 * it only can increment when a commit takes place. But that
922 * only happens in the outer most nested commit.
924 local_set(&next_page->page->commit, 0);
926 old_tail = cmpxchg(&cpu_buffer->tail_page,
927 tail_page, next_page);
929 if (old_tail == tail_page)
936 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
937 struct buffer_page *bpage)
939 unsigned long val = (unsigned long)bpage;
941 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
948 * rb_check_list - make sure a pointer to a list has the last bits zero
950 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
951 struct list_head *list)
953 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
955 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
961 * check_pages - integrity check of buffer pages
962 * @cpu_buffer: CPU buffer with pages to test
964 * As a safety measure we check to make sure the data pages have not
967 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
969 struct list_head *head = cpu_buffer->pages;
970 struct buffer_page *bpage, *tmp;
972 rb_head_page_deactivate(cpu_buffer);
974 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
976 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
979 if (rb_check_list(cpu_buffer, head))
982 list_for_each_entry_safe(bpage, tmp, head, list) {
983 if (RB_WARN_ON(cpu_buffer,
984 bpage->list.next->prev != &bpage->list))
986 if (RB_WARN_ON(cpu_buffer,
987 bpage->list.prev->next != &bpage->list))
989 if (rb_check_list(cpu_buffer, &bpage->list))
993 rb_head_page_activate(cpu_buffer);
998 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1001 struct buffer_page *bpage, *tmp;
1007 for (i = 0; i < nr_pages; i++) {
1010 * __GFP_NORETRY flag makes sure that the allocation fails
1011 * gracefully without invoking oom-killer and the system is
1014 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1015 GFP_KERNEL | __GFP_NORETRY,
1016 cpu_to_node(cpu_buffer->cpu));
1020 rb_check_bpage(cpu_buffer, bpage);
1022 list_add(&bpage->list, &pages);
1024 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1025 GFP_KERNEL | __GFP_NORETRY, 0);
1028 bpage->page = page_address(page);
1029 rb_init_page(bpage->page);
1033 * The ring buffer page list is a circular list that does not
1034 * start and end with a list head. All page list items point to
1037 cpu_buffer->pages = pages.next;
1040 rb_check_pages(cpu_buffer);
1045 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1046 list_del_init(&bpage->list);
1047 free_buffer_page(bpage);
1052 static struct ring_buffer_per_cpu *
1053 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1055 struct ring_buffer_per_cpu *cpu_buffer;
1056 struct buffer_page *bpage;
1060 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1061 GFP_KERNEL, cpu_to_node(cpu));
1065 cpu_buffer->cpu = cpu;
1066 cpu_buffer->buffer = buffer;
1067 raw_spin_lock_init(&cpu_buffer->reader_lock);
1068 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1069 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1071 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1072 GFP_KERNEL, cpu_to_node(cpu));
1074 goto fail_free_buffer;
1076 rb_check_bpage(cpu_buffer, bpage);
1078 cpu_buffer->reader_page = bpage;
1079 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1081 goto fail_free_reader;
1082 bpage->page = page_address(page);
1083 rb_init_page(bpage->page);
1085 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1087 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1089 goto fail_free_reader;
1091 cpu_buffer->head_page
1092 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1093 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1095 rb_head_page_activate(cpu_buffer);
1100 free_buffer_page(cpu_buffer->reader_page);
1107 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1109 struct list_head *head = cpu_buffer->pages;
1110 struct buffer_page *bpage, *tmp;
1112 free_buffer_page(cpu_buffer->reader_page);
1114 rb_head_page_deactivate(cpu_buffer);
1117 list_for_each_entry_safe(bpage, tmp, head, list) {
1118 list_del_init(&bpage->list);
1119 free_buffer_page(bpage);
1121 bpage = list_entry(head, struct buffer_page, list);
1122 free_buffer_page(bpage);
1128 #ifdef CONFIG_HOTPLUG_CPU
1129 static int rb_cpu_notify(struct notifier_block *self,
1130 unsigned long action, void *hcpu);
1134 * ring_buffer_alloc - allocate a new ring_buffer
1135 * @size: the size in bytes per cpu that is needed.
1136 * @flags: attributes to set for the ring buffer.
1138 * Currently the only flag that is available is the RB_FL_OVERWRITE
1139 * flag. This flag means that the buffer will overwrite old data
1140 * when the buffer wraps. If this flag is not set, the buffer will
1141 * drop data when the tail hits the head.
1143 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1144 struct lock_class_key *key)
1146 struct ring_buffer *buffer;
1150 /* keep it in its own cache line */
1151 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1156 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1157 goto fail_free_buffer;
1159 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1160 buffer->flags = flags;
1161 buffer->clock = trace_clock_local;
1162 buffer->reader_lock_key = key;
1164 /* need at least two pages */
1165 if (buffer->pages < 2)
1169 * In case of non-hotplug cpu, if the ring-buffer is allocated
1170 * in early initcall, it will not be notified of secondary cpus.
1171 * In that off case, we need to allocate for all possible cpus.
1173 #ifdef CONFIG_HOTPLUG_CPU
1175 cpumask_copy(buffer->cpumask, cpu_online_mask);
1177 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1179 buffer->cpus = nr_cpu_ids;
1181 bsize = sizeof(void *) * nr_cpu_ids;
1182 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1184 if (!buffer->buffers)
1185 goto fail_free_cpumask;
1187 for_each_buffer_cpu(buffer, cpu) {
1188 buffer->buffers[cpu] =
1189 rb_allocate_cpu_buffer(buffer, cpu);
1190 if (!buffer->buffers[cpu])
1191 goto fail_free_buffers;
1194 #ifdef CONFIG_HOTPLUG_CPU
1195 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1196 buffer->cpu_notify.priority = 0;
1197 register_cpu_notifier(&buffer->cpu_notify);
1201 mutex_init(&buffer->mutex);
1206 for_each_buffer_cpu(buffer, cpu) {
1207 if (buffer->buffers[cpu])
1208 rb_free_cpu_buffer(buffer->buffers[cpu]);
1210 kfree(buffer->buffers);
1213 free_cpumask_var(buffer->cpumask);
1220 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1223 * ring_buffer_free - free a ring buffer.
1224 * @buffer: the buffer to free.
1227 ring_buffer_free(struct ring_buffer *buffer)
1233 #ifdef CONFIG_HOTPLUG_CPU
1234 unregister_cpu_notifier(&buffer->cpu_notify);
1237 for_each_buffer_cpu(buffer, cpu)
1238 rb_free_cpu_buffer(buffer->buffers[cpu]);
1242 kfree(buffer->buffers);
1243 free_cpumask_var(buffer->cpumask);
1247 EXPORT_SYMBOL_GPL(ring_buffer_free);
1249 void ring_buffer_set_clock(struct ring_buffer *buffer,
1252 buffer->clock = clock;
1255 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1258 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1260 struct buffer_page *bpage;
1261 struct list_head *p;
1264 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1265 rb_head_page_deactivate(cpu_buffer);
1267 for (i = 0; i < nr_pages; i++) {
1268 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1270 p = cpu_buffer->pages->next;
1271 bpage = list_entry(p, struct buffer_page, list);
1272 list_del_init(&bpage->list);
1273 free_buffer_page(bpage);
1275 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1278 rb_reset_cpu(cpu_buffer);
1279 rb_check_pages(cpu_buffer);
1282 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1286 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1287 struct list_head *pages, unsigned nr_pages)
1289 struct buffer_page *bpage;
1290 struct list_head *p;
1293 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1294 rb_head_page_deactivate(cpu_buffer);
1296 for (i = 0; i < nr_pages; i++) {
1297 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1300 bpage = list_entry(p, struct buffer_page, list);
1301 list_del_init(&bpage->list);
1302 list_add_tail(&bpage->list, cpu_buffer->pages);
1304 rb_reset_cpu(cpu_buffer);
1305 rb_check_pages(cpu_buffer);
1308 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1312 * ring_buffer_resize - resize the ring buffer
1313 * @buffer: the buffer to resize.
1314 * @size: the new size.
1316 * Minimum size is 2 * BUF_PAGE_SIZE.
1318 * Returns -1 on failure.
1320 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1322 struct ring_buffer_per_cpu *cpu_buffer;
1323 unsigned nr_pages, rm_pages, new_pages;
1324 struct buffer_page *bpage, *tmp;
1325 unsigned long buffer_size;
1330 * Always succeed at resizing a non-existent buffer:
1335 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1336 size *= BUF_PAGE_SIZE;
1337 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1339 /* we need a minimum of two pages */
1340 if (size < BUF_PAGE_SIZE * 2)
1341 size = BUF_PAGE_SIZE * 2;
1343 if (size == buffer_size)
1346 atomic_inc(&buffer->record_disabled);
1348 /* Make sure all writers are done with this buffer. */
1349 synchronize_sched();
1351 mutex_lock(&buffer->mutex);
1354 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1356 if (size < buffer_size) {
1358 /* easy case, just free pages */
1359 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1362 rm_pages = buffer->pages - nr_pages;
1364 for_each_buffer_cpu(buffer, cpu) {
1365 cpu_buffer = buffer->buffers[cpu];
1366 rb_remove_pages(cpu_buffer, rm_pages);
1372 * This is a bit more difficult. We only want to add pages
1373 * when we can allocate enough for all CPUs. We do this
1374 * by allocating all the pages and storing them on a local
1375 * link list. If we succeed in our allocation, then we
1376 * add these pages to the cpu_buffers. Otherwise we just free
1377 * them all and return -ENOMEM;
1379 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1382 new_pages = nr_pages - buffer->pages;
1384 for_each_buffer_cpu(buffer, cpu) {
1385 for (i = 0; i < new_pages; i++) {
1388 * __GFP_NORETRY flag makes sure that the allocation
1389 * fails gracefully without invoking oom-killer and
1390 * the system is not destabilized.
1392 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1394 GFP_KERNEL | __GFP_NORETRY,
1398 list_add(&bpage->list, &pages);
1399 page = alloc_pages_node(cpu_to_node(cpu),
1400 GFP_KERNEL | __GFP_NORETRY, 0);
1403 bpage->page = page_address(page);
1404 rb_init_page(bpage->page);
1408 for_each_buffer_cpu(buffer, cpu) {
1409 cpu_buffer = buffer->buffers[cpu];
1410 rb_insert_pages(cpu_buffer, &pages, new_pages);
1413 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1417 buffer->pages = nr_pages;
1419 mutex_unlock(&buffer->mutex);
1421 atomic_dec(&buffer->record_disabled);
1426 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1427 list_del_init(&bpage->list);
1428 free_buffer_page(bpage);
1431 mutex_unlock(&buffer->mutex);
1432 atomic_dec(&buffer->record_disabled);
1436 * Something went totally wrong, and we are too paranoid
1437 * to even clean up the mess.
1441 mutex_unlock(&buffer->mutex);
1442 atomic_dec(&buffer->record_disabled);
1445 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1447 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1449 mutex_lock(&buffer->mutex);
1451 buffer->flags |= RB_FL_OVERWRITE;
1453 buffer->flags &= ~RB_FL_OVERWRITE;
1454 mutex_unlock(&buffer->mutex);
1456 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1458 static inline void *
1459 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1461 return bpage->data + index;
1464 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1466 return bpage->page->data + index;
1469 static inline struct ring_buffer_event *
1470 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1472 return __rb_page_index(cpu_buffer->reader_page,
1473 cpu_buffer->reader_page->read);
1476 static inline struct ring_buffer_event *
1477 rb_iter_head_event(struct ring_buffer_iter *iter)
1479 return __rb_page_index(iter->head_page, iter->head);
1482 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1484 return local_read(&bpage->write) & RB_WRITE_MASK;
1487 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1489 return local_read(&bpage->page->commit);
1492 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1494 return local_read(&bpage->entries) & RB_WRITE_MASK;
1497 /* Size is determined by what has been committed */
1498 static inline unsigned rb_page_size(struct buffer_page *bpage)
1500 return rb_page_commit(bpage);
1503 static inline unsigned
1504 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1506 return rb_page_commit(cpu_buffer->commit_page);
1509 static inline unsigned
1510 rb_event_index(struct ring_buffer_event *event)
1512 unsigned long addr = (unsigned long)event;
1514 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1518 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1519 struct ring_buffer_event *event)
1521 unsigned long addr = (unsigned long)event;
1522 unsigned long index;
1524 index = rb_event_index(event);
1527 return cpu_buffer->commit_page->page == (void *)addr &&
1528 rb_commit_index(cpu_buffer) == index;
1532 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1534 unsigned long max_count;
1537 * We only race with interrupts and NMIs on this CPU.
1538 * If we own the commit event, then we can commit
1539 * all others that interrupted us, since the interruptions
1540 * are in stack format (they finish before they come
1541 * back to us). This allows us to do a simple loop to
1542 * assign the commit to the tail.
1545 max_count = cpu_buffer->buffer->pages * 100;
1547 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1548 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1550 if (RB_WARN_ON(cpu_buffer,
1551 rb_is_reader_page(cpu_buffer->tail_page)))
1553 local_set(&cpu_buffer->commit_page->page->commit,
1554 rb_page_write(cpu_buffer->commit_page));
1555 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1556 cpu_buffer->write_stamp =
1557 cpu_buffer->commit_page->page->time_stamp;
1558 /* add barrier to keep gcc from optimizing too much */
1561 while (rb_commit_index(cpu_buffer) !=
1562 rb_page_write(cpu_buffer->commit_page)) {
1564 local_set(&cpu_buffer->commit_page->page->commit,
1565 rb_page_write(cpu_buffer->commit_page));
1566 RB_WARN_ON(cpu_buffer,
1567 local_read(&cpu_buffer->commit_page->page->commit) &
1572 /* again, keep gcc from optimizing */
1576 * If an interrupt came in just after the first while loop
1577 * and pushed the tail page forward, we will be left with
1578 * a dangling commit that will never go forward.
1580 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1584 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1586 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1587 cpu_buffer->reader_page->read = 0;
1590 static void rb_inc_iter(struct ring_buffer_iter *iter)
1592 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1595 * The iterator could be on the reader page (it starts there).
1596 * But the head could have moved, since the reader was
1597 * found. Check for this case and assign the iterator
1598 * to the head page instead of next.
1600 if (iter->head_page == cpu_buffer->reader_page)
1601 iter->head_page = rb_set_head_page(cpu_buffer);
1603 rb_inc_page(cpu_buffer, &iter->head_page);
1605 iter->read_stamp = iter->head_page->page->time_stamp;
1609 /* Slow path, do not inline */
1610 static noinline struct ring_buffer_event *
1611 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1613 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1615 /* Not the first event on the page? */
1616 if (rb_event_index(event)) {
1617 event->time_delta = delta & TS_MASK;
1618 event->array[0] = delta >> TS_SHIFT;
1620 /* nope, just zero it */
1621 event->time_delta = 0;
1622 event->array[0] = 0;
1625 return skip_time_extend(event);
1629 * ring_buffer_update_event - update event type and data
1630 * @event: the even to update
1631 * @type: the type of event
1632 * @length: the size of the event field in the ring buffer
1634 * Update the type and data fields of the event. The length
1635 * is the actual size that is written to the ring buffer,
1636 * and with this, we can determine what to place into the
1640 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1641 struct ring_buffer_event *event, unsigned length,
1642 int add_timestamp, u64 delta)
1644 /* Only a commit updates the timestamp */
1645 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1649 * If we need to add a timestamp, then we
1650 * add it to the start of the resevered space.
1652 if (unlikely(add_timestamp)) {
1653 event = rb_add_time_stamp(event, delta);
1654 length -= RB_LEN_TIME_EXTEND;
1658 event->time_delta = delta;
1659 length -= RB_EVNT_HDR_SIZE;
1660 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1661 event->type_len = 0;
1662 event->array[0] = length;
1664 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1668 * rb_handle_head_page - writer hit the head page
1670 * Returns: +1 to retry page
1675 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1676 struct buffer_page *tail_page,
1677 struct buffer_page *next_page)
1679 struct buffer_page *new_head;
1684 entries = rb_page_entries(next_page);
1687 * The hard part is here. We need to move the head
1688 * forward, and protect against both readers on
1689 * other CPUs and writers coming in via interrupts.
1691 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1695 * type can be one of four:
1696 * NORMAL - an interrupt already moved it for us
1697 * HEAD - we are the first to get here.
1698 * UPDATE - we are the interrupt interrupting
1700 * MOVED - a reader on another CPU moved the next
1701 * pointer to its reader page. Give up
1708 * We changed the head to UPDATE, thus
1709 * it is our responsibility to update
1712 local_add(entries, &cpu_buffer->overrun);
1713 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1716 * The entries will be zeroed out when we move the
1720 /* still more to do */
1723 case RB_PAGE_UPDATE:
1725 * This is an interrupt that interrupt the
1726 * previous update. Still more to do.
1729 case RB_PAGE_NORMAL:
1731 * An interrupt came in before the update
1732 * and processed this for us.
1733 * Nothing left to do.
1738 * The reader is on another CPU and just did
1739 * a swap with our next_page.
1744 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1749 * Now that we are here, the old head pointer is
1750 * set to UPDATE. This will keep the reader from
1751 * swapping the head page with the reader page.
1752 * The reader (on another CPU) will spin till
1755 * We just need to protect against interrupts
1756 * doing the job. We will set the next pointer
1757 * to HEAD. After that, we set the old pointer
1758 * to NORMAL, but only if it was HEAD before.
1759 * otherwise we are an interrupt, and only
1760 * want the outer most commit to reset it.
1762 new_head = next_page;
1763 rb_inc_page(cpu_buffer, &new_head);
1765 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1769 * Valid returns are:
1770 * HEAD - an interrupt came in and already set it.
1771 * NORMAL - One of two things:
1772 * 1) We really set it.
1773 * 2) A bunch of interrupts came in and moved
1774 * the page forward again.
1778 case RB_PAGE_NORMAL:
1782 RB_WARN_ON(cpu_buffer, 1);
1787 * It is possible that an interrupt came in,
1788 * set the head up, then more interrupts came in
1789 * and moved it again. When we get back here,
1790 * the page would have been set to NORMAL but we
1791 * just set it back to HEAD.
1793 * How do you detect this? Well, if that happened
1794 * the tail page would have moved.
1796 if (ret == RB_PAGE_NORMAL) {
1798 * If the tail had moved passed next, then we need
1799 * to reset the pointer.
1801 if (cpu_buffer->tail_page != tail_page &&
1802 cpu_buffer->tail_page != next_page)
1803 rb_head_page_set_normal(cpu_buffer, new_head,
1809 * If this was the outer most commit (the one that
1810 * changed the original pointer from HEAD to UPDATE),
1811 * then it is up to us to reset it to NORMAL.
1813 if (type == RB_PAGE_HEAD) {
1814 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1817 if (RB_WARN_ON(cpu_buffer,
1818 ret != RB_PAGE_UPDATE))
1825 static unsigned rb_calculate_event_length(unsigned length)
1827 struct ring_buffer_event event; /* Used only for sizeof array */
1829 /* zero length can cause confusions */
1833 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1834 length += sizeof(event.array[0]);
1836 length += RB_EVNT_HDR_SIZE;
1837 length = ALIGN(length, RB_ARCH_ALIGNMENT);
1843 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1844 struct buffer_page *tail_page,
1845 unsigned long tail, unsigned long length)
1847 struct ring_buffer_event *event;
1850 * Only the event that crossed the page boundary
1851 * must fill the old tail_page with padding.
1853 if (tail >= BUF_PAGE_SIZE) {
1855 * If the page was filled, then we still need
1856 * to update the real_end. Reset it to zero
1857 * and the reader will ignore it.
1859 if (tail == BUF_PAGE_SIZE)
1860 tail_page->real_end = 0;
1862 local_sub(length, &tail_page->write);
1866 event = __rb_page_index(tail_page, tail);
1867 kmemcheck_annotate_bitfield(event, bitfield);
1869 /* account for padding bytes */
1870 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
1873 * Save the original length to the meta data.
1874 * This will be used by the reader to add lost event
1877 tail_page->real_end = tail;
1880 * If this event is bigger than the minimum size, then
1881 * we need to be careful that we don't subtract the
1882 * write counter enough to allow another writer to slip
1884 * We put in a discarded commit instead, to make sure
1885 * that this space is not used again.
1887 * If we are less than the minimum size, we don't need to
1890 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1891 /* No room for any events */
1893 /* Mark the rest of the page with padding */
1894 rb_event_set_padding(event);
1896 /* Set the write back to the previous setting */
1897 local_sub(length, &tail_page->write);
1901 /* Put in a discarded event */
1902 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1903 event->type_len = RINGBUF_TYPE_PADDING;
1904 /* time delta must be non zero */
1905 event->time_delta = 1;
1907 /* Set write to end of buffer */
1908 length = (tail + length) - BUF_PAGE_SIZE;
1909 local_sub(length, &tail_page->write);
1913 * This is the slow path, force gcc not to inline it.
1915 static noinline struct ring_buffer_event *
1916 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1917 unsigned long length, unsigned long tail,
1918 struct buffer_page *tail_page, u64 ts)
1920 struct buffer_page *commit_page = cpu_buffer->commit_page;
1921 struct ring_buffer *buffer = cpu_buffer->buffer;
1922 struct buffer_page *next_page;
1925 next_page = tail_page;
1927 rb_inc_page(cpu_buffer, &next_page);
1930 * If for some reason, we had an interrupt storm that made
1931 * it all the way around the buffer, bail, and warn
1934 if (unlikely(next_page == commit_page)) {
1935 local_inc(&cpu_buffer->commit_overrun);
1940 * This is where the fun begins!
1942 * We are fighting against races between a reader that
1943 * could be on another CPU trying to swap its reader
1944 * page with the buffer head.
1946 * We are also fighting against interrupts coming in and
1947 * moving the head or tail on us as well.
1949 * If the next page is the head page then we have filled
1950 * the buffer, unless the commit page is still on the
1953 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1956 * If the commit is not on the reader page, then
1957 * move the header page.
1959 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1961 * If we are not in overwrite mode,
1962 * this is easy, just stop here.
1964 if (!(buffer->flags & RB_FL_OVERWRITE))
1967 ret = rb_handle_head_page(cpu_buffer,
1976 * We need to be careful here too. The
1977 * commit page could still be on the reader
1978 * page. We could have a small buffer, and
1979 * have filled up the buffer with events
1980 * from interrupts and such, and wrapped.
1982 * Note, if the tail page is also the on the
1983 * reader_page, we let it move out.
1985 if (unlikely((cpu_buffer->commit_page !=
1986 cpu_buffer->tail_page) &&
1987 (cpu_buffer->commit_page ==
1988 cpu_buffer->reader_page))) {
1989 local_inc(&cpu_buffer->commit_overrun);
1995 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1998 * Nested commits always have zero deltas, so
1999 * just reread the time stamp
2001 ts = rb_time_stamp(buffer);
2002 next_page->page->time_stamp = ts;
2007 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2009 /* fail and let the caller try again */
2010 return ERR_PTR(-EAGAIN);
2014 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2019 static struct ring_buffer_event *
2020 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2021 unsigned long length, u64 ts,
2022 u64 delta, int add_timestamp)
2024 struct buffer_page *tail_page;
2025 struct ring_buffer_event *event;
2026 unsigned long tail, write;
2029 * If the time delta since the last event is too big to
2030 * hold in the time field of the event, then we append a
2031 * TIME EXTEND event ahead of the data event.
2033 if (unlikely(add_timestamp))
2034 length += RB_LEN_TIME_EXTEND;
2036 tail_page = cpu_buffer->tail_page;
2037 write = local_add_return(length, &tail_page->write);
2039 /* set write to only the index of the write */
2040 write &= RB_WRITE_MASK;
2041 tail = write - length;
2044 * If this is the first commit on the page, then it has the same
2045 * timestamp as the page itself.
2050 /* See if we shot pass the end of this buffer page */
2051 if (unlikely(write > BUF_PAGE_SIZE))
2052 return rb_move_tail(cpu_buffer, length, tail,
2055 /* We reserved something on the buffer */
2057 event = __rb_page_index(tail_page, tail);
2058 kmemcheck_annotate_bitfield(event, bitfield);
2059 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2061 local_inc(&tail_page->entries);
2064 * If this is the first commit on the page, then update
2068 tail_page->page->time_stamp = ts;
2070 /* account for these added bytes */
2071 local_add(length, &cpu_buffer->entries_bytes);
2077 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2078 struct ring_buffer_event *event)
2080 unsigned long new_index, old_index;
2081 struct buffer_page *bpage;
2082 unsigned long index;
2085 new_index = rb_event_index(event);
2086 old_index = new_index + rb_event_ts_length(event);
2087 addr = (unsigned long)event;
2090 bpage = cpu_buffer->tail_page;
2092 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2093 unsigned long write_mask =
2094 local_read(&bpage->write) & ~RB_WRITE_MASK;
2095 unsigned long event_length = rb_event_length(event);
2097 * This is on the tail page. It is possible that
2098 * a write could come in and move the tail page
2099 * and write to the next page. That is fine
2100 * because we just shorten what is on this page.
2102 old_index += write_mask;
2103 new_index += write_mask;
2104 index = local_cmpxchg(&bpage->write, old_index, new_index);
2105 if (index == old_index) {
2106 /* update counters */
2107 local_sub(event_length, &cpu_buffer->entries_bytes);
2112 /* could not discard */
2116 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2118 local_inc(&cpu_buffer->committing);
2119 local_inc(&cpu_buffer->commits);
2122 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2124 unsigned long commits;
2126 if (RB_WARN_ON(cpu_buffer,
2127 !local_read(&cpu_buffer->committing)))
2131 commits = local_read(&cpu_buffer->commits);
2132 /* synchronize with interrupts */
2134 if (local_read(&cpu_buffer->committing) == 1)
2135 rb_set_commit_to_write(cpu_buffer);
2137 local_dec(&cpu_buffer->committing);
2139 /* synchronize with interrupts */
2143 * Need to account for interrupts coming in between the
2144 * updating of the commit page and the clearing of the
2145 * committing counter.
2147 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2148 !local_read(&cpu_buffer->committing)) {
2149 local_inc(&cpu_buffer->committing);
2154 static struct ring_buffer_event *
2155 rb_reserve_next_event(struct ring_buffer *buffer,
2156 struct ring_buffer_per_cpu *cpu_buffer,
2157 unsigned long length)
2159 struct ring_buffer_event *event;
2165 rb_start_commit(cpu_buffer);
2167 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2169 * Due to the ability to swap a cpu buffer from a buffer
2170 * it is possible it was swapped before we committed.
2171 * (committing stops a swap). We check for it here and
2172 * if it happened, we have to fail the write.
2175 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2176 local_dec(&cpu_buffer->committing);
2177 local_dec(&cpu_buffer->commits);
2182 length = rb_calculate_event_length(length);
2188 * We allow for interrupts to reenter here and do a trace.
2189 * If one does, it will cause this original code to loop
2190 * back here. Even with heavy interrupts happening, this
2191 * should only happen a few times in a row. If this happens
2192 * 1000 times in a row, there must be either an interrupt
2193 * storm or we have something buggy.
2196 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2199 ts = rb_time_stamp(cpu_buffer->buffer);
2200 diff = ts - cpu_buffer->write_stamp;
2202 /* make sure this diff is calculated here */
2205 /* Did the write stamp get updated already? */
2206 if (likely(ts >= cpu_buffer->write_stamp)) {
2208 if (unlikely(test_time_stamp(delta))) {
2209 int local_clock_stable = 1;
2210 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2211 local_clock_stable = sched_clock_stable;
2213 WARN_ONCE(delta > (1ULL << 59),
2214 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2215 (unsigned long long)delta,
2216 (unsigned long long)ts,
2217 (unsigned long long)cpu_buffer->write_stamp,
2218 local_clock_stable ? "" :
2219 "If you just came from a suspend/resume,\n"
2220 "please switch to the trace global clock:\n"
2221 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2226 event = __rb_reserve_next(cpu_buffer, length, ts,
2227 delta, add_timestamp);
2228 if (unlikely(PTR_ERR(event) == -EAGAIN))
2237 rb_end_commit(cpu_buffer);
2241 #ifdef CONFIG_TRACING
2243 #define TRACE_RECURSIVE_DEPTH 16
2245 /* Keep this code out of the fast path cache */
2246 static noinline void trace_recursive_fail(void)
2248 /* Disable all tracing before we do anything else */
2249 tracing_off_permanent();
2251 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2252 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2253 trace_recursion_buffer(),
2254 hardirq_count() >> HARDIRQ_SHIFT,
2255 softirq_count() >> SOFTIRQ_SHIFT,
2261 static inline int trace_recursive_lock(void)
2263 trace_recursion_inc();
2265 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2268 trace_recursive_fail();
2273 static inline void trace_recursive_unlock(void)
2275 WARN_ON_ONCE(!trace_recursion_buffer());
2277 trace_recursion_dec();
2282 #define trace_recursive_lock() (0)
2283 #define trace_recursive_unlock() do { } while (0)
2288 * ring_buffer_lock_reserve - reserve a part of the buffer
2289 * @buffer: the ring buffer to reserve from
2290 * @length: the length of the data to reserve (excluding event header)
2292 * Returns a reseverd event on the ring buffer to copy directly to.
2293 * The user of this interface will need to get the body to write into
2294 * and can use the ring_buffer_event_data() interface.
2296 * The length is the length of the data needed, not the event length
2297 * which also includes the event header.
2299 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2300 * If NULL is returned, then nothing has been allocated or locked.
2302 struct ring_buffer_event *
2303 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2305 struct ring_buffer_per_cpu *cpu_buffer;
2306 struct ring_buffer_event *event;
2309 if (ring_buffer_flags != RB_BUFFERS_ON)
2312 /* If we are tracing schedule, we don't want to recurse */
2313 preempt_disable_notrace();
2315 if (atomic_read(&buffer->record_disabled))
2318 if (trace_recursive_lock())
2321 cpu = raw_smp_processor_id();
2323 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2326 cpu_buffer = buffer->buffers[cpu];
2328 if (atomic_read(&cpu_buffer->record_disabled))
2331 if (length > BUF_MAX_DATA_SIZE)
2334 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2341 trace_recursive_unlock();
2344 preempt_enable_notrace();
2347 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2350 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2351 struct ring_buffer_event *event)
2356 * The event first in the commit queue updates the
2359 if (rb_event_is_commit(cpu_buffer, event)) {
2361 * A commit event that is first on a page
2362 * updates the write timestamp with the page stamp
2364 if (!rb_event_index(event))
2365 cpu_buffer->write_stamp =
2366 cpu_buffer->commit_page->page->time_stamp;
2367 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2368 delta = event->array[0];
2370 delta += event->time_delta;
2371 cpu_buffer->write_stamp += delta;
2373 cpu_buffer->write_stamp += event->time_delta;
2377 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2378 struct ring_buffer_event *event)
2380 local_inc(&cpu_buffer->entries);
2381 rb_update_write_stamp(cpu_buffer, event);
2382 rb_end_commit(cpu_buffer);
2386 * ring_buffer_unlock_commit - commit a reserved
2387 * @buffer: The buffer to commit to
2388 * @event: The event pointer to commit.
2390 * This commits the data to the ring buffer, and releases any locks held.
2392 * Must be paired with ring_buffer_lock_reserve.
2394 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2395 struct ring_buffer_event *event)
2397 struct ring_buffer_per_cpu *cpu_buffer;
2398 int cpu = raw_smp_processor_id();
2400 cpu_buffer = buffer->buffers[cpu];
2402 rb_commit(cpu_buffer, event);
2404 trace_recursive_unlock();
2406 preempt_enable_notrace();
2410 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2412 static inline void rb_event_discard(struct ring_buffer_event *event)
2414 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2415 event = skip_time_extend(event);
2417 /* array[0] holds the actual length for the discarded event */
2418 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2419 event->type_len = RINGBUF_TYPE_PADDING;
2420 /* time delta must be non zero */
2421 if (!event->time_delta)
2422 event->time_delta = 1;
2426 * Decrement the entries to the page that an event is on.
2427 * The event does not even need to exist, only the pointer
2428 * to the page it is on. This may only be called before the commit
2432 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2433 struct ring_buffer_event *event)
2435 unsigned long addr = (unsigned long)event;
2436 struct buffer_page *bpage = cpu_buffer->commit_page;
2437 struct buffer_page *start;
2441 /* Do the likely case first */
2442 if (likely(bpage->page == (void *)addr)) {
2443 local_dec(&bpage->entries);
2448 * Because the commit page may be on the reader page we
2449 * start with the next page and check the end loop there.
2451 rb_inc_page(cpu_buffer, &bpage);
2454 if (bpage->page == (void *)addr) {
2455 local_dec(&bpage->entries);
2458 rb_inc_page(cpu_buffer, &bpage);
2459 } while (bpage != start);
2461 /* commit not part of this buffer?? */
2462 RB_WARN_ON(cpu_buffer, 1);
2466 * ring_buffer_commit_discard - discard an event that has not been committed
2467 * @buffer: the ring buffer
2468 * @event: non committed event to discard
2470 * Sometimes an event that is in the ring buffer needs to be ignored.
2471 * This function lets the user discard an event in the ring buffer
2472 * and then that event will not be read later.
2474 * This function only works if it is called before the the item has been
2475 * committed. It will try to free the event from the ring buffer
2476 * if another event has not been added behind it.
2478 * If another event has been added behind it, it will set the event
2479 * up as discarded, and perform the commit.
2481 * If this function is called, do not call ring_buffer_unlock_commit on
2484 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2485 struct ring_buffer_event *event)
2487 struct ring_buffer_per_cpu *cpu_buffer;
2490 /* The event is discarded regardless */
2491 rb_event_discard(event);
2493 cpu = smp_processor_id();
2494 cpu_buffer = buffer->buffers[cpu];
2497 * This must only be called if the event has not been
2498 * committed yet. Thus we can assume that preemption
2499 * is still disabled.
2501 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2503 rb_decrement_entry(cpu_buffer, event);
2504 if (rb_try_to_discard(cpu_buffer, event))
2508 * The commit is still visible by the reader, so we
2509 * must still update the timestamp.
2511 rb_update_write_stamp(cpu_buffer, event);
2513 rb_end_commit(cpu_buffer);
2515 trace_recursive_unlock();
2517 preempt_enable_notrace();
2520 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2523 * ring_buffer_write - write data to the buffer without reserving
2524 * @buffer: The ring buffer to write to.
2525 * @length: The length of the data being written (excluding the event header)
2526 * @data: The data to write to the buffer.
2528 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2529 * one function. If you already have the data to write to the buffer, it
2530 * may be easier to simply call this function.
2532 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2533 * and not the length of the event which would hold the header.
2535 int ring_buffer_write(struct ring_buffer *buffer,
2536 unsigned long length,
2539 struct ring_buffer_per_cpu *cpu_buffer;
2540 struct ring_buffer_event *event;
2545 if (ring_buffer_flags != RB_BUFFERS_ON)
2548 preempt_disable_notrace();
2550 if (atomic_read(&buffer->record_disabled))
2553 cpu = raw_smp_processor_id();
2555 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2558 cpu_buffer = buffer->buffers[cpu];
2560 if (atomic_read(&cpu_buffer->record_disabled))
2563 if (length > BUF_MAX_DATA_SIZE)
2566 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2570 body = rb_event_data(event);
2572 memcpy(body, data, length);
2574 rb_commit(cpu_buffer, event);
2578 preempt_enable_notrace();
2582 EXPORT_SYMBOL_GPL(ring_buffer_write);
2584 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2586 struct buffer_page *reader = cpu_buffer->reader_page;
2587 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2588 struct buffer_page *commit = cpu_buffer->commit_page;
2590 /* In case of error, head will be NULL */
2591 if (unlikely(!head))
2594 return reader->read == rb_page_commit(reader) &&
2595 (commit == reader ||
2597 head->read == rb_page_commit(commit)));
2601 * ring_buffer_record_disable - stop all writes into the buffer
2602 * @buffer: The ring buffer to stop writes to.
2604 * This prevents all writes to the buffer. Any attempt to write
2605 * to the buffer after this will fail and return NULL.
2607 * The caller should call synchronize_sched() after this.
2609 void ring_buffer_record_disable(struct ring_buffer *buffer)
2611 atomic_inc(&buffer->record_disabled);
2613 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2616 * ring_buffer_record_enable - enable writes to the buffer
2617 * @buffer: The ring buffer to enable writes
2619 * Note, multiple disables will need the same number of enables
2620 * to truly enable the writing (much like preempt_disable).
2622 void ring_buffer_record_enable(struct ring_buffer *buffer)
2624 atomic_dec(&buffer->record_disabled);
2626 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2629 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2630 * @buffer: The ring buffer to stop writes to.
2631 * @cpu: The CPU buffer to stop
2633 * This prevents all writes to the buffer. Any attempt to write
2634 * to the buffer after this will fail and return NULL.
2636 * The caller should call synchronize_sched() after this.
2638 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2640 struct ring_buffer_per_cpu *cpu_buffer;
2642 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2645 cpu_buffer = buffer->buffers[cpu];
2646 atomic_inc(&cpu_buffer->record_disabled);
2648 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2651 * ring_buffer_record_enable_cpu - enable writes to the buffer
2652 * @buffer: The ring buffer to enable writes
2653 * @cpu: The CPU to enable.
2655 * Note, multiple disables will need the same number of enables
2656 * to truly enable the writing (much like preempt_disable).
2658 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2660 struct ring_buffer_per_cpu *cpu_buffer;
2662 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2665 cpu_buffer = buffer->buffers[cpu];
2666 atomic_dec(&cpu_buffer->record_disabled);
2668 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2671 * The total entries in the ring buffer is the running counter
2672 * of entries entered into the ring buffer, minus the sum of
2673 * the entries read from the ring buffer and the number of
2674 * entries that were overwritten.
2676 static inline unsigned long
2677 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2679 return local_read(&cpu_buffer->entries) -
2680 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2684 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2685 * @buffer: The ring buffer
2686 * @cpu: The per CPU buffer to read from.
2688 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2690 unsigned long flags;
2691 struct ring_buffer_per_cpu *cpu_buffer;
2692 struct buffer_page *bpage;
2693 unsigned long ret = 0;
2695 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2698 cpu_buffer = buffer->buffers[cpu];
2699 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2701 * if the tail is on reader_page, oldest time stamp is on the reader
2704 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2705 bpage = cpu_buffer->reader_page;
2707 bpage = rb_set_head_page(cpu_buffer);
2709 ret = bpage->page->time_stamp;
2710 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2714 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2717 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2718 * @buffer: The ring buffer
2719 * @cpu: The per CPU buffer to read from.
2721 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2723 struct ring_buffer_per_cpu *cpu_buffer;
2726 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2729 cpu_buffer = buffer->buffers[cpu];
2730 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2734 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2737 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2738 * @buffer: The ring buffer
2739 * @cpu: The per CPU buffer to get the entries from.
2741 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2743 struct ring_buffer_per_cpu *cpu_buffer;
2745 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2748 cpu_buffer = buffer->buffers[cpu];
2750 return rb_num_of_entries(cpu_buffer);
2752 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2755 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2756 * @buffer: The ring buffer
2757 * @cpu: The per CPU buffer to get the number of overruns from
2759 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2761 struct ring_buffer_per_cpu *cpu_buffer;
2764 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2767 cpu_buffer = buffer->buffers[cpu];
2768 ret = local_read(&cpu_buffer->overrun);
2772 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2775 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2776 * @buffer: The ring buffer
2777 * @cpu: The per CPU buffer to get the number of overruns from
2780 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2782 struct ring_buffer_per_cpu *cpu_buffer;
2785 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2788 cpu_buffer = buffer->buffers[cpu];
2789 ret = local_read(&cpu_buffer->commit_overrun);
2793 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2796 * ring_buffer_entries - get the number of entries in a buffer
2797 * @buffer: The ring buffer
2799 * Returns the total number of entries in the ring buffer
2802 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2804 struct ring_buffer_per_cpu *cpu_buffer;
2805 unsigned long entries = 0;
2808 /* if you care about this being correct, lock the buffer */
2809 for_each_buffer_cpu(buffer, cpu) {
2810 cpu_buffer = buffer->buffers[cpu];
2811 entries += rb_num_of_entries(cpu_buffer);
2816 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2819 * ring_buffer_overruns - get the number of overruns in buffer
2820 * @buffer: The ring buffer
2822 * Returns the total number of overruns in the ring buffer
2825 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2827 struct ring_buffer_per_cpu *cpu_buffer;
2828 unsigned long overruns = 0;
2831 /* if you care about this being correct, lock the buffer */
2832 for_each_buffer_cpu(buffer, cpu) {
2833 cpu_buffer = buffer->buffers[cpu];
2834 overruns += local_read(&cpu_buffer->overrun);
2839 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2841 static void rb_iter_reset(struct ring_buffer_iter *iter)
2843 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2845 /* Iterator usage is expected to have record disabled */
2846 if (list_empty(&cpu_buffer->reader_page->list)) {
2847 iter->head_page = rb_set_head_page(cpu_buffer);
2848 if (unlikely(!iter->head_page))
2850 iter->head = iter->head_page->read;
2852 iter->head_page = cpu_buffer->reader_page;
2853 iter->head = cpu_buffer->reader_page->read;
2856 iter->read_stamp = cpu_buffer->read_stamp;
2858 iter->read_stamp = iter->head_page->page->time_stamp;
2859 iter->cache_reader_page = cpu_buffer->reader_page;
2860 iter->cache_read = cpu_buffer->read;
2864 * ring_buffer_iter_reset - reset an iterator
2865 * @iter: The iterator to reset
2867 * Resets the iterator, so that it will start from the beginning
2870 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2872 struct ring_buffer_per_cpu *cpu_buffer;
2873 unsigned long flags;
2878 cpu_buffer = iter->cpu_buffer;
2880 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2881 rb_iter_reset(iter);
2882 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2884 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2887 * ring_buffer_iter_empty - check if an iterator has no more to read
2888 * @iter: The iterator to check
2890 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2892 struct ring_buffer_per_cpu *cpu_buffer;
2894 cpu_buffer = iter->cpu_buffer;
2896 return iter->head_page == cpu_buffer->commit_page &&
2897 iter->head == rb_commit_index(cpu_buffer);
2899 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2902 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2903 struct ring_buffer_event *event)
2907 switch (event->type_len) {
2908 case RINGBUF_TYPE_PADDING:
2911 case RINGBUF_TYPE_TIME_EXTEND:
2912 delta = event->array[0];
2914 delta += event->time_delta;
2915 cpu_buffer->read_stamp += delta;
2918 case RINGBUF_TYPE_TIME_STAMP:
2919 /* FIXME: not implemented */
2922 case RINGBUF_TYPE_DATA:
2923 cpu_buffer->read_stamp += event->time_delta;
2933 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2934 struct ring_buffer_event *event)
2938 switch (event->type_len) {
2939 case RINGBUF_TYPE_PADDING:
2942 case RINGBUF_TYPE_TIME_EXTEND:
2943 delta = event->array[0];
2945 delta += event->time_delta;
2946 iter->read_stamp += delta;
2949 case RINGBUF_TYPE_TIME_STAMP:
2950 /* FIXME: not implemented */
2953 case RINGBUF_TYPE_DATA:
2954 iter->read_stamp += event->time_delta;
2963 static struct buffer_page *
2964 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2966 struct buffer_page *reader = NULL;
2967 unsigned long overwrite;
2968 unsigned long flags;
2972 local_irq_save(flags);
2973 arch_spin_lock(&cpu_buffer->lock);
2977 * This should normally only loop twice. But because the
2978 * start of the reader inserts an empty page, it causes
2979 * a case where we will loop three times. There should be no
2980 * reason to loop four times (that I know of).
2982 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2987 reader = cpu_buffer->reader_page;
2989 /* If there's more to read, return this page */
2990 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2993 /* Never should we have an index greater than the size */
2994 if (RB_WARN_ON(cpu_buffer,
2995 cpu_buffer->reader_page->read > rb_page_size(reader)))
2998 /* check if we caught up to the tail */
3000 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3004 * Reset the reader page to size zero.
3006 local_set(&cpu_buffer->reader_page->write, 0);
3007 local_set(&cpu_buffer->reader_page->entries, 0);
3008 local_set(&cpu_buffer->reader_page->page->commit, 0);
3009 cpu_buffer->reader_page->real_end = 0;
3013 * Splice the empty reader page into the list around the head.
3015 reader = rb_set_head_page(cpu_buffer);
3018 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3019 cpu_buffer->reader_page->list.prev = reader->list.prev;
3022 * cpu_buffer->pages just needs to point to the buffer, it
3023 * has no specific buffer page to point to. Lets move it out
3024 * of our way so we don't accidentally swap it.
3026 cpu_buffer->pages = reader->list.prev;
3028 /* The reader page will be pointing to the new head */
3029 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3032 * We want to make sure we read the overruns after we set up our
3033 * pointers to the next object. The writer side does a
3034 * cmpxchg to cross pages which acts as the mb on the writer
3035 * side. Note, the reader will constantly fail the swap
3036 * while the writer is updating the pointers, so this
3037 * guarantees that the overwrite recorded here is the one we
3038 * want to compare with the last_overrun.
3041 overwrite = local_read(&(cpu_buffer->overrun));
3044 * Here's the tricky part.
3046 * We need to move the pointer past the header page.
3047 * But we can only do that if a writer is not currently
3048 * moving it. The page before the header page has the
3049 * flag bit '1' set if it is pointing to the page we want.
3050 * but if the writer is in the process of moving it
3051 * than it will be '2' or already moved '0'.
3054 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3057 * If we did not convert it, then we must try again.
3063 * Yeah! We succeeded in replacing the page.
3065 * Now make the new head point back to the reader page.
3067 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3068 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3070 /* Finally update the reader page to the new head */
3071 cpu_buffer->reader_page = reader;
3072 rb_reset_reader_page(cpu_buffer);
3074 if (overwrite != cpu_buffer->last_overrun) {
3075 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3076 cpu_buffer->last_overrun = overwrite;
3082 arch_spin_unlock(&cpu_buffer->lock);
3083 local_irq_restore(flags);
3088 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3090 struct ring_buffer_event *event;
3091 struct buffer_page *reader;
3094 reader = rb_get_reader_page(cpu_buffer);
3096 /* This function should not be called when buffer is empty */
3097 if (RB_WARN_ON(cpu_buffer, !reader))
3100 event = rb_reader_event(cpu_buffer);
3102 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3105 rb_update_read_stamp(cpu_buffer, event);
3107 length = rb_event_length(event);
3108 cpu_buffer->reader_page->read += length;
3111 static void rb_advance_iter(struct ring_buffer_iter *iter)
3113 struct ring_buffer_per_cpu *cpu_buffer;
3114 struct ring_buffer_event *event;
3117 cpu_buffer = iter->cpu_buffer;
3120 * Check if we are at the end of the buffer.
3122 if (iter->head >= rb_page_size(iter->head_page)) {
3123 /* discarded commits can make the page empty */
3124 if (iter->head_page == cpu_buffer->commit_page)
3130 event = rb_iter_head_event(iter);
3132 length = rb_event_length(event);
3135 * This should not be called to advance the header if we are
3136 * at the tail of the buffer.
3138 if (RB_WARN_ON(cpu_buffer,
3139 (iter->head_page == cpu_buffer->commit_page) &&
3140 (iter->head + length > rb_commit_index(cpu_buffer))))
3143 rb_update_iter_read_stamp(iter, event);
3145 iter->head += length;
3147 /* check for end of page padding */
3148 if ((iter->head >= rb_page_size(iter->head_page)) &&
3149 (iter->head_page != cpu_buffer->commit_page))
3150 rb_advance_iter(iter);
3153 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3155 return cpu_buffer->lost_events;
3158 static struct ring_buffer_event *
3159 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3160 unsigned long *lost_events)
3162 struct ring_buffer_event *event;
3163 struct buffer_page *reader;
3168 * We repeat when a time extend is encountered.
3169 * Since the time extend is always attached to a data event,
3170 * we should never loop more than once.
3171 * (We never hit the following condition more than twice).
3173 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3176 reader = rb_get_reader_page(cpu_buffer);
3180 event = rb_reader_event(cpu_buffer);
3182 switch (event->type_len) {
3183 case RINGBUF_TYPE_PADDING:
3184 if (rb_null_event(event))
3185 RB_WARN_ON(cpu_buffer, 1);
3187 * Because the writer could be discarding every
3188 * event it creates (which would probably be bad)
3189 * if we were to go back to "again" then we may never
3190 * catch up, and will trigger the warn on, or lock
3191 * the box. Return the padding, and we will release
3192 * the current locks, and try again.
3196 case RINGBUF_TYPE_TIME_EXTEND:
3197 /* Internal data, OK to advance */
3198 rb_advance_reader(cpu_buffer);
3201 case RINGBUF_TYPE_TIME_STAMP:
3202 /* FIXME: not implemented */
3203 rb_advance_reader(cpu_buffer);
3206 case RINGBUF_TYPE_DATA:
3208 *ts = cpu_buffer->read_stamp + event->time_delta;
3209 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3210 cpu_buffer->cpu, ts);
3213 *lost_events = rb_lost_events(cpu_buffer);
3222 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3224 static struct ring_buffer_event *
3225 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3227 struct ring_buffer *buffer;
3228 struct ring_buffer_per_cpu *cpu_buffer;
3229 struct ring_buffer_event *event;
3232 cpu_buffer = iter->cpu_buffer;
3233 buffer = cpu_buffer->buffer;
3236 * Check if someone performed a consuming read to
3237 * the buffer. A consuming read invalidates the iterator
3238 * and we need to reset the iterator in this case.
3240 if (unlikely(iter->cache_read != cpu_buffer->read ||
3241 iter->cache_reader_page != cpu_buffer->reader_page))
3242 rb_iter_reset(iter);
3245 if (ring_buffer_iter_empty(iter))
3249 * We repeat when a time extend is encountered or we hit
3250 * the end of the page. Since the time extend is always attached
3251 * to a data event, we should never loop more than three times.
3252 * Once for going to next page, once on time extend, and
3253 * finally once to get the event.
3254 * (We never hit the following condition more than thrice).
3256 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))