[PATCH] sched: make idlest_group/cpu cpus_allowed-aware
[pandora-kernel.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long cpu_load[3];
210 #endif
211         unsigned long long nr_switches;
212
213         /*
214          * This is part of a global counter where only the total sum
215          * over all CPUs matters. A task can increase this counter on
216          * one CPU and if it got migrated afterwards it may decrease
217          * it on another CPU. Always updated under the runqueue lock:
218          */
219         unsigned long nr_uninterruptible;
220
221         unsigned long expired_timestamp;
222         unsigned long long timestamp_last_tick;
223         task_t *curr, *idle;
224         struct mm_struct *prev_mm;
225         prio_array_t *active, *expired, arrays[2];
226         int best_expired_prio;
227         atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230         struct sched_domain *sd;
231
232         /* For active balancing */
233         int active_balance;
234         int push_cpu;
235
236         task_t *migration_thread;
237         struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241         /* latency stats */
242         struct sched_info rq_sched_info;
243
244         /* sys_sched_yield() stats */
245         unsigned long yld_exp_empty;
246         unsigned long yld_act_empty;
247         unsigned long yld_both_empty;
248         unsigned long yld_cnt;
249
250         /* schedule() stats */
251         unsigned long sched_switch;
252         unsigned long sched_cnt;
253         unsigned long sched_goidle;
254
255         /* try_to_wake_up() stats */
256         unsigned long ttwu_cnt;
257         unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 /*
264  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265  * See detach_destroy_domains: synchronize_sched for details.
266  *
267  * The domain tree of any CPU may only be accessed from within
268  * preempt-disabled sections.
269  */
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
272
273 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
274 #define this_rq()               (&__get_cpu_var(runqueues))
275 #define task_rq(p)              cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
277
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next)      do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev)       do { } while (0)
283 #endif
284
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
287 {
288         return rq->curr == p;
289 }
290
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292 {
293 }
294
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296 {
297         spin_unlock_irq(&rq->lock);
298 }
299
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
302 {
303 #ifdef CONFIG_SMP
304         return p->oncpu;
305 #else
306         return rq->curr == p;
307 #endif
308 }
309
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
311 {
312 #ifdef CONFIG_SMP
313         /*
314          * We can optimise this out completely for !SMP, because the
315          * SMP rebalancing from interrupt is the only thing that cares
316          * here.
317          */
318         next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321         spin_unlock_irq(&rq->lock);
322 #else
323         spin_unlock(&rq->lock);
324 #endif
325 }
326
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
328 {
329 #ifdef CONFIG_SMP
330         /*
331          * After ->oncpu is cleared, the task can be moved to a different CPU.
332          * We must ensure this doesn't happen until the switch is completely
333          * finished.
334          */
335         smp_wmb();
336         prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339         local_irq_enable();
340 #endif
341 }
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
343
344 /*
345  * task_rq_lock - lock the runqueue a given task resides on and disable
346  * interrupts.  Note the ordering: we can safely lookup the task_rq without
347  * explicitly disabling preemption.
348  */
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350         __acquires(rq->lock)
351 {
352         struct runqueue *rq;
353
354 repeat_lock_task:
355         local_irq_save(*flags);
356         rq = task_rq(p);
357         spin_lock(&rq->lock);
358         if (unlikely(rq != task_rq(p))) {
359                 spin_unlock_irqrestore(&rq->lock, *flags);
360                 goto repeat_lock_task;
361         }
362         return rq;
363 }
364
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366         __releases(rq->lock)
367 {
368         spin_unlock_irqrestore(&rq->lock, *flags);
369 }
370
371 #ifdef CONFIG_SCHEDSTATS
372 /*
373  * bump this up when changing the output format or the meaning of an existing
374  * format, so that tools can adapt (or abort)
375  */
376 #define SCHEDSTAT_VERSION 12
377
378 static int show_schedstat(struct seq_file *seq, void *v)
379 {
380         int cpu;
381
382         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383         seq_printf(seq, "timestamp %lu\n", jiffies);
384         for_each_online_cpu(cpu) {
385                 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387                 struct sched_domain *sd;
388                 int dcnt = 0;
389 #endif
390
391                 /* runqueue-specific stats */
392                 seq_printf(seq,
393                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394                     cpu, rq->yld_both_empty,
395                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397                     rq->ttwu_cnt, rq->ttwu_local,
398                     rq->rq_sched_info.cpu_time,
399                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
400
401                 seq_printf(seq, "\n");
402
403 #ifdef CONFIG_SMP
404                 /* domain-specific stats */
405                 preempt_disable();
406                 for_each_domain(cpu, sd) {
407                         enum idle_type itype;
408                         char mask_str[NR_CPUS];
409
410                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413                                         itype++) {
414                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415                                     sd->lb_cnt[itype],
416                                     sd->lb_balanced[itype],
417                                     sd->lb_failed[itype],
418                                     sd->lb_imbalance[itype],
419                                     sd->lb_gained[itype],
420                                     sd->lb_hot_gained[itype],
421                                     sd->lb_nobusyq[itype],
422                                     sd->lb_nobusyg[itype]);
423                         }
424                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
429                 }
430                 preempt_enable();
431 #endif
432         }
433         return 0;
434 }
435
436 static int schedstat_open(struct inode *inode, struct file *file)
437 {
438         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439         char *buf = kmalloc(size, GFP_KERNEL);
440         struct seq_file *m;
441         int res;
442
443         if (!buf)
444                 return -ENOMEM;
445         res = single_open(file, show_schedstat, NULL);
446         if (!res) {
447                 m = file->private_data;
448                 m->buf = buf;
449                 m->size = size;
450         } else
451                 kfree(buf);
452         return res;
453 }
454
455 struct file_operations proc_schedstat_operations = {
456         .open    = schedstat_open,
457         .read    = seq_read,
458         .llseek  = seq_lseek,
459         .release = single_release,
460 };
461
462 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field)       do { } while (0)
466 # define schedstat_add(rq, field, amt)  do { } while (0)
467 #endif
468
469 /*
470  * rq_lock - lock a given runqueue and disable interrupts.
471  */
472 static inline runqueue_t *this_rq_lock(void)
473         __acquires(rq->lock)
474 {
475         runqueue_t *rq;
476
477         local_irq_disable();
478         rq = this_rq();
479         spin_lock(&rq->lock);
480
481         return rq;
482 }
483
484 #ifdef CONFIG_SCHEDSTATS
485 /*
486  * Called when a process is dequeued from the active array and given
487  * the cpu.  We should note that with the exception of interactive
488  * tasks, the expired queue will become the active queue after the active
489  * queue is empty, without explicitly dequeuing and requeuing tasks in the
490  * expired queue.  (Interactive tasks may be requeued directly to the
491  * active queue, thus delaying tasks in the expired queue from running;
492  * see scheduler_tick()).
493  *
494  * This function is only called from sched_info_arrive(), rather than
495  * dequeue_task(). Even though a task may be queued and dequeued multiple
496  * times as it is shuffled about, we're really interested in knowing how
497  * long it was from the *first* time it was queued to the time that it
498  * finally hit a cpu.
499  */
500 static inline void sched_info_dequeued(task_t *t)
501 {
502         t->sched_info.last_queued = 0;
503 }
504
505 /*
506  * Called when a task finally hits the cpu.  We can now calculate how
507  * long it was waiting to run.  We also note when it began so that we
508  * can keep stats on how long its timeslice is.
509  */
510 static inline void sched_info_arrive(task_t *t)
511 {
512         unsigned long now = jiffies, diff = 0;
513         struct runqueue *rq = task_rq(t);
514
515         if (t->sched_info.last_queued)
516                 diff = now - t->sched_info.last_queued;
517         sched_info_dequeued(t);
518         t->sched_info.run_delay += diff;
519         t->sched_info.last_arrival = now;
520         t->sched_info.pcnt++;
521
522         if (!rq)
523                 return;
524
525         rq->rq_sched_info.run_delay += diff;
526         rq->rq_sched_info.pcnt++;
527 }
528
529 /*
530  * Called when a process is queued into either the active or expired
531  * array.  The time is noted and later used to determine how long we
532  * had to wait for us to reach the cpu.  Since the expired queue will
533  * become the active queue after active queue is empty, without dequeuing
534  * and requeuing any tasks, we are interested in queuing to either. It
535  * is unusual but not impossible for tasks to be dequeued and immediately
536  * requeued in the same or another array: this can happen in sched_yield(),
537  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538  * to runqueue.
539  *
540  * This function is only called from enqueue_task(), but also only updates
541  * the timestamp if it is already not set.  It's assumed that
542  * sched_info_dequeued() will clear that stamp when appropriate.
543  */
544 static inline void sched_info_queued(task_t *t)
545 {
546         if (!t->sched_info.last_queued)
547                 t->sched_info.last_queued = jiffies;
548 }
549
550 /*
551  * Called when a process ceases being the active-running process, either
552  * voluntarily or involuntarily.  Now we can calculate how long we ran.
553  */
554 static inline void sched_info_depart(task_t *t)
555 {
556         struct runqueue *rq = task_rq(t);
557         unsigned long diff = jiffies - t->sched_info.last_arrival;
558
559         t->sched_info.cpu_time += diff;
560
561         if (rq)
562                 rq->rq_sched_info.cpu_time += diff;
563 }
564
565 /*
566  * Called when tasks are switched involuntarily due, typically, to expiring
567  * their time slice.  (This may also be called when switching to or from
568  * the idle task.)  We are only called when prev != next.
569  */
570 static inline void sched_info_switch(task_t *prev, task_t *next)
571 {
572         struct runqueue *rq = task_rq(prev);
573
574         /*
575          * prev now departs the cpu.  It's not interesting to record
576          * stats about how efficient we were at scheduling the idle
577          * process, however.
578          */
579         if (prev != rq->idle)
580                 sched_info_depart(prev);
581
582         if (next != rq->idle)
583                 sched_info_arrive(next);
584 }
585 #else
586 #define sched_info_queued(t)            do { } while (0)
587 #define sched_info_switch(t, next)      do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
589
590 /*
591  * Adding/removing a task to/from a priority array:
592  */
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
594 {
595         array->nr_active--;
596         list_del(&p->run_list);
597         if (list_empty(array->queue + p->prio))
598                 __clear_bit(p->prio, array->bitmap);
599 }
600
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
602 {
603         sched_info_queued(p);
604         list_add_tail(&p->run_list, array->queue + p->prio);
605         __set_bit(p->prio, array->bitmap);
606         array->nr_active++;
607         p->array = array;
608 }
609
610 /*
611  * Put task to the end of the run list without the overhead of dequeue
612  * followed by enqueue.
613  */
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
615 {
616         list_move_tail(&p->run_list, array->queue + p->prio);
617 }
618
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
620 {
621         list_add(&p->run_list, array->queue + p->prio);
622         __set_bit(p->prio, array->bitmap);
623         array->nr_active++;
624         p->array = array;
625 }
626
627 /*
628  * effective_prio - return the priority that is based on the static
629  * priority but is modified by bonuses/penalties.
630  *
631  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632  * into the -5 ... 0 ... +5 bonus/penalty range.
633  *
634  * We use 25% of the full 0...39 priority range so that:
635  *
636  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
638  *
639  * Both properties are important to certain workloads.
640  */
641 static int effective_prio(task_t *p)
642 {
643         int bonus, prio;
644
645         if (rt_task(p))
646                 return p->prio;
647
648         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
649
650         prio = p->static_prio - bonus;
651         if (prio < MAX_RT_PRIO)
652                 prio = MAX_RT_PRIO;
653         if (prio > MAX_PRIO-1)
654                 prio = MAX_PRIO-1;
655         return prio;
656 }
657
658 /*
659  * __activate_task - move a task to the runqueue.
660  */
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
662 {
663         enqueue_task(p, rq->active);
664         rq->nr_running++;
665 }
666
667 /*
668  * __activate_idle_task - move idle task to the _front_ of runqueue.
669  */
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
671 {
672         enqueue_task_head(p, rq->active);
673         rq->nr_running++;
674 }
675
676 static int recalc_task_prio(task_t *p, unsigned long long now)
677 {
678         /* Caller must always ensure 'now >= p->timestamp' */
679         unsigned long long __sleep_time = now - p->timestamp;
680         unsigned long sleep_time;
681
682         if (__sleep_time > NS_MAX_SLEEP_AVG)
683                 sleep_time = NS_MAX_SLEEP_AVG;
684         else
685                 sleep_time = (unsigned long)__sleep_time;
686
687         if (likely(sleep_time > 0)) {
688                 /*
689                  * User tasks that sleep a long time are categorised as
690                  * idle and will get just interactive status to stay active &
691                  * prevent them suddenly becoming cpu hogs and starving
692                  * other processes.
693                  */
694                 if (p->mm && p->activated != -1 &&
695                         sleep_time > INTERACTIVE_SLEEP(p)) {
696                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697                                                 DEF_TIMESLICE);
698                 } else {
699                         /*
700                          * The lower the sleep avg a task has the more
701                          * rapidly it will rise with sleep time.
702                          */
703                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
704
705                         /*
706                          * Tasks waking from uninterruptible sleep are
707                          * limited in their sleep_avg rise as they
708                          * are likely to be waiting on I/O
709                          */
710                         if (p->activated == -1 && p->mm) {
711                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712                                         sleep_time = 0;
713                                 else if (p->sleep_avg + sleep_time >=
714                                                 INTERACTIVE_SLEEP(p)) {
715                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
716                                         sleep_time = 0;
717                                 }
718                         }
719
720                         /*
721                          * This code gives a bonus to interactive tasks.
722                          *
723                          * The boost works by updating the 'average sleep time'
724                          * value here, based on ->timestamp. The more time a
725                          * task spends sleeping, the higher the average gets -
726                          * and the higher the priority boost gets as well.
727                          */
728                         p->sleep_avg += sleep_time;
729
730                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
732                 }
733         }
734
735         return effective_prio(p);
736 }
737
738 /*
739  * activate_task - move a task to the runqueue and do priority recalculation
740  *
741  * Update all the scheduling statistics stuff. (sleep average
742  * calculation, priority modifiers, etc.)
743  */
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
745 {
746         unsigned long long now;
747
748         now = sched_clock();
749 #ifdef CONFIG_SMP
750         if (!local) {
751                 /* Compensate for drifting sched_clock */
752                 runqueue_t *this_rq = this_rq();
753                 now = (now - this_rq->timestamp_last_tick)
754                         + rq->timestamp_last_tick;
755         }
756 #endif
757
758         p->prio = recalc_task_prio(p, now);
759
760         /*
761          * This checks to make sure it's not an uninterruptible task
762          * that is now waking up.
763          */
764         if (!p->activated) {
765                 /*
766                  * Tasks which were woken up by interrupts (ie. hw events)
767                  * are most likely of interactive nature. So we give them
768                  * the credit of extending their sleep time to the period
769                  * of time they spend on the runqueue, waiting for execution
770                  * on a CPU, first time around:
771                  */
772                 if (in_interrupt())
773                         p->activated = 2;
774                 else {
775                         /*
776                          * Normal first-time wakeups get a credit too for
777                          * on-runqueue time, but it will be weighted down:
778                          */
779                         p->activated = 1;
780                 }
781         }
782         p->timestamp = now;
783
784         __activate_task(p, rq);
785 }
786
787 /*
788  * deactivate_task - remove a task from the runqueue.
789  */
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
791 {
792         rq->nr_running--;
793         dequeue_task(p, p->array);
794         p->array = NULL;
795 }
796
797 /*
798  * resched_task - mark a task 'to be rescheduled now'.
799  *
800  * On UP this means the setting of the need_resched flag, on SMP it
801  * might also involve a cross-CPU call to trigger the scheduler on
802  * the target CPU.
803  */
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
806 {
807         int need_resched, nrpolling;
808
809         assert_spin_locked(&task_rq(p)->lock);
810
811         /* minimise the chance of sending an interrupt to poll_idle() */
812         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
815
816         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817                 smp_send_reschedule(task_cpu(p));
818 }
819 #else
820 static inline void resched_task(task_t *p)
821 {
822         set_tsk_need_resched(p);
823 }
824 #endif
825
826 /**
827  * task_curr - is this task currently executing on a CPU?
828  * @p: the task in question.
829  */
830 inline int task_curr(const task_t *p)
831 {
832         return cpu_curr(task_cpu(p)) == p;
833 }
834
835 #ifdef CONFIG_SMP
836 typedef struct {
837         struct list_head list;
838
839         task_t *task;
840         int dest_cpu;
841
842         struct completion done;
843 } migration_req_t;
844
845 /*
846  * The task's runqueue lock must be held.
847  * Returns true if you have to wait for migration thread.
848  */
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
850 {
851         runqueue_t *rq = task_rq(p);
852
853         /*
854          * If the task is not on a runqueue (and not running), then
855          * it is sufficient to simply update the task's cpu field.
856          */
857         if (!p->array && !task_running(rq, p)) {
858                 set_task_cpu(p, dest_cpu);
859                 return 0;
860         }
861
862         init_completion(&req->done);
863         req->task = p;
864         req->dest_cpu = dest_cpu;
865         list_add(&req->list, &rq->migration_queue);
866         return 1;
867 }
868
869 /*
870  * wait_task_inactive - wait for a thread to unschedule.
871  *
872  * The caller must ensure that the task *will* unschedule sometime soon,
873  * else this function might spin for a *long* time. This function can't
874  * be called with interrupts off, or it may introduce deadlock with
875  * smp_call_function() if an IPI is sent by the same process we are
876  * waiting to become inactive.
877  */
878 void wait_task_inactive(task_t * p)
879 {
880         unsigned long flags;
881         runqueue_t *rq;
882         int preempted;
883
884 repeat:
885         rq = task_rq_lock(p, &flags);
886         /* Must be off runqueue entirely, not preempted. */
887         if (unlikely(p->array || task_running(rq, p))) {
888                 /* If it's preempted, we yield.  It could be a while. */
889                 preempted = !task_running(rq, p);
890                 task_rq_unlock(rq, &flags);
891                 cpu_relax();
892                 if (preempted)
893                         yield();
894                 goto repeat;
895         }
896         task_rq_unlock(rq, &flags);
897 }
898
899 /***
900  * kick_process - kick a running thread to enter/exit the kernel
901  * @p: the to-be-kicked thread
902  *
903  * Cause a process which is running on another CPU to enter
904  * kernel-mode, without any delay. (to get signals handled.)
905  *
906  * NOTE: this function doesnt have to take the runqueue lock,
907  * because all it wants to ensure is that the remote task enters
908  * the kernel. If the IPI races and the task has been migrated
909  * to another CPU then no harm is done and the purpose has been
910  * achieved as well.
911  */
912 void kick_process(task_t *p)
913 {
914         int cpu;
915
916         preempt_disable();
917         cpu = task_cpu(p);
918         if ((cpu != smp_processor_id()) && task_curr(p))
919                 smp_send_reschedule(cpu);
920         preempt_enable();
921 }
922
923 /*
924  * Return a low guess at the load of a migration-source cpu.
925  *
926  * We want to under-estimate the load of migration sources, to
927  * balance conservatively.
928  */
929 static inline unsigned long source_load(int cpu, int type)
930 {
931         runqueue_t *rq = cpu_rq(cpu);
932         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933         if (type == 0)
934                 return load_now;
935
936         return min(rq->cpu_load[type-1], load_now);
937 }
938
939 /*
940  * Return a high guess at the load of a migration-target cpu
941  */
942 static inline unsigned long target_load(int cpu, int type)
943 {
944         runqueue_t *rq = cpu_rq(cpu);
945         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946         if (type == 0)
947                 return load_now;
948
949         return max(rq->cpu_load[type-1], load_now);
950 }
951
952 /*
953  * find_idlest_group finds and returns the least busy CPU group within the
954  * domain.
955  */
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
958 {
959         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960         unsigned long min_load = ULONG_MAX, this_load = 0;
961         int load_idx = sd->forkexec_idx;
962         int imbalance = 100 + (sd->imbalance_pct-100)/2;
963
964         do {
965                 unsigned long load, avg_load;
966                 int local_group;
967                 int i;
968
969                 /* Skip over this group if it has no CPUs allowed */
970                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
971                         goto nextgroup;
972
973                 local_group = cpu_isset(this_cpu, group->cpumask);
974
975                 /* Tally up the load of all CPUs in the group */
976                 avg_load = 0;
977
978                 for_each_cpu_mask(i, group->cpumask) {
979                         /* Bias balancing toward cpus of our domain */
980                         if (local_group)
981                                 load = source_load(i, load_idx);
982                         else
983                                 load = target_load(i, load_idx);
984
985                         avg_load += load;
986                 }
987
988                 /* Adjust by relative CPU power of the group */
989                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
990
991                 if (local_group) {
992                         this_load = avg_load;
993                         this = group;
994                 } else if (avg_load < min_load) {
995                         min_load = avg_load;
996                         idlest = group;
997                 }
998 nextgroup:
999                 group = group->next;
1000         } while (group != sd->groups);
1001
1002         if (!idlest || 100*this_load < imbalance*min_load)
1003                 return NULL;
1004         return idlest;
1005 }
1006
1007 /*
1008  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1009  */
1010 static int find_idlest_cpu(struct sched_group *group,
1011                         struct task_struct *p, int this_cpu)
1012 {
1013         cpumask_t tmp;
1014         unsigned long load, min_load = ULONG_MAX;
1015         int idlest = -1;
1016         int i;
1017
1018         /* Traverse only the allowed CPUs */
1019         cpus_and(tmp, group->cpumask, p->cpus_allowed);
1020
1021         for_each_cpu_mask(i, tmp) {
1022                 load = source_load(i, 0);
1023
1024                 if (load < min_load || (load == min_load && i == this_cpu)) {
1025                         min_load = load;
1026                         idlest = i;
1027                 }
1028         }
1029
1030         return idlest;
1031 }
1032
1033 /*
1034  * sched_balance_self: balance the current task (running on cpu) in domains
1035  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1036  * SD_BALANCE_EXEC.
1037  *
1038  * Balance, ie. select the least loaded group.
1039  *
1040  * Returns the target CPU number, or the same CPU if no balancing is needed.
1041  *
1042  * preempt must be disabled.
1043  */
1044 static int sched_balance_self(int cpu, int flag)
1045 {
1046         struct task_struct *t = current;
1047         struct sched_domain *tmp, *sd = NULL;
1048
1049         for_each_domain(cpu, tmp)
1050                 if (tmp->flags & flag)
1051                         sd = tmp;
1052
1053         while (sd) {
1054                 cpumask_t span;
1055                 struct sched_group *group;
1056                 int new_cpu;
1057                 int weight;
1058
1059                 span = sd->span;
1060                 group = find_idlest_group(sd, t, cpu);
1061                 if (!group)
1062                         goto nextlevel;
1063
1064                 new_cpu = find_idlest_cpu(group, t, cpu);
1065                 if (new_cpu == -1 || new_cpu == cpu)
1066                         goto nextlevel;
1067
1068                 /* Now try balancing at a lower domain level */
1069                 cpu = new_cpu;
1070 nextlevel:
1071                 sd = NULL;
1072                 weight = cpus_weight(span);
1073                 for_each_domain(cpu, tmp) {
1074                         if (weight <= cpus_weight(tmp->span))
1075                                 break;
1076                         if (tmp->flags & flag)
1077                                 sd = tmp;
1078                 }
1079                 /* while loop will break here if sd == NULL */
1080         }
1081
1082         return cpu;
1083 }
1084
1085 #endif /* CONFIG_SMP */
1086
1087 /*
1088  * wake_idle() will wake a task on an idle cpu if task->cpu is
1089  * not idle and an idle cpu is available.  The span of cpus to
1090  * search starts with cpus closest then further out as needed,
1091  * so we always favor a closer, idle cpu.
1092  *
1093  * Returns the CPU we should wake onto.
1094  */
1095 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1096 static int wake_idle(int cpu, task_t *p)
1097 {
1098         cpumask_t tmp;
1099         struct sched_domain *sd;
1100         int i;
1101
1102         if (idle_cpu(cpu))
1103                 return cpu;
1104
1105         for_each_domain(cpu, sd) {
1106                 if (sd->flags & SD_WAKE_IDLE) {
1107                         cpus_and(tmp, sd->span, p->cpus_allowed);
1108                         for_each_cpu_mask(i, tmp) {
1109                                 if (idle_cpu(i))
1110                                         return i;
1111                         }
1112                 }
1113                 else
1114                         break;
1115         }
1116         return cpu;
1117 }
1118 #else
1119 static inline int wake_idle(int cpu, task_t *p)
1120 {
1121         return cpu;
1122 }
1123 #endif
1124
1125 /***
1126  * try_to_wake_up - wake up a thread
1127  * @p: the to-be-woken-up thread
1128  * @state: the mask of task states that can be woken
1129  * @sync: do a synchronous wakeup?
1130  *
1131  * Put it on the run-queue if it's not already there. The "current"
1132  * thread is always on the run-queue (except when the actual
1133  * re-schedule is in progress), and as such you're allowed to do
1134  * the simpler "current->state = TASK_RUNNING" to mark yourself
1135  * runnable without the overhead of this.
1136  *
1137  * returns failure only if the task is already active.
1138  */
1139 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1140 {
1141         int cpu, this_cpu, success = 0;
1142         unsigned long flags;
1143         long old_state;
1144         runqueue_t *rq;
1145 #ifdef CONFIG_SMP
1146         unsigned long load, this_load;
1147         struct sched_domain *sd, *this_sd = NULL;
1148         int new_cpu;
1149 #endif
1150
1151         rq = task_rq_lock(p, &flags);
1152         old_state = p->state;
1153         if (!(old_state & state))
1154                 goto out;
1155
1156         if (p->array)
1157                 goto out_running;
1158
1159         cpu = task_cpu(p);
1160         this_cpu = smp_processor_id();
1161
1162 #ifdef CONFIG_SMP
1163         if (unlikely(task_running(rq, p)))
1164                 goto out_activate;
1165
1166         new_cpu = cpu;
1167
1168         schedstat_inc(rq, ttwu_cnt);
1169         if (cpu == this_cpu) {
1170                 schedstat_inc(rq, ttwu_local);
1171                 goto out_set_cpu;
1172         }
1173
1174         for_each_domain(this_cpu, sd) {
1175                 if (cpu_isset(cpu, sd->span)) {
1176                         schedstat_inc(sd, ttwu_wake_remote);
1177                         this_sd = sd;
1178                         break;
1179                 }
1180         }
1181
1182         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1183                 goto out_set_cpu;
1184
1185         /*
1186          * Check for affine wakeup and passive balancing possibilities.
1187          */
1188         if (this_sd) {
1189                 int idx = this_sd->wake_idx;
1190                 unsigned int imbalance;
1191
1192                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1193
1194                 load = source_load(cpu, idx);
1195                 this_load = target_load(this_cpu, idx);
1196
1197                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1198
1199                 if (this_sd->flags & SD_WAKE_AFFINE) {
1200                         unsigned long tl = this_load;
1201                         /*
1202                          * If sync wakeup then subtract the (maximum possible)
1203                          * effect of the currently running task from the load
1204                          * of the current CPU:
1205                          */
1206                         if (sync)
1207                                 tl -= SCHED_LOAD_SCALE;
1208
1209                         if ((tl <= load &&
1210                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1211                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1212                                 /*
1213                                  * This domain has SD_WAKE_AFFINE and
1214                                  * p is cache cold in this domain, and
1215                                  * there is no bad imbalance.
1216                                  */
1217                                 schedstat_inc(this_sd, ttwu_move_affine);
1218                                 goto out_set_cpu;
1219                         }
1220                 }
1221
1222                 /*
1223                  * Start passive balancing when half the imbalance_pct
1224                  * limit is reached.
1225                  */
1226                 if (this_sd->flags & SD_WAKE_BALANCE) {
1227                         if (imbalance*this_load <= 100*load) {
1228                                 schedstat_inc(this_sd, ttwu_move_balance);
1229                                 goto out_set_cpu;
1230                         }
1231                 }
1232         }
1233
1234         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1235 out_set_cpu:
1236         new_cpu = wake_idle(new_cpu, p);
1237         if (new_cpu != cpu) {
1238                 set_task_cpu(p, new_cpu);
1239                 task_rq_unlock(rq, &flags);
1240                 /* might preempt at this point */
1241                 rq = task_rq_lock(p, &flags);
1242                 old_state = p->state;
1243                 if (!(old_state & state))
1244                         goto out;
1245                 if (p->array)
1246                         goto out_running;
1247
1248                 this_cpu = smp_processor_id();
1249                 cpu = task_cpu(p);
1250         }
1251
1252 out_activate:
1253 #endif /* CONFIG_SMP */
1254         if (old_state == TASK_UNINTERRUPTIBLE) {
1255                 rq->nr_uninterruptible--;
1256                 /*
1257                  * Tasks on involuntary sleep don't earn
1258                  * sleep_avg beyond just interactive state.
1259                  */
1260                 p->activated = -1;
1261         }
1262
1263         /*
1264          * Sync wakeups (i.e. those types of wakeups where the waker
1265          * has indicated that it will leave the CPU in short order)
1266          * don't trigger a preemption, if the woken up task will run on
1267          * this cpu. (in this case the 'I will reschedule' promise of
1268          * the waker guarantees that the freshly woken up task is going
1269          * to be considered on this CPU.)
1270          */
1271         activate_task(p, rq, cpu == this_cpu);
1272         if (!sync || cpu != this_cpu) {
1273                 if (TASK_PREEMPTS_CURR(p, rq))
1274                         resched_task(rq->curr);
1275         }
1276         success = 1;
1277
1278 out_running:
1279         p->state = TASK_RUNNING;
1280 out:
1281         task_rq_unlock(rq, &flags);
1282
1283         return success;
1284 }
1285
1286 int fastcall wake_up_process(task_t * p)
1287 {
1288         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1289                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1290 }
1291
1292 EXPORT_SYMBOL(wake_up_process);
1293
1294 int fastcall wake_up_state(task_t *p, unsigned int state)
1295 {
1296         return try_to_wake_up(p, state, 0);
1297 }
1298
1299 /*
1300  * Perform scheduler related setup for a newly forked process p.
1301  * p is forked by current.
1302  */
1303 void fastcall sched_fork(task_t *p, int clone_flags)
1304 {
1305         int cpu = get_cpu();
1306
1307 #ifdef CONFIG_SMP
1308         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1309 #endif
1310         set_task_cpu(p, cpu);
1311
1312         /*
1313          * We mark the process as running here, but have not actually
1314          * inserted it onto the runqueue yet. This guarantees that
1315          * nobody will actually run it, and a signal or other external
1316          * event cannot wake it up and insert it on the runqueue either.
1317          */
1318         p->state = TASK_RUNNING;
1319         INIT_LIST_HEAD(&p->run_list);
1320         p->array = NULL;
1321 #ifdef CONFIG_SCHEDSTATS
1322         memset(&p->sched_info, 0, sizeof(p->sched_info));
1323 #endif
1324 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1325         p->oncpu = 0;
1326 #endif
1327 #ifdef CONFIG_PREEMPT
1328         /* Want to start with kernel preemption disabled. */
1329         p->thread_info->preempt_count = 1;
1330 #endif
1331         /*
1332          * Share the timeslice between parent and child, thus the
1333          * total amount of pending timeslices in the system doesn't change,
1334          * resulting in more scheduling fairness.
1335          */
1336         local_irq_disable();
1337         p->time_slice = (current->time_slice + 1) >> 1;
1338         /*
1339          * The remainder of the first timeslice might be recovered by
1340          * the parent if the child exits early enough.
1341          */
1342         p->first_time_slice = 1;
1343         current->time_slice >>= 1;
1344         p->timestamp = sched_clock();
1345         if (unlikely(!current->time_slice)) {
1346                 /*
1347                  * This case is rare, it happens when the parent has only
1348                  * a single jiffy left from its timeslice. Taking the
1349                  * runqueue lock is not a problem.
1350                  */
1351                 current->time_slice = 1;
1352                 scheduler_tick();
1353         }
1354         local_irq_enable();
1355         put_cpu();
1356 }
1357
1358 /*
1359  * wake_up_new_task - wake up a newly created task for the first time.
1360  *
1361  * This function will do some initial scheduler statistics housekeeping
1362  * that must be done for every newly created context, then puts the task
1363  * on the runqueue and wakes it.
1364  */
1365 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1366 {
1367         unsigned long flags;
1368         int this_cpu, cpu;
1369         runqueue_t *rq, *this_rq;
1370
1371         rq = task_rq_lock(p, &flags);
1372         BUG_ON(p->state != TASK_RUNNING);
1373         this_cpu = smp_processor_id();
1374         cpu = task_cpu(p);
1375
1376         /*
1377          * We decrease the sleep average of forking parents
1378          * and children as well, to keep max-interactive tasks
1379          * from forking tasks that are max-interactive. The parent
1380          * (current) is done further down, under its lock.
1381          */
1382         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1383                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1384
1385         p->prio = effective_prio(p);
1386
1387         if (likely(cpu == this_cpu)) {
1388                 if (!(clone_flags & CLONE_VM)) {
1389                         /*
1390                          * The VM isn't cloned, so we're in a good position to
1391                          * do child-runs-first in anticipation of an exec. This
1392                          * usually avoids a lot of COW overhead.
1393                          */
1394                         if (unlikely(!current->array))
1395                                 __activate_task(p, rq);
1396                         else {
1397                                 p->prio = current->prio;
1398                                 list_add_tail(&p->run_list, &current->run_list);
1399                                 p->array = current->array;
1400                                 p->array->nr_active++;
1401                                 rq->nr_running++;
1402                         }
1403                         set_need_resched();
1404                 } else
1405                         /* Run child last */
1406                         __activate_task(p, rq);
1407                 /*
1408                  * We skip the following code due to cpu == this_cpu
1409                  *
1410                  *   task_rq_unlock(rq, &flags);
1411                  *   this_rq = task_rq_lock(current, &flags);
1412                  */
1413                 this_rq = rq;
1414         } else {
1415                 this_rq = cpu_rq(this_cpu);
1416
1417                 /*
1418                  * Not the local CPU - must adjust timestamp. This should
1419                  * get optimised away in the !CONFIG_SMP case.
1420                  */
1421                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1422                                         + rq->timestamp_last_tick;
1423                 __activate_task(p, rq);
1424                 if (TASK_PREEMPTS_CURR(p, rq))
1425                         resched_task(rq->curr);
1426
1427                 /*
1428                  * Parent and child are on different CPUs, now get the
1429                  * parent runqueue to update the parent's ->sleep_avg:
1430                  */
1431                 task_rq_unlock(rq, &flags);
1432                 this_rq = task_rq_lock(current, &flags);
1433         }
1434         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1435                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1436         task_rq_unlock(this_rq, &flags);
1437 }
1438
1439 /*
1440  * Potentially available exiting-child timeslices are
1441  * retrieved here - this way the parent does not get
1442  * penalized for creating too many threads.
1443  *
1444  * (this cannot be used to 'generate' timeslices
1445  * artificially, because any timeslice recovered here
1446  * was given away by the parent in the first place.)
1447  */
1448 void fastcall sched_exit(task_t * p)
1449 {
1450         unsigned long flags;
1451         runqueue_t *rq;
1452
1453         /*
1454          * If the child was a (relative-) CPU hog then decrease
1455          * the sleep_avg of the parent as well.
1456          */
1457         rq = task_rq_lock(p->parent, &flags);
1458         if (p->first_time_slice) {
1459                 p->parent->time_slice += p->time_slice;
1460                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1461                         p->parent->time_slice = task_timeslice(p);
1462         }
1463         if (p->sleep_avg < p->parent->sleep_avg)
1464                 p->parent->sleep_avg = p->parent->sleep_avg /
1465                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1466                 (EXIT_WEIGHT + 1);
1467         task_rq_unlock(rq, &flags);
1468 }
1469
1470 /**
1471  * prepare_task_switch - prepare to switch tasks
1472  * @rq: the runqueue preparing to switch
1473  * @next: the task we are going to switch to.
1474  *
1475  * This is called with the rq lock held and interrupts off. It must
1476  * be paired with a subsequent finish_task_switch after the context
1477  * switch.
1478  *
1479  * prepare_task_switch sets up locking and calls architecture specific
1480  * hooks.
1481  */
1482 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1483 {
1484         prepare_lock_switch(rq, next);
1485         prepare_arch_switch(next);
1486 }
1487
1488 /**
1489  * finish_task_switch - clean up after a task-switch
1490  * @rq: runqueue associated with task-switch
1491  * @prev: the thread we just switched away from.
1492  *
1493  * finish_task_switch must be called after the context switch, paired
1494  * with a prepare_task_switch call before the context switch.
1495  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1496  * and do any other architecture-specific cleanup actions.
1497  *
1498  * Note that we may have delayed dropping an mm in context_switch(). If
1499  * so, we finish that here outside of the runqueue lock.  (Doing it
1500  * with the lock held can cause deadlocks; see schedule() for
1501  * details.)
1502  */
1503 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1504         __releases(rq->lock)
1505 {
1506         struct mm_struct *mm = rq->prev_mm;
1507         unsigned long prev_task_flags;
1508
1509         rq->prev_mm = NULL;
1510
1511         /*
1512          * A task struct has one reference for the use as "current".
1513          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1514          * calls schedule one last time. The schedule call will never return,
1515          * and the scheduled task must drop that reference.
1516          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1517          * still held, otherwise prev could be scheduled on another cpu, die
1518          * there before we look at prev->state, and then the reference would
1519          * be dropped twice.
1520          *              Manfred Spraul <manfred@colorfullife.com>
1521          */
1522         prev_task_flags = prev->flags;
1523 #ifdef CONFIG_DEBUG_SPINLOCK
1524         /* this is a valid case when another task releases the spinlock */
1525         rq->lock.owner = current;
1526 #endif
1527         finish_arch_switch(prev);
1528         finish_lock_switch(rq, prev);
1529         if (mm)
1530                 mmdrop(mm);
1531         if (unlikely(prev_task_flags & PF_DEAD))
1532                 put_task_struct(prev);
1533 }
1534
1535 /**
1536  * schedule_tail - first thing a freshly forked thread must call.
1537  * @prev: the thread we just switched away from.
1538  */
1539 asmlinkage void schedule_tail(task_t *prev)
1540         __releases(rq->lock)
1541 {
1542         runqueue_t *rq = this_rq();
1543         finish_task_switch(rq, prev);
1544 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1545         /* In this case, finish_task_switch does not reenable preemption */
1546         preempt_enable();
1547 #endif
1548         if (current->set_child_tid)
1549                 put_user(current->pid, current->set_child_tid);
1550 }
1551
1552 /*
1553  * context_switch - switch to the new MM and the new
1554  * thread's register state.
1555  */
1556 static inline
1557 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1558 {
1559         struct mm_struct *mm = next->mm;
1560         struct mm_struct *oldmm = prev->active_mm;
1561
1562         if (unlikely(!mm)) {
1563                 next->active_mm = oldmm;
1564                 atomic_inc(&oldmm->mm_count);
1565                 enter_lazy_tlb(oldmm, next);
1566         } else
1567                 switch_mm(oldmm, mm, next);
1568
1569         if (unlikely(!prev->mm)) {
1570                 prev->active_mm = NULL;
1571                 WARN_ON(rq->prev_mm);
1572                 rq->prev_mm = oldmm;
1573         }
1574
1575         /* Here we just switch the register state and the stack. */
1576         switch_to(prev, next, prev);
1577
1578         return prev;
1579 }
1580
1581 /*
1582  * nr_running, nr_uninterruptible and nr_context_switches:
1583  *
1584  * externally visible scheduler statistics: current number of runnable
1585  * threads, current number of uninterruptible-sleeping threads, total
1586  * number of context switches performed since bootup.
1587  */
1588 unsigned long nr_running(void)
1589 {
1590         unsigned long i, sum = 0;
1591
1592         for_each_online_cpu(i)
1593                 sum += cpu_rq(i)->nr_running;
1594
1595         return sum;
1596 }
1597
1598 unsigned long nr_uninterruptible(void)
1599 {
1600         unsigned long i, sum = 0;
1601
1602         for_each_cpu(i)
1603                 sum += cpu_rq(i)->nr_uninterruptible;
1604
1605         /*
1606          * Since we read the counters lockless, it might be slightly
1607          * inaccurate. Do not allow it to go below zero though:
1608          */
1609         if (unlikely((long)sum < 0))
1610                 sum = 0;
1611
1612         return sum;
1613 }
1614
1615 unsigned long long nr_context_switches(void)
1616 {
1617         unsigned long long i, sum = 0;
1618
1619         for_each_cpu(i)
1620                 sum += cpu_rq(i)->nr_switches;
1621
1622         return sum;
1623 }
1624
1625 unsigned long nr_iowait(void)
1626 {
1627         unsigned long i, sum = 0;
1628
1629         for_each_cpu(i)
1630                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1631
1632         return sum;
1633 }
1634
1635 #ifdef CONFIG_SMP
1636
1637 /*
1638  * double_rq_lock - safely lock two runqueues
1639  *
1640  * Note this does not disable interrupts like task_rq_lock,
1641  * you need to do so manually before calling.
1642  */
1643 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1644         __acquires(rq1->lock)
1645         __acquires(rq2->lock)
1646 {
1647         if (rq1 == rq2) {
1648                 spin_lock(&rq1->lock);
1649                 __acquire(rq2->lock);   /* Fake it out ;) */
1650         } else {
1651                 if (rq1 < rq2) {
1652                         spin_lock(&rq1->lock);
1653                         spin_lock(&rq2->lock);
1654                 } else {
1655                         spin_lock(&rq2->lock);
1656                         spin_lock(&rq1->lock);
1657                 }
1658         }
1659 }
1660
1661 /*
1662  * double_rq_unlock - safely unlock two runqueues
1663  *
1664  * Note this does not restore interrupts like task_rq_unlock,
1665  * you need to do so manually after calling.
1666  */
1667 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1668         __releases(rq1->lock)
1669         __releases(rq2->lock)
1670 {
1671         spin_unlock(&rq1->lock);
1672         if (rq1 != rq2)
1673                 spin_unlock(&rq2->lock);
1674         else
1675                 __release(rq2->lock);
1676 }
1677
1678 /*
1679  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1680  */
1681 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1682         __releases(this_rq->lock)
1683         __acquires(busiest->lock)
1684         __acquires(this_rq->lock)
1685 {
1686         if (unlikely(!spin_trylock(&busiest->lock))) {
1687                 if (busiest < this_rq) {
1688                         spin_unlock(&this_rq->lock);
1689                         spin_lock(&busiest->lock);
1690                         spin_lock(&this_rq->lock);
1691                 } else
1692                         spin_lock(&busiest->lock);
1693         }
1694 }
1695
1696 /*
1697  * If dest_cpu is allowed for this process, migrate the task to it.
1698  * This is accomplished by forcing the cpu_allowed mask to only
1699  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1700  * the cpu_allowed mask is restored.
1701  */
1702 static void sched_migrate_task(task_t *p, int dest_cpu)
1703 {
1704         migration_req_t req;
1705         runqueue_t *rq;
1706         unsigned long flags;
1707
1708         rq = task_rq_lock(p, &flags);
1709         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1710             || unlikely(cpu_is_offline(dest_cpu)))
1711                 goto out;
1712
1713         /* force the process onto the specified CPU */
1714         if (migrate_task(p, dest_cpu, &req)) {
1715                 /* Need to wait for migration thread (might exit: take ref). */
1716                 struct task_struct *mt = rq->migration_thread;
1717                 get_task_struct(mt);
1718                 task_rq_unlock(rq, &flags);
1719                 wake_up_process(mt);
1720                 put_task_struct(mt);
1721                 wait_for_completion(&req.done);
1722                 return;
1723         }
1724 out:
1725         task_rq_unlock(rq, &flags);
1726 }
1727
1728 /*
1729  * sched_exec - execve() is a valuable balancing opportunity, because at
1730  * this point the task has the smallest effective memory and cache footprint.
1731  */
1732 void sched_exec(void)
1733 {
1734         int new_cpu, this_cpu = get_cpu();
1735         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1736         put_cpu();
1737         if (new_cpu != this_cpu)
1738                 sched_migrate_task(current, new_cpu);
1739 }
1740
1741 /*
1742  * pull_task - move a task from a remote runqueue to the local runqueue.
1743  * Both runqueues must be locked.
1744  */
1745 static inline
1746 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1747                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1748 {
1749         dequeue_task(p, src_array);
1750         src_rq->nr_running--;
1751         set_task_cpu(p, this_cpu);
1752         this_rq->nr_running++;
1753         enqueue_task(p, this_array);
1754         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1755                                 + this_rq->timestamp_last_tick;
1756         /*
1757          * Note that idle threads have a prio of MAX_PRIO, for this test
1758          * to be always true for them.
1759          */
1760         if (TASK_PREEMPTS_CURR(p, this_rq))
1761                 resched_task(this_rq->curr);
1762 }
1763
1764 /*
1765  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1766  */
1767 static inline
1768 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1769              struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1770 {
1771         /*
1772          * We do not migrate tasks that are:
1773          * 1) running (obviously), or
1774          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1775          * 3) are cache-hot on their current CPU.
1776          */
1777         if (!cpu_isset(this_cpu, p->cpus_allowed))
1778                 return 0;
1779         *all_pinned = 0;
1780
1781         if (task_running(rq, p))
1782                 return 0;
1783
1784         /*
1785          * Aggressive migration if:
1786          * 1) task is cache cold, or
1787          * 2) too many balance attempts have failed.
1788          */
1789
1790         if (sd->nr_balance_failed > sd->cache_nice_tries)
1791                 return 1;
1792
1793         if (task_hot(p, rq->timestamp_last_tick, sd))
1794                 return 0;
1795         return 1;
1796 }
1797
1798 /*
1799  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1800  * as part of a balancing operation within "domain". Returns the number of
1801  * tasks moved.
1802  *
1803  * Called with both runqueues locked.
1804  */
1805 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1806                       unsigned long max_nr_move, struct sched_domain *sd,
1807                       enum idle_type idle, int *all_pinned)
1808 {
1809         prio_array_t *array, *dst_array;
1810         struct list_head *head, *curr;
1811         int idx, pulled = 0, pinned = 0;
1812         task_t *tmp;
1813
1814         if (max_nr_move == 0)
1815                 goto out;
1816
1817         pinned = 1;
1818
1819         /*
1820          * We first consider expired tasks. Those will likely not be
1821          * executed in the near future, and they are most likely to
1822          * be cache-cold, thus switching CPUs has the least effect
1823          * on them.
1824          */
1825         if (busiest->expired->nr_active) {
1826                 array = busiest->expired;
1827                 dst_array = this_rq->expired;
1828         } else {
1829                 array = busiest->active;
1830                 dst_array = this_rq->active;
1831         }
1832
1833 new_array:
1834         /* Start searching at priority 0: */
1835         idx = 0;
1836 skip_bitmap:
1837         if (!idx)
1838                 idx = sched_find_first_bit(array->bitmap);
1839         else
1840                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1841         if (idx >= MAX_PRIO) {
1842                 if (array == busiest->expired && busiest->active->nr_active) {
1843                         array = busiest->active;
1844                         dst_array = this_rq->active;
1845                         goto new_array;
1846                 }
1847                 goto out;
1848         }
1849
1850         head = array->queue + idx;
1851         curr = head->prev;
1852 skip_queue:
1853         tmp = list_entry(curr, task_t, run_list);
1854
1855         curr = curr->prev;
1856
1857         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1858                 if (curr != head)
1859                         goto skip_queue;
1860                 idx++;
1861                 goto skip_bitmap;
1862         }
1863
1864 #ifdef CONFIG_SCHEDSTATS
1865         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1866                 schedstat_inc(sd, lb_hot_gained[idle]);
1867 #endif
1868
1869         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1870         pulled++;
1871
1872         /* We only want to steal up to the prescribed number of tasks. */
1873         if (pulled < max_nr_move) {
1874                 if (curr != head)
1875                         goto skip_queue;
1876                 idx++;
1877                 goto skip_bitmap;
1878         }
1879 out:
1880         /*
1881          * Right now, this is the only place pull_task() is called,
1882          * so we can safely collect pull_task() stats here rather than
1883          * inside pull_task().
1884          */
1885         schedstat_add(sd, lb_gained[idle], pulled);
1886
1887         if (all_pinned)
1888                 *all_pinned = pinned;
1889         return pulled;
1890 }
1891
1892 /*
1893  * find_busiest_group finds and returns the busiest CPU group within the
1894  * domain. It calculates and returns the number of tasks which should be
1895  * moved to restore balance via the imbalance parameter.
1896  */
1897 static struct sched_group *
1898 find_busiest_group(struct sched_domain *sd, int this_cpu,
1899                    unsigned long *imbalance, enum idle_type idle)
1900 {
1901         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1902         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1903         int load_idx;
1904
1905         max_load = this_load = total_load = total_pwr = 0;
1906         if (idle == NOT_IDLE)
1907                 load_idx = sd->busy_idx;
1908         else if (idle == NEWLY_IDLE)
1909                 load_idx = sd->newidle_idx;
1910         else
1911                 load_idx = sd->idle_idx;
1912
1913         do {
1914                 unsigned long load;
1915                 int local_group;
1916                 int i;
1917
1918                 local_group = cpu_isset(this_cpu, group->cpumask);
1919
1920                 /* Tally up the load of all CPUs in the group */
1921                 avg_load = 0;
1922
1923                 for_each_cpu_mask(i, group->cpumask) {
1924                         /* Bias balancing toward cpus of our domain */
1925                         if (local_group)
1926                                 load = target_load(i, load_idx);
1927                         else
1928                                 load = source_load(i, load_idx);
1929
1930                         avg_load += load;
1931                 }
1932
1933                 total_load += avg_load;
1934                 total_pwr += group->cpu_power;
1935
1936                 /* Adjust by relative CPU power of the group */
1937                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1938
1939                 if (local_group) {
1940                         this_load = avg_load;
1941                         this = group;
1942                 } else if (avg_load > max_load) {
1943                         max_load = avg_load;
1944                         busiest = group;
1945                 }
1946                 group = group->next;
1947         } while (group != sd->groups);
1948
1949         if (!busiest || this_load >= max_load)
1950                 goto out_balanced;
1951
1952         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1953
1954         if (this_load >= avg_load ||
1955                         100*max_load <= sd->imbalance_pct*this_load)
1956                 goto out_balanced;
1957
1958         /*
1959          * We're trying to get all the cpus to the average_load, so we don't
1960          * want to push ourselves above the average load, nor do we wish to
1961          * reduce the max loaded cpu below the average load, as either of these
1962          * actions would just result in more rebalancing later, and ping-pong
1963          * tasks around. Thus we look for the minimum possible imbalance.
1964          * Negative imbalances (*we* are more loaded than anyone else) will
1965          * be counted as no imbalance for these purposes -- we can't fix that
1966          * by pulling tasks to us.  Be careful of negative numbers as they'll
1967          * appear as very large values with unsigned longs.
1968          */
1969         /* How much load to actually move to equalise the imbalance */
1970         *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1971                                 (avg_load - this_load) * this->cpu_power)
1972                         / SCHED_LOAD_SCALE;
1973
1974         if (*imbalance < SCHED_LOAD_SCALE) {
1975                 unsigned long pwr_now = 0, pwr_move = 0;
1976                 unsigned long tmp;
1977
1978                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1979                         *imbalance = 1;
1980                         return busiest;
1981                 }
1982
1983                 /*
1984                  * OK, we don't have enough imbalance to justify moving tasks,
1985                  * however we may be able to increase total CPU power used by
1986                  * moving them.
1987                  */
1988
1989                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1990                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1991                 pwr_now /= SCHED_LOAD_SCALE;
1992
1993                 /* Amount of load we'd subtract */
1994                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1995                 if (max_load > tmp)
1996                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1997                                                         max_load - tmp);
1998
1999                 /* Amount of load we'd add */
2000                 if (max_load*busiest->cpu_power <
2001                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2002                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2003                 else
2004                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2005                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2006                 pwr_move /= SCHED_LOAD_SCALE;
2007
2008                 /* Move if we gain throughput */
2009                 if (pwr_move <= pwr_now)
2010                         goto out_balanced;
2011
2012                 *imbalance = 1;
2013                 return busiest;
2014         }
2015
2016         /* Get rid of the scaling factor, rounding down as we divide */
2017         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2018         return busiest;
2019
2020 out_balanced:
2021
2022         *imbalance = 0;
2023         return NULL;
2024 }
2025
2026 /*
2027  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2028  */
2029 static runqueue_t *find_busiest_queue(struct sched_group *group)
2030 {
2031         unsigned long load, max_load = 0;
2032         runqueue_t *busiest = NULL;
2033         int i;
2034
2035         for_each_cpu_mask(i, group->cpumask) {
2036                 load = source_load(i, 0);
2037
2038                 if (load > max_load) {
2039                         max_load = load;
2040                         busiest = cpu_rq(i);
2041                 }
2042         }
2043
2044         return busiest;
2045 }
2046
2047 /*
2048  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2049  * so long as it is large enough.
2050  */
2051 #define MAX_PINNED_INTERVAL     512
2052
2053 /*
2054  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2055  * tasks if there is an imbalance.
2056  *
2057  * Called with this_rq unlocked.
2058  */
2059 static int load_balance(int this_cpu, runqueue_t *this_rq,
2060                         struct sched_domain *sd, enum idle_type idle)
2061 {
2062         struct sched_group *group;
2063         runqueue_t *busiest;
2064         unsigned long imbalance;
2065         int nr_moved, all_pinned = 0;
2066         int active_balance = 0;
2067
2068         spin_lock(&this_rq->lock);
2069         schedstat_inc(sd, lb_cnt[idle]);
2070
2071         group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2072         if (!group) {
2073                 schedstat_inc(sd, lb_nobusyg[idle]);
2074                 goto out_balanced;
2075         }
2076
2077         busiest = find_busiest_queue(group);
2078         if (!busiest) {
2079                 schedstat_inc(sd, lb_nobusyq[idle]);
2080                 goto out_balanced;
2081         }
2082
2083         BUG_ON(busiest == this_rq);
2084
2085         schedstat_add(sd, lb_imbalance[idle], imbalance);
2086
2087         nr_moved = 0;
2088         if (busiest->nr_running > 1) {
2089                 /*
2090                  * Attempt to move tasks. If find_busiest_group has found
2091                  * an imbalance but busiest->nr_running <= 1, the group is
2092                  * still unbalanced. nr_moved simply stays zero, so it is
2093                  * correctly treated as an imbalance.
2094                  */
2095                 double_lock_balance(this_rq, busiest);
2096                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2097                                                 imbalance, sd, idle,
2098                                                 &all_pinned);
2099                 spin_unlock(&busiest->lock);
2100
2101                 /* All tasks on this runqueue were pinned by CPU affinity */
2102                 if (unlikely(all_pinned))
2103                         goto out_balanced;
2104         }
2105
2106         spin_unlock(&this_rq->lock);
2107
2108         if (!nr_moved) {
2109                 schedstat_inc(sd, lb_failed[idle]);
2110                 sd->nr_balance_failed++;
2111
2112                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2113
2114                         spin_lock(&busiest->lock);
2115                         if (!busiest->active_balance) {
2116                                 busiest->active_balance = 1;
2117                                 busiest->push_cpu = this_cpu;
2118                                 active_balance = 1;
2119                         }
2120                         spin_unlock(&busiest->lock);
2121                         if (active_balance)
2122                                 wake_up_process(busiest->migration_thread);
2123
2124                         /*
2125                          * We've kicked active balancing, reset the failure
2126                          * counter.
2127                          */
2128                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2129                 }
2130         } else
2131                 sd->nr_balance_failed = 0;
2132
2133         if (likely(!active_balance)) {
2134                 /* We were unbalanced, so reset the balancing interval */
2135                 sd->balance_interval = sd->min_interval;
2136         } else {
2137                 /*
2138                  * If we've begun active balancing, start to back off. This
2139                  * case may not be covered by the all_pinned logic if there
2140                  * is only 1 task on the busy runqueue (because we don't call
2141                  * move_tasks).
2142                  */
2143                 if (sd->balance_interval < sd->max_interval)
2144                         sd->balance_interval *= 2;
2145         }
2146
2147         return nr_moved;
2148
2149 out_balanced:
2150         spin_unlock(&this_rq->lock);
2151
2152         schedstat_inc(sd, lb_balanced[idle]);
2153
2154         sd->nr_balance_failed = 0;
2155         /* tune up the balancing interval */
2156         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2157                         (sd->balance_interval < sd->max_interval))
2158                 sd->balance_interval *= 2;
2159
2160         return 0;
2161 }
2162
2163 /*
2164  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2165  * tasks if there is an imbalance.
2166  *
2167  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2168  * this_rq is locked.
2169  */
2170 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2171                                 struct sched_domain *sd)
2172 {
2173         struct sched_group *group;
2174         runqueue_t *busiest = NULL;
2175         unsigned long imbalance;
2176         int nr_moved = 0;
2177
2178         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2179         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2180         if (!group) {
2181                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2182                 goto out_balanced;
2183         }
2184
2185         busiest = find_busiest_queue(group);
2186         if (!busiest) {
2187                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2188                 goto out_balanced;
2189         }
2190
2191         BUG_ON(busiest == this_rq);
2192
2193         /* Attempt to move tasks */
2194         double_lock_balance(this_rq, busiest);
2195
2196         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2197         nr_moved = move_tasks(this_rq, this_cpu, busiest,
2198                                         imbalance, sd, NEWLY_IDLE, NULL);
2199         if (!nr_moved)
2200                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2201         else
2202                 sd->nr_balance_failed = 0;
2203
2204         spin_unlock(&busiest->lock);
2205         return nr_moved;
2206
2207 out_balanced:
2208         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2209         sd->nr_balance_failed = 0;
2210         return 0;
2211 }
2212
2213 /*
2214  * idle_balance is called by schedule() if this_cpu is about to become
2215  * idle. Attempts to pull tasks from other CPUs.
2216  */
2217 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2218 {
2219         struct sched_domain *sd;
2220
2221         for_each_domain(this_cpu, sd) {
2222                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2223                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2224                                 /* We've pulled tasks over so stop searching */
2225                                 break;
2226                         }
2227                 }
2228         }
2229 }
2230
2231 /*
2232  * active_load_balance is run by migration threads. It pushes running tasks
2233  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2234  * running on each physical CPU where possible, and avoids physical /
2235  * logical imbalances.
2236  *
2237  * Called with busiest_rq locked.
2238  */
2239 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2240 {
2241         struct sched_domain *sd;
2242         runqueue_t *target_rq;
2243         int target_cpu = busiest_rq->push_cpu;
2244
2245         if (busiest_rq->nr_running <= 1)
2246                 /* no task to move */
2247                 return;
2248
2249         target_rq = cpu_rq(target_cpu);
2250
2251         /*
2252          * This condition is "impossible", if it occurs
2253          * we need to fix it.  Originally reported by
2254          * Bjorn Helgaas on a 128-cpu setup.
2255          */
2256         BUG_ON(busiest_rq == target_rq);
2257
2258         /* move a task from busiest_rq to target_rq */
2259         double_lock_balance(busiest_rq, target_rq);
2260
2261         /* Search for an sd spanning us and the target CPU. */
2262         for_each_domain(target_cpu, sd)
2263                 if ((sd->flags & SD_LOAD_BALANCE) &&
2264                         cpu_isset(busiest_cpu, sd->span))
2265                                 break;
2266
2267         if (unlikely(sd == NULL))
2268                 goto out;
2269
2270         schedstat_inc(sd, alb_cnt);
2271
2272         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2273                 schedstat_inc(sd, alb_pushed);
2274         else
2275                 schedstat_inc(sd, alb_failed);
2276 out:
2277         spin_unlock(&target_rq->lock);
2278 }
2279
2280 /*
2281  * rebalance_tick will get called every timer tick, on every CPU.
2282  *
2283  * It checks each scheduling domain to see if it is due to be balanced,
2284  * and initiates a balancing operation if so.
2285  *
2286  * Balancing parameters are set up in arch_init_sched_domains.
2287  */
2288
2289 /* Don't have all balancing operations going off at once */
2290 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2291
2292 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2293                            enum idle_type idle)
2294 {
2295         unsigned long old_load, this_load;
2296         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2297         struct sched_domain *sd;
2298         int i;
2299
2300         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2301         /* Update our load */
2302         for (i = 0; i < 3; i++) {
2303                 unsigned long new_load = this_load;
2304                 int scale = 1 << i;
2305                 old_load = this_rq->cpu_load[i];
2306                 /*
2307                  * Round up the averaging division if load is increasing. This
2308                  * prevents us from getting stuck on 9 if the load is 10, for
2309                  * example.
2310                  */
2311                 if (new_load > old_load)
2312                         new_load += scale-1;
2313                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2314         }
2315
2316         for_each_domain(this_cpu, sd) {
2317                 unsigned long interval;
2318
2319                 if (!(sd->flags & SD_LOAD_BALANCE))
2320                         continue;
2321
2322                 interval = sd->balance_interval;
2323                 if (idle != SCHED_IDLE)
2324                         interval *= sd->busy_factor;
2325
2326                 /* scale ms to jiffies */
2327                 interval = msecs_to_jiffies(interval);
2328                 if (unlikely(!interval))
2329                         interval = 1;
2330
2331                 if (j - sd->last_balance >= interval) {
2332                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2333                                 /* We've pulled tasks over so no longer idle */
2334                                 idle = NOT_IDLE;
2335                         }
2336                         sd->last_balance += interval;
2337                 }
2338         }
2339 }
2340 #else
2341 /*
2342  * on UP we do not need to balance between CPUs:
2343  */
2344 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2345 {
2346 }
2347 static inline void idle_balance(int cpu, runqueue_t *rq)
2348 {
2349 }
2350 #endif
2351
2352 static inline int wake_priority_sleeper(runqueue_t *rq)
2353 {
2354         int ret = 0;
2355 #ifdef CONFIG_SCHED_SMT
2356         spin_lock(&rq->lock);
2357         /*
2358          * If an SMT sibling task has been put to sleep for priority
2359          * reasons reschedule the idle task to see if it can now run.
2360          */
2361         if (rq->nr_running) {
2362                 resched_task(rq->idle);
2363                 ret = 1;
2364         }
2365         spin_unlock(&rq->lock);
2366 #endif
2367         return ret;
2368 }
2369
2370 DEFINE_PER_CPU(struct kernel_stat, kstat);
2371
2372 EXPORT_PER_CPU_SYMBOL(kstat);
2373
2374 /*
2375  * This is called on clock ticks and on context switches.
2376  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2377  */
2378 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2379                                     unsigned long long now)
2380 {
2381         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2382         p->sched_time += now - last;
2383 }
2384
2385 /*
2386  * Return current->sched_time plus any more ns on the sched_clock
2387  * that have not yet been banked.
2388  */
2389 unsigned long long current_sched_time(const task_t *tsk)
2390 {
2391         unsigned long long ns;
2392         unsigned long flags;
2393         local_irq_save(flags);
2394         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2395         ns = tsk->sched_time + (sched_clock() - ns);
2396         local_irq_restore(flags);
2397         return ns;
2398 }
2399
2400 /*
2401  * We place interactive tasks back into the active array, if possible.
2402  *
2403  * To guarantee that this does not starve expired tasks we ignore the
2404  * interactivity of a task if the first expired task had to wait more
2405  * than a 'reasonable' amount of time. This deadline timeout is
2406  * load-dependent, as the frequency of array switched decreases with
2407  * increasing number of running tasks. We also ignore the interactivity
2408  * if a better static_prio task has expired:
2409  */
2410 #define EXPIRED_STARVING(rq) \
2411         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2412                 (jiffies - (rq)->expired_timestamp >= \
2413                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2414                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2415
2416 /*
2417  * Account user cpu time to a process.
2418  * @p: the process that the cpu time gets accounted to
2419  * @hardirq_offset: the offset to subtract from hardirq_count()
2420  * @cputime: the cpu time spent in user space since the last update
2421  */
2422 void account_user_time(struct task_struct *p, cputime_t cputime)
2423 {
2424         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2425         cputime64_t tmp;
2426
2427         p->utime = cputime_add(p->utime, cputime);
2428
2429         /* Add user time to cpustat. */
2430         tmp = cputime_to_cputime64(cputime);
2431         if (TASK_NICE(p) > 0)
2432                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2433         else
2434                 cpustat->user = cputime64_add(cpustat->user, tmp);
2435 }
2436
2437 /*
2438  * Account system cpu time to a process.
2439  * @p: the process that the cpu time gets accounted to
2440  * @hardirq_offset: the offset to subtract from hardirq_count()
2441  * @cputime: the cpu time spent in kernel space since the last update
2442  */
2443 void account_system_time(struct task_struct *p, int hardirq_offset,
2444                          cputime_t cputime)
2445 {
2446         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2447         runqueue_t *rq = this_rq();
2448         cputime64_t tmp;
2449
2450         p->stime = cputime_add(p->stime, cputime);
2451
2452         /* Add system time to cpustat. */
2453         tmp = cputime_to_cputime64(cputime);
2454         if (hardirq_count() - hardirq_offset)
2455                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2456         else if (softirq_count())
2457                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2458         else if (p != rq->idle)
2459                 cpustat->system = cputime64_add(cpustat->system, tmp);
2460         else if (atomic_read(&rq->nr_iowait) > 0)
2461                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2462         else
2463                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2464         /* Account for system time used */
2465         acct_update_integrals(p);
2466         /* Update rss highwater mark */
2467         update_mem_hiwater(p);
2468 }
2469
2470 /*
2471  * Account for involuntary wait time.
2472  * @p: the process from which the cpu time has been stolen
2473  * @steal: the cpu time spent in involuntary wait
2474  */
2475 void account_steal_time(struct task_struct *p, cputime_t steal)
2476 {
2477         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2478         cputime64_t tmp = cputime_to_cputime64(steal);
2479         runqueue_t *rq = this_rq();
2480
2481         if (p == rq->idle) {
2482                 p->stime = cputime_add(p->stime, steal);
2483                 if (atomic_read(&rq->nr_iowait) > 0)
2484                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2485                 else
2486                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2487         } else
2488                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2489 }
2490
2491 /*
2492  * This function gets called by the timer code, with HZ frequency.
2493  * We call it with interrupts disabled.
2494  *
2495  * It also gets called by the fork code, when changing the parent's
2496  * timeslices.
2497  */
2498 void scheduler_tick(void)
2499 {
2500         int cpu = smp_processor_id();
2501         runqueue_t *rq = this_rq();
2502         task_t *p = current;
2503         unsigned long long now = sched_clock();
2504
2505         update_cpu_clock(p, rq, now);
2506
2507         rq->timestamp_last_tick = now;
2508
2509         if (p == rq->idle) {
2510                 if (wake_priority_sleeper(rq))
2511                         goto out;
2512                 rebalance_tick(cpu, rq, SCHED_IDLE);
2513                 return;
2514         }
2515
2516         /* Task might have expired already, but not scheduled off yet */
2517         if (p->array != rq->active) {
2518                 set_tsk_need_resched(p);
2519                 goto out;
2520         }
2521         spin_lock(&rq->lock);
2522         /*
2523          * The task was running during this tick - update the
2524          * time slice counter. Note: we do not update a thread's
2525          * priority until it either goes to sleep or uses up its
2526          * timeslice. This makes it possible for interactive tasks
2527          * to use up their timeslices at their highest priority levels.
2528          */
2529         if (rt_task(p)) {
2530                 /*
2531                  * RR tasks need a special form of timeslice management.
2532                  * FIFO tasks have no timeslices.
2533                  */
2534                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2535                         p->time_slice = task_timeslice(p);
2536                         p->first_time_slice = 0;
2537                         set_tsk_need_resched(p);
2538
2539                         /* put it at the end of the queue: */
2540                         requeue_task(p, rq->active);
2541                 }
2542                 goto out_unlock;
2543         }
2544         if (!--p->time_slice) {
2545                 dequeue_task(p, rq->active);
2546                 set_tsk_need_resched(p);
2547                 p->prio = effective_prio(p);
2548                 p->time_slice = task_timeslice(p);
2549                 p->first_time_slice = 0;
2550
2551                 if (!rq->expired_timestamp)
2552                         rq->expired_timestamp = jiffies;
2553                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2554                         enqueue_task(p, rq->expired);
2555                         if (p->static_prio < rq->best_expired_prio)
2556                                 rq->best_expired_prio = p->static_prio;
2557                 } else
2558                         enqueue_task(p, rq->active);
2559         } else {
2560                 /*
2561                  * Prevent a too long timeslice allowing a task to monopolize
2562                  * the CPU. We do this by splitting up the timeslice into
2563                  * smaller pieces.
2564                  *
2565                  * Note: this does not mean the task's timeslices expire or
2566                  * get lost in any way, they just might be preempted by
2567                  * another task of equal priority. (one with higher
2568                  * priority would have preempted this task already.) We
2569                  * requeue this task to the end of the list on this priority
2570                  * level, which is in essence a round-robin of tasks with
2571                  * equal priority.
2572                  *
2573                  * This only applies to tasks in the interactive
2574                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2575                  */
2576                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2577                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2578                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2579                         (p->array == rq->active)) {
2580
2581                         requeue_task(p, rq->active);
2582                         set_tsk_need_resched(p);
2583                 }
2584         }
2585 out_unlock:
2586         spin_unlock(&rq->lock);
2587 out:
2588         rebalance_tick(cpu, rq, NOT_IDLE);
2589 }
2590
2591 #ifdef CONFIG_SCHED_SMT
2592 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2593 {
2594         /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2595         if (rq->curr == rq->idle && rq->nr_running)
2596                 resched_task(rq->idle);
2597 }
2598
2599 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2600 {
2601         struct sched_domain *tmp, *sd = NULL;
2602         cpumask_t sibling_map;
2603         int i;
2604
2605         for_each_domain(this_cpu, tmp)
2606                 if (tmp->flags & SD_SHARE_CPUPOWER)
2607                         sd = tmp;
2608
2609         if (!sd)
2610                 return;
2611
2612         /*
2613          * Unlock the current runqueue because we have to lock in
2614          * CPU order to avoid deadlocks. Caller knows that we might
2615          * unlock. We keep IRQs disabled.
2616          */
2617         spin_unlock(&this_rq->lock);
2618
2619         sibling_map = sd->span;
2620
2621         for_each_cpu_mask(i, sibling_map)
2622                 spin_lock(&cpu_rq(i)->lock);
2623         /*
2624          * We clear this CPU from the mask. This both simplifies the
2625          * inner loop and keps this_rq locked when we exit:
2626          */
2627         cpu_clear(this_cpu, sibling_map);
2628
2629         for_each_cpu_mask(i, sibling_map) {
2630                 runqueue_t *smt_rq = cpu_rq(i);
2631
2632                 wakeup_busy_runqueue(smt_rq);
2633         }
2634
2635         for_each_cpu_mask(i, sibling_map)
2636                 spin_unlock(&cpu_rq(i)->lock);
2637         /*
2638          * We exit with this_cpu's rq still held and IRQs
2639          * still disabled:
2640          */
2641 }
2642
2643 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2644 {
2645         struct sched_domain *tmp, *sd = NULL;
2646         cpumask_t sibling_map;
2647         prio_array_t *array;
2648         int ret = 0, i;
2649         task_t *p;
2650
2651         for_each_domain(this_cpu, tmp)
2652                 if (tmp->flags & SD_SHARE_CPUPOWER)
2653                         sd = tmp;
2654
2655         if (!sd)
2656                 return 0;
2657
2658         /*
2659          * The same locking rules and details apply as for
2660          * wake_sleeping_dependent():
2661          */
2662         spin_unlock(&this_rq->lock);
2663         sibling_map = sd->span;
2664         for_each_cpu_mask(i, sibling_map)
2665                 spin_lock(&cpu_rq(i)->lock);
2666         cpu_clear(this_cpu, sibling_map);
2667
2668         /*
2669          * Establish next task to be run - it might have gone away because
2670          * we released the runqueue lock above:
2671          */
2672         if (!this_rq->nr_running)
2673                 goto out_unlock;
2674         array = this_rq->active;
2675         if (!array->nr_active)
2676                 array = this_rq->expired;
2677         BUG_ON(!array->nr_active);
2678
2679         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2680                 task_t, run_list);
2681
2682         for_each_cpu_mask(i, sibling_map) {
2683                 runqueue_t *smt_rq = cpu_rq(i);
2684                 task_t *smt_curr = smt_rq->curr;
2685
2686                 /* Kernel threads do not participate in dependent sleeping */
2687                 if (!p->mm || !smt_curr->mm || rt_task(p))
2688                         goto check_smt_task;
2689
2690                 /*
2691                  * If a user task with lower static priority than the
2692                  * running task on the SMT sibling is trying to schedule,
2693                  * delay it till there is proportionately less timeslice
2694                  * left of the sibling task to prevent a lower priority
2695                  * task from using an unfair proportion of the
2696                  * physical cpu's resources. -ck
2697                  */
2698                 if (rt_task(smt_curr)) {
2699                         /*
2700                          * With real time tasks we run non-rt tasks only
2701                          * per_cpu_gain% of the time.
2702                          */
2703                         if ((jiffies % DEF_TIMESLICE) >
2704                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2705                                         ret = 1;
2706                 } else
2707                         if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) /
2708                                 100) > task_timeslice(p)))
2709                                         ret = 1;
2710
2711 check_smt_task:
2712                 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2713                         rt_task(smt_curr))
2714                                 continue;
2715                 if (!p->mm) {
2716                         wakeup_busy_runqueue(smt_rq);
2717                         continue;
2718                 }
2719
2720                 /*
2721                  * Reschedule a lower priority task on the SMT sibling for
2722                  * it to be put to sleep, or wake it up if it has been put to
2723                  * sleep for priority reasons to see if it should run now.
2724                  */
2725                 if (rt_task(p)) {
2726                         if ((jiffies % DEF_TIMESLICE) >
2727                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2728                                         resched_task(smt_curr);
2729                 } else {
2730                         if ((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2731                                 task_timeslice(smt_curr))
2732                                         resched_task(smt_curr);
2733                         else
2734                                 wakeup_busy_runqueue(smt_rq);
2735                 }
2736         }
2737 out_unlock:
2738         for_each_cpu_mask(i, sibling_map)
2739                 spin_unlock(&cpu_rq(i)->lock);
2740         return ret;
2741 }
2742 #else
2743 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2744 {
2745 }
2746
2747 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2748 {
2749         return 0;
2750 }
2751 #endif
2752
2753 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2754
2755 void fastcall add_preempt_count(int val)
2756 {
2757         /*
2758          * Underflow?
2759          */
2760         BUG_ON((preempt_count() < 0));
2761         preempt_count() += val;
2762         /*
2763          * Spinlock count overflowing soon?
2764          */
2765         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2766 }
2767 EXPORT_SYMBOL(add_preempt_count);
2768
2769 void fastcall sub_preempt_count(int val)
2770 {
2771         /*
2772          * Underflow?
2773          */
2774         BUG_ON(val > preempt_count());
2775         /*
2776          * Is the spinlock portion underflowing?
2777          */
2778         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2779         preempt_count() -= val;
2780 }
2781 EXPORT_SYMBOL(sub_preempt_count);
2782
2783 #endif
2784
2785 /*
2786  * schedule() is the main scheduler function.
2787  */
2788 asmlinkage void __sched schedule(void)
2789 {
2790         long *switch_count;
2791         task_t *prev, *next;
2792         runqueue_t *rq;
2793         prio_array_t *array;
2794         struct list_head *queue;
2795         unsigned long long now;
2796         unsigned long run_time;
2797         int cpu, idx, new_prio;
2798
2799         /*
2800          * Test if we are atomic.  Since do_exit() needs to call into
2801          * schedule() atomically, we ignore that path for now.
2802          * Otherwise, whine if we are scheduling when we should not be.
2803          */
2804         if (likely(!current->exit_state)) {
2805                 if (unlikely(in_atomic())) {
2806                         printk(KERN_ERR "scheduling while atomic: "
2807                                 "%s/0x%08x/%d\n",
2808                                 current->comm, preempt_count(), current->pid);
2809                         dump_stack();
2810                 }
2811         }
2812         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2813
2814 need_resched:
2815         preempt_disable();
2816         prev = current;
2817         release_kernel_lock(prev);
2818 need_resched_nonpreemptible:
2819         rq = this_rq();
2820
2821         /*
2822          * The idle thread is not allowed to schedule!
2823          * Remove this check after it has been exercised a bit.
2824          */
2825         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2826                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2827                 dump_stack();
2828         }
2829
2830         schedstat_inc(rq, sched_cnt);
2831         now = sched_clock();
2832         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2833                 run_time = now - prev->timestamp;
2834                 if (unlikely((long long)(now - prev->timestamp) < 0))
2835                         run_time = 0;
2836         } else
2837                 run_time = NS_MAX_SLEEP_AVG;
2838
2839         /*
2840          * Tasks charged proportionately less run_time at high sleep_avg to
2841          * delay them losing their interactive status
2842          */
2843         run_time /= (CURRENT_BONUS(prev) ? : 1);
2844
2845         spin_lock_irq(&rq->lock);
2846
2847         if (unlikely(prev->flags & PF_DEAD))
2848                 prev->state = EXIT_DEAD;
2849
2850         switch_count = &prev->nivcsw;
2851         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2852                 switch_count = &prev->nvcsw;
2853                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2854                                 unlikely(signal_pending(prev))))
2855                         prev->state = TASK_RUNNING;
2856                 else {
2857                         if (prev->state == TASK_UNINTERRUPTIBLE)
2858                                 rq->nr_uninterruptible++;
2859                         deactivate_task(prev, rq);
2860                 }
2861         }
2862
2863         cpu = smp_processor_id();
2864         if (unlikely(!rq->nr_running)) {
2865 go_idle:
2866                 idle_balance(cpu, rq);
2867                 if (!rq->nr_running) {
2868                         next = rq->idle;
2869                         rq->expired_timestamp = 0;
2870                         wake_sleeping_dependent(cpu, rq);
2871                         /*
2872                          * wake_sleeping_dependent() might have released
2873                          * the runqueue, so break out if we got new
2874                          * tasks meanwhile:
2875                          */
2876                         if (!rq->nr_running)
2877                                 goto switch_tasks;
2878                 }
2879         } else {
2880                 if (dependent_sleeper(cpu, rq)) {
2881                         next = rq->idle;
2882                         goto switch_tasks;
2883                 }
2884                 /*
2885                  * dependent_sleeper() releases and reacquires the runqueue
2886                  * lock, hence go into the idle loop if the rq went
2887                  * empty meanwhile:
2888                  */
2889                 if (unlikely(!rq->nr_running))
2890                         goto go_idle;
2891         }
2892
2893         array = rq->active;
2894         if (unlikely(!array->nr_active)) {
2895                 /*
2896                  * Switch the active and expired arrays.
2897                  */
2898                 schedstat_inc(rq, sched_switch);
2899                 rq->active = rq->expired;
2900                 rq->expired = array;
2901                 array = rq->active;
2902                 rq->expired_timestamp = 0;
2903                 rq->best_expired_prio = MAX_PRIO;
2904         }
2905
2906         idx = sched_find_first_bit(array->bitmap);
2907         queue = array->queue + idx;
2908         next = list_entry(queue->next, task_t, run_list);
2909
2910         if (!rt_task(next) && next->activated > 0) {
2911                 unsigned long long delta = now - next->timestamp;
2912                 if (unlikely((long long)(now - next->timestamp) < 0))
2913                         delta = 0;
2914
2915                 if (next->activated == 1)
2916                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2917
2918                 array = next->array;
2919                 new_prio = recalc_task_prio(next, next->timestamp + delta);
2920
2921                 if (unlikely(next->prio != new_prio)) {
2922                         dequeue_task(next, array);
2923                         next->prio = new_prio;
2924                         enqueue_task(next, array);
2925                 } else
2926                         requeue_task(next, array);
2927         }
2928         next->activated = 0;
2929 switch_tasks:
2930         if (next == rq->idle)
2931                 schedstat_inc(rq, sched_goidle);
2932         prefetch(next);
2933         prefetch_stack(next);
2934         clear_tsk_need_resched(prev);
2935         rcu_qsctr_inc(task_cpu(prev));
2936
2937         update_cpu_clock(prev, rq, now);
2938
2939         prev->sleep_avg -= run_time;
2940         if ((long)prev->sleep_avg <= 0)
2941                 prev->sleep_avg = 0;
2942         prev->timestamp = prev->last_ran = now;
2943
2944         sched_info_switch(prev, next);
2945         if (likely(prev != next)) {
2946                 next->timestamp = now;
2947                 rq->nr_switches++;
2948                 rq->curr = next;
2949                 ++*switch_count;
2950
2951                 prepare_task_switch(rq, next);
2952                 prev = context_switch(rq, prev, next);
2953                 barrier();
2954                 /*
2955                  * this_rq must be evaluated again because prev may have moved
2956                  * CPUs since it called schedule(), thus the 'rq' on its stack
2957                  * frame will be invalid.
2958                  */
2959                 finish_task_switch(this_rq(), prev);
2960         } else
2961                 spin_unlock_irq(&rq->lock);
2962
2963         prev = current;
2964         if (unlikely(reacquire_kernel_lock(prev) < 0))
2965                 goto need_resched_nonpreemptible;
2966         preempt_enable_no_resched();
2967         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2968                 goto need_resched;
2969 }
2970
2971 EXPORT_SYMBOL(schedule);
2972
2973 #ifdef CONFIG_PREEMPT
2974 /*
2975  * this is is the entry point to schedule() from in-kernel preemption
2976  * off of preempt_enable.  Kernel preemptions off return from interrupt
2977  * occur there and call schedule directly.
2978  */
2979 asmlinkage void __sched preempt_schedule(void)
2980 {
2981         struct thread_info *ti = current_thread_info();
2982 #ifdef CONFIG_PREEMPT_BKL
2983         struct task_struct *task = current;
2984         int saved_lock_depth;
2985 #endif
2986         /*
2987          * If there is a non-zero preempt_count or interrupts are disabled,
2988          * we do not want to preempt the current task.  Just return..
2989          */
2990         if (unlikely(ti->preempt_count || irqs_disabled()))
2991                 return;
2992
2993 need_resched:
2994         add_preempt_count(PREEMPT_ACTIVE);
2995         /*
2996          * We keep the big kernel semaphore locked, but we
2997          * clear ->lock_depth so that schedule() doesnt
2998          * auto-release the semaphore:
2999          */
3000 #ifdef CONFIG_PREEMPT_BKL
3001         saved_lock_depth = task->lock_depth;
3002         task->lock_depth = -1;
3003 #endif
3004         schedule();
3005 #ifdef CONFIG_PREEMPT_BKL
3006         task->lock_depth = saved_lock_depth;
3007 #endif
3008         sub_preempt_count(PREEMPT_ACTIVE);
3009
3010         /* we could miss a preemption opportunity between schedule and now */
3011         barrier();
3012         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3013                 goto need_resched;
3014 }
3015
3016 EXPORT_SYMBOL(preempt_schedule);
3017
3018 /*
3019  * this is is the entry point to schedule() from kernel preemption
3020  * off of irq context.
3021  * Note, that this is called and return with irqs disabled. This will
3022  * protect us against recursive calling from irq.
3023  */
3024 asmlinkage void __sched preempt_schedule_irq(void)
3025 {
3026         struct thread_info *ti = current_thread_info();
3027 #ifdef CONFIG_PREEMPT_BKL
3028         struct task_struct *task = current;
3029         int saved_lock_depth;
3030 #endif
3031         /* Catch callers which need to be fixed*/
3032         BUG_ON(ti->preempt_count || !irqs_disabled());
3033
3034 need_resched:
3035         add_preempt_count(PREEMPT_ACTIVE);
3036         /*
3037          * We keep the big kernel semaphore locked, but we
3038          * clear ->lock_depth so that schedule() doesnt
3039          * auto-release the semaphore:
3040          */
3041 #ifdef CONFIG_PREEMPT_BKL
3042         saved_lock_depth = task->lock_depth;
3043         task->lock_depth = -1;
3044 #endif
3045         local_irq_enable();
3046         schedule();
3047         local_irq_disable();
3048 #ifdef CONFIG_PREEMPT_BKL
3049         task->lock_depth = saved_lock_depth;
3050 #endif
3051         sub_preempt_count(PREEMPT_ACTIVE);
3052
3053         /* we could miss a preemption opportunity between schedule and now */
3054         barrier();
3055         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3056                 goto need_resched;
3057 }
3058
3059 #endif /* CONFIG_PREEMPT */
3060
3061 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
3062 {
3063         task_t *p = curr->private;
3064         return try_to_wake_up(p, mode, sync);
3065 }
3066
3067 EXPORT_SYMBOL(default_wake_function);
3068
3069 /*
3070  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3071  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3072  * number) then we wake all the non-exclusive tasks and one exclusive task.
3073  *
3074  * There are circumstances in which we can try to wake a task which has already
3075  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3076  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3077  */
3078 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3079                              int nr_exclusive, int sync, void *key)
3080 {
3081         struct list_head *tmp, *next;
3082
3083         list_for_each_safe(tmp, next, &q->task_list) {
3084                 wait_queue_t *curr;
3085                 unsigned flags;
3086                 curr = list_entry(tmp, wait_queue_t, task_list);
3087                 flags = curr->flags;
3088                 if (curr->func(curr, mode, sync, key) &&
3089                     (flags & WQ_FLAG_EXCLUSIVE) &&
3090                     !--nr_exclusive)
3091                         break;
3092         }
3093 }
3094
3095 /**
3096  * __wake_up - wake up threads blocked on a waitqueue.
3097  * @q: the waitqueue
3098  * @mode: which threads
3099  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3100  * @key: is directly passed to the wakeup function
3101  */
3102 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3103                                 int nr_exclusive, void *key)
3104 {
3105         unsigned long flags;
3106
3107         spin_lock_irqsave(&q->lock, flags);
3108         __wake_up_common(q, mode, nr_exclusive, 0, key);
3109         spin_unlock_irqrestore(&q->lock, flags);
3110 }
3111
3112 EXPORT_SYMBOL(__wake_up);
3113
3114 /*
3115  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3116  */
3117 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3118 {
3119         __wake_up_common(q, mode, 1, 0, NULL);
3120 }
3121
3122 /**
3123  * __wake_up_sync - wake up threads blocked on a waitqueue.
3124  * @q: the waitqueue
3125  * @mode: which threads
3126  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3127  *
3128  * The sync wakeup differs that the waker knows that it will schedule
3129  * away soon, so while the target thread will be woken up, it will not
3130  * be migrated to another CPU - ie. the two threads are 'synchronized'
3131  * with each other. This can prevent needless bouncing between CPUs.
3132  *
3133  * On UP it can prevent extra preemption.
3134  */
3135 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3136 {
3137         unsigned long flags;
3138         int sync = 1;
3139
3140         if (unlikely(!q))
3141                 return;
3142
3143         if (unlikely(!nr_exclusive))
3144                 sync = 0;
3145
3146         spin_lock_irqsave(&q->lock, flags);
3147         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3148         spin_unlock_irqrestore(&q->lock, flags);
3149 }
3150 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3151
3152 void fastcall complete(struct completion *x)
3153 {
3154         unsigned long flags;
3155
3156         spin_lock_irqsave(&x->wait.lock, flags);
3157         x->done++;
3158         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3159                          1, 0, NULL);
3160         spin_unlock_irqrestore(&x->wait.lock, flags);
3161 }
3162 EXPORT_SYMBOL(complete);
3163
3164 void fastcall complete_all(struct completion *x)
3165 {
3166         unsigned long flags;
3167
3168         spin_lock_irqsave(&x->wait.lock, flags);
3169         x->done += UINT_MAX/2;
3170         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3171                          0, 0, NULL);
3172         spin_unlock_irqrestore(&x->wait.lock, flags);
3173 }
3174 EXPORT_SYMBOL(complete_all);
3175
3176 void fastcall __sched wait_for_completion(struct completion *x)
3177 {
3178         might_sleep();
3179         spin_lock_irq(&x->wait.lock);
3180         if (!x->done) {
3181                 DECLARE_WAITQUEUE(wait, current);
3182
3183                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3184                 __add_wait_queue_tail(&x->wait, &wait);
3185                 do {
3186                         __set_current_state(TASK_UNINTERRUPTIBLE);
3187                         spin_unlock_irq(&x->wait.lock);
3188                         schedule();
3189                         spin_lock_irq(&x->wait.lock);
3190                 } while (!x->done);
3191                 __remove_wait_queue(&x->wait, &wait);
3192         }
3193         x->done--;
3194         spin_unlock_irq(&x->wait.lock);
3195 }
3196 EXPORT_SYMBOL(wait_for_completion);
3197
3198 unsigned long fastcall __sched
3199 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3200 {
3201         might_sleep();
3202
3203         spin_lock_irq(&x->wait.lock);
3204         if (!x->done) {
3205                 DECLARE_WAITQUEUE(wait, current);
3206
3207                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3208                 __add_wait_queue_tail(&x->wait, &wait);
3209                 do {
3210                         __set_current_state(TASK_UNINTERRUPTIBLE);
3211                         spin_unlock_irq(&x->wait.lock);
3212                         timeout = schedule_timeout(timeout);
3213                         spin_lock_irq(&x->wait.lock);
3214                         if (!timeout) {
3215                                 __remove_wait_queue(&x->wait, &wait);
3216                                 goto out;
3217                         }
3218                 } while (!x->done);
3219                 __remove_wait_queue(&x->wait, &wait);
3220         }
3221         x->done--;
3222 out:
3223         spin_unlock_irq(&x->wait.lock);
3224         return timeout;
3225 }
3226 EXPORT_SYMBOL(wait_for_completion_timeout);
3227
3228 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3229 {
3230         int ret = 0;
3231
3232         might_sleep();
3233
3234         spin_lock_irq(&x->wait.lock);
3235         if (!x->done) {
3236                 DECLARE_WAITQUEUE(wait, current);
3237
3238                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3239                 __add_wait_queue_tail(&x->wait, &wait);
3240                 do {
3241                         if (signal_pending(current)) {
3242                                 ret = -ERESTARTSYS;
3243                                 __remove_wait_queue(&x->wait, &wait);
3244                                 goto out;
3245                         }
3246                         __set_current_state(TASK_INTERRUPTIBLE);
3247                         spin_unlock_irq(&x->wait.lock);
3248                         schedule();
3249                         spin_lock_irq(&x->wait.lock);
3250                 } while (!x->done);
3251                 __remove_wait_queue(&x->wait, &wait);
3252         }
3253         x->done--;
3254 out:
3255         spin_unlock_irq(&x->wait.lock);
3256
3257         return ret;
3258 }
3259 EXPORT_SYMBOL(wait_for_completion_interruptible);
3260
3261 unsigned long fastcall __sched
3262 wait_for_completion_interruptible_timeout(struct completion *x,
3263                                           unsigned long timeout)
3264 {
3265         might_sleep();
3266
3267         spin_lock_irq(&x->wait.lock);
3268         if (!x->done) {
3269                 DECLARE_WAITQUEUE(wait, current);
3270
3271                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3272                 __add_wait_queue_tail(&x->wait, &wait);
3273                 do {
3274                         if (signal_pending(current)) {
3275                                 timeout = -ERESTARTSYS;
3276                                 __remove_wait_queue(&x->wait, &wait);
3277                                 goto out;
3278                         }
3279                         __set_current_state(TASK_INTERRUPTIBLE);
3280                         spin_unlock_irq(&x->wait.lock);
3281                         timeout = schedule_timeout(timeout);
3282                         spin_lock_irq(&x->wait.lock);
3283                         if (!timeout) {
3284                                 __remove_wait_queue(&x->wait, &wait);
3285                                 goto out;
3286                         }
3287                 } while (!x->done);
3288                 __remove_wait_queue(&x->wait, &wait);
3289         }
3290         x->done--;
3291 out:
3292         spin_unlock_irq(&x->wait.lock);
3293         return timeout;
3294 }
3295 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3296
3297
3298 #define SLEEP_ON_VAR                                    \
3299         unsigned long flags;                            \
3300         wait_queue_t wait;                              \
3301         init_waitqueue_entry(&wait, current);
3302
3303 #define SLEEP_ON_HEAD                                   \
3304         spin_lock_irqsave(&q->lock,flags);              \
3305         __add_wait_queue(q, &wait);                     \
3306         spin_unlock(&q->lock);
3307
3308 #define SLEEP_ON_TAIL                                   \
3309         spin_lock_irq(&q->lock);                        \
3310         __remove_wait_queue(q, &wait);                  \
3311         spin_unlock_irqrestore(&q->lock, flags);
3312
3313 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3314 {
3315         SLEEP_ON_VAR
3316
3317         current->state = TASK_INTERRUPTIBLE;
3318
3319         SLEEP_ON_HEAD
3320         schedule();
3321         SLEEP_ON_TAIL
3322 }
3323
3324 EXPORT_SYMBOL(interruptible_sleep_on);
3325
3326 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3327 {
3328         SLEEP_ON_VAR
3329
3330         current->state = TASK_INTERRUPTIBLE;
3331
3332         SLEEP_ON_HEAD
3333         timeout = schedule_timeout(timeout);
3334         SLEEP_ON_TAIL
3335
3336         return timeout;
3337 }
3338
3339 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3340
3341 void fastcall __sched sleep_on(wait_queue_head_t *q)
3342 {
3343         SLEEP_ON_VAR
3344
3345         current->state = TASK_UNINTERRUPTIBLE;
3346
3347         SLEEP_ON_HEAD
3348         schedule();
3349         SLEEP_ON_TAIL
3350 }
3351
3352 EXPORT_SYMBOL(sleep_on);
3353
3354 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3355 {
3356         SLEEP_ON_VAR
3357
3358         current->state = TASK_UNINTERRUPTIBLE;
3359
3360         SLEEP_ON_HEAD
3361         timeout = schedule_timeout(timeout);
3362         SLEEP_ON_TAIL
3363
3364         return timeout;
3365 }
3366
3367 EXPORT_SYMBOL(sleep_on_timeout);
3368
3369 void set_user_nice(task_t *p, long nice)
3370 {
3371         unsigned long flags;
3372         prio_array_t *array;
3373         runqueue_t *rq;
3374         int old_prio, new_prio, delta;
3375
3376         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3377                 return;
3378         /*
3379          * We have to be careful, if called from sys_setpriority(),
3380          * the task might be in the middle of scheduling on another CPU.
3381          */
3382         rq = task_rq_lock(p, &flags);
3383         /*
3384          * The RT priorities are set via sched_setscheduler(), but we still
3385          * allow the 'normal' nice value to be set - but as expected
3386          * it wont have any effect on scheduling until the task is
3387          * not SCHED_NORMAL:
3388          */
3389         if (rt_task(p)) {
3390                 p->static_prio = NICE_TO_PRIO(nice);
3391                 goto out_unlock;
3392         }
3393         array = p->array;
3394         if (array)
3395                 dequeue_task(p, array);
3396
3397         old_prio = p->prio;
3398         new_prio = NICE_TO_PRIO(nice);
3399         delta = new_prio - old_prio;
3400         p->static_prio = NICE_TO_PRIO(nice);
3401         p->prio += delta;
3402
3403         if (array) {
3404                 enqueue_task(p, array);
3405                 /*
3406                  * If the task increased its priority or is running and
3407                  * lowered its priority, then reschedule its CPU:
3408                  */
3409                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3410                         resched_task(rq->curr);
3411         }
3412 out_unlock:
3413         task_rq_unlock(rq, &flags);
3414 }
3415
3416 EXPORT_SYMBOL(set_user_nice);
3417
3418 /*
3419  * can_nice - check if a task can reduce its nice value
3420  * @p: task
3421  * @nice: nice value
3422  */
3423 int can_nice(const task_t *p, const int nice)
3424 {
3425         /* convert nice value [19,-20] to rlimit style value [1,40] */
3426         int nice_rlim = 20 - nice;
3427         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3428                 capable(CAP_SYS_NICE));
3429 }
3430
3431 #ifdef __ARCH_WANT_SYS_NICE
3432
3433 /*
3434  * sys_nice - change the priority of the current process.
3435  * @increment: priority increment
3436  *
3437  * sys_setpriority is a more generic, but much slower function that
3438  * does similar things.
3439  */
3440 asmlinkage long sys_nice(int increment)
3441 {
3442         int retval;
3443         long nice;
3444
3445         /*
3446          * Setpriority might change our priority at the same moment.
3447          * We don't have to worry. Conceptually one call occurs first
3448          * and we have a single winner.
3449          */
3450         if (increment < -40)
3451                 increment = -40;
3452         if (increment > 40)
3453                 increment = 40;
3454
3455         nice = PRIO_TO_NICE(current->static_prio) + increment;
3456         if (nice < -20)
3457                 nice = -20;
3458         if (nice > 19)
3459                 nice = 19;
3460
3461         if (increment < 0 && !can_nice(current, nice))
3462                 return -EPERM;
3463
3464         retval = security_task_setnice(current, nice);
3465         if (retval)
3466                 return retval;
3467
3468         set_user_nice(current, nice);
3469         return 0;
3470 }
3471
3472 #endif
3473
3474 /**
3475  * task_prio - return the priority value of a given task.
3476  * @p: the task in question.
3477  *
3478  * This is the priority value as seen by users in /proc.
3479  * RT tasks are offset by -200. Normal tasks are centered
3480  * around 0, value goes from -16 to +15.
3481  */
3482 int task_prio(const task_t *p)
3483 {
3484         return p->prio - MAX_RT_PRIO;
3485 }
3486
3487 /**
3488  * task_nice - return the nice value of a given task.
3489  * @p: the task in question.
3490  */
3491 int task_nice(const task_t *p)
3492 {
3493         return TASK_NICE(p);
3494 }
3495 EXPORT_SYMBOL_GPL(task_nice);
3496
3497 /**
3498  * idle_cpu - is a given cpu idle currently?
3499  * @cpu: the processor in question.
3500  */
3501 int idle_cpu(int cpu)
3502 {
3503         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3504 }
3505
3506 EXPORT_SYMBOL_GPL(idle_cpu);
3507
3508 /**
3509  * idle_task - return the idle task for a given cpu.
3510  * @cpu: the processor in question.
3511  */
3512 task_t *idle_task(int cpu)
3513 {
3514         return cpu_rq(cpu)->idle;
3515 }
3516
3517 /**
3518  * find_process_by_pid - find a process with a matching PID value.
3519  * @pid: the pid in question.
3520  */
3521 static inline task_t *find_process_by_pid(pid_t pid)
3522 {
3523         return pid ? find_task_by_pid(pid) : current;
3524 }
3525
3526 /* Actually do priority change: must hold rq lock. */
3527 static void __setscheduler(struct task_struct *p, int policy, int prio)
3528 {
3529         BUG_ON(p->array);
3530         p->policy = policy;
3531         p->rt_priority = prio;
3532         if (policy != SCHED_NORMAL)
3533                 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3534         else
3535                 p->prio = p->static_prio;
3536 }
3537
3538 /**
3539  * sched_setscheduler - change the scheduling policy and/or RT priority of
3540  * a thread.
3541  * @p: the task in question.
3542  * @policy: new policy.
3543  * @param: structure containing the new RT priority.
3544  */
3545 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3546 {
3547         int retval;
3548         int oldprio, oldpolicy = -1;
3549         prio_array_t *array;
3550         unsigned long flags;
3551         runqueue_t *rq;
3552
3553 recheck:
3554         /* double check policy once rq lock held */
3555         if (policy < 0)
3556                 policy = oldpolicy = p->policy;
3557         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3558                                 policy != SCHED_NORMAL)
3559                         return -EINVAL;
3560         /*
3561          * Valid priorities for SCHED_FIFO and SCHED_RR are
3562          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3563          */
3564         if (param->sched_priority < 0 ||
3565             (p->mm &&  param->sched_priority > MAX_USER_RT_PRIO-1) ||
3566             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3567                 return -EINVAL;
3568         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3569                 return -EINVAL;
3570
3571         /*
3572          * Allow unprivileged RT tasks to decrease priority:
3573          */
3574         if (!capable(CAP_SYS_NICE)) {
3575                 /* can't change policy */
3576                 if (policy != p->policy &&
3577                         !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3578                         return -EPERM;
3579                 /* can't increase priority */
3580                 if (policy != SCHED_NORMAL &&
3581                     param->sched_priority > p->rt_priority &&
3582                     param->sched_priority >
3583                                 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3584                         return -EPERM;
3585                 /* can't change other user's priorities */
3586                 if ((current->euid != p->euid) &&
3587                     (current->euid != p->uid))
3588                         return -EPERM;
3589         }
3590
3591         retval = security_task_setscheduler(p, policy, param);
3592         if (retval)
3593                 return retval;
3594         /*
3595          * To be able to change p->policy safely, the apropriate
3596          * runqueue lock must be held.
3597          */
3598         rq = task_rq_lock(p, &flags);
3599         /* recheck policy now with rq lock held */
3600         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3601                 policy = oldpolicy = -1;
3602                 task_rq_unlock(rq, &flags);
3603                 goto recheck;
3604         }
3605         array = p->array;
3606         if (array)
3607                 deactivate_task(p, rq);
3608         oldprio = p->prio;
3609         __setscheduler(p, policy, param->sched_priority);
3610         if (array) {
3611                 __activate_task(p, rq);
3612                 /*
3613                  * Reschedule if we are currently running on this runqueue and
3614                  * our priority decreased, or if we are not currently running on
3615                  * this runqueue and our priority is higher than the current's
3616                  */
3617                 if (task_running(rq, p)) {
3618                         if (p->prio > oldprio)
3619                                 resched_task(rq->curr);
3620                 } else if (TASK_PREEMPTS_CURR(p, rq))
3621                         resched_task(rq->curr);
3622         }
3623         task_rq_unlock(rq, &flags);
3624         return 0;
3625 }
3626 EXPORT_SYMBOL_GPL(sched_setscheduler);
3627
3628 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3629 {
3630         int retval;
3631         struct sched_param lparam;
3632         struct task_struct *p;
3633
3634         if (!param || pid < 0)
3635                 return -EINVAL;
3636         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3637                 return -EFAULT;
3638         read_lock_irq(&tasklist_lock);
3639         p = find_process_by_pid(pid);
3640         if (!p) {
3641                 read_unlock_irq(&tasklist_lock);
3642                 return -ESRCH;
3643         }
3644         retval = sched_setscheduler(p, policy, &lparam);
3645         read_unlock_irq(&tasklist_lock);
3646         return retval;
3647 }
3648
3649 /**
3650  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3651  * @pid: the pid in question.
3652  * @policy: new policy.
3653  * @param: structure containing the new RT priority.
3654  */
3655 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3656                                        struct sched_param __user *param)
3657 {
3658         return do_sched_setscheduler(pid, policy, param);
3659 }
3660
3661 /**
3662  * sys_sched_setparam - set/change the RT priority of a thread
3663  * @pid: the pid in question.
3664  * @param: structure containing the new RT priority.
3665  */
3666 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3667 {
3668         return do_sched_setscheduler(pid, -1, param);
3669 }
3670
3671 /**
3672  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3673  * @pid: the pid in question.
3674  */
3675 asmlinkage long sys_sched_getscheduler(pid_t pid)
3676 {
3677         int retval = -EINVAL;
3678         task_t *p;
3679
3680         if (pid < 0)
3681                 goto out_nounlock;
3682
3683         retval = -ESRCH;
3684         read_lock(&tasklist_lock);
3685         p = find_process_by_pid(pid);
3686         if (p) {
3687                 retval = security_task_getscheduler(p);
3688                 if (!retval)
3689                         retval = p->policy;
3690         }
3691         read_unlock(&tasklist_lock);
3692
3693 out_nounlock:
3694         return retval;
3695 }
3696
3697 /**
3698  * sys_sched_getscheduler - get the RT priority of a thread
3699  * @pid: the pid in question.
3700  * @param: structure containing the RT priority.
3701  */
3702 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3703 {
3704         struct sched_param lp;
3705         int retval = -EINVAL;
3706         task_t *p;
3707
3708         if (!param || pid < 0)
3709                 goto out_nounlock;
3710
3711         read_lock(&tasklist_lock);
3712         p = find_process_by_pid(pid);
3713         retval = -ESRCH;
3714         if (!p)
3715                 goto out_unlock;
3716
3717         retval = security_task_getscheduler(p);
3718         if (retval)
3719                 goto out_unlock;
3720
3721         lp.sched_priority = p->rt_priority;
3722         read_unlock(&tasklist_lock);
3723
3724         /*
3725          * This one might sleep, we cannot do it with a spinlock held ...
3726          */
3727         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3728
3729 out_nounlock:
3730         return retval;
3731
3732 out_unlock:
3733         read_unlock(&tasklist_lock);
3734         return retval;
3735 }
3736
3737 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3738 {
3739         task_t *p;
3740         int retval;
3741         cpumask_t cpus_allowed;
3742
3743         lock_cpu_hotplug();
3744         read_lock(&tasklist_lock);
3745
3746         p = find_process_by_pid(pid);
3747         if (!p) {
3748                 read_unlock(&tasklist_lock);
3749                 unlock_cpu_hotplug();
3750                 return -ESRCH;
3751         }
3752
3753         /*
3754          * It is not safe to call set_cpus_allowed with the
3755          * tasklist_lock held.  We will bump the task_struct's
3756          * usage count and then drop tasklist_lock.
3757          */
3758         get_task_struct(p);
3759         read_unlock(&tasklist_lock);
3760
3761         retval = -EPERM;
3762         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3763                         !capable(CAP_SYS_NICE))
3764                 goto out_unlock;
3765
3766         cpus_allowed = cpuset_cpus_allowed(p);
3767         cpus_and(new_mask, new_mask, cpus_allowed);
3768         retval = set_cpus_allowed(p, new_mask);
3769
3770 out_unlock:
3771         put_task_struct(p);
3772         unlock_cpu_hotplug();
3773         return retval;
3774 }
3775
3776 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3777                              cpumask_t *new_mask)
3778 {
3779         if (len < sizeof(cpumask_t)) {
3780                 memset(new_mask, 0, sizeof(cpumask_t));
3781         } else if (len > sizeof(cpumask_t)) {
3782                 len = sizeof(cpumask_t);
3783         }
3784         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3785 }
3786
3787 /**
3788  * sys_sched_setaffinity - set the cpu affinity of a process
3789  * @pid: pid of the process
3790  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3791  * @user_mask_ptr: user-space pointer to the new cpu mask
3792  */
3793 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3794                                       unsigned long __user *user_mask_ptr)
3795 {
3796         cpumask_t new_mask;
3797         int retval;
3798
3799         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3800         if (retval)
3801                 return retval;
3802
3803         return sched_setaffinity(pid, new_mask);
3804 }
3805
3806 /*
3807  * Represents all cpu's present in the system
3808  * In systems capable of hotplug, this map could dynamically grow
3809  * as new cpu's are detected in the system via any platform specific
3810  * method, such as ACPI for e.g.
3811  */
3812
3813 cpumask_t cpu_present_map;
3814 EXPORT_SYMBOL(cpu_present_map);
3815
3816 #ifndef CONFIG_SMP
3817 cpumask_t cpu_online_map = CPU_MASK_ALL;
3818 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3819 #endif
3820
3821 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3822 {
3823         int retval;
3824         task_t *p;
3825
3826         lock_cpu_hotplug();
3827         read_lock(&tasklist_lock);
3828
3829         retval = -ESRCH;
3830         p = find_process_by_pid(pid);
3831         if (!p)
3832                 goto out_unlock;
3833
3834         retval = 0;
3835         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3836
3837 out_unlock:
3838         read_unlock(&tasklist_lock);
3839         unlock_cpu_hotplug();
3840         if (retval)
3841                 return retval;
3842
3843         return 0;
3844 }
3845
3846 /**
3847  * sys_sched_getaffinity - get the cpu affinity of a process
3848  * @pid: pid of the process
3849  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3850  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3851  */
3852 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3853                                       unsigned long __user *user_mask_ptr)
3854 {
3855         int ret;
3856         cpumask_t mask;
3857
3858         if (len < sizeof(cpumask_t))
3859                 return -EINVAL;
3860
3861         ret = sched_getaffinity(pid, &mask);
3862         if (ret < 0)
3863                 return ret;
3864
3865         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3866                 return -EFAULT;
3867
3868         return sizeof(cpumask_t);
3869 }
3870
3871 /**
3872  * sys_sched_yield - yield the current processor to other threads.
3873  *
3874  * this function yields the current CPU by moving the calling thread
3875  * to the expired array. If there are no other threads running on this
3876  * CPU then this function will return.
3877  */
3878 asmlinkage long sys_sched_yield(void)
3879 {
3880         runqueue_t *rq = this_rq_lock();
3881         prio_array_t *array = current->array;
3882         prio_array_t *target = rq->expired;
3883
3884         schedstat_inc(rq, yld_cnt);
3885         /*
3886          * We implement yielding by moving the task into the expired
3887          * queue.
3888          *
3889          * (special rule: RT tasks will just roundrobin in the active
3890          *  array.)
3891          */
3892         if (rt_task(current))
3893                 target = rq->active;
3894
3895         if (current->array->nr_active == 1) {
3896                 schedstat_inc(rq, yld_act_empty);
3897                 if (!rq->expired->nr_active)
3898                         schedstat_inc(rq, yld_both_empty);
3899         } else if (!rq->expired->nr_active)
3900                 schedstat_inc(rq, yld_exp_empty);
3901
3902         if (array != target) {
3903                 dequeue_task(current, array);
3904                 enqueue_task(current, target);
3905         } else
3906                 /*
3907                  * requeue_task is cheaper so perform that if possible.
3908                  */
3909                 requeue_task(current, array);
3910
3911         /*
3912          * Since we are going to call schedule() anyway, there's
3913          * no need to preempt or enable interrupts:
3914          */
3915         __release(rq->lock);
3916         _raw_spin_unlock(&rq->lock);
3917         preempt_enable_no_resched();
3918
3919         schedule();
3920
3921         return 0;
3922 }
3923
3924 static inline void __cond_resched(void)
3925 {
3926         /*
3927          * The BKS might be reacquired before we have dropped
3928          * PREEMPT_ACTIVE, which could trigger a second
3929          * cond_resched() call.
3930          */
3931         if (unlikely(preempt_count()))
3932                 return;
3933         do {
3934                 add_preempt_count(PREEMPT_ACTIVE);
3935                 schedule();
3936                 sub_preempt_count(PREEMPT_ACTIVE);
3937         } while (need_resched());
3938 }
3939
3940 int __sched cond_resched(void)
3941 {
3942         if (need_resched()) {
3943                 __cond_resched();
3944                 return 1;
3945         }
3946         return 0;
3947 }
3948
3949 EXPORT_SYMBOL(cond_resched);
3950
3951 /*
3952  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3953  * call schedule, and on return reacquire the lock.
3954  *
3955  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
3956  * operations here to prevent schedule() from being called twice (once via
3957  * spin_unlock(), once by hand).
3958  */
3959 int cond_resched_lock(spinlock_t * lock)
3960 {
3961         int ret = 0;
3962
3963         if (need_lockbreak(lock)) {
3964                 spin_unlock(lock);
3965                 cpu_relax();
3966                 ret = 1;
3967                 spin_lock(lock);
3968         }
3969         if (need_resched()) {
3970                 _raw_spin_unlock(lock);
3971                 preempt_enable_no_resched();
3972                 __cond_resched();
3973                 ret = 1;
3974                 spin_lock(lock);
3975         }
3976         return ret;
3977 }
3978
3979 EXPORT_SYMBOL(cond_resched_lock);
3980
3981 int __sched cond_resched_softirq(void)
3982 {
3983         BUG_ON(!in_softirq());
3984
3985         if (need_resched()) {
3986                 __local_bh_enable();
3987                 __cond_resched();
3988                 local_bh_disable();
3989                 return 1;
3990         }
3991         return 0;
3992 }
3993
3994 EXPORT_SYMBOL(cond_resched_softirq);
3995
3996
3997 /**
3998  * yield - yield the current processor to other threads.
3999  *
4000  * this is a shortcut for kernel-space yielding - it marks the
4001  * thread runnable and calls sys_sched_yield().
4002  */
4003 void __sched yield(void)
4004 {
4005         set_current_state(TASK_RUNNING);
4006         sys_sched_yield();
4007 }
4008
4009 EXPORT_SYMBOL(yield);
4010
4011 /*
4012  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
4013  * that process accounting knows that this is a task in IO wait state.
4014  *
4015  * But don't do that if it is a deliberate, throttling IO wait (this task
4016  * has set its backing_dev_info: the queue against which it should throttle)
4017  */
4018 void __sched io_schedule(void)
4019 {
4020         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4021
4022         atomic_inc(&rq->nr_iowait);
4023         schedule();
4024         atomic_dec(&rq->nr_iowait);
4025 }
4026
4027 EXPORT_SYMBOL(io_schedule);
4028
4029 long __sched io_schedule_timeout(long timeout)
4030 {
4031         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4032         long ret;
4033
4034         atomic_inc(&rq->nr_iowait);
4035         ret = schedule_timeout(timeout);
4036         atomic_dec(&rq->nr_iowait);
4037         return ret;
4038 }
4039
4040 /**
4041  * sys_sched_get_priority_max - return maximum RT priority.
4042  * @policy: scheduling class.
4043  *
4044  * this syscall returns the maximum rt_priority that can be used
4045  * by a given scheduling class.
4046  */
4047 asmlinkage long sys_sched_get_priority_max(int policy)
4048 {
4049         int ret = -EINVAL;
4050
4051         switch (policy) {
4052         case SCHED_FIFO:
4053         case SCHED_RR:
4054                 ret = MAX_USER_RT_PRIO-1;
4055                 break;
4056         case SCHED_NORMAL:
4057                 ret = 0;
4058                 break;
4059         }
4060         return ret;
4061 }
4062
4063 /**
4064  * sys_sched_get_priority_min - return minimum RT priority.
4065  * @policy: scheduling class.
4066  *
4067  * this syscall returns the minimum rt_priority that can be used
4068  * by a given scheduling class.
4069  */
4070 asmlinkage long sys_sched_get_priority_min(int policy)
4071 {
4072         int ret = -EINVAL;
4073
4074         switch (policy) {
4075         case SCHED_FIFO:
4076         case SCHED_RR:
4077                 ret = 1;
4078                 break;
4079         case SCHED_NORMAL:
4080                 ret = 0;
4081         }
4082         return ret;
4083 }
4084
4085 /**
4086  * sys_sched_rr_get_interval - return the default timeslice of a process.
4087  * @pid: pid of the process.
4088  * @interval: userspace pointer to the timeslice value.
4089  *
4090  * this syscall writes the default timeslice value of a given process
4091  * into the user-space timespec buffer. A value of '0' means infinity.
4092  */
4093 asmlinkage
4094 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4095 {
4096         int retval = -EINVAL;
4097         struct timespec t;
4098         task_t *p;
4099
4100         if (pid < 0)
4101                 goto out_nounlock;
4102
4103         retval = -ESRCH;
4104         read_lock(&tasklist_lock);
4105         p = find_process_by_pid(pid);
4106         if (!p)
4107                 goto out_unlock;
4108
4109         retval = security_task_getscheduler(p);
4110         if (retval)
4111                 goto out_unlock;
4112
4113         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4114                                 0 : task_timeslice(p), &t);
4115         read_unlock(&tasklist_lock);
4116         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4117 out_nounlock:
4118         return retval;
4119 out_unlock:
4120         read_unlock(&tasklist_lock);
4121         return retval;
4122 }
4123
4124 static inline struct task_struct *eldest_child(struct task_struct *p)
4125 {
4126         if (list_empty(&p->children)) return NULL;
4127         return list_entry(p->children.next,struct task_struct,sibling);
4128 }
4129
4130 static inline struct task_struct *older_sibling(struct task_struct *p)
4131 {
4132         if (p->sibling.prev==&p->parent->children) return NULL;
4133         return list_entry(p->sibling.prev,struct task_struct,sibling);
4134 }
4135
4136 static inline struct task_struct *younger_sibling(struct task_struct *p)
4137 {
4138         if (p->sibling.next==&p->parent->children) return NULL;
4139         return list_entry(p->sibling.next,struct task_struct,sibling);
4140 }
4141
4142 static void show_task(task_t * p)
4143 {
4144         task_t *relative;
4145         unsigned state;
4146         unsigned long free = 0;
4147         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4148
4149         printk("%-13.13s ", p->comm);
4150         state = p->state ? __ffs(p->state) + 1 : 0;
4151         if (state < ARRAY_SIZE(stat_nam))
4152                 printk(stat_nam[state]);
4153         else
4154                 printk("?");
4155 #if (BITS_PER_LONG == 32)
4156         if (state == TASK_RUNNING)
4157                 printk(" running ");
4158         else
4159                 printk(" %08lX ", thread_saved_pc(p));
4160 #else
4161         if (state == TASK_RUNNING)
4162                 printk("  running task   ");
4163         else
4164                 printk(" %016lx ", thread_saved_pc(p));
4165 #endif
4166 #ifdef CONFIG_DEBUG_STACK_USAGE
4167         {
4168                 unsigned long * n = (unsigned long *) (p->thread_info+1);
4169                 while (!*n)
4170                         n++;
4171                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4172         }
4173 #endif
4174         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4175         if ((relative = eldest_child(p)))
4176                 printk("%5d ", relative->pid);
4177         else
4178                 printk("      ");
4179         if ((relative = younger_sibling(p)))
4180                 printk("%7d", relative->pid);
4181         else
4182                 printk("       ");
4183         if ((relative = older_sibling(p)))
4184                 printk(" %5d", relative->pid);
4185         else
4186                 printk("      ");
4187         if (!p->mm)
4188                 printk(" (L-TLB)\n");
4189         else
4190                 printk(" (NOTLB)\n");
4191
4192         if (state != TASK_RUNNING)
4193                 show_stack(p, NULL);
4194 }
4195
4196 void show_state(void)
4197 {
4198         task_t *g, *p;
4199
4200 #if (BITS_PER_LONG == 32)
4201         printk("\n"
4202                "                                               sibling\n");
4203         printk("  task             PC      pid father child younger older\n");
4204 #else
4205         printk("\n"
4206                "                                                       sibling\n");
4207         printk("  task                 PC          pid father child younger older\n");
4208 #endif
4209         read_lock(&tasklist_lock);
4210         do_each_thread(g, p) {
4211                 /*
4212                  * reset the NMI-timeout, listing all files on a slow
4213                  * console might take alot of time:
4214                  */
4215                 touch_nmi_watchdog();
4216                 show_task(p);
4217         } while_each_thread(g, p);
4218
4219         read_unlock(&tasklist_lock);
4220 }
4221
4222 /**
4223  * init_idle - set up an idle thread for a given CPU
4224  * @idle: task in question
4225  * @cpu: cpu the idle task belongs to
4226  *
4227  * NOTE: this function does not set the idle thread's NEED_RESCHED
4228  * flag, to make booting more robust.
4229  */
4230 void __devinit init_idle(task_t *idle, int cpu)
4231 {
4232         runqueue_t *rq = cpu_rq(cpu);
4233         unsigned long flags;
4234
4235         idle->sleep_avg = 0;
4236         idle->array = NULL;
4237         idle->prio = MAX_PRIO;
4238         idle->state = TASK_RUNNING;
4239         idle->cpus_allowed = cpumask_of_cpu(cpu);
4240         set_task_cpu(idle, cpu);
4241
4242         spin_lock_irqsave(&rq->lock, flags);
4243         rq->curr = rq->idle = idle;
4244 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4245         idle->oncpu = 1;
4246 #endif
4247         spin_unlock_irqrestore(&rq->lock, flags);
4248
4249         /* Set the preempt count _outside_ the spinlocks! */
4250 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4251         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4252 #else
4253         idle->thread_info->preempt_count = 0;
4254 #endif
4255 }
4256
4257 /*
4258  * In a system that switches off the HZ timer nohz_cpu_mask
4259  * indicates which cpus entered this state. This is used
4260  * in the rcu update to wait only for active cpus. For system
4261  * which do not switch off the HZ timer nohz_cpu_mask should
4262  * always be CPU_MASK_NONE.
4263  */
4264 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4265
4266 #ifdef CONFIG_SMP
4267 /*
4268  * This is how migration works:
4269  *
4270  * 1) we queue a migration_req_t structure in the source CPU's
4271  *    runqueue and wake up that CPU's migration thread.
4272  * 2) we down() the locked semaphore => thread blocks.
4273  * 3) migration thread wakes up (implicitly it forces the migrated
4274  *    thread off the CPU)
4275  * 4) it gets the migration request and checks whether the migrated
4276  *    task is still in the wrong runqueue.
4277  * 5) if it's in the wrong runqueue then the migration thread removes
4278  *    it and puts it into the right queue.
4279  * 6) migration thread up()s the semaphore.
4280  * 7) we wake up and the migration is done.
4281  */
4282
4283 /*
4284  * Change a given task's CPU affinity. Migrate the thread to a
4285  * proper CPU and schedule it away if the CPU it's executing on
4286  * is removed from the allowed bitmask.
4287  *
4288  * NOTE: the caller must have a valid reference to the task, the
4289  * task must not exit() & deallocate itself prematurely.  The
4290  * call is not atomic; no spinlocks may be held.
4291  */
4292 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4293 {
4294         unsigned long flags;
4295         int ret = 0;
4296         migration_req_t req;
4297         runqueue_t *rq;
4298
4299         rq = task_rq_lock(p, &flags);
4300         if (!cpus_intersects(new_mask, cpu_online_map)) {
4301                 ret = -EINVAL;
4302                 goto out;
4303         }
4304
4305         p->cpus_allowed = new_mask;
4306         /* Can the task run on the task's current CPU? If so, we're done */
4307         if (cpu_isset(task_cpu(p), new_mask))
4308                 goto out;
4309
4310         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4311                 /* Need help from migration thread: drop lock and wait. */
4312                 task_rq_unlock(rq, &flags);
4313                 wake_up_process(rq->migration_thread);
4314                 wait_for_completion(&req.done);
4315                 tlb_migrate_finish(p->mm);
4316                 return 0;
4317         }
4318 out:
4319         task_rq_unlock(rq, &flags);
4320         return ret;
4321 }
4322
4323 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4324
4325 /*
4326  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4327  * this because either it can't run here any more (set_cpus_allowed()
4328  * away from this CPU, or CPU going down), or because we're
4329  * attempting to rebalance this task on exec (sched_exec).
4330  *
4331  * So we race with normal scheduler movements, but that's OK, as long
4332  * as the task is no longer on this CPU.
4333  */
4334 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4335 {
4336         runqueue_t *rq_dest, *rq_src;
4337
4338         if (unlikely(cpu_is_offline(dest_cpu)))
4339                 return;
4340
4341         rq_src = cpu_rq(src_cpu);
4342         rq_dest = cpu_rq(dest_cpu);
4343
4344         double_rq_lock(rq_src, rq_dest);
4345         /* Already moved. */
4346         if (task_cpu(p) != src_cpu)
4347                 goto out;
4348         /* Affinity changed (again). */
4349         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4350                 goto out;
4351
4352         set_task_cpu(p, dest_cpu);
4353         if (p->array) {
4354                 /*
4355                  * Sync timestamp with rq_dest's before activating.
4356                  * The same thing could be achieved by doing this step
4357                  * afterwards, and pretending it was a local activate.
4358                  * This way is cleaner and logically correct.
4359                  */
4360                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4361                                 + rq_dest->timestamp_last_tick;
4362                 deactivate_task(p, rq_src);
4363                 activate_task(p, rq_dest, 0);
4364                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4365                         resched_task(rq_dest->curr);
4366         }
4367
4368 out:
4369         double_rq_unlock(rq_src, rq_dest);
4370 }
4371
4372 /*
4373  * migration_thread - this is a highprio system thread that performs
4374  * thread migration by bumping thread off CPU then 'pushing' onto
4375  * another runqueue.
4376  */
4377 static int migration_thread(void * data)
4378 {
4379         runqueue_t *rq;
4380         int cpu = (long)data;
4381
4382         rq = cpu_rq(cpu);
4383         BUG_ON(rq->migration_thread != current);
4384
4385         set_current_state(TASK_INTERRUPTIBLE);
4386         while (!kthread_should_stop()) {
4387                 struct list_head *head;
4388                 migration_req_t *req;
4389
4390                 try_to_freeze();
4391
4392                 spin_lock_irq(&rq->lock);
4393
4394                 if (cpu_is_offline(cpu)) {
4395                         spin_unlock_irq(&rq->lock);
4396                         goto wait_to_die;
4397                 }
4398
4399                 if (rq->active_balance) {
4400                         active_load_balance(rq, cpu);
4401                         rq->active_balance = 0;
4402                 }
4403
4404                 head = &rq->migration_queue;
4405
4406                 if (list_empty(head)) {
4407                         spin_unlock_irq(&rq->lock);
4408                         schedule();
4409                         set_current_state(TASK_INTERRUPTIBLE);
4410                         continue;
4411                 }
4412                 req = list_entry(head->next, migration_req_t, list);
4413                 list_del_init(head->next);
4414
4415                 spin_unlock(&rq->lock);
4416                 __migrate_task(req->task, cpu, req->dest_cpu);
4417                 local_irq_enable();
4418
4419                 complete(&req->done);
4420         }
4421         __set_current_state(TASK_RUNNING);
4422         return 0;
4423
4424 wait_to_die:
4425         /* Wait for kthread_stop */
4426         set_current_state(TASK_INTERRUPTIBLE);
4427         while (!kthread_should_stop()) {
4428                 schedule();
4429                 set_current_state(TASK_INTERRUPTIBLE);
4430         }
4431         __set_current_state(TASK_RUNNING);
4432         return 0;
4433 }
4434
4435 #ifdef CONFIG_HOTPLUG_CPU
4436 /* Figure out where task on dead CPU should go, use force if neccessary. */
4437 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4438 {
4439         int dest_cpu;
4440         cpumask_t mask;
4441
4442         /* On same node? */
4443         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4444         cpus_and(mask, mask, tsk->cpus_allowed);
4445         dest_cpu = any_online_cpu(mask);
4446
4447         /* On any allowed CPU? */
4448         if (dest_cpu == NR_CPUS)
4449                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4450
4451         /* No more Mr. Nice Guy. */
4452         if (dest_cpu == NR_CPUS) {
4453                 cpus_setall(tsk->cpus_allowed);
4454                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4455
4456                 /*
4457                  * Don't tell them about moving exiting tasks or
4458                  * kernel threads (both mm NULL), since they never
4459                  * leave kernel.
4460                  */
4461                 if (tsk->mm && printk_ratelimit())
4462                         printk(KERN_INFO "process %d (%s) no "
4463                                "longer affine to cpu%d\n",
4464                                tsk->pid, tsk->comm, dead_cpu);
4465         }
4466         __migrate_task(tsk, dead_cpu, dest_cpu);
4467 }
4468
4469 /*
4470  * While a dead CPU has no uninterruptible tasks queued at this point,
4471  * it might still have a nonzero ->nr_uninterruptible counter, because
4472  * for performance reasons the counter is not stricly tracking tasks to
4473  * their home CPUs. So we just add the counter to another CPU's counter,
4474  * to keep the global sum constant after CPU-down:
4475  */
4476 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4477 {
4478         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4479         unsigned long flags;
4480
4481         local_irq_save(flags);
4482         double_rq_lock(rq_src, rq_dest);
4483         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4484         rq_src->nr_uninterruptible = 0;
4485         double_rq_unlock(rq_src, rq_dest);
4486         local_irq_restore(flags);
4487 }
4488
4489 /* Run through task list and migrate tasks from the dead cpu. */
4490 static void migrate_live_tasks(int src_cpu)
4491 {
4492         struct task_struct *tsk, *t;
4493
4494         write_lock_irq(&tasklist_lock);
4495
4496         do_each_thread(t, tsk) {
4497                 if (tsk == current)
4498                         continue;
4499
4500                 if (task_cpu(tsk) == src_cpu)
4501                         move_task_off_dead_cpu(src_cpu, tsk);
4502         } while_each_thread(t, tsk);
4503
4504         write_unlock_irq(&tasklist_lock);
4505 }
4506
4507 /* Schedules idle task to be the next runnable task on current CPU.
4508  * It does so by boosting its priority to highest possible and adding it to
4509  * the _front_ of runqueue. Used by CPU offline code.
4510  */
4511 void sched_idle_next(void)
4512 {
4513         int cpu = smp_processor_id();
4514         runqueue_t *rq = this_rq();
4515         struct task_struct *p = rq->idle;
4516         unsigned long flags;
4517
4518         /* cpu has to be offline */
4519         BUG_ON(cpu_online(cpu));
4520
4521         /* Strictly not necessary since rest of the CPUs are stopped by now
4522          * and interrupts disabled on current cpu.
4523          */
4524         spin_lock_irqsave(&rq->lock, flags);
4525
4526         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4527         /* Add idle task to _front_ of it's priority queue */
4528         __activate_idle_task(p, rq);
4529
4530         spin_unlock_irqrestore(&rq->lock, flags);
4531 }
4532
4533 /* Ensures that the idle task is using init_mm right before its cpu goes
4534  * offline.
4535  */
4536 void idle_task_exit(void)
4537 {
4538         struct mm_struct *mm = current->active_mm;
4539
4540         BUG_ON(cpu_online(smp_processor_id()));
4541
4542         if (mm != &init_mm)
4543                 switch_mm(mm, &init_mm, current);
4544         mmdrop(mm);
4545 }
4546
4547 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4548 {
4549         struct runqueue *rq = cpu_rq(dead_cpu);
4550
4551         /* Must be exiting, otherwise would be on tasklist. */
4552         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4553
4554         /* Cannot have done final schedule yet: would have vanished. */
4555         BUG_ON(tsk->flags & PF_DEAD);
4556
4557         get_task_struct(tsk);
4558
4559         /*
4560          * Drop lock around migration; if someone else moves it,
4561          * that's OK.  No task can be added to this CPU, so iteration is
4562          * fine.
4563          */
4564         spin_unlock_irq(&rq->lock);
4565         move_task_off_dead_cpu(dead_cpu, tsk);
4566         spin_lock_irq(&rq->lock);
4567
4568         put_task_struct(tsk);
4569 }
4570
4571 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4572 static void migrate_dead_tasks(unsigned int dead_cpu)
4573 {
4574         unsigned arr, i;
4575         struct runqueue *rq = cpu_rq(dead_cpu);
4576
4577         for (arr = 0; arr < 2; arr++) {
4578                 for (i = 0; i < MAX_PRIO; i++) {
4579                         struct list_head *list = &rq->arrays[arr].queue[i];
4580                         while (!list_empty(list))
4581                                 migrate_dead(dead_cpu,
4582                                              list_entry(list->next, task_t,
4583                                                         run_list));
4584                 }
4585         }
4586 }
4587 #endif /* CONFIG_HOTPLUG_CPU */
4588
4589 /*
4590  * migration_call - callback that gets triggered when a CPU is added.
4591  * Here we can start up the necessary migration thread for the new CPU.
4592  */
4593 static int migration_call(struct notifier_block *nfb, unsigned long action,
4594                           void *hcpu)
4595 {
4596         int cpu = (long)hcpu;
4597         struct task_struct *p;
4598         struct runqueue *rq;
4599         unsigned long flags;
4600
4601         switch (action) {
4602         case CPU_UP_PREPARE:
4603                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4604                 if (IS_ERR(p))
4605                         return NOTIFY_BAD;
4606                 p->flags |= PF_NOFREEZE;
4607                 kthread_bind(p, cpu);
4608                 /* Must be high prio: stop_machine expects to yield to it. */
4609                 rq = task_rq_lock(p, &flags);
4610                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4611                 task_rq_unlock(rq, &flags);
4612                 cpu_rq(cpu)->migration_thread = p;
4613                 break;
4614         case CPU_ONLINE:
4615                 /* Strictly unneccessary, as first user will wake it. */
4616                 wake_up_process(cpu_rq(cpu)->migration_thread);
4617                 break;
4618 #ifdef CONFIG_HOTPLUG_CPU
4619         case CPU_UP_CANCELED:
4620                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4621                 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4622                 kthread_stop(cpu_rq(cpu)->migration_thread);
4623                 cpu_rq(cpu)->migration_thread = NULL;
4624                 break;
4625         case CPU_DEAD:
4626                 migrate_live_tasks(cpu);
4627                 rq = cpu_rq(cpu);
4628                 kthread_stop(rq->migration_thread);
4629                 rq->migration_thread = NULL;
4630                 /* Idle task back to normal (off runqueue, low prio) */
4631                 rq = task_rq_lock(rq->idle, &flags);
4632                 deactivate_task(rq->idle, rq);
4633                 rq->idle->static_prio = MAX_PRIO;
4634                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4635                 migrate_dead_tasks(cpu);
4636                 task_rq_unlock(rq, &flags);
4637                 migrate_nr_uninterruptible(rq);
4638                 BUG_ON(rq->nr_running != 0);
4639
4640                 /* No need to migrate the tasks: it was best-effort if
4641                  * they didn't do lock_cpu_hotplug().  Just wake up
4642                  * the requestors. */
4643                 spin_lock_irq(&rq->lock);
4644                 while (!list_empty(&rq->migration_queue)) {
4645                         migration_req_t *req;
4646                         req = list_entry(rq->migration_queue.next,
4647                                          migration_req_t, list);
4648                         list_del_init(&req->list);
4649                         complete(&req->done);
4650                 }
4651                 spin_unlock_irq(&rq->lock);
4652                 break;
4653 #endif
4654         }
4655         return NOTIFY_OK;
4656 }
4657
4658 /* Register at highest priority so that task migration (migrate_all_tasks)
4659  * happens before everything else.
4660  */
4661 static struct notifier_block __devinitdata migration_notifier = {
4662         .notifier_call = migration_call,
4663         .priority = 10
4664 };
4665
4666 int __init migration_init(void)
4667 {
4668         void *cpu = (void *)(long)smp_processor_id();
4669         /* Start one for boot CPU. */
4670         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4671         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4672         register_cpu_notifier(&migration_notifier);
4673         return 0;
4674 }
4675 #endif
4676
4677 #ifdef CONFIG_SMP
4678 #undef SCHED_DOMAIN_DEBUG
4679 #ifdef SCHED_DOMAIN_DEBUG
4680 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4681 {
4682         int level = 0;
4683
4684         if (!sd) {
4685                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4686                 return;
4687         }
4688
4689         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4690
4691         do {
4692                 int i;
4693                 char str[NR_CPUS];
4694                 struct sched_group *group = sd->groups;
4695                 cpumask_t groupmask;
4696
4697                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4698                 cpus_clear(groupmask);
4699
4700                 printk(KERN_DEBUG);
4701                 for (i = 0; i < level + 1; i++)
4702                         printk(" ");
4703                 printk("domain %d: ", level);
4704
4705                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4706                         printk("does not load-balance\n");
4707                         if (sd->parent)
4708                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4709                         break;
4710                 }
4711
4712                 printk("span %s\n", str);
4713
4714                 if (!cpu_isset(cpu, sd->span))
4715                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4716                 if (!cpu_isset(cpu, group->cpumask))
4717                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4718
4719                 printk(KERN_DEBUG);
4720                 for (i = 0; i < level + 2; i++)
4721                         printk(" ");
4722                 printk("groups:");
4723                 do {
4724                         if (!group) {
4725                                 printk("\n");
4726                                 printk(KERN_ERR "ERROR: group is NULL\n");
4727                                 break;
4728                         }
4729
4730                         if (!group->cpu_power) {
4731                                 printk("\n");
4732                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4733                         }
4734
4735                         if (!cpus_weight(group->cpumask)) {
4736                                 printk("\n");
4737                                 printk(KERN_ERR "ERROR: empty group\n");
4738                         }
4739
4740                         if (cpus_intersects(groupmask, group->cpumask)) {
4741                                 printk("\n");
4742                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4743                         }
4744
4745                         cpus_or(groupmask, groupmask, group->cpumask);
4746
4747                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4748                         printk(" %s", str);
4749
4750                         group = group->next;
4751                 } while (group != sd->groups);
4752                 printk("\n");
4753
4754                 if (!cpus_equal(sd->span, groupmask))
4755                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4756
4757                 level++;
4758                 sd = sd->parent;
4759
4760                 if (sd) {
4761                         if (!cpus_subset(groupmask, sd->span))
4762                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4763                 }
4764
4765         } while (sd);
4766 }
4767 #else
4768 #define sched_domain_debug(sd, cpu) {}
4769 #endif
4770
4771 static int sd_degenerate(struct sched_domain *sd)
4772 {
4773         if (cpus_weight(sd->span) == 1)
4774                 return 1;
4775
4776         /* Following flags need at least 2 groups */
4777         if (sd->flags & (SD_LOAD_BALANCE |
4778                          SD_BALANCE_NEWIDLE |
4779                          SD_BALANCE_FORK |
4780                          SD_BALANCE_EXEC)) {
4781                 if (sd->groups != sd->groups->next)
4782                         return 0;
4783         }
4784
4785         /* Following flags don't use groups */
4786         if (sd->flags & (SD_WAKE_IDLE |
4787                          SD_WAKE_AFFINE |
4788                          SD_WAKE_BALANCE))
4789                 return 0;
4790
4791         return 1;
4792 }
4793
4794 static int sd_parent_degenerate(struct sched_domain *sd,
4795                                                 struct sched_domain *parent)
4796 {
4797         unsigned long cflags = sd->flags, pflags = parent->flags;
4798
4799         if (sd_degenerate(parent))
4800                 return 1;
4801
4802         if (!cpus_equal(sd->span, parent->span))
4803                 return 0;
4804
4805         /* Does parent contain flags not in child? */
4806         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4807         if (cflags & SD_WAKE_AFFINE)
4808                 pflags &= ~SD_WAKE_BALANCE;
4809         /* Flags needing groups don't count if only 1 group in parent */
4810         if (parent->groups == parent->groups->next) {
4811                 pflags &= ~(SD_LOAD_BALANCE |
4812                                 SD_BALANCE_NEWIDLE |
4813                                 SD_BALANCE_FORK |
4814                                 SD_BALANCE_EXEC);
4815         }
4816         if (~cflags & pflags)
4817                 return 0;
4818
4819         return 1;
4820 }
4821
4822 /*
4823  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4824  * hold the hotplug lock.
4825  */
4826 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4827 {
4828         runqueue_t *rq = cpu_rq(cpu);
4829         struct sched_domain *tmp;
4830
4831         /* Remove the sched domains which do not contribute to scheduling. */
4832         for (tmp = sd; tmp; tmp = tmp->parent) {
4833                 struct sched_domain *parent = tmp->parent;
4834                 if (!parent)
4835                         break;
4836                 if (sd_parent_degenerate(tmp, parent))
4837                         tmp->parent = parent->parent;
4838         }
4839
4840         if (sd && sd_degenerate(sd))
4841                 sd = sd->parent;
4842
4843         sched_domain_debug(sd, cpu);
4844
4845         rcu_assign_pointer(rq->sd, sd);
4846 }
4847
4848 /* cpus with isolated domains */
4849 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4850
4851 /* Setup the mask of cpus configured for isolated domains */
4852 static int __init isolated_cpu_setup(char *str)
4853 {
4854         int ints[NR_CPUS], i;
4855
4856         str = get_options(str, ARRAY_SIZE(ints), ints);
4857         cpus_clear(cpu_isolated_map);
4858         for (i = 1; i <= ints[0]; i++)
4859                 if (ints[i] < NR_CPUS)
4860                         cpu_set(ints[i], cpu_isolated_map);
4861         return 1;
4862 }
4863
4864 __setup ("isolcpus=", isolated_cpu_setup);
4865
4866 /*
4867  * init_sched_build_groups takes an array of groups, the cpumask we wish
4868  * to span, and a pointer to a function which identifies what group a CPU
4869  * belongs to. The return value of group_fn must be a valid index into the
4870  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4871  * keep track of groups covered with a cpumask_t).
4872  *
4873  * init_sched_build_groups will build a circular linked list of the groups
4874  * covered by the given span, and will set each group's ->cpumask correctly,
4875  * and ->cpu_power to 0.
4876  */
4877 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4878                                     int (*group_fn)(int cpu))
4879 {
4880         struct sched_group *first = NULL, *last = NULL;
4881         cpumask_t covered = CPU_MASK_NONE;
4882         int i;
4883
4884         for_each_cpu_mask(i, span) {
4885                 int group = group_fn(i);
4886                 struct sched_group *sg = &groups[group];
4887                 int j;
4888
4889                 if (cpu_isset(i, covered))
4890                         continue;
4891
4892                 sg->cpumask = CPU_MASK_NONE;
4893                 sg->cpu_power = 0;
4894
4895                 for_each_cpu_mask(j, span) {
4896                         if (group_fn(j) != group)
4897                                 continue;
4898
4899                         cpu_set(j, covered);
4900                         cpu_set(j, sg->cpumask);
4901                 }
4902                 if (!first)
4903                         first = sg;
4904                 if (last)
4905                         last->next = sg;
4906                 last = sg;
4907         }
4908         last->next = first;
4909 }
4910
4911 #define SD_NODES_PER_DOMAIN 16
4912
4913 #ifdef CONFIG_NUMA
4914 /**
4915  * find_next_best_node - find the next node to include in a sched_domain
4916  * @node: node whose sched_domain we're building
4917  * @used_nodes: nodes already in the sched_domain
4918  *
4919  * Find the next node to include in a given scheduling domain.  Simply
4920  * finds the closest node not already in the @used_nodes map.
4921  *
4922  * Should use nodemask_t.
4923  */
4924 static int find_next_best_node(int node, unsigned long *used_nodes)
4925 {
4926         int i, n, val, min_val, best_node = 0;
4927
4928         min_val = INT_MAX;
4929
4930         for (i = 0; i < MAX_NUMNODES; i++) {
4931                 /* Start at @node */
4932                 n = (node + i) % MAX_NUMNODES;
4933
4934                 if (!nr_cpus_node(n))
4935                         continue;
4936
4937                 /* Skip already used nodes */
4938                 if (test_bit(n, used_nodes))
4939                         continue;
4940
4941                 /* Simple min distance search */
4942                 val = node_distance(node, n);
4943
4944                 if (val < min_val) {
4945                         min_val = val;
4946                         best_node = n;
4947                 }
4948         }
4949
4950         set_bit(best_node, used_nodes);
4951         return best_node;
4952 }
4953
4954 /**
4955  * sched_domain_node_span - get a cpumask for a node's sched_domain
4956  * @node: node whose cpumask we're constructing
4957  * @size: number of nodes to include in this span
4958  *
4959  * Given a node, construct a good cpumask for its sched_domain to span.  It
4960  * should be one that prevents unnecessary balancing, but also spreads tasks
4961  * out optimally.
4962  */
4963 static cpumask_t sched_domain_node_span(int node)
4964 {
4965         int i;
4966         cpumask_t span, nodemask;
4967         DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
4968
4969         cpus_clear(span);
4970         bitmap_zero(used_nodes, MAX_NUMNODES);
4971
4972         nodemask = node_to_cpumask(node);
4973         cpus_or(span, span, nodemask);
4974         set_bit(node, used_nodes);
4975
4976         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
4977                 int next_node = find_next_best_node(node, used_nodes);
4978                 nodemask = node_to_cpumask(next_node);
4979                 cpus_or(span, span, nodemask);
4980         }
4981
4982         return span;
4983 }
4984 #endif
4985
4986 /*
4987  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
4988  * can switch it on easily if needed.
4989  */
4990 #ifdef CONFIG_SCHED_SMT
4991 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4992 static struct sched_group sched_group_cpus[NR_CPUS];
4993 static int cpu_to_cpu_group(int cpu)
4994 {
4995         return cpu;
4996 }
4997 #endif
4998
4999 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5000 static struct sched_group sched_group_phys[NR_CPUS];
5001 static int cpu_to_phys_group(int cpu)
5002 {
5003 #ifdef CONFIG_SCHED_SMT
5004         return first_cpu(cpu_sibling_map[cpu]);
5005 #else
5006         return cpu;
5007 #endif
5008 }
5009
5010 #ifdef CONFIG_NUMA
5011 /*
5012  * The init_sched_build_groups can't handle what we want to do with node
5013  * groups, so roll our own. Now each node has its own list of groups which
5014  * gets dynamically allocated.
5015  */
5016 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5017 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5018
5019 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5020 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5021
5022 static int cpu_to_allnodes_group(int cpu)
5023 {
5024         return cpu_to_node(cpu);
5025 }
5026 #endif
5027
5028 /*
5029  * Build sched domains for a given set of cpus and attach the sched domains
5030  * to the individual cpus
5031  */
5032 void build_sched_domains(const cpumask_t *cpu_map)
5033 {
5034         int i;
5035 #ifdef CONFIG_NUMA
5036         struct sched_group **sched_group_nodes = NULL;
5037         struct sched_group *sched_group_allnodes = NULL;
5038
5039         /*
5040          * Allocate the per-node list of sched groups
5041          */
5042         sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5043                                            GFP_ATOMIC);
5044         if (!sched_group_nodes) {
5045                 printk(KERN_WARNING "Can not alloc sched group node list\n");
5046                 return;
5047         }
5048         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5049 #endif
5050
5051         /*
5052          * Set up domains for cpus specified by the cpu_map.
5053          */
5054         for_each_cpu_mask(i, *cpu_map) {
5055                 int group;
5056                 struct sched_domain *sd = NULL, *p;
5057                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5058
5059                 cpus_and(nodemask, nodemask, *cpu_map);
5060
5061 #ifdef CONFIG_NUMA
5062                 if (cpus_weight(*cpu_map)
5063                                 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5064                         if (!sched_group_allnodes) {
5065                                 sched_group_allnodes
5066                                         = kmalloc(sizeof(struct sched_group)
5067                                                         * MAX_NUMNODES,
5068                                                   GFP_KERNEL);
5069                                 if (!sched_group_allnodes) {
5070                                         printk(KERN_WARNING
5071                                         "Can not alloc allnodes sched group\n");
5072                                         break;
5073                                 }
5074                                 sched_group_allnodes_bycpu[i]
5075                                                 = sched_group_allnodes;
5076                         }
5077                         sd = &per_cpu(allnodes_domains, i);
5078                         *sd = SD_ALLNODES_INIT;
5079                         sd->span = *cpu_map;
5080                         group = cpu_to_allnodes_group(i);
5081                         sd->groups = &sched_group_allnodes[group];
5082                         p = sd;
5083                 } else
5084                         p = NULL;
5085
5086                 sd = &per_cpu(node_domains, i);
5087                 *sd = SD_NODE_INIT;
5088                 sd->span = sched_domain_node_span(cpu_to_node(i));
5089                 sd->parent = p;
5090                 cpus_and(sd->span, sd->span, *cpu_map);
5091 #endif
5092
5093                 p = sd;
5094                 sd = &per_cpu(phys_domains, i);
5095                 group = cpu_to_phys_group(i);
5096                 *sd = SD_CPU_INIT;
5097                 sd->span = nodemask;
5098                 sd->parent = p;
5099                 sd->groups = &sched_group_phys[group];
5100
5101 #ifdef CONFIG_SCHED_SMT
5102                 p = sd;
5103                 sd = &per_cpu(cpu_domains, i);
5104                 group = cpu_to_cpu_group(i);
5105                 *sd = SD_SIBLING_INIT;
5106                 sd->span = cpu_sibling_map[i];
5107                 cpus_and(sd->span, sd->span, *cpu_map);
5108                 sd->parent = p;
5109                 sd->groups = &sched_group_cpus[group];
5110 #endif
5111         }
5112
5113 #ifdef CONFIG_SCHED_SMT
5114         /* Set up CPU (sibling) groups */
5115         for_each_cpu_mask(i, *cpu_map) {
5116                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5117                 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5118                 if (i != first_cpu(this_sibling_map))
5119                         continue;
5120
5121                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5122                                                 &cpu_to_cpu_group);
5123         }
5124 #endif
5125
5126         /* Set up physical groups */
5127         for (i = 0; i < MAX_NUMNODES; i++) {
5128                 cpumask_t nodemask = node_to_cpumask(i);
5129
5130                 cpus_and(nodemask, nodemask, *cpu_map);
5131                 if (cpus_empty(nodemask))
5132                         continue;
5133
5134                 init_sched_build_groups(sched_group_phys, nodemask,
5135                                                 &cpu_to_phys_group);
5136         }
5137
5138 #ifdef CONFIG_NUMA
5139         /* Set up node groups */
5140         if (sched_group_allnodes)
5141                 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5142                                         &cpu_to_allnodes_group);
5143
5144         for (i = 0; i < MAX_NUMNODES; i++) {
5145                 /* Set up node groups */
5146                 struct sched_group *sg, *prev;
5147                 cpumask_t nodemask = node_to_cpumask(i);
5148                 cpumask_t domainspan;
5149                 cpumask_t covered = CPU_MASK_NONE;
5150                 int j;
5151
5152                 cpus_and(nodemask, nodemask, *cpu_map);
5153                 if (cpus_empty(nodemask)) {
5154                         sched_group_nodes[i] = NULL;
5155                         continue;
5156                 }
5157
5158                 domainspan = sched_domain_node_span(i);
5159                 cpus_and(domainspan, domainspan, *cpu_map);
5160
5161                 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5162                 sched_group_nodes[i] = sg;
5163                 for_each_cpu_mask(j, nodemask) {
5164                         struct sched_domain *sd;
5165                         sd = &per_cpu(node_domains, j);
5166                         sd->groups = sg;
5167                         if (sd->groups == NULL) {
5168                                 /* Turn off balancing if we have no groups */
5169                                 sd->flags = 0;
5170                         }
5171                 }
5172                 if (!sg) {
5173                         printk(KERN_WARNING
5174                         "Can not alloc domain group for node %d\n", i);
5175                         continue;
5176                 }
5177                 sg->cpu_power = 0;
5178                 sg->cpumask = nodemask;
5179                 cpus_or(covered, covered, nodemask);
5180                 prev = sg;
5181
5182                 for (j = 0; j < MAX_NUMNODES; j++) {
5183                         cpumask_t tmp, notcovered;
5184                         int n = (i + j) % MAX_NUMNODES;
5185
5186                         cpus_complement(notcovered, covered);
5187                         cpus_and(tmp, notcovered, *cpu_map);
5188                         cpus_and(tmp, tmp, domainspan);
5189                         if (cpus_empty(tmp))
5190                                 break;
5191
5192                         nodemask = node_to_cpumask(n);
5193                         cpus_and(tmp, tmp, nodemask);
5194                         if (cpus_empty(tmp))
5195                                 continue;
5196
5197                         sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5198                         if (!sg) {
5199                                 printk(KERN_WARNING
5200                                 "Can not alloc domain group for node %d\n", j);
5201                                 break;
5202                         }
5203                         sg->cpu_power = 0;
5204                         sg->cpumask = tmp;
5205                         cpus_or(covered, covered, tmp);
5206                         prev->next = sg;
5207                         prev = sg;
5208                 }
5209                 prev->next = sched_group_nodes[i];
5210         }
5211 #endif
5212
5213         /* Calculate CPU power for physical packages and nodes */
5214         for_each_cpu_mask(i, *cpu_map) {
5215                 int power;
5216                 struct sched_domain *sd;
5217 #ifdef CONFIG_SCHED_SMT
5218                 sd = &per_cpu(cpu_domains, i);
5219                 power = SCHED_LOAD_SCALE;
5220                 sd->groups->cpu_power = power;
5221 #endif
5222
5223                 sd = &per_cpu(phys_domains, i);
5224                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5225                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5226                 sd->groups->cpu_power = power;
5227
5228 #ifdef CONFIG_NUMA
5229                 sd = &per_cpu(allnodes_domains, i);
5230                 if (sd->groups) {
5231                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5232                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5233                         sd->groups->cpu_power = power;
5234                 }
5235 #endif
5236         }
5237
5238 #ifdef CONFIG_NUMA
5239         for (i = 0; i < MAX_NUMNODES; i++) {
5240                 struct sched_group *sg = sched_group_nodes[i];
5241                 int j;
5242
5243                 if (sg == NULL)
5244                         continue;
5245 next_sg:
5246                 for_each_cpu_mask(j, sg->cpumask) {
5247                         struct sched_domain *sd;
5248                         int power;
5249
5250                         sd = &per_cpu(phys_domains, j);
5251                         if (j != first_cpu(sd->groups->cpumask)) {
5252                                 /*
5253                                  * Only add "power" once for each
5254                                  * physical package.
5255                                  */
5256                                 continue;
5257                         }
5258                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5259                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5260
5261                         sg->cpu_power += power;
5262                 }
5263                 sg = sg->next;
5264                 if (sg != sched_group_nodes[i])
5265                         goto next_sg;
5266         }
5267 #endif
5268
5269         /* Attach the domains */
5270         for_each_cpu_mask(i, *cpu_map) {
5271                 struct sched_domain *sd;
5272 #ifdef CONFIG_SCHED_SMT
5273                 sd = &per_cpu(cpu_domains, i);
5274 #else
5275                 sd = &per_cpu(phys_domains, i);
5276 #endif
5277                 cpu_attach_domain(sd, i);
5278         }
5279 }
5280 /*
5281  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
5282  */
5283 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5284 {
5285         cpumask_t cpu_default_map;
5286
5287         /*
5288          * Setup mask for cpus without special case scheduling requirements.
5289          * For now this just excludes isolated cpus, but could be used to
5290          * exclude other special cases in the future.
5291          */
5292         cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5293
5294         build_sched_domains(&cpu_default_map);
5295 }
5296
5297 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5298 {
5299 #ifdef CONFIG_NUMA
5300         int i;
5301         int cpu;
5302
5303         for_each_cpu_mask(cpu, *cpu_map) {
5304                 struct sched_group *sched_group_allnodes
5305                         = sched_group_allnodes_bycpu[cpu];
5306                 struct sched_group **sched_group_nodes
5307                         = sched_group_nodes_bycpu[cpu];
5308
5309                 if (sched_group_allnodes) {
5310                         kfree(sched_group_allnodes);
5311                         sched_group_allnodes_bycpu[cpu] = NULL;
5312                 }
5313
5314                 if (!sched_group_nodes)
5315                         continue;
5316
5317                 for (i = 0; i < MAX_NUMNODES; i++) {
5318                         cpumask_t nodemask = node_to_cpumask(i);
5319                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
5320
5321                         cpus_and(nodemask, nodemask, *cpu_map);
5322                         if (cpus_empty(nodemask))
5323                                 continue;
5324
5325                         if (sg == NULL)
5326                                 continue;
5327                         sg = sg->next;
5328 next_sg:
5329                         oldsg = sg;
5330                         sg = sg->next;
5331                         kfree(oldsg);
5332                         if (oldsg != sched_group_nodes[i])
5333                                 goto next_sg;
5334                 }
5335                 kfree(sched_group_nodes);
5336                 sched_group_nodes_bycpu[cpu] = NULL;
5337         }
5338 #endif
5339 }
5340
5341 /*
5342  * Detach sched domains from a group of cpus specified in cpu_map
5343  * These cpus will now be attached to the NULL domain
5344  */
5345 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5346 {
5347         int i;
5348
5349         for_each_cpu_mask(i, *cpu_map)
5350                 cpu_attach_domain(NULL, i);
5351         synchronize_sched();
5352         arch_destroy_sched_domains(cpu_map);
5353 }
5354
5355 /*
5356  * Partition sched domains as specified by the cpumasks below.
5357  * This attaches all cpus from the cpumasks to the NULL domain,
5358  * waits for a RCU quiescent period, recalculates sched
5359  * domain information and then attaches them back to the
5360  * correct sched domains
5361  * Call with hotplug lock held
5362  */
5363 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5364 {
5365         cpumask_t change_map;
5366
5367         cpus_and(*partition1, *partition1, cpu_online_map);
5368         cpus_and(*partition2, *partition2, cpu_online_map);
5369         cpus_or(change_map, *partition1, *partition2);
5370
5371         /* Detach sched domains from all of the affected cpus */
5372         detach_destroy_domains(&change_map);
5373         if (!cpus_empty(*partition1))
5374                 build_sched_domains(partition1);
5375         if (!cpus_empty(*partition2))
5376                 build_sched_domains(partition2);
5377 }
5378
5379 #ifdef CONFIG_HOTPLUG_CPU
5380 /*
5381  * Force a reinitialization of the sched domains hierarchy.  The domains
5382  * and groups cannot be updated in place without racing with the balancing
5383  * code, so we temporarily attach all running cpus to the NULL domain
5384  * which will prevent rebalancing while the sched domains are recalculated.
5385  */
5386 static int update_sched_domains(struct notifier_block *nfb,
5387                                 unsigned long action, void *hcpu)
5388 {
5389         switch (action) {
5390         case CPU_UP_PREPARE:
5391         case CPU_DOWN_PREPARE:
5392                 detach_destroy_domains(&cpu_online_map);
5393                 return NOTIFY_OK;
5394
5395         case CPU_UP_CANCELED:
5396         case CPU_DOWN_FAILED:
5397         case CPU_ONLINE:
5398         case CPU_DEAD:
5399                 /*
5400                  * Fall through and re-initialise the domains.
5401                  */
5402                 break;
5403         default:
5404                 return NOTIFY_DONE;
5405         }
5406
5407         /* The hotplug lock is already held by cpu_up/cpu_down */
5408         arch_init_sched_domains(&cpu_online_map);
5409
5410         return NOTIFY_OK;
5411 }
5412 #endif
5413
5414 void __init sched_init_smp(void)
5415 {
5416         lock_cpu_hotplug();
5417         arch_init_sched_domains(&cpu_online_map);
5418         unlock_cpu_hotplug();
5419         /* XXX: Theoretical race here - CPU may be hotplugged now */
5420         hotcpu_notifier(update_sched_domains, 0);
5421 }
5422 #else
5423 void __init sched_init_smp(void)
5424 {
5425 }
5426 #endif /* CONFIG_SMP */
5427
5428 int in_sched_functions(unsigned long addr)
5429 {
5430         /* Linker adds these: start and end of __sched functions */
5431         extern char __sched_text_start[], __sched_text_end[];
5432         return in_lock_functions(addr) ||
5433                 (addr >= (unsigned long)__sched_text_start
5434                 && addr < (unsigned long)__sched_text_end);
5435 }
5436
5437 void __init sched_init(void)
5438 {
5439         runqueue_t *rq;
5440         int i, j, k;
5441
5442         for (i = 0; i < NR_CPUS; i++) {
5443                 prio_array_t *array;
5444
5445                 rq = cpu_rq(i);
5446                 spin_lock_init(&rq->lock);
5447                 rq->nr_running = 0;
5448                 rq->active = rq->arrays;
5449                 rq->expired = rq->arrays + 1;
5450                 rq->best_expired_prio = MAX_PRIO;
5451
5452 #ifdef CONFIG_SMP
5453                 rq->sd = NULL;
5454                 for (j = 1; j < 3; j++)
5455                         rq->cpu_load[j] = 0;
5456                 rq->active_balance = 0;
5457                 rq->push_cpu = 0;
5458                 rq->migration_thread = NULL;
5459                 INIT_LIST_HEAD(&rq->migration_queue);
5460 #endif
5461                 atomic_set(&rq->nr_iowait, 0);
5462
5463                 for (j = 0; j < 2; j++) {
5464                         array = rq->arrays + j;
5465                         for (k = 0; k < MAX_PRIO; k++) {
5466                                 INIT_LIST_HEAD(array->queue + k);
5467                                 __clear_bit(k, array->bitmap);
5468                         }
5469                         // delimiter for bitsearch
5470                         __set_bit(MAX_PRIO, array->bitmap);
5471                 }
5472         }
5473
5474         /*
5475          * The boot idle thread does lazy MMU switching as well:
5476          */
5477         atomic_inc(&init_mm.mm_count);
5478         enter_lazy_tlb(&init_mm, current);
5479
5480         /*
5481          * Make us the idle thread. Technically, schedule() should not be
5482          * called from this thread, however somewhere below it might be,
5483          * but because we are the idle thread, we just pick up running again
5484          * when this runqueue becomes "idle".
5485          */
5486         init_idle(current, smp_processor_id());
5487 }
5488
5489 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5490 void __might_sleep(char *file, int line)
5491 {
5492 #if defined(in_atomic)
5493         static unsigned long prev_jiffy;        /* ratelimiting */
5494
5495         if ((in_atomic() || irqs_disabled()) &&
5496             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5497                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5498                         return;
5499                 prev_jiffy = jiffies;
5500                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5501                                 " context at %s:%d\n", file, line);
5502                 printk("in_atomic():%d, irqs_disabled():%d\n",
5503                         in_atomic(), irqs_disabled());
5504                 dump_stack();
5505         }
5506 #endif
5507 }
5508 EXPORT_SYMBOL(__might_sleep);
5509 #endif
5510
5511 #ifdef CONFIG_MAGIC_SYSRQ
5512 void normalize_rt_tasks(void)
5513 {
5514         struct task_struct *p;
5515         prio_array_t *array;
5516         unsigned long flags;
5517         runqueue_t *rq;
5518
5519         read_lock_irq(&tasklist_lock);
5520         for_each_process (p) {
5521                 if (!rt_task(p))
5522                         continue;
5523
5524                 rq = task_rq_lock(p, &flags);
5525
5526                 array = p->array;
5527                 if (array)
5528                         deactivate_task(p, task_rq(p));
5529                 __setscheduler(p, SCHED_NORMAL, 0);
5530                 if (array) {
5531                         __activate_task(p, task_rq(p));
5532                         resched_task(rq->curr);
5533                 }
5534
5535                 task_rq_unlock(rq, &flags);
5536         }
5537         read_unlock_irq(&tasklist_lock);
5538 }
5539
5540 #endif /* CONFIG_MAGIC_SYSRQ */