4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
75 #include <asm/irq_regs.h>
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
100 #define NICE_0_LOAD SCHED_LOAD_SCALE
101 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104 * These are the 'tuning knobs' of the scheduler:
106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
107 * Timeslices get refilled after they expire.
109 #define DEF_TIMESLICE (100 * HZ / 1000)
112 * single value that denotes runtime == period, ie unlimited time.
114 #define RUNTIME_INF ((u64)~0ULL)
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
130 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 static inline int rt_policy(int policy)
139 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
144 static inline int task_has_rt_policy(struct task_struct *p)
146 return rt_policy(p->policy);
150 * This is the priority-queue data structure of the RT scheduling class:
152 struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
157 struct rt_bandwidth {
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock;
162 struct hrtimer rt_period_timer;
165 static struct rt_bandwidth def_rt_bandwidth;
167 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
169 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
171 struct rt_bandwidth *rt_b =
172 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 now = hrtimer_cb_get_time(timer);
179 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
184 idle = do_sched_rt_period_timer(rt_b, overrun);
187 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
193 rt_b->rt_period = ns_to_ktime(period);
194 rt_b->rt_runtime = runtime;
196 spin_lock_init(&rt_b->rt_runtime_lock);
198 hrtimer_init(&rt_b->rt_period_timer,
199 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
200 rt_b->rt_period_timer.function = sched_rt_period_timer;
201 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208 if (rt_b->rt_runtime == RUNTIME_INF)
211 if (hrtimer_active(&rt_b->rt_period_timer))
214 spin_lock(&rt_b->rt_runtime_lock);
216 if (hrtimer_active(&rt_b->rt_period_timer))
219 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
220 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
221 hrtimer_start(&rt_b->rt_period_timer,
222 rt_b->rt_period_timer.expires,
225 spin_unlock(&rt_b->rt_runtime_lock);
228 #ifdef CONFIG_RT_GROUP_SCHED
229 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
231 hrtimer_cancel(&rt_b->rt_period_timer);
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
239 static DEFINE_MUTEX(sched_domains_mutex);
241 #ifdef CONFIG_GROUP_SCHED
243 #include <linux/cgroup.h>
247 static LIST_HEAD(task_groups);
249 /* task group related information */
251 #ifdef CONFIG_CGROUP_SCHED
252 struct cgroup_subsys_state css;
255 #ifdef CONFIG_FAIR_GROUP_SCHED
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity **se;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq **cfs_rq;
260 unsigned long shares;
263 #ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity **rt_se;
265 struct rt_rq **rt_rq;
267 struct rt_bandwidth rt_bandwidth;
271 struct list_head list;
273 struct task_group *parent;
274 struct list_head siblings;
275 struct list_head children;
278 #ifdef CONFIG_USER_SCHED
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
285 struct task_group root_task_group;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 /* Default task group's sched entity on each cpu */
289 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
290 /* Default task group's cfs_rq on each cpu */
291 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294 #ifdef CONFIG_RT_GROUP_SCHED
295 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
296 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 #define root_task_group init_task_group
302 /* task_group_lock serializes add/remove of task groups and also changes to
303 * a task group's cpu shares.
305 static DEFINE_SPINLOCK(task_group_lock);
307 #ifdef CONFIG_FAIR_GROUP_SCHED
308 #ifdef CONFIG_USER_SCHED
309 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
311 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 * A weight of 0 or 1 can cause arithmetics problems.
316 * A weight of a cfs_rq is the sum of weights of which entities
317 * are queued on this cfs_rq, so a weight of a entity should not be
318 * too large, so as the shares value of a task group.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
323 #define MAX_SHARES (1UL << 18)
325 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328 /* Default task group.
329 * Every task in system belong to this group at bootup.
331 struct task_group init_task_group;
333 /* return group to which a task belongs */
334 static inline struct task_group *task_group(struct task_struct *p)
336 struct task_group *tg;
338 #ifdef CONFIG_USER_SCHED
340 #elif defined(CONFIG_CGROUP_SCHED)
341 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
342 struct task_group, css);
344 tg = &init_task_group;
349 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
350 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
352 #ifdef CONFIG_FAIR_GROUP_SCHED
353 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
354 p->se.parent = task_group(p)->se[cpu];
357 #ifdef CONFIG_RT_GROUP_SCHED
358 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
359 p->rt.parent = task_group(p)->rt_se[cpu];
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
367 #endif /* CONFIG_GROUP_SCHED */
369 /* CFS-related fields in a runqueue */
371 struct load_weight load;
372 unsigned long nr_running;
377 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost;
380 struct list_head tasks;
381 struct list_head *balance_iterator;
384 * 'curr' points to currently running entity on this cfs_rq.
385 * It is set to NULL otherwise (i.e when none are currently running).
387 struct sched_entity *curr, *next;
389 unsigned long nr_spread_over;
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
395 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
396 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397 * (like users, containers etc.)
399 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400 * list is used during load balance.
402 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */
407 /* Real-Time classes' related field in a runqueue: */
409 struct rt_prio_array active;
410 unsigned long rt_nr_running;
411 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
412 int highest_prio; /* highest queued rt task prio */
415 unsigned long rt_nr_migratory;
421 /* Nests inside the rq lock: */
422 spinlock_t rt_runtime_lock;
424 #ifdef CONFIG_RT_GROUP_SCHED
425 unsigned long rt_nr_boosted;
428 struct list_head leaf_rt_rq_list;
429 struct task_group *tg;
430 struct sched_rt_entity *rt_se;
437 * We add the notion of a root-domain which will be used to define per-domain
438 * variables. Each exclusive cpuset essentially defines an island domain by
439 * fully partitioning the member cpus from any other cpuset. Whenever a new
440 * exclusive cpuset is created, we also create and attach a new root-domain
450 * The "RT overload" flag: it gets set if a CPU has more than
451 * one runnable RT task.
458 * By default the system creates a single root-domain with all cpus as
459 * members (mimicking the global state we have today).
461 static struct root_domain def_root_domain;
466 * This is the main, per-CPU runqueue data structure.
468 * Locking rule: those places that want to lock multiple runqueues
469 * (such as the load balancing or the thread migration code), lock
470 * acquire operations must be ordered by ascending &runqueue.
477 * nr_running and cpu_load should be in the same cacheline because
478 * remote CPUs use both these fields when doing load calculation.
480 unsigned long nr_running;
481 #define CPU_LOAD_IDX_MAX 5
482 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
483 unsigned char idle_at_tick;
485 unsigned long last_tick_seen;
486 unsigned char in_nohz_recently;
488 /* capture load from *all* tasks on this cpu: */
489 struct load_weight load;
490 unsigned long nr_load_updates;
496 #ifdef CONFIG_FAIR_GROUP_SCHED
497 /* list of leaf cfs_rq on this cpu: */
498 struct list_head leaf_cfs_rq_list;
500 #ifdef CONFIG_RT_GROUP_SCHED
501 struct list_head leaf_rt_rq_list;
505 * This is part of a global counter where only the total sum
506 * over all CPUs matters. A task can increase this counter on
507 * one CPU and if it got migrated afterwards it may decrease
508 * it on another CPU. Always updated under the runqueue lock:
510 unsigned long nr_uninterruptible;
512 struct task_struct *curr, *idle;
513 unsigned long next_balance;
514 struct mm_struct *prev_mm;
521 struct root_domain *rd;
522 struct sched_domain *sd;
524 /* For active balancing */
527 /* cpu of this runqueue: */
530 struct task_struct *migration_thread;
531 struct list_head migration_queue;
534 #ifdef CONFIG_SCHED_HRTICK
535 unsigned long hrtick_flags;
536 ktime_t hrtick_expire;
537 struct hrtimer hrtick_timer;
540 #ifdef CONFIG_SCHEDSTATS
542 struct sched_info rq_sched_info;
544 /* sys_sched_yield() stats */
545 unsigned int yld_exp_empty;
546 unsigned int yld_act_empty;
547 unsigned int yld_both_empty;
548 unsigned int yld_count;
550 /* schedule() stats */
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
555 /* try_to_wake_up() stats */
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
560 unsigned int bkl_count;
562 struct lock_class_key rq_lock_key;
565 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
567 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
569 rq->curr->sched_class->check_preempt_curr(rq, p);
572 static inline int cpu_of(struct rq *rq)
582 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
583 * See detach_destroy_domains: synchronize_sched for details.
585 * The domain tree of any CPU may only be accessed from within
586 * preempt-disabled sections.
588 #define for_each_domain(cpu, __sd) \
589 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
591 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
592 #define this_rq() (&__get_cpu_var(runqueues))
593 #define task_rq(p) cpu_rq(task_cpu(p))
594 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
596 static inline void update_rq_clock(struct rq *rq)
598 rq->clock = sched_clock_cpu(cpu_of(rq));
602 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
604 #ifdef CONFIG_SCHED_DEBUG
605 # define const_debug __read_mostly
607 # define const_debug static const
611 * Debugging: various feature bits
614 #define SCHED_FEAT(name, enabled) \
615 __SCHED_FEAT_##name ,
618 #include "sched_features.h"
623 #define SCHED_FEAT(name, enabled) \
624 (1UL << __SCHED_FEAT_##name) * enabled |
626 const_debug unsigned int sysctl_sched_features =
627 #include "sched_features.h"
632 #ifdef CONFIG_SCHED_DEBUG
633 #define SCHED_FEAT(name, enabled) \
636 static __read_mostly char *sched_feat_names[] = {
637 #include "sched_features.h"
643 static int sched_feat_open(struct inode *inode, struct file *filp)
645 filp->private_data = inode->i_private;
650 sched_feat_read(struct file *filp, char __user *ubuf,
651 size_t cnt, loff_t *ppos)
658 for (i = 0; sched_feat_names[i]; i++) {
659 len += strlen(sched_feat_names[i]);
663 buf = kmalloc(len + 2, GFP_KERNEL);
667 for (i = 0; sched_feat_names[i]; i++) {
668 if (sysctl_sched_features & (1UL << i))
669 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
671 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
674 r += sprintf(buf + r, "\n");
675 WARN_ON(r >= len + 2);
677 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
685 sched_feat_write(struct file *filp, const char __user *ubuf,
686 size_t cnt, loff_t *ppos)
696 if (copy_from_user(&buf, ubuf, cnt))
701 if (strncmp(buf, "NO_", 3) == 0) {
706 for (i = 0; sched_feat_names[i]; i++) {
707 int len = strlen(sched_feat_names[i]);
709 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
711 sysctl_sched_features &= ~(1UL << i);
713 sysctl_sched_features |= (1UL << i);
718 if (!sched_feat_names[i])
726 static struct file_operations sched_feat_fops = {
727 .open = sched_feat_open,
728 .read = sched_feat_read,
729 .write = sched_feat_write,
732 static __init int sched_init_debug(void)
734 debugfs_create_file("sched_features", 0644, NULL, NULL,
739 late_initcall(sched_init_debug);
743 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
746 * Number of tasks to iterate in a single balance run.
747 * Limited because this is done with IRQs disabled.
749 const_debug unsigned int sysctl_sched_nr_migrate = 32;
752 * period over which we measure -rt task cpu usage in us.
755 unsigned int sysctl_sched_rt_period = 1000000;
757 static __read_mostly int scheduler_running;
760 * part of the period that we allow rt tasks to run in us.
763 int sysctl_sched_rt_runtime = 950000;
765 static inline u64 global_rt_period(void)
767 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
770 static inline u64 global_rt_runtime(void)
772 if (sysctl_sched_rt_period < 0)
775 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
778 unsigned long long time_sync_thresh = 100000;
780 static DEFINE_PER_CPU(unsigned long long, time_offset);
781 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
784 * Global lock which we take every now and then to synchronize
785 * the CPUs time. This method is not warp-safe, but it's good
786 * enough to synchronize slowly diverging time sources and thus
787 * it's good enough for tracing:
789 static DEFINE_SPINLOCK(time_sync_lock);
790 static unsigned long long prev_global_time;
792 static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
795 * We want this inlined, to not get tracer function calls
796 * in this critical section:
798 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
799 __raw_spin_lock(&time_sync_lock.raw_lock);
801 if (time < prev_global_time) {
802 per_cpu(time_offset, cpu) += prev_global_time - time;
803 time = prev_global_time;
805 prev_global_time = time;
808 __raw_spin_unlock(&time_sync_lock.raw_lock);
809 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
814 static unsigned long long __cpu_clock(int cpu)
816 unsigned long long now;
819 * Only call sched_clock() if the scheduler has already been
820 * initialized (some code might call cpu_clock() very early):
822 if (unlikely(!scheduler_running))
825 now = sched_clock_cpu(cpu);
831 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
832 * clock constructed from sched_clock():
834 unsigned long long cpu_clock(int cpu)
836 unsigned long long prev_cpu_time, time, delta_time;
839 local_irq_save(flags);
840 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
841 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
842 delta_time = time-prev_cpu_time;
844 if (unlikely(delta_time > time_sync_thresh)) {
845 time = __sync_cpu_clock(time, cpu);
846 per_cpu(prev_cpu_time, cpu) = time;
848 local_irq_restore(flags);
852 EXPORT_SYMBOL_GPL(cpu_clock);
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next) do { } while (0)
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev) do { } while (0)
861 static inline int task_current(struct rq *rq, struct task_struct *p)
863 return rq->curr == p;
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq *rq, struct task_struct *p)
869 return task_current(rq, p);
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
876 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
878 #ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
889 spin_unlock_irq(&rq->lock);
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq *rq, struct task_struct *p)
898 return task_current(rq, p);
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
915 spin_unlock(&rq->lock);
919 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
948 spin_unlock(&rq->lock);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
963 local_irq_save(*flags);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
968 spin_unlock_irqrestore(&rq->lock, *flags);
972 static void __task_rq_unlock(struct rq *rq)
975 spin_unlock(&rq->lock);
978 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
981 spin_unlock_irqrestore(&rq->lock, *flags);
985 * this_rq_lock - lock this runqueue and disable interrupts.
987 static struct rq *this_rq_lock(void)
994 spin_lock(&rq->lock);
999 static void __resched_task(struct task_struct *p, int tif_bit);
1001 static inline void resched_task(struct task_struct *p)
1003 __resched_task(p, TIF_NEED_RESCHED);
1006 #ifdef CONFIG_SCHED_HRTICK
1008 * Use HR-timers to deliver accurate preemption points.
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1017 static inline void resched_hrt(struct task_struct *p)
1019 __resched_task(p, TIF_HRTICK_RESCHED);
1022 static inline void resched_rq(struct rq *rq)
1024 unsigned long flags;
1026 spin_lock_irqsave(&rq->lock, flags);
1027 resched_task(rq->curr);
1028 spin_unlock_irqrestore(&rq->lock, flags);
1032 HRTICK_SET, /* re-programm hrtick_timer */
1033 HRTICK_RESET, /* not a new slice */
1034 HRTICK_BLOCK, /* stop hrtick operations */
1039 * - enabled by features
1040 * - hrtimer is actually high res
1042 static inline int hrtick_enabled(struct rq *rq)
1044 if (!sched_feat(HRTICK))
1046 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1048 return hrtimer_is_hres_active(&rq->hrtick_timer);
1052 * Called to set the hrtick timer state.
1054 * called with rq->lock held and irqs disabled
1056 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1058 assert_spin_locked(&rq->lock);
1061 * preempt at: now + delay
1064 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1066 * indicate we need to program the timer
1068 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1070 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1073 * New slices are called from the schedule path and don't need a
1074 * forced reschedule.
1077 resched_hrt(rq->curr);
1080 static void hrtick_clear(struct rq *rq)
1082 if (hrtimer_active(&rq->hrtick_timer))
1083 hrtimer_cancel(&rq->hrtick_timer);
1087 * Update the timer from the possible pending state.
1089 static void hrtick_set(struct rq *rq)
1093 unsigned long flags;
1095 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1097 spin_lock_irqsave(&rq->lock, flags);
1098 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1099 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1100 time = rq->hrtick_expire;
1101 clear_thread_flag(TIF_HRTICK_RESCHED);
1102 spin_unlock_irqrestore(&rq->lock, flags);
1105 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1106 if (reset && !hrtimer_active(&rq->hrtick_timer))
1113 * High-resolution timer tick.
1114 * Runs from hardirq context with interrupts disabled.
1116 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1118 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1120 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1122 spin_lock(&rq->lock);
1123 update_rq_clock(rq);
1124 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1125 spin_unlock(&rq->lock);
1127 return HRTIMER_NORESTART;
1131 static void hotplug_hrtick_disable(int cpu)
1133 struct rq *rq = cpu_rq(cpu);
1134 unsigned long flags;
1136 spin_lock_irqsave(&rq->lock, flags);
1137 rq->hrtick_flags = 0;
1138 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1139 spin_unlock_irqrestore(&rq->lock, flags);
1144 static void hotplug_hrtick_enable(int cpu)
1146 struct rq *rq = cpu_rq(cpu);
1147 unsigned long flags;
1149 spin_lock_irqsave(&rq->lock, flags);
1150 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1151 spin_unlock_irqrestore(&rq->lock, flags);
1155 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1157 int cpu = (int)(long)hcpu;
1160 case CPU_UP_CANCELED:
1161 case CPU_UP_CANCELED_FROZEN:
1162 case CPU_DOWN_PREPARE:
1163 case CPU_DOWN_PREPARE_FROZEN:
1165 case CPU_DEAD_FROZEN:
1166 hotplug_hrtick_disable(cpu);
1169 case CPU_UP_PREPARE:
1170 case CPU_UP_PREPARE_FROZEN:
1171 case CPU_DOWN_FAILED:
1172 case CPU_DOWN_FAILED_FROZEN:
1174 case CPU_ONLINE_FROZEN:
1175 hotplug_hrtick_enable(cpu);
1182 static void init_hrtick(void)
1184 hotcpu_notifier(hotplug_hrtick, 0);
1186 #endif /* CONFIG_SMP */
1188 static void init_rq_hrtick(struct rq *rq)
1190 rq->hrtick_flags = 0;
1191 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1192 rq->hrtick_timer.function = hrtick;
1193 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1196 void hrtick_resched(void)
1199 unsigned long flags;
1201 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1204 local_irq_save(flags);
1205 rq = cpu_rq(smp_processor_id());
1207 local_irq_restore(flags);
1210 static inline void hrtick_clear(struct rq *rq)
1214 static inline void hrtick_set(struct rq *rq)
1218 static inline void init_rq_hrtick(struct rq *rq)
1222 void hrtick_resched(void)
1226 static inline void init_hrtick(void)
1232 * resched_task - mark a task 'to be rescheduled now'.
1234 * On UP this means the setting of the need_resched flag, on SMP it
1235 * might also involve a cross-CPU call to trigger the scheduler on
1240 #ifndef tsk_is_polling
1241 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1244 static void __resched_task(struct task_struct *p, int tif_bit)
1248 assert_spin_locked(&task_rq(p)->lock);
1250 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1253 set_tsk_thread_flag(p, tif_bit);
1256 if (cpu == smp_processor_id())
1259 /* NEED_RESCHED must be visible before we test polling */
1261 if (!tsk_is_polling(p))
1262 smp_send_reschedule(cpu);
1265 static void resched_cpu(int cpu)
1267 struct rq *rq = cpu_rq(cpu);
1268 unsigned long flags;
1270 if (!spin_trylock_irqsave(&rq->lock, flags))
1272 resched_task(cpu_curr(cpu));
1273 spin_unlock_irqrestore(&rq->lock, flags);
1278 * When add_timer_on() enqueues a timer into the timer wheel of an
1279 * idle CPU then this timer might expire before the next timer event
1280 * which is scheduled to wake up that CPU. In case of a completely
1281 * idle system the next event might even be infinite time into the
1282 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1283 * leaves the inner idle loop so the newly added timer is taken into
1284 * account when the CPU goes back to idle and evaluates the timer
1285 * wheel for the next timer event.
1287 void wake_up_idle_cpu(int cpu)
1289 struct rq *rq = cpu_rq(cpu);
1291 if (cpu == smp_processor_id())
1295 * This is safe, as this function is called with the timer
1296 * wheel base lock of (cpu) held. When the CPU is on the way
1297 * to idle and has not yet set rq->curr to idle then it will
1298 * be serialized on the timer wheel base lock and take the new
1299 * timer into account automatically.
1301 if (rq->curr != rq->idle)
1305 * We can set TIF_RESCHED on the idle task of the other CPU
1306 * lockless. The worst case is that the other CPU runs the
1307 * idle task through an additional NOOP schedule()
1309 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1311 /* NEED_RESCHED must be visible before we test polling */
1313 if (!tsk_is_polling(rq->idle))
1314 smp_send_reschedule(cpu);
1319 static void __resched_task(struct task_struct *p, int tif_bit)
1321 assert_spin_locked(&task_rq(p)->lock);
1322 set_tsk_thread_flag(p, tif_bit);
1326 #if BITS_PER_LONG == 32
1327 # define WMULT_CONST (~0UL)
1329 # define WMULT_CONST (1UL << 32)
1332 #define WMULT_SHIFT 32
1335 * Shift right and round:
1337 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1339 static unsigned long
1340 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1341 struct load_weight *lw)
1345 if (!lw->inv_weight) {
1346 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1349 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1353 tmp = (u64)delta_exec * weight;
1355 * Check whether we'd overflow the 64-bit multiplication:
1357 if (unlikely(tmp > WMULT_CONST))
1358 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1361 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1363 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1366 static inline unsigned long
1367 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1369 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1372 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1378 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1385 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386 * of tasks with abnormal "nice" values across CPUs the contribution that
1387 * each task makes to its run queue's load is weighted according to its
1388 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1389 * scaled version of the new time slice allocation that they receive on time
1393 #define WEIGHT_IDLEPRIO 2
1394 #define WMULT_IDLEPRIO (1 << 31)
1397 * Nice levels are multiplicative, with a gentle 10% change for every
1398 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400 * that remained on nice 0.
1402 * The "10% effect" is relative and cumulative: from _any_ nice level,
1403 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1404 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405 * If a task goes up by ~10% and another task goes down by ~10% then
1406 * the relative distance between them is ~25%.)
1408 static const int prio_to_weight[40] = {
1409 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1410 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1411 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1412 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1413 /* 0 */ 1024, 820, 655, 526, 423,
1414 /* 5 */ 335, 272, 215, 172, 137,
1415 /* 10 */ 110, 87, 70, 56, 45,
1416 /* 15 */ 36, 29, 23, 18, 15,
1420 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1422 * In cases where the weight does not change often, we can use the
1423 * precalculated inverse to speed up arithmetics by turning divisions
1424 * into multiplications:
1426 static const u32 prio_to_wmult[40] = {
1427 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1428 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1429 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1430 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1431 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1432 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1433 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1434 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1437 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1440 * runqueue iterator, to support SMP load-balancing between different
1441 * scheduling classes, without having to expose their internal data
1442 * structures to the load-balancing proper:
1444 struct rq_iterator {
1446 struct task_struct *(*start)(void *);
1447 struct task_struct *(*next)(void *);
1451 static unsigned long
1452 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1453 unsigned long max_load_move, struct sched_domain *sd,
1454 enum cpu_idle_type idle, int *all_pinned,
1455 int *this_best_prio, struct rq_iterator *iterator);
1458 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1459 struct sched_domain *sd, enum cpu_idle_type idle,
1460 struct rq_iterator *iterator);
1463 #ifdef CONFIG_CGROUP_CPUACCT
1464 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1466 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1469 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1471 update_load_add(&rq->load, load);
1474 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1476 update_load_sub(&rq->load, load);
1480 static unsigned long source_load(int cpu, int type);
1481 static unsigned long target_load(int cpu, int type);
1482 static unsigned long cpu_avg_load_per_task(int cpu);
1483 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1484 #else /* CONFIG_SMP */
1486 #ifdef CONFIG_FAIR_GROUP_SCHED
1487 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1492 #endif /* CONFIG_SMP */
1494 #include "sched_stats.h"
1495 #include "sched_idletask.c"
1496 #include "sched_fair.c"
1497 #include "sched_rt.c"
1498 #ifdef CONFIG_SCHED_DEBUG
1499 # include "sched_debug.c"
1502 #define sched_class_highest (&rt_sched_class)
1504 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1506 update_load_add(&rq->load, p->se.load.weight);
1509 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1511 update_load_sub(&rq->load, p->se.load.weight);
1514 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1520 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1526 static void set_load_weight(struct task_struct *p)
1528 if (task_has_rt_policy(p)) {
1529 p->se.load.weight = prio_to_weight[0] * 2;
1530 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1535 * SCHED_IDLE tasks get minimal weight:
1537 if (p->policy == SCHED_IDLE) {
1538 p->se.load.weight = WEIGHT_IDLEPRIO;
1539 p->se.load.inv_weight = WMULT_IDLEPRIO;
1543 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1544 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1547 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1549 sched_info_queued(p);
1550 p->sched_class->enqueue_task(rq, p, wakeup);
1554 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1556 p->sched_class->dequeue_task(rq, p, sleep);
1561 * __normal_prio - return the priority that is based on the static prio
1563 static inline int __normal_prio(struct task_struct *p)
1565 return p->static_prio;
1569 * Calculate the expected normal priority: i.e. priority
1570 * without taking RT-inheritance into account. Might be
1571 * boosted by interactivity modifiers. Changes upon fork,
1572 * setprio syscalls, and whenever the interactivity
1573 * estimator recalculates.
1575 static inline int normal_prio(struct task_struct *p)
1579 if (task_has_rt_policy(p))
1580 prio = MAX_RT_PRIO-1 - p->rt_priority;
1582 prio = __normal_prio(p);
1587 * Calculate the current priority, i.e. the priority
1588 * taken into account by the scheduler. This value might
1589 * be boosted by RT tasks, or might be boosted by
1590 * interactivity modifiers. Will be RT if the task got
1591 * RT-boosted. If not then it returns p->normal_prio.
1593 static int effective_prio(struct task_struct *p)
1595 p->normal_prio = normal_prio(p);
1597 * If we are RT tasks or we were boosted to RT priority,
1598 * keep the priority unchanged. Otherwise, update priority
1599 * to the normal priority:
1601 if (!rt_prio(p->prio))
1602 return p->normal_prio;
1607 * activate_task - move a task to the runqueue.
1609 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1611 if (task_contributes_to_load(p))
1612 rq->nr_uninterruptible--;
1614 enqueue_task(rq, p, wakeup);
1615 inc_nr_running(p, rq);
1619 * deactivate_task - remove a task from the runqueue.
1621 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1623 if (task_contributes_to_load(p))
1624 rq->nr_uninterruptible++;
1626 dequeue_task(rq, p, sleep);
1627 dec_nr_running(p, rq);
1631 * task_curr - is this task currently executing on a CPU?
1632 * @p: the task in question.
1634 inline int task_curr(const struct task_struct *p)
1636 return cpu_curr(task_cpu(p)) == p;
1639 /* Used instead of source_load when we know the type == 0 */
1640 unsigned long weighted_cpuload(const int cpu)
1642 return cpu_rq(cpu)->load.weight;
1645 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1647 set_task_rq(p, cpu);
1650 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1651 * successfuly executed on another CPU. We must ensure that updates of
1652 * per-task data have been completed by this moment.
1655 task_thread_info(p)->cpu = cpu;
1659 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1660 const struct sched_class *prev_class,
1661 int oldprio, int running)
1663 if (prev_class != p->sched_class) {
1664 if (prev_class->switched_from)
1665 prev_class->switched_from(rq, p, running);
1666 p->sched_class->switched_to(rq, p, running);
1668 p->sched_class->prio_changed(rq, p, oldprio, running);
1674 * Is this task likely cache-hot:
1677 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1682 * Buddy candidates are cache hot:
1684 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1687 if (p->sched_class != &fair_sched_class)
1690 if (sysctl_sched_migration_cost == -1)
1692 if (sysctl_sched_migration_cost == 0)
1695 delta = now - p->se.exec_start;
1697 return delta < (s64)sysctl_sched_migration_cost;
1701 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1703 int old_cpu = task_cpu(p);
1704 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1705 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1706 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1709 clock_offset = old_rq->clock - new_rq->clock;
1711 #ifdef CONFIG_SCHEDSTATS
1712 if (p->se.wait_start)
1713 p->se.wait_start -= clock_offset;
1714 if (p->se.sleep_start)
1715 p->se.sleep_start -= clock_offset;
1716 if (p->se.block_start)
1717 p->se.block_start -= clock_offset;
1718 if (old_cpu != new_cpu) {
1719 schedstat_inc(p, se.nr_migrations);
1720 if (task_hot(p, old_rq->clock, NULL))
1721 schedstat_inc(p, se.nr_forced2_migrations);
1724 p->se.vruntime -= old_cfsrq->min_vruntime -
1725 new_cfsrq->min_vruntime;
1727 __set_task_cpu(p, new_cpu);
1730 struct migration_req {
1731 struct list_head list;
1733 struct task_struct *task;
1736 struct completion done;
1740 * The task's runqueue lock must be held.
1741 * Returns true if you have to wait for migration thread.
1744 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1746 struct rq *rq = task_rq(p);
1749 * If the task is not on a runqueue (and not running), then
1750 * it is sufficient to simply update the task's cpu field.
1752 if (!p->se.on_rq && !task_running(rq, p)) {
1753 set_task_cpu(p, dest_cpu);
1757 init_completion(&req->done);
1759 req->dest_cpu = dest_cpu;
1760 list_add(&req->list, &rq->migration_queue);
1766 * wait_task_inactive - wait for a thread to unschedule.
1768 * The caller must ensure that the task *will* unschedule sometime soon,
1769 * else this function might spin for a *long* time. This function can't
1770 * be called with interrupts off, or it may introduce deadlock with
1771 * smp_call_function() if an IPI is sent by the same process we are
1772 * waiting to become inactive.
1774 void wait_task_inactive(struct task_struct *p)
1776 unsigned long flags;
1782 * We do the initial early heuristics without holding
1783 * any task-queue locks at all. We'll only try to get
1784 * the runqueue lock when things look like they will
1790 * If the task is actively running on another CPU
1791 * still, just relax and busy-wait without holding
1794 * NOTE! Since we don't hold any locks, it's not
1795 * even sure that "rq" stays as the right runqueue!
1796 * But we don't care, since "task_running()" will
1797 * return false if the runqueue has changed and p
1798 * is actually now running somewhere else!
1800 while (task_running(rq, p))
1804 * Ok, time to look more closely! We need the rq
1805 * lock now, to be *sure*. If we're wrong, we'll
1806 * just go back and repeat.
1808 rq = task_rq_lock(p, &flags);
1809 running = task_running(rq, p);
1810 on_rq = p->se.on_rq;
1811 task_rq_unlock(rq, &flags);
1814 * Was it really running after all now that we
1815 * checked with the proper locks actually held?
1817 * Oops. Go back and try again..
1819 if (unlikely(running)) {
1825 * It's not enough that it's not actively running,
1826 * it must be off the runqueue _entirely_, and not
1829 * So if it wa still runnable (but just not actively
1830 * running right now), it's preempted, and we should
1831 * yield - it could be a while.
1833 if (unlikely(on_rq)) {
1834 schedule_timeout_uninterruptible(1);
1839 * Ahh, all good. It wasn't running, and it wasn't
1840 * runnable, which means that it will never become
1841 * running in the future either. We're all done!
1848 * kick_process - kick a running thread to enter/exit the kernel
1849 * @p: the to-be-kicked thread
1851 * Cause a process which is running on another CPU to enter
1852 * kernel-mode, without any delay. (to get signals handled.)
1854 * NOTE: this function doesnt have to take the runqueue lock,
1855 * because all it wants to ensure is that the remote task enters
1856 * the kernel. If the IPI races and the task has been migrated
1857 * to another CPU then no harm is done and the purpose has been
1860 void kick_process(struct task_struct *p)
1866 if ((cpu != smp_processor_id()) && task_curr(p))
1867 smp_send_reschedule(cpu);
1872 * Return a low guess at the load of a migration-source cpu weighted
1873 * according to the scheduling class and "nice" value.
1875 * We want to under-estimate the load of migration sources, to
1876 * balance conservatively.
1878 static unsigned long source_load(int cpu, int type)
1880 struct rq *rq = cpu_rq(cpu);
1881 unsigned long total = weighted_cpuload(cpu);
1886 return min(rq->cpu_load[type-1], total);
1890 * Return a high guess at the load of a migration-target cpu weighted
1891 * according to the scheduling class and "nice" value.
1893 static unsigned long target_load(int cpu, int type)
1895 struct rq *rq = cpu_rq(cpu);
1896 unsigned long total = weighted_cpuload(cpu);
1901 return max(rq->cpu_load[type-1], total);
1905 * Return the average load per task on the cpu's run queue
1907 static unsigned long cpu_avg_load_per_task(int cpu)
1909 struct rq *rq = cpu_rq(cpu);
1910 unsigned long total = weighted_cpuload(cpu);
1911 unsigned long n = rq->nr_running;
1913 return n ? total / n : SCHED_LOAD_SCALE;
1917 * find_idlest_group finds and returns the least busy CPU group within the
1920 static struct sched_group *
1921 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1923 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1924 unsigned long min_load = ULONG_MAX, this_load = 0;
1925 int load_idx = sd->forkexec_idx;
1926 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1929 unsigned long load, avg_load;
1933 /* Skip over this group if it has no CPUs allowed */
1934 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1937 local_group = cpu_isset(this_cpu, group->cpumask);
1939 /* Tally up the load of all CPUs in the group */
1942 for_each_cpu_mask(i, group->cpumask) {
1943 /* Bias balancing toward cpus of our domain */
1945 load = source_load(i, load_idx);
1947 load = target_load(i, load_idx);
1952 /* Adjust by relative CPU power of the group */
1953 avg_load = sg_div_cpu_power(group,
1954 avg_load * SCHED_LOAD_SCALE);
1957 this_load = avg_load;
1959 } else if (avg_load < min_load) {
1960 min_load = avg_load;
1963 } while (group = group->next, group != sd->groups);
1965 if (!idlest || 100*this_load < imbalance*min_load)
1971 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1974 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1977 unsigned long load, min_load = ULONG_MAX;
1981 /* Traverse only the allowed CPUs */
1982 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1984 for_each_cpu_mask(i, *tmp) {
1985 load = weighted_cpuload(i);
1987 if (load < min_load || (load == min_load && i == this_cpu)) {
1997 * sched_balance_self: balance the current task (running on cpu) in domains
1998 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2001 * Balance, ie. select the least loaded group.
2003 * Returns the target CPU number, or the same CPU if no balancing is needed.
2005 * preempt must be disabled.
2007 static int sched_balance_self(int cpu, int flag)
2009 struct task_struct *t = current;
2010 struct sched_domain *tmp, *sd = NULL;
2012 for_each_domain(cpu, tmp) {
2014 * If power savings logic is enabled for a domain, stop there.
2016 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2018 if (tmp->flags & flag)
2023 cpumask_t span, tmpmask;
2024 struct sched_group *group;
2025 int new_cpu, weight;
2027 if (!(sd->flags & flag)) {
2033 group = find_idlest_group(sd, t, cpu);
2039 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2040 if (new_cpu == -1 || new_cpu == cpu) {
2041 /* Now try balancing at a lower domain level of cpu */
2046 /* Now try balancing at a lower domain level of new_cpu */
2049 weight = cpus_weight(span);
2050 for_each_domain(cpu, tmp) {
2051 if (weight <= cpus_weight(tmp->span))
2053 if (tmp->flags & flag)
2056 /* while loop will break here if sd == NULL */
2062 #endif /* CONFIG_SMP */
2065 * try_to_wake_up - wake up a thread
2066 * @p: the to-be-woken-up thread
2067 * @state: the mask of task states that can be woken
2068 * @sync: do a synchronous wakeup?
2070 * Put it on the run-queue if it's not already there. The "current"
2071 * thread is always on the run-queue (except when the actual
2072 * re-schedule is in progress), and as such you're allowed to do
2073 * the simpler "current->state = TASK_RUNNING" to mark yourself
2074 * runnable without the overhead of this.
2076 * returns failure only if the task is already active.
2078 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2080 int cpu, orig_cpu, this_cpu, success = 0;
2081 unsigned long flags;
2085 if (!sched_feat(SYNC_WAKEUPS))
2089 rq = task_rq_lock(p, &flags);
2090 old_state = p->state;
2091 if (!(old_state & state))
2099 this_cpu = smp_processor_id();
2102 if (unlikely(task_running(rq, p)))
2105 cpu = p->sched_class->select_task_rq(p, sync);
2106 if (cpu != orig_cpu) {
2107 set_task_cpu(p, cpu);
2108 task_rq_unlock(rq, &flags);
2109 /* might preempt at this point */
2110 rq = task_rq_lock(p, &flags);
2111 old_state = p->state;
2112 if (!(old_state & state))
2117 this_cpu = smp_processor_id();
2121 #ifdef CONFIG_SCHEDSTATS
2122 schedstat_inc(rq, ttwu_count);
2123 if (cpu == this_cpu)
2124 schedstat_inc(rq, ttwu_local);
2126 struct sched_domain *sd;
2127 for_each_domain(this_cpu, sd) {
2128 if (cpu_isset(cpu, sd->span)) {
2129 schedstat_inc(sd, ttwu_wake_remote);
2137 #endif /* CONFIG_SMP */
2138 schedstat_inc(p, se.nr_wakeups);
2140 schedstat_inc(p, se.nr_wakeups_sync);
2141 if (orig_cpu != cpu)
2142 schedstat_inc(p, se.nr_wakeups_migrate);
2143 if (cpu == this_cpu)
2144 schedstat_inc(p, se.nr_wakeups_local);
2146 schedstat_inc(p, se.nr_wakeups_remote);
2147 update_rq_clock(rq);
2148 activate_task(rq, p, 1);
2152 check_preempt_curr(rq, p);
2154 p->state = TASK_RUNNING;
2156 if (p->sched_class->task_wake_up)
2157 p->sched_class->task_wake_up(rq, p);
2160 task_rq_unlock(rq, &flags);
2165 int wake_up_process(struct task_struct *p)
2167 return try_to_wake_up(p, TASK_ALL, 0);
2169 EXPORT_SYMBOL(wake_up_process);
2171 int wake_up_state(struct task_struct *p, unsigned int state)
2173 return try_to_wake_up(p, state, 0);
2177 * Perform scheduler related setup for a newly forked process p.
2178 * p is forked by current.
2180 * __sched_fork() is basic setup used by init_idle() too:
2182 static void __sched_fork(struct task_struct *p)
2184 p->se.exec_start = 0;
2185 p->se.sum_exec_runtime = 0;
2186 p->se.prev_sum_exec_runtime = 0;
2187 p->se.last_wakeup = 0;
2188 p->se.avg_overlap = 0;
2190 #ifdef CONFIG_SCHEDSTATS
2191 p->se.wait_start = 0;
2192 p->se.sum_sleep_runtime = 0;
2193 p->se.sleep_start = 0;
2194 p->se.block_start = 0;
2195 p->se.sleep_max = 0;
2196 p->se.block_max = 0;
2198 p->se.slice_max = 0;
2202 INIT_LIST_HEAD(&p->rt.run_list);
2204 INIT_LIST_HEAD(&p->se.group_node);
2206 #ifdef CONFIG_PREEMPT_NOTIFIERS
2207 INIT_HLIST_HEAD(&p->preempt_notifiers);
2211 * We mark the process as running here, but have not actually
2212 * inserted it onto the runqueue yet. This guarantees that
2213 * nobody will actually run it, and a signal or other external
2214 * event cannot wake it up and insert it on the runqueue either.
2216 p->state = TASK_RUNNING;
2220 * fork()/clone()-time setup:
2222 void sched_fork(struct task_struct *p, int clone_flags)
2224 int cpu = get_cpu();
2229 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2231 set_task_cpu(p, cpu);
2234 * Make sure we do not leak PI boosting priority to the child:
2236 p->prio = current->normal_prio;
2237 if (!rt_prio(p->prio))
2238 p->sched_class = &fair_sched_class;
2240 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2241 if (likely(sched_info_on()))
2242 memset(&p->sched_info, 0, sizeof(p->sched_info));
2244 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2247 #ifdef CONFIG_PREEMPT
2248 /* Want to start with kernel preemption disabled. */
2249 task_thread_info(p)->preempt_count = 1;
2255 * wake_up_new_task - wake up a newly created task for the first time.
2257 * This function will do some initial scheduler statistics housekeeping
2258 * that must be done for every newly created context, then puts the task
2259 * on the runqueue and wakes it.
2261 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2263 unsigned long flags;
2266 rq = task_rq_lock(p, &flags);
2267 BUG_ON(p->state != TASK_RUNNING);
2268 update_rq_clock(rq);
2270 p->prio = effective_prio(p);
2272 if (!p->sched_class->task_new || !current->se.on_rq) {
2273 activate_task(rq, p, 0);
2276 * Let the scheduling class do new task startup
2277 * management (if any):
2279 p->sched_class->task_new(rq, p);
2280 inc_nr_running(p, rq);
2282 check_preempt_curr(rq, p);
2284 if (p->sched_class->task_wake_up)
2285 p->sched_class->task_wake_up(rq, p);
2287 task_rq_unlock(rq, &flags);
2290 #ifdef CONFIG_PREEMPT_NOTIFIERS
2293 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2294 * @notifier: notifier struct to register
2296 void preempt_notifier_register(struct preempt_notifier *notifier)
2298 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2300 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2303 * preempt_notifier_unregister - no longer interested in preemption notifications
2304 * @notifier: notifier struct to unregister
2306 * This is safe to call from within a preemption notifier.
2308 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2310 hlist_del(¬ifier->link);
2312 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2314 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2316 struct preempt_notifier *notifier;
2317 struct hlist_node *node;
2319 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2320 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2324 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2325 struct task_struct *next)
2327 struct preempt_notifier *notifier;
2328 struct hlist_node *node;
2330 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2331 notifier->ops->sched_out(notifier, next);
2336 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2341 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2342 struct task_struct *next)
2349 * prepare_task_switch - prepare to switch tasks
2350 * @rq: the runqueue preparing to switch
2351 * @prev: the current task that is being switched out
2352 * @next: the task we are going to switch to.
2354 * This is called with the rq lock held and interrupts off. It must
2355 * be paired with a subsequent finish_task_switch after the context
2358 * prepare_task_switch sets up locking and calls architecture specific
2362 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2363 struct task_struct *next)
2365 fire_sched_out_preempt_notifiers(prev, next);
2366 prepare_lock_switch(rq, next);
2367 prepare_arch_switch(next);
2371 * finish_task_switch - clean up after a task-switch
2372 * @rq: runqueue associated with task-switch
2373 * @prev: the thread we just switched away from.
2375 * finish_task_switch must be called after the context switch, paired
2376 * with a prepare_task_switch call before the context switch.
2377 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2378 * and do any other architecture-specific cleanup actions.
2380 * Note that we may have delayed dropping an mm in context_switch(). If
2381 * so, we finish that here outside of the runqueue lock. (Doing it
2382 * with the lock held can cause deadlocks; see schedule() for
2385 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2386 __releases(rq->lock)
2388 struct mm_struct *mm = rq->prev_mm;
2394 * A task struct has one reference for the use as "current".
2395 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2396 * schedule one last time. The schedule call will never return, and
2397 * the scheduled task must drop that reference.
2398 * The test for TASK_DEAD must occur while the runqueue locks are
2399 * still held, otherwise prev could be scheduled on another cpu, die
2400 * there before we look at prev->state, and then the reference would
2402 * Manfred Spraul <manfred@colorfullife.com>
2404 prev_state = prev->state;
2405 finish_arch_switch(prev);
2406 finish_lock_switch(rq, prev);
2408 if (current->sched_class->post_schedule)
2409 current->sched_class->post_schedule(rq);
2412 fire_sched_in_preempt_notifiers(current);
2415 if (unlikely(prev_state == TASK_DEAD)) {
2417 * Remove function-return probe instances associated with this
2418 * task and put them back on the free list.
2420 kprobe_flush_task(prev);
2421 put_task_struct(prev);
2426 * schedule_tail - first thing a freshly forked thread must call.
2427 * @prev: the thread we just switched away from.
2429 asmlinkage void schedule_tail(struct task_struct *prev)
2430 __releases(rq->lock)
2432 struct rq *rq = this_rq();
2434 finish_task_switch(rq, prev);
2435 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2436 /* In this case, finish_task_switch does not reenable preemption */
2439 if (current->set_child_tid)
2440 put_user(task_pid_vnr(current), current->set_child_tid);
2444 * context_switch - switch to the new MM and the new
2445 * thread's register state.
2448 context_switch(struct rq *rq, struct task_struct *prev,
2449 struct task_struct *next)
2451 struct mm_struct *mm, *oldmm;
2453 prepare_task_switch(rq, prev, next);
2455 oldmm = prev->active_mm;
2457 * For paravirt, this is coupled with an exit in switch_to to
2458 * combine the page table reload and the switch backend into
2461 arch_enter_lazy_cpu_mode();
2463 if (unlikely(!mm)) {
2464 next->active_mm = oldmm;
2465 atomic_inc(&oldmm->mm_count);
2466 enter_lazy_tlb(oldmm, next);
2468 switch_mm(oldmm, mm, next);
2470 if (unlikely(!prev->mm)) {
2471 prev->active_mm = NULL;
2472 rq->prev_mm = oldmm;
2475 * Since the runqueue lock will be released by the next
2476 * task (which is an invalid locking op but in the case
2477 * of the scheduler it's an obvious special-case), so we
2478 * do an early lockdep release here:
2480 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2481 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2484 /* Here we just switch the register state and the stack. */
2485 switch_to(prev, next, prev);
2489 * this_rq must be evaluated again because prev may have moved
2490 * CPUs since it called schedule(), thus the 'rq' on its stack
2491 * frame will be invalid.
2493 finish_task_switch(this_rq(), prev);
2497 * nr_running, nr_uninterruptible and nr_context_switches:
2499 * externally visible scheduler statistics: current number of runnable
2500 * threads, current number of uninterruptible-sleeping threads, total
2501 * number of context switches performed since bootup.
2503 unsigned long nr_running(void)
2505 unsigned long i, sum = 0;
2507 for_each_online_cpu(i)
2508 sum += cpu_rq(i)->nr_running;
2513 unsigned long nr_uninterruptible(void)
2515 unsigned long i, sum = 0;
2517 for_each_possible_cpu(i)
2518 sum += cpu_rq(i)->nr_uninterruptible;
2521 * Since we read the counters lockless, it might be slightly
2522 * inaccurate. Do not allow it to go below zero though:
2524 if (unlikely((long)sum < 0))
2530 unsigned long long nr_context_switches(void)
2533 unsigned long long sum = 0;
2535 for_each_possible_cpu(i)
2536 sum += cpu_rq(i)->nr_switches;
2541 unsigned long nr_iowait(void)
2543 unsigned long i, sum = 0;
2545 for_each_possible_cpu(i)
2546 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2551 unsigned long nr_active(void)
2553 unsigned long i, running = 0, uninterruptible = 0;
2555 for_each_online_cpu(i) {
2556 running += cpu_rq(i)->nr_running;
2557 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2560 if (unlikely((long)uninterruptible < 0))
2561 uninterruptible = 0;
2563 return running + uninterruptible;
2567 * Update rq->cpu_load[] statistics. This function is usually called every
2568 * scheduler tick (TICK_NSEC).
2570 static void update_cpu_load(struct rq *this_rq)
2572 unsigned long this_load = this_rq->load.weight;
2575 this_rq->nr_load_updates++;
2577 /* Update our load: */
2578 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2579 unsigned long old_load, new_load;
2581 /* scale is effectively 1 << i now, and >> i divides by scale */
2583 old_load = this_rq->cpu_load[i];
2584 new_load = this_load;
2586 * Round up the averaging division if load is increasing. This
2587 * prevents us from getting stuck on 9 if the load is 10, for
2590 if (new_load > old_load)
2591 new_load += scale-1;
2592 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2599 * double_rq_lock - safely lock two runqueues
2601 * Note this does not disable interrupts like task_rq_lock,
2602 * you need to do so manually before calling.
2604 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2605 __acquires(rq1->lock)
2606 __acquires(rq2->lock)
2608 BUG_ON(!irqs_disabled());
2610 spin_lock(&rq1->lock);
2611 __acquire(rq2->lock); /* Fake it out ;) */
2614 spin_lock(&rq1->lock);
2615 spin_lock(&rq2->lock);
2617 spin_lock(&rq2->lock);
2618 spin_lock(&rq1->lock);
2621 update_rq_clock(rq1);
2622 update_rq_clock(rq2);
2626 * double_rq_unlock - safely unlock two runqueues
2628 * Note this does not restore interrupts like task_rq_unlock,
2629 * you need to do so manually after calling.
2631 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2632 __releases(rq1->lock)
2633 __releases(rq2->lock)
2635 spin_unlock(&rq1->lock);
2637 spin_unlock(&rq2->lock);
2639 __release(rq2->lock);
2643 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2645 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2646 __releases(this_rq->lock)
2647 __acquires(busiest->lock)
2648 __acquires(this_rq->lock)
2652 if (unlikely(!irqs_disabled())) {
2653 /* printk() doesn't work good under rq->lock */
2654 spin_unlock(&this_rq->lock);
2657 if (unlikely(!spin_trylock(&busiest->lock))) {
2658 if (busiest < this_rq) {
2659 spin_unlock(&this_rq->lock);
2660 spin_lock(&busiest->lock);
2661 spin_lock(&this_rq->lock);
2664 spin_lock(&busiest->lock);
2670 * If dest_cpu is allowed for this process, migrate the task to it.
2671 * This is accomplished by forcing the cpu_allowed mask to only
2672 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2673 * the cpu_allowed mask is restored.
2675 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2677 struct migration_req req;
2678 unsigned long flags;
2681 rq = task_rq_lock(p, &flags);
2682 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2683 || unlikely(cpu_is_offline(dest_cpu)))
2686 /* force the process onto the specified CPU */
2687 if (migrate_task(p, dest_cpu, &req)) {
2688 /* Need to wait for migration thread (might exit: take ref). */
2689 struct task_struct *mt = rq->migration_thread;
2691 get_task_struct(mt);
2692 task_rq_unlock(rq, &flags);
2693 wake_up_process(mt);
2694 put_task_struct(mt);
2695 wait_for_completion(&req.done);
2700 task_rq_unlock(rq, &flags);
2704 * sched_exec - execve() is a valuable balancing opportunity, because at
2705 * this point the task has the smallest effective memory and cache footprint.
2707 void sched_exec(void)
2709 int new_cpu, this_cpu = get_cpu();
2710 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2712 if (new_cpu != this_cpu)
2713 sched_migrate_task(current, new_cpu);
2717 * pull_task - move a task from a remote runqueue to the local runqueue.
2718 * Both runqueues must be locked.
2720 static void pull_task(struct rq *src_rq, struct task_struct *p,
2721 struct rq *this_rq, int this_cpu)
2723 deactivate_task(src_rq, p, 0);
2724 set_task_cpu(p, this_cpu);
2725 activate_task(this_rq, p, 0);
2727 * Note that idle threads have a prio of MAX_PRIO, for this test
2728 * to be always true for them.
2730 check_preempt_curr(this_rq, p);
2734 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2737 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2738 struct sched_domain *sd, enum cpu_idle_type idle,
2742 * We do not migrate tasks that are:
2743 * 1) running (obviously), or
2744 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2745 * 3) are cache-hot on their current CPU.
2747 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2748 schedstat_inc(p, se.nr_failed_migrations_affine);
2753 if (task_running(rq, p)) {
2754 schedstat_inc(p, se.nr_failed_migrations_running);
2759 * Aggressive migration if:
2760 * 1) task is cache cold, or
2761 * 2) too many balance attempts have failed.
2764 if (!task_hot(p, rq->clock, sd) ||
2765 sd->nr_balance_failed > sd->cache_nice_tries) {
2766 #ifdef CONFIG_SCHEDSTATS
2767 if (task_hot(p, rq->clock, sd)) {
2768 schedstat_inc(sd, lb_hot_gained[idle]);
2769 schedstat_inc(p, se.nr_forced_migrations);
2775 if (task_hot(p, rq->clock, sd)) {
2776 schedstat_inc(p, se.nr_failed_migrations_hot);
2782 static unsigned long
2783 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2784 unsigned long max_load_move, struct sched_domain *sd,
2785 enum cpu_idle_type idle, int *all_pinned,
2786 int *this_best_prio, struct rq_iterator *iterator)
2788 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2789 struct task_struct *p;
2790 long rem_load_move = max_load_move;
2792 if (max_load_move == 0)
2798 * Start the load-balancing iterator:
2800 p = iterator->start(iterator->arg);
2802 if (!p || loops++ > sysctl_sched_nr_migrate)
2805 * To help distribute high priority tasks across CPUs we don't
2806 * skip a task if it will be the highest priority task (i.e. smallest
2807 * prio value) on its new queue regardless of its load weight
2809 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2810 SCHED_LOAD_SCALE_FUZZ;
2811 if ((skip_for_load && p->prio >= *this_best_prio) ||
2812 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2813 p = iterator->next(iterator->arg);
2817 pull_task(busiest, p, this_rq, this_cpu);
2819 rem_load_move -= p->se.load.weight;
2822 * We only want to steal up to the prescribed amount of weighted load.
2824 if (rem_load_move > 0) {
2825 if (p->prio < *this_best_prio)
2826 *this_best_prio = p->prio;
2827 p = iterator->next(iterator->arg);
2832 * Right now, this is one of only two places pull_task() is called,
2833 * so we can safely collect pull_task() stats here rather than
2834 * inside pull_task().
2836 schedstat_add(sd, lb_gained[idle], pulled);
2839 *all_pinned = pinned;
2841 return max_load_move - rem_load_move;
2845 * move_tasks tries to move up to max_load_move weighted load from busiest to
2846 * this_rq, as part of a balancing operation within domain "sd".
2847 * Returns 1 if successful and 0 otherwise.
2849 * Called with both runqueues locked.
2851 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2852 unsigned long max_load_move,
2853 struct sched_domain *sd, enum cpu_idle_type idle,
2856 const struct sched_class *class = sched_class_highest;
2857 unsigned long total_load_moved = 0;
2858 int this_best_prio = this_rq->curr->prio;
2862 class->load_balance(this_rq, this_cpu, busiest,
2863 max_load_move - total_load_moved,
2864 sd, idle, all_pinned, &this_best_prio);
2865 class = class->next;
2866 } while (class && max_load_move > total_load_moved);
2868 return total_load_moved > 0;
2872 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2873 struct sched_domain *sd, enum cpu_idle_type idle,
2874 struct rq_iterator *iterator)
2876 struct task_struct *p = iterator->start(iterator->arg);
2880 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2881 pull_task(busiest, p, this_rq, this_cpu);
2883 * Right now, this is only the second place pull_task()
2884 * is called, so we can safely collect pull_task()
2885 * stats here rather than inside pull_task().
2887 schedstat_inc(sd, lb_gained[idle]);
2891 p = iterator->next(iterator->arg);
2898 * move_one_task tries to move exactly one task from busiest to this_rq, as
2899 * part of active balancing operations within "domain".
2900 * Returns 1 if successful and 0 otherwise.
2902 * Called with both runqueues locked.
2904 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2905 struct sched_domain *sd, enum cpu_idle_type idle)
2907 const struct sched_class *class;
2909 for (class = sched_class_highest; class; class = class->next)
2910 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2917 * find_busiest_group finds and returns the busiest CPU group within the
2918 * domain. It calculates and returns the amount of weighted load which
2919 * should be moved to restore balance via the imbalance parameter.
2921 static struct sched_group *
2922 find_busiest_group(struct sched_domain *sd, int this_cpu,
2923 unsigned long *imbalance, enum cpu_idle_type idle,
2924 int *sd_idle, const cpumask_t *cpus, int *balance)
2926 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2927 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2928 unsigned long max_pull;
2929 unsigned long busiest_load_per_task, busiest_nr_running;
2930 unsigned long this_load_per_task, this_nr_running;
2931 int load_idx, group_imb = 0;
2932 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2933 int power_savings_balance = 1;
2934 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2935 unsigned long min_nr_running = ULONG_MAX;
2936 struct sched_group *group_min = NULL, *group_leader = NULL;
2939 max_load = this_load = total_load = total_pwr = 0;
2940 busiest_load_per_task = busiest_nr_running = 0;
2941 this_load_per_task = this_nr_running = 0;
2942 if (idle == CPU_NOT_IDLE)
2943 load_idx = sd->busy_idx;
2944 else if (idle == CPU_NEWLY_IDLE)
2945 load_idx = sd->newidle_idx;
2947 load_idx = sd->idle_idx;
2950 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2953 int __group_imb = 0;
2954 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2955 unsigned long sum_nr_running, sum_weighted_load;
2957 local_group = cpu_isset(this_cpu, group->cpumask);
2960 balance_cpu = first_cpu(group->cpumask);
2962 /* Tally up the load of all CPUs in the group */
2963 sum_weighted_load = sum_nr_running = avg_load = 0;
2965 min_cpu_load = ~0UL;
2967 for_each_cpu_mask(i, group->cpumask) {
2970 if (!cpu_isset(i, *cpus))
2975 if (*sd_idle && rq->nr_running)
2978 /* Bias balancing toward cpus of our domain */
2980 if (idle_cpu(i) && !first_idle_cpu) {
2985 load = target_load(i, load_idx);
2987 load = source_load(i, load_idx);
2988 if (load > max_cpu_load)
2989 max_cpu_load = load;
2990 if (min_cpu_load > load)
2991 min_cpu_load = load;
2995 sum_nr_running += rq->nr_running;
2996 sum_weighted_load += weighted_cpuload(i);
3000 * First idle cpu or the first cpu(busiest) in this sched group
3001 * is eligible for doing load balancing at this and above
3002 * domains. In the newly idle case, we will allow all the cpu's
3003 * to do the newly idle load balance.
3005 if (idle != CPU_NEWLY_IDLE && local_group &&
3006 balance_cpu != this_cpu && balance) {
3011 total_load += avg_load;
3012 total_pwr += group->__cpu_power;
3014 /* Adjust by relative CPU power of the group */
3015 avg_load = sg_div_cpu_power(group,
3016 avg_load * SCHED_LOAD_SCALE);
3018 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3021 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3024 this_load = avg_load;
3026 this_nr_running = sum_nr_running;
3027 this_load_per_task = sum_weighted_load;
3028 } else if (avg_load > max_load &&
3029 (sum_nr_running > group_capacity || __group_imb)) {
3030 max_load = avg_load;
3032 busiest_nr_running = sum_nr_running;
3033 busiest_load_per_task = sum_weighted_load;
3034 group_imb = __group_imb;
3037 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3039 * Busy processors will not participate in power savings
3042 if (idle == CPU_NOT_IDLE ||
3043 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3047 * If the local group is idle or completely loaded
3048 * no need to do power savings balance at this domain
3050 if (local_group && (this_nr_running >= group_capacity ||
3052 power_savings_balance = 0;
3055 * If a group is already running at full capacity or idle,
3056 * don't include that group in power savings calculations
3058 if (!power_savings_balance || sum_nr_running >= group_capacity
3063 * Calculate the group which has the least non-idle load.
3064 * This is the group from where we need to pick up the load
3067 if ((sum_nr_running < min_nr_running) ||
3068 (sum_nr_running == min_nr_running &&
3069 first_cpu(group->cpumask) <
3070 first_cpu(group_min->cpumask))) {
3072 min_nr_running = sum_nr_running;
3073 min_load_per_task = sum_weighted_load /
3078 * Calculate the group which is almost near its
3079 * capacity but still has some space to pick up some load
3080 * from other group and save more power
3082 if (sum_nr_running <= group_capacity - 1) {
3083 if (sum_nr_running > leader_nr_running ||
3084 (sum_nr_running == leader_nr_running &&
3085 first_cpu(group->cpumask) >
3086 first_cpu(group_leader->cpumask))) {
3087 group_leader = group;
3088 leader_nr_running = sum_nr_running;
3093 group = group->next;
3094 } while (group != sd->groups);
3096 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3099 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3101 if (this_load >= avg_load ||
3102 100*max_load <= sd->imbalance_pct*this_load)
3105 busiest_load_per_task /= busiest_nr_running;
3107 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3110 * We're trying to get all the cpus to the average_load, so we don't
3111 * want to push ourselves above the average load, nor do we wish to
3112 * reduce the max loaded cpu below the average load, as either of these
3113 * actions would just result in more rebalancing later, and ping-pong
3114 * tasks around. Thus we look for the minimum possible imbalance.
3115 * Negative imbalances (*we* are more loaded than anyone else) will
3116 * be counted as no imbalance for these purposes -- we can't fix that
3117 * by pulling tasks to us. Be careful of negative numbers as they'll
3118 * appear as very large values with unsigned longs.
3120 if (max_load <= busiest_load_per_task)
3124 * In the presence of smp nice balancing, certain scenarios can have
3125 * max load less than avg load(as we skip the groups at or below
3126 * its cpu_power, while calculating max_load..)
3128 if (max_load < avg_load) {
3130 goto small_imbalance;
3133 /* Don't want to pull so many tasks that a group would go idle */
3134 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3136 /* How much load to actually move to equalise the imbalance */
3137 *imbalance = min(max_pull * busiest->__cpu_power,
3138 (avg_load - this_load) * this->__cpu_power)
3142 * if *imbalance is less than the average load per runnable task
3143 * there is no gaurantee that any tasks will be moved so we'll have
3144 * a think about bumping its value to force at least one task to be
3147 if (*imbalance < busiest_load_per_task) {
3148 unsigned long tmp, pwr_now, pwr_move;
3152 pwr_move = pwr_now = 0;
3154 if (this_nr_running) {
3155 this_load_per_task /= this_nr_running;
3156 if (busiest_load_per_task > this_load_per_task)
3159 this_load_per_task = SCHED_LOAD_SCALE;
3161 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3162 busiest_load_per_task * imbn) {
3163 *imbalance = busiest_load_per_task;
3168 * OK, we don't have enough imbalance to justify moving tasks,
3169 * however we may be able to increase total CPU power used by
3173 pwr_now += busiest->__cpu_power *
3174 min(busiest_load_per_task, max_load);
3175 pwr_now += this->__cpu_power *
3176 min(this_load_per_task, this_load);
3177 pwr_now /= SCHED_LOAD_SCALE;
3179 /* Amount of load we'd subtract */
3180 tmp = sg_div_cpu_power(busiest,
3181 busiest_load_per_task * SCHED_LOAD_SCALE);
3183 pwr_move += busiest->__cpu_power *
3184 min(busiest_load_per_task, max_load - tmp);
3186 /* Amount of load we'd add */
3187 if (max_load * busiest->__cpu_power <
3188 busiest_load_per_task * SCHED_LOAD_SCALE)
3189 tmp = sg_div_cpu_power(this,
3190 max_load * busiest->__cpu_power);
3192 tmp = sg_div_cpu_power(this,
3193 busiest_load_per_task * SCHED_LOAD_SCALE);
3194 pwr_move += this->__cpu_power *
3195 min(this_load_per_task, this_load + tmp);
3196 pwr_move /= SCHED_LOAD_SCALE;
3198 /* Move if we gain throughput */
3199 if (pwr_move > pwr_now)
3200 *imbalance = busiest_load_per_task;
3206 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3207 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3210 if (this == group_leader && group_leader != group_min) {
3211 *imbalance = min_load_per_task;
3221 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3224 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3225 unsigned long imbalance, const cpumask_t *cpus)
3227 struct rq *busiest = NULL, *rq;
3228 unsigned long max_load = 0;
3231 for_each_cpu_mask(i, group->cpumask) {
3234 if (!cpu_isset(i, *cpus))
3238 wl = weighted_cpuload(i);
3240 if (rq->nr_running == 1 && wl > imbalance)
3243 if (wl > max_load) {
3253 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3254 * so long as it is large enough.
3256 #define MAX_PINNED_INTERVAL 512
3259 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3260 * tasks if there is an imbalance.
3262 static int load_balance(int this_cpu, struct rq *this_rq,
3263 struct sched_domain *sd, enum cpu_idle_type idle,
3264 int *balance, cpumask_t *cpus)
3266 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3267 struct sched_group *group;
3268 unsigned long imbalance;
3270 unsigned long flags;
3275 * When power savings policy is enabled for the parent domain, idle
3276 * sibling can pick up load irrespective of busy siblings. In this case,
3277 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3278 * portraying it as CPU_NOT_IDLE.
3280 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3281 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3284 schedstat_inc(sd, lb_count[idle]);
3287 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3294 schedstat_inc(sd, lb_nobusyg[idle]);
3298 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3300 schedstat_inc(sd, lb_nobusyq[idle]);
3304 BUG_ON(busiest == this_rq);
3306 schedstat_add(sd, lb_imbalance[idle], imbalance);
3309 if (busiest->nr_running > 1) {
3311 * Attempt to move tasks. If find_busiest_group has found
3312 * an imbalance but busiest->nr_running <= 1, the group is
3313 * still unbalanced. ld_moved simply stays zero, so it is
3314 * correctly treated as an imbalance.
3316 local_irq_save(flags);
3317 double_rq_lock(this_rq, busiest);
3318 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3319 imbalance, sd, idle, &all_pinned);
3320 double_rq_unlock(this_rq, busiest);
3321 local_irq_restore(flags);
3324 * some other cpu did the load balance for us.
3326 if (ld_moved && this_cpu != smp_processor_id())
3327 resched_cpu(this_cpu);
3329 /* All tasks on this runqueue were pinned by CPU affinity */
3330 if (unlikely(all_pinned)) {
3331 cpu_clear(cpu_of(busiest), *cpus);
3332 if (!cpus_empty(*cpus))
3339 schedstat_inc(sd, lb_failed[idle]);
3340 sd->nr_balance_failed++;
3342 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3344 spin_lock_irqsave(&busiest->lock, flags);
3346 /* don't kick the migration_thread, if the curr
3347 * task on busiest cpu can't be moved to this_cpu
3349 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3350 spin_unlock_irqrestore(&busiest->lock, flags);
3352 goto out_one_pinned;
3355 if (!busiest->active_balance) {
3356 busiest->active_balance = 1;
3357 busiest->push_cpu = this_cpu;
3360 spin_unlock_irqrestore(&busiest->lock, flags);
3362 wake_up_process(busiest->migration_thread);
3365 * We've kicked active balancing, reset the failure
3368 sd->nr_balance_failed = sd->cache_nice_tries+1;
3371 sd->nr_balance_failed = 0;
3373 if (likely(!active_balance)) {
3374 /* We were unbalanced, so reset the balancing interval */
3375 sd->balance_interval = sd->min_interval;
3378 * If we've begun active balancing, start to back off. This
3379 * case may not be covered by the all_pinned logic if there
3380 * is only 1 task on the busy runqueue (because we don't call
3383 if (sd->balance_interval < sd->max_interval)
3384 sd->balance_interval *= 2;
3387 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3388 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3393 schedstat_inc(sd, lb_balanced[idle]);
3395 sd->nr_balance_failed = 0;
3398 /* tune up the balancing interval */
3399 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3400 (sd->balance_interval < sd->max_interval))
3401 sd->balance_interval *= 2;
3403 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3404 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3410 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3411 * tasks if there is an imbalance.
3413 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3414 * this_rq is locked.
3417 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3420 struct sched_group *group;
3421 struct rq *busiest = NULL;
3422 unsigned long imbalance;
3430 * When power savings policy is enabled for the parent domain, idle
3431 * sibling can pick up load irrespective of busy siblings. In this case,
3432 * let the state of idle sibling percolate up as IDLE, instead of
3433 * portraying it as CPU_NOT_IDLE.
3435 if (sd->flags & SD_SHARE_CPUPOWER &&
3436 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3439 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3441 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3442 &sd_idle, cpus, NULL);
3444 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3448 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3450 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3454 BUG_ON(busiest == this_rq);
3456 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);