Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74 #include <linux/init_task.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79 #ifdef CONFIG_PARAVIRT
80 #include <asm/paravirt.h>
81 #endif
82
83 #include "sched_cpupri.h"
84 #include "workqueue_sched.h"
85 #include "sched_autogroup.h"
86
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/sched.h>
89
90 /*
91  * Convert user-nice values [ -20 ... 0 ... 19 ]
92  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
93  * and back.
94  */
95 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
96 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
97 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
98
99 /*
100  * 'User priority' is the nice value converted to something we
101  * can work with better when scaling various scheduler parameters,
102  * it's a [ 0 ... 39 ] range.
103  */
104 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
105 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
106 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
107
108 /*
109  * Helpers for converting nanosecond timing to jiffy resolution
110  */
111 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
112
113 #define NICE_0_LOAD             SCHED_LOAD_SCALE
114 #define NICE_0_SHIFT            SCHED_LOAD_SHIFT
115
116 /*
117  * These are the 'tuning knobs' of the scheduler:
118  *
119  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
120  * Timeslices get refilled after they expire.
121  */
122 #define DEF_TIMESLICE           (100 * HZ / 1000)
123
124 /*
125  * single value that denotes runtime == period, ie unlimited time.
126  */
127 #define RUNTIME_INF     ((u64)~0ULL)
128
129 static inline int rt_policy(int policy)
130 {
131         if (policy == SCHED_FIFO || policy == SCHED_RR)
132                 return 1;
133         return 0;
134 }
135
136 static inline int task_has_rt_policy(struct task_struct *p)
137 {
138         return rt_policy(p->policy);
139 }
140
141 /*
142  * This is the priority-queue data structure of the RT scheduling class:
143  */
144 struct rt_prio_array {
145         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
146         struct list_head queue[MAX_RT_PRIO];
147 };
148
149 struct rt_bandwidth {
150         /* nests inside the rq lock: */
151         raw_spinlock_t          rt_runtime_lock;
152         ktime_t                 rt_period;
153         u64                     rt_runtime;
154         struct hrtimer          rt_period_timer;
155 };
156
157 static struct rt_bandwidth def_rt_bandwidth;
158
159 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
160
161 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
162 {
163         struct rt_bandwidth *rt_b =
164                 container_of(timer, struct rt_bandwidth, rt_period_timer);
165         ktime_t now;
166         int overrun;
167         int idle = 0;
168
169         for (;;) {
170                 now = hrtimer_cb_get_time(timer);
171                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
172
173                 if (!overrun)
174                         break;
175
176                 idle = do_sched_rt_period_timer(rt_b, overrun);
177         }
178
179         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
180 }
181
182 static
183 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
184 {
185         rt_b->rt_period = ns_to_ktime(period);
186         rt_b->rt_runtime = runtime;
187
188         raw_spin_lock_init(&rt_b->rt_runtime_lock);
189
190         hrtimer_init(&rt_b->rt_period_timer,
191                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
192         rt_b->rt_period_timer.function = sched_rt_period_timer;
193 }
194
195 static inline int rt_bandwidth_enabled(void)
196 {
197         return sysctl_sched_rt_runtime >= 0;
198 }
199
200 static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
201 {
202         unsigned long delta;
203         ktime_t soft, hard, now;
204
205         for (;;) {
206                 if (hrtimer_active(period_timer))
207                         break;
208
209                 now = hrtimer_cb_get_time(period_timer);
210                 hrtimer_forward(period_timer, now, period);
211
212                 soft = hrtimer_get_softexpires(period_timer);
213                 hard = hrtimer_get_expires(period_timer);
214                 delta = ktime_to_ns(ktime_sub(hard, soft));
215                 __hrtimer_start_range_ns(period_timer, soft, delta,
216                                          HRTIMER_MODE_ABS_PINNED, 0);
217         }
218 }
219
220 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221 {
222         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223                 return;
224
225         if (hrtimer_active(&rt_b->rt_period_timer))
226                 return;
227
228         raw_spin_lock(&rt_b->rt_runtime_lock);
229         start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
230         raw_spin_unlock(&rt_b->rt_runtime_lock);
231 }
232
233 #ifdef CONFIG_RT_GROUP_SCHED
234 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
235 {
236         hrtimer_cancel(&rt_b->rt_period_timer);
237 }
238 #endif
239
240 /*
241  * sched_domains_mutex serializes calls to init_sched_domains,
242  * detach_destroy_domains and partition_sched_domains.
243  */
244 static DEFINE_MUTEX(sched_domains_mutex);
245
246 #ifdef CONFIG_CGROUP_SCHED
247
248 #include <linux/cgroup.h>
249
250 struct cfs_rq;
251
252 static LIST_HEAD(task_groups);
253
254 struct cfs_bandwidth {
255 #ifdef CONFIG_CFS_BANDWIDTH
256         raw_spinlock_t lock;
257         ktime_t period;
258         u64 quota, runtime;
259         s64 hierarchal_quota;
260         u64 runtime_expires;
261
262         int idle, timer_active;
263         struct hrtimer period_timer, slack_timer;
264         struct list_head throttled_cfs_rq;
265
266         /* statistics */
267         int nr_periods, nr_throttled;
268         u64 throttled_time;
269 #endif
270 };
271
272 /* task group related information */
273 struct task_group {
274         struct cgroup_subsys_state css;
275
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277         /* schedulable entities of this group on each cpu */
278         struct sched_entity **se;
279         /* runqueue "owned" by this group on each cpu */
280         struct cfs_rq **cfs_rq;
281         unsigned long shares;
282
283         atomic_t load_weight;
284 #endif
285
286 #ifdef CONFIG_RT_GROUP_SCHED
287         struct sched_rt_entity **rt_se;
288         struct rt_rq **rt_rq;
289
290         struct rt_bandwidth rt_bandwidth;
291 #endif
292
293         struct rcu_head rcu;
294         struct list_head list;
295
296         struct task_group *parent;
297         struct list_head siblings;
298         struct list_head children;
299
300 #ifdef CONFIG_SCHED_AUTOGROUP
301         struct autogroup *autogroup;
302 #endif
303
304         struct cfs_bandwidth cfs_bandwidth;
305 };
306
307 /* task_group_lock serializes the addition/removal of task groups */
308 static DEFINE_SPINLOCK(task_group_lock);
309
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311
312 # define ROOT_TASK_GROUP_LOAD   NICE_0_LOAD
313
314 /*
315  * A weight of 0 or 1 can cause arithmetics problems.
316  * A weight of a cfs_rq is the sum of weights of which entities
317  * are queued on this cfs_rq, so a weight of a entity should not be
318  * too large, so as the shares value of a task group.
319  * (The default weight is 1024 - so there's no practical
320  *  limitation from this.)
321  */
322 #define MIN_SHARES      (1UL <<  1)
323 #define MAX_SHARES      (1UL << 18)
324
325 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
326 #endif
327
328 /* Default task group.
329  *      Every task in system belong to this group at bootup.
330  */
331 struct task_group root_task_group;
332
333 #endif  /* CONFIG_CGROUP_SCHED */
334
335 /* CFS-related fields in a runqueue */
336 struct cfs_rq {
337         struct load_weight load;
338         unsigned long nr_running, h_nr_running;
339
340         u64 exec_clock;
341         u64 min_vruntime;
342 #ifndef CONFIG_64BIT
343         u64 min_vruntime_copy;
344 #endif
345
346         struct rb_root tasks_timeline;
347         struct rb_node *rb_leftmost;
348
349         struct list_head tasks;
350         struct list_head *balance_iterator;
351
352         /*
353          * 'curr' points to currently running entity on this cfs_rq.
354          * It is set to NULL otherwise (i.e when none are currently running).
355          */
356         struct sched_entity *curr, *next, *last, *skip;
357
358 #ifdef  CONFIG_SCHED_DEBUG
359         unsigned int nr_spread_over;
360 #endif
361
362 #ifdef CONFIG_FAIR_GROUP_SCHED
363         struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
364
365         /*
366          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
367          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
368          * (like users, containers etc.)
369          *
370          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
371          * list is used during load balance.
372          */
373         int on_list;
374         struct list_head leaf_cfs_rq_list;
375         struct task_group *tg;  /* group that "owns" this runqueue */
376
377 #ifdef CONFIG_SMP
378         /*
379          * the part of load.weight contributed by tasks
380          */
381         unsigned long task_weight;
382
383         /*
384          *   h_load = weight * f(tg)
385          *
386          * Where f(tg) is the recursive weight fraction assigned to
387          * this group.
388          */
389         unsigned long h_load;
390
391         /*
392          * Maintaining per-cpu shares distribution for group scheduling
393          *
394          * load_stamp is the last time we updated the load average
395          * load_last is the last time we updated the load average and saw load
396          * load_unacc_exec_time is currently unaccounted execution time
397          */
398         u64 load_avg;
399         u64 load_period;
400         u64 load_stamp, load_last, load_unacc_exec_time;
401
402         unsigned long load_contribution;
403 #endif
404 #ifdef CONFIG_CFS_BANDWIDTH
405         int runtime_enabled;
406         u64 runtime_expires;
407         s64 runtime_remaining;
408
409         u64 throttled_timestamp;
410         int throttled, throttle_count;
411         struct list_head throttled_list;
412 #endif
413 #endif
414 };
415
416 #ifdef CONFIG_FAIR_GROUP_SCHED
417 #ifdef CONFIG_CFS_BANDWIDTH
418 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
419 {
420         return &tg->cfs_bandwidth;
421 }
422
423 static inline u64 default_cfs_period(void);
424 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
425 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
426
427 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
428 {
429         struct cfs_bandwidth *cfs_b =
430                 container_of(timer, struct cfs_bandwidth, slack_timer);
431         do_sched_cfs_slack_timer(cfs_b);
432
433         return HRTIMER_NORESTART;
434 }
435
436 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
437 {
438         struct cfs_bandwidth *cfs_b =
439                 container_of(timer, struct cfs_bandwidth, period_timer);
440         ktime_t now;
441         int overrun;
442         int idle = 0;
443
444         for (;;) {
445                 now = hrtimer_cb_get_time(timer);
446                 overrun = hrtimer_forward(timer, now, cfs_b->period);
447
448                 if (!overrun)
449                         break;
450
451                 idle = do_sched_cfs_period_timer(cfs_b, overrun);
452         }
453
454         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
455 }
456
457 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
458 {
459         raw_spin_lock_init(&cfs_b->lock);
460         cfs_b->runtime = 0;
461         cfs_b->quota = RUNTIME_INF;
462         cfs_b->period = ns_to_ktime(default_cfs_period());
463
464         INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
465         hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
466         cfs_b->period_timer.function = sched_cfs_period_timer;
467         hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
468         cfs_b->slack_timer.function = sched_cfs_slack_timer;
469 }
470
471 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
472 {
473         cfs_rq->runtime_enabled = 0;
474         INIT_LIST_HEAD(&cfs_rq->throttled_list);
475 }
476
477 /* requires cfs_b->lock, may release to reprogram timer */
478 static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
479 {
480         /*
481          * The timer may be active because we're trying to set a new bandwidth
482          * period or because we're racing with the tear-down path
483          * (timer_active==0 becomes visible before the hrtimer call-back
484          * terminates).  In either case we ensure that it's re-programmed
485          */
486         while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
487                 raw_spin_unlock(&cfs_b->lock);
488                 /* ensure cfs_b->lock is available while we wait */
489                 hrtimer_cancel(&cfs_b->period_timer);
490
491                 raw_spin_lock(&cfs_b->lock);
492                 /* if someone else restarted the timer then we're done */
493                 if (cfs_b->timer_active)
494                         return;
495         }
496
497         cfs_b->timer_active = 1;
498         start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
499 }
500
501 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
502 {
503         hrtimer_cancel(&cfs_b->period_timer);
504         hrtimer_cancel(&cfs_b->slack_timer);
505 }
506 #else
507 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
508 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
509 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
510
511 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
512 {
513         return NULL;
514 }
515 #endif /* CONFIG_CFS_BANDWIDTH */
516 #endif /* CONFIG_FAIR_GROUP_SCHED */
517
518 /* Real-Time classes' related field in a runqueue: */
519 struct rt_rq {
520         struct rt_prio_array active;
521         unsigned long rt_nr_running;
522 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
523         struct {
524                 int curr; /* highest queued rt task prio */
525 #ifdef CONFIG_SMP
526                 int next; /* next highest */
527 #endif
528         } highest_prio;
529 #endif
530 #ifdef CONFIG_SMP
531         unsigned long rt_nr_migratory;
532         unsigned long rt_nr_total;
533         int overloaded;
534         struct plist_head pushable_tasks;
535 #endif
536         int rt_throttled;
537         u64 rt_time;
538         u64 rt_runtime;
539         /* Nests inside the rq lock: */
540         raw_spinlock_t rt_runtime_lock;
541
542 #ifdef CONFIG_RT_GROUP_SCHED
543         unsigned long rt_nr_boosted;
544
545         struct rq *rq;
546         struct list_head leaf_rt_rq_list;
547         struct task_group *tg;
548 #endif
549 };
550
551 #ifdef CONFIG_SMP
552
553 /*
554  * We add the notion of a root-domain which will be used to define per-domain
555  * variables. Each exclusive cpuset essentially defines an island domain by
556  * fully partitioning the member cpus from any other cpuset. Whenever a new
557  * exclusive cpuset is created, we also create and attach a new root-domain
558  * object.
559  *
560  */
561 struct root_domain {
562         atomic_t refcount;
563         atomic_t rto_count;
564         struct rcu_head rcu;
565         cpumask_var_t span;
566         cpumask_var_t online;
567
568         /*
569          * The "RT overload" flag: it gets set if a CPU has more than
570          * one runnable RT task.
571          */
572         cpumask_var_t rto_mask;
573         struct cpupri cpupri;
574 };
575
576 /*
577  * By default the system creates a single root-domain with all cpus as
578  * members (mimicking the global state we have today).
579  */
580 static struct root_domain def_root_domain;
581
582 #endif /* CONFIG_SMP */
583
584 /*
585  * This is the main, per-CPU runqueue data structure.
586  *
587  * Locking rule: those places that want to lock multiple runqueues
588  * (such as the load balancing or the thread migration code), lock
589  * acquire operations must be ordered by ascending &runqueue.
590  */
591 struct rq {
592         /* runqueue lock: */
593         raw_spinlock_t lock;
594
595         /*
596          * nr_running and cpu_load should be in the same cacheline because
597          * remote CPUs use both these fields when doing load calculation.
598          */
599         unsigned long nr_running;
600         #define CPU_LOAD_IDX_MAX 5
601         unsigned long cpu_load[CPU_LOAD_IDX_MAX];
602         unsigned long last_load_update_tick;
603 #ifdef CONFIG_NO_HZ
604         u64 nohz_stamp;
605         unsigned char nohz_balance_kick;
606 #endif
607         int skip_clock_update;
608
609         /* capture load from *all* tasks on this cpu: */
610         struct load_weight load;
611         unsigned long nr_load_updates;
612         u64 nr_switches;
613
614         struct cfs_rq cfs;
615         struct rt_rq rt;
616
617 #ifdef CONFIG_FAIR_GROUP_SCHED
618         /* list of leaf cfs_rq on this cpu: */
619         struct list_head leaf_cfs_rq_list;
620 #endif
621 #ifdef CONFIG_RT_GROUP_SCHED
622         struct list_head leaf_rt_rq_list;
623 #endif
624
625         /*
626          * This is part of a global counter where only the total sum
627          * over all CPUs matters. A task can increase this counter on
628          * one CPU and if it got migrated afterwards it may decrease
629          * it on another CPU. Always updated under the runqueue lock:
630          */
631         unsigned long nr_uninterruptible;
632
633         struct task_struct *curr, *idle, *stop;
634         unsigned long next_balance;
635         struct mm_struct *prev_mm;
636
637         u64 clock;
638         u64 clock_task;
639
640         atomic_t nr_iowait;
641
642 #ifdef CONFIG_SMP
643         struct root_domain *rd;
644         struct sched_domain *sd;
645
646         unsigned long cpu_power;
647
648         unsigned char idle_balance;
649         /* For active balancing */
650         int post_schedule;
651         int active_balance;
652         int push_cpu;
653         struct cpu_stop_work active_balance_work;
654         /* cpu of this runqueue: */
655         int cpu;
656         int online;
657
658         u64 rt_avg;
659         u64 age_stamp;
660         u64 idle_stamp;
661         u64 avg_idle;
662 #endif
663
664 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
665         u64 prev_irq_time;
666 #endif
667 #ifdef CONFIG_PARAVIRT
668         u64 prev_steal_time;
669 #endif
670 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
671         u64 prev_steal_time_rq;
672 #endif
673
674         /* calc_load related fields */
675         unsigned long calc_load_update;
676         long calc_load_active;
677
678 #ifdef CONFIG_SCHED_HRTICK
679 #ifdef CONFIG_SMP
680         int hrtick_csd_pending;
681         struct call_single_data hrtick_csd;
682 #endif
683         struct hrtimer hrtick_timer;
684 #endif
685
686 #ifdef CONFIG_SCHEDSTATS
687         /* latency stats */
688         struct sched_info rq_sched_info;
689         unsigned long long rq_cpu_time;
690         /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
691
692         /* sys_sched_yield() stats */
693         unsigned int yld_count;
694
695         /* schedule() stats */
696         unsigned int sched_switch;
697         unsigned int sched_count;
698         unsigned int sched_goidle;
699
700         /* try_to_wake_up() stats */
701         unsigned int ttwu_count;
702         unsigned int ttwu_local;
703 #endif
704
705 #ifdef CONFIG_SMP
706         struct llist_head wake_list;
707 #endif
708 };
709
710 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
711
712
713 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
714
715 static inline int cpu_of(struct rq *rq)
716 {
717 #ifdef CONFIG_SMP
718         return rq->cpu;
719 #else
720         return 0;
721 #endif
722 }
723
724 #define rcu_dereference_check_sched_domain(p) \
725         rcu_dereference_check((p), \
726                               lockdep_is_held(&sched_domains_mutex))
727
728 /*
729  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
730  * See detach_destroy_domains: synchronize_sched for details.
731  *
732  * The domain tree of any CPU may only be accessed from within
733  * preempt-disabled sections.
734  */
735 #define for_each_domain(cpu, __sd) \
736         for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
737
738 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
739 #define this_rq()               (&__get_cpu_var(runqueues))
740 #define task_rq(p)              cpu_rq(task_cpu(p))
741 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
742 #define raw_rq()                (&__raw_get_cpu_var(runqueues))
743
744 #ifdef CONFIG_CGROUP_SCHED
745
746 /*
747  * Return the group to which this tasks belongs.
748  *
749  * We cannot use task_subsys_state() and friends because the cgroup
750  * subsystem changes that value before the cgroup_subsys::attach() method
751  * is called, therefore we cannot pin it and might observe the wrong value.
752  *
753  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
754  * core changes this before calling sched_move_task().
755  *
756  * Instead we use a 'copy' which is updated from sched_move_task() while
757  * holding both task_struct::pi_lock and rq::lock.
758  */
759 static inline struct task_group *task_group(struct task_struct *p)
760 {
761         return p->sched_task_group;
762 }
763
764 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
765 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
766 {
767 #ifdef CONFIG_FAIR_GROUP_SCHED
768         p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
769         p->se.parent = task_group(p)->se[cpu];
770 #endif
771
772 #ifdef CONFIG_RT_GROUP_SCHED
773         p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
774         p->rt.parent = task_group(p)->rt_se[cpu];
775 #endif
776 }
777
778 #else /* CONFIG_CGROUP_SCHED */
779
780 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
781 static inline struct task_group *task_group(struct task_struct *p)
782 {
783         return NULL;
784 }
785
786 #endif /* CONFIG_CGROUP_SCHED */
787
788 static void update_rq_clock_task(struct rq *rq, s64 delta);
789
790 static void update_rq_clock(struct rq *rq)
791 {
792         s64 delta;
793
794         if (rq->skip_clock_update > 0)
795                 return;
796
797         delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
798         rq->clock += delta;
799         update_rq_clock_task(rq, delta);
800 }
801
802 /*
803  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
804  */
805 #ifdef CONFIG_SCHED_DEBUG
806 # define const_debug __read_mostly
807 #else
808 # define const_debug static const
809 #endif
810
811 /**
812  * runqueue_is_locked - Returns true if the current cpu runqueue is locked
813  * @cpu: the processor in question.
814  *
815  * This interface allows printk to be called with the runqueue lock
816  * held and know whether or not it is OK to wake up the klogd.
817  */
818 int runqueue_is_locked(int cpu)
819 {
820         return raw_spin_is_locked(&cpu_rq(cpu)->lock);
821 }
822
823 /*
824  * Debugging: various feature bits
825  */
826
827 #define SCHED_FEAT(name, enabled)       \
828         __SCHED_FEAT_##name ,
829
830 enum {
831 #include "sched_features.h"
832 };
833
834 #undef SCHED_FEAT
835
836 #define SCHED_FEAT(name, enabled)       \
837         (1UL << __SCHED_FEAT_##name) * enabled |
838
839 const_debug unsigned int sysctl_sched_features =
840 #include "sched_features.h"
841         0;
842
843 #undef SCHED_FEAT
844
845 #ifdef CONFIG_SCHED_DEBUG
846 #define SCHED_FEAT(name, enabled)       \
847         #name ,
848
849 static __read_mostly char *sched_feat_names[] = {
850 #include "sched_features.h"
851         NULL
852 };
853
854 #undef SCHED_FEAT
855
856 static int sched_feat_show(struct seq_file *m, void *v)
857 {
858         int i;
859
860         for (i = 0; sched_feat_names[i]; i++) {
861                 if (!(sysctl_sched_features & (1UL << i)))
862                         seq_puts(m, "NO_");
863                 seq_printf(m, "%s ", sched_feat_names[i]);
864         }
865         seq_puts(m, "\n");
866
867         return 0;
868 }
869
870 static ssize_t
871 sched_feat_write(struct file *filp, const char __user *ubuf,
872                 size_t cnt, loff_t *ppos)
873 {
874         char buf[64];
875         char *cmp;
876         int neg = 0;
877         int i;
878
879         if (cnt > 63)
880                 cnt = 63;
881
882         if (copy_from_user(&buf, ubuf, cnt))
883                 return -EFAULT;
884
885         buf[cnt] = 0;
886         cmp = strstrip(buf);
887
888         if (strncmp(cmp, "NO_", 3) == 0) {
889                 neg = 1;
890                 cmp += 3;
891         }
892
893         for (i = 0; sched_feat_names[i]; i++) {
894                 if (strcmp(cmp, sched_feat_names[i]) == 0) {
895                         if (neg)
896                                 sysctl_sched_features &= ~(1UL << i);
897                         else
898                                 sysctl_sched_features |= (1UL << i);
899                         break;
900                 }
901         }
902
903         if (!sched_feat_names[i])
904                 return -EINVAL;
905
906         *ppos += cnt;
907
908         return cnt;
909 }
910
911 static int sched_feat_open(struct inode *inode, struct file *filp)
912 {
913         return single_open(filp, sched_feat_show, NULL);
914 }
915
916 static const struct file_operations sched_feat_fops = {
917         .open           = sched_feat_open,
918         .write          = sched_feat_write,
919         .read           = seq_read,
920         .llseek         = seq_lseek,
921         .release        = single_release,
922 };
923
924 static __init int sched_init_debug(void)
925 {
926         debugfs_create_file("sched_features", 0644, NULL, NULL,
927                         &sched_feat_fops);
928
929         return 0;
930 }
931 late_initcall(sched_init_debug);
932
933 #endif
934
935 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
936
937 /*
938  * Number of tasks to iterate in a single balance run.
939  * Limited because this is done with IRQs disabled.
940  */
941 const_debug unsigned int sysctl_sched_nr_migrate = 32;
942
943 /*
944  * period over which we average the RT time consumption, measured
945  * in ms.
946  *
947  * default: 1s
948  */
949 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
950
951 /*
952  * period over which we measure -rt task cpu usage in us.
953  * default: 1s
954  */
955 unsigned int sysctl_sched_rt_period = 1000000;
956
957 static __read_mostly int scheduler_running;
958
959 /*
960  * part of the period that we allow rt tasks to run in us.
961  * default: 0.95s
962  */
963 int sysctl_sched_rt_runtime = 950000;
964
965 static inline u64 global_rt_period(void)
966 {
967         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
968 }
969
970 static inline u64 global_rt_runtime(void)
971 {
972         if (sysctl_sched_rt_runtime < 0)
973                 return RUNTIME_INF;
974
975         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
976 }
977
978 #ifndef prepare_arch_switch
979 # define prepare_arch_switch(next)      do { } while (0)
980 #endif
981 #ifndef finish_arch_switch
982 # define finish_arch_switch(prev)       do { } while (0)
983 #endif
984
985 static inline int task_current(struct rq *rq, struct task_struct *p)
986 {
987         return rq->curr == p;
988 }
989
990 static inline int task_running(struct rq *rq, struct task_struct *p)
991 {
992 #ifdef CONFIG_SMP
993         return p->on_cpu;
994 #else
995         return task_current(rq, p);
996 #endif
997 }
998
999 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1000 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1001 {
1002 #ifdef CONFIG_SMP
1003         /*
1004          * We can optimise this out completely for !SMP, because the
1005          * SMP rebalancing from interrupt is the only thing that cares
1006          * here.
1007          */
1008         next->on_cpu = 1;
1009 #endif
1010 }
1011
1012 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1013 {
1014 #ifdef CONFIG_SMP
1015         /*
1016          * After ->on_cpu is cleared, the task can be moved to a different CPU.
1017          * We must ensure this doesn't happen until the switch is completely
1018          * finished.
1019          */
1020         smp_wmb();
1021         prev->on_cpu = 0;
1022 #endif
1023 #ifdef CONFIG_DEBUG_SPINLOCK
1024         /* this is a valid case when another task releases the spinlock */
1025         rq->lock.owner = current;
1026 #endif
1027         /*
1028          * If we are tracking spinlock dependencies then we have to
1029          * fix up the runqueue lock - which gets 'carried over' from
1030          * prev into current:
1031          */
1032         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1033
1034         raw_spin_unlock_irq(&rq->lock);
1035 }
1036
1037 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1038 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1039 {
1040 #ifdef CONFIG_SMP
1041         /*
1042          * We can optimise this out completely for !SMP, because the
1043          * SMP rebalancing from interrupt is the only thing that cares
1044          * here.
1045          */
1046         next->on_cpu = 1;
1047 #endif
1048 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1049         raw_spin_unlock_irq(&rq->lock);
1050 #else
1051         raw_spin_unlock(&rq->lock);
1052 #endif
1053 }
1054
1055 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1056 {
1057 #ifdef CONFIG_SMP
1058         /*
1059          * After ->on_cpu is cleared, the task can be moved to a different CPU.
1060          * We must ensure this doesn't happen until the switch is completely
1061          * finished.
1062          */
1063         smp_wmb();
1064         prev->on_cpu = 0;
1065 #endif
1066 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1067         local_irq_enable();
1068 #endif
1069 }
1070 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1071
1072 /*
1073  * __task_rq_lock - lock the rq @p resides on.
1074  */
1075 static inline struct rq *__task_rq_lock(struct task_struct *p)
1076         __acquires(rq->lock)
1077 {
1078         struct rq *rq;
1079
1080         lockdep_assert_held(&p->pi_lock);
1081
1082         for (;;) {
1083                 rq = task_rq(p);
1084                 raw_spin_lock(&rq->lock);
1085                 if (likely(rq == task_rq(p)))
1086                         return rq;
1087                 raw_spin_unlock(&rq->lock);
1088         }
1089 }
1090
1091 /*
1092  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1093  */
1094 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1095         __acquires(p->pi_lock)
1096         __acquires(rq->lock)
1097 {
1098         struct rq *rq;
1099
1100         for (;;) {
1101                 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1102                 rq = task_rq(p);
1103                 raw_spin_lock(&rq->lock);
1104                 if (likely(rq == task_rq(p)))
1105                         return rq;
1106                 raw_spin_unlock(&rq->lock);
1107                 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1108         }
1109 }
1110
1111 static void __task_rq_unlock(struct rq *rq)
1112         __releases(rq->lock)
1113 {
1114         raw_spin_unlock(&rq->lock);
1115 }
1116
1117 static inline void
1118 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1119         __releases(rq->lock)
1120         __releases(p->pi_lock)
1121 {
1122         raw_spin_unlock(&rq->lock);
1123         raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1124 }
1125
1126 /*
1127  * this_rq_lock - lock this runqueue and disable interrupts.
1128  */
1129 static struct rq *this_rq_lock(void)
1130         __acquires(rq->lock)
1131 {
1132         struct rq *rq;
1133
1134         local_irq_disable();
1135         rq = this_rq();
1136         raw_spin_lock(&rq->lock);
1137
1138         return rq;
1139 }
1140
1141 #ifdef CONFIG_SCHED_HRTICK
1142 /*
1143  * Use HR-timers to deliver accurate preemption points.
1144  *
1145  * Its all a bit involved since we cannot program an hrt while holding the
1146  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1147  * reschedule event.
1148  *
1149  * When we get rescheduled we reprogram the hrtick_timer outside of the
1150  * rq->lock.
1151  */
1152
1153 /*
1154  * Use hrtick when:
1155  *  - enabled by features
1156  *  - hrtimer is actually high res
1157  */
1158 static inline int hrtick_enabled(struct rq *rq)
1159 {
1160         if (!sched_feat(HRTICK))
1161                 return 0;
1162         if (!cpu_active(cpu_of(rq)))
1163                 return 0;
1164         return hrtimer_is_hres_active(&rq->hrtick_timer);
1165 }
1166
1167 static void hrtick_clear(struct rq *rq)
1168 {
1169         if (hrtimer_active(&rq->hrtick_timer))
1170                 hrtimer_cancel(&rq->hrtick_timer);
1171 }
1172
1173 /*
1174  * High-resolution timer tick.
1175  * Runs from hardirq context with interrupts disabled.
1176  */
1177 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1178 {
1179         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1180
1181         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1182
1183         raw_spin_lock(&rq->lock);
1184         update_rq_clock(rq);
1185         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1186         raw_spin_unlock(&rq->lock);
1187
1188         return HRTIMER_NORESTART;
1189 }
1190
1191 #ifdef CONFIG_SMP
1192 /*
1193  * called from hardirq (IPI) context
1194  */
1195 static void __hrtick_start(void *arg)
1196 {
1197         struct rq *rq = arg;
1198
1199         raw_spin_lock(&rq->lock);
1200         hrtimer_restart(&rq->hrtick_timer);
1201         rq->hrtick_csd_pending = 0;
1202         raw_spin_unlock(&rq->lock);
1203 }
1204
1205 /*
1206  * Called to set the hrtick timer state.
1207  *
1208  * called with rq->lock held and irqs disabled
1209  */
1210 static void hrtick_start(struct rq *rq, u64 delay)
1211 {
1212         struct hrtimer *timer = &rq->hrtick_timer;
1213         ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1214
1215         hrtimer_set_expires(timer, time);
1216
1217         if (rq == this_rq()) {
1218                 hrtimer_restart(timer);
1219         } else if (!rq->hrtick_csd_pending) {
1220                 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1221                 rq->hrtick_csd_pending = 1;
1222         }
1223 }
1224
1225 static int
1226 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1227 {
1228         int cpu = (int)(long)hcpu;
1229
1230         switch (action) {
1231         case CPU_UP_CANCELED:
1232         case CPU_UP_CANCELED_FROZEN:
1233         case CPU_DOWN_PREPARE:
1234         case CPU_DOWN_PREPARE_FROZEN:
1235         case CPU_DEAD:
1236         case CPU_DEAD_FROZEN:
1237                 hrtick_clear(cpu_rq(cpu));
1238                 return NOTIFY_OK;
1239         }
1240
1241         return NOTIFY_DONE;
1242 }
1243
1244 static __init void init_hrtick(void)
1245 {
1246         hotcpu_notifier(hotplug_hrtick, 0);
1247 }
1248 #else
1249 /*
1250  * Called to set the hrtick timer state.
1251  *
1252  * called with rq->lock held and irqs disabled
1253  */
1254 static void hrtick_start(struct rq *rq, u64 delay)
1255 {
1256         __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1257                         HRTIMER_MODE_REL_PINNED, 0);
1258 }
1259
1260 static inline void init_hrtick(void)
1261 {
1262 }
1263 #endif /* CONFIG_SMP */
1264
1265 static void init_rq_hrtick(struct rq *rq)
1266 {
1267 #ifdef CONFIG_SMP
1268         rq->hrtick_csd_pending = 0;
1269
1270         rq->hrtick_csd.flags = 0;
1271         rq->hrtick_csd.func = __hrtick_start;
1272         rq->hrtick_csd.info = rq;
1273 #endif
1274
1275         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1276         rq->hrtick_timer.function = hrtick;
1277 }
1278 #else   /* CONFIG_SCHED_HRTICK */
1279 static inline void hrtick_clear(struct rq *rq)
1280 {
1281 }
1282
1283 static inline void init_rq_hrtick(struct rq *rq)
1284 {
1285 }
1286
1287 static inline void init_hrtick(void)
1288 {
1289 }
1290 #endif  /* CONFIG_SCHED_HRTICK */
1291
1292 /*
1293  * resched_task - mark a task 'to be rescheduled now'.
1294  *
1295  * On UP this means the setting of the need_resched flag, on SMP it
1296  * might also involve a cross-CPU call to trigger the scheduler on
1297  * the target CPU.
1298  */
1299 #ifdef CONFIG_SMP
1300
1301 #ifndef tsk_is_polling
1302 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1303 #endif
1304
1305 static void resched_task(struct task_struct *p)
1306 {
1307         int cpu;
1308
1309         assert_raw_spin_locked(&task_rq(p)->lock);
1310
1311         if (test_tsk_need_resched(p))
1312                 return;
1313
1314         set_tsk_need_resched(p);
1315
1316         cpu = task_cpu(p);
1317         if (cpu == smp_processor_id())
1318                 return;
1319
1320         /* NEED_RESCHED must be visible before we test polling */
1321         smp_mb();
1322         if (!tsk_is_polling(p))
1323                 smp_send_reschedule(cpu);
1324 }
1325
1326 static void resched_cpu(int cpu)
1327 {
1328         struct rq *rq = cpu_rq(cpu);
1329         unsigned long flags;
1330
1331         if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1332                 return;
1333         resched_task(cpu_curr(cpu));
1334         raw_spin_unlock_irqrestore(&rq->lock, flags);
1335 }
1336
1337 #ifdef CONFIG_NO_HZ
1338 /*
1339  * In the semi idle case, use the nearest busy cpu for migrating timers
1340  * from an idle cpu.  This is good for power-savings.
1341  *
1342  * We don't do similar optimization for completely idle system, as
1343  * selecting an idle cpu will add more delays to the timers than intended
1344  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1345  */
1346 int get_nohz_timer_target(void)
1347 {
1348         int cpu = smp_processor_id();
1349         int i;
1350         struct sched_domain *sd;
1351
1352         rcu_read_lock();
1353         for_each_domain(cpu, sd) {
1354                 for_each_cpu(i, sched_domain_span(sd)) {
1355                         if (!idle_cpu(i)) {
1356                                 cpu = i;
1357                                 goto unlock;
1358                         }
1359                 }
1360         }
1361 unlock:
1362         rcu_read_unlock();
1363         return cpu;
1364 }
1365 /*
1366  * When add_timer_on() enqueues a timer into the timer wheel of an
1367  * idle CPU then this timer might expire before the next timer event
1368  * which is scheduled to wake up that CPU. In case of a completely
1369  * idle system the next event might even be infinite time into the
1370  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1371  * leaves the inner idle loop so the newly added timer is taken into
1372  * account when the CPU goes back to idle and evaluates the timer
1373  * wheel for the next timer event.
1374  */
1375 void wake_up_idle_cpu(int cpu)
1376 {
1377         struct rq *rq = cpu_rq(cpu);
1378
1379         if (cpu == smp_processor_id())
1380                 return;
1381
1382         /*
1383          * This is safe, as this function is called with the timer
1384          * wheel base lock of (cpu) held. When the CPU is on the way
1385          * to idle and has not yet set rq->curr to idle then it will
1386          * be serialized on the timer wheel base lock and take the new
1387          * timer into account automatically.
1388          */
1389         if (rq->curr != rq->idle)
1390                 return;
1391
1392         /*
1393          * We can set TIF_RESCHED on the idle task of the other CPU
1394          * lockless. The worst case is that the other CPU runs the
1395          * idle task through an additional NOOP schedule()
1396          */
1397         set_tsk_need_resched(rq->idle);
1398
1399         /* NEED_RESCHED must be visible before we test polling */
1400         smp_mb();
1401         if (!tsk_is_polling(rq->idle))
1402                 smp_send_reschedule(cpu);
1403 }
1404
1405 static inline bool got_nohz_idle_kick(void)
1406 {
1407         return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
1408 }
1409
1410 #else /* CONFIG_NO_HZ */
1411
1412 static inline bool got_nohz_idle_kick(void)
1413 {
1414         return false;
1415 }
1416
1417 #endif /* CONFIG_NO_HZ */
1418
1419 static u64 sched_avg_period(void)
1420 {
1421         return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1422 }
1423
1424 static void sched_avg_update(struct rq *rq)
1425 {
1426         s64 period = sched_avg_period();
1427
1428         while ((s64)(rq->clock - rq->age_stamp) > period) {
1429                 /*
1430                  * Inline assembly required to prevent the compiler
1431                  * optimising this loop into a divmod call.
1432                  * See __iter_div_u64_rem() for another example of this.
1433                  */
1434                 asm("" : "+rm" (rq->age_stamp));
1435                 rq->age_stamp += period;
1436                 rq->rt_avg /= 2;
1437         }
1438 }
1439
1440 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1441 {
1442         rq->rt_avg += rt_delta;
1443         sched_avg_update(rq);
1444 }
1445
1446 #else /* !CONFIG_SMP */
1447 static void resched_task(struct task_struct *p)
1448 {
1449         assert_raw_spin_locked(&task_rq(p)->lock);
1450         set_tsk_need_resched(p);
1451 }
1452
1453 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1454 {
1455 }
1456
1457 static void sched_avg_update(struct rq *rq)
1458 {
1459 }
1460 #endif /* CONFIG_SMP */
1461
1462 #if BITS_PER_LONG == 32
1463 # define WMULT_CONST    (~0UL)
1464 #else
1465 # define WMULT_CONST    (1UL << 32)
1466 #endif
1467
1468 #define WMULT_SHIFT     32
1469
1470 /*
1471  * Shift right and round:
1472  */
1473 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1474
1475 /*
1476  * delta *= weight / lw
1477  */
1478 static unsigned long
1479 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1480                 struct load_weight *lw)
1481 {
1482         u64 tmp;
1483
1484         /*
1485          * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1486          * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1487          * 2^SCHED_LOAD_RESOLUTION.
1488          */
1489         if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1490                 tmp = (u64)delta_exec * scale_load_down(weight);
1491         else
1492                 tmp = (u64)delta_exec;
1493
1494         if (!lw->inv_weight) {
1495                 unsigned long w = scale_load_down(lw->weight);
1496
1497                 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1498                         lw->inv_weight = 1;
1499                 else if (unlikely(!w))
1500                         lw->inv_weight = WMULT_CONST;
1501                 else
1502                         lw->inv_weight = WMULT_CONST / w;
1503         }
1504
1505         /*
1506          * Check whether we'd overflow the 64-bit multiplication:
1507          */
1508         if (unlikely(tmp > WMULT_CONST))
1509                 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1510                         WMULT_SHIFT/2);
1511         else
1512                 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1513
1514         return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1515 }
1516
1517 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1518 {
1519         lw->weight += inc;
1520         lw->inv_weight = 0;
1521 }
1522
1523 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1524 {
1525         lw->weight -= dec;
1526         lw->inv_weight = 0;
1527 }
1528
1529 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1530 {
1531         lw->weight = w;
1532         lw->inv_weight = 0;
1533 }
1534
1535 /*
1536  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1537  * of tasks with abnormal "nice" values across CPUs the contribution that
1538  * each task makes to its run queue's load is weighted according to its
1539  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1540  * scaled version of the new time slice allocation that they receive on time
1541  * slice expiry etc.
1542  */
1543
1544 #define WEIGHT_IDLEPRIO                3
1545 #define WMULT_IDLEPRIO         1431655765
1546
1547 /*
1548  * Nice levels are multiplicative, with a gentle 10% change for every
1549  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1550  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1551  * that remained on nice 0.
1552  *
1553  * The "10% effect" is relative and cumulative: from _any_ nice level,
1554  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1555  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1556  * If a task goes up by ~10% and another task goes down by ~10% then
1557  * the relative distance between them is ~25%.)
1558  */
1559 static const int prio_to_weight[40] = {
1560  /* -20 */     88761,     71755,     56483,     46273,     36291,
1561  /* -15 */     29154,     23254,     18705,     14949,     11916,
1562  /* -10 */      9548,      7620,      6100,      4904,      3906,
1563  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1564  /*   0 */      1024,       820,       655,       526,       423,
1565  /*   5 */       335,       272,       215,       172,       137,
1566  /*  10 */       110,        87,        70,        56,        45,
1567  /*  15 */        36,        29,        23,        18,        15,
1568 };
1569
1570 /*
1571  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1572  *
1573  * In cases where the weight does not change often, we can use the
1574  * precalculated inverse to speed up arithmetics by turning divisions
1575  * into multiplications:
1576  */
1577 static const u32 prio_to_wmult[40] = {
1578  /* -20 */     48388,     59856,     76040,     92818,    118348,
1579  /* -15 */    147320,    184698,    229616,    287308,    360437,
1580  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1581  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1582  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1583  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1584  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1585  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1586 };
1587
1588 /* Time spent by the tasks of the cpu accounting group executing in ... */
1589 enum cpuacct_stat_index {
1590         CPUACCT_STAT_USER,      /* ... user mode */
1591         CPUACCT_STAT_SYSTEM,    /* ... kernel mode */
1592
1593         CPUACCT_STAT_NSTATS,
1594 };
1595
1596 #ifdef CONFIG_CGROUP_CPUACCT
1597 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1598 static void cpuacct_update_stats(struct task_struct *tsk,
1599                 enum cpuacct_stat_index idx, cputime_t val);
1600 #else
1601 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1602 static inline void cpuacct_update_stats(struct task_struct *tsk,
1603                 enum cpuacct_stat_index idx, cputime_t val) {}
1604 #endif
1605
1606 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1607 {
1608         update_load_add(&rq->load, load);
1609 }
1610
1611 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1612 {
1613         update_load_sub(&rq->load, load);
1614 }
1615
1616 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1617                         (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1618 typedef int (*tg_visitor)(struct task_group *, void *);
1619
1620 /*
1621  * Iterate task_group tree rooted at *from, calling @down when first entering a
1622  * node and @up when leaving it for the final time.
1623  *
1624  * Caller must hold rcu_lock or sufficient equivalent.
1625  */
1626 static int walk_tg_tree_from(struct task_group *from,
1627                              tg_visitor down, tg_visitor up, void *data)
1628 {
1629         struct task_group *parent, *child;
1630         int ret;
1631
1632         parent = from;
1633
1634 down:
1635         ret = (*down)(parent, data);
1636         if (ret)
1637                 goto out;
1638         list_for_each_entry_rcu(child, &parent->children, siblings) {
1639                 parent = child;
1640                 goto down;
1641
1642 up:
1643                 continue;
1644         }
1645         ret = (*up)(parent, data);
1646         if (ret || parent == from)
1647                 goto out;
1648
1649         child = parent;
1650         parent = parent->parent;
1651         if (parent)
1652                 goto up;
1653 out:
1654         return ret;
1655 }
1656
1657 /*
1658  * Iterate the full tree, calling @down when first entering a node and @up when
1659  * leaving it for the final time.
1660  *
1661  * Caller must hold rcu_lock or sufficient equivalent.
1662  */
1663
1664 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1665 {
1666         return walk_tg_tree_from(&root_task_group, down, up, data);
1667 }
1668
1669 static int tg_nop(struct task_group *tg, void *data)
1670 {
1671         return 0;
1672 }
1673 #endif
1674
1675 #ifdef CONFIG_SMP
1676 /* Used instead of source_load when we know the type == 0 */
1677 static unsigned long weighted_cpuload(const int cpu)
1678 {
1679         return cpu_rq(cpu)->load.weight;
1680 }
1681
1682 /*
1683  * Return a low guess at the load of a migration-source cpu weighted
1684  * according to the scheduling class and "nice" value.
1685  *
1686  * We want to under-estimate the load of migration sources, to
1687  * balance conservatively.
1688  */
1689 static unsigned long source_load(int cpu, int type)
1690 {
1691         struct rq *rq = cpu_rq(cpu);
1692         unsigned long total = weighted_cpuload(cpu);
1693
1694         if (type == 0 || !sched_feat(LB_BIAS))
1695                 return total;
1696
1697         return min(rq->cpu_load[type-1], total);
1698 }
1699
1700 /*
1701  * Return a high guess at the load of a migration-target cpu weighted
1702  * according to the scheduling class and "nice" value.
1703  */
1704 static unsigned long target_load(int cpu, int type)
1705 {
1706         struct rq *rq = cpu_rq(cpu);
1707         unsigned long total = weighted_cpuload(cpu);
1708
1709         if (type == 0 || !sched_feat(LB_BIAS))
1710                 return total;
1711
1712         return max(rq->cpu_load[type-1], total);
1713 }
1714
1715 static unsigned long power_of(int cpu)
1716 {
1717         return cpu_rq(cpu)->cpu_power;
1718 }
1719
1720 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1721
1722 static unsigned long cpu_avg_load_per_task(int cpu)
1723 {
1724         struct rq *rq = cpu_rq(cpu);
1725         unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1726
1727         if (nr_running)
1728                 return rq->load.weight / nr_running;
1729
1730         return 0;
1731 }
1732
1733 #ifdef CONFIG_PREEMPT
1734
1735 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1736
1737 /*
1738  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1739  * way at the expense of forcing extra atomic operations in all
1740  * invocations.  This assures that the double_lock is acquired using the
1741  * same underlying policy as the spinlock_t on this architecture, which
1742  * reduces latency compared to the unfair variant below.  However, it
1743  * also adds more overhead and therefore may reduce throughput.
1744  */
1745 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1746         __releases(this_rq->lock)
1747         __acquires(busiest->lock)
1748         __acquires(this_rq->lock)
1749 {
1750         raw_spin_unlock(&this_rq->lock);
1751         double_rq_lock(this_rq, busiest);
1752
1753         return 1;
1754 }
1755
1756 #else
1757 /*
1758  * Unfair double_lock_balance: Optimizes throughput at the expense of
1759  * latency by eliminating extra atomic operations when the locks are
1760  * already in proper order on entry.  This favors lower cpu-ids and will
1761  * grant the double lock to lower cpus over higher ids under contention,
1762  * regardless of entry order into the function.
1763  */
1764 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1765         __releases(this_rq->lock)
1766         __acquires(busiest->lock)
1767         __acquires(this_rq->lock)
1768 {
1769         int ret = 0;
1770
1771         if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1772                 if (busiest < this_rq) {
1773                         raw_spin_unlock(&this_rq->lock);
1774                         raw_spin_lock(&busiest->lock);
1775                         raw_spin_lock_nested(&this_rq->lock,
1776                                               SINGLE_DEPTH_NESTING);
1777                         ret = 1;
1778                 } else
1779                         raw_spin_lock_nested(&busiest->lock,
1780                                               SINGLE_DEPTH_NESTING);
1781         }
1782         return ret;
1783 }
1784
1785 #endif /* CONFIG_PREEMPT */
1786
1787 /*
1788  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1789  */
1790 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1791 {
1792         if (unlikely(!irqs_disabled())) {
1793                 /* printk() doesn't work good under rq->lock */
1794                 raw_spin_unlock(&this_rq->lock);
1795                 BUG_ON(1);
1796         }
1797
1798         return _double_lock_balance(this_rq, busiest);
1799 }
1800
1801 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1802         __releases(busiest->lock)
1803 {
1804         raw_spin_unlock(&busiest->lock);
1805         lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1806 }
1807
1808 /*
1809  * double_rq_lock - safely lock two runqueues
1810  *
1811  * Note this does not disable interrupts like task_rq_lock,
1812  * you need to do so manually before calling.
1813  */
1814 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1815         __acquires(rq1->lock)
1816         __acquires(rq2->lock)
1817 {
1818         BUG_ON(!irqs_disabled());
1819         if (rq1 == rq2) {
1820                 raw_spin_lock(&rq1->lock);
1821                 __acquire(rq2->lock);   /* Fake it out ;) */
1822         } else {
1823                 if (rq1 < rq2) {
1824                         raw_spin_lock(&rq1->lock);
1825                         raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1826                 } else {
1827                         raw_spin_lock(&rq2->lock);
1828                         raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1829                 }
1830         }
1831 }
1832
1833 /*
1834  * double_rq_unlock - safely unlock two runqueues
1835  *
1836  * Note this does not restore interrupts like task_rq_unlock,
1837  * you need to do so manually after calling.
1838  */
1839 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1840         __releases(rq1->lock)
1841         __releases(rq2->lock)
1842 {
1843         raw_spin_unlock(&rq1->lock);
1844         if (rq1 != rq2)
1845                 raw_spin_unlock(&rq2->lock);
1846         else
1847                 __release(rq2->lock);
1848 }
1849
1850 #else /* CONFIG_SMP */
1851
1852 /*
1853  * double_rq_lock - safely lock two runqueues
1854  *
1855  * Note this does not disable interrupts like task_rq_lock,
1856  * you need to do so manually before calling.
1857  */
1858 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1859         __acquires(rq1->lock)
1860         __acquires(rq2->lock)
1861 {
1862         BUG_ON(!irqs_disabled());
1863         BUG_ON(rq1 != rq2);
1864         raw_spin_lock(&rq1->lock);
1865         __acquire(rq2->lock);   /* Fake it out ;) */
1866 }
1867
1868 /*
1869  * double_rq_unlock - safely unlock two runqueues
1870  *
1871  * Note this does not restore interrupts like task_rq_unlock,
1872  * you need to do so manually after calling.
1873  */
1874 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1875         __releases(rq1->lock)
1876         __releases(rq2->lock)
1877 {
1878         BUG_ON(rq1 != rq2);
1879         raw_spin_unlock(&rq1->lock);
1880         __release(rq2->lock);
1881 }
1882
1883 #endif
1884
1885 static void update_sysctl(void);
1886 static int get_update_sysctl_factor(void);
1887 static void update_idle_cpu_load(struct rq *this_rq);
1888
1889 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1890 {
1891         set_task_rq(p, cpu);
1892 #ifdef CONFIG_SMP
1893         /*
1894          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1895          * successfully executed on another CPU. We must ensure that updates of
1896          * per-task data have been completed by this moment.
1897          */
1898         smp_wmb();
1899         task_thread_info(p)->cpu = cpu;
1900 #endif
1901 }
1902
1903 static const struct sched_class rt_sched_class;
1904
1905 #define sched_class_highest (&stop_sched_class)
1906 #define for_each_class(class) \
1907    for (class = sched_class_highest; class; class = class->next)
1908
1909 #include "sched_stats.h"
1910
1911 static void inc_nr_running(struct rq *rq)
1912 {
1913         rq->nr_running++;
1914 }
1915
1916 static void dec_nr_running(struct rq *rq)
1917 {
1918         rq->nr_running--;
1919 }
1920
1921 static void set_load_weight(struct task_struct *p)
1922 {
1923         int prio = p->static_prio - MAX_RT_PRIO;
1924         struct load_weight *load = &p->se.load;
1925
1926         /*
1927          * SCHED_IDLE tasks get minimal weight:
1928          */
1929         if (p->policy == SCHED_IDLE) {
1930                 load->weight = scale_load(WEIGHT_IDLEPRIO);
1931                 load->inv_weight = WMULT_IDLEPRIO;
1932                 return;
1933         }
1934
1935         load->weight = scale_load(prio_to_weight[prio]);
1936         load->inv_weight = prio_to_wmult[prio];
1937 }
1938
1939 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1940 {
1941         update_rq_clock(rq);
1942         sched_info_queued(p);
1943         p->sched_class->enqueue_task(rq, p, flags);
1944 }
1945
1946 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1947 {
1948         update_rq_clock(rq);
1949         sched_info_dequeued(p);
1950         p->sched_class->dequeue_task(rq, p, flags);
1951 }
1952
1953 /*
1954  * activate_task - move a task to the runqueue.
1955  */
1956 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1957 {
1958         if (task_contributes_to_load(p))
1959                 rq->nr_uninterruptible--;
1960
1961         enqueue_task(rq, p, flags);
1962 }
1963
1964 /*
1965  * deactivate_task - remove a task from the runqueue.
1966  */
1967 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1968 {
1969         if (task_contributes_to_load(p))
1970                 rq->nr_uninterruptible++;
1971
1972         dequeue_task(rq, p, flags);
1973 }
1974
1975 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1976
1977 /*
1978  * There are no locks covering percpu hardirq/softirq time.
1979  * They are only modified in account_system_vtime, on corresponding CPU
1980  * with interrupts disabled. So, writes are safe.
1981  * They are read and saved off onto struct rq in update_rq_clock().
1982  * This may result in other CPU reading this CPU's irq time and can
1983  * race with irq/account_system_vtime on this CPU. We would either get old
1984  * or new value with a side effect of accounting a slice of irq time to wrong
1985  * task when irq is in progress while we read rq->clock. That is a worthy
1986  * compromise in place of having locks on each irq in account_system_time.
1987  */
1988 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1989 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1990
1991 static DEFINE_PER_CPU(u64, irq_start_time);
1992 static int sched_clock_irqtime;
1993
1994 void enable_sched_clock_irqtime(void)
1995 {
1996         sched_clock_irqtime = 1;
1997 }
1998
1999 void disable_sched_clock_irqtime(void)
2000 {
2001         sched_clock_irqtime = 0;
2002 }
2003
2004 #ifndef CONFIG_64BIT
2005 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
2006
2007 static inline void irq_time_write_begin(void)
2008 {
2009         __this_cpu_inc(irq_time_seq.sequence);
2010         smp_wmb();
2011 }
2012
2013 static inline void irq_time_write_end(void)
2014 {
2015         smp_wmb();
2016         __this_cpu_inc(irq_time_seq.sequence);
2017 }
2018
2019 static inline u64 irq_time_read(int cpu)
2020 {
2021         u64 irq_time;
2022         unsigned seq;
2023
2024         do {
2025                 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2026                 irq_time = per_cpu(cpu_softirq_time, cpu) +
2027                            per_cpu(cpu_hardirq_time, cpu);
2028         } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2029
2030         return irq_time;
2031 }
2032 #else /* CONFIG_64BIT */
2033 static inline void irq_time_write_begin(void)
2034 {
2035 }
2036
2037 static inline void irq_time_write_end(void)
2038 {
2039 }
2040
2041 static inline u64 irq_time_read(int cpu)
2042 {
2043         return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2044 }
2045 #endif /* CONFIG_64BIT */
2046
2047 /*
2048  * Called before incrementing preempt_count on {soft,}irq_enter
2049  * and before decrementing preempt_count on {soft,}irq_exit.
2050  */
2051 void account_system_vtime(struct task_struct *curr)
2052 {
2053         unsigned long flags;
2054         s64 delta;
2055         int cpu;
2056
2057         if (!sched_clock_irqtime)
2058                 return;
2059
2060         local_irq_save(flags);
2061
2062         cpu = smp_processor_id();
2063         delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2064         __this_cpu_add(irq_start_time, delta);
2065
2066         irq_time_write_begin();
2067         /*
2068          * We do not account for softirq time from ksoftirqd here.
2069          * We want to continue accounting softirq time to ksoftirqd thread
2070          * in that case, so as not to confuse scheduler with a special task
2071          * that do not consume any time, but still wants to run.
2072          */
2073         if (hardirq_count())
2074                 __this_cpu_add(cpu_hardirq_time, delta);
2075         else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
2076                 __this_cpu_add(cpu_softirq_time, delta);
2077
2078         irq_time_write_end();
2079         local_irq_restore(flags);
2080 }
2081 EXPORT_SYMBOL_GPL(account_system_vtime);
2082
2083 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2084
2085 #ifdef CONFIG_PARAVIRT
2086 static inline u64 steal_ticks(u64 steal)
2087 {
2088         if (unlikely(steal > NSEC_PER_SEC))
2089                 return div_u64(steal, TICK_NSEC);
2090
2091         return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2092 }
2093 #endif
2094
2095 static void update_rq_clock_task(struct rq *rq, s64 delta)
2096 {
2097 /*
2098  * In theory, the compile should just see 0 here, and optimize out the call
2099  * to sched_rt_avg_update. But I don't trust it...
2100  */
2101 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2102         s64 steal = 0, irq_delta = 0;
2103 #endif
2104 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2105         irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2106
2107         /*
2108          * Since irq_time is only updated on {soft,}irq_exit, we might run into
2109          * this case when a previous update_rq_clock() happened inside a
2110          * {soft,}irq region.
2111          *
2112          * When this happens, we stop ->clock_task and only update the
2113          * prev_irq_time stamp to account for the part that fit, so that a next
2114          * update will consume the rest. This ensures ->clock_task is
2115          * monotonic.
2116          *
2117          * It does however cause some slight miss-attribution of {soft,}irq
2118          * time, a more accurate solution would be to update the irq_time using
2119          * the current rq->clock timestamp, except that would require using
2120          * atomic ops.
2121          */
2122         if (irq_delta > delta)
2123                 irq_delta = delta;
2124
2125         rq->prev_irq_time += irq_delta;
2126         delta -= irq_delta;
2127 #endif
2128 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2129         if (static_branch((&paravirt_steal_rq_enabled))) {
2130                 u64 st;
2131
2132                 steal = paravirt_steal_clock(cpu_of(rq));
2133                 steal -= rq->prev_steal_time_rq;
2134
2135                 if (unlikely(steal > delta))
2136                         steal = delta;
2137
2138                 st = steal_ticks(steal);
2139                 steal = st * TICK_NSEC;
2140
2141                 rq->prev_steal_time_rq += steal;
2142
2143                 delta -= steal;
2144         }
2145 #endif
2146
2147         rq->clock_task += delta;
2148
2149 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2150         if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2151                 sched_rt_avg_update(rq, irq_delta + steal);
2152 #endif
2153 }
2154
2155 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2156 static int irqtime_account_hi_update(void)
2157 {
2158         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2159         unsigned long flags;
2160         u64 latest_ns;
2161         int ret = 0;
2162
2163         local_irq_save(flags);
2164         latest_ns = this_cpu_read(cpu_hardirq_time);
2165         if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2166                 ret = 1;
2167         local_irq_restore(flags);
2168         return ret;
2169 }
2170
2171 static int irqtime_account_si_update(void)
2172 {
2173         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2174         unsigned long flags;
2175         u64 latest_ns;
2176         int ret = 0;
2177
2178         local_irq_save(flags);
2179         latest_ns = this_cpu_read(cpu_softirq_time);
2180         if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2181                 ret = 1;
2182         local_irq_restore(flags);
2183         return ret;
2184 }
2185
2186 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2187
2188 #define sched_clock_irqtime     (0)
2189
2190 #endif
2191
2192 #include "sched_idletask.c"
2193 #include "sched_fair.c"
2194 #include "sched_rt.c"
2195 #include "sched_autogroup.c"
2196 #include "sched_stoptask.c"
2197 #ifdef CONFIG_SCHED_DEBUG
2198 # include "sched_debug.c"
2199 #endif
2200
2201 void sched_set_stop_task(int cpu, struct task_struct *stop)
2202 {
2203         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2204         struct task_struct *old_stop = cpu_rq(cpu)->stop;
2205
2206         if (stop) {
2207                 /*
2208                  * Make it appear like a SCHED_FIFO task, its something
2209                  * userspace knows about and won't get confused about.
2210                  *
2211                  * Also, it will make PI more or less work without too
2212                  * much confusion -- but then, stop work should not
2213                  * rely on PI working anyway.
2214                  */
2215                 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2216
2217                 stop->sched_class = &stop_sched_class;
2218         }
2219
2220         cpu_rq(cpu)->stop = stop;
2221
2222         if (old_stop) {
2223                 /*
2224                  * Reset it back to a normal scheduling class so that
2225                  * it can die in pieces.
2226                  */
2227                 old_stop->sched_class = &rt_sched_class;
2228         }
2229 }
2230
2231 /*
2232  * __normal_prio - return the priority that is based on the static prio
2233  */
2234 static inline int __normal_prio(struct task_struct *p)
2235 {
2236         return p->static_prio;
2237 }
2238
2239 /*
2240  * Calculate the expected normal priority: i.e. priority
2241  * without taking RT-inheritance into account. Might be
2242  * boosted by interactivity modifiers. Changes upon fork,
2243  * setprio syscalls, and whenever the interactivity
2244  * estimator recalculates.
2245  */
2246 static inline int normal_prio(struct task_struct *p)
2247 {
2248         int prio;
2249
2250         if (task_has_rt_policy(p))
2251                 prio = MAX_RT_PRIO-1 - p->rt_priority;
2252         else
2253                 prio = __normal_prio(p);
2254         return prio;
2255 }
2256
2257 /*
2258  * Calculate the current priority, i.e. the priority
2259  * taken into account by the scheduler. This value might
2260  * be boosted by RT tasks, or might be boosted by
2261  * interactivity modifiers. Will be RT if the task got
2262  * RT-boosted. If not then it returns p->normal_prio.
2263  */
2264 static int effective_prio(struct task_struct *p)
2265 {
2266         p->normal_prio = normal_prio(p);
2267         /*
2268          * If we are RT tasks or we were boosted to RT priority,
2269          * keep the priority unchanged. Otherwise, update priority
2270          * to the normal priority:
2271          */
2272         if (!rt_prio(p->prio))
2273                 return p->normal_prio;
2274         return p->prio;
2275 }
2276
2277 /**
2278  * task_curr - is this task currently executing on a CPU?
2279  * @p: the task in question.
2280  */
2281 inline int task_curr(const struct task_struct *p)
2282 {
2283         return cpu_curr(task_cpu(p)) == p;
2284 }
2285
2286 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2287                                        const struct sched_class *prev_class,
2288                                        int oldprio)
2289 {
2290         if (prev_class != p->sched_class) {
2291                 if (prev_class->switched_from)
2292                         prev_class->switched_from(rq, p);
2293                 p->sched_class->switched_to(rq, p);
2294         } else if (oldprio != p->prio)
2295                 p->sched_class->prio_changed(rq, p, oldprio);
2296 }
2297
2298 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2299 {
2300         const struct sched_class *class;
2301
2302         if (p->sched_class == rq->curr->sched_class) {
2303                 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2304         } else {
2305                 for_each_class(class) {
2306                         if (class == rq->curr->sched_class)
2307                                 break;
2308                         if (class == p->sched_class) {
2309                                 resched_task(rq->curr);
2310                                 break;
2311                         }
2312                 }
2313         }
2314
2315         /*
2316          * A queue event has occurred, and we're going to schedule.  In
2317          * this case, we can save a useless back to back clock update.
2318          */
2319         if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2320                 rq->skip_clock_update = 1;
2321 }
2322
2323 #ifdef CONFIG_SMP
2324 /*
2325  * Is this task likely cache-hot:
2326  */
2327 static int
2328 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2329 {
2330         s64 delta;
2331
2332         if (p->sched_class != &fair_sched_class)
2333                 return 0;
2334
2335         if (unlikely(p->policy == SCHED_IDLE))
2336                 return 0;
2337
2338         /*
2339          * Buddy candidates are cache hot:
2340          */
2341         if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2342                         (&p->se == cfs_rq_of(&p->se)->next ||
2343                          &p->se == cfs_rq_of(&p->se)->last))
2344                 return 1;
2345
2346         if (sysctl_sched_migration_cost == -1)
2347                 return 1;
2348         if (sysctl_sched_migration_cost == 0)
2349                 return 0;
2350
2351         delta = now - p->se.exec_start;
2352
2353         return delta < (s64)sysctl_sched_migration_cost;
2354 }
2355
2356 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2357 {
2358 #ifdef CONFIG_SCHED_DEBUG
2359         /*
2360          * We should never call set_task_cpu() on a blocked task,
2361          * ttwu() will sort out the placement.
2362          */
2363         WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2364                         !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2365
2366 #ifdef CONFIG_LOCKDEP
2367         /*
2368          * The caller should hold either p->pi_lock or rq->lock, when changing
2369          * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2370          *
2371          * sched_move_task() holds both and thus holding either pins the cgroup,
2372          * see task_group().
2373          *
2374          * Furthermore, all task_rq users should acquire both locks, see
2375          * task_rq_lock().
2376          */
2377         WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2378                                       lockdep_is_held(&task_rq(p)->lock)));
2379 #endif
2380 #endif
2381
2382         trace_sched_migrate_task(p, new_cpu);
2383
2384         if (task_cpu(p) != new_cpu) {
2385                 p->se.nr_migrations++;
2386                 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2387         }
2388
2389         __set_task_cpu(p, new_cpu);
2390 }
2391
2392 struct migration_arg {
2393         struct task_struct *task;
2394         int dest_cpu;
2395 };
2396
2397 static int migration_cpu_stop(void *data);
2398
2399 /*
2400  * wait_task_inactive - wait for a thread to unschedule.
2401  *
2402  * If @match_state is nonzero, it's the @p->state value just checked and
2403  * not expected to change.  If it changes, i.e. @p might have woken up,
2404  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2405  * we return a positive number (its total switch count).  If a second call
2406  * a short while later returns the same number, the caller can be sure that
2407  * @p has remained unscheduled the whole time.
2408  *
2409  * The caller must ensure that the task *will* unschedule sometime soon,
2410  * else this function might spin for a *long* time. This function can't
2411  * be called with interrupts off, or it may introduce deadlock with
2412  * smp_call_function() if an IPI is sent by the same process we are
2413  * waiting to become inactive.
2414  */
2415 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2416 {
2417         unsigned long flags;
2418         int running, on_rq;
2419         unsigned long ncsw;
2420         struct rq *rq;
2421
2422         for (;;) {
2423                 /*
2424                  * We do the initial early heuristics without holding
2425                  * any task-queue locks at all. We'll only try to get
2426                  * the runqueue lock when things look like they will
2427                  * work out!
2428                  */
2429                 rq = task_rq(p);
2430
2431                 /*
2432                  * If the task is actively running on another CPU
2433                  * still, just relax and busy-wait without holding
2434                  * any locks.
2435                  *
2436                  * NOTE! Since we don't hold any locks, it's not
2437                  * even sure that "rq" stays as the right runqueue!
2438                  * But we don't care, since "task_running()" will
2439                  * return false if the runqueue has changed and p
2440                  * is actually now running somewhere else!
2441                  */
2442                 while (task_running(rq, p)) {
2443                         if (match_state && unlikely(p->state != match_state))
2444                                 return 0;
2445                         cpu_relax();
2446                 }
2447
2448                 /*
2449                  * Ok, time to look more closely! We need the rq
2450                  * lock now, to be *sure*. If we're wrong, we'll
2451                  * just go back and repeat.
2452                  */
2453                 rq = task_rq_lock(p, &flags);
2454                 trace_sched_wait_task(p);
2455                 running = task_running(rq, p);
2456                 on_rq = p->on_rq;
2457                 ncsw = 0;
2458                 if (!match_state || p->state == match_state)
2459                         ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2460                 task_rq_unlock(rq, p, &flags);
2461
2462                 /*
2463                  * If it changed from the expected state, bail out now.
2464                  */
2465                 if (unlikely(!ncsw))
2466                         break;
2467
2468                 /*
2469                  * Was it really running after all now that we
2470                  * checked with the proper locks actually held?
2471                  *
2472                  * Oops. Go back and try again..
2473                  */
2474                 if (unlikely(running)) {
2475                         cpu_relax();
2476                         continue;
2477                 }
2478
2479                 /*
2480                  * It's not enough that it's not actively running,
2481                  * it must be off the runqueue _entirely_, and not
2482                  * preempted!
2483                  *
2484                  * So if it was still runnable (but just not actively
2485                  * running right now), it's preempted, and we should
2486                  * yield - it could be a while.
2487                  */
2488                 if (unlikely(on_rq)) {
2489                         ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2490
2491                         set_current_state(TASK_UNINTERRUPTIBLE);
2492                         schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2493                         continue;
2494                 }
2495
2496                 /*
2497                  * Ahh, all good. It wasn't running, and it wasn't
2498                  * runnable, which means that it will never become
2499                  * running in the future either. We're all done!
2500                  */
2501                 break;
2502         }
2503
2504         return ncsw;
2505 }
2506
2507 /***
2508  * kick_process - kick a running thread to enter/exit the kernel
2509  * @p: the to-be-kicked thread
2510  *
2511  * Cause a process which is running on another CPU to enter
2512  * kernel-mode, without any delay. (to get signals handled.)
2513  *
2514  * NOTE: this function doesn't have to take the runqueue lock,
2515  * because all it wants to ensure is that the remote task enters
2516  * the kernel. If the IPI races and the task has been migrated
2517  * to another CPU then no harm is done and the purpose has been
2518  * achieved as well.
2519  */
2520 void kick_process(struct task_struct *p)
2521 {
2522         int cpu;
2523
2524         preempt_disable();
2525         cpu = task_cpu(p);
2526         if ((cpu != smp_processor_id()) && task_curr(p))
2527                 smp_send_reschedule(cpu);
2528         preempt_enable();
2529 }
2530 EXPORT_SYMBOL_GPL(kick_process);
2531 #endif /* CONFIG_SMP */
2532
2533 #ifdef CONFIG_SMP
2534 /*
2535  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2536  */
2537 static int select_fallback_rq(int cpu, struct task_struct *p)
2538 {
2539         int dest_cpu;
2540         const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2541
2542         /* Look for allowed, online CPU in same node. */
2543         for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2544                 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
2545                         return dest_cpu;
2546
2547         /* Any allowed, online CPU? */
2548         dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
2549         if (dest_cpu < nr_cpu_ids)
2550                 return dest_cpu;
2551
2552         /* No more Mr. Nice Guy. */
2553         dest_cpu = cpuset_cpus_allowed_fallback(p);
2554         /*
2555          * Don't tell them about moving exiting tasks or
2556          * kernel threads (both mm NULL), since they never
2557          * leave kernel.
2558          */
2559         if (p->mm && printk_ratelimit()) {
2560                 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2561                                 task_pid_nr(p), p->comm, cpu);
2562         }
2563
2564         return dest_cpu;
2565 }
2566
2567 /*
2568  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2569  */
2570 static inline
2571 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2572 {
2573         int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2574
2575         /*
2576          * In order not to call set_task_cpu() on a blocking task we need
2577          * to rely on ttwu() to place the task on a valid ->cpus_allowed
2578          * cpu.
2579          *
2580          * Since this is common to all placement strategies, this lives here.
2581          *
2582          * [ this allows ->select_task() to simply return task_cpu(p) and
2583          *   not worry about this generic constraint ]
2584          */
2585         if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
2586                      !cpu_online(cpu)))
2587                 cpu = select_fallback_rq(task_cpu(p), p);
2588
2589         return cpu;
2590 }
2591
2592 static void update_avg(u64 *avg, u64 sample)
2593 {
2594         s64 diff = sample - *avg;
2595         *avg += diff >> 3;
2596 }
2597 #endif
2598
2599 static void
2600 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2601 {
2602 #ifdef CONFIG_SCHEDSTATS
2603         struct rq *rq = this_rq();
2604
2605 #ifdef CONFIG_SMP
2606         int this_cpu = smp_processor_id();
2607
2608         if (cpu == this_cpu) {
2609                 schedstat_inc(rq, ttwu_local);
2610                 schedstat_inc(p, se.statistics.nr_wakeups_local);
2611         } else {
2612                 struct sched_domain *sd;
2613
2614                 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2615                 rcu_read_lock();
2616                 for_each_domain(this_cpu, sd) {
2617                         if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2618                                 schedstat_inc(sd, ttwu_wake_remote);
2619                                 break;
2620                         }
2621                 }
2622                 rcu_read_unlock();
2623         }
2624
2625         if (wake_flags & WF_MIGRATED)
2626                 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2627
2628 #endif /* CONFIG_SMP */
2629
2630         schedstat_inc(rq, ttwu_count);
2631         schedstat_inc(p, se.statistics.nr_wakeups);
2632
2633         if (wake_flags & WF_SYNC)
2634                 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2635
2636 #endif /* CONFIG_SCHEDSTATS */
2637 }
2638
2639 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2640 {
2641         activate_task(rq, p, en_flags);
2642         p->on_rq = 1;
2643
2644         /* if a worker is waking up, notify workqueue */
2645         if (p->flags & PF_WQ_WORKER)
2646                 wq_worker_waking_up(p, cpu_of(rq));
2647 }
2648
2649 /*
2650  * Mark the task runnable and perform wakeup-preemption.
2651  */
2652 static void
2653 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2654 {
2655         trace_sched_wakeup(p, true);
2656         check_preempt_curr(rq, p, wake_flags);
2657
2658         p->state = TASK_RUNNING;
2659 #ifdef CONFIG_SMP
2660         if (p->sched_class->task_woken)
2661                 p->sched_class->task_woken(rq, p);
2662
2663         if (rq->idle_stamp) {
2664                 u64 delta = rq->clock - rq->idle_stamp;
2665                 u64 max = 2*sysctl_sched_migration_cost;
2666
2667                 if (delta > max)
2668                         rq->avg_idle = max;
2669                 else
2670                         update_avg(&rq->avg_idle, delta);
2671                 rq->idle_stamp = 0;
2672         }
2673 #endif
2674 }
2675
2676 static void
2677 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2678 {
2679 #ifdef CONFIG_SMP
2680         if (p->sched_contributes_to_load)
2681                 rq->nr_uninterruptible--;
2682 #endif
2683
2684         ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2685         ttwu_do_wakeup(rq, p, wake_flags);
2686 }
2687
2688 /*
2689  * Called in case the task @p isn't fully descheduled from its runqueue,
2690  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2691  * since all we need to do is flip p->state to TASK_RUNNING, since
2692  * the task is still ->on_rq.
2693  */
2694 static int ttwu_remote(struct task_struct *p, int wake_flags)
2695 {
2696         struct rq *rq;
2697         int ret = 0;
2698
2699         rq = __task_rq_lock(p);
2700         if (p->on_rq) {
2701                 ttwu_do_wakeup(rq, p, wake_flags);
2702                 ret = 1;
2703         }
2704         __task_rq_unlock(rq);
2705
2706         return ret;
2707 }
2708
2709 #ifdef CONFIG_SMP
2710 static void sched_ttwu_pending(void)
2711 {
2712         struct rq *rq = this_rq();
2713         struct llist_node *llist = llist_del_all(&rq->wake_list);
2714         struct task_struct *p;
2715
2716         raw_spin_lock(&rq->lock);
2717
2718         while (llist) {
2719                 p = llist_entry(llist, struct task_struct, wake_entry);
2720                 llist = llist_next(llist);
2721                 ttwu_do_activate(rq, p, 0);
2722         }
2723
2724         raw_spin_unlock(&rq->lock);
2725 }
2726
2727 void scheduler_ipi(void)
2728 {
2729         if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2730                 return;
2731
2732         /*
2733          * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2734          * traditionally all their work was done from the interrupt return
2735          * path. Now that we actually do some work, we need to make sure
2736          * we do call them.
2737          *
2738          * Some archs already do call them, luckily irq_enter/exit nest
2739          * properly.
2740          *
2741          * Arguably we should visit all archs and update all handlers,
2742          * however a fair share of IPIs are still resched only so this would
2743          * somewhat pessimize the simple resched case.
2744          */
2745         irq_enter();
2746         sched_ttwu_pending();
2747
2748         /*
2749          * Check if someone kicked us for doing the nohz idle load balance.
2750          */
2751         if (unlikely(got_nohz_idle_kick() && !need_resched())) {
2752                 this_rq()->idle_balance = 1;
2753                 raise_softirq_irqoff(SCHED_SOFTIRQ);
2754         }
2755         irq_exit();
2756 }
2757
2758 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2759 {
2760         if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
2761                 smp_send_reschedule(cpu);
2762 }
2763
2764 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2765 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2766 {
2767         struct rq *rq;
2768         int ret = 0;
2769
2770         rq = __task_rq_lock(p);
2771         if (p->on_cpu) {
2772                 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2773                 ttwu_do_wakeup(rq, p, wake_flags);
2774                 ret = 1;
2775         }
2776         __task_rq_unlock(rq);
2777
2778         return ret;
2779
2780 }
2781 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2782 #endif /* CONFIG_SMP */
2783
2784 static void ttwu_queue(struct task_struct *p, int cpu)
2785 {
2786         struct rq *rq = cpu_rq(cpu);
2787
2788 #if defined(CONFIG_SMP)
2789         if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2790                 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2791                 ttwu_queue_remote(p, cpu);
2792                 return;
2793         }
2794 #endif
2795
2796         raw_spin_lock(&rq->lock);
2797         ttwu_do_activate(rq, p, 0);
2798         raw_spin_unlock(&rq->lock);
2799 }
2800
2801 /**
2802  * try_to_wake_up - wake up a thread
2803  * @p: the thread to be awakened
2804  * @state: the mask of task states that can be woken
2805  * @wake_flags: wake modifier flags (WF_*)
2806  *
2807  * Put it on the run-queue if it's not already there. The "current"
2808  * thread is always on the run-queue (except when the actual
2809  * re-schedule is in progress), and as such you're allowed to do
2810  * the simpler "current->state = TASK_RUNNING" to mark yourself
2811  * runnable without the overhead of this.
2812  *
2813  * Returns %true if @p was woken up, %false if it was already running
2814  * or @state didn't match @p's state.
2815  */
2816 static int
2817 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2818 {
2819         unsigned long flags;
2820         int cpu, success = 0;
2821
2822         smp_wmb();
2823         raw_spin_lock_irqsave(&p->pi_lock, flags);
2824         if (!(p->state & state))
2825                 goto out;
2826
2827         success = 1; /* we're going to change ->state */
2828         cpu = task_cpu(p);
2829
2830         if (p->on_rq && ttwu_remote(p, wake_flags))
2831                 goto stat;
2832
2833 #ifdef CONFIG_SMP
2834         /*
2835          * If the owning (remote) cpu is still in the middle of schedule() with
2836          * this task as prev, wait until its done referencing the task.
2837          */
2838         while (p->on_cpu) {
2839 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2840                 /*
2841                  * In case the architecture enables interrupts in
2842                  * context_switch(), we cannot busy wait, since that
2843                  * would lead to deadlocks when an interrupt hits and
2844                  * tries to wake up @prev. So bail and do a complete
2845                  * remote wakeup.
2846                  */
2847                 if (ttwu_activate_remote(p, wake_flags))
2848                         goto stat;
2849 #else
2850                 cpu_relax();
2851 #endif
2852         }
2853         /*
2854          * Pairs with the smp_wmb() in finish_lock_switch().
2855          */
2856         smp_rmb();
2857
2858         p->sched_contributes_to_load = !!task_contributes_to_load(p);
2859         p->state = TASK_WAKING;
2860
2861         if (p->sched_class->task_waking)
2862                 p->sched_class->task_waking(p);
2863
2864         cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2865         if (task_cpu(p) != cpu) {
2866                 wake_flags |= WF_MIGRATED;
2867                 set_task_cpu(p, cpu);
2868         }
2869 #endif /* CONFIG_SMP */
2870
2871         ttwu_queue(p, cpu);
2872 stat:
2873         ttwu_stat(p, cpu, wake_flags);
2874 out:
2875         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2876
2877         return success;
2878 }
2879
2880 /**
2881  * try_to_wake_up_local - try to wake up a local task with rq lock held
2882  * @p: the thread to be awakened
2883  *
2884  * Put @p on the run-queue if it's not already there. The caller must
2885  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2886  * the current task.
2887  */
2888 static void try_to_wake_up_local(struct task_struct *p)
2889 {
2890         struct rq *rq = task_rq(p);
2891
2892         BUG_ON(rq != this_rq());
2893         BUG_ON(p == current);
2894         lockdep_assert_held(&rq->lock);
2895
2896         if (!raw_spin_trylock(&p->pi_lock)) {
2897                 raw_spin_unlock(&rq->lock);
2898                 raw_spin_lock(&p->pi_lock);
2899                 raw_spin_lock(&rq->lock);
2900         }
2901
2902         if (!(p->state & TASK_NORMAL))
2903                 goto out;
2904
2905         if (!p->on_rq)
2906                 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2907
2908         ttwu_do_wakeup(rq, p, 0);
2909         ttwu_stat(p, smp_processor_id(), 0);
2910 out:
2911         raw_spin_unlock(&p->pi_lock);
2912 }
2913
2914 /**
2915  * wake_up_process - Wake up a specific process
2916  * @p: The process to be woken up.
2917  *
2918  * Attempt to wake up the nominated process and move it to the set of runnable
2919  * processes.  Returns 1 if the process was woken up, 0 if it was already
2920  * running.
2921  *
2922  * It may be assumed that this function implies a write memory barrier before
2923  * changing the task state if and only if any tasks are woken up.
2924  */
2925 int wake_up_process(struct task_struct *p)
2926 {
2927         return try_to_wake_up(p, TASK_ALL, 0);
2928 }
2929 EXPORT_SYMBOL(wake_up_process);
2930
2931 int wake_up_state(struct task_struct *p, unsigned int state)
2932 {
2933         return try_to_wake_up(p, state, 0);
2934 }
2935
2936 /*
2937  * Perform scheduler related setup for a newly forked process p.
2938  * p is forked by current.
2939  *
2940  * __sched_fork() is basic setup used by init_idle() too:
2941  */
2942 static void __sched_fork(struct task_struct *p)
2943 {
2944         p->on_rq                        = 0;
2945
2946         p->se.on_rq                     = 0;
2947         p->se.exec_start                = 0;
2948         p->se.sum_exec_runtime          = 0;
2949         p->se.prev_sum_exec_runtime     = 0;
2950         p->se.nr_migrations             = 0;
2951         p->se.vruntime                  = 0;
2952         INIT_LIST_HEAD(&p->se.group_node);
2953
2954 #ifdef CONFIG_SCHEDSTATS
2955         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2956 #endif
2957
2958         INIT_LIST_HEAD(&p->rt.run_list);
2959
2960 #ifdef CONFIG_PREEMPT_NOTIFIERS
2961         INIT_HLIST_HEAD(&p->preempt_notifiers);
2962 #endif
2963 }
2964
2965 /*
2966  * fork()/clone()-time setup:
2967  */
2968 void sched_fork(struct task_struct *p)
2969 {
2970         unsigned long flags;
2971         int cpu = get_cpu();
2972
2973         __sched_fork(p);
2974         /*
2975          * We mark the process as running here. This guarantees that
2976          * nobody will actually run it, and a signal or other external
2977          * event cannot wake it up and insert it on the runqueue either.
2978          */
2979         p->state = TASK_RUNNING;
2980
2981         /*
2982          * Make sure we do not leak PI boosting priority to the child.
2983          */
2984         p->prio = current->normal_prio;
2985
2986         /*
2987          * Revert to default priority/policy on fork if requested.
2988          */
2989         if (unlikely(p->sched_reset_on_fork)) {
2990                 if (task_has_rt_policy(p)) {
2991                         p->policy = SCHED_NORMAL;
2992                         p->static_prio = NICE_TO_PRIO(0);
2993                         p->rt_priority = 0;
2994                 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2995                         p->static_prio = NICE_TO_PRIO(0);
2996
2997                 p->prio = p->normal_prio = __normal_prio(p);
2998                 set_load_weight(p);
2999
3000                 /*
3001                  * We don't need the reset flag anymore after the fork. It has
3002                  * fulfilled its duty:
3003                  */
3004                 p->sched_reset_on_fork = 0;
3005         }
3006
3007         if (!rt_prio(p->prio))
3008                 p->sched_class = &fair_sched_class;
3009
3010         if (p->sched_class->task_fork)
3011                 p->sched_class->task_fork(p);
3012
3013         /*
3014          * The child is not yet in the pid-hash so no cgroup attach races,
3015          * and the cgroup is pinned to this child due to cgroup_fork()
3016          * is ran before sched_fork().
3017          *
3018          * Silence PROVE_RCU.
3019          */
3020         raw_spin_lock_irqsave(&p->pi_lock, flags);
3021         set_task_cpu(p, cpu);
3022         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3023
3024 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
3025         if (likely(sched_info_on()))
3026                 memset(&p->sched_info, 0, sizeof(p->sched_info));
3027 #endif
3028 #if defined(CONFIG_SMP)
3029         p->on_cpu = 0;
3030 #endif
3031 #ifdef CONFIG_PREEMPT_COUNT
3032         /* Want to start with kernel preemption disabled. */
3033         task_thread_info(p)->preempt_count = 1;
3034 #endif
3035 #ifdef CONFIG_SMP
3036         plist_node_init(&p->pushable_tasks, MAX_PRIO);
3037 #endif
3038
3039         put_cpu();
3040 }
3041
3042 /*
3043  * wake_up_new_task - wake up a newly created task for the first time.
3044  *
3045  * This function will do some initial scheduler statistics housekeeping
3046  * that must be done for every newly created context, then puts the task
3047  * on the runqueue and wakes it.
3048  */
3049 void wake_up_new_task(struct task_struct *p)
3050 {
3051         unsigned long flags;
3052         struct rq *rq;
3053
3054         raw_spin_lock_irqsave(&p->pi_lock, flags);
3055 #ifdef CONFIG_SMP
3056         /*
3057          * Fork balancing, do it here and not earlier because:
3058          *  - cpus_allowed can change in the fork path
3059          *  - any previously selected cpu might disappear through hotplug
3060          */
3061         set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
3062 #endif
3063
3064         rq = __task_rq_lock(p);
3065         activate_task(rq, p, 0);
3066         p->on_rq = 1;
3067         trace_sched_wakeup_new(p, true);
3068         check_preempt_curr(rq, p, WF_FORK);
3069 #ifdef CONFIG_SMP
3070         if (p->sched_class->task_woken)
3071                 p->sched_class->task_woken(rq, p);
3072 #endif
3073         task_rq_unlock(rq, p, &flags);
3074 }
3075
3076 #ifdef CONFIG_PREEMPT_NOTIFIERS
3077
3078 /**
3079  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3080  * @notifier: notifier struct to register
3081  */
3082 void preempt_notifier_register(struct preempt_notifier *notifier)
3083 {
3084         hlist_add_head(&notifier->link, &current->preempt_notifiers);
3085 }
3086 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3087
3088 /**
3089  * preempt_notifier_unregister - no longer interested in preemption notifications
3090  * @notifier: notifier struct to unregister
3091  *
3092  * This is safe to call from within a preemption notifier.
3093  */
3094 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3095 {
3096         hlist_del(&notifier->link);
3097 }
3098 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3099
3100 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3101 {
3102         struct preempt_notifier *notifier;
3103         struct hlist_node *node;
3104
3105         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3106                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3107 }
3108
3109 static void
3110 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3111                                  struct task_struct *next)
3112 {
3113         struct preempt_notifier *notifier;
3114         struct hlist_node *node;
3115
3116         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3117                 notifier->ops->sched_out(notifier, next);
3118 }
3119
3120 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3121
3122 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3123 {
3124 }
3125
3126 static void
3127 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3128                                  struct task_struct *next)
3129 {
3130 }
3131
3132 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3133
3134 /**
3135  * prepare_task_switch - prepare to switch tasks
3136  * @rq: the runqueue preparing to switch
3137  * @prev: the current task that is being switched out
3138  * @next: the task we are going to switch to.
3139  *
3140  * This is called with the rq lock held and interrupts off. It must
3141  * be paired with a subsequent finish_task_switch after the context
3142  * switch.
3143  *
3144  * prepare_task_switch sets up locking and calls architecture specific
3145  * hooks.
3146  */
3147 static inline void
3148 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3149                     struct task_struct *next)
3150 {
3151         sched_info_switch(prev, next);
3152         perf_event_task_sched_out(prev, next);
3153         fire_sched_out_preempt_notifiers(prev, next);
3154         prepare_lock_switch(rq, next);
3155         prepare_arch_switch(next);
3156         trace_sched_switch(prev, next);
3157 }
3158
3159 /**
3160  * finish_task_switch - clean up after a task-switch
3161  * @rq: runqueue associated with task-switch
3162  * @prev: the thread we just switched away from.
3163  *
3164  * finish_task_switch must be called after the context switch, paired
3165  * with a prepare_task_switch call before the context switch.
3166  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3167  * and do any other architecture-specific cleanup actions.
3168  *
3169  * Note that we may have delayed dropping an mm in context_switch(). If
3170  * so, we finish that here outside of the runqueue lock. (Doing it
3171  * with the lock held can cause deadlocks; see schedule() for
3172  * details.)
3173  */
3174 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3175         __releases(rq->lock)
3176 {
3177         struct mm_struct *mm = rq->prev_mm;
3178         long prev_state;
3179
3180         rq->prev_mm = NULL;
3181
3182         /*
3183          * A task struct has one reference for the use as "current".
3184          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3185          * schedule one last time. The schedule call will never return, and
3186          * the scheduled task must drop that reference.
3187          * The test for TASK_DEAD must occur while the runqueue locks are
3188          * still held, otherwise prev could be scheduled on another cpu, die
3189          * there before we look at prev->state, and then the reference would
3190          * be dropped twice.
3191          *              Manfred Spraul <manfred@colorfullife.com>
3192          */
3193         prev_state = prev->state;
3194         finish_arch_switch(prev);
3195 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3196         local_irq_disable();
3197 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3198         perf_event_task_sched_in(prev, current);
3199 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3200         local_irq_enable();
3201 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3202         finish_lock_switch(rq, prev);
3203
3204         fire_sched_in_preempt_notifiers(current);
3205         if (mm)
3206                 mmdrop(mm);
3207         if (unlikely(prev_state == TASK_DEAD)) {
3208                 /*
3209                  * Remove function-return probe instances associated with this
3210                  * task and put them back on the free list.
3211                  */
3212                 kprobe_flush_task(prev);
3213                 put_task_struct(prev);
3214         }
3215 }
3216
3217 #ifdef CONFIG_SMP
3218
3219 /* assumes rq->lock is held */
3220 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3221 {
3222         if (prev->sched_class->pre_schedule)
3223                 prev->sched_class->pre_schedule(rq, prev);
3224 }
3225
3226 /* rq->lock is NOT held, but preemption is disabled */
3227 static inline void post_schedule(struct rq *rq)
3228 {
3229         if (rq->post_schedule) {
3230                 unsigned long flags;
3231
3232                 raw_spin_lock_irqsave(&rq->lock, flags);
3233                 if (rq->curr->sched_class->post_schedule)
3234                         rq->curr->sched_class->post_schedule(rq);
3235                 raw_spin_unlock_irqrestore(&rq->lock, flags);
3236
3237                 rq->post_schedule = 0;
3238         }
3239 }
3240
3241 #else
3242
3243 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3244 {
3245 }
3246
3247 static inline void post_schedule(struct rq *rq)
3248 {
3249 }
3250
3251 #endif
3252
3253 /**
3254  * schedule_tail - first thing a freshly forked thread must call.
3255  * @prev: the thread we just switched away from.
3256  */
3257 asmlinkage void schedule_tail(struct task_struct *prev)
3258         __releases(rq->lock)
3259 {
3260         struct rq *rq = this_rq();
3261
3262         finish_task_switch(rq, prev);
3263
3264         /*
3265          * FIXME: do we need to worry about rq being invalidated by the
3266          * task_switch?
3267          */
3268         post_schedule(rq);
3269
3270 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3271         /* In this case, finish_task_switch does not reenable preemption */
3272         preempt_enable();
3273 #endif
3274         if (current->set_child_tid)
3275                 put_user(task_pid_vnr(current), current->set_child_tid);
3276 }
3277
3278 /*
3279  * context_switch - switch to the new MM and the new
3280  * thread's register state.
3281  */
3282 static inline void
3283 context_switch(struct rq *rq, struct task_struct *prev,
3284                struct task_struct *next)
3285 {
3286         struct mm_struct *mm, *oldmm;
3287
3288         prepare_task_switch(rq, prev, next);
3289
3290         mm = next->mm;
3291         oldmm = prev->active_mm;
3292         /*
3293          * For paravirt, this is coupled with an exit in switch_to to
3294          * combine the page table reload and the switch backend into
3295          * one hypercall.
3296          */
3297         arch_start_context_switch(prev);
3298
3299         if (!mm) {
3300                 next->active_mm = oldmm;
3301                 atomic_inc(&oldmm->mm_count);
3302                 enter_lazy_tlb(oldmm, next);
3303         } else
3304                 switch_mm(oldmm, mm, next);
3305
3306         if (!prev->mm) {
3307                 prev->active_mm = NULL;
3308                 rq->prev_mm = oldmm;
3309         }
3310         /*
3311          * Since the runqueue lock will be released by the next
3312          * task (which is an invalid locking op but in the case
3313          * of the scheduler it's an obvious special-case), so we
3314          * do an early lockdep release here:
3315          */
3316 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3317         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3318 #endif
3319
3320         /* Here we just switch the register state and the stack. */
3321         switch_to(prev, next, prev);
3322
3323         barrier();
3324         /*
3325          * this_rq must be evaluated again because prev may have moved
3326          * CPUs since it called schedule(), thus the 'rq' on its stack
3327          * frame will be invalid.
3328          */
3329         finish_task_switch(this_rq(), prev);
3330 }
3331
3332 /*
3333  * nr_running, nr_uninterruptible and nr_context_switches:
3334  *
3335  * externally visible scheduler statistics: current number of runnable
3336  * threads, current number of uninterruptible-sleeping threads, total
3337  * number of context switches performed since bootup.
3338  */
3339 unsigned long nr_running(void)
3340 {
3341         unsigned long i, sum = 0;
3342
3343         for_each_online_cpu(i)
3344                 sum += cpu_rq(i)->nr_running;
3345
3346         return sum;
3347 }
3348
3349 unsigned long nr_uninterruptible(void)
3350 {
3351         unsigned long i, sum = 0;
3352
3353         for_each_possible_cpu(i)
3354                 sum += cpu_rq(i)->nr_uninterruptible;
3355
3356         /*
3357          * Since we read the counters lockless, it might be slightly
3358          * inaccurate. Do not allow it to go below zero though:
3359          */
3360         if (unlikely((long)sum < 0))
3361                 sum = 0;
3362
3363         return sum;
3364 }
3365
3366 unsigned long long nr_context_switches(void)
3367 {
3368         int i;
3369         unsigned long long sum = 0;
3370
3371         for_each_possible_cpu(i)
3372                 sum += cpu_rq(i)->nr_switches;
3373
3374         return sum;
3375 }
3376
3377 unsigned long nr_iowait(void)
3378 {
3379         unsigned long i, sum = 0;
3380
3381         for_each_possible_cpu(i)
3382                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3383
3384         return sum;
3385 }
3386
3387 unsigned long nr_iowait_cpu(int cpu)
3388 {
3389         struct rq *this = cpu_rq(cpu);
3390         return atomic_read(&this->nr_iowait);
3391 }
3392
3393 unsigned long this_cpu_load(void)
3394 {
3395         struct rq *this = this_rq();
3396         return this->cpu_load[0];
3397 }
3398
3399
3400 /*
3401  * Global load-average calculations
3402  *
3403  * We take a distributed and async approach to calculating the global load-avg
3404  * in order to minimize overhead.
3405  *
3406  * The global load average is an exponentially decaying average of nr_running +
3407  * nr_uninterruptible.
3408  *
3409  * Once every LOAD_FREQ:
3410  *
3411  *   nr_active = 0;
3412  *   for_each_possible_cpu(cpu)
3413  *      nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
3414  *
3415  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
3416  *
3417  * Due to a number of reasons the above turns in the mess below:
3418  *
3419  *  - for_each_possible_cpu() is prohibitively expensive on machines with
3420  *    serious number of cpus, therefore we need to take a distributed approach
3421  *    to calculating nr_active.
3422  *
3423  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
3424  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
3425  *
3426  *    So assuming nr_active := 0 when we start out -- true per definition, we
3427  *    can simply take per-cpu deltas and fold those into a global accumulate
3428  *    to obtain the same result. See calc_load_fold_active().
3429  *
3430  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
3431  *    across the machine, we assume 10 ticks is sufficient time for every
3432  *    cpu to have completed this task.
3433  *
3434  *    This places an upper-bound on the IRQ-off latency of the machine. Then
3435  *    again, being late doesn't loose the delta, just wrecks the sample.
3436  *
3437  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
3438  *    this would add another cross-cpu cacheline miss and atomic operation
3439  *    to the wakeup path. Instead we increment on whatever cpu the task ran
3440  *    when it went into uninterruptible state and decrement on whatever cpu
3441  *    did the wakeup. This means that only the sum of nr_uninterruptible over
3442  *    all cpus yields the correct result.
3443  *
3444  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
3445  */
3446
3447 /* Variables and functions for calc_load */
3448 static atomic_long_t calc_load_tasks;
3449 static unsigned long calc_load_update;
3450 unsigned long avenrun[3];
3451 EXPORT_SYMBOL(avenrun); /* should be removed */
3452
3453 /**
3454  * get_avenrun - get the load average array
3455  * @loads:      pointer to dest load array
3456  * @offset:     offset to add
3457  * @shift:      shift count to shift the result left
3458  *
3459  * These values are estimates at best, so no need for locking.
3460  */
3461 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3462 {
3463         loads[0] = (avenrun[0] + offset) << shift;
3464         loads[1] = (avenrun[1] + offset) << shift;
3465         loads[2] = (avenrun[2] + offset) << shift;
3466 }
3467
3468 static long calc_load_fold_active(struct rq *this_rq)
3469 {
3470         long nr_active, delta = 0;
3471
3472         nr_active = this_rq->nr_running;
3473         nr_active += (long) this_rq->nr_uninterruptible;
3474
3475         if (nr_active != this_rq->calc_load_active) {
3476                 delta = nr_active - this_rq->calc_load_active;
3477                 this_rq->calc_load_active = nr_active;
3478         }
3479
3480         return delta;
3481 }
3482
3483 /*
3484  * a1 = a0 * e + a * (1 - e)
3485  */
3486 static unsigned long
3487 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3488 {
3489         load *= exp;
3490         load += active * (FIXED_1 - exp);
3491         load += 1UL << (FSHIFT - 1);
3492         return load >> FSHIFT;
3493 }
3494
3495 #ifdef CONFIG_NO_HZ
3496 /*
3497  * Handle NO_HZ for the global load-average.
3498  *
3499  * Since the above described distributed algorithm to compute the global
3500  * load-average relies on per-cpu sampling from the tick, it is affected by
3501  * NO_HZ.
3502  *
3503  * The basic idea is to fold the nr_active delta into a global idle-delta upon
3504  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
3505  * when we read the global state.
3506  *
3507  * Obviously reality has to ruin such a delightfully simple scheme:
3508  *
3509  *  - When we go NO_HZ idle during the window, we can negate our sample
3510  *    contribution, causing under-accounting.
3511  *
3512  *    We avoid this by keeping two idle-delta counters and flipping them
3513  *    when the window starts, thus separating old and new NO_HZ load.
3514  *
3515  *    The only trick is the slight shift in index flip for read vs write.
3516  *
3517  *        0s            5s            10s           15s
3518  *          +10           +10           +10           +10
3519  *        |-|-----------|-|-----------|-|-----------|-|
3520  *    r:0 0 1           1 0           0 1           1 0
3521  *    w:0 1 1           0 0           1 1           0 0
3522  *
3523  *    This ensures we'll fold the old idle contribution in this window while
3524  *    accumlating the new one.
3525  *
3526  *  - When we wake up from NO_HZ idle during the window, we push up our
3527  *    contribution, since we effectively move our sample point to a known
3528  *    busy state.
3529  *
3530  *    This is solved by pushing the window forward, and thus skipping the
3531  *    sample, for this cpu (effectively using the idle-delta for this cpu which
3532  *    was in effect at the time the window opened). This also solves the issue
3533  *    of having to deal with a cpu having been in NOHZ idle for multiple
3534  *    LOAD_FREQ intervals.
3535  *
3536  * When making the ILB scale, we should try to pull this in as well.
3537  */
3538 static atomic_long_t calc_load_idle[2];
3539 static int calc_load_idx;
3540
3541 static inline int calc_load_write_idx(void)
3542 {
3543         int idx = calc_load_idx;
3544
3545         /*
3546          * See calc_global_nohz(), if we observe the new index, we also
3547          * need to observe the new update time.
3548          */
3549         smp_rmb();
3550
3551         /*
3552          * If the folding window started, make sure we start writing in the
3553          * next idle-delta.
3554          */
3555         if (!time_before(jiffies, calc_load_update))
3556                 idx++;
3557
3558         return idx & 1;
3559 }
3560
3561 static inline int calc_load_read_idx(void)
3562 {
3563         return calc_load_idx & 1;
3564 }
3565
3566 void calc_load_enter_idle(void)
3567 {