[PATCH] sched: don't kick ALB in the presence of pinned task
[pandora-kernel.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long cpu_load[3];
210 #endif
211         unsigned long long nr_switches;
212
213         /*
214          * This is part of a global counter where only the total sum
215          * over all CPUs matters. A task can increase this counter on
216          * one CPU and if it got migrated afterwards it may decrease
217          * it on another CPU. Always updated under the runqueue lock:
218          */
219         unsigned long nr_uninterruptible;
220
221         unsigned long expired_timestamp;
222         unsigned long long timestamp_last_tick;
223         task_t *curr, *idle;
224         struct mm_struct *prev_mm;
225         prio_array_t *active, *expired, arrays[2];
226         int best_expired_prio;
227         atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230         struct sched_domain *sd;
231
232         /* For active balancing */
233         int active_balance;
234         int push_cpu;
235
236         task_t *migration_thread;
237         struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241         /* latency stats */
242         struct sched_info rq_sched_info;
243
244         /* sys_sched_yield() stats */
245         unsigned long yld_exp_empty;
246         unsigned long yld_act_empty;
247         unsigned long yld_both_empty;
248         unsigned long yld_cnt;
249
250         /* schedule() stats */
251         unsigned long sched_switch;
252         unsigned long sched_cnt;
253         unsigned long sched_goidle;
254
255         /* try_to_wake_up() stats */
256         unsigned long ttwu_cnt;
257         unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 /*
264  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265  * See detach_destroy_domains: synchronize_sched for details.
266  *
267  * The domain tree of any CPU may only be accessed from within
268  * preempt-disabled sections.
269  */
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
272
273 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
274 #define this_rq()               (&__get_cpu_var(runqueues))
275 #define task_rq(p)              cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
277
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next)      do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev)       do { } while (0)
283 #endif
284
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
287 {
288         return rq->curr == p;
289 }
290
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292 {
293 }
294
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296 {
297         spin_unlock_irq(&rq->lock);
298 }
299
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
302 {
303 #ifdef CONFIG_SMP
304         return p->oncpu;
305 #else
306         return rq->curr == p;
307 #endif
308 }
309
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
311 {
312 #ifdef CONFIG_SMP
313         /*
314          * We can optimise this out completely for !SMP, because the
315          * SMP rebalancing from interrupt is the only thing that cares
316          * here.
317          */
318         next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321         spin_unlock_irq(&rq->lock);
322 #else
323         spin_unlock(&rq->lock);
324 #endif
325 }
326
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
328 {
329 #ifdef CONFIG_SMP
330         /*
331          * After ->oncpu is cleared, the task can be moved to a different CPU.
332          * We must ensure this doesn't happen until the switch is completely
333          * finished.
334          */
335         smp_wmb();
336         prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339         local_irq_enable();
340 #endif
341 }
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
343
344 /*
345  * task_rq_lock - lock the runqueue a given task resides on and disable
346  * interrupts.  Note the ordering: we can safely lookup the task_rq without
347  * explicitly disabling preemption.
348  */
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350         __acquires(rq->lock)
351 {
352         struct runqueue *rq;
353
354 repeat_lock_task:
355         local_irq_save(*flags);
356         rq = task_rq(p);
357         spin_lock(&rq->lock);
358         if (unlikely(rq != task_rq(p))) {
359                 spin_unlock_irqrestore(&rq->lock, *flags);
360                 goto repeat_lock_task;
361         }
362         return rq;
363 }
364
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366         __releases(rq->lock)
367 {
368         spin_unlock_irqrestore(&rq->lock, *flags);
369 }
370
371 #ifdef CONFIG_SCHEDSTATS
372 /*
373  * bump this up when changing the output format or the meaning of an existing
374  * format, so that tools can adapt (or abort)
375  */
376 #define SCHEDSTAT_VERSION 12
377
378 static int show_schedstat(struct seq_file *seq, void *v)
379 {
380         int cpu;
381
382         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383         seq_printf(seq, "timestamp %lu\n", jiffies);
384         for_each_online_cpu(cpu) {
385                 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387                 struct sched_domain *sd;
388                 int dcnt = 0;
389 #endif
390
391                 /* runqueue-specific stats */
392                 seq_printf(seq,
393                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394                     cpu, rq->yld_both_empty,
395                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397                     rq->ttwu_cnt, rq->ttwu_local,
398                     rq->rq_sched_info.cpu_time,
399                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
400
401                 seq_printf(seq, "\n");
402
403 #ifdef CONFIG_SMP
404                 /* domain-specific stats */
405                 preempt_disable();
406                 for_each_domain(cpu, sd) {
407                         enum idle_type itype;
408                         char mask_str[NR_CPUS];
409
410                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413                                         itype++) {
414                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415                                     sd->lb_cnt[itype],
416                                     sd->lb_balanced[itype],
417                                     sd->lb_failed[itype],
418                                     sd->lb_imbalance[itype],
419                                     sd->lb_gained[itype],
420                                     sd->lb_hot_gained[itype],
421                                     sd->lb_nobusyq[itype],
422                                     sd->lb_nobusyg[itype]);
423                         }
424                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
429                 }
430                 preempt_enable();
431 #endif
432         }
433         return 0;
434 }
435
436 static int schedstat_open(struct inode *inode, struct file *file)
437 {
438         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439         char *buf = kmalloc(size, GFP_KERNEL);
440         struct seq_file *m;
441         int res;
442
443         if (!buf)
444                 return -ENOMEM;
445         res = single_open(file, show_schedstat, NULL);
446         if (!res) {
447                 m = file->private_data;
448                 m->buf = buf;
449                 m->size = size;
450         } else
451                 kfree(buf);
452         return res;
453 }
454
455 struct file_operations proc_schedstat_operations = {
456         .open    = schedstat_open,
457         .read    = seq_read,
458         .llseek  = seq_lseek,
459         .release = single_release,
460 };
461
462 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field)       do { } while (0)
466 # define schedstat_add(rq, field, amt)  do { } while (0)
467 #endif
468
469 /*
470  * rq_lock - lock a given runqueue and disable interrupts.
471  */
472 static inline runqueue_t *this_rq_lock(void)
473         __acquires(rq->lock)
474 {
475         runqueue_t *rq;
476
477         local_irq_disable();
478         rq = this_rq();
479         spin_lock(&rq->lock);
480
481         return rq;
482 }
483
484 #ifdef CONFIG_SCHEDSTATS
485 /*
486  * Called when a process is dequeued from the active array and given
487  * the cpu.  We should note that with the exception of interactive
488  * tasks, the expired queue will become the active queue after the active
489  * queue is empty, without explicitly dequeuing and requeuing tasks in the
490  * expired queue.  (Interactive tasks may be requeued directly to the
491  * active queue, thus delaying tasks in the expired queue from running;
492  * see scheduler_tick()).
493  *
494  * This function is only called from sched_info_arrive(), rather than
495  * dequeue_task(). Even though a task may be queued and dequeued multiple
496  * times as it is shuffled about, we're really interested in knowing how
497  * long it was from the *first* time it was queued to the time that it
498  * finally hit a cpu.
499  */
500 static inline void sched_info_dequeued(task_t *t)
501 {
502         t->sched_info.last_queued = 0;
503 }
504
505 /*
506  * Called when a task finally hits the cpu.  We can now calculate how
507  * long it was waiting to run.  We also note when it began so that we
508  * can keep stats on how long its timeslice is.
509  */
510 static inline void sched_info_arrive(task_t *t)
511 {
512         unsigned long now = jiffies, diff = 0;
513         struct runqueue *rq = task_rq(t);
514
515         if (t->sched_info.last_queued)
516                 diff = now - t->sched_info.last_queued;
517         sched_info_dequeued(t);
518         t->sched_info.run_delay += diff;
519         t->sched_info.last_arrival = now;
520         t->sched_info.pcnt++;
521
522         if (!rq)
523                 return;
524
525         rq->rq_sched_info.run_delay += diff;
526         rq->rq_sched_info.pcnt++;
527 }
528
529 /*
530  * Called when a process is queued into either the active or expired
531  * array.  The time is noted and later used to determine how long we
532  * had to wait for us to reach the cpu.  Since the expired queue will
533  * become the active queue after active queue is empty, without dequeuing
534  * and requeuing any tasks, we are interested in queuing to either. It
535  * is unusual but not impossible for tasks to be dequeued and immediately
536  * requeued in the same or another array: this can happen in sched_yield(),
537  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538  * to runqueue.
539  *
540  * This function is only called from enqueue_task(), but also only updates
541  * the timestamp if it is already not set.  It's assumed that
542  * sched_info_dequeued() will clear that stamp when appropriate.
543  */
544 static inline void sched_info_queued(task_t *t)
545 {
546         if (!t->sched_info.last_queued)
547                 t->sched_info.last_queued = jiffies;
548 }
549
550 /*
551  * Called when a process ceases being the active-running process, either
552  * voluntarily or involuntarily.  Now we can calculate how long we ran.
553  */
554 static inline void sched_info_depart(task_t *t)
555 {
556         struct runqueue *rq = task_rq(t);
557         unsigned long diff = jiffies - t->sched_info.last_arrival;
558
559         t->sched_info.cpu_time += diff;
560
561         if (rq)
562                 rq->rq_sched_info.cpu_time += diff;
563 }
564
565 /*
566  * Called when tasks are switched involuntarily due, typically, to expiring
567  * their time slice.  (This may also be called when switching to or from
568  * the idle task.)  We are only called when prev != next.
569  */
570 static inline void sched_info_switch(task_t *prev, task_t *next)
571 {
572         struct runqueue *rq = task_rq(prev);
573
574         /*
575          * prev now departs the cpu.  It's not interesting to record
576          * stats about how efficient we were at scheduling the idle
577          * process, however.
578          */
579         if (prev != rq->idle)
580                 sched_info_depart(prev);
581
582         if (next != rq->idle)
583                 sched_info_arrive(next);
584 }
585 #else
586 #define sched_info_queued(t)            do { } while (0)
587 #define sched_info_switch(t, next)      do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
589
590 /*
591  * Adding/removing a task to/from a priority array:
592  */
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
594 {
595         array->nr_active--;
596         list_del(&p->run_list);
597         if (list_empty(array->queue + p->prio))
598                 __clear_bit(p->prio, array->bitmap);
599 }
600
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
602 {
603         sched_info_queued(p);
604         list_add_tail(&p->run_list, array->queue + p->prio);
605         __set_bit(p->prio, array->bitmap);
606         array->nr_active++;
607         p->array = array;
608 }
609
610 /*
611  * Put task to the end of the run list without the overhead of dequeue
612  * followed by enqueue.
613  */
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
615 {
616         list_move_tail(&p->run_list, array->queue + p->prio);
617 }
618
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
620 {
621         list_add(&p->run_list, array->queue + p->prio);
622         __set_bit(p->prio, array->bitmap);
623         array->nr_active++;
624         p->array = array;
625 }
626
627 /*
628  * effective_prio - return the priority that is based on the static
629  * priority but is modified by bonuses/penalties.
630  *
631  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632  * into the -5 ... 0 ... +5 bonus/penalty range.
633  *
634  * We use 25% of the full 0...39 priority range so that:
635  *
636  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
638  *
639  * Both properties are important to certain workloads.
640  */
641 static int effective_prio(task_t *p)
642 {
643         int bonus, prio;
644
645         if (rt_task(p))
646                 return p->prio;
647
648         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
649
650         prio = p->static_prio - bonus;
651         if (prio < MAX_RT_PRIO)
652                 prio = MAX_RT_PRIO;
653         if (prio > MAX_PRIO-1)
654                 prio = MAX_PRIO-1;
655         return prio;
656 }
657
658 /*
659  * __activate_task - move a task to the runqueue.
660  */
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
662 {
663         enqueue_task(p, rq->active);
664         rq->nr_running++;
665 }
666
667 /*
668  * __activate_idle_task - move idle task to the _front_ of runqueue.
669  */
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
671 {
672         enqueue_task_head(p, rq->active);
673         rq->nr_running++;
674 }
675
676 static int recalc_task_prio(task_t *p, unsigned long long now)
677 {
678         /* Caller must always ensure 'now >= p->timestamp' */
679         unsigned long long __sleep_time = now - p->timestamp;
680         unsigned long sleep_time;
681
682         if (__sleep_time > NS_MAX_SLEEP_AVG)
683                 sleep_time = NS_MAX_SLEEP_AVG;
684         else
685                 sleep_time = (unsigned long)__sleep_time;
686
687         if (likely(sleep_time > 0)) {
688                 /*
689                  * User tasks that sleep a long time are categorised as
690                  * idle and will get just interactive status to stay active &
691                  * prevent them suddenly becoming cpu hogs and starving
692                  * other processes.
693                  */
694                 if (p->mm && p->activated != -1 &&
695                         sleep_time > INTERACTIVE_SLEEP(p)) {
696                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697                                                 DEF_TIMESLICE);
698                 } else {
699                         /*
700                          * The lower the sleep avg a task has the more
701                          * rapidly it will rise with sleep time.
702                          */
703                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
704
705                         /*
706                          * Tasks waking from uninterruptible sleep are
707                          * limited in their sleep_avg rise as they
708                          * are likely to be waiting on I/O
709                          */
710                         if (p->activated == -1 && p->mm) {
711                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712                                         sleep_time = 0;
713                                 else if (p->sleep_avg + sleep_time >=
714                                                 INTERACTIVE_SLEEP(p)) {
715                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
716                                         sleep_time = 0;
717                                 }
718                         }
719
720                         /*
721                          * This code gives a bonus to interactive tasks.
722                          *
723                          * The boost works by updating the 'average sleep time'
724                          * value here, based on ->timestamp. The more time a
725                          * task spends sleeping, the higher the average gets -
726                          * and the higher the priority boost gets as well.
727                          */
728                         p->sleep_avg += sleep_time;
729
730                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
732                 }
733         }
734
735         return effective_prio(p);
736 }
737
738 /*
739  * activate_task - move a task to the runqueue and do priority recalculation
740  *
741  * Update all the scheduling statistics stuff. (sleep average
742  * calculation, priority modifiers, etc.)
743  */
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
745 {
746         unsigned long long now;
747
748         now = sched_clock();
749 #ifdef CONFIG_SMP
750         if (!local) {
751                 /* Compensate for drifting sched_clock */
752                 runqueue_t *this_rq = this_rq();
753                 now = (now - this_rq->timestamp_last_tick)
754                         + rq->timestamp_last_tick;
755         }
756 #endif
757
758         p->prio = recalc_task_prio(p, now);
759
760         /*
761          * This checks to make sure it's not an uninterruptible task
762          * that is now waking up.
763          */
764         if (!p->activated) {
765                 /*
766                  * Tasks which were woken up by interrupts (ie. hw events)
767                  * are most likely of interactive nature. So we give them
768                  * the credit of extending their sleep time to the period
769                  * of time they spend on the runqueue, waiting for execution
770                  * on a CPU, first time around:
771                  */
772                 if (in_interrupt())
773                         p->activated = 2;
774                 else {
775                         /*
776                          * Normal first-time wakeups get a credit too for
777                          * on-runqueue time, but it will be weighted down:
778                          */
779                         p->activated = 1;
780                 }
781         }
782         p->timestamp = now;
783
784         __activate_task(p, rq);
785 }
786
787 /*
788  * deactivate_task - remove a task from the runqueue.
789  */
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
791 {
792         rq->nr_running--;
793         dequeue_task(p, p->array);
794         p->array = NULL;
795 }
796
797 /*
798  * resched_task - mark a task 'to be rescheduled now'.
799  *
800  * On UP this means the setting of the need_resched flag, on SMP it
801  * might also involve a cross-CPU call to trigger the scheduler on
802  * the target CPU.
803  */
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
806 {
807         int need_resched, nrpolling;
808
809         assert_spin_locked(&task_rq(p)->lock);
810
811         /* minimise the chance of sending an interrupt to poll_idle() */
812         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
815
816         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817                 smp_send_reschedule(task_cpu(p));
818 }
819 #else
820 static inline void resched_task(task_t *p)
821 {
822         set_tsk_need_resched(p);
823 }
824 #endif
825
826 /**
827  * task_curr - is this task currently executing on a CPU?
828  * @p: the task in question.
829  */
830 inline int task_curr(const task_t *p)
831 {
832         return cpu_curr(task_cpu(p)) == p;
833 }
834
835 #ifdef CONFIG_SMP
836 typedef struct {
837         struct list_head list;
838
839         task_t *task;
840         int dest_cpu;
841
842         struct completion done;
843 } migration_req_t;
844
845 /*
846  * The task's runqueue lock must be held.
847  * Returns true if you have to wait for migration thread.
848  */
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
850 {
851         runqueue_t *rq = task_rq(p);
852
853         /*
854          * If the task is not on a runqueue (and not running), then
855          * it is sufficient to simply update the task's cpu field.
856          */
857         if (!p->array && !task_running(rq, p)) {
858                 set_task_cpu(p, dest_cpu);
859                 return 0;
860         }
861
862         init_completion(&req->done);
863         req->task = p;
864         req->dest_cpu = dest_cpu;
865         list_add(&req->list, &rq->migration_queue);
866         return 1;
867 }
868
869 /*
870  * wait_task_inactive - wait for a thread to unschedule.
871  *
872  * The caller must ensure that the task *will* unschedule sometime soon,
873  * else this function might spin for a *long* time. This function can't
874  * be called with interrupts off, or it may introduce deadlock with
875  * smp_call_function() if an IPI is sent by the same process we are
876  * waiting to become inactive.
877  */
878 void wait_task_inactive(task_t *p)
879 {
880         unsigned long flags;
881         runqueue_t *rq;
882         int preempted;
883
884 repeat:
885         rq = task_rq_lock(p, &flags);
886         /* Must be off runqueue entirely, not preempted. */
887         if (unlikely(p->array || task_running(rq, p))) {
888                 /* If it's preempted, we yield.  It could be a while. */
889                 preempted = !task_running(rq, p);
890                 task_rq_unlock(rq, &flags);
891                 cpu_relax();
892                 if (preempted)
893                         yield();
894                 goto repeat;
895         }
896         task_rq_unlock(rq, &flags);
897 }
898
899 /***
900  * kick_process - kick a running thread to enter/exit the kernel
901  * @p: the to-be-kicked thread
902  *
903  * Cause a process which is running on another CPU to enter
904  * kernel-mode, without any delay. (to get signals handled.)
905  *
906  * NOTE: this function doesnt have to take the runqueue lock,
907  * because all it wants to ensure is that the remote task enters
908  * the kernel. If the IPI races and the task has been migrated
909  * to another CPU then no harm is done and the purpose has been
910  * achieved as well.
911  */
912 void kick_process(task_t *p)
913 {
914         int cpu;
915
916         preempt_disable();
917         cpu = task_cpu(p);
918         if ((cpu != smp_processor_id()) && task_curr(p))
919                 smp_send_reschedule(cpu);
920         preempt_enable();
921 }
922
923 /*
924  * Return a low guess at the load of a migration-source cpu.
925  *
926  * We want to under-estimate the load of migration sources, to
927  * balance conservatively.
928  */
929 static inline unsigned long source_load(int cpu, int type)
930 {
931         runqueue_t *rq = cpu_rq(cpu);
932         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933         if (type == 0)
934                 return load_now;
935
936         return min(rq->cpu_load[type-1], load_now);
937 }
938
939 /*
940  * Return a high guess at the load of a migration-target cpu
941  */
942 static inline unsigned long target_load(int cpu, int type)
943 {
944         runqueue_t *rq = cpu_rq(cpu);
945         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946         if (type == 0)
947                 return load_now;
948
949         return max(rq->cpu_load[type-1], load_now);
950 }
951
952 /*
953  * find_idlest_group finds and returns the least busy CPU group within the
954  * domain.
955  */
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
958 {
959         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960         unsigned long min_load = ULONG_MAX, this_load = 0;
961         int load_idx = sd->forkexec_idx;
962         int imbalance = 100 + (sd->imbalance_pct-100)/2;
963
964         do {
965                 unsigned long load, avg_load;
966                 int local_group;
967                 int i;
968
969                 /* Skip over this group if it has no CPUs allowed */
970                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
971                         goto nextgroup;
972
973                 local_group = cpu_isset(this_cpu, group->cpumask);
974
975                 /* Tally up the load of all CPUs in the group */
976                 avg_load = 0;
977
978                 for_each_cpu_mask(i, group->cpumask) {
979                         /* Bias balancing toward cpus of our domain */
980                         if (local_group)
981                                 load = source_load(i, load_idx);
982                         else
983                                 load = target_load(i, load_idx);
984
985                         avg_load += load;
986                 }
987
988                 /* Adjust by relative CPU power of the group */
989                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
990
991                 if (local_group) {
992                         this_load = avg_load;
993                         this = group;
994                 } else if (avg_load < min_load) {
995                         min_load = avg_load;
996                         idlest = group;
997                 }
998 nextgroup:
999                 group = group->next;
1000         } while (group != sd->groups);
1001
1002         if (!idlest || 100*this_load < imbalance*min_load)
1003                 return NULL;
1004         return idlest;
1005 }
1006
1007 /*
1008  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1009  */
1010 static int
1011 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1012 {
1013         cpumask_t tmp;
1014         unsigned long load, min_load = ULONG_MAX;
1015         int idlest = -1;
1016         int i;
1017
1018         /* Traverse only the allowed CPUs */
1019         cpus_and(tmp, group->cpumask, p->cpus_allowed);
1020
1021         for_each_cpu_mask(i, tmp) {
1022                 load = source_load(i, 0);
1023
1024                 if (load < min_load || (load == min_load && i == this_cpu)) {
1025                         min_load = load;
1026                         idlest = i;
1027                 }
1028         }
1029
1030         return idlest;
1031 }
1032
1033 /*
1034  * sched_balance_self: balance the current task (running on cpu) in domains
1035  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1036  * SD_BALANCE_EXEC.
1037  *
1038  * Balance, ie. select the least loaded group.
1039  *
1040  * Returns the target CPU number, or the same CPU if no balancing is needed.
1041  *
1042  * preempt must be disabled.
1043  */
1044 static int sched_balance_self(int cpu, int flag)
1045 {
1046         struct task_struct *t = current;
1047         struct sched_domain *tmp, *sd = NULL;
1048
1049         for_each_domain(cpu, tmp)
1050                 if (tmp->flags & flag)
1051                         sd = tmp;
1052
1053         while (sd) {
1054                 cpumask_t span;
1055                 struct sched_group *group;
1056                 int new_cpu;
1057                 int weight;
1058
1059                 span = sd->span;
1060                 group = find_idlest_group(sd, t, cpu);
1061                 if (!group)
1062                         goto nextlevel;
1063
1064                 new_cpu = find_idlest_cpu(group, t, cpu);
1065                 if (new_cpu == -1 || new_cpu == cpu)
1066                         goto nextlevel;
1067
1068                 /* Now try balancing at a lower domain level */
1069                 cpu = new_cpu;
1070 nextlevel:
1071                 sd = NULL;
1072                 weight = cpus_weight(span);
1073                 for_each_domain(cpu, tmp) {
1074                         if (weight <= cpus_weight(tmp->span))
1075                                 break;
1076                         if (tmp->flags & flag)
1077                                 sd = tmp;
1078                 }
1079                 /* while loop will break here if sd == NULL */
1080         }
1081
1082         return cpu;
1083 }
1084
1085 #endif /* CONFIG_SMP */
1086
1087 /*
1088  * wake_idle() will wake a task on an idle cpu if task->cpu is
1089  * not idle and an idle cpu is available.  The span of cpus to
1090  * search starts with cpus closest then further out as needed,
1091  * so we always favor a closer, idle cpu.
1092  *
1093  * Returns the CPU we should wake onto.
1094  */
1095 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1096 static int wake_idle(int cpu, task_t *p)
1097 {
1098         cpumask_t tmp;
1099         struct sched_domain *sd;
1100         int i;
1101
1102         if (idle_cpu(cpu))
1103                 return cpu;
1104
1105         for_each_domain(cpu, sd) {
1106                 if (sd->flags & SD_WAKE_IDLE) {
1107                         cpus_and(tmp, sd->span, p->cpus_allowed);
1108                         for_each_cpu_mask(i, tmp) {
1109                                 if (idle_cpu(i))
1110                                         return i;
1111                         }
1112                 }
1113                 else
1114                         break;
1115         }
1116         return cpu;
1117 }
1118 #else
1119 static inline int wake_idle(int cpu, task_t *p)
1120 {
1121         return cpu;
1122 }
1123 #endif
1124
1125 /***
1126  * try_to_wake_up - wake up a thread
1127  * @p: the to-be-woken-up thread
1128  * @state: the mask of task states that can be woken
1129  * @sync: do a synchronous wakeup?
1130  *
1131  * Put it on the run-queue if it's not already there. The "current"
1132  * thread is always on the run-queue (except when the actual
1133  * re-schedule is in progress), and as such you're allowed to do
1134  * the simpler "current->state = TASK_RUNNING" to mark yourself
1135  * runnable without the overhead of this.
1136  *
1137  * returns failure only if the task is already active.
1138  */
1139 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1140 {
1141         int cpu, this_cpu, success = 0;
1142         unsigned long flags;
1143         long old_state;
1144         runqueue_t *rq;
1145 #ifdef CONFIG_SMP
1146         unsigned long load, this_load;
1147         struct sched_domain *sd, *this_sd = NULL;
1148         int new_cpu;
1149 #endif
1150
1151         rq = task_rq_lock(p, &flags);
1152         old_state = p->state;
1153         if (!(old_state & state))
1154                 goto out;
1155
1156         if (p->array)
1157                 goto out_running;
1158
1159         cpu = task_cpu(p);
1160         this_cpu = smp_processor_id();
1161
1162 #ifdef CONFIG_SMP
1163         if (unlikely(task_running(rq, p)))
1164                 goto out_activate;
1165
1166         new_cpu = cpu;
1167
1168         schedstat_inc(rq, ttwu_cnt);
1169         if (cpu == this_cpu) {
1170                 schedstat_inc(rq, ttwu_local);
1171                 goto out_set_cpu;
1172         }
1173
1174         for_each_domain(this_cpu, sd) {
1175                 if (cpu_isset(cpu, sd->span)) {
1176                         schedstat_inc(sd, ttwu_wake_remote);
1177                         this_sd = sd;
1178                         break;
1179                 }
1180         }
1181
1182         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1183                 goto out_set_cpu;
1184
1185         /*
1186          * Check for affine wakeup and passive balancing possibilities.
1187          */
1188         if (this_sd) {
1189                 int idx = this_sd->wake_idx;
1190                 unsigned int imbalance;
1191
1192                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1193
1194                 load = source_load(cpu, idx);
1195                 this_load = target_load(this_cpu, idx);
1196
1197                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1198
1199                 if (this_sd->flags & SD_WAKE_AFFINE) {
1200                         unsigned long tl = this_load;
1201                         /*
1202                          * If sync wakeup then subtract the (maximum possible)
1203                          * effect of the currently running task from the load
1204                          * of the current CPU:
1205                          */
1206                         if (sync)
1207                                 tl -= SCHED_LOAD_SCALE;
1208
1209                         if ((tl <= load &&
1210                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1211                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1212                                 /*
1213                                  * This domain has SD_WAKE_AFFINE and
1214                                  * p is cache cold in this domain, and
1215                                  * there is no bad imbalance.
1216                                  */
1217                                 schedstat_inc(this_sd, ttwu_move_affine);
1218                                 goto out_set_cpu;
1219                         }
1220                 }
1221
1222                 /*
1223                  * Start passive balancing when half the imbalance_pct
1224                  * limit is reached.
1225                  */
1226                 if (this_sd->flags & SD_WAKE_BALANCE) {
1227                         if (imbalance*this_load <= 100*load) {
1228                                 schedstat_inc(this_sd, ttwu_move_balance);
1229                                 goto out_set_cpu;
1230                         }
1231                 }
1232         }
1233
1234         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1235 out_set_cpu:
1236         new_cpu = wake_idle(new_cpu, p);
1237         if (new_cpu != cpu) {
1238                 set_task_cpu(p, new_cpu);
1239                 task_rq_unlock(rq, &flags);
1240                 /* might preempt at this point */
1241                 rq = task_rq_lock(p, &flags);
1242                 old_state = p->state;
1243                 if (!(old_state & state))
1244                         goto out;
1245                 if (p->array)
1246                         goto out_running;
1247
1248                 this_cpu = smp_processor_id();
1249                 cpu = task_cpu(p);
1250         }
1251
1252 out_activate:
1253 #endif /* CONFIG_SMP */
1254         if (old_state == TASK_UNINTERRUPTIBLE) {
1255                 rq->nr_uninterruptible--;
1256                 /*
1257                  * Tasks on involuntary sleep don't earn
1258                  * sleep_avg beyond just interactive state.
1259                  */
1260                 p->activated = -1;
1261         }
1262
1263         /*
1264          * Tasks that have marked their sleep as noninteractive get
1265          * woken up without updating their sleep average. (i.e. their
1266          * sleep is handled in a priority-neutral manner, no priority
1267          * boost and no penalty.)
1268          */
1269         if (old_state & TASK_NONINTERACTIVE)
1270                 __activate_task(p, rq);
1271         else
1272                 activate_task(p, rq, cpu == this_cpu);
1273         /*
1274          * Sync wakeups (i.e. those types of wakeups where the waker
1275          * has indicated that it will leave the CPU in short order)
1276          * don't trigger a preemption, if the woken up task will run on
1277          * this cpu. (in this case the 'I will reschedule' promise of
1278          * the waker guarantees that the freshly woken up task is going
1279          * to be considered on this CPU.)
1280          */
1281         if (!sync || cpu != this_cpu) {
1282                 if (TASK_PREEMPTS_CURR(p, rq))
1283                         resched_task(rq->curr);
1284         }
1285         success = 1;
1286
1287 out_running:
1288         p->state = TASK_RUNNING;
1289 out:
1290         task_rq_unlock(rq, &flags);
1291
1292         return success;
1293 }
1294
1295 int fastcall wake_up_process(task_t *p)
1296 {
1297         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1298                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1299 }
1300
1301 EXPORT_SYMBOL(wake_up_process);
1302
1303 int fastcall wake_up_state(task_t *p, unsigned int state)
1304 {
1305         return try_to_wake_up(p, state, 0);
1306 }
1307
1308 /*
1309  * Perform scheduler related setup for a newly forked process p.
1310  * p is forked by current.
1311  */
1312 void fastcall sched_fork(task_t *p, int clone_flags)
1313 {
1314         int cpu = get_cpu();
1315
1316 #ifdef CONFIG_SMP
1317         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1318 #endif
1319         set_task_cpu(p, cpu);
1320
1321         /*
1322          * We mark the process as running here, but have not actually
1323          * inserted it onto the runqueue yet. This guarantees that
1324          * nobody will actually run it, and a signal or other external
1325          * event cannot wake it up and insert it on the runqueue either.
1326          */
1327         p->state = TASK_RUNNING;
1328         INIT_LIST_HEAD(&p->run_list);
1329         p->array = NULL;
1330 #ifdef CONFIG_SCHEDSTATS
1331         memset(&p->sched_info, 0, sizeof(p->sched_info));
1332 #endif
1333 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1334         p->oncpu = 0;
1335 #endif
1336 #ifdef CONFIG_PREEMPT
1337         /* Want to start with kernel preemption disabled. */
1338         p->thread_info->preempt_count = 1;
1339 #endif
1340         /*
1341          * Share the timeslice between parent and child, thus the
1342          * total amount of pending timeslices in the system doesn't change,
1343          * resulting in more scheduling fairness.
1344          */
1345         local_irq_disable();
1346         p->time_slice = (current->time_slice + 1) >> 1;
1347         /*
1348          * The remainder of the first timeslice might be recovered by
1349          * the parent if the child exits early enough.
1350          */
1351         p->first_time_slice = 1;
1352         current->time_slice >>= 1;
1353         p->timestamp = sched_clock();
1354         if (unlikely(!current->time_slice)) {
1355                 /*
1356                  * This case is rare, it happens when the parent has only
1357                  * a single jiffy left from its timeslice. Taking the
1358                  * runqueue lock is not a problem.
1359                  */
1360                 current->time_slice = 1;
1361                 scheduler_tick();
1362         }
1363         local_irq_enable();
1364         put_cpu();
1365 }
1366
1367 /*
1368  * wake_up_new_task - wake up a newly created task for the first time.
1369  *
1370  * This function will do some initial scheduler statistics housekeeping
1371  * that must be done for every newly created context, then puts the task
1372  * on the runqueue and wakes it.
1373  */
1374 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1375 {
1376         unsigned long flags;
1377         int this_cpu, cpu;
1378         runqueue_t *rq, *this_rq;
1379
1380         rq = task_rq_lock(p, &flags);
1381         BUG_ON(p->state != TASK_RUNNING);
1382         this_cpu = smp_processor_id();
1383         cpu = task_cpu(p);
1384
1385         /*
1386          * We decrease the sleep average of forking parents
1387          * and children as well, to keep max-interactive tasks
1388          * from forking tasks that are max-interactive. The parent
1389          * (current) is done further down, under its lock.
1390          */
1391         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1392                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1393
1394         p->prio = effective_prio(p);
1395
1396         if (likely(cpu == this_cpu)) {
1397                 if (!(clone_flags & CLONE_VM)) {
1398                         /*
1399                          * The VM isn't cloned, so we're in a good position to
1400                          * do child-runs-first in anticipation of an exec. This
1401                          * usually avoids a lot of COW overhead.
1402                          */
1403                         if (unlikely(!current->array))
1404                                 __activate_task(p, rq);
1405                         else {
1406                                 p->prio = current->prio;
1407                                 list_add_tail(&p->run_list, &current->run_list);
1408                                 p->array = current->array;
1409                                 p->array->nr_active++;
1410                                 rq->nr_running++;
1411                         }
1412                         set_need_resched();
1413                 } else
1414                         /* Run child last */
1415                         __activate_task(p, rq);
1416                 /*
1417                  * We skip the following code due to cpu == this_cpu
1418                  *
1419                  *   task_rq_unlock(rq, &flags);
1420                  *   this_rq = task_rq_lock(current, &flags);
1421                  */
1422                 this_rq = rq;
1423         } else {
1424                 this_rq = cpu_rq(this_cpu);
1425
1426                 /*
1427                  * Not the local CPU - must adjust timestamp. This should
1428                  * get optimised away in the !CONFIG_SMP case.
1429                  */
1430                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1431                                         + rq->timestamp_last_tick;
1432                 __activate_task(p, rq);
1433                 if (TASK_PREEMPTS_CURR(p, rq))
1434                         resched_task(rq->curr);
1435
1436                 /*
1437                  * Parent and child are on different CPUs, now get the
1438                  * parent runqueue to update the parent's ->sleep_avg:
1439                  */
1440                 task_rq_unlock(rq, &flags);
1441                 this_rq = task_rq_lock(current, &flags);
1442         }
1443         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1444                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1445         task_rq_unlock(this_rq, &flags);
1446 }
1447
1448 /*
1449  * Potentially available exiting-child timeslices are
1450  * retrieved here - this way the parent does not get
1451  * penalized for creating too many threads.
1452  *
1453  * (this cannot be used to 'generate' timeslices
1454  * artificially, because any timeslice recovered here
1455  * was given away by the parent in the first place.)
1456  */
1457 void fastcall sched_exit(task_t *p)
1458 {
1459         unsigned long flags;
1460         runqueue_t *rq;
1461
1462         /*
1463          * If the child was a (relative-) CPU hog then decrease
1464          * the sleep_avg of the parent as well.
1465          */
1466         rq = task_rq_lock(p->parent, &flags);
1467         if (p->first_time_slice) {
1468                 p->parent->time_slice += p->time_slice;
1469                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1470                         p->parent->time_slice = task_timeslice(p);
1471         }
1472         if (p->sleep_avg < p->parent->sleep_avg)
1473                 p->parent->sleep_avg = p->parent->sleep_avg /
1474                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1475                 (EXIT_WEIGHT + 1);
1476         task_rq_unlock(rq, &flags);
1477 }
1478
1479 /**
1480  * prepare_task_switch - prepare to switch tasks
1481  * @rq: the runqueue preparing to switch
1482  * @next: the task we are going to switch to.
1483  *
1484  * This is called with the rq lock held and interrupts off. It must
1485  * be paired with a subsequent finish_task_switch after the context
1486  * switch.
1487  *
1488  * prepare_task_switch sets up locking and calls architecture specific
1489  * hooks.
1490  */
1491 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1492 {
1493         prepare_lock_switch(rq, next);
1494         prepare_arch_switch(next);
1495 }
1496
1497 /**
1498  * finish_task_switch - clean up after a task-switch
1499  * @rq: runqueue associated with task-switch
1500  * @prev: the thread we just switched away from.
1501  *
1502  * finish_task_switch must be called after the context switch, paired
1503  * with a prepare_task_switch call before the context switch.
1504  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1505  * and do any other architecture-specific cleanup actions.
1506  *
1507  * Note that we may have delayed dropping an mm in context_switch(). If
1508  * so, we finish that here outside of the runqueue lock.  (Doing it
1509  * with the lock held can cause deadlocks; see schedule() for
1510  * details.)
1511  */
1512 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1513         __releases(rq->lock)
1514 {
1515         struct mm_struct *mm = rq->prev_mm;
1516         unsigned long prev_task_flags;
1517
1518         rq->prev_mm = NULL;
1519
1520         /*
1521          * A task struct has one reference for the use as "current".
1522          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1523          * calls schedule one last time. The schedule call will never return,
1524          * and the scheduled task must drop that reference.
1525          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1526          * still held, otherwise prev could be scheduled on another cpu, die
1527          * there before we look at prev->state, and then the reference would
1528          * be dropped twice.
1529          *              Manfred Spraul <manfred@colorfullife.com>
1530          */
1531         prev_task_flags = prev->flags;
1532 #ifdef CONFIG_DEBUG_SPINLOCK
1533         /* this is a valid case when another task releases the spinlock */
1534         rq->lock.owner = current;
1535 #endif
1536         finish_arch_switch(prev);
1537         finish_lock_switch(rq, prev);
1538         if (mm)
1539                 mmdrop(mm);
1540         if (unlikely(prev_task_flags & PF_DEAD))
1541                 put_task_struct(prev);
1542 }
1543
1544 /**
1545  * schedule_tail - first thing a freshly forked thread must call.
1546  * @prev: the thread we just switched away from.
1547  */
1548 asmlinkage void schedule_tail(task_t *prev)
1549         __releases(rq->lock)
1550 {
1551         runqueue_t *rq = this_rq();
1552         finish_task_switch(rq, prev);
1553 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1554         /* In this case, finish_task_switch does not reenable preemption */
1555         preempt_enable();
1556 #endif
1557         if (current->set_child_tid)
1558                 put_user(current->pid, current->set_child_tid);
1559 }
1560
1561 /*
1562  * context_switch - switch to the new MM and the new
1563  * thread's register state.
1564  */
1565 static inline
1566 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1567 {
1568         struct mm_struct *mm = next->mm;
1569         struct mm_struct *oldmm = prev->active_mm;
1570
1571         if (unlikely(!mm)) {
1572                 next->active_mm = oldmm;
1573                 atomic_inc(&oldmm->mm_count);
1574                 enter_lazy_tlb(oldmm, next);
1575         } else
1576                 switch_mm(oldmm, mm, next);
1577
1578         if (unlikely(!prev->mm)) {
1579                 prev->active_mm = NULL;
1580                 WARN_ON(rq->prev_mm);
1581                 rq->prev_mm = oldmm;
1582         }
1583
1584         /* Here we just switch the register state and the stack. */
1585         switch_to(prev, next, prev);
1586
1587         return prev;
1588 }
1589
1590 /*
1591  * nr_running, nr_uninterruptible and nr_context_switches:
1592  *
1593  * externally visible scheduler statistics: current number of runnable
1594  * threads, current number of uninterruptible-sleeping threads, total
1595  * number of context switches performed since bootup.
1596  */
1597 unsigned long nr_running(void)
1598 {
1599         unsigned long i, sum = 0;
1600
1601         for_each_online_cpu(i)
1602                 sum += cpu_rq(i)->nr_running;
1603
1604         return sum;
1605 }
1606
1607 unsigned long nr_uninterruptible(void)
1608 {
1609         unsigned long i, sum = 0;
1610
1611         for_each_cpu(i)
1612                 sum += cpu_rq(i)->nr_uninterruptible;
1613
1614         /*
1615          * Since we read the counters lockless, it might be slightly
1616          * inaccurate. Do not allow it to go below zero though:
1617          */
1618         if (unlikely((long)sum < 0))
1619                 sum = 0;
1620
1621         return sum;
1622 }
1623
1624 unsigned long long nr_context_switches(void)
1625 {
1626         unsigned long long i, sum = 0;
1627
1628         for_each_cpu(i)
1629                 sum += cpu_rq(i)->nr_switches;
1630
1631         return sum;
1632 }
1633
1634 unsigned long nr_iowait(void)
1635 {
1636         unsigned long i, sum = 0;
1637
1638         for_each_cpu(i)
1639                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1640
1641         return sum;
1642 }
1643
1644 #ifdef CONFIG_SMP
1645
1646 /*
1647  * double_rq_lock - safely lock two runqueues
1648  *
1649  * Note this does not disable interrupts like task_rq_lock,
1650  * you need to do so manually before calling.
1651  */
1652 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1653         __acquires(rq1->lock)
1654         __acquires(rq2->lock)
1655 {
1656         if (rq1 == rq2) {
1657                 spin_lock(&rq1->lock);
1658                 __acquire(rq2->lock);   /* Fake it out ;) */
1659         } else {
1660                 if (rq1 < rq2) {
1661                         spin_lock(&rq1->lock);
1662                         spin_lock(&rq2->lock);
1663                 } else {
1664                         spin_lock(&rq2->lock);
1665                         spin_lock(&rq1->lock);
1666                 }
1667         }
1668 }
1669
1670 /*
1671  * double_rq_unlock - safely unlock two runqueues
1672  *
1673  * Note this does not restore interrupts like task_rq_unlock,
1674  * you need to do so manually after calling.
1675  */
1676 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1677         __releases(rq1->lock)
1678         __releases(rq2->lock)
1679 {
1680         spin_unlock(&rq1->lock);
1681         if (rq1 != rq2)
1682                 spin_unlock(&rq2->lock);
1683         else
1684                 __release(rq2->lock);
1685 }
1686
1687 /*
1688  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1689  */
1690 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1691         __releases(this_rq->lock)
1692         __acquires(busiest->lock)
1693         __acquires(this_rq->lock)
1694 {
1695         if (unlikely(!spin_trylock(&busiest->lock))) {
1696                 if (busiest < this_rq) {
1697                         spin_unlock(&this_rq->lock);
1698                         spin_lock(&busiest->lock);
1699                         spin_lock(&this_rq->lock);
1700                 } else
1701                         spin_lock(&busiest->lock);
1702         }
1703 }
1704
1705 /*
1706  * If dest_cpu is allowed for this process, migrate the task to it.
1707  * This is accomplished by forcing the cpu_allowed mask to only
1708  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1709  * the cpu_allowed mask is restored.
1710  */
1711 static void sched_migrate_task(task_t *p, int dest_cpu)
1712 {
1713         migration_req_t req;
1714         runqueue_t *rq;
1715         unsigned long flags;
1716
1717         rq = task_rq_lock(p, &flags);
1718         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1719             || unlikely(cpu_is_offline(dest_cpu)))
1720                 goto out;
1721
1722         /* force the process onto the specified CPU */
1723         if (migrate_task(p, dest_cpu, &req)) {
1724                 /* Need to wait for migration thread (might exit: take ref). */
1725                 struct task_struct *mt = rq->migration_thread;
1726                 get_task_struct(mt);
1727                 task_rq_unlock(rq, &flags);
1728                 wake_up_process(mt);
1729                 put_task_struct(mt);
1730                 wait_for_completion(&req.done);
1731                 return;
1732         }
1733 out:
1734         task_rq_unlock(rq, &flags);
1735 }
1736
1737 /*
1738  * sched_exec - execve() is a valuable balancing opportunity, because at
1739  * this point the task has the smallest effective memory and cache footprint.
1740  */
1741 void sched_exec(void)
1742 {
1743         int new_cpu, this_cpu = get_cpu();
1744         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1745         put_cpu();
1746         if (new_cpu != this_cpu)
1747                 sched_migrate_task(current, new_cpu);
1748 }
1749
1750 /*
1751  * pull_task - move a task from a remote runqueue to the local runqueue.
1752  * Both runqueues must be locked.
1753  */
1754 static inline
1755 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1756                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1757 {
1758         dequeue_task(p, src_array);
1759         src_rq->nr_running--;
1760         set_task_cpu(p, this_cpu);
1761         this_rq->nr_running++;
1762         enqueue_task(p, this_array);
1763         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1764                                 + this_rq->timestamp_last_tick;
1765         /*
1766          * Note that idle threads have a prio of MAX_PRIO, for this test
1767          * to be always true for them.
1768          */
1769         if (TASK_PREEMPTS_CURR(p, this_rq))
1770                 resched_task(this_rq->curr);
1771 }
1772
1773 /*
1774  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1775  */
1776 static inline
1777 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1778                      struct sched_domain *sd, enum idle_type idle,
1779                      int *all_pinned)
1780 {
1781         /*
1782          * We do not migrate tasks that are:
1783          * 1) running (obviously), or
1784          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1785          * 3) are cache-hot on their current CPU.
1786          */
1787         if (!cpu_isset(this_cpu, p->cpus_allowed))
1788                 return 0;
1789         *all_pinned = 0;
1790
1791         if (task_running(rq, p))
1792                 return 0;
1793
1794         /*
1795          * Aggressive migration if:
1796          * 1) task is cache cold, or
1797          * 2) too many balance attempts have failed.
1798          */
1799
1800         if (sd->nr_balance_failed > sd->cache_nice_tries)
1801                 return 1;
1802
1803         if (task_hot(p, rq->timestamp_last_tick, sd))
1804                 return 0;
1805         return 1;
1806 }
1807
1808 /*
1809  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1810  * as part of a balancing operation within "domain". Returns the number of
1811  * tasks moved.
1812  *
1813  * Called with both runqueues locked.
1814  */
1815 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1816                       unsigned long max_nr_move, struct sched_domain *sd,
1817                       enum idle_type idle, int *all_pinned)
1818 {
1819         prio_array_t *array, *dst_array;
1820         struct list_head *head, *curr;
1821         int idx, pulled = 0, pinned = 0;
1822         task_t *tmp;
1823
1824         if (max_nr_move == 0)
1825                 goto out;
1826
1827         pinned = 1;
1828
1829         /*
1830          * We first consider expired tasks. Those will likely not be
1831          * executed in the near future, and they are most likely to
1832          * be cache-cold, thus switching CPUs has the least effect
1833          * on them.
1834          */
1835         if (busiest->expired->nr_active) {
1836                 array = busiest->expired;
1837                 dst_array = this_rq->expired;
1838         } else {
1839                 array = busiest->active;
1840                 dst_array = this_rq->active;
1841         }
1842
1843 new_array:
1844         /* Start searching at priority 0: */
1845         idx = 0;
1846 skip_bitmap:
1847         if (!idx)
1848                 idx = sched_find_first_bit(array->bitmap);
1849         else
1850                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1851         if (idx >= MAX_PRIO) {
1852                 if (array == busiest->expired && busiest->active->nr_active) {
1853                         array = busiest->active;
1854                         dst_array = this_rq->active;
1855                         goto new_array;
1856                 }
1857                 goto out;
1858         }
1859
1860         head = array->queue + idx;
1861         curr = head->prev;
1862 skip_queue:
1863         tmp = list_entry(curr, task_t, run_list);
1864
1865         curr = curr->prev;
1866
1867         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1868                 if (curr != head)
1869                         goto skip_queue;
1870                 idx++;
1871                 goto skip_bitmap;
1872         }
1873
1874 #ifdef CONFIG_SCHEDSTATS
1875         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1876                 schedstat_inc(sd, lb_hot_gained[idle]);
1877 #endif
1878
1879         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1880         pulled++;
1881
1882         /* We only want to steal up to the prescribed number of tasks. */
1883         if (pulled < max_nr_move) {
1884                 if (curr != head)
1885                         goto skip_queue;
1886                 idx++;
1887                 goto skip_bitmap;
1888         }
1889 out:
1890         /*
1891          * Right now, this is the only place pull_task() is called,
1892          * so we can safely collect pull_task() stats here rather than
1893          * inside pull_task().
1894          */
1895         schedstat_add(sd, lb_gained[idle], pulled);
1896
1897         if (all_pinned)
1898                 *all_pinned = pinned;
1899         return pulled;
1900 }
1901
1902 /*
1903  * find_busiest_group finds and returns the busiest CPU group within the
1904  * domain. It calculates and returns the number of tasks which should be
1905  * moved to restore balance via the imbalance parameter.
1906  */
1907 static struct sched_group *
1908 find_busiest_group(struct sched_domain *sd, int this_cpu,
1909                    unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1910 {
1911         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1912         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1913         int load_idx;
1914
1915         max_load = this_load = total_load = total_pwr = 0;
1916         if (idle == NOT_IDLE)
1917                 load_idx = sd->busy_idx;
1918         else if (idle == NEWLY_IDLE)
1919                 load_idx = sd->newidle_idx;
1920         else
1921                 load_idx = sd->idle_idx;
1922
1923         do {
1924                 unsigned long load;
1925                 int local_group;
1926                 int i;
1927
1928                 local_group = cpu_isset(this_cpu, group->cpumask);
1929
1930                 /* Tally up the load of all CPUs in the group */
1931                 avg_load = 0;
1932
1933                 for_each_cpu_mask(i, group->cpumask) {
1934                         if (*sd_idle && !idle_cpu(i))
1935                                 *sd_idle = 0;
1936
1937                         /* Bias balancing toward cpus of our domain */
1938                         if (local_group)
1939                                 load = target_load(i, load_idx);
1940                         else
1941                                 load = source_load(i, load_idx);
1942
1943                         avg_load += load;
1944                 }
1945
1946                 total_load += avg_load;
1947                 total_pwr += group->cpu_power;
1948
1949                 /* Adjust by relative CPU power of the group */
1950                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1951
1952                 if (local_group) {
1953                         this_load = avg_load;
1954                         this = group;
1955                 } else if (avg_load > max_load) {
1956                         max_load = avg_load;
1957                         busiest = group;
1958                 }
1959                 group = group->next;
1960         } while (group != sd->groups);
1961
1962         if (!busiest || this_load >= max_load)
1963                 goto out_balanced;
1964
1965         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1966
1967         if (this_load >= avg_load ||
1968                         100*max_load <= sd->imbalance_pct*this_load)
1969                 goto out_balanced;
1970
1971         /*
1972          * We're trying to get all the cpus to the average_load, so we don't
1973          * want to push ourselves above the average load, nor do we wish to
1974          * reduce the max loaded cpu below the average load, as either of these
1975          * actions would just result in more rebalancing later, and ping-pong
1976          * tasks around. Thus we look for the minimum possible imbalance.
1977          * Negative imbalances (*we* are more loaded than anyone else) will
1978          * be counted as no imbalance for these purposes -- we can't fix that
1979          * by pulling tasks to us.  Be careful of negative numbers as they'll
1980          * appear as very large values with unsigned longs.
1981          */
1982         /* How much load to actually move to equalise the imbalance */
1983         *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1984                                 (avg_load - this_load) * this->cpu_power)
1985                         / SCHED_LOAD_SCALE;
1986
1987         if (*imbalance < SCHED_LOAD_SCALE) {
1988                 unsigned long pwr_now = 0, pwr_move = 0;
1989                 unsigned long tmp;
1990
1991                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1992                         *imbalance = 1;
1993                         return busiest;
1994                 }
1995
1996                 /*
1997                  * OK, we don't have enough imbalance to justify moving tasks,
1998                  * however we may be able to increase total CPU power used by
1999                  * moving them.
2000                  */
2001
2002                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2003                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2004                 pwr_now /= SCHED_LOAD_SCALE;
2005
2006                 /* Amount of load we'd subtract */
2007                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2008                 if (max_load > tmp)
2009                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2010                                                         max_load - tmp);
2011
2012                 /* Amount of load we'd add */
2013                 if (max_load*busiest->cpu_power <
2014                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2015                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2016                 else
2017                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2018                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2019                 pwr_move /= SCHED_LOAD_SCALE;
2020
2021                 /* Move if we gain throughput */
2022                 if (pwr_move <= pwr_now)
2023                         goto out_balanced;
2024
2025                 *imbalance = 1;
2026                 return busiest;
2027         }
2028
2029         /* Get rid of the scaling factor, rounding down as we divide */
2030         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2031         return busiest;
2032
2033 out_balanced:
2034
2035         *imbalance = 0;
2036         return NULL;
2037 }
2038
2039 /*
2040  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2041  */
2042 static runqueue_t *find_busiest_queue(struct sched_group *group)
2043 {
2044         unsigned long load, max_load = 0;
2045         runqueue_t *busiest = NULL;
2046         int i;
2047
2048         for_each_cpu_mask(i, group->cpumask) {
2049                 load = source_load(i, 0);
2050
2051                 if (load > max_load) {
2052                         max_load = load;
2053                         busiest = cpu_rq(i);
2054                 }
2055         }
2056
2057         return busiest;
2058 }
2059
2060 /*
2061  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2062  * so long as it is large enough.
2063  */
2064 #define MAX_PINNED_INTERVAL     512
2065
2066 /*
2067  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2068  * tasks if there is an imbalance.
2069  *
2070  * Called with this_rq unlocked.
2071  */
2072 static int load_balance(int this_cpu, runqueue_t *this_rq,
2073                         struct sched_domain *sd, enum idle_type idle)
2074 {
2075         struct sched_group *group;
2076         runqueue_t *busiest;
2077         unsigned long imbalance;
2078         int nr_moved, all_pinned = 0;
2079         int active_balance = 0;
2080         int sd_idle = 0;
2081
2082         if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2083                 sd_idle = 1;
2084
2085         schedstat_inc(sd, lb_cnt[idle]);
2086
2087         group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2088         if (!group) {
2089                 schedstat_inc(sd, lb_nobusyg[idle]);
2090                 goto out_balanced;
2091         }
2092
2093         busiest = find_busiest_queue(group);
2094         if (!busiest) {
2095                 schedstat_inc(sd, lb_nobusyq[idle]);
2096                 goto out_balanced;
2097         }
2098
2099         BUG_ON(busiest == this_rq);
2100
2101         schedstat_add(sd, lb_imbalance[idle], imbalance);
2102
2103         nr_moved = 0;
2104         if (busiest->nr_running > 1) {
2105                 /*
2106                  * Attempt to move tasks. If find_busiest_group has found
2107                  * an imbalance but busiest->nr_running <= 1, the group is
2108                  * still unbalanced. nr_moved simply stays zero, so it is
2109                  * correctly treated as an imbalance.
2110                  */
2111                 double_rq_lock(this_rq, busiest);
2112                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2113                                         imbalance, sd, idle, &all_pinned);
2114                 double_rq_unlock(this_rq, busiest);
2115
2116                 /* All tasks on this runqueue were pinned by CPU affinity */
2117                 if (unlikely(all_pinned))
2118                         goto out_balanced;
2119         }
2120
2121         if (!nr_moved) {
2122                 schedstat_inc(sd, lb_failed[idle]);
2123                 sd->nr_balance_failed++;
2124
2125                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2126
2127                         spin_lock(&busiest->lock);
2128
2129                         /* don't kick the migration_thread, if the curr
2130                          * task on busiest cpu can't be moved to this_cpu
2131                          */
2132                         if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2133                                 spin_unlock(&busiest->lock);
2134                                 all_pinned = 1;
2135                                 goto out_one_pinned;
2136                         }
2137
2138                         if (!busiest->active_balance) {
2139                                 busiest->active_balance = 1;
2140                                 busiest->push_cpu = this_cpu;
2141                                 active_balance = 1;
2142                         }
2143                         spin_unlock(&busiest->lock);
2144                         if (active_balance)
2145                                 wake_up_process(busiest->migration_thread);
2146
2147                         /*
2148                          * We've kicked active balancing, reset the failure
2149                          * counter.
2150                          */
2151                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2152                 }
2153         } else
2154                 sd->nr_balance_failed = 0;
2155
2156         if (likely(!active_balance)) {
2157                 /* We were unbalanced, so reset the balancing interval */
2158                 sd->balance_interval = sd->min_interval;
2159         } else {
2160                 /*
2161                  * If we've begun active balancing, start to back off. This
2162                  * case may not be covered by the all_pinned logic if there
2163                  * is only 1 task on the busy runqueue (because we don't call
2164                  * move_tasks).
2165                  */
2166                 if (sd->balance_interval < sd->max_interval)
2167                         sd->balance_interval *= 2;
2168         }
2169
2170         if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2171                 return -1;
2172         return nr_moved;
2173
2174 out_balanced:
2175         schedstat_inc(sd, lb_balanced[idle]);
2176
2177         sd->nr_balance_failed = 0;
2178
2179 out_one_pinned:
2180         /* tune up the balancing interval */
2181         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2182                         (sd->balance_interval < sd->max_interval))
2183                 sd->balance_interval *= 2;
2184
2185         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2186                 return -1;
2187         return 0;
2188 }
2189
2190 /*
2191  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2192  * tasks if there is an imbalance.
2193  *
2194  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2195  * this_rq is locked.
2196  */
2197 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2198                                 struct sched_domain *sd)
2199 {
2200         struct sched_group *group;
2201         runqueue_t *busiest = NULL;
2202         unsigned long imbalance;
2203         int nr_moved = 0;
2204         int sd_idle = 0;
2205
2206         if (sd->flags & SD_SHARE_CPUPOWER)
2207                 sd_idle = 1;
2208
2209         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2210         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2211         if (!group) {
2212                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2213                 goto out_balanced;
2214         }
2215
2216         busiest = find_busiest_queue(group);
2217         if (!busiest) {
2218                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2219                 goto out_balanced;
2220         }
2221
2222         BUG_ON(busiest == this_rq);
2223
2224         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2225
2226         nr_moved = 0;
2227         if (busiest->nr_running > 1) {
2228                 /* Attempt to move tasks */
2229                 double_lock_balance(this_rq, busiest);
2230                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2231                                         imbalance, sd, NEWLY_IDLE, NULL);
2232                 spin_unlock(&busiest->lock);
2233         }
2234
2235         if (!nr_moved) {
2236                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2237                 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2238                         return -1;
2239         } else
2240                 sd->nr_balance_failed = 0;
2241
2242         return nr_moved;
2243
2244 out_balanced:
2245         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2246         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2247                 return -1;
2248         sd->nr_balance_failed = 0;
2249         return 0;
2250 }
2251
2252 /*
2253  * idle_balance is called by schedule() if this_cpu is about to become
2254  * idle. Attempts to pull tasks from other CPUs.
2255  */
2256 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2257 {
2258         struct sched_domain *sd;
2259
2260         for_each_domain(this_cpu, sd) {
2261                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2262                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2263                                 /* We've pulled tasks over so stop searching */
2264                                 break;
2265                         }
2266                 }
2267         }
2268 }
2269
2270 /*
2271  * active_load_balance is run by migration threads. It pushes running tasks
2272  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2273  * running on each physical CPU where possible, and avoids physical /
2274  * logical imbalances.
2275  *
2276  * Called with busiest_rq locked.
2277  */
2278 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2279 {
2280         struct sched_domain *sd;
2281         runqueue_t *target_rq;
2282         int target_cpu = busiest_rq->push_cpu;
2283
2284         if (busiest_rq->nr_running <= 1)
2285                 /* no task to move */
2286                 return;
2287
2288         target_rq = cpu_rq(target_cpu);
2289
2290         /*
2291          * This condition is "impossible", if it occurs
2292          * we need to fix it.  Originally reported by
2293          * Bjorn Helgaas on a 128-cpu setup.
2294          */
2295         BUG_ON(busiest_rq == target_rq);
2296
2297         /* move a task from busiest_rq to target_rq */
2298         double_lock_balance(busiest_rq, target_rq);
2299
2300         /* Search for an sd spanning us and the target CPU. */
2301         for_each_domain(target_cpu, sd)
2302                 if ((sd->flags & SD_LOAD_BALANCE) &&
2303                         cpu_isset(busiest_cpu, sd->span))
2304                                 break;
2305
2306         if (unlikely(sd == NULL))
2307                 goto out;
2308
2309         schedstat_inc(sd, alb_cnt);
2310
2311         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2312                 schedstat_inc(sd, alb_pushed);
2313         else
2314                 schedstat_inc(sd, alb_failed);
2315 out:
2316         spin_unlock(&target_rq->lock);
2317 }
2318
2319 /*
2320  * rebalance_tick will get called every timer tick, on every CPU.
2321  *
2322  * It checks each scheduling domain to see if it is due to be balanced,
2323  * and initiates a balancing operation if so.
2324  *
2325  * Balancing parameters are set up in arch_init_sched_domains.
2326  */
2327
2328 /* Don't have all balancing operations going off at once */
2329 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2330
2331 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2332                            enum idle_type idle)
2333 {
2334         unsigned long old_load, this_load;
2335         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2336         struct sched_domain *sd;
2337         int i;
2338
2339         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2340         /* Update our load */
2341         for (i = 0; i < 3; i++) {
2342                 unsigned long new_load = this_load;
2343                 int scale = 1 << i;
2344                 old_load = this_rq->cpu_load[i];
2345                 /*
2346                  * Round up the averaging division if load is increasing. This
2347                  * prevents us from getting stuck on 9 if the load is 10, for
2348                  * example.
2349                  */
2350                 if (new_load > old_load)
2351                         new_load += scale-1;
2352                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2353         }
2354
2355         for_each_domain(this_cpu, sd) {
2356                 unsigned long interval;
2357
2358                 if (!(sd->flags & SD_LOAD_BALANCE))
2359                         continue;
2360
2361                 interval = sd->balance_interval;
2362                 if (idle != SCHED_IDLE)
2363                         interval *= sd->busy_factor;
2364
2365                 /* scale ms to jiffies */
2366                 interval = msecs_to_jiffies(interval);
2367                 if (unlikely(!interval))
2368                         interval = 1;
2369
2370                 if (j - sd->last_balance >= interval) {
2371                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2372                                 /*
2373                                  * We've pulled tasks over so either we're no
2374                                  * longer idle, or one of our SMT siblings is
2375                                  * not idle.
2376                                  */
2377                                 idle = NOT_IDLE;
2378                         }
2379                         sd->last_balance += interval;
2380                 }
2381         }
2382 }
2383 #else
2384 /*
2385  * on UP we do not need to balance between CPUs:
2386  */
2387 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2388 {
2389 }
2390 static inline void idle_balance(int cpu, runqueue_t *rq)
2391 {
2392 }
2393 #endif
2394
2395 static inline int wake_priority_sleeper(runqueue_t *rq)
2396 {
2397         int ret = 0;
2398 #ifdef CONFIG_SCHED_SMT
2399         spin_lock(&rq->lock);
2400         /*
2401          * If an SMT sibling task has been put to sleep for priority
2402          * reasons reschedule the idle task to see if it can now run.
2403          */
2404         if (rq->nr_running) {
2405                 resched_task(rq->idle);
2406                 ret = 1;
2407         }
2408         spin_unlock(&rq->lock);
2409 #endif
2410         return ret;
2411 }
2412
2413 DEFINE_PER_CPU(struct kernel_stat, kstat);
2414
2415 EXPORT_PER_CPU_SYMBOL(kstat);
2416
2417 /*
2418  * This is called on clock ticks and on context switches.
2419  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2420  */
2421 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2422                                     unsigned long long now)
2423 {
2424         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2425         p->sched_time += now - last;
2426 }
2427
2428 /*
2429  * Return current->sched_time plus any more ns on the sched_clock
2430  * that have not yet been banked.
2431  */
2432 unsigned long long current_sched_time(const task_t *tsk)
2433 {
2434         unsigned long long ns;
2435         unsigned long flags;
2436         local_irq_save(flags);
2437         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2438         ns = tsk->sched_time + (sched_clock() - ns);
2439         local_irq_restore(flags);
2440         return ns;
2441 }
2442
2443 /*
2444  * We place interactive tasks back into the active array, if possible.
2445  *
2446  * To guarantee that this does not starve expired tasks we ignore the
2447  * interactivity of a task if the first expired task had to wait more
2448  * than a 'reasonable' amount of time. This deadline timeout is
2449  * load-dependent, as the frequency of array switched decreases with
2450  * increasing number of running tasks. We also ignore the interactivity
2451  * if a better static_prio task has expired:
2452  */
2453 #define EXPIRED_STARVING(rq) \
2454         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2455                 (jiffies - (rq)->expired_timestamp >= \
2456                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2457                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2458
2459 /*
2460  * Account user cpu time to a process.
2461  * @p: the process that the cpu time gets accounted to
2462  * @hardirq_offset: the offset to subtract from hardirq_count()
2463  * @cputime: the cpu time spent in user space since the last update
2464  */
2465 void account_user_time(struct task_struct *p, cputime_t cputime)
2466 {
2467         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2468         cputime64_t tmp;
2469
2470         p->utime = cputime_add(p->utime, cputime);
2471
2472         /* Add user time to cpustat. */
2473         tmp = cputime_to_cputime64(cputime);
2474         if (TASK_NICE(p) > 0)
2475                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2476         else
2477                 cpustat->user = cputime64_add(cpustat->user, tmp);
2478 }
2479
2480 /*
2481  * Account system cpu time to a process.
2482  * @p: the process that the cpu time gets accounted to
2483  * @hardirq_offset: the offset to subtract from hardirq_count()
2484  * @cputime: the cpu time spent in kernel space since the last update
2485  */
2486 void account_system_time(struct task_struct *p, int hardirq_offset,
2487                          cputime_t cputime)
2488 {
2489         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2490         runqueue_t *rq = this_rq();
2491         cputime64_t tmp;
2492
2493         p->stime = cputime_add(p->stime, cputime);
2494
2495         /* Add system time to cpustat. */
2496         tmp = cputime_to_cputime64(cputime);
2497         if (hardirq_count() - hardirq_offset)
2498                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2499         else if (softirq_count())
2500                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2501         else if (p != rq->idle)
2502                 cpustat->system = cputime64_add(cpustat->system, tmp);
2503         else if (atomic_read(&rq->nr_iowait) > 0)
2504                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2505         else
2506                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2507         /* Account for system time used */
2508         acct_update_integrals(p);
2509         /* Update rss highwater mark */
2510         update_mem_hiwater(p);
2511 }
2512
2513 /*
2514  * Account for involuntary wait time.
2515  * @p: the process from which the cpu time has been stolen
2516  * @steal: the cpu time spent in involuntary wait
2517  */
2518 void account_steal_time(struct task_struct *p, cputime_t steal)
2519 {
2520         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2521         cputime64_t tmp = cputime_to_cputime64(steal);
2522         runqueue_t *rq = this_rq();
2523
2524         if (p == rq->idle) {
2525                 p->stime = cputime_add(p->stime, steal);
2526                 if (atomic_read(&rq->nr_iowait) > 0)
2527                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2528                 else
2529                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2530         } else
2531                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2532 }
2533
2534 /*
2535  * This function gets called by the timer code, with HZ frequency.
2536  * We call it with interrupts disabled.
2537  *
2538  * It also gets called by the fork code, when changing the parent's
2539  * timeslices.
2540  */
2541 void scheduler_tick(void)
2542 {
2543         int cpu = smp_processor_id();
2544         runqueue_t *rq = this_rq();
2545         task_t *p = current;
2546         unsigned long long now = sched_clock();
2547
2548         update_cpu_clock(p, rq, now);
2549
2550         rq->timestamp_last_tick = now;
2551
2552         if (p == rq->idle) {
2553                 if (wake_priority_sleeper(rq))
2554                         goto out;
2555                 rebalance_tick(cpu, rq, SCHED_IDLE);
2556                 return;
2557         }
2558
2559         /* Task might have expired already, but not scheduled off yet */
2560         if (p->array != rq->active) {
2561                 set_tsk_need_resched(p);
2562                 goto out;
2563         }
2564         spin_lock(&rq->lock);
2565         /*
2566          * The task was running during this tick - update the
2567          * time slice counter. Note: we do not update a thread's
2568          * priority until it either goes to sleep or uses up its
2569          * timeslice. This makes it possible for interactive tasks
2570          * to use up their timeslices at their highest priority levels.
2571          */
2572         if (rt_task(p)) {
2573                 /*
2574                  * RR tasks need a special form of timeslice management.
2575                  * FIFO tasks have no timeslices.
2576                  */
2577                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2578                         p->time_slice = task_timeslice(p);
2579                         p->first_time_slice = 0;
2580                         set_tsk_need_resched(p);
2581
2582                         /* put it at the end of the queue: */
2583                         requeue_task(p, rq->active);
2584                 }
2585                 goto out_unlock;
2586         }
2587         if (!--p->time_slice) {
2588                 dequeue_task(p, rq->active);
2589                 set_tsk_need_resched(p);
2590                 p->prio = effective_prio(p);
2591                 p->time_slice = task_timeslice(p);
2592                 p->first_time_slice = 0;
2593
2594                 if (!rq->expired_timestamp)
2595                         rq->expired_timestamp = jiffies;
2596                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2597                         enqueue_task(p, rq->expired);
2598                         if (p->static_prio < rq->best_expired_prio)
2599                                 rq->best_expired_prio = p->static_prio;
2600                 } else
2601                         enqueue_task(p, rq->active);
2602         } else {
2603                 /*
2604                  * Prevent a too long timeslice allowing a task to monopolize
2605                  * the CPU. We do this by splitting up the timeslice into
2606                  * smaller pieces.
2607                  *
2608                  * Note: this does not mean the task's timeslices expire or
2609                  * get lost in any way, they just might be preempted by
2610                  * another task of equal priority. (one with higher
2611                  * priority would have preempted this task already.) We
2612                  * requeue this task to the end of the list on this priority
2613                  * level, which is in essence a round-robin of tasks with
2614                  * equal priority.
2615                  *
2616                  * This only applies to tasks in the interactive
2617                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2618                  */
2619                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2620                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2621                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2622                         (p->array == rq->active)) {
2623
2624                         requeue_task(p, rq->active);
2625                         set_tsk_need_resched(p);
2626                 }
2627         }
2628 out_unlock:
2629         spin_unlock(&rq->lock);
2630 out:
2631         rebalance_tick(cpu, rq, NOT_IDLE);
2632 }
2633
2634 #ifdef CONFIG_SCHED_SMT
2635 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2636 {
2637         /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2638         if (rq->curr == rq->idle && rq->nr_running)
2639                 resched_task(rq->idle);
2640 }
2641
2642 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2643 {
2644         struct sched_domain *tmp, *sd = NULL;
2645         cpumask_t sibling_map;
2646         int i;
2647
2648         for_each_domain(this_cpu, tmp)
2649                 if (tmp->flags & SD_SHARE_CPUPOWER)
2650                         sd = tmp;
2651
2652         if (!sd)
2653                 return;
2654
2655         /*
2656          * Unlock the current runqueue because we have to lock in
2657          * CPU order to avoid deadlocks. Caller knows that we might
2658          * unlock. We keep IRQs disabled.
2659          */
2660         spin_unlock(&this_rq->lock);
2661
2662         sibling_map = sd->span;
2663
2664         for_each_cpu_mask(i, sibling_map)
2665                 spin_lock(&cpu_rq(i)->lock);
2666         /*
2667          * We clear this CPU from the mask. This both simplifies the
2668          * inner loop and keps this_rq locked when we exit:
2669          */
2670         cpu_clear(this_cpu, sibling_map);
2671
2672         for_each_cpu_mask(i, sibling_map) {
2673                 runqueue_t *smt_rq = cpu_rq(i);
2674
2675                 wakeup_busy_runqueue(smt_rq);
2676         }
2677
2678         for_each_cpu_mask(i, sibling_map)
2679                 spin_unlock(&cpu_rq(i)->lock);
2680         /*
2681          * We exit with this_cpu's rq still held and IRQs
2682          * still disabled:
2683          */
2684 }
2685
2686 /*
2687  * number of 'lost' timeslices this task wont be able to fully
2688  * utilize, if another task runs on a sibling. This models the
2689  * slowdown effect of other tasks running on siblings:
2690  */
2691 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2692 {
2693         return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2694 }
2695
2696 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2697 {
2698         struct sched_domain *tmp, *sd = NULL;
2699         cpumask_t sibling_map;
2700         prio_array_t *array;
2701         int ret = 0, i;
2702         task_t *p;
2703
2704         for_each_domain(this_cpu, tmp)
2705                 if (tmp->flags & SD_SHARE_CPUPOWER)
2706                         sd = tmp;
2707
2708         if (!sd)
2709                 return 0;
2710
2711         /*
2712          * The same locking rules and details apply as for
2713          * wake_sleeping_dependent():
2714          */
2715         spin_unlock(&this_rq->lock);
2716         sibling_map = sd->span;
2717         for_each_cpu_mask(i, sibling_map)
2718                 spin_lock(&cpu_rq(i)->lock);
2719         cpu_clear(this_cpu, sibling_map);
2720
2721         /*
2722          * Establish next task to be run - it might have gone away because
2723          * we released the runqueue lock above:
2724          */
2725         if (!this_rq->nr_running)
2726                 goto out_unlock;
2727         array = this_rq->active;
2728         if (!array->nr_active)
2729                 array = this_rq->expired;
2730         BUG_ON(!array->nr_active);
2731
2732         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2733                 task_t, run_list);
2734
2735         for_each_cpu_mask(i, sibling_map) {
2736                 runqueue_t *smt_rq = cpu_rq(i);
2737                 task_t *smt_curr = smt_rq->curr;
2738
2739                 /* Kernel threads do not participate in dependent sleeping */
2740                 if (!p->mm || !smt_curr->mm || rt_task(p))
2741                         goto check_smt_task;
2742
2743                 /*
2744                  * If a user task with lower static priority than the
2745                  * running task on the SMT sibling is trying to schedule,
2746                  * delay it till there is proportionately less timeslice
2747                  * left of the sibling task to prevent a lower priority
2748                  * task from using an unfair proportion of the
2749                  * physical cpu's resources. -ck
2750                  */
2751                 if (rt_task(smt_curr)) {
2752                         /*
2753                          * With real time tasks we run non-rt tasks only
2754                          * per_cpu_gain% of the time.
2755                          */
2756                         if ((jiffies % DEF_TIMESLICE) >
2757                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2758                                         ret = 1;
2759                 } else
2760                         if (smt_curr->static_prio < p->static_prio &&
2761                                 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2762                                 smt_slice(smt_curr, sd) > task_timeslice(p))
2763                                         ret = 1;
2764
2765 check_smt_task:
2766                 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2767                         rt_task(smt_curr))
2768                                 continue;
2769                 if (!p->mm) {
2770                         wakeup_busy_runqueue(smt_rq);
2771                         continue;
2772                 }
2773
2774                 /*
2775                  * Reschedule a lower priority task on the SMT sibling for
2776                  * it to be put to sleep, or wake it up if it has been put to
2777                  * sleep for priority reasons to see if it should run now.
2778                  */
2779                 if (rt_task(p)) {
2780                         if ((jiffies % DEF_TIMESLICE) >
2781                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2782                                         resched_task(smt_curr);
2783                 } else {
2784                         if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2785                                 smt_slice(p, sd) > task_timeslice(smt_curr))
2786                                         resched_task(smt_curr);
2787                         else
2788                                 wakeup_busy_runqueue(smt_rq);
2789                 }
2790         }
2791 out_unlock:
2792         for_each_cpu_mask(i, sibling_map)
2793                 spin_unlock(&cpu_rq(i)->lock);
2794         return ret;
2795 }
2796 #else
2797 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2798 {
2799 }
2800
2801 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2802 {
2803         return 0;
2804 }
2805 #endif
2806
2807 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2808
2809 void fastcall add_preempt_count(int val)
2810 {
2811         /*
2812          * Underflow?
2813          */
2814         BUG_ON((preempt_count() < 0));
2815         preempt_count() += val;
2816         /*
2817          * Spinlock count overflowing soon?
2818          */
2819         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2820 }
2821 EXPORT_SYMBOL(add_preempt_count);
2822
2823 void fastcall sub_preempt_count(int val)
2824 {
2825         /*
2826          * Underflow?
2827          */
2828         BUG_ON(val > preempt_count());
2829         /*
2830          * Is the spinlock portion underflowing?
2831          */
2832         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2833         preempt_count() -= val;
2834 }
2835 EXPORT_SYMBOL(sub_preempt_count);
2836
2837 #endif
2838
2839 /*
2840  * schedule() is the main scheduler function.
2841  */
2842 asmlinkage void __sched schedule(void)
2843 {
2844         long *switch_count;
2845         task_t *prev, *next;
2846         runqueue_t *rq;
2847         prio_array_t *array;
2848         struct list_head *queue;
2849         unsigned long long now;
2850         unsigned long run_time;
2851         int cpu, idx, new_prio;
2852
2853         /*
2854          * Test if we are atomic.  Since do_exit() needs to call into
2855          * schedule() atomically, we ignore that path for now.
2856          * Otherwise, whine if we are scheduling when we should not be.
2857          */
2858         if (likely(!current->exit_state)) {
2859                 if (unlikely(in_atomic())) {
2860                         printk(KERN_ERR "scheduling while atomic: "
2861                                 "%s/0x%08x/%d\n",
2862                                 current->comm, preempt_count(), current->pid);
2863                         dump_stack();
2864                 }
2865         }
2866         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2867
2868 need_resched:
2869         preempt_disable();
2870         prev = current;
2871         release_kernel_lock(prev);
2872 need_resched_nonpreemptible:
2873         rq = this_rq();
2874
2875         /*
2876          * The idle thread is not allowed to schedule!
2877          * Remove this check after it has been exercised a bit.
2878          */
2879         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2880                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2881                 dump_stack();
2882         }
2883
2884         schedstat_inc(rq, sched_cnt);
2885         now = sched_clock();
2886         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2887                 run_time = now - prev->timestamp;
2888                 if (unlikely((long long)(now - prev->timestamp) < 0))
2889                         run_time = 0;
2890         } else
2891                 run_time = NS_MAX_SLEEP_AVG;
2892
2893         /*
2894          * Tasks charged proportionately less run_time at high sleep_avg to
2895          * delay them losing their interactive status
2896          */
2897         run_time /= (CURRENT_BONUS(prev) ? : 1);
2898
2899         spin_lock_irq(&rq->lock);
2900
2901         if (unlikely(prev->flags & PF_DEAD))
2902                 prev->state = EXIT_DEAD;
2903
2904         switch_count = &prev->nivcsw;
2905         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2906                 switch_count = &prev->nvcsw;
2907                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2908                                 unlikely(signal_pending(prev))))
2909                         prev->state = TASK_RUNNING;
2910                 else {
2911                         if (prev->state == TASK_UNINTERRUPTIBLE)
2912                                 rq->nr_uninterruptible++;
2913                         deactivate_task(prev, rq);
2914                 }
2915         }
2916
2917         cpu = smp_processor_id();
2918         if (unlikely(!rq->nr_running)) {
2919 go_idle:
2920                 idle_balance(cpu, rq);
2921                 if (!rq->nr_running) {
2922                         next = rq->idle;
2923                         rq->expired_timestamp = 0;
2924                         wake_sleeping_dependent(cpu, rq);
2925                         /*
2926                          * wake_sleeping_dependent() might have released
2927                          * the runqueue, so break out if we got new
2928                          * tasks meanwhile:
2929                          */
2930                         if (!rq->nr_running)
2931                                 goto switch_tasks;
2932                 }
2933         } else {
2934                 if (dependent_sleeper(cpu, rq)) {
2935                         next = rq->idle;
2936                         goto switch_tasks;
2937                 }
2938                 /*
2939                  * dependent_sleeper() releases and reacquires the runqueue
2940                  * lock, hence go into the idle loop if the rq went
2941                  * empty meanwhile:
2942                  */
2943                 if (unlikely(!rq->nr_running))
2944                         goto go_idle;
2945         }
2946
2947         array = rq->active;
2948         if (unlikely(!array->nr_active)) {
2949                 /*
2950                  * Switch the active and expired arrays.
2951                  */
2952                 schedstat_inc(rq, sched_switch);
2953                 rq->active = rq->expired;
2954                 rq->expired = array;
2955                 array = rq->active;
2956                 rq->expired_timestamp = 0;
2957                 rq->best_expired_prio = MAX_PRIO;
2958         }
2959
2960         idx = sched_find_first_bit(array->bitmap);
2961         queue = array->queue + idx;
2962         next = list_entry(queue->next, task_t, run_list);
2963
2964         if (!rt_task(next) && next->activated > 0) {
2965                 unsigned long long delta = now - next->timestamp;
2966                 if (unlikely((long long)(now - next->timestamp) < 0))
2967                         delta = 0;
2968
2969                 if (next->activated == 1)
2970                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2971
2972                 array = next->array;
2973                 new_prio = recalc_task_prio(next, next->timestamp + delta);
2974
2975                 if (unlikely(next->prio != new_prio)) {
2976                         dequeue_task(next, array);
2977                         next->prio = new_prio;
2978                         enqueue_task(next, array);
2979                 } else
2980                         requeue_task(next, array);
2981         }
2982         next->activated = 0;
2983 switch_tasks:
2984         if (next == rq->idle)
2985                 schedstat_inc(rq, sched_goidle);
2986         prefetch(next);
2987         prefetch_stack(next);
2988         clear_tsk_need_resched(prev);
2989         rcu_qsctr_inc(task_cpu(prev));
2990
2991         update_cpu_clock(prev, rq, now);
2992
2993         prev->sleep_avg -= run_time;
2994         if ((long)prev->sleep_avg <= 0)
2995                 prev->sleep_avg = 0;
2996         prev->timestamp = prev->last_ran = now;
2997
2998         sched_info_switch(prev, next);
2999         if (likely(prev != next)) {
3000                 next->timestamp = now;
3001                 rq->nr_switches++;
3002                 rq->curr = next;
3003                 ++*switch_count;
3004
3005                 prepare_task_switch(rq, next);
3006                 prev = context_switch(rq, prev, next);
3007                 barrier();
3008                 /*
3009                  * this_rq must be evaluated again because prev may have moved
3010                  * CPUs since it called schedule(), thus the 'rq' on its stack
3011                  * frame will be invalid.
3012                  */
3013                 finish_task_switch(this_rq(), prev);
3014         } else
3015                 spin_unlock_irq(&rq->lock);
3016
3017         prev = current;
3018         if (unlikely(reacquire_kernel_lock(prev) < 0))
3019                 goto need_resched_nonpreemptible;
3020         preempt_enable_no_resched();
3021         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3022                 goto need_resched;
3023 }
3024
3025 EXPORT_SYMBOL(schedule);
3026
3027 #ifdef CONFIG_PREEMPT
3028 /*
3029  * this is is the entry point to schedule() from in-kernel preemption
3030  * off of preempt_enable.  Kernel preemptions off return from interrupt
3031  * occur there and call schedule directly.
3032  */
3033 asmlinkage void __sched preempt_schedule(void)
3034 {
3035         struct thread_info *ti = current_thread_info();
3036 #ifdef CONFIG_PREEMPT_BKL
3037         struct task_struct *task = current;
3038         int saved_lock_depth;
3039 #endif
3040         /*
3041          * If there is a non-zero preempt_count or interrupts are disabled,
3042          * we do not want to preempt the current task.  Just return..
3043          */
3044         if (unlikely(ti->preempt_count || irqs_disabled()))
3045                 return;
3046
3047 need_resched:
3048         add_preempt_count(PREEMPT_ACTIVE);
3049         /*
3050          * We keep the big kernel semaphore locked, but we
3051          * clear ->lock_depth so that schedule() doesnt
3052          * auto-release the semaphore:
3053          */
3054 #ifdef CONFIG_PREEMPT_BKL
3055         saved_lock_depth = task->lock_depth;
3056         task->lock_depth = -1;
3057 #endif
3058         schedule();
3059 #ifdef CONFIG_PREEMPT_BKL
3060         task->lock_depth = saved_lock_depth;
3061 #endif
3062         sub_preempt_count(PREEMPT_ACTIVE);
3063
3064         /* we could miss a preemption opportunity between schedule and now */
3065         barrier();
3066         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3067                 goto need_resched;
3068 }
3069
3070 EXPORT_SYMBOL(preempt_schedule);
3071
3072 /*
3073  * this is is the entry point to schedule() from kernel preemption
3074  * off of irq context.
3075  * Note, that this is called and return with irqs disabled. This will
3076  * protect us against recursive calling from irq.
3077  */
3078 asmlinkage void __sched preempt_schedule_irq(void)
3079 {
3080         struct thread_info *ti = current_thread_info();
3081 #ifdef CONFIG_PREEMPT_BKL
3082         struct task_struct *task = current;
3083         int saved_lock_depth;
3084 #endif
3085         /* Catch callers which need to be fixed*/
3086         BUG_ON(ti->preempt_count || !irqs_disabled());
3087
3088 need_resched:
3089         add_preempt_count(PREEMPT_ACTIVE);
3090         /*
3091          * We keep the big kernel semaphore locked, but we
3092          * clear ->lock_depth so that schedule() doesnt
3093          * auto-release the semaphore:
3094          */
3095 #ifdef CONFIG_PREEMPT_BKL
3096         saved_lock_depth = task->lock_depth;
3097         task->lock_depth = -1;
3098 #endif
3099         local_irq_enable();
3100         schedule();
3101         local_irq_disable();
3102 #ifdef CONFIG_PREEMPT_BKL
3103         task->lock_depth = saved_lock_depth;
3104 #endif
3105         sub_preempt_count(PREEMPT_ACTIVE);
3106
3107         /* we could miss a preemption opportunity between schedule and now */
3108         barrier();
3109         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3110                 goto need_resched;
3111 }
3112
3113 #endif /* CONFIG_PREEMPT */
3114
3115 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3116                           void *key)
3117 {
3118         task_t *p = curr->private;
3119         return try_to_wake_up(p, mode, sync);
3120 }
3121
3122 EXPORT_SYMBOL(default_wake_function);
3123
3124 /*
3125  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3126  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3127  * number) then we wake all the non-exclusive tasks and one exclusive task.
3128  *
3129  * There are circumstances in which we can try to wake a task which has already
3130  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3131  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3132  */
3133 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3134                              int nr_exclusive, int sync, void *key)
3135 {
3136         struct list_head *tmp, *next;
3137
3138         list_for_each_safe(tmp, next, &q->task_list) {
3139                 wait_queue_t *curr;
3140                 unsigned flags;
3141                 curr = list_entry(tmp, wait_queue_t, task_list);
3142                 flags = curr->flags;
3143                 if (curr->func(curr, mode, sync, key) &&
3144                     (flags & WQ_FLAG_EXCLUSIVE) &&
3145                     !--nr_exclusive)
3146                         break;
3147         }
3148 }
3149
3150 /**
3151  * __wake_up - wake up threads blocked on a waitqueue.
3152  * @q: the waitqueue
3153  * @mode: which threads
3154  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3155  * @key: is directly passed to the wakeup function
3156  */
3157 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3158                         int nr_exclusive, void *key)
3159 {
3160         unsigned long flags;
3161
3162         spin_lock_irqsave(&q->lock, flags);
3163         __wake_up_common(q, mode, nr_exclusive, 0, key);
3164         spin_unlock_irqrestore(&q->lock, flags);
3165 }
3166
3167 EXPORT_SYMBOL(__wake_up);
3168
3169 /*
3170  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3171  */
3172 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3173 {
3174         __wake_up_common(q, mode, 1, 0, NULL);
3175 }
3176
3177 /**
3178  * __wake_up_sync - wake up threads blocked on a waitqueue.
3179  * @q: the waitqueue
3180  * @mode: which threads
3181  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3182  *
3183  * The sync wakeup differs that the waker knows that it will schedule
3184  * away soon, so while the target thread will be woken up, it will not
3185  * be migrated to another CPU - ie. the two threads are 'synchronized'
3186  * with each other. This can prevent needless bouncing between CPUs.
3187  *
3188  * On UP it can prevent extra preemption.
3189  */
3190 void fastcall
3191 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3192 {
3193         unsigned long flags;
3194         int sync = 1;
3195
3196         if (unlikely(!q))
3197                 return;
3198
3199         if (unlikely(!nr_exclusive))
3200                 sync = 0;
3201
3202         spin_lock_irqsave(&q->lock, flags);
3203         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3204         spin_unlock_irqrestore(&q->lock, flags);
3205 }
3206 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3207
3208 void fastcall complete(struct completion *x)
3209 {
3210         unsigned long flags;
3211
3212         spin_lock_irqsave(&x->wait.lock, flags);
3213         x->done++;
3214         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3215                          1, 0, NULL);
3216         spin_unlock_irqrestore(&x->wait.lock, flags);
3217 }
3218 EXPORT_SYMBOL(complete);
3219
3220 void fastcall complete_all(struct completion *x)
3221 {
3222         unsigned long flags;
3223
3224         spin_lock_irqsave(&x->wait.lock, flags);
3225         x->done += UINT_MAX/2;
3226         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3227                          0, 0, NULL);
3228         spin_unlock_irqrestore(&x->wait.lock, flags);
3229 }
3230 EXPORT_SYMBOL(complete_all);
3231
3232 void fastcall __sched wait_for_completion(struct completion *x)
3233 {
3234         might_sleep();
3235         spin_lock_irq(&x->wait.lock);
3236         if (!x->done) {
3237                 DECLARE_WAITQUEUE(wait, current);
3238
3239                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3240                 __add_wait_queue_tail(&x->wait, &wait);
3241                 do {
3242                         __set_current_state(TASK_UNINTERRUPTIBLE);
3243                         spin_unlock_irq(&x->wait.lock);
3244                         schedule();
3245                         spin_lock_irq(&x->wait.lock);
3246                 } while (!x->done);
3247                 __remove_wait_queue(&x->wait, &wait);
3248         }
3249         x->done--;
3250         spin_unlock_irq(&x->wait.lock);
3251 }
3252 EXPORT_SYMBOL(wait_for_completion);
3253
3254 unsigned long fastcall __sched
3255 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3256 {
3257         might_sleep();
3258
3259         spin_lock_irq(&x->wait.lock);
3260         if (!x->done) {
3261                 DECLARE_WAITQUEUE(wait, current);
3262
3263                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3264                 __add_wait_queue_tail(&x->wait, &wait);
3265                 do {
3266                         __set_current_state(TASK_UNINTERRUPTIBLE);
3267                         spin_unlock_irq(&x->wait.lock);
3268                         timeout = schedule_timeout(timeout);
3269                         spin_lock_irq(&x->wait.lock);
3270                         if (!timeout) {
3271                                 __remove_wait_queue(&x->wait, &wait);
3272                                 goto out;
3273                         }
3274                 } while (!x->done);
3275                 __remove_wait_queue(&x->wait, &wait);
3276         }
3277         x->done--;
3278 out:
3279         spin_unlock_irq(&x->wait.lock);
3280         return timeout;
3281 }
3282 EXPORT_SYMBOL(wait_for_completion_timeout);
3283
3284 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3285 {
3286         int ret = 0;
3287
3288         might_sleep();
3289
3290         spin_lock_irq(&x->wait.lock);
3291         if (!x->done) {
3292                 DECLARE_WAITQUEUE(wait, current);
3293
3294                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3295                 __add_wait_queue_tail(&x->wait, &wait);
3296                 do {
3297                         if (signal_pending(current)) {
3298                                 ret = -ERESTARTSYS;
3299                                 __remove_wait_queue(&x->wait, &wait);
3300                                 goto out;
3301                         }
3302                         __set_current_state(TASK_INTERRUPTIBLE);
3303                         spin_unlock_irq(&x->wait.lock);
3304                         schedule();
3305                         spin_lock_irq(&x->wait.lock);
3306                 } while (!x->done);
3307                 __remove_wait_queue(&x->wait, &wait);
3308         }
3309         x->done--;
3310 out:
3311         spin_unlock_irq(&x->wait.lock);
3312
3313         return ret;
3314 }
3315 EXPORT_SYMBOL(wait_for_completion_interruptible);
3316
3317 unsigned long fastcall __sched
3318 wait_for_completion_interruptible_timeout(struct completion *x,
3319                                           unsigned long timeout)
3320 {
3321         might_sleep();
3322
3323         spin_lock_irq(&x->wait.lock);
3324         if (!x->done) {
3325                 DECLARE_WAITQUEUE(wait, current);
3326
3327                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3328                 __add_wait_queue_tail(&x->wait, &wait);
3329                 do {
3330                         if (signal_pending(current)) {
3331                                 timeout = -ERESTARTSYS;
3332                                 __remove_wait_queue(&x->wait, &wait);
3333                                 goto out;
3334                         }
3335                         __set_current_state(TASK_INTERRUPTIBLE);
3336                         spin_unlock_irq(&x->wait.lock);
3337                         timeout = schedule_timeout(timeout);
3338                         spin_lock_irq(&x->wait.lock);
3339                         if (!timeout) {
3340                                 __remove_wait_queue(&x->wait, &wait);
3341                                 goto out;
3342                         }
3343                 } while (!x->done);
3344                 __remove_wait_queue(&x->wait, &wait);
3345         }
3346         x->done--;
3347 out:
3348         spin_unlock_irq(&x->wait.lock);
3349         return timeout;
3350 }
3351 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3352
3353
3354 #define SLEEP_ON_VAR                                    \
3355         unsigned long flags;                            \
3356         wait_queue_t wait;                              \
3357         init_waitqueue_entry(&wait, current);
3358
3359 #define SLEEP_ON_HEAD                                   \
3360         spin_lock_irqsave(&q->lock,flags);              \
3361         __add_wait_queue(q, &wait);                     \
3362         spin_unlock(&q->lock);
3363
3364 #define SLEEP_ON_TAIL                                   \
3365         spin_lock_irq(&q->lock);                        \
3366         __remove_wait_queue(q, &wait);                  \
3367         spin_unlock_irqrestore(&q->lock, flags);
3368
3369 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3370 {
3371         SLEEP_ON_VAR
3372
3373         current->state = TASK_INTERRUPTIBLE;
3374
3375         SLEEP_ON_HEAD
3376         schedule();
3377         SLEEP_ON_TAIL
3378 }
3379
3380 EXPORT_SYMBOL(interruptible_sleep_on);
3381
3382 long fastcall __sched
3383 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3384 {
3385         SLEEP_ON_VAR
3386
3387         current->state = TASK_INTERRUPTIBLE;
3388
3389         SLEEP_ON_HEAD
3390         timeout = schedule_timeout(timeout);
3391         SLEEP_ON_TAIL
3392
3393         return timeout;
3394 }
3395
3396 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3397
3398 void fastcall __sched sleep_on(wait_queue_head_t *q)
3399 {
3400         SLEEP_ON_VAR
3401
3402         current->state = TASK_UNINTERRUPTIBLE;
3403
3404         SLEEP_ON_HEAD
3405         schedule();
3406         SLEEP_ON_TAIL
3407 }
3408
3409 EXPORT_SYMBOL(sleep_on);
3410
3411 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3412 {
3413         SLEEP_ON_VAR
3414
3415         current->state = TASK_UNINTERRUPTIBLE;
3416
3417         SLEEP_ON_HEAD
3418         timeout = schedule_timeout(timeout);
3419         SLEEP_ON_TAIL
3420
3421         return timeout;
3422 }
3423
3424 EXPORT_SYMBOL(sleep_on_timeout);
3425
3426 void set_user_nice(task_t *p, long nice)
3427 {
3428         unsigned long flags;
3429         prio_array_t *array;
3430         runqueue_t *rq;
3431         int old_prio, new_prio, delta;
3432
3433         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3434                 return;
3435         /*
3436          * We have to be careful, if called from sys_setpriority(),
3437          * the task might be in the middle of scheduling on another CPU.
3438          */
3439         rq = task_rq_lock(p, &flags);
3440         /*
3441          * The RT priorities are set via sched_setscheduler(), but we still
3442          * allow the 'normal' nice value to be set - but as expected
3443          * it wont have any effect on scheduling until the task is
3444          * not SCHED_NORMAL:
3445          */
3446         if (rt_task(p)) {
3447                 p->static_prio = NICE_TO_PRIO(nice);
3448                 goto out_unlock;
3449         }
3450         array = p->array;
3451         if (array)
3452                 dequeue_task(p, array);
3453
3454         old_prio = p->prio;
3455         new_prio = NICE_TO_PRIO(nice);
3456         delta = new_prio - old_prio;
3457         p->static_prio = NICE_TO_PRIO(nice);
3458         p->prio += delta;
3459
3460         if (array) {
3461                 enqueue_task(p, array);
3462                 /*
3463                  * If the task increased its priority or is running and
3464                  * lowered its priority, then reschedule its CPU:
3465                  */
3466                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3467                         resched_task(rq->curr);
3468         }
3469 out_unlock:
3470         task_rq_unlock(rq, &flags);
3471 }
3472
3473 EXPORT_SYMBOL(set_user_nice);
3474
3475 /*
3476  * can_nice - check if a task can reduce its nice value
3477  * @p: task
3478  * @nice: nice value
3479  */
3480 int can_nice(const task_t *p, const int nice)
3481 {
3482         /* convert nice value [19,-20] to rlimit style value [1,40] */
3483         int nice_rlim = 20 - nice;
3484         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3485                 capable(CAP_SYS_NICE));
3486 }
3487
3488 #ifdef __ARCH_WANT_SYS_NICE
3489
3490 /*
3491  * sys_nice - change the priority of the current process.
3492  * @increment: priority increment
3493  *
3494  * sys_setpriority is a more generic, but much slower function that
3495  * does similar things.
3496  */
3497 asmlinkage long sys_nice(int increment)
3498 {
3499         int retval;
3500         long nice;
3501
3502         /*
3503          * Setpriority might change our priority at the same moment.
3504          * We don't have to worry. Conceptually one call occurs first
3505          * and we have a single winner.
3506          */
3507         if (increment < -40)
3508                 increment = -40;
3509         if (increment > 40)
3510                 increment = 40;
3511
3512         nice = PRIO_TO_NICE(current->static_prio) + increment;
3513         if (nice < -20)
3514                 nice = -20;
3515         if (nice > 19)
3516                 nice = 19;
3517
3518         if (increment < 0 && !can_nice(current, nice))
3519                 return -EPERM;
3520
3521         retval = security_task_setnice(current, nice);
3522         if (retval)
3523                 return retval;
3524
3525         set_user_nice(current, nice);
3526         return 0;
3527 }
3528
3529 #endif
3530
3531 /**
3532  * task_prio - return the priority value of a given task.
3533  * @p: the task in question.
3534  *
3535  * This is the priority value as seen by users in /proc.
3536  * RT tasks are offset by -200. Normal tasks are centered
3537  * around 0, value goes from -16 to +15.
3538  */
3539 int task_prio(const task_t *p)
3540 {
3541         return p->prio - MAX_RT_PRIO;
3542 }
3543
3544 /**
3545  * task_nice - return the nice value of a given task.
3546  * @p: the task in question.
3547  */
3548 int task_nice(const task_t *p)
3549 {
3550         return TASK_NICE(p);
3551 }
3552 EXPORT_SYMBOL_GPL(task_nice);
3553
3554 /**
3555  * idle_cpu - is a given cpu idle currently?
3556  * @cpu: the processor in question.
3557  */
3558 int idle_cpu(int cpu)
3559 {
3560         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3561 }
3562
3563 EXPORT_SYMBOL_GPL(idle_cpu);
3564
3565 /**
3566  * idle_task - return the idle task for a given cpu.
3567  * @cpu: the processor in question.
3568  */
3569 task_t *idle_task(int cpu)
3570 {
3571         return cpu_rq(cpu)->idle;
3572 }
3573
3574 /**
3575  * find_process_by_pid - find a process with a matching PID value.
3576  * @pid: the pid in question.
3577  */
3578 static inline task_t *find_process_by_pid(pid_t pid)
3579 {
3580         return pid ? find_task_by_pid(pid) : current;
3581 }
3582
3583 /* Actually do priority change: must hold rq lock. */
3584 static void __setscheduler(struct task_struct *p, int policy, int prio)
3585 {
3586         BUG_ON(p->array);
3587         p->policy = policy;
3588         p->rt_priority = prio;
3589         if (policy != SCHED_NORMAL)
3590                 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3591         else
3592                 p->prio = p->static_prio;
3593 }
3594
3595 /**
3596  * sched_setscheduler - change the scheduling policy and/or RT priority of
3597  * a thread.
3598  * @p: the task in question.
3599  * @policy: new policy.
3600  * @param: structure containing the new RT priority.
3601  */
3602 int sched_setscheduler(struct task_struct *p, int policy,
3603                        struct sched_param *param)
3604 {
3605         int retval;
3606         int oldprio, oldpolicy = -1;
3607         prio_array_t *array;
3608         unsigned long flags;
3609         runqueue_t *rq;
3610
3611 recheck:
3612         /* double check policy once rq lock held */
3613         if (policy < 0)
3614                 policy = oldpolicy = p->policy;
3615         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3616                                 policy != SCHED_NORMAL)
3617                         return -EINVAL;
3618         /*
3619          * Valid priorities for SCHED_FIFO and SCHED_RR are
3620          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3621          */
3622         if (param->sched_priority < 0 ||
3623             (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3624             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3625                 return -EINVAL;
3626         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3627                 return -EINVAL;
3628
3629         /*
3630          * Allow unprivileged RT tasks to decrease priority:
3631          */
3632         if (!capable(CAP_SYS_NICE)) {
3633                 /* can't change policy */
3634                 if (policy != p->policy &&
3635                         !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3636                         return -EPERM;
3637                 /* can't increase priority */
3638                 if (policy != SCHED_NORMAL &&
3639                     param->sched_priority > p->rt_priority &&
3640                     param->sched_priority >
3641                                 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3642                         return -EPERM;
3643                 /* can't change other user's priorities */
3644                 if ((current->euid != p->euid) &&
3645                     (current->euid != p->uid))
3646                         return -EPERM;
3647         }
3648
3649         retval = security_task_setscheduler(p, policy, param);
3650         if (retval)
3651                 return retval;
3652         /*
3653          * To be able to change p->policy safely, the apropriate
3654          * runqueue lock must be held.
3655          */
3656         rq = task_rq_lock(p, &flags);
3657         /* recheck policy now with rq lock held */
3658         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3659                 policy = oldpolicy = -1;
3660                 task_rq_unlock(rq, &flags);
3661                 goto recheck;
3662         }
3663         array = p->array;
3664         if (array)
3665                 deactivate_task(p, rq);
3666         oldprio = p->prio;
3667         __setscheduler(p, policy, param->sched_priority);
3668         if (array) {
3669                 __activate_task(p, rq);
3670                 /*
3671                  * Reschedule if we are currently running on this runqueue and
3672                  * our priority decreased, or if we are not currently running on
3673                  * this runqueue and our priority is higher than the current's
3674                  */
3675                 if (task_running(rq, p)) {
3676                         if (p->prio > oldprio)
3677                                 resched_task(rq->curr);
3678                 } else if (TASK_PREEMPTS_CURR(p, rq))
3679                         resched_task(rq->curr);
3680         }
3681         task_rq_unlock(rq, &flags);
3682         return 0;
3683 }
3684 EXPORT_SYMBOL_GPL(sched_setscheduler);
3685
3686 static int
3687 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3688 {
3689         int retval;
3690         struct sched_param lparam;
3691         struct task_struct *p;
3692
3693         if (!param || pid < 0)
3694                 return -EINVAL;
3695         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3696                 return -EFAULT;
3697         read_lock_irq(&tasklist_lock);
3698         p = find_process_by_pid(pid);
3699         if (!p) {
3700                 read_unlock_irq(&tasklist_lock);
3701                 return -ESRCH;
3702         }
3703         retval = sched_setscheduler(p, policy, &lparam);
3704         read_unlock_irq(&tasklist_lock);
3705         return retval;
3706 }
3707
3708 /**
3709  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3710  * @pid: the pid in question.
3711  * @policy: new policy.
3712  * @param: structure containing the new RT priority.
3713  */
3714 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3715                                        struct sched_param __user *param)
3716 {
3717         return do_sched_setscheduler(pid, policy, param);
3718 }
3719
3720 /**
3721  * sys_sched_setparam - set/change the RT priority of a thread
3722  * @pid: the pid in question.
3723  * @param: structure containing the new RT priority.
3724  */
3725 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3726 {
3727         return do_sched_setscheduler(pid, -1, param);
3728 }
3729
3730 /**
3731  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3732  * @pid: the pid in question.
3733  */
3734 asmlinkage long sys_sched_getscheduler(pid_t pid)
3735 {
3736         int retval = -EINVAL;
3737         task_t *p;
3738
3739         if (pid < 0)
3740                 goto out_nounlock;
3741
3742         retval = -ESRCH;
3743         read_lock(&tasklist_lock);
3744         p = find_process_by_pid(pid);
3745         if (p) {
3746                 retval = security_task_getscheduler(p);
3747                 if (!retval)
3748                         retval = p->policy;
3749         }
3750         read_unlock(&tasklist_lock);
3751
3752 out_nounlock:
3753         return retval;
3754 }
3755
3756 /**
3757  * sys_sched_getscheduler - get the RT priority of a thread
3758  * @pid: the pid in question.
3759  * @param: structure containing the RT priority.
3760  */
3761 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3762 {
3763         struct sched_param lp;
3764         int retval = -EINVAL;
3765         task_t *p;
3766
3767         if (!param || pid < 0)
3768                 goto out_nounlock;
3769
3770         read_lock(&tasklist_lock);
3771         p = find_process_by_pid(pid);
3772         retval = -ESRCH;
3773         if (!p)
3774                 goto out_unlock;
3775
3776         retval = security_task_getscheduler(p);
3777         if (retval)
3778                 goto out_unlock;
3779
3780         lp.sched_priority = p->rt_priority;
3781         read_unlock(&tasklist_lock);
3782
3783         /*
3784          * This one might sleep, we cannot do it with a spinlock held ...
3785          */
3786         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3787
3788 out_nounlock:
3789         return retval;
3790
3791 out_unlock:
3792         read_unlock(&tasklist_lock);
3793         return retval;
3794 }
3795
3796 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3797 {
3798         task_t *p;
3799         int retval;
3800         cpumask_t cpus_allowed;
3801
3802         lock_cpu_hotplug();
3803         read_lock(&tasklist_lock);
3804
3805         p = find_process_by_pid(pid);
3806         if (!p) {
3807                 read_unlock(&tasklist_lock);
3808                 unlock_cpu_hotplug();
3809                 return -ESRCH;
3810         }
3811
3812         /*
3813          * It is not safe to call set_cpus_allowed with the
3814          * tasklist_lock held.  We will bump the task_struct's
3815          * usage count and then drop tasklist_lock.
3816          */
3817         get_task_struct(p);
3818         read_unlock(&tasklist_lock);
3819
3820         retval = -EPERM;
3821         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3822                         !capable(CAP_SYS_NICE))
3823                 goto out_unlock;
3824
3825         cpus_allowed = cpuset_cpus_allowed(p);
3826         cpus_and(new_mask, new_mask, cpus_allowed);
3827         retval = set_cpus_allowed(p, new_mask);
3828
3829 out_unlock:
3830         put_task_struct(p);
3831         unlock_cpu_hotplug();
3832         return retval;
3833 }
3834
3835 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3836                              cpumask_t *new_mask)
3837 {
3838         if (len < sizeof(cpumask_t)) {
3839                 memset(new_mask, 0, sizeof(cpumask_t));
3840         } else if (len > sizeof(cpumask_t)) {
3841                 len = sizeof(cpumask_t);
3842         }
3843         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3844 }
3845
3846 /**
3847  * sys_sched_setaffinity - set the cpu affinity of a process
3848  * @pid: pid of the process
3849  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3850  * @user_mask_ptr: user-space pointer to the new cpu mask
3851  */
3852 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3853                                       unsigned long __user *user_mask_ptr)
3854 {
3855         cpumask_t new_mask;
3856         int retval;
3857
3858         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3859         if (retval)
3860                 return retval;
3861
3862         return sched_setaffinity(pid, new_mask);
3863 }
3864
3865 /*
3866  * Represents all cpu's present in the system
3867  * In systems capable of hotplug, this map could dynamically grow
3868  * as new cpu's are detected in the system via any platform specific
3869  * method, such as ACPI for e.g.
3870  */
3871
3872 cpumask_t cpu_present_map;
3873 EXPORT_SYMBOL(cpu_present_map);
3874
3875 #ifndef CONFIG_SMP
3876 cpumask_t cpu_online_map = CPU_MASK_ALL;
3877 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3878 #endif
3879
3880 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3881 {
3882         int retval;
3883         task_t *p;
3884
3885         lock_cpu_hotplug();
3886         read_lock(&tasklist_lock);
3887
3888         retval = -ESRCH;
3889         p = find_process_by_pid(pid);
3890         if (!p)
3891                 goto out_unlock;
3892
3893         retval = 0;
3894         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3895
3896 out_unlock:
3897         read_unlock(&tasklist_lock);
3898         unlock_cpu_hotplug();
3899         if (retval)
3900                 return retval;
3901
3902         return 0;
3903 }
3904
3905 /**
3906  * sys_sched_getaffinity - get the cpu affinity of a process
3907  * @pid: pid of the process
3908  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3909  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3910  */
3911 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3912                                       unsigned long __user *user_mask_ptr)
3913 {
3914         int ret;
3915         cpumask_t mask;
3916
3917         if (len < sizeof(cpumask_t))
3918                 return -EINVAL;
3919
3920         ret = sched_getaffinity(pid, &mask);
3921         if (ret < 0)
3922                 return ret;
3923
3924         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3925                 return -EFAULT;
3926
3927         return sizeof(cpumask_t);
3928 }
3929
3930 /**
3931  * sys_sched_yield - yield the current processor to other threads.
3932  *
3933  * this function yields the current CPU by moving the calling thread
3934  * to the expired array. If there are no other threads running on this
3935  * CPU then this function will return.
3936  */
3937 asmlinkage long sys_sched_yield(void)
3938 {
3939         runqueue_t *rq = this_rq_lock();
3940         prio_array_t *array = current->array;
3941         prio_array_t *target = rq->expired;
3942
3943         schedstat_inc(rq, yld_cnt);
3944         /*
3945          * We implement yielding by moving the task into the expired
3946          * queue.
3947          *
3948          * (special rule: RT tasks will just roundrobin in the active
3949          *  array.)
3950          */
3951         if (rt_task(current))
3952                 target = rq->active;
3953
3954         if (array->nr_active == 1) {
3955                 schedstat_inc(rq, yld_act_empty);
3956                 if (!rq->expired->nr_active)
3957                         schedstat_inc(rq, yld_both_empty);
3958         } else if (!rq->expired->nr_active)
3959                 schedstat_inc(rq, yld_exp_empty);
3960
3961         if (array != target) {
3962                 dequeue_task(current, array);
3963                 enqueue_task(current, target);
3964         } else
3965                 /*
3966                  * requeue_task is cheaper so perform that if possible.
3967                  */
3968                 requeue_task(current, array);
3969
3970         /*
3971          * Since we are going to call schedule() anyway, there's
3972          * no need to preempt or enable interrupts:
3973          */
3974         __release(rq->lock);
3975         _raw_spin_unlock(&rq->lock);
3976         preempt_enable_no_resched();
3977
3978         schedule();
3979
3980         return 0;
3981 }
3982
3983 static inline void __cond_resched(void)
3984 {
3985         /*
3986          * The BKS might be reacquired before we have dropped
3987          * PREEMPT_ACTIVE, which could trigger a second
3988          * cond_resched() call.
3989          */
3990         if (unlikely(preempt_count()))
3991                 return;
3992         do {
3993                 add_preempt_count(PREEMPT_ACTIVE);
3994                 schedule();
3995                 sub_preempt_count(PREEMPT_ACTIVE);
3996         } while (need_resched());
3997 }
3998
3999 int __sched cond_resched(void)
4000 {
4001         if (need_resched()) {
4002                 __cond_resched();
4003                 return 1;
4004         }
4005         return 0;
4006 }
4007
4008 EXPORT_SYMBOL(cond_resched);
4009
4010 /*
4011  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4012  * call schedule, and on return reacquire the lock.
4013  *
4014  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
4015  * operations here to prevent schedule() from being called twice (once via
4016  * spin_unlock(), once by hand).
4017  */
4018 int cond_resched_lock(spinlock_t *lock)
4019 {
4020         int ret = 0;
4021
4022         if (need_lockbreak(lock)) {
4023                 spin_unlock(lock);
4024                 cpu_relax();
4025                 ret = 1;
4026                 spin_lock(lock);
4027         }
4028         if (need_resched()) {
4029                 _raw_spin_unlock(lock);
4030                 preempt_enable_no_resched();
4031                 __cond_resched();
4032                 ret = 1;
4033                 spin_lock(lock);
4034         }
4035         return ret;
4036 }
4037
4038 EXPORT_SYMBOL(cond_resched_lock);
4039
4040 int __sched cond_resched_softirq(void)
4041 {
4042         BUG_ON(!in_softirq());
4043
4044         if (need_resched()) {
4045                 __local_bh_enable();
4046                 __cond_resched();
4047                 local_bh_disable();
4048                 return 1;
4049         }
4050         return 0;
4051 }
4052
4053 EXPORT_SYMBOL(cond_resched_softirq);
4054
4055
4056 /**
4057  * yield - yield the current processor to other threads.
4058  *
4059  * this is a shortcut for kernel-space yielding - it marks the
4060  * thread runnable and calls sys_sched_yield().
4061  */
4062 void __sched yield(void)
4063 {
4064         set_current_state(TASK_RUNNING);
4065         sys_sched_yield();
4066 }
4067
4068 EXPORT_SYMBOL(yield);
4069
4070 /*
4071  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
4072  * that process accounting knows that this is a task in IO wait state.
4073  *
4074  * But don't do that if it is a deliberate, throttling IO wait (this task
4075  * has set its backing_dev_info: the queue against which it should throttle)
4076  */
4077 void __sched io_schedule(void)
4078 {
4079         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4080
4081         atomic_inc(&rq->nr_iowait);
4082         schedule();
4083         atomic_dec(&rq->nr_iowait);
4084 }
4085
4086 EXPORT_SYMBOL(io_schedule);
4087
4088 long __sched io_schedule_timeout(long timeout)
4089 {
4090         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4091         long ret;
4092
4093         atomic_inc(&rq->nr_iowait);
4094         ret = schedule_timeout(timeout);
4095         atomic_dec(&rq->nr_iowait);
4096         return ret;
4097 }
4098
4099 /**
4100  * sys_sched_get_priority_max - return maximum RT priority.
4101  * @policy: scheduling class.
4102  *
4103  * this syscall returns the maximum rt_priority that can be used
4104  * by a given scheduling class.
4105  */
4106 asmlinkage long sys_sched_get_priority_max(int policy)
4107 {
4108         int ret = -EINVAL;
4109
4110         switch (policy) {
4111         case SCHED_FIFO:
4112         case SCHED_RR:
4113                 ret = MAX_USER_RT_PRIO-1;
4114                 break;
4115         case SCHED_NORMAL:
4116                 ret = 0;
4117                 break;
4118         }
4119         return ret;
4120 }
4121
4122 /**
4123  * sys_sched_get_priority_min - return minimum RT priority.
4124  * @policy: scheduling class.
4125  *
4126  * this syscall returns the minimum rt_priority that can be used
4127  * by a given scheduling class.
4128  */
4129 asmlinkage long sys_sched_get_priority_min(int policy)
4130 {
4131         int ret = -EINVAL;
4132
4133         switch (policy) {
4134         case SCHED_FIFO:
4135         case SCHED_RR:
4136                 ret = 1;
4137                 break;
4138         case SCHED_NORMAL:
4139                 ret = 0;
4140         }
4141         return ret;
4142 }
4143
4144 /**
4145  * sys_sched_rr_get_interval - return the default timeslice of a process.
4146  * @pid: pid of the process.
4147  * @interval: userspace pointer to the timeslice value.
4148  *
4149  * this syscall writes the default timeslice value of a given process
4150  * into the user-space timespec buffer. A value of '0' means infinity.
4151  */
4152 asmlinkage
4153 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4154 {
4155         int retval = -EINVAL;
4156         struct timespec t;
4157         task_t *p;
4158
4159         if (pid < 0)
4160                 goto out_nounlock;
4161
4162         retval = -ESRCH;
4163         read_lock(&tasklist_lock);
4164         p = find_process_by_pid(pid);
4165         if (!p)
4166                 goto out_unlock;
4167
4168         retval = security_task_getscheduler(p);
4169         if (retval)
4170                 goto out_unlock;
4171
4172         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4173                                 0 : task_timeslice(p), &t);
4174         read_unlock(&tasklist_lock);
4175         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4176 out_nounlock:
4177         return retval;
4178 out_unlock:
4179         read_unlock(&tasklist_lock);
4180         return retval;
4181 }
4182
4183 static inline struct task_struct *eldest_child(struct task_struct *p)
4184 {
4185         if (list_empty(&p->children)) return NULL;
4186         return list_entry(p->children.next,struct task_struct,sibling);
4187 }
4188
4189 static inline struct task_struct *older_sibling(struct task_struct *p)
4190 {
4191         if (p->sibling.prev==&p->parent->children) return NULL;
4192         return list_entry(p->sibling.prev,struct task_struct,sibling);
4193 }
4194
4195 static inline struct task_struct *younger_sibling(struct task_struct *p)
4196 {
4197         if (p->sibling.next==&p->parent->children) return NULL;
4198         return list_entry(p->sibling.next,struct task_struct,sibling);
4199 }
4200
4201 static void show_task(task_t *p)
4202 {
4203         task_t *relative;
4204         unsigned state;
4205         unsigned long free = 0;
4206         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4207
4208         printk("%-13.13s ", p->comm);
4209         state = p->state ? __ffs(p->state) + 1 : 0;
4210         if (state < ARRAY_SIZE(stat_nam))
4211                 printk(stat_nam[state]);
4212         else
4213                 printk("?");
4214 #if (BITS_PER_LONG == 32)
4215         if (state == TASK_RUNNING)
4216                 printk(" running ");
4217         else
4218                 printk(" %08lX ", thread_saved_pc(p));
4219 #else
4220         if (state == TASK_RUNNING)
4221                 printk("  running task   ");
4222         else
4223                 printk(" %016lx ", thread_saved_pc(p));
4224 #endif
4225 #ifdef CONFIG_DEBUG_STACK_USAGE
4226         {
4227                 unsigned long *n = (unsigned long *) (p->thread_info+1);
4228                 while (!*n)
4229                         n++;
4230                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4231         }
4232 #endif
4233         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4234         if ((relative = eldest_child(p)))
4235                 printk("%5d ", relative->pid);
4236         else
4237                 printk("      ");
4238         if ((relative = younger_sibling(p)))
4239                 printk("%7d", relative->pid);
4240         else
4241                 printk("       ");
4242         if ((relative = older_sibling(p)))
4243                 printk(" %5d", relative->pid);
4244         else
4245                 printk("      ");
4246         if (!p->mm)
4247                 printk(" (L-TLB)\n");
4248         else
4249                 printk(" (NOTLB)\n");
4250
4251         if (state != TASK_RUNNING)
4252                 show_stack(p, NULL);
4253 }
4254
4255 void show_state(void)
4256 {
4257         task_t *g, *p;
4258
4259 #if (BITS_PER_LONG == 32)
4260         printk("\n"
4261                "                                               sibling\n");
4262         printk("  task             PC      pid father child younger older\n");
4263 #else
4264         printk("\n"
4265                "                                                       sibling\n");
4266         printk("  task                 PC          pid father child younger older\n");
4267 #endif
4268         read_lock(&tasklist_lock);
4269         do_each_thread(g, p) {
4270                 /*
4271                  * reset the NMI-timeout, listing all files on a slow
4272                  * console might take alot of time:
4273                  */
4274                 touch_nmi_watchdog();
4275                 show_task(p);
4276         } while_each_thread(g, p);
4277
4278         read_unlock(&tasklist_lock);
4279 }
4280
4281 /**
4282  * init_idle - set up an idle thread for a given CPU
4283  * @idle: task in question
4284  * @cpu: cpu the idle task belongs to
4285  *
4286  * NOTE: this function does not set the idle thread's NEED_RESCHED
4287  * flag, to make booting more robust.
4288  */
4289 void __devinit init_idle(task_t *idle, int cpu)
4290 {
4291         runqueue_t *rq = cpu_rq(cpu);
4292         unsigned long flags;
4293
4294         idle->sleep_avg = 0;
4295         idle->array = NULL;
4296         idle->prio = MAX_PRIO;
4297         idle->state = TASK_RUNNING;
4298         idle->cpus_allowed = cpumask_of_cpu(cpu);
4299         set_task_cpu(idle, cpu);
4300
4301         spin_lock_irqsave(&rq->lock, flags);
4302         rq->curr = rq->idle = idle;
4303 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4304         idle->oncpu = 1;
4305 #endif
4306         spin_unlock_irqrestore(&rq->lock, flags);
4307
4308         /* Set the preempt count _outside_ the spinlocks! */
4309 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4310         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4311 #else
4312         idle->thread_info->preempt_count = 0;
4313 #endif
4314 }
4315
4316 /*
4317  * In a system that switches off the HZ timer nohz_cpu_mask
4318  * indicates which cpus entered this state. This is used
4319  * in the rcu update to wait only for active cpus. For system
4320  * which do not switch off the HZ timer nohz_cpu_mask should
4321  * always be CPU_MASK_NONE.
4322  */
4323 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4324
4325 #ifdef CONFIG_SMP
4326 /*
4327  * This is how migration works:
4328  *
4329  * 1) we queue a migration_req_t structure in the source CPU's
4330  *    runqueue and wake up that CPU's migration thread.
4331  * 2) we down() the locked semaphore => thread blocks.
4332  * 3) migration thread wakes up (implicitly it forces the migrated
4333  *    thread off the CPU)
4334  * 4) it gets the migration request and checks whether the migrated
4335  *    task is still in the wrong runqueue.
4336  * 5) if it's in the wrong runqueue then the migration thread removes
4337  *    it and puts it into the right queue.
4338  * 6) migration thread up()s the semaphore.
4339  * 7) we wake up and the migration is done.
4340  */
4341
4342 /*
4343  * Change a given task's CPU affinity. Migrate the thread to a
4344  * proper CPU and schedule it away if the CPU it's executing on
4345  * is removed from the allowed bitmask.
4346  *
4347  * NOTE: the caller must have a valid reference to the task, the
4348  * task must not exit() & deallocate itself prematurely.  The
4349  * call is not atomic; no spinlocks may be held.
4350  */
4351 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4352 {
4353         unsigned long flags;
4354         int ret = 0;
4355         migration_req_t req;
4356         runqueue_t *rq;
4357
4358         rq = task_rq_lock(p, &flags);
4359         if (!cpus_intersects(new_mask, cpu_online_map)) {
4360                 ret = -EINVAL;
4361                 goto out;
4362         }
4363
4364         p->cpus_allowed = new_mask;
4365         /* Can the task run on the task's current CPU? If so, we're done */
4366         if (cpu_isset(task_cpu(p), new_mask))
4367                 goto out;
4368
4369         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4370                 /* Need help from migration thread: drop lock and wait. */
4371                 task_rq_unlock(rq, &flags);
4372                 wake_up_process(rq->migration_thread);
4373                 wait_for_completion(&req.done);
4374                 tlb_migrate_finish(p->mm);
4375                 return 0;
4376         }
4377 out:
4378         task_rq_unlock(rq, &flags);
4379         return ret;
4380 }
4381
4382 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4383
4384 /*
4385  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4386  * this because either it can't run here any more (set_cpus_allowed()
4387  * away from this CPU, or CPU going down), or because we're
4388  * attempting to rebalance this task on exec (sched_exec).
4389  *
4390  * So we race with normal scheduler movements, but that's OK, as long
4391  * as the task is no longer on this CPU.
4392  */
4393 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4394 {
4395         runqueue_t *rq_dest, *rq_src;
4396
4397         if (unlikely(cpu_is_offline(dest_cpu)))
4398                 return;
4399
4400         rq_src = cpu_rq(src_cpu);
4401         rq_dest = cpu_rq(dest_cpu);
4402
4403         double_rq_lock(rq_src, rq_dest);
4404         /* Already moved. */
4405         if (task_cpu(p) != src_cpu)
4406                 goto out;
4407         /* Affinity changed (again). */
4408         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4409                 goto out;
4410
4411         set_task_cpu(p, dest_cpu);
4412         if (p->array) {
4413                 /*
4414                  * Sync timestamp with rq_dest's before activating.
4415                  * The same thing could be achieved by doing this step
4416                  * afterwards, and pretending it was a local activate.
4417                  * This way is cleaner and logically correct.
4418                  */
4419                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4420                                 + rq_dest->timestamp_last_tick;
4421                 deactivate_task(p, rq_src);
4422                 activate_task(p, rq_dest, 0);
4423                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4424                         resched_task(rq_dest->curr);
4425         }
4426
4427 out:
4428         double_rq_unlock(rq_src, rq_dest);
4429 }
4430
4431 /*
4432  * migration_thread - this is a highprio system thread that performs
4433  * thread migration by bumping thread off CPU then 'pushing' onto
4434  * another runqueue.
4435  */
4436 static int migration_thread(void *data)
4437 {
4438         runqueue_t *rq;
4439         int cpu = (long)data;
4440
4441         rq = cpu_rq(cpu);
4442         BUG_ON(rq->migration_thread != current);
4443
4444         set_current_state(TASK_INTERRUPTIBLE);
4445         while (!kthread_should_stop()) {
4446                 struct list_head *head;
4447                 migration_req_t *req;
4448
4449                 try_to_freeze();
4450
4451                 spin_lock_irq(&rq->lock);
4452
4453                 if (cpu_is_offline(cpu)) {
4454                         spin_unlock_irq(&rq->lock);
4455                         goto wait_to_die;
4456                 }
4457
4458                 if (rq->active_balance) {
4459                         active_load_balance(rq, cpu);
4460                         rq->active_balance = 0;
4461                 }
4462
4463                 head = &rq->migration_queue;
4464
4465                 if (list_empty(head)) {
4466                         spin_unlock_irq(&rq->lock);
4467                         schedule();
4468                         set_current_state(TASK_INTERRUPTIBLE);
4469                         continue;
4470                 }
4471                 req = list_entry(head->next, migration_req_t, list);
4472                 list_del_init(head->next);
4473
4474                 spin_unlock(&rq->lock);
4475                 __migrate_task(req->task, cpu, req->dest_cpu);
4476                 local_irq_enable();
4477
4478                 complete(&req->done);
4479         }
4480         __set_current_state(TASK_RUNNING);
4481         return 0;
4482
4483 wait_to_die:
4484         /* Wait for kthread_stop */
4485         set_current_state(TASK_INTERRUPTIBLE);
4486         while (!kthread_should_stop()) {
4487                 schedule();
4488                 set_current_state(TASK_INTERRUPTIBLE);
4489         }
4490         __set_current_state(TASK_RUNNING);
4491         return 0;
4492 }
4493
4494 #ifdef CONFIG_HOTPLUG_CPU
4495 /* Figure out where task on dead CPU should go, use force if neccessary. */
4496 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4497 {
4498         int dest_cpu;
4499         cpumask_t mask;
4500
4501         /* On same node? */
4502         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4503         cpus_and(mask, mask, tsk->cpus_allowed);
4504         dest_cpu = any_online_cpu(mask);
4505
4506         /* On any allowed CPU? */
4507         if (dest_cpu == NR_CPUS)
4508                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4509
4510         /* No more Mr. Nice Guy. */
4511         if (dest_cpu == NR_CPUS) {
4512                 cpus_setall(tsk->cpus_allowed);
4513                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4514
4515                 /*
4516                  * Don't tell them about moving exiting tasks or
4517                  * kernel threads (both mm NULL), since they never
4518                  * leave kernel.
4519                  */
4520                 if (tsk->mm && printk_ratelimit())
4521                         printk(KERN_INFO "process %d (%s) no "
4522                                "longer affine to cpu%d\n",
4523                                tsk->pid, tsk->comm, dead_cpu);
4524         }
4525         __migrate_task(tsk, dead_cpu, dest_cpu);
4526 }
4527
4528 /*
4529  * While a dead CPU has no uninterruptible tasks queued at this point,
4530  * it might still have a nonzero ->nr_uninterruptible counter, because
4531  * for performance reasons the counter is not stricly tracking tasks to
4532  * their home CPUs. So we just add the counter to another CPU's counter,
4533  * to keep the global sum constant after CPU-down:
4534  */
4535 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4536 {
4537         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4538         unsigned long flags;
4539
4540         local_irq_save(flags);
4541         double_rq_lock(rq_src, rq_dest);
4542         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4543         rq_src->nr_uninterruptible = 0;
4544         double_rq_unlock(rq_src, rq_dest);
4545         local_irq_restore(flags);
4546 }
4547
4548 /* Run through task list and migrate tasks from the dead cpu. */
4549 static void migrate_live_tasks(int src_cpu)
4550 {
4551         struct task_struct *tsk, *t;
4552
4553         write_lock_irq(&tasklist_lock);
4554
4555         do_each_thread(t, tsk) {
4556                 if (tsk == current)
4557                         continue;
4558
4559                 if (task_cpu(tsk) == src_cpu)
4560                         move_task_off_dead_cpu(src_cpu, tsk);
4561         } while_each_thread(t, tsk);
4562
4563         write_unlock_irq(&tasklist_lock);
4564 }
4565
4566 /* Schedules idle task to be the next runnable task on current CPU.
4567  * It does so by boosting its priority to highest possible and adding it to
4568  * the _front_ of runqueue. Used by CPU offline code.
4569  */
4570 void sched_idle_next(void)
4571 {
4572         int cpu = smp_processor_id();
4573         runqueue_t *rq = this_rq();
4574         struct task_struct *p = rq->idle;
4575         unsigned long flags;
4576
4577         /* cpu has to be offline */
4578         BUG_ON(cpu_online(cpu));
4579
4580         /* Strictly not necessary since rest of the CPUs are stopped by now
4581          * and interrupts disabled on current cpu.
4582          */
4583         spin_lock_irqsave(&rq->lock, flags);
4584
4585         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4586         /* Add idle task to _front_ of it's priority queue */
4587         __activate_idle_task(p, rq);
4588
4589         spin_unlock_irqrestore(&rq->lock, flags);
4590 }
4591
4592 /* Ensures that the idle task is using init_mm right before its cpu goes
4593  * offline.
4594  */
4595 void idle_task_exit(void)
4596 {
4597         struct mm_struct *mm = current->active_mm;
4598
4599         BUG_ON(cpu_online(smp_processor_id()));
4600
4601         if (mm != &init_mm)
4602                 switch_mm(mm, &init_mm, current);
4603         mmdrop(mm);
4604 }
4605
4606 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4607 {
4608         struct runqueue *rq = cpu_rq(dead_cpu);
4609
4610         /* Must be exiting, otherwise would be on tasklist. */
4611         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4612
4613         /* Cannot have done final schedule yet: would have vanished. */
4614         BUG_ON(tsk->flags & PF_DEAD);
4615
4616         get_task_struct(tsk);
4617
4618         /*
4619          * Drop lock around migration; if someone else moves it,
4620          * that's OK.  No task can be added to this CPU, so iteration is
4621          * fine.
4622          */
4623         spin_unlock_irq(&rq->lock);
4624         move_task_off_dead_cpu(dead_cpu, tsk);
4625         spin_lock_irq(&rq->lock);
4626
4627         put_task_struct(tsk);
4628 }
4629
4630 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4631 static void migrate_dead_tasks(unsigned int dead_cpu)
4632 {
4633         unsigned arr, i;
4634         struct runqueue *rq = cpu_rq(dead_cpu);
4635
4636         for (arr = 0; arr < 2; arr++) {
4637                 for (i = 0; i < MAX_PRIO; i++) {
4638                         struct list_head *list = &rq->arrays[arr].queue[i];
4639                         while (!list_empty(list))
4640                                 migrate_dead(dead_cpu,
4641                                              list_entry(list->next, task_t,
4642                                                         run_list));
4643                 }
4644         }
4645 }
4646 #endif /* CONFIG_HOTPLUG_CPU */
4647
4648 /*
4649  * migration_call - callback that gets triggered when a CPU is added.
4650  * Here we can start up the necessary migration thread for the new CPU.
4651  */
4652 static int migration_call(struct notifier_block *nfb, unsigned long action,
4653                           void *hcpu)
4654 {
4655         int cpu = (long)hcpu;
4656         struct task_struct *p;
4657         struct runqueue *rq;
4658         unsigned long flags;
4659
4660         switch (action) {
4661         case CPU_UP_PREPARE:
4662                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4663                 if (IS_ERR(p))
4664                         return NOTIFY_BAD;
4665                 p->flags |= PF_NOFREEZE;
4666                 kthread_bind(p, cpu);
4667                 /* Must be high prio: stop_machine expects to yield to it. */
4668                 rq = task_rq_lock(p, &flags);
4669                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4670                 task_rq_unlock(rq, &flags);
4671                 cpu_rq(cpu)->migration_thread = p;
4672                 break;
4673         case CPU_ONLINE:
4674                 /* Strictly unneccessary, as first user will wake it. */
4675                 wake_up_process(cpu_rq(cpu)->migration_thread);
4676                 break;
4677 #ifdef CONFIG_HOTPLUG_CPU
4678         case CPU_UP_CANCELED:
4679                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4680                 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4681                 kthread_stop(cpu_rq(cpu)->migration_thread);
4682                 cpu_rq(cpu)->migration_thread = NULL;
4683                 break;
4684         case CPU_DEAD:
4685                 migrate_live_tasks(cpu);
4686                 rq = cpu_rq(cpu);
4687                 kthread_stop(rq->migration_thread);
4688                 rq->migration_thread = NULL;
4689                 /* Idle task back to normal (off runqueue, low prio) */
4690                 rq = task_rq_lock(rq->idle, &flags);
4691                 deactivate_task(rq->idle, rq);
4692                 rq->idle->static_prio = MAX_PRIO;
4693                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4694                 migrate_dead_tasks(cpu);
4695                 task_rq_unlock(rq, &flags);
4696                 migrate_nr_uninterruptible(rq);
4697                 BUG_ON(rq->nr_running != 0);
4698
4699                 /* No need to migrate the tasks: it was best-effort if
4700                  * they didn't do lock_cpu_hotplug().  Just wake up
4701                  * the requestors. */
4702                 spin_lock_irq(&rq->lock);
4703                 while (!list_empty(&rq->migration_queue)) {
4704                         migration_req_t *req;
4705                         req = list_entry(rq->migration_queue.next,
4706                                          migration_req_t, list);
4707                         list_del_init(&req->list);
4708                         complete(&req->done);
4709                 }
4710                 spin_unlock_irq(&rq->lock);
4711                 break;
4712 #endif
4713         }
4714         return NOTIFY_OK;
4715 }
4716
4717 /* Register at highest priority so that task migration (migrate_all_tasks)
4718  * happens before everything else.
4719  */
4720 static struct notifier_block __devinitdata migration_notifier = {
4721         .notifier_call = migration_call,
4722         .priority = 10
4723 };
4724
4725 int __init migration_init(void)
4726 {
4727         void *cpu = (void *)(long)smp_processor_id();
4728         /* Start one for boot CPU. */
4729         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4730         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4731         register_cpu_notifier(&migration_notifier);
4732         return 0;
4733 }
4734 #endif
4735
4736 #ifdef CONFIG_SMP
4737 #undef SCHED_DOMAIN_DEBUG
4738 #ifdef SCHED_DOMAIN_DEBUG
4739 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4740 {
4741         int level = 0;
4742
4743         if (!sd) {
4744                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4745                 return;
4746         }
4747
4748         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4749
4750         do {
4751                 int i;
4752                 char str[NR_CPUS];
4753                 struct sched_group *group = sd->groups;
4754                 cpumask_t groupmask;
4755
4756                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4757                 cpus_clear(groupmask);
4758
4759                 printk(KERN_DEBUG);
4760                 for (i = 0; i < level + 1; i++)
4761                         printk(" ");
4762                 printk("domain %d: ", level);
4763
4764                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4765                         printk("does not load-balance\n");
4766                         if (sd->parent)
4767                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4768                         break;
4769                 }
4770
4771                 printk("span %s\n", str);
4772
4773                 if (!cpu_isset(cpu, sd->span))
4774                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4775                 if (!cpu_isset(cpu, group->cpumask))
4776                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4777
4778                 printk(KERN_DEBUG);
4779                 for (i = 0; i < level + 2; i++)
4780                         printk(" ");
4781                 printk("groups:");
4782                 do {
4783                         if (!group) {
4784                                 printk("\n");
4785                                 printk(KERN_ERR "ERROR: group is NULL\n");
4786                                 break;
4787                         }
4788
4789                         if (!group->cpu_power) {
4790                                 printk("\n");
4791                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4792                         }
4793
4794                         if (!cpus_weight(group->cpumask)) {
4795                                 printk("\n");
4796                                 printk(KERN_ERR "ERROR: empty group\n");
4797                         }
4798
4799                         if (cpus_intersects(groupmask, group->cpumask)) {
4800                                 printk("\n");
4801                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4802                         }
4803
4804                         cpus_or(groupmask, groupmask, group->cpumask);
4805
4806                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4807                         printk(" %s", str);
4808
4809                         group = group->next;
4810                 } while (group != sd->groups);
4811                 printk("\n");
4812
4813                 if (!cpus_equal(sd->span, groupmask))
4814                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4815
4816                 level++;
4817                 sd = sd->parent;
4818
4819                 if (sd) {
4820                         if (!cpus_subset(groupmask, sd->span))
4821                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4822                 }
4823
4824         } while (sd);
4825 }
4826 #else
4827 #define sched_domain_debug(sd, cpu) {}
4828 #endif
4829
4830 static int sd_degenerate(struct sched_domain *sd)
4831 {
4832         if (cpus_weight(sd->span) == 1)
4833                 return 1;
4834
4835         /* Following flags need at least 2 groups */
4836         if (sd->flags & (SD_LOAD_BALANCE |
4837                          SD_BALANCE_NEWIDLE |
4838                          SD_BALANCE_FORK |
4839                          SD_BALANCE_EXEC)) {
4840                 if (sd->groups != sd->groups->next)
4841                         return 0;
4842         }
4843
4844         /* Following flags don't use groups */
4845         if (sd->flags & (SD_WAKE_IDLE |
4846                          SD_WAKE_AFFINE |
4847                          SD_WAKE_BALANCE))
4848                 return 0;
4849
4850         return 1;
4851 }
4852
4853 static int sd_parent_degenerate(struct sched_domain *sd,
4854                                                 struct sched_domain *parent)
4855 {
4856         unsigned long cflags = sd->flags, pflags = parent->flags;
4857
4858         if (sd_degenerate(parent))
4859                 return 1;
4860
4861         if (!cpus_equal(sd->span, parent->span))
4862                 return 0;
4863
4864         /* Does parent contain flags not in child? */
4865         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4866         if (cflags & SD_WAKE_AFFINE)
4867                 pflags &= ~SD_WAKE_BALANCE;
4868         /* Flags needing groups don't count if only 1 group in parent */
4869         if (parent->groups == parent->groups->next) {
4870                 pflags &= ~(SD_LOAD_BALANCE |
4871                                 SD_BALANCE_NEWIDLE |
4872                                 SD_BALANCE_FORK |
4873                                 SD_BALANCE_EXEC);
4874         }
4875         if (~cflags & pflags)
4876                 return 0;
4877
4878         return 1;
4879 }
4880
4881 /*
4882  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4883  * hold the hotplug lock.
4884  */
4885 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4886 {
4887         runqueue_t *rq = cpu_rq(cpu);
4888         struct sched_domain *tmp;
4889
4890         /* Remove the sched domains which do not contribute to scheduling. */
4891         for (tmp = sd; tmp; tmp = tmp->parent) {
4892                 struct sched_domain *parent = tmp->parent;
4893                 if (!parent)
4894                         break;
4895                 if (sd_parent_degenerate(tmp, parent))
4896                         tmp->parent = parent->parent;
4897         }
4898
4899         if (sd && sd_degenerate(sd))
4900                 sd = sd->parent;
4901
4902         sched_domain_debug(sd, cpu);
4903
4904         rcu_assign_pointer(rq->sd, sd);
4905 }
4906
4907 /* cpus with isolated domains */
4908 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4909
4910 /* Setup the mask of cpus configured for isolated domains */
4911 static int __init isolated_cpu_setup(char *str)
4912 {
4913         int ints[NR_CPUS], i;
4914
4915         str = get_options(str, ARRAY_SIZE(ints), ints);
4916         cpus_clear(cpu_isolated_map);
4917         for (i = 1; i <= ints[0]; i++)
4918                 if (ints[i] < NR_CPUS)
4919                         cpu_set(ints[i], cpu_isolated_map);
4920         return 1;
4921 }
4922
4923 __setup ("isolcpus=", isolated_cpu_setup);
4924
4925 /*
4926  * init_sched_build_groups takes an array of groups, the cpumask we wish
4927  * to span, and a pointer to a function which identifies what group a CPU
4928  * belongs to. The return value of group_fn must be a valid index into the
4929  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4930  * keep track of groups covered with a cpumask_t).
4931  *
4932  * init_sched_build_groups will build a circular linked list of the groups
4933  * covered by the given span, and will set each group's ->cpumask correctly,
4934  * and ->cpu_power to 0.
4935  */
4936 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4937                                     int (*group_fn)(int cpu))
4938 {
4939         struct sched_group *first = NULL, *last = NULL;
4940         cpumask_t covered = CPU_MASK_NONE;
4941         int i;
4942
4943         for_each_cpu_mask(i, span) {
4944                 int group = group_fn(i);
4945                 struct sched_group *sg = &groups[group];
4946                 int j;
4947
4948                 if (cpu_isset(i, covered))
4949                         continue;
4950
4951                 sg->cpumask = CPU_MASK_NONE;
4952                 sg->cpu_power = 0;
4953
4954                 for_each_cpu_mask(j, span) {
4955                         if (group_fn(j) != group)
4956                                 continue;
4957
4958                         cpu_set(j, covered);
4959                         cpu_set(j, sg->cpumask);
4960                 }
4961                 if (!first)
4962                         first = sg;
4963                 if (last)
4964                         last->next = sg;
4965                 last = sg;
4966         }
4967         last->next = first;
4968 }
4969
4970 #define SD_NODES_PER_DOMAIN 16
4971
4972 #ifdef CONFIG_NUMA
4973 /**
4974  * find_next_best_node - find the next node to include in a sched_domain
4975  * @node: node whose sched_domain we're building
4976  * @used_nodes: nodes already in the sched_domain
4977  *
4978  * Find the next node to include in a given scheduling domain.  Simply
4979  * finds the closest node not already in the @used_nodes map.
4980  *
4981  * Should use nodemask_t.
4982  */
4983 static int find_next_best_node(int node, unsigned long *used_nodes)
4984 {
4985         int i, n, val, min_val, best_node = 0;
4986
4987         min_val = INT_MAX;
4988
4989         for (i = 0; i < MAX_NUMNODES; i++) {
4990                 /* Start at @node */
4991                 n = (node + i) % MAX_NUMNODES;
4992
4993                 if (!nr_cpus_node(n))
4994                         continue;
4995
4996                 /* Skip already used nodes */
4997                 if (test_bit(n, used_nodes))
4998                         continue;
4999
5000                 /* Simple min distance search */
5001                 val = node_distance(node, n);
5002
5003                 if (val < min_val) {
5004                         min_val = val;
5005                         best_node = n;
5006                 }
5007         }
5008
5009         set_bit(best_node, used_nodes);
5010         return best_node;
5011 }
5012
5013 /**
5014  * sched_domain_node_span - get a cpumask for a node's sched_domain
5015  * @node: node whose cpumask we're constructing
5016  * @size: number of nodes to include in this span
5017  *
5018  * Given a node, construct a good cpumask for its sched_domain to span.  It
5019  * should be one that prevents unnecessary balancing, but also spreads tasks
5020  * out optimally.
5021  */
5022 static cpumask_t sched_domain_node_span(int node)
5023 {
5024         int i;
5025         cpumask_t span, nodemask;
5026         DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5027
5028         cpus_clear(span);
5029         bitmap_zero(used_nodes, MAX_NUMNODES);
5030
5031         nodemask = node_to_cpumask(node);
5032         cpus_or(span, span, nodemask);
5033         set_bit(node, used_nodes);
5034
5035         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5036                 int next_node = find_next_best_node(node, used_nodes);
5037                 nodemask = node_to_cpumask(next_node);
5038                 cpus_or(span, span, nodemask);
5039         }
5040
5041         return span;
5042 }
5043 #endif
5044
5045 /*
5046  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5047  * can switch it on easily if needed.
5048  */
5049 #ifdef CONFIG_SCHED_SMT
5050 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5051 static struct sched_group sched_group_cpus[NR_CPUS];
5052 static int cpu_to_cpu_group(int cpu)
5053 {
5054         return cpu;
5055 }
5056 #endif
5057
5058 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5059 static struct sched_group sched_group_phys[NR_CPUS];
5060 static int cpu_to_phys_group(int cpu)
5061 {
5062 #ifdef CONFIG_SCHED_SMT
5063         return first_cpu(cpu_sibling_map[cpu]);
5064 #else
5065         return cpu;
5066 #endif
5067 }
5068
5069 #ifdef CONFIG_NUMA
5070 /*
5071  * The init_sched_build_groups can't handle what we want to do with node
5072  * groups, so roll our own. Now each node has its own list of groups which
5073  * gets dynamically allocated.
5074  */
5075 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5076 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5077
5078 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5079 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5080
5081 static int cpu_to_allnodes_group(int cpu)
5082 {
5083         return cpu_to_node(cpu);
5084 }
5085 #endif
5086
5087 /*
5088  * Build sched domains for a given set of cpus and attach the sched domains
5089  * to the individual cpus
5090  */
5091 void build_sched_domains(const cpumask_t *cpu_map)
5092 {
5093         int i;
5094 #ifdef CONFIG_NUMA
5095         struct sched_group **sched_group_nodes = NULL;
5096         struct sched_group *sched_group_allnodes = NULL;
5097
5098         /*
5099          * Allocate the per-node list of sched groups
5100          */
5101         sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5102                                            GFP_ATOMIC);
5103         if (!sched_group_nodes) {
5104                 printk(KERN_WARNING "Can not alloc sched group node list\n");
5105                 return;
5106         }
5107         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5108 #endif
5109
5110         /*
5111          * Set up domains for cpus specified by the cpu_map.
5112          */
5113         for_each_cpu_mask(i, *cpu_map) {
5114                 int group;
5115                 struct sched_domain *sd = NULL, *p;
5116                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5117
5118                 cpus_and(nodemask, nodemask, *cpu_map);
5119
5120 #ifdef CONFIG_NUMA
5121                 if (cpus_weight(*cpu_map)
5122                                 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5123                         if (!sched_group_allnodes) {
5124                                 sched_group_allnodes
5125                                         = kmalloc(sizeof(struct sched_group)
5126                                                         * MAX_NUMNODES,
5127                                                   GFP_KERNEL);
5128                                 if (!sched_group_allnodes) {
5129                                         printk(KERN_WARNING
5130                                         "Can not alloc allnodes sched group\n");
5131                                         break;
5132                                 }
5133                                 sched_group_allnodes_bycpu[i]
5134                                                 = sched_group_allnodes;
5135                         }
5136                         sd = &per_cpu(allnodes_domains, i);
5137                         *sd = SD_ALLNODES_INIT;
5138                         sd->span = *cpu_map;
5139                         group = cpu_to_allnodes_group(i);
5140                         sd->groups = &sched_group_allnodes[group];
5141                         p = sd;
5142                 } else
5143                         p = NULL;
5144
5145                 sd = &per_cpu(node_domains, i);
5146                 *sd = SD_NODE_INIT;
5147                 sd->span = sched_domain_node_span(cpu_to_node(i));
5148                 sd->parent = p;
5149                 cpus_and(sd->span, sd->span, *cpu_map);
5150 #endif
5151
5152                 p = sd;
5153                 sd = &per_cpu(phys_domains, i);
5154                 group = cpu_to_phys_group(i);
5155                 *sd = SD_CPU_INIT;
5156                 sd->span = nodemask;
5157                 sd->parent = p;
5158                 sd->groups = &sched_group_phys[group];
5159
5160 #ifdef CONFIG_SCHED_SMT
5161                 p = sd;
5162                 sd = &per_cpu(cpu_domains, i);
5163                 group = cpu_to_cpu_group(i);
5164                 *sd = SD_SIBLING_INIT;
5165                 sd->span = cpu_sibling_map[i];
5166                 cpus_and(sd->span, sd->span, *cpu_map);
5167                 sd->parent = p;
5168                 sd->groups = &sched_group_cpus[group];
5169 #endif
5170         }
5171
5172 #ifdef CONFIG_SCHED_SMT
5173         /* Set up CPU (sibling) groups */
5174         for_each_cpu_mask(i, *cpu_map) {
5175                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5176                 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5177                 if (i != first_cpu(this_sibling_map))
5178                         continue;
5179
5180                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5181                                                 &cpu_to_cpu_group);
5182         }
5183 #endif
5184
5185         /* Set up physical groups */
5186         for (i = 0; i < MAX_NUMNODES; i++) {
5187                 cpumask_t nodemask = node_to_cpumask(i);
5188
5189                 cpus_and(nodemask, nodemask, *cpu_map);
5190                 if (cpus_empty(nodemask))
5191                         continue;
5192
5193                 init_sched_build_groups(sched_group_phys, nodemask,
5194                                                 &cpu_to_phys_group);
5195         }
5196
5197 #ifdef CONFIG_NUMA
5198         /* Set up node groups */
5199         if (sched_group_allnodes)
5200                 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5201                                         &cpu_to_allnodes_group);
5202
5203         for (i = 0; i < MAX_NUMNODES; i++) {
5204                 /* Set up node groups */
5205                 struct sched_group *sg, *prev;
5206                 cpumask_t nodemask = node_to_cpumask(i);
5207                 cpumask_t domainspan;
5208                 cpumask_t covered = CPU_MASK_NONE;
5209                 int j;
5210
5211                 cpus_and(nodemask, nodemask, *cpu_map);
5212                 if (cpus_empty(nodemask)) {
5213                         sched_group_nodes[i] = NULL;
5214                         continue;
5215                 }
5216
5217                 domainspan = sched_domain_node_span(i);
5218                 cpus_and(domainspan, domainspan, *cpu_map);
5219
5220                 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5221                 sched_group_nodes[i] = sg;
5222                 for_each_cpu_mask(j, nodemask) {
5223                         struct sched_domain *sd;
5224                         sd = &per_cpu(node_domains, j);
5225                         sd->groups = sg;
5226                         if (sd->groups == NULL) {
5227                                 /* Turn off balancing if we have no groups */
5228                                 sd->flags = 0;
5229                         }
5230                 }
5231                 if (!sg) {
5232                         printk(KERN_WARNING
5233                         "Can not alloc domain group for node %d\n", i);
5234                         continue;
5235                 }
5236                 sg->cpu_power = 0;
5237                 sg->cpumask = nodemask;
5238                 cpus_or(covered, covered, nodemask);
5239                 prev = sg;
5240
5241                 for (j = 0; j < MAX_NUMNODES; j++) {
5242                         cpumask_t tmp, notcovered;
5243                         int n = (i + j) % MAX_NUMNODES;
5244
5245                         cpus_complement(notcovered, covered);
5246                         cpus_and(tmp, notcovered, *cpu_map);
5247                         cpus_and(tmp, tmp, domainspan);
5248                         if (cpus_empty(tmp))
5249                                 break;
5250
5251                         nodemask = node_to_cpumask(n);
5252                         cpus_and(tmp, tmp, nodemask);
5253                         if (cpus_empty(tmp))
5254                                 continue;
5255
5256                         sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5257                         if (!sg) {
5258                                 printk(KERN_WARNING
5259                                 "Can not alloc domain group for node %d\n", j);
5260                                 break;
5261                         }
5262                         sg->cpu_power = 0;
5263                         sg->cpumask = tmp;
5264                         cpus_or(covered, covered, tmp);
5265                         prev->next = sg;
5266                         prev = sg;
5267                 }
5268                 prev->next = sched_group_nodes[i];
5269         }
5270 #endif
5271
5272         /* Calculate CPU power for physical packages and nodes */
5273         for_each_cpu_mask(i, *cpu_map) {
5274                 int power;
5275                 struct sched_domain *sd;
5276 #ifdef CONFIG_SCHED_SMT
5277                 sd = &per_cpu(cpu_domains, i);
5278                 power = SCHED_LOAD_SCALE;
5279                 sd->groups->cpu_power = power;
5280 #endif
5281
5282                 sd = &per_cpu(phys_domains, i);
5283                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5284                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5285                 sd->groups->cpu_power = power;
5286
5287 #ifdef CONFIG_NUMA
5288                 sd = &per_cpu(allnodes_domains, i);
5289                 if (sd->groups) {
5290                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5291                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5292                         sd->groups->cpu_power = power;
5293                 }
5294 #endif
5295         }
5296
5297 #ifdef CONFIG_NUMA
5298         for (i = 0; i < MAX_NUMNODES; i++) {
5299                 struct sched_group *sg = sched_group_nodes[i];
5300                 int j;
5301
5302                 if (sg == NULL)
5303                         continue;
5304 next_sg:
5305                 for_each_cpu_mask(j, sg->cpumask) {
5306                         struct sched_domain *sd;
5307                         int power;
5308
5309                         sd = &per_cpu(phys_domains, j);
5310                         if (j != first_cpu(sd->groups->cpumask)) {
5311                                 /*
5312                                  * Only add "power" once for each
5313                                  * physical package.
5314                                  */
5315                                 continue;
5316                         }
5317                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5318                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5319
5320                         sg->cpu_power += power;
5321                 }
5322                 sg = sg->next;
5323                 if (sg != sched_group_nodes[i])
5324                         goto next_sg;
5325         }
5326 #endif
5327
5328         /* Attach the domains */
5329         for_each_cpu_mask(i, *cpu_map) {
5330                 struct sched_domain *sd;
5331 #ifdef CONFIG_SCHED_SMT
5332                 sd = &per_cpu(cpu_domains, i);
5333 #else
5334                 sd = &per_cpu(phys_domains, i);
5335 #endif
5336                 cpu_attach_domain(sd, i);
5337         }
5338 }
5339 /*
5340  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
5341  */
5342 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5343 {
5344         cpumask_t cpu_default_map;
5345
5346         /*
5347          * Setup mask for cpus without special case scheduling requirements.
5348          * For now this just excludes isolated cpus, but could be used to
5349          * exclude other special cases in the future.
5350          */
5351         cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5352
5353         build_sched_domains(&cpu_default_map);
5354 }
5355
5356 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5357 {
5358 #ifdef CONFIG_NUMA
5359         int i;
5360         int cpu;
5361
5362         for_each_cpu_mask(cpu, *cpu_map) {
5363                 struct sched_group *sched_group_allnodes
5364                         = sched_group_allnodes_bycpu[cpu];
5365                 struct sched_group **sched_group_nodes
5366                         = sched_group_nodes_bycpu[cpu];
5367
5368                 if (sched_group_allnodes) {
5369                         kfree(sched_group_allnodes);
5370                         sched_group_allnodes_bycpu[cpu] = NULL;
5371                 }
5372
5373                 if (!sched_group_nodes)
5374                         continue;
5375
5376                 for (i = 0; i < MAX_NUMNODES; i++) {
5377                         cpumask_t nodemask = node_to_cpumask(i);
5378                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
5379
5380                         cpus_and(nodemask, nodemask, *cpu_map);
5381                         if (cpus_empty(nodemask))
5382                                 continue;
5383
5384                         if (sg == NULL)
5385                                 continue;
5386                         sg = sg->next;
5387 next_sg:
5388                         oldsg = sg;
5389                         sg = sg->next;
5390                         kfree(oldsg);
5391                         if (oldsg != sched_group_nodes[i])
5392                                 goto next_sg;
5393                 }
5394                 kfree(sched_group_nodes);
5395                 sched_group_nodes_bycpu[cpu] = NULL;
5396         }
5397 #endif
5398 }
5399
5400 /*
5401  * Detach sched domains from a group of cpus specified in cpu_map
5402  * These cpus will now be attached to the NULL domain
5403  */
5404 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5405 {
5406         int i;
5407
5408         for_each_cpu_mask(i, *cpu_map)
5409                 cpu_attach_domain(NULL, i);
5410         synchronize_sched();
5411         arch_destroy_sched_domains(cpu_map);
5412 }
5413
5414 /*
5415  * Partition sched domains as specified by the cpumasks below.
5416  * This attaches all cpus from the cpumasks to the NULL domain,
5417  * waits for a RCU quiescent period, recalculates sched
5418  * domain information and then attaches them back to the
5419  * correct sched domains
5420  * Call with hotplug lock held
5421  */
5422 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5423 {
5424         cpumask_t change_map;
5425
5426         cpus_and(*partition1, *partition1, cpu_online_map);
5427         cpus_and(*partition2, *partition2, cpu_online_map);
5428         cpus_or(change_map, *partition1, *partition2);
5429
5430         /* Detach sched domains from all of the affected cpus */
5431         detach_destroy_domains(&change_map);
5432         if (!cpus_empty(*partition1))
5433                 build_sched_domains(partition1);
5434         if (!cpus_empty(*partition2))
5435                 build_sched_domains(partition2);
5436 }
5437
5438 #ifdef CONFIG_HOTPLUG_CPU
5439 /*
5440  * Force a reinitialization of the sched domains hierarchy.  The domains
5441  * and groups cannot be updated in place without racing with the balancing
5442  * code, so we temporarily attach all running cpus to the NULL domain
5443  * which will prevent rebalancing while the sched domains are recalculated.
5444  */
5445 static int update_sched_domains(struct notifier_block *nfb,
5446                                 unsigned long action, void *hcpu)
5447 {
5448         switch (action) {
5449         case CPU_UP_PREPARE:
5450         case CPU_DOWN_PREPARE:
5451                 detach_destroy_domains(&cpu_online_map);
5452                 return NOTIFY_OK;
5453
5454         case CPU_UP_CANCELED:
5455         case CPU_DOWN_FAILED:
5456         case CPU_ONLINE:
5457         case CPU_DEAD:
5458                 /*
5459                  * Fall through and re-initialise the domains.
5460                  */
5461                 break;
5462         default:
5463                 return NOTIFY_DONE;
5464         }
5465
5466         /* The hotplug lock is already held by cpu_up/cpu_down */
5467         arch_init_sched_domains(&cpu_online_map);
5468
5469         return NOTIFY_OK;
5470 }
5471 #endif
5472
5473 void __init sched_init_smp(void)
5474 {
5475         lock_cpu_hotplug();
5476         arch_init_sched_domains(&cpu_online_map);
5477         unlock_cpu_hotplug();
5478         /* XXX: Theoretical race here - CPU may be hotplugged now */
5479         hotcpu_notifier(update_sched_domains, 0);
5480 }
5481 #else
5482 void __init sched_init_smp(void)
5483 {
5484 }
5485 #endif /* CONFIG_SMP */
5486
5487 int in_sched_functions(unsigned long addr)
5488 {
5489         /* Linker adds these: start and end of __sched functions */
5490         extern char __sched_text_start[], __sched_text_end[];
5491         return in_lock_functions(addr) ||
5492                 (addr >= (unsigned long)__sched_text_start
5493                 && addr < (unsigned long)__sched_text_end);
5494 }
5495
5496 void __init sched_init(void)
5497 {
5498         runqueue_t *rq;
5499         int i, j, k;
5500
5501         for (i = 0; i < NR_CPUS; i++) {
5502                 prio_array_t *array;
5503
5504                 rq = cpu_rq(i);
5505                 spin_lock_init(&rq->lock);
5506                 rq->nr_running = 0;
5507                 rq->active = rq->arrays;
5508                 rq->expired = rq->arrays + 1;
5509                 rq->best_expired_prio = MAX_PRIO;
5510
5511 #ifdef CONFIG_SMP
5512                 rq->sd = NULL;
5513                 for (j = 1; j < 3; j++)
5514                         rq->cpu_load[j] = 0;
5515                 rq->active_balance = 0;
5516                 rq->push_cpu = 0;
5517                 rq->migration_thread = NULL;
5518                 INIT_LIST_HEAD(&rq->migration_queue);
5519 #endif
5520                 atomic_set(&rq->nr_iowait, 0);
5521
5522                 for (j = 0; j < 2; j++) {
5523                         array = rq->arrays + j;
5524                         for (k = 0; k < MAX_PRIO; k++) {
5525                                 INIT_LIST_HEAD(array->queue + k);
5526                                 __clear_bit(k, array->bitmap);
5527                         }
5528                         // delimiter for bitsearch
5529                         __set_bit(MAX_PRIO, array->bitmap);
5530                 }
5531         }
5532
5533         /*
5534          * The boot idle thread does lazy MMU switching as well:
5535          */
5536         atomic_inc(&init_mm.mm_count);
5537         enter_lazy_tlb(&init_mm, current);
5538
5539         /*
5540          * Make us the idle thread. Technically, schedule() should not be
5541          * called from this thread, however somewhere below it might be,
5542          * but because we are the idle thread, we just pick up running again
5543          * when this runqueue becomes "idle".
5544          */
5545         init_idle(current, smp_processor_id());
5546 }
5547
5548 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5549 void __might_sleep(char *file, int line)
5550 {
5551 #if defined(in_atomic)
5552         static unsigned long prev_jiffy;        /* ratelimiting */
5553
5554         if ((in_atomic() || irqs_disabled()) &&
5555             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5556                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5557                         return;
5558                 prev_jiffy = jiffies;
5559                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5560                                 " context at %s:%d\n", file, line);
5561                 printk("in_atomic():%d, irqs_disabled():%d\n",
5562                         in_atomic(), irqs_disabled());
5563                 dump_stack();
5564         }
5565 #endif
5566 }
5567 EXPORT_SYMBOL(__might_sleep);
5568 #endif
5569
5570 #ifdef CONFIG_MAGIC_SYSRQ
5571 void normalize_rt_tasks(void)
5572 {
5573         struct task_struct *p;
5574         prio_array_t *array;
5575         unsigned long flags;
5576         runqueue_t *rq;
5577
5578         read_lock_irq(&tasklist_lock);
5579         for_each_process (p) {
5580                 if (!rt_task(p))
5581                         continue;
5582
5583                 rq = task_rq_lock(p, &flags);
5584
5585                 array = p->array;
5586                 if (array)
5587                         deactivate_task(p, task_rq(p));
5588                 __setscheduler(p, SCHED_NORMAL, 0);
5589                 if (array) {
5590                         __activate_task(p, task_rq(p));
5591                         resched_task(rq->curr);
5592                 }
5593
5594                 task_rq_unlock(rq, &flags);
5595         }
5596         read_unlock_irq(&tasklist_lock);
5597 }
5598
5599 #endif /* CONFIG_MAGIC_SYSRQ */