Merge branch 'irq-threaded-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / kernel / rcutree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptable semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27
28 #ifdef CONFIG_TREE_PREEMPT_RCU
29
30 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
31 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
32
33 /*
34  * Tell them what RCU they are running.
35  */
36 static inline void rcu_bootup_announce(void)
37 {
38         printk(KERN_INFO
39                "Experimental preemptable hierarchical RCU implementation.\n");
40 }
41
42 /*
43  * Return the number of RCU-preempt batches processed thus far
44  * for debug and statistics.
45  */
46 long rcu_batches_completed_preempt(void)
47 {
48         return rcu_preempt_state.completed;
49 }
50 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
51
52 /*
53  * Return the number of RCU batches processed thus far for debug & stats.
54  */
55 long rcu_batches_completed(void)
56 {
57         return rcu_batches_completed_preempt();
58 }
59 EXPORT_SYMBOL_GPL(rcu_batches_completed);
60
61 /*
62  * Record a preemptable-RCU quiescent state for the specified CPU.  Note
63  * that this just means that the task currently running on the CPU is
64  * not in a quiescent state.  There might be any number of tasks blocked
65  * while in an RCU read-side critical section.
66  */
67 static void rcu_preempt_qs_record(int cpu)
68 {
69         struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
70         rdp->passed_quiesc = 1;
71         rdp->passed_quiesc_completed = rdp->completed;
72 }
73
74 /*
75  * We have entered the scheduler or are between softirqs in ksoftirqd.
76  * If we are in an RCU read-side critical section, we need to reflect
77  * that in the state of the rcu_node structure corresponding to this CPU.
78  * Caller must disable hardirqs.
79  */
80 static void rcu_preempt_qs(int cpu)
81 {
82         struct task_struct *t = current;
83         int phase;
84         struct rcu_data *rdp;
85         struct rcu_node *rnp;
86
87         if (t->rcu_read_lock_nesting &&
88             (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
89
90                 /* Possibly blocking in an RCU read-side critical section. */
91                 rdp = rcu_preempt_state.rda[cpu];
92                 rnp = rdp->mynode;
93                 spin_lock(&rnp->lock);
94                 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
95                 t->rcu_blocked_node = rnp;
96
97                 /*
98                  * If this CPU has already checked in, then this task
99                  * will hold up the next grace period rather than the
100                  * current grace period.  Queue the task accordingly.
101                  * If the task is queued for the current grace period
102                  * (i.e., this CPU has not yet passed through a quiescent
103                  * state for the current grace period), then as long
104                  * as that task remains queued, the current grace period
105                  * cannot end.
106                  */
107                 phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1);
108                 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
109                 smp_mb();  /* Ensure later ctxt swtch seen after above. */
110                 spin_unlock(&rnp->lock);
111         }
112
113         /*
114          * Either we were not in an RCU read-side critical section to
115          * begin with, or we have now recorded that critical section
116          * globally.  Either way, we can now note a quiescent state
117          * for this CPU.  Again, if we were in an RCU read-side critical
118          * section, and if that critical section was blocking the current
119          * grace period, then the fact that the task has been enqueued
120          * means that we continue to block the current grace period.
121          */
122         rcu_preempt_qs_record(cpu);
123         t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS |
124                                         RCU_READ_UNLOCK_GOT_QS);
125 }
126
127 /*
128  * Tree-preemptable RCU implementation for rcu_read_lock().
129  * Just increment ->rcu_read_lock_nesting, shared state will be updated
130  * if we block.
131  */
132 void __rcu_read_lock(void)
133 {
134         ACCESS_ONCE(current->rcu_read_lock_nesting)++;
135         barrier();  /* needed if we ever invoke rcu_read_lock in rcutree.c */
136 }
137 EXPORT_SYMBOL_GPL(__rcu_read_lock);
138
139 static void rcu_read_unlock_special(struct task_struct *t)
140 {
141         int empty;
142         unsigned long flags;
143         unsigned long mask;
144         struct rcu_node *rnp;
145         int special;
146
147         /* NMI handlers cannot block and cannot safely manipulate state. */
148         if (in_nmi())
149                 return;
150
151         local_irq_save(flags);
152
153         /*
154          * If RCU core is waiting for this CPU to exit critical section,
155          * let it know that we have done so.
156          */
157         special = t->rcu_read_unlock_special;
158         if (special & RCU_READ_UNLOCK_NEED_QS) {
159                 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
160                 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS;
161         }
162
163         /* Hardware IRQ handlers cannot block. */
164         if (in_irq()) {
165                 local_irq_restore(flags);
166                 return;
167         }
168
169         /* Clean up if blocked during RCU read-side critical section. */
170         if (special & RCU_READ_UNLOCK_BLOCKED) {
171                 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
172
173                 /*
174                  * Remove this task from the list it blocked on.  The
175                  * task can migrate while we acquire the lock, but at
176                  * most one time.  So at most two passes through loop.
177                  */
178                 for (;;) {
179                         rnp = t->rcu_blocked_node;
180                         spin_lock(&rnp->lock);
181                         if (rnp == t->rcu_blocked_node)
182                                 break;
183                         spin_unlock(&rnp->lock);
184                 }
185                 empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
186                 list_del_init(&t->rcu_node_entry);
187                 t->rcu_blocked_node = NULL;
188
189                 /*
190                  * If this was the last task on the current list, and if
191                  * we aren't waiting on any CPUs, report the quiescent state.
192                  * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
193                  * drop rnp->lock and restore irq.
194                  */
195                 if (!empty && rnp->qsmask == 0 &&
196                     list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) {
197                         t->rcu_read_unlock_special &=
198                                 ~(RCU_READ_UNLOCK_NEED_QS |
199                                   RCU_READ_UNLOCK_GOT_QS);
200                         if (rnp->parent == NULL) {
201                                 /* Only one rcu_node in the tree. */
202                                 cpu_quiet_msk_finish(&rcu_preempt_state, flags);
203                                 return;
204                         }
205                         /* Report up the rest of the hierarchy. */
206                         mask = rnp->grpmask;
207                         spin_unlock_irqrestore(&rnp->lock, flags);
208                         rnp = rnp->parent;
209                         spin_lock_irqsave(&rnp->lock, flags);
210                         cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags);
211                         return;
212                 }
213                 spin_unlock(&rnp->lock);
214         }
215         local_irq_restore(flags);
216 }
217
218 /*
219  * Tree-preemptable RCU implementation for rcu_read_unlock().
220  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
221  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
222  * invoke rcu_read_unlock_special() to clean up after a context switch
223  * in an RCU read-side critical section and other special cases.
224  */
225 void __rcu_read_unlock(void)
226 {
227         struct task_struct *t = current;
228
229         barrier();  /* needed if we ever invoke rcu_read_unlock in rcutree.c */
230         if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
231             unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
232                 rcu_read_unlock_special(t);
233 }
234 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
235
236 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
237
238 /*
239  * Scan the current list of tasks blocked within RCU read-side critical
240  * sections, printing out the tid of each.
241  */
242 static void rcu_print_task_stall(struct rcu_node *rnp)
243 {
244         unsigned long flags;
245         struct list_head *lp;
246         int phase = rnp->gpnum & 0x1;
247         struct task_struct *t;
248
249         if (!list_empty(&rnp->blocked_tasks[phase])) {
250                 spin_lock_irqsave(&rnp->lock, flags);
251                 phase = rnp->gpnum & 0x1; /* re-read under lock. */
252                 lp = &rnp->blocked_tasks[phase];
253                 list_for_each_entry(t, lp, rcu_node_entry)
254                         printk(" P%d", t->pid);
255                 spin_unlock_irqrestore(&rnp->lock, flags);
256         }
257 }
258
259 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
260
261 /*
262  * Check for preempted RCU readers for the specified rcu_node structure.
263  * If the caller needs a reliable answer, it must hold the rcu_node's
264  * >lock.
265  */
266 static int rcu_preempted_readers(struct rcu_node *rnp)
267 {
268         return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
269 }
270
271 #ifdef CONFIG_HOTPLUG_CPU
272
273 /*
274  * Handle tasklist migration for case in which all CPUs covered by the
275  * specified rcu_node have gone offline.  Move them up to the root
276  * rcu_node.  The reason for not just moving them to the immediate
277  * parent is to remove the need for rcu_read_unlock_special() to
278  * make more than two attempts to acquire the target rcu_node's lock.
279  *
280  * The caller must hold rnp->lock with irqs disabled.
281  */
282 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
283                                       struct rcu_node *rnp)
284 {
285         int i;
286         struct list_head *lp;
287         struct list_head *lp_root;
288         struct rcu_node *rnp_root = rcu_get_root(rsp);
289         struct task_struct *tp;
290
291         if (rnp == rnp_root) {
292                 WARN_ONCE(1, "Last CPU thought to be offlined?");
293                 return;  /* Shouldn't happen: at least one CPU online. */
294         }
295
296         /*
297          * Move tasks up to root rcu_node.  Rely on the fact that the
298          * root rcu_node can be at most one ahead of the rest of the
299          * rcu_nodes in terms of gp_num value.  This fact allows us to
300          * move the blocked_tasks[] array directly, element by element.
301          */
302         for (i = 0; i < 2; i++) {
303                 lp = &rnp->blocked_tasks[i];
304                 lp_root = &rnp_root->blocked_tasks[i];
305                 while (!list_empty(lp)) {
306                         tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
307                         spin_lock(&rnp_root->lock); /* irqs already disabled */
308                         list_del(&tp->rcu_node_entry);
309                         tp->rcu_blocked_node = rnp_root;
310                         list_add(&tp->rcu_node_entry, lp_root);
311                         spin_unlock(&rnp_root->lock); /* irqs remain disabled */
312                 }
313         }
314 }
315
316 /*
317  * Do CPU-offline processing for preemptable RCU.
318  */
319 static void rcu_preempt_offline_cpu(int cpu)
320 {
321         __rcu_offline_cpu(cpu, &rcu_preempt_state);
322 }
323
324 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
325
326 /*
327  * Check for a quiescent state from the current CPU.  When a task blocks,
328  * the task is recorded in the corresponding CPU's rcu_node structure,
329  * which is checked elsewhere.
330  *
331  * Caller must disable hard irqs.
332  */
333 static void rcu_preempt_check_callbacks(int cpu)
334 {
335         struct task_struct *t = current;
336
337         if (t->rcu_read_lock_nesting == 0) {
338                 t->rcu_read_unlock_special &=
339                         ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS);
340                 rcu_preempt_qs_record(cpu);
341                 return;
342         }
343         if (per_cpu(rcu_preempt_data, cpu).qs_pending) {
344                 if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) {
345                         rcu_preempt_qs_record(cpu);
346                         t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS;
347                 } else if (!(t->rcu_read_unlock_special &
348                              RCU_READ_UNLOCK_NEED_QS)) {
349                         t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
350                 }
351         }
352 }
353
354 /*
355  * Process callbacks for preemptable RCU.
356  */
357 static void rcu_preempt_process_callbacks(void)
358 {
359         __rcu_process_callbacks(&rcu_preempt_state,
360                                 &__get_cpu_var(rcu_preempt_data));
361 }
362
363 /*
364  * Queue a preemptable-RCU callback for invocation after a grace period.
365  */
366 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
367 {
368         __call_rcu(head, func, &rcu_preempt_state);
369 }
370 EXPORT_SYMBOL_GPL(call_rcu);
371
372 /*
373  * Check to see if there is any immediate preemptable-RCU-related work
374  * to be done.
375  */
376 static int rcu_preempt_pending(int cpu)
377 {
378         return __rcu_pending(&rcu_preempt_state,
379                              &per_cpu(rcu_preempt_data, cpu));
380 }
381
382 /*
383  * Does preemptable RCU need the CPU to stay out of dynticks mode?
384  */
385 static int rcu_preempt_needs_cpu(int cpu)
386 {
387         return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
388 }
389
390 /*
391  * Initialize preemptable RCU's per-CPU data.
392  */
393 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
394 {
395         rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
396 }
397
398 /*
399  * Check for a task exiting while in a preemptable-RCU read-side
400  * critical section, clean up if so.  No need to issue warnings,
401  * as debug_check_no_locks_held() already does this if lockdep
402  * is enabled.
403  */
404 void exit_rcu(void)
405 {
406         struct task_struct *t = current;
407
408         if (t->rcu_read_lock_nesting == 0)
409                 return;
410         t->rcu_read_lock_nesting = 1;
411         rcu_read_unlock();
412 }
413
414 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
415
416 /*
417  * Tell them what RCU they are running.
418  */
419 static inline void rcu_bootup_announce(void)
420 {
421         printk(KERN_INFO "Hierarchical RCU implementation.\n");
422 }
423
424 /*
425  * Return the number of RCU batches processed thus far for debug & stats.
426  */
427 long rcu_batches_completed(void)
428 {
429         return rcu_batches_completed_sched();
430 }
431 EXPORT_SYMBOL_GPL(rcu_batches_completed);
432
433 /*
434  * Because preemptable RCU does not exist, we never have to check for
435  * CPUs being in quiescent states.
436  */
437 static void rcu_preempt_qs(int cpu)
438 {
439 }
440
441 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
442
443 /*
444  * Because preemptable RCU does not exist, we never have to check for
445  * tasks blocked within RCU read-side critical sections.
446  */
447 static void rcu_print_task_stall(struct rcu_node *rnp)
448 {
449 }
450
451 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
452
453 /*
454  * Because preemptable RCU does not exist, there are never any preempted
455  * RCU readers.
456  */
457 static int rcu_preempted_readers(struct rcu_node *rnp)
458 {
459         return 0;
460 }
461
462 #ifdef CONFIG_HOTPLUG_CPU
463
464 /*
465  * Because preemptable RCU does not exist, it never needs to migrate
466  * tasks that were blocked within RCU read-side critical sections.
467  */
468 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
469                                       struct rcu_node *rnp)
470 {
471 }
472
473 /*
474  * Because preemptable RCU does not exist, it never needs CPU-offline
475  * processing.
476  */
477 static void rcu_preempt_offline_cpu(int cpu)
478 {
479 }
480
481 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
482
483 /*
484  * Because preemptable RCU does not exist, it never has any callbacks
485  * to check.
486  */
487 void rcu_preempt_check_callbacks(int cpu)
488 {
489 }
490
491 /*
492  * Because preemptable RCU does not exist, it never has any callbacks
493  * to process.
494  */
495 void rcu_preempt_process_callbacks(void)
496 {
497 }
498
499 /*
500  * In classic RCU, call_rcu() is just call_rcu_sched().
501  */
502 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
503 {
504         call_rcu_sched(head, func);
505 }
506 EXPORT_SYMBOL_GPL(call_rcu);
507
508 /*
509  * Because preemptable RCU does not exist, it never has any work to do.
510  */
511 static int rcu_preempt_pending(int cpu)
512 {
513         return 0;
514 }
515
516 /*
517  * Because preemptable RCU does not exist, it never needs any CPU.
518  */
519 static int rcu_preempt_needs_cpu(int cpu)
520 {
521         return 0;
522 }
523
524 /*
525  * Because preemptable RCU does not exist, there is no per-CPU
526  * data to initialize.
527  */
528 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
529 {
530 }
531
532 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */