Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec...
[pandora-kernel.git] / kernel / posix-cpu-timers.c
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12
13 /*
14  * Called after updating RLIMIT_CPU to set timer expiration if necessary.
15  */
16 void update_rlimit_cpu(unsigned long rlim_new)
17 {
18         cputime_t cputime = secs_to_cputime(rlim_new);
19         struct signal_struct *const sig = current->signal;
20
21         if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) ||
22             cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) {
23                 spin_lock_irq(&current->sighand->siglock);
24                 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
25                 spin_unlock_irq(&current->sighand->siglock);
26         }
27 }
28
29 static int check_clock(const clockid_t which_clock)
30 {
31         int error = 0;
32         struct task_struct *p;
33         const pid_t pid = CPUCLOCK_PID(which_clock);
34
35         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
36                 return -EINVAL;
37
38         if (pid == 0)
39                 return 0;
40
41         read_lock(&tasklist_lock);
42         p = find_task_by_vpid(pid);
43         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
44                    same_thread_group(p, current) : thread_group_leader(p))) {
45                 error = -EINVAL;
46         }
47         read_unlock(&tasklist_lock);
48
49         return error;
50 }
51
52 static inline union cpu_time_count
53 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
54 {
55         union cpu_time_count ret;
56         ret.sched = 0;          /* high half always zero when .cpu used */
57         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
58                 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
59         } else {
60                 ret.cpu = timespec_to_cputime(tp);
61         }
62         return ret;
63 }
64
65 static void sample_to_timespec(const clockid_t which_clock,
66                                union cpu_time_count cpu,
67                                struct timespec *tp)
68 {
69         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
70                 *tp = ns_to_timespec(cpu.sched);
71         else
72                 cputime_to_timespec(cpu.cpu, tp);
73 }
74
75 static inline int cpu_time_before(const clockid_t which_clock,
76                                   union cpu_time_count now,
77                                   union cpu_time_count then)
78 {
79         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
80                 return now.sched < then.sched;
81         }  else {
82                 return cputime_lt(now.cpu, then.cpu);
83         }
84 }
85 static inline void cpu_time_add(const clockid_t which_clock,
86                                 union cpu_time_count *acc,
87                                 union cpu_time_count val)
88 {
89         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
90                 acc->sched += val.sched;
91         }  else {
92                 acc->cpu = cputime_add(acc->cpu, val.cpu);
93         }
94 }
95 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
96                                                 union cpu_time_count a,
97                                                 union cpu_time_count b)
98 {
99         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
100                 a.sched -= b.sched;
101         }  else {
102                 a.cpu = cputime_sub(a.cpu, b.cpu);
103         }
104         return a;
105 }
106
107 /*
108  * Divide and limit the result to res >= 1
109  *
110  * This is necessary to prevent signal delivery starvation, when the result of
111  * the division would be rounded down to 0.
112  */
113 static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
114 {
115         cputime_t res = cputime_div(time, div);
116
117         return max_t(cputime_t, res, 1);
118 }
119
120 /*
121  * Update expiry time from increment, and increase overrun count,
122  * given the current clock sample.
123  */
124 static void bump_cpu_timer(struct k_itimer *timer,
125                                   union cpu_time_count now)
126 {
127         int i;
128
129         if (timer->it.cpu.incr.sched == 0)
130                 return;
131
132         if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
133                 unsigned long long delta, incr;
134
135                 if (now.sched < timer->it.cpu.expires.sched)
136                         return;
137                 incr = timer->it.cpu.incr.sched;
138                 delta = now.sched + incr - timer->it.cpu.expires.sched;
139                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
140                 for (i = 0; incr < delta - incr; i++)
141                         incr = incr << 1;
142                 for (; i >= 0; incr >>= 1, i--) {
143                         if (delta < incr)
144                                 continue;
145                         timer->it.cpu.expires.sched += incr;
146                         timer->it_overrun += 1 << i;
147                         delta -= incr;
148                 }
149         } else {
150                 cputime_t delta, incr;
151
152                 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
153                         return;
154                 incr = timer->it.cpu.incr.cpu;
155                 delta = cputime_sub(cputime_add(now.cpu, incr),
156                                     timer->it.cpu.expires.cpu);
157                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
158                 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
159                              incr = cputime_add(incr, incr);
160                 for (; i >= 0; incr = cputime_halve(incr), i--) {
161                         if (cputime_lt(delta, incr))
162                                 continue;
163                         timer->it.cpu.expires.cpu =
164                                 cputime_add(timer->it.cpu.expires.cpu, incr);
165                         timer->it_overrun += 1 << i;
166                         delta = cputime_sub(delta, incr);
167                 }
168         }
169 }
170
171 static inline cputime_t prof_ticks(struct task_struct *p)
172 {
173         return cputime_add(p->utime, p->stime);
174 }
175 static inline cputime_t virt_ticks(struct task_struct *p)
176 {
177         return p->utime;
178 }
179
180 int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
181 {
182         int error = check_clock(which_clock);
183         if (!error) {
184                 tp->tv_sec = 0;
185                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
186                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
187                         /*
188                          * If sched_clock is using a cycle counter, we
189                          * don't have any idea of its true resolution
190                          * exported, but it is much more than 1s/HZ.
191                          */
192                         tp->tv_nsec = 1;
193                 }
194         }
195         return error;
196 }
197
198 int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
199 {
200         /*
201          * You can never reset a CPU clock, but we check for other errors
202          * in the call before failing with EPERM.
203          */
204         int error = check_clock(which_clock);
205         if (error == 0) {
206                 error = -EPERM;
207         }
208         return error;
209 }
210
211
212 /*
213  * Sample a per-thread clock for the given task.
214  */
215 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
216                             union cpu_time_count *cpu)
217 {
218         switch (CPUCLOCK_WHICH(which_clock)) {
219         default:
220                 return -EINVAL;
221         case CPUCLOCK_PROF:
222                 cpu->cpu = prof_ticks(p);
223                 break;
224         case CPUCLOCK_VIRT:
225                 cpu->cpu = virt_ticks(p);
226                 break;
227         case CPUCLOCK_SCHED:
228                 cpu->sched = task_sched_runtime(p);
229                 break;
230         }
231         return 0;
232 }
233
234 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
235 {
236         struct sighand_struct *sighand;
237         struct signal_struct *sig;
238         struct task_struct *t;
239
240         *times = INIT_CPUTIME;
241
242         rcu_read_lock();
243         sighand = rcu_dereference(tsk->sighand);
244         if (!sighand)
245                 goto out;
246
247         sig = tsk->signal;
248
249         t = tsk;
250         do {
251                 times->utime = cputime_add(times->utime, t->utime);
252                 times->stime = cputime_add(times->stime, t->stime);
253                 times->sum_exec_runtime += t->se.sum_exec_runtime;
254
255                 t = next_thread(t);
256         } while (t != tsk);
257
258         times->utime = cputime_add(times->utime, sig->utime);
259         times->stime = cputime_add(times->stime, sig->stime);
260         times->sum_exec_runtime += sig->sum_sched_runtime;
261 out:
262         rcu_read_unlock();
263 }
264
265 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
266 {
267         if (cputime_gt(b->utime, a->utime))
268                 a->utime = b->utime;
269
270         if (cputime_gt(b->stime, a->stime))
271                 a->stime = b->stime;
272
273         if (b->sum_exec_runtime > a->sum_exec_runtime)
274                 a->sum_exec_runtime = b->sum_exec_runtime;
275 }
276
277 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
278 {
279         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
280         struct task_cputime sum;
281         unsigned long flags;
282
283         spin_lock_irqsave(&cputimer->lock, flags);
284         if (!cputimer->running) {
285                 cputimer->running = 1;
286                 /*
287                  * The POSIX timer interface allows for absolute time expiry
288                  * values through the TIMER_ABSTIME flag, therefore we have
289                  * to synchronize the timer to the clock every time we start
290                  * it.
291                  */
292                 thread_group_cputime(tsk, &sum);
293                 update_gt_cputime(&cputimer->cputime, &sum);
294         }
295         *times = cputimer->cputime;
296         spin_unlock_irqrestore(&cputimer->lock, flags);
297 }
298
299 /*
300  * Sample a process (thread group) clock for the given group_leader task.
301  * Must be called with tasklist_lock held for reading.
302  */
303 static int cpu_clock_sample_group(const clockid_t which_clock,
304                                   struct task_struct *p,
305                                   union cpu_time_count *cpu)
306 {
307         struct task_cputime cputime;
308
309         switch (CPUCLOCK_WHICH(which_clock)) {
310         default:
311                 return -EINVAL;
312         case CPUCLOCK_PROF:
313                 thread_group_cputime(p, &cputime);
314                 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
315                 break;
316         case CPUCLOCK_VIRT:
317                 thread_group_cputime(p, &cputime);
318                 cpu->cpu = cputime.utime;
319                 break;
320         case CPUCLOCK_SCHED:
321                 cpu->sched = thread_group_sched_runtime(p);
322                 break;
323         }
324         return 0;
325 }
326
327
328 int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
329 {
330         const pid_t pid = CPUCLOCK_PID(which_clock);
331         int error = -EINVAL;
332         union cpu_time_count rtn;
333
334         if (pid == 0) {
335                 /*
336                  * Special case constant value for our own clocks.
337                  * We don't have to do any lookup to find ourselves.
338                  */
339                 if (CPUCLOCK_PERTHREAD(which_clock)) {
340                         /*
341                          * Sampling just ourselves we can do with no locking.
342                          */
343                         error = cpu_clock_sample(which_clock,
344                                                  current, &rtn);
345                 } else {
346                         read_lock(&tasklist_lock);
347                         error = cpu_clock_sample_group(which_clock,
348                                                        current, &rtn);
349                         read_unlock(&tasklist_lock);
350                 }
351         } else {
352                 /*
353                  * Find the given PID, and validate that the caller
354                  * should be able to see it.
355                  */
356                 struct task_struct *p;
357                 rcu_read_lock();
358                 p = find_task_by_vpid(pid);
359                 if (p) {
360                         if (CPUCLOCK_PERTHREAD(which_clock)) {
361                                 if (same_thread_group(p, current)) {
362                                         error = cpu_clock_sample(which_clock,
363                                                                  p, &rtn);
364                                 }
365                         } else {
366                                 read_lock(&tasklist_lock);
367                                 if (thread_group_leader(p) && p->signal) {
368                                         error =
369                                             cpu_clock_sample_group(which_clock,
370                                                                    p, &rtn);
371                                 }
372                                 read_unlock(&tasklist_lock);
373                         }
374                 }
375                 rcu_read_unlock();
376         }
377
378         if (error)
379                 return error;
380         sample_to_timespec(which_clock, rtn, tp);
381         return 0;
382 }
383
384
385 /*
386  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
387  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
388  * new timer already all-zeros initialized.
389  */
390 int posix_cpu_timer_create(struct k_itimer *new_timer)
391 {
392         int ret = 0;
393         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
394         struct task_struct *p;
395
396         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
397                 return -EINVAL;
398
399         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
400
401         read_lock(&tasklist_lock);
402         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
403                 if (pid == 0) {
404                         p = current;
405                 } else {
406                         p = find_task_by_vpid(pid);
407                         if (p && !same_thread_group(p, current))
408                                 p = NULL;
409                 }
410         } else {
411                 if (pid == 0) {
412                         p = current->group_leader;
413                 } else {
414                         p = find_task_by_vpid(pid);
415                         if (p && !thread_group_leader(p))
416                                 p = NULL;
417                 }
418         }
419         new_timer->it.cpu.task = p;
420         if (p) {
421                 get_task_struct(p);
422         } else {
423                 ret = -EINVAL;
424         }
425         read_unlock(&tasklist_lock);
426
427         return ret;
428 }
429
430 /*
431  * Clean up a CPU-clock timer that is about to be destroyed.
432  * This is called from timer deletion with the timer already locked.
433  * If we return TIMER_RETRY, it's necessary to release the timer's lock
434  * and try again.  (This happens when the timer is in the middle of firing.)
435  */
436 int posix_cpu_timer_del(struct k_itimer *timer)
437 {
438         struct task_struct *p = timer->it.cpu.task;
439         int ret = 0;
440
441         if (likely(p != NULL)) {
442                 read_lock(&tasklist_lock);
443                 if (unlikely(p->signal == NULL)) {
444                         /*
445                          * We raced with the reaping of the task.
446                          * The deletion should have cleared us off the list.
447                          */
448                         BUG_ON(!list_empty(&timer->it.cpu.entry));
449                 } else {
450                         spin_lock(&p->sighand->siglock);
451                         if (timer->it.cpu.firing)
452                                 ret = TIMER_RETRY;
453                         else
454                                 list_del(&timer->it.cpu.entry);
455                         spin_unlock(&p->sighand->siglock);
456                 }
457                 read_unlock(&tasklist_lock);
458
459                 if (!ret)
460                         put_task_struct(p);
461         }
462
463         return ret;
464 }
465
466 /*
467  * Clean out CPU timers still ticking when a thread exited.  The task
468  * pointer is cleared, and the expiry time is replaced with the residual
469  * time for later timer_gettime calls to return.
470  * This must be called with the siglock held.
471  */
472 static void cleanup_timers(struct list_head *head,
473                            cputime_t utime, cputime_t stime,
474                            unsigned long long sum_exec_runtime)
475 {
476         struct cpu_timer_list *timer, *next;
477         cputime_t ptime = cputime_add(utime, stime);
478
479         list_for_each_entry_safe(timer, next, head, entry) {
480                 list_del_init(&timer->entry);
481                 if (cputime_lt(timer->expires.cpu, ptime)) {
482                         timer->expires.cpu = cputime_zero;
483                 } else {
484                         timer->expires.cpu = cputime_sub(timer->expires.cpu,
485                                                          ptime);
486                 }
487         }
488
489         ++head;
490         list_for_each_entry_safe(timer, next, head, entry) {
491                 list_del_init(&timer->entry);
492                 if (cputime_lt(timer->expires.cpu, utime)) {
493                         timer->expires.cpu = cputime_zero;
494                 } else {
495                         timer->expires.cpu = cputime_sub(timer->expires.cpu,
496                                                          utime);
497                 }
498         }
499
500         ++head;
501         list_for_each_entry_safe(timer, next, head, entry) {
502                 list_del_init(&timer->entry);
503                 if (timer->expires.sched < sum_exec_runtime) {
504                         timer->expires.sched = 0;
505                 } else {
506                         timer->expires.sched -= sum_exec_runtime;
507                 }
508         }
509 }
510
511 /*
512  * These are both called with the siglock held, when the current thread
513  * is being reaped.  When the final (leader) thread in the group is reaped,
514  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
515  */
516 void posix_cpu_timers_exit(struct task_struct *tsk)
517 {
518         cleanup_timers(tsk->cpu_timers,
519                        tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
520
521 }
522 void posix_cpu_timers_exit_group(struct task_struct *tsk)
523 {
524         struct signal_struct *const sig = tsk->signal;
525
526         cleanup_timers(tsk->signal->cpu_timers,
527                        cputime_add(tsk->utime, sig->utime),
528                        cputime_add(tsk->stime, sig->stime),
529                        tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
530 }
531
532 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
533 {
534         /*
535          * That's all for this thread or process.
536          * We leave our residual in expires to be reported.
537          */
538         put_task_struct(timer->it.cpu.task);
539         timer->it.cpu.task = NULL;
540         timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
541                                              timer->it.cpu.expires,
542                                              now);
543 }
544
545 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
546 {
547         return cputime_eq(expires, cputime_zero) ||
548                cputime_gt(expires, new_exp);
549 }
550
551 static inline int expires_le(cputime_t expires, cputime_t new_exp)
552 {
553         return !cputime_eq(expires, cputime_zero) &&
554                cputime_le(expires, new_exp);
555 }
556 /*
557  * Insert the timer on the appropriate list before any timers that
558  * expire later.  This must be called with the tasklist_lock held
559  * for reading, and interrupts disabled.
560  */
561 static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
562 {
563         struct task_struct *p = timer->it.cpu.task;
564         struct list_head *head, *listpos;
565         struct cpu_timer_list *const nt = &timer->it.cpu;
566         struct cpu_timer_list *next;
567         unsigned long i;
568
569         head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
570                 p->cpu_timers : p->signal->cpu_timers);
571         head += CPUCLOCK_WHICH(timer->it_clock);
572
573         BUG_ON(!irqs_disabled());
574         spin_lock(&p->sighand->siglock);
575
576         listpos = head;
577         if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
578                 list_for_each_entry(next, head, entry) {
579                         if (next->expires.sched > nt->expires.sched)
580                                 break;
581                         listpos = &next->entry;
582                 }
583         } else {
584                 list_for_each_entry(next, head, entry) {
585                         if (cputime_gt(next->expires.cpu, nt->expires.cpu))
586                                 break;
587                         listpos = &next->entry;
588                 }
589         }
590         list_add(&nt->entry, listpos);
591
592         if (listpos == head) {
593                 /*
594                  * We are the new earliest-expiring timer.
595                  * If we are a thread timer, there can always
596                  * be a process timer telling us to stop earlier.
597                  */
598
599                 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
600                         union cpu_time_count *exp = &nt->expires;
601
602                         switch (CPUCLOCK_WHICH(timer->it_clock)) {
603                         default:
604                                 BUG();
605                         case CPUCLOCK_PROF:
606                                 if (expires_gt(p->cputime_expires.prof_exp,
607                                                exp->cpu))
608                                         p->cputime_expires.prof_exp = exp->cpu;
609                                 break;
610                         case CPUCLOCK_VIRT:
611                                 if (expires_gt(p->cputime_expires.virt_exp,
612                                                exp->cpu))
613                                         p->cputime_expires.virt_exp = exp->cpu;
614                                 break;
615                         case CPUCLOCK_SCHED:
616                                 if (p->cputime_expires.sched_exp == 0 ||
617                                     p->cputime_expires.sched_exp > exp->sched)
618                                         p->cputime_expires.sched_exp =
619                                                                 exp->sched;
620                                 break;
621                         }
622                 } else {
623                         struct signal_struct *const sig = p->signal;
624                         union cpu_time_count *exp = &timer->it.cpu.expires;
625
626                         /*
627                          * For a process timer, set the cached expiration time.
628                          */
629                         switch (CPUCLOCK_WHICH(timer->it_clock)) {
630                         default:
631                                 BUG();
632                         case CPUCLOCK_VIRT:
633                                 if (expires_le(sig->it[CPUCLOCK_VIRT].expires,
634                                                exp->cpu))
635                                         break;
636                                 sig->cputime_expires.virt_exp = exp->cpu;
637                                 break;
638                         case CPUCLOCK_PROF:
639                                 if (expires_le(sig->it[CPUCLOCK_PROF].expires,
640                                                exp->cpu))
641                                         break;
642                                 i = sig->rlim[RLIMIT_CPU].rlim_cur;
643                                 if (i != RLIM_INFINITY &&
644                                     i <= cputime_to_secs(exp->cpu))
645                                         break;
646                                 sig->cputime_expires.prof_exp = exp->cpu;
647                                 break;
648                         case CPUCLOCK_SCHED:
649                                 sig->cputime_expires.sched_exp = exp->sched;
650                                 break;
651                         }
652                 }
653         }
654
655         spin_unlock(&p->sighand->siglock);
656 }
657
658 /*
659  * The timer is locked, fire it and arrange for its reload.
660  */
661 static void cpu_timer_fire(struct k_itimer *timer)
662 {
663         if (unlikely(timer->sigq == NULL)) {
664                 /*
665                  * This a special case for clock_nanosleep,
666                  * not a normal timer from sys_timer_create.
667                  */
668                 wake_up_process(timer->it_process);
669                 timer->it.cpu.expires.sched = 0;
670         } else if (timer->it.cpu.incr.sched == 0) {
671                 /*
672                  * One-shot timer.  Clear it as soon as it's fired.
673                  */
674                 posix_timer_event(timer, 0);
675                 timer->it.cpu.expires.sched = 0;
676         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
677                 /*
678                  * The signal did not get queued because the signal
679                  * was ignored, so we won't get any callback to
680                  * reload the timer.  But we need to keep it
681                  * ticking in case the signal is deliverable next time.
682                  */
683                 posix_cpu_timer_schedule(timer);
684         }
685 }
686
687 /*
688  * Sample a process (thread group) timer for the given group_leader task.
689  * Must be called with tasklist_lock held for reading.
690  */
691 static int cpu_timer_sample_group(const clockid_t which_clock,
692                                   struct task_struct *p,
693                                   union cpu_time_count *cpu)
694 {
695         struct task_cputime cputime;
696
697         thread_group_cputimer(p, &cputime);
698         switch (CPUCLOCK_WHICH(which_clock)) {
699         default:
700                 return -EINVAL;
701         case CPUCLOCK_PROF:
702                 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
703                 break;
704         case CPUCLOCK_VIRT:
705                 cpu->cpu = cputime.utime;
706                 break;
707         case CPUCLOCK_SCHED:
708                 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
709                 break;
710         }
711         return 0;
712 }
713
714 /*
715  * Guts of sys_timer_settime for CPU timers.
716  * This is called with the timer locked and interrupts disabled.
717  * If we return TIMER_RETRY, it's necessary to release the timer's lock
718  * and try again.  (This happens when the timer is in the middle of firing.)
719  */
720 int posix_cpu_timer_set(struct k_itimer *timer, int flags,
721                         struct itimerspec *new, struct itimerspec *old)
722 {
723         struct task_struct *p = timer->it.cpu.task;
724         union cpu_time_count old_expires, new_expires, val;
725         int ret;
726
727         if (unlikely(p == NULL)) {
728                 /*
729                  * Timer refers to a dead task's clock.
730                  */
731                 return -ESRCH;
732         }
733
734         new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
735
736         read_lock(&tasklist_lock);
737         /*
738          * We need the tasklist_lock to protect against reaping that
739          * clears p->signal.  If p has just been reaped, we can no
740          * longer get any information about it at all.
741          */
742         if (unlikely(p->signal == NULL)) {
743                 read_unlock(&tasklist_lock);
744                 put_task_struct(p);
745                 timer->it.cpu.task = NULL;
746                 return -ESRCH;
747         }
748
749         /*
750          * Disarm any old timer after extracting its expiry time.
751          */
752         BUG_ON(!irqs_disabled());
753
754         ret = 0;
755         spin_lock(&p->sighand->siglock);
756         old_expires = timer->it.cpu.expires;
757         if (unlikely(timer->it.cpu.firing)) {
758                 timer->it.cpu.firing = -1;
759                 ret = TIMER_RETRY;
760         } else
761                 list_del_init(&timer->it.cpu.entry);
762         spin_unlock(&p->sighand->siglock);
763
764         /*
765          * We need to sample the current value to convert the new
766          * value from to relative and absolute, and to convert the
767          * old value from absolute to relative.  To set a process
768          * timer, we need a sample to balance the thread expiry
769          * times (in arm_timer).  With an absolute time, we must
770          * check if it's already passed.  In short, we need a sample.
771          */
772         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
773                 cpu_clock_sample(timer->it_clock, p, &val);
774         } else {
775                 cpu_timer_sample_group(timer->it_clock, p, &val);
776         }
777
778         if (old) {
779                 if (old_expires.sched == 0) {
780                         old->it_value.tv_sec = 0;
781                         old->it_value.tv_nsec = 0;
782                 } else {
783                         /*
784                          * Update the timer in case it has
785                          * overrun already.  If it has,
786                          * we'll report it as having overrun
787                          * and with the next reloaded timer
788                          * already ticking, though we are
789                          * swallowing that pending
790                          * notification here to install the
791                          * new setting.
792                          */
793                         bump_cpu_timer(timer, val);
794                         if (cpu_time_before(timer->it_clock, val,
795                                             timer->it.cpu.expires)) {
796                                 old_expires = cpu_time_sub(
797                                         timer->it_clock,
798                                         timer->it.cpu.expires, val);
799                                 sample_to_timespec(timer->it_clock,
800                                                    old_expires,
801                                                    &old->it_value);
802                         } else {
803                                 old->it_value.tv_nsec = 1;
804                                 old->it_value.tv_sec = 0;
805                         }
806                 }
807         }
808
809         if (unlikely(ret)) {
810                 /*
811                  * We are colliding with the timer actually firing.
812                  * Punt after filling in the timer's old value, and
813                  * disable this firing since we are already reporting
814                  * it as an overrun (thanks to bump_cpu_timer above).
815                  */
816                 read_unlock(&tasklist_lock);
817                 goto out;
818         }
819
820         if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
821                 cpu_time_add(timer->it_clock, &new_expires, val);
822         }
823
824         /*
825          * Install the new expiry time (or zero).
826          * For a timer with no notification action, we don't actually
827          * arm the timer (we'll just fake it for timer_gettime).
828          */
829         timer->it.cpu.expires = new_expires;
830         if (new_expires.sched != 0 &&
831             (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
832             cpu_time_before(timer->it_clock, val, new_expires)) {
833                 arm_timer(timer, val);
834         }
835
836         read_unlock(&tasklist_lock);
837
838         /*
839          * Install the new reload setting, and
840          * set up the signal and overrun bookkeeping.
841          */
842         timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
843                                                 &new->it_interval);
844
845         /*
846          * This acts as a modification timestamp for the timer,
847          * so any automatic reload attempt will punt on seeing
848          * that we have reset the timer manually.
849          */
850         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
851                 ~REQUEUE_PENDING;
852         timer->it_overrun_last = 0;
853         timer->it_overrun = -1;
854
855         if (new_expires.sched != 0 &&
856             (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
857             !cpu_time_before(timer->it_clock, val, new_expires)) {
858                 /*
859                  * The designated time already passed, so we notify
860                  * immediately, even if the thread never runs to
861                  * accumulate more time on this clock.
862                  */
863                 cpu_timer_fire(timer);
864         }
865
866         ret = 0;
867  out:
868         if (old) {
869                 sample_to_timespec(timer->it_clock,
870                                    timer->it.cpu.incr, &old->it_interval);
871         }
872         return ret;
873 }
874
875 void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
876 {
877         union cpu_time_count now;
878         struct task_struct *p = timer->it.cpu.task;
879         int clear_dead;
880
881         /*
882          * Easy part: convert the reload time.
883          */
884         sample_to_timespec(timer->it_clock,
885                            timer->it.cpu.incr, &itp->it_interval);
886
887         if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all.  */
888                 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
889                 return;
890         }
891
892         if (unlikely(p == NULL)) {
893                 /*
894                  * This task already died and the timer will never fire.
895                  * In this case, expires is actually the dead value.
896                  */
897         dead:
898                 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
899                                    &itp->it_value);
900                 return;
901         }
902
903         /*
904          * Sample the clock to take the difference with the expiry time.
905          */
906         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
907                 cpu_clock_sample(timer->it_clock, p, &now);
908                 clear_dead = p->exit_state;
909         } else {
910                 read_lock(&tasklist_lock);
911                 if (unlikely(p->signal == NULL)) {
912                         /*
913                          * The process has been reaped.
914                          * We can't even collect a sample any more.
915                          * Call the timer disarmed, nothing else to do.
916                          */
917                         put_task_struct(p);
918                         timer->it.cpu.task = NULL;
919                         timer->it.cpu.expires.sched = 0;
920                         read_unlock(&tasklist_lock);
921                         goto dead;
922                 } else {
923                         cpu_timer_sample_group(timer->it_clock, p, &now);
924                         clear_dead = (unlikely(p->exit_state) &&
925                                       thread_group_empty(p));
926                 }
927                 read_unlock(&tasklist_lock);
928         }
929
930         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
931                 if (timer->it.cpu.incr.sched == 0 &&
932                     cpu_time_before(timer->it_clock,
933                                     timer->it.cpu.expires, now)) {
934                         /*
935                          * Do-nothing timer expired and has no reload,
936                          * so it's as if it was never set.
937                          */
938                         timer->it.cpu.expires.sched = 0;
939                         itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
940                         return;
941                 }
942                 /*
943                  * Account for any expirations and reloads that should
944                  * have happened.
945                  */
946                 bump_cpu_timer(timer, now);
947         }
948
949         if (unlikely(clear_dead)) {
950                 /*
951                  * We've noticed that the thread is dead, but
952                  * not yet reaped.  Take this opportunity to
953                  * drop our task ref.
954                  */
955                 clear_dead_task(timer, now);
956                 goto dead;
957         }
958
959         if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
960                 sample_to_timespec(timer->it_clock,
961                                    cpu_time_sub(timer->it_clock,
962                                                 timer->it.cpu.expires, now),
963                                    &itp->it_value);
964         } else {
965                 /*
966                  * The timer should have expired already, but the firing
967                  * hasn't taken place yet.  Say it's just about to expire.
968                  */
969                 itp->it_value.tv_nsec = 1;
970                 itp->it_value.tv_sec = 0;
971         }
972 }
973
974 /*
975  * Check for any per-thread CPU timers that have fired and move them off
976  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
977  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
978  */
979 static void check_thread_timers(struct task_struct *tsk,
980                                 struct list_head *firing)
981 {
982         int maxfire;
983         struct list_head *timers = tsk->cpu_timers;
984         struct signal_struct *const sig = tsk->signal;
985         unsigned long soft;
986
987         maxfire = 20;
988         tsk->cputime_expires.prof_exp = cputime_zero;
989         while (!list_empty(timers)) {
990                 struct cpu_timer_list *t = list_first_entry(timers,
991                                                       struct cpu_timer_list,
992                                                       entry);
993                 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
994                         tsk->cputime_expires.prof_exp = t->expires.cpu;
995                         break;
996                 }
997                 t->firing = 1;
998                 list_move_tail(&t->entry, firing);
999         }
1000
1001         ++timers;
1002         maxfire = 20;
1003         tsk->cputime_expires.virt_exp = cputime_zero;
1004         while (!list_empty(timers)) {
1005                 struct cpu_timer_list *t = list_first_entry(timers,
1006                                                       struct cpu_timer_list,
1007                                                       entry);
1008                 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
1009                         tsk->cputime_expires.virt_exp = t->expires.cpu;
1010                         break;
1011                 }
1012                 t->firing = 1;
1013                 list_move_tail(&t->entry, firing);
1014         }
1015
1016         ++timers;
1017         maxfire = 20;
1018         tsk->cputime_expires.sched_exp = 0;
1019         while (!list_empty(timers)) {
1020                 struct cpu_timer_list *t = list_first_entry(timers,
1021                                                       struct cpu_timer_list,
1022                                                       entry);
1023                 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
1024                         tsk->cputime_expires.sched_exp = t->expires.sched;
1025                         break;
1026                 }
1027                 t->firing = 1;
1028                 list_move_tail(&t->entry, firing);
1029         }
1030
1031         /*
1032          * Check for the special case thread timers.
1033          */
1034         soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
1035         if (soft != RLIM_INFINITY) {
1036                 unsigned long hard =
1037                         ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
1038
1039                 if (hard != RLIM_INFINITY &&
1040                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
1041                         /*
1042                          * At the hard limit, we just die.
1043                          * No need to calculate anything else now.
1044                          */
1045                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1046                         return;
1047                 }
1048                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
1049                         /*
1050                          * At the soft limit, send a SIGXCPU every second.
1051                          */
1052                         if (soft < hard) {
1053                                 soft += USEC_PER_SEC;
1054                                 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
1055                         }
1056                         printk(KERN_INFO
1057                                 "RT Watchdog Timeout: %s[%d]\n",
1058                                 tsk->comm, task_pid_nr(tsk));
1059                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1060                 }
1061         }
1062 }
1063
1064 static void stop_process_timers(struct signal_struct *sig)
1065 {
1066         struct thread_group_cputimer *cputimer = &sig->cputimer;
1067         unsigned long flags;
1068
1069         if (!cputimer->running)
1070                 return;
1071
1072         spin_lock_irqsave(&cputimer->lock, flags);
1073         cputimer->running = 0;
1074         spin_unlock_irqrestore(&cputimer->lock, flags);
1075
1076         sig->cputime_expires.prof_exp = cputime_zero;
1077         sig->cputime_expires.virt_exp = cputime_zero;
1078         sig->cputime_expires.sched_exp = 0;
1079 }
1080
1081 static u32 onecputick;
1082
1083 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1084                              cputime_t *expires, cputime_t cur_time, int signo)
1085 {
1086         if (cputime_eq(it->expires, cputime_zero))
1087                 return;
1088
1089         if (cputime_ge(cur_time, it->expires)) {
1090                 if (!cputime_eq(it->incr, cputime_zero)) {
1091                         it->expires = cputime_add(it->expires, it->incr);
1092                         it->error += it->incr_error;
1093                         if (it->error >= onecputick) {
1094                                 it->expires = cputime_sub(it->expires,
1095                                                           cputime_one_jiffy);
1096                                 it->error -= onecputick;
1097                         }
1098                 } else {
1099                         it->expires = cputime_zero;
1100                 }
1101
1102                 trace_itimer_expire(signo == SIGPROF ?
1103                                     ITIMER_PROF : ITIMER_VIRTUAL,
1104                                     tsk->signal->leader_pid, cur_time);
1105                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1106         }
1107
1108         if (!cputime_eq(it->expires, cputime_zero) &&
1109             (cputime_eq(*expires, cputime_zero) ||
1110              cputime_lt(it->expires, *expires))) {
1111                 *expires = it->expires;
1112         }
1113 }
1114
1115 /*
1116  * Check for any per-thread CPU timers that have fired and move them
1117  * off the tsk->*_timers list onto the firing list.  Per-thread timers
1118  * have already been taken off.
1119  */
1120 static void check_process_timers(struct task_struct *tsk,
1121                                  struct list_head *firing)
1122 {
1123         int maxfire;
1124         struct signal_struct *const sig = tsk->signal;
1125         cputime_t utime, ptime, virt_expires, prof_expires;
1126         unsigned long long sum_sched_runtime, sched_expires;
1127         struct list_head *timers = sig->cpu_timers;
1128         struct task_cputime cputime;
1129         unsigned long soft;
1130
1131         /*
1132          * Don't sample the current process CPU clocks if there are no timers.
1133          */
1134         if (list_empty(&timers[CPUCLOCK_PROF]) &&
1135             cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1136             sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1137             list_empty(&timers[CPUCLOCK_VIRT]) &&
1138             cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
1139             list_empty(&timers[CPUCLOCK_SCHED])) {
1140                 stop_process_timers(sig);
1141                 return;
1142         }
1143
1144         /*
1145          * Collect the current process totals.
1146          */
1147         thread_group_cputimer(tsk, &cputime);
1148         utime = cputime.utime;
1149         ptime = cputime_add(utime, cputime.stime);
1150         sum_sched_runtime = cputime.sum_exec_runtime;
1151         maxfire = 20;
1152         prof_expires = cputime_zero;
1153         while (!list_empty(timers)) {
1154                 struct cpu_timer_list *tl = list_first_entry(timers,
1155                                                       struct cpu_timer_list,
1156                                                       entry);
1157                 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1158                         prof_expires = tl->expires.cpu;
1159                         break;
1160                 }
1161                 tl->firing = 1;
1162                 list_move_tail(&tl->entry, firing);
1163         }
1164
1165         ++timers;
1166         maxfire = 20;
1167         virt_expires = cputime_zero;
1168         while (!list_empty(timers)) {
1169                 struct cpu_timer_list *tl = list_first_entry(timers,
1170                                                       struct cpu_timer_list,
1171                                                       entry);
1172                 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1173                         virt_expires = tl->expires.cpu;
1174                         break;
1175                 }
1176                 tl->firing = 1;
1177                 list_move_tail(&tl->entry, firing);
1178         }
1179
1180         ++timers;
1181         maxfire = 20;
1182         sched_expires = 0;
1183         while (!list_empty(timers)) {
1184                 struct cpu_timer_list *tl = list_first_entry(timers,
1185                                                       struct cpu_timer_list,
1186                                                       entry);
1187                 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1188                         sched_expires = tl->expires.sched;
1189                         break;
1190                 }
1191                 tl->firing = 1;
1192                 list_move_tail(&tl->entry, firing);
1193         }
1194
1195         /*
1196          * Check for the special case process timers.
1197          */
1198         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1199                          SIGPROF);
1200         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1201                          SIGVTALRM);
1202         soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1203         if (soft != RLIM_INFINITY) {
1204                 unsigned long psecs = cputime_to_secs(ptime);
1205                 unsigned long hard =
1206                         ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1207                 cputime_t x;
1208                 if (psecs >= hard) {
1209                         /*
1210                          * At the hard limit, we just die.
1211                          * No need to calculate anything else now.
1212                          */
1213                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1214                         return;
1215                 }
1216                 if (psecs >= soft) {
1217                         /*
1218                          * At the soft limit, send a SIGXCPU every second.
1219                          */
1220                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1221                         if (soft < hard) {
1222                                 soft++;
1223                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1224                         }
1225                 }
1226                 x = secs_to_cputime(soft);
1227                 if (cputime_eq(prof_expires, cputime_zero) ||
1228                     cputime_lt(x, prof_expires)) {
1229                         prof_expires = x;
1230                 }
1231         }
1232
1233         if (!cputime_eq(prof_expires, cputime_zero) &&
1234             (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1235              cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1236                 sig->cputime_expires.prof_exp = prof_expires;
1237         if (!cputime_eq(virt_expires, cputime_zero) &&
1238             (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1239              cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1240                 sig->cputime_expires.virt_exp = virt_expires;
1241         if (sched_expires != 0 &&
1242             (sig->cputime_expires.sched_exp == 0 ||
1243              sig->cputime_expires.sched_exp > sched_expires))
1244                 sig->cputime_expires.sched_exp = sched_expires;
1245 }
1246
1247 /*
1248  * This is called from the signal code (via do_schedule_next_timer)
1249  * when the last timer signal was delivered and we have to reload the timer.
1250  */
1251 void posix_cpu_timer_schedule(struct k_itimer *timer)
1252 {
1253         struct task_struct *p = timer->it.cpu.task;
1254         union cpu_time_count now;
1255
1256         if (unlikely(p == NULL))
1257                 /*
1258                  * The task was cleaned up already, no future firings.
1259                  */
1260                 goto out;
1261
1262         /*
1263          * Fetch the current sample and update the timer's expiry time.
1264          */
1265         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1266                 cpu_clock_sample(timer->it_clock, p, &now);
1267                 bump_cpu_timer(timer, now);
1268                 if (unlikely(p->exit_state)) {
1269                         clear_dead_task(timer, now);
1270                         goto out;
1271                 }
1272                 read_lock(&tasklist_lock); /* arm_timer needs it.  */
1273         } else {
1274                 read_lock(&tasklist_lock);
1275                 if (unlikely(p->signal == NULL)) {
1276                         /*
1277                          * The process has been reaped.
1278                          * We can't even collect a sample any more.
1279                          */
1280                         put_task_struct(p);
1281                         timer->it.cpu.task = p = NULL;
1282                         timer->it.cpu.expires.sched = 0;
1283                         goto out_unlock;
1284                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1285                         /*
1286                          * We've noticed that the thread is dead, but
1287                          * not yet reaped.  Take this opportunity to
1288                          * drop our task ref.
1289                          */
1290                         clear_dead_task(timer, now);
1291                         goto out_unlock;
1292                 }
1293                 cpu_timer_sample_group(timer->it_clock, p, &now);
1294                 bump_cpu_timer(timer, now);
1295                 /* Leave the tasklist_lock locked for the call below.  */
1296         }
1297
1298         /*
1299          * Now re-arm for the new expiry time.
1300          */
1301         arm_timer(timer, now);
1302
1303 out_unlock:
1304         read_unlock(&tasklist_lock);
1305
1306 out:
1307         timer->it_overrun_last = timer->it_overrun;
1308         timer->it_overrun = -1;
1309         ++timer->it_requeue_pending;
1310 }
1311
1312 /**
1313  * task_cputime_zero - Check a task_cputime struct for all zero fields.
1314  *
1315  * @cputime:    The struct to compare.
1316  *
1317  * Checks @cputime to see if all fields are zero.  Returns true if all fields
1318  * are zero, false if any field is nonzero.
1319  */
1320 static inline int task_cputime_zero(const struct task_cputime *cputime)
1321 {
1322         if (cputime_eq(cputime->utime, cputime_zero) &&
1323             cputime_eq(cputime->stime, cputime_zero) &&
1324             cputime->sum_exec_runtime == 0)
1325                 return 1;
1326         return 0;
1327 }
1328
1329 /**
1330  * task_cputime_expired - Compare two task_cputime entities.
1331  *
1332  * @sample:     The task_cputime structure to be checked for expiration.
1333  * @expires:    Expiration times, against which @sample will be checked.
1334  *
1335  * Checks @sample against @expires to see if any field of @sample has expired.
1336  * Returns true if any field of the former is greater than the corresponding
1337  * field of the latter if the latter field is set.  Otherwise returns false.
1338  */
1339 static inline int task_cputime_expired(const struct task_cputime *sample,
1340                                         const struct task_cputime *expires)
1341 {
1342         if (!cputime_eq(expires->utime, cputime_zero) &&
1343             cputime_ge(sample->utime, expires->utime))
1344                 return 1;
1345         if (!cputime_eq(expires->stime, cputime_zero) &&
1346             cputime_ge(cputime_add(sample->utime, sample->stime),
1347                        expires->stime))
1348                 return 1;
1349         if (expires->sum_exec_runtime != 0 &&
1350             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1351                 return 1;
1352         return 0;
1353 }
1354
1355 /**
1356  * fastpath_timer_check - POSIX CPU timers fast path.
1357  *
1358  * @tsk:        The task (thread) being checked.
1359  *
1360  * Check the task and thread group timers.  If both are zero (there are no
1361  * timers set) return false.  Otherwise snapshot the task and thread group
1362  * timers and compare them with the corresponding expiration times.  Return
1363  * true if a timer has expired, else return false.
1364  */
1365 static inline int fastpath_timer_check(struct task_struct *tsk)
1366 {
1367         struct signal_struct *sig;
1368
1369         /* tsk == current, ensure it is safe to use ->signal/sighand */
1370         if (unlikely(tsk->exit_state))
1371                 return 0;
1372
1373         if (!task_cputime_zero(&tsk->cputime_expires)) {
1374                 struct task_cputime task_sample = {
1375                         .utime = tsk->utime,
1376                         .stime = tsk->stime,
1377                         .sum_exec_runtime = tsk->se.sum_exec_runtime
1378                 };
1379
1380                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1381                         return 1;
1382         }
1383
1384         sig = tsk->signal;
1385         if (!task_cputime_zero(&sig->cputime_expires)) {
1386                 struct task_cputime group_sample;
1387
1388                 thread_group_cputimer(tsk, &group_sample);
1389                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1390                         return 1;
1391         }
1392
1393         return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
1394 }
1395
1396 /*
1397  * This is called from the timer interrupt handler.  The irq handler has
1398  * already updated our counts.  We need to check if any timers fire now.
1399  * Interrupts are disabled.
1400  */
1401 void run_posix_cpu_timers(struct task_struct *tsk)
1402 {
1403         LIST_HEAD(firing);
1404         struct k_itimer *timer, *next;
1405
1406         BUG_ON(!irqs_disabled());
1407
1408         /*
1409          * The fast path checks that there are no expired thread or thread
1410          * group timers.  If that's so, just return.
1411          */
1412         if (!fastpath_timer_check(tsk))
1413                 return;
1414
1415         spin_lock(&tsk->sighand->siglock);
1416         /*
1417          * Here we take off tsk->signal->cpu_timers[N] and
1418          * tsk->cpu_timers[N] all the timers that are firing, and
1419          * put them on the firing list.
1420          */
1421         check_thread_timers(tsk, &firing);
1422         check_process_timers(tsk, &firing);
1423
1424         /*
1425          * We must release these locks before taking any timer's lock.
1426          * There is a potential race with timer deletion here, as the
1427          * siglock now protects our private firing list.  We have set
1428          * the firing flag in each timer, so that a deletion attempt
1429          * that gets the timer lock before we do will give it up and
1430          * spin until we've taken care of that timer below.
1431          */
1432         spin_unlock(&tsk->sighand->siglock);
1433
1434         /*
1435          * Now that all the timers on our list have the firing flag,
1436          * noone will touch their list entries but us.  We'll take
1437          * each timer's lock before clearing its firing flag, so no
1438          * timer call will interfere.
1439          */
1440         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1441                 int cpu_firing;
1442
1443                 spin_lock(&timer->it_lock);
1444                 list_del_init(&timer->it.cpu.entry);
1445                 cpu_firing = timer->it.cpu.firing;
1446                 timer->it.cpu.firing = 0;
1447                 /*
1448                  * The firing flag is -1 if we collided with a reset
1449                  * of the timer, which already reported this
1450                  * almost-firing as an overrun.  So don't generate an event.
1451                  */
1452                 if (likely(cpu_firing >= 0))
1453                         cpu_timer_fire(timer);
1454                 spin_unlock(&timer->it_lock);
1455         }
1456 }
1457
1458 /*
1459  * Set one of the process-wide special case CPU timers.
1460  * The tsk->sighand->siglock must be held by the caller.
1461  * The *newval argument is relative and we update it to be absolute, *oldval
1462  * is absolute and we update it to be relative.
1463  */
1464 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1465                            cputime_t *newval, cputime_t *oldval)
1466 {
1467         union cpu_time_count now;
1468         struct list_head *head;
1469
1470         BUG_ON(clock_idx == CPUCLOCK_SCHED);
1471         cpu_timer_sample_group(clock_idx, tsk, &now);
1472
1473         if (oldval) {
1474                 if (!cputime_eq(*oldval, cputime_zero)) {
1475                         if (cputime_le(*oldval, now.cpu)) {
1476                                 /* Just about to fire. */
1477                                 *oldval = cputime_one_jiffy;
1478                         } else {
1479                                 *oldval = cputime_sub(*oldval, now.cpu);
1480                         }
1481                 }
1482
1483                 if (cputime_eq(*newval, cputime_zero))
1484                         return;
1485                 *newval = cputime_add(*newval, now.cpu);
1486
1487                 /*
1488                  * If the RLIMIT_CPU timer will expire before the
1489                  * ITIMER_PROF timer, we have nothing else to do.
1490                  */
1491                 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1492                     < cputime_to_secs(*newval))
1493                         return;
1494         }
1495
1496         /*
1497          * Check whether there are any process timers already set to fire
1498          * before this one.  If so, we don't have anything more to do.
1499          */
1500         head = &tsk->signal->cpu_timers[clock_idx];
1501         if (list_empty(head) ||
1502             cputime_ge(list_first_entry(head,
1503                                   struct cpu_timer_list, entry)->expires.cpu,
1504                        *newval)) {
1505                 switch (clock_idx) {
1506                 case CPUCLOCK_PROF:
1507                         tsk->signal->cputime_expires.prof_exp = *newval;
1508                         break;
1509                 case CPUCLOCK_VIRT:
1510                         tsk->signal->cputime_expires.virt_exp = *newval;
1511                         break;
1512                 }
1513         }
1514 }
1515
1516 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1517                             struct timespec *rqtp, struct itimerspec *it)
1518 {
1519         struct k_itimer timer;
1520         int error;
1521
1522         /*
1523          * Set up a temporary timer and then wait for it to go off.
1524          */
1525         memset(&timer, 0, sizeof timer);
1526         spin_lock_init(&timer.it_lock);
1527         timer.it_clock = which_clock;
1528         timer.it_overrun = -1;
1529         error = posix_cpu_timer_create(&timer);
1530         timer.it_process = current;
1531         if (!error) {
1532                 static struct itimerspec zero_it;
1533
1534                 memset(it, 0, sizeof *it);
1535                 it->it_value = *rqtp;
1536
1537                 spin_lock_irq(&timer.it_lock);
1538                 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1539                 if (error) {
1540                         spin_unlock_irq(&timer.it_lock);
1541                         return error;
1542                 }
1543
1544                 while (!signal_pending(current)) {
1545                         if (timer.it.cpu.expires.sched == 0) {
1546                                 /*
1547                                  * Our timer fired and was reset.
1548                                  */
1549                                 spin_unlock_irq(&timer.it_lock);
1550                                 return 0;
1551                         }
1552
1553                         /*
1554                          * Block until cpu_timer_fire (or a signal) wakes us.
1555                          */
1556                         __set_current_state(TASK_INTERRUPTIBLE);
1557                         spin_unlock_irq(&timer.it_lock);
1558                         schedule();
1559                         spin_lock_irq(&timer.it_lock);
1560                 }
1561
1562                 /*
1563                  * We were interrupted by a signal.
1564                  */
1565                 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1566                 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1567                 spin_unlock_irq(&timer.it_lock);
1568
1569                 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1570                         /*
1571                          * It actually did fire already.
1572                          */
1573                         return 0;
1574                 }
1575
1576                 error = -ERESTART_RESTARTBLOCK;
1577         }
1578
1579         return error;
1580 }
1581
1582 int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1583                      struct timespec *rqtp, struct timespec __user *rmtp)
1584 {
1585         struct restart_block *restart_block =
1586             &current_thread_info()->restart_block;
1587         struct itimerspec it;
1588         int error;
1589
1590         /*
1591          * Diagnose required errors first.
1592          */
1593         if (CPUCLOCK_PERTHREAD(which_clock) &&
1594             (CPUCLOCK_PID(which_clock) == 0 ||
1595              CPUCLOCK_PID(which_clock) == current->pid))
1596                 return -EINVAL;
1597
1598         error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1599
1600         if (error == -ERESTART_RESTARTBLOCK) {
1601
1602                 if (flags & TIMER_ABSTIME)
1603                         return -ERESTARTNOHAND;
1604                 /*
1605                  * Report back to the user the time still remaining.
1606                  */
1607                 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1608                         return -EFAULT;
1609
1610                 restart_block->fn = posix_cpu_nsleep_restart;
1611                 restart_block->arg0 = which_clock;
1612                 restart_block->arg1 = (unsigned long) rmtp;
1613                 restart_block->arg2 = rqtp->tv_sec;
1614                 restart_block->arg3 = rqtp->tv_nsec;
1615         }
1616         return error;
1617 }
1618
1619 long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1620 {
1621         clockid_t which_clock = restart_block->arg0;
1622         struct timespec __user *rmtp;
1623         struct timespec t;
1624         struct itimerspec it;
1625         int error;
1626
1627         rmtp = (struct timespec __user *) restart_block->arg1;
1628         t.tv_sec = restart_block->arg2;
1629         t.tv_nsec = restart_block->arg3;
1630
1631         restart_block->fn = do_no_restart_syscall;
1632         error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1633
1634         if (error == -ERESTART_RESTARTBLOCK) {
1635                 /*
1636                  * Report back to the user the time still remaining.
1637                  */
1638                 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1639                         return -EFAULT;
1640
1641                 restart_block->fn = posix_cpu_nsleep_restart;
1642                 restart_block->arg0 = which_clock;
1643                 restart_block->arg1 = (unsigned long) rmtp;
1644                 restart_block->arg2 = t.tv_sec;
1645                 restart_block->arg3 = t.tv_nsec;
1646         }
1647         return error;
1648
1649 }
1650
1651
1652 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1653 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1654
1655 static int process_cpu_clock_getres(const clockid_t which_clock,
1656                                     struct timespec *tp)
1657 {
1658         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1659 }
1660 static int process_cpu_clock_get(const clockid_t which_clock,
1661                                  struct timespec *tp)
1662 {
1663         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1664 }
1665 static int process_cpu_timer_create(struct k_itimer *timer)
1666 {
1667         timer->it_clock = PROCESS_CLOCK;
1668         return posix_cpu_timer_create(timer);
1669 }
1670 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1671                               struct timespec *rqtp,
1672                               struct timespec __user *rmtp)
1673 {
1674         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1675 }
1676 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1677 {
1678         return -EINVAL;
1679 }
1680 static int thread_cpu_clock_getres(const clockid_t which_clock,
1681                                    struct timespec *tp)
1682 {
1683         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1684 }
1685 static int thread_cpu_clock_get(const clockid_t which_clock,
1686                                 struct timespec *tp)
1687 {
1688         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1689 }
1690 static int thread_cpu_timer_create(struct k_itimer *timer)
1691 {
1692         timer->it_clock = THREAD_CLOCK;
1693         return posix_cpu_timer_create(timer);
1694 }
1695 static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1696                               struct timespec *rqtp, struct timespec __user *rmtp)
1697 {
1698         return -EINVAL;
1699 }
1700 static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1701 {
1702         return -EINVAL;
1703 }
1704
1705 static __init int init_posix_cpu_timers(void)
1706 {
1707         struct k_clock process = {
1708                 .clock_getres = process_cpu_clock_getres,
1709                 .clock_get = process_cpu_clock_get,
1710                 .clock_set = do_posix_clock_nosettime,
1711                 .timer_create = process_cpu_timer_create,
1712                 .nsleep = process_cpu_nsleep,
1713                 .nsleep_restart = process_cpu_nsleep_restart,
1714         };
1715         struct k_clock thread = {
1716                 .clock_getres = thread_cpu_clock_getres,
1717                 .clock_get = thread_cpu_clock_get,
1718                 .clock_set = do_posix_clock_nosettime,
1719                 .timer_create = thread_cpu_timer_create,
1720                 .nsleep = thread_cpu_nsleep,
1721                 .nsleep_restart = thread_cpu_nsleep_restart,
1722         };
1723         struct timespec ts;
1724
1725         register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1726         register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1727
1728         cputime_to_timespec(cputime_one_jiffy, &ts);
1729         onecputick = ts.tv_nsec;
1730         WARN_ON(ts.tv_sec != 0);
1731
1732         return 0;
1733 }
1734 __initcall(init_posix_cpu_timers);