cpu-timers: Change SIGEV_NONE timer implementation
[pandora-kernel.git] / kernel / posix-cpu-timers.c
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12
13 /*
14  * Called after updating RLIMIT_CPU to run cpu timer and update
15  * tsk->signal->cputime_expires expiration cache if necessary. Needs
16  * siglock protection since other code may update expiration cache as
17  * well.
18  */
19 void update_rlimit_cpu(unsigned long rlim_new)
20 {
21         cputime_t cputime = secs_to_cputime(rlim_new);
22
23         spin_lock_irq(&current->sighand->siglock);
24         set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
25         spin_unlock_irq(&current->sighand->siglock);
26 }
27
28 static int check_clock(const clockid_t which_clock)
29 {
30         int error = 0;
31         struct task_struct *p;
32         const pid_t pid = CPUCLOCK_PID(which_clock);
33
34         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35                 return -EINVAL;
36
37         if (pid == 0)
38                 return 0;
39
40         read_lock(&tasklist_lock);
41         p = find_task_by_vpid(pid);
42         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43                    same_thread_group(p, current) : thread_group_leader(p))) {
44                 error = -EINVAL;
45         }
46         read_unlock(&tasklist_lock);
47
48         return error;
49 }
50
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
53 {
54         union cpu_time_count ret;
55         ret.sched = 0;          /* high half always zero when .cpu used */
56         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
57                 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
58         } else {
59                 ret.cpu = timespec_to_cputime(tp);
60         }
61         return ret;
62 }
63
64 static void sample_to_timespec(const clockid_t which_clock,
65                                union cpu_time_count cpu,
66                                struct timespec *tp)
67 {
68         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69                 *tp = ns_to_timespec(cpu.sched);
70         else
71                 cputime_to_timespec(cpu.cpu, tp);
72 }
73
74 static inline int cpu_time_before(const clockid_t which_clock,
75                                   union cpu_time_count now,
76                                   union cpu_time_count then)
77 {
78         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79                 return now.sched < then.sched;
80         }  else {
81                 return cputime_lt(now.cpu, then.cpu);
82         }
83 }
84 static inline void cpu_time_add(const clockid_t which_clock,
85                                 union cpu_time_count *acc,
86                                 union cpu_time_count val)
87 {
88         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89                 acc->sched += val.sched;
90         }  else {
91                 acc->cpu = cputime_add(acc->cpu, val.cpu);
92         }
93 }
94 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
95                                                 union cpu_time_count a,
96                                                 union cpu_time_count b)
97 {
98         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99                 a.sched -= b.sched;
100         }  else {
101                 a.cpu = cputime_sub(a.cpu, b.cpu);
102         }
103         return a;
104 }
105
106 /*
107  * Divide and limit the result to res >= 1
108  *
109  * This is necessary to prevent signal delivery starvation, when the result of
110  * the division would be rounded down to 0.
111  */
112 static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
113 {
114         cputime_t res = cputime_div(time, div);
115
116         return max_t(cputime_t, res, 1);
117 }
118
119 /*
120  * Update expiry time from increment, and increase overrun count,
121  * given the current clock sample.
122  */
123 static void bump_cpu_timer(struct k_itimer *timer,
124                                   union cpu_time_count now)
125 {
126         int i;
127
128         if (timer->it.cpu.incr.sched == 0)
129                 return;
130
131         if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132                 unsigned long long delta, incr;
133
134                 if (now.sched < timer->it.cpu.expires.sched)
135                         return;
136                 incr = timer->it.cpu.incr.sched;
137                 delta = now.sched + incr - timer->it.cpu.expires.sched;
138                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139                 for (i = 0; incr < delta - incr; i++)
140                         incr = incr << 1;
141                 for (; i >= 0; incr >>= 1, i--) {
142                         if (delta < incr)
143                                 continue;
144                         timer->it.cpu.expires.sched += incr;
145                         timer->it_overrun += 1 << i;
146                         delta -= incr;
147                 }
148         } else {
149                 cputime_t delta, incr;
150
151                 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152                         return;
153                 incr = timer->it.cpu.incr.cpu;
154                 delta = cputime_sub(cputime_add(now.cpu, incr),
155                                     timer->it.cpu.expires.cpu);
156                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157                 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158                              incr = cputime_add(incr, incr);
159                 for (; i >= 0; incr = cputime_halve(incr), i--) {
160                         if (cputime_lt(delta, incr))
161                                 continue;
162                         timer->it.cpu.expires.cpu =
163                                 cputime_add(timer->it.cpu.expires.cpu, incr);
164                         timer->it_overrun += 1 << i;
165                         delta = cputime_sub(delta, incr);
166                 }
167         }
168 }
169
170 static inline cputime_t prof_ticks(struct task_struct *p)
171 {
172         return cputime_add(p->utime, p->stime);
173 }
174 static inline cputime_t virt_ticks(struct task_struct *p)
175 {
176         return p->utime;
177 }
178
179 int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
180 {
181         int error = check_clock(which_clock);
182         if (!error) {
183                 tp->tv_sec = 0;
184                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
185                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
186                         /*
187                          * If sched_clock is using a cycle counter, we
188                          * don't have any idea of its true resolution
189                          * exported, but it is much more than 1s/HZ.
190                          */
191                         tp->tv_nsec = 1;
192                 }
193         }
194         return error;
195 }
196
197 int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
198 {
199         /*
200          * You can never reset a CPU clock, but we check for other errors
201          * in the call before failing with EPERM.
202          */
203         int error = check_clock(which_clock);
204         if (error == 0) {
205                 error = -EPERM;
206         }
207         return error;
208 }
209
210
211 /*
212  * Sample a per-thread clock for the given task.
213  */
214 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
215                             union cpu_time_count *cpu)
216 {
217         switch (CPUCLOCK_WHICH(which_clock)) {
218         default:
219                 return -EINVAL;
220         case CPUCLOCK_PROF:
221                 cpu->cpu = prof_ticks(p);
222                 break;
223         case CPUCLOCK_VIRT:
224                 cpu->cpu = virt_ticks(p);
225                 break;
226         case CPUCLOCK_SCHED:
227                 cpu->sched = task_sched_runtime(p);
228                 break;
229         }
230         return 0;
231 }
232
233 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
234 {
235         struct sighand_struct *sighand;
236         struct signal_struct *sig;
237         struct task_struct *t;
238
239         *times = INIT_CPUTIME;
240
241         rcu_read_lock();
242         sighand = rcu_dereference(tsk->sighand);
243         if (!sighand)
244                 goto out;
245
246         sig = tsk->signal;
247
248         t = tsk;
249         do {
250                 times->utime = cputime_add(times->utime, t->utime);
251                 times->stime = cputime_add(times->stime, t->stime);
252                 times->sum_exec_runtime += t->se.sum_exec_runtime;
253
254                 t = next_thread(t);
255         } while (t != tsk);
256
257         times->utime = cputime_add(times->utime, sig->utime);
258         times->stime = cputime_add(times->stime, sig->stime);
259         times->sum_exec_runtime += sig->sum_sched_runtime;
260 out:
261         rcu_read_unlock();
262 }
263
264 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
265 {
266         if (cputime_gt(b->utime, a->utime))
267                 a->utime = b->utime;
268
269         if (cputime_gt(b->stime, a->stime))
270                 a->stime = b->stime;
271
272         if (b->sum_exec_runtime > a->sum_exec_runtime)
273                 a->sum_exec_runtime = b->sum_exec_runtime;
274 }
275
276 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
277 {
278         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
279         struct task_cputime sum;
280         unsigned long flags;
281
282         spin_lock_irqsave(&cputimer->lock, flags);
283         if (!cputimer->running) {
284                 cputimer->running = 1;
285                 /*
286                  * The POSIX timer interface allows for absolute time expiry
287                  * values through the TIMER_ABSTIME flag, therefore we have
288                  * to synchronize the timer to the clock every time we start
289                  * it.
290                  */
291                 thread_group_cputime(tsk, &sum);
292                 update_gt_cputime(&cputimer->cputime, &sum);
293         }
294         *times = cputimer->cputime;
295         spin_unlock_irqrestore(&cputimer->lock, flags);
296 }
297
298 /*
299  * Sample a process (thread group) clock for the given group_leader task.
300  * Must be called with tasklist_lock held for reading.
301  */
302 static int cpu_clock_sample_group(const clockid_t which_clock,
303                                   struct task_struct *p,
304                                   union cpu_time_count *cpu)
305 {
306         struct task_cputime cputime;
307
308         switch (CPUCLOCK_WHICH(which_clock)) {
309         default:
310                 return -EINVAL;
311         case CPUCLOCK_PROF:
312                 thread_group_cputime(p, &cputime);
313                 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
314                 break;
315         case CPUCLOCK_VIRT:
316                 thread_group_cputime(p, &cputime);
317                 cpu->cpu = cputime.utime;
318                 break;
319         case CPUCLOCK_SCHED:
320                 cpu->sched = thread_group_sched_runtime(p);
321                 break;
322         }
323         return 0;
324 }
325
326
327 int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
328 {
329         const pid_t pid = CPUCLOCK_PID(which_clock);
330         int error = -EINVAL;
331         union cpu_time_count rtn;
332
333         if (pid == 0) {
334                 /*
335                  * Special case constant value for our own clocks.
336                  * We don't have to do any lookup to find ourselves.
337                  */
338                 if (CPUCLOCK_PERTHREAD(which_clock)) {
339                         /*
340                          * Sampling just ourselves we can do with no locking.
341                          */
342                         error = cpu_clock_sample(which_clock,
343                                                  current, &rtn);
344                 } else {
345                         read_lock(&tasklist_lock);
346                         error = cpu_clock_sample_group(which_clock,
347                                                        current, &rtn);
348                         read_unlock(&tasklist_lock);
349                 }
350         } else {
351                 /*
352                  * Find the given PID, and validate that the caller
353                  * should be able to see it.
354                  */
355                 struct task_struct *p;
356                 rcu_read_lock();
357                 p = find_task_by_vpid(pid);
358                 if (p) {
359                         if (CPUCLOCK_PERTHREAD(which_clock)) {
360                                 if (same_thread_group(p, current)) {
361                                         error = cpu_clock_sample(which_clock,
362                                                                  p, &rtn);
363                                 }
364                         } else {
365                                 read_lock(&tasklist_lock);
366                                 if (thread_group_leader(p) && p->signal) {
367                                         error =
368                                             cpu_clock_sample_group(which_clock,
369                                                                    p, &rtn);
370                                 }
371                                 read_unlock(&tasklist_lock);
372                         }
373                 }
374                 rcu_read_unlock();
375         }
376
377         if (error)
378                 return error;
379         sample_to_timespec(which_clock, rtn, tp);
380         return 0;
381 }
382
383
384 /*
385  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
386  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
387  * new timer already all-zeros initialized.
388  */
389 int posix_cpu_timer_create(struct k_itimer *new_timer)
390 {
391         int ret = 0;
392         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
393         struct task_struct *p;
394
395         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
396                 return -EINVAL;
397
398         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
399
400         read_lock(&tasklist_lock);
401         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
402                 if (pid == 0) {
403                         p = current;
404                 } else {
405                         p = find_task_by_vpid(pid);
406                         if (p && !same_thread_group(p, current))
407                                 p = NULL;
408                 }
409         } else {
410                 if (pid == 0) {
411                         p = current->group_leader;
412                 } else {
413                         p = find_task_by_vpid(pid);
414                         if (p && !thread_group_leader(p))
415                                 p = NULL;
416                 }
417         }
418         new_timer->it.cpu.task = p;
419         if (p) {
420                 get_task_struct(p);
421         } else {
422                 ret = -EINVAL;
423         }
424         read_unlock(&tasklist_lock);
425
426         return ret;
427 }
428
429 /*
430  * Clean up a CPU-clock timer that is about to be destroyed.
431  * This is called from timer deletion with the timer already locked.
432  * If we return TIMER_RETRY, it's necessary to release the timer's lock
433  * and try again.  (This happens when the timer is in the middle of firing.)
434  */
435 int posix_cpu_timer_del(struct k_itimer *timer)
436 {
437         struct task_struct *p = timer->it.cpu.task;
438         int ret = 0;
439
440         if (likely(p != NULL)) {
441                 read_lock(&tasklist_lock);
442                 if (unlikely(p->signal == NULL)) {
443                         /*
444                          * We raced with the reaping of the task.
445                          * The deletion should have cleared us off the list.
446                          */
447                         BUG_ON(!list_empty(&timer->it.cpu.entry));
448                 } else {
449                         spin_lock(&p->sighand->siglock);
450                         if (timer->it.cpu.firing)
451                                 ret = TIMER_RETRY;
452                         else
453                                 list_del(&timer->it.cpu.entry);
454                         spin_unlock(&p->sighand->siglock);
455                 }
456                 read_unlock(&tasklist_lock);
457
458                 if (!ret)
459                         put_task_struct(p);
460         }
461
462         return ret;
463 }
464
465 /*
466  * Clean out CPU timers still ticking when a thread exited.  The task
467  * pointer is cleared, and the expiry time is replaced with the residual
468  * time for later timer_gettime calls to return.
469  * This must be called with the siglock held.
470  */
471 static void cleanup_timers(struct list_head *head,
472                            cputime_t utime, cputime_t stime,
473                            unsigned long long sum_exec_runtime)
474 {
475         struct cpu_timer_list *timer, *next;
476         cputime_t ptime = cputime_add(utime, stime);
477
478         list_for_each_entry_safe(timer, next, head, entry) {
479                 list_del_init(&timer->entry);
480                 if (cputime_lt(timer->expires.cpu, ptime)) {
481                         timer->expires.cpu = cputime_zero;
482                 } else {
483                         timer->expires.cpu = cputime_sub(timer->expires.cpu,
484                                                          ptime);
485                 }
486         }
487
488         ++head;
489         list_for_each_entry_safe(timer, next, head, entry) {
490                 list_del_init(&timer->entry);
491                 if (cputime_lt(timer->expires.cpu, utime)) {
492                         timer->expires.cpu = cputime_zero;
493                 } else {
494                         timer->expires.cpu = cputime_sub(timer->expires.cpu,
495                                                          utime);
496                 }
497         }
498
499         ++head;
500         list_for_each_entry_safe(timer, next, head, entry) {
501                 list_del_init(&timer->entry);
502                 if (timer->expires.sched < sum_exec_runtime) {
503                         timer->expires.sched = 0;
504                 } else {
505                         timer->expires.sched -= sum_exec_runtime;
506                 }
507         }
508 }
509
510 /*
511  * These are both called with the siglock held, when the current thread
512  * is being reaped.  When the final (leader) thread in the group is reaped,
513  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
514  */
515 void posix_cpu_timers_exit(struct task_struct *tsk)
516 {
517         cleanup_timers(tsk->cpu_timers,
518                        tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
519
520 }
521 void posix_cpu_timers_exit_group(struct task_struct *tsk)
522 {
523         struct signal_struct *const sig = tsk->signal;
524
525         cleanup_timers(tsk->signal->cpu_timers,
526                        cputime_add(tsk->utime, sig->utime),
527                        cputime_add(tsk->stime, sig->stime),
528                        tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
529 }
530
531 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
532 {
533         /*
534          * That's all for this thread or process.
535          * We leave our residual in expires to be reported.
536          */
537         put_task_struct(timer->it.cpu.task);
538         timer->it.cpu.task = NULL;
539         timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
540                                              timer->it.cpu.expires,
541                                              now);
542 }
543
544 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
545 {
546         return cputime_eq(expires, cputime_zero) ||
547                cputime_gt(expires, new_exp);
548 }
549
550 /*
551  * Insert the timer on the appropriate list before any timers that
552  * expire later.  This must be called with the tasklist_lock held
553  * for reading, and interrupts disabled.
554  */
555 static void arm_timer(struct k_itimer *timer)
556 {
557         struct task_struct *p = timer->it.cpu.task;
558         struct list_head *head, *listpos;
559         struct task_cputime *cputime_expires;
560         struct cpu_timer_list *const nt = &timer->it.cpu;
561         struct cpu_timer_list *next;
562
563         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
564                 head = p->cpu_timers;
565                 cputime_expires = &p->cputime_expires;
566         } else {
567                 head = p->signal->cpu_timers;
568                 cputime_expires = &p->signal->cputime_expires;
569         }
570         head += CPUCLOCK_WHICH(timer->it_clock);
571
572         BUG_ON(!irqs_disabled());
573         spin_lock(&p->sighand->siglock);
574
575         listpos = head;
576         list_for_each_entry(next, head, entry) {
577                 if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
578                         break;
579                 listpos = &next->entry;
580         }
581         list_add(&nt->entry, listpos);
582
583         if (listpos == head) {
584                 union cpu_time_count *exp = &nt->expires;
585
586                 /*
587                  * We are the new earliest-expiring POSIX 1.b timer, hence
588                  * need to update expiration cache. Take into account that
589                  * for process timers we share expiration cache with itimers
590                  * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
591                  */
592
593                 switch (CPUCLOCK_WHICH(timer->it_clock)) {
594                 case CPUCLOCK_PROF:
595                         if (expires_gt(cputime_expires->prof_exp, exp->cpu))
596                                 cputime_expires->prof_exp = exp->cpu;
597                         break;
598                 case CPUCLOCK_VIRT:
599                         if (expires_gt(cputime_expires->virt_exp, exp->cpu))
600                                 cputime_expires->virt_exp = exp->cpu;
601                         break;
602                 case CPUCLOCK_SCHED:
603                         if (cputime_expires->sched_exp == 0 ||
604                             cputime_expires->sched_exp > exp->sched)
605                                 cputime_expires->sched_exp = exp->sched;
606                         break;
607                 }
608         }
609
610         spin_unlock(&p->sighand->siglock);
611 }
612
613 /*
614  * The timer is locked, fire it and arrange for its reload.
615  */
616 static void cpu_timer_fire(struct k_itimer *timer)
617 {
618         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
619                 /*
620                  * User don't want any signal.
621                  */
622                 timer->it.cpu.expires.sched = 0;
623         } else if (unlikely(timer->sigq == NULL)) {
624                 /*
625                  * This a special case for clock_nanosleep,
626                  * not a normal timer from sys_timer_create.
627                  */
628                 wake_up_process(timer->it_process);
629                 timer->it.cpu.expires.sched = 0;
630         } else if (timer->it.cpu.incr.sched == 0) {
631                 /*
632                  * One-shot timer.  Clear it as soon as it's fired.
633                  */
634                 posix_timer_event(timer, 0);
635                 timer->it.cpu.expires.sched = 0;
636         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
637                 /*
638                  * The signal did not get queued because the signal
639                  * was ignored, so we won't get any callback to
640                  * reload the timer.  But we need to keep it
641                  * ticking in case the signal is deliverable next time.
642                  */
643                 posix_cpu_timer_schedule(timer);
644         }
645 }
646
647 /*
648  * Sample a process (thread group) timer for the given group_leader task.
649  * Must be called with tasklist_lock held for reading.
650  */
651 static int cpu_timer_sample_group(const clockid_t which_clock,
652                                   struct task_struct *p,
653                                   union cpu_time_count *cpu)
654 {
655         struct task_cputime cputime;
656
657         thread_group_cputimer(p, &cputime);
658         switch (CPUCLOCK_WHICH(which_clock)) {
659         default:
660                 return -EINVAL;
661         case CPUCLOCK_PROF:
662                 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
663                 break;
664         case CPUCLOCK_VIRT:
665                 cpu->cpu = cputime.utime;
666                 break;
667         case CPUCLOCK_SCHED:
668                 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
669                 break;
670         }
671         return 0;
672 }
673
674 /*
675  * Guts of sys_timer_settime for CPU timers.
676  * This is called with the timer locked and interrupts disabled.
677  * If we return TIMER_RETRY, it's necessary to release the timer's lock
678  * and try again.  (This happens when the timer is in the middle of firing.)
679  */
680 int posix_cpu_timer_set(struct k_itimer *timer, int flags,
681                         struct itimerspec *new, struct itimerspec *old)
682 {
683         struct task_struct *p = timer->it.cpu.task;
684         union cpu_time_count old_expires, new_expires, old_incr, val;
685         int ret;
686
687         if (unlikely(p == NULL)) {
688                 /*
689                  * Timer refers to a dead task's clock.
690                  */
691                 return -ESRCH;
692         }
693
694         new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
695
696         read_lock(&tasklist_lock);
697         /*
698          * We need the tasklist_lock to protect against reaping that
699          * clears p->signal.  If p has just been reaped, we can no
700          * longer get any information about it at all.
701          */
702         if (unlikely(p->signal == NULL)) {
703                 read_unlock(&tasklist_lock);
704                 put_task_struct(p);
705                 timer->it.cpu.task = NULL;
706                 return -ESRCH;
707         }
708
709         /*
710          * Disarm any old timer after extracting its expiry time.
711          */
712         BUG_ON(!irqs_disabled());
713
714         ret = 0;
715         old_incr = timer->it.cpu.incr;
716         spin_lock(&p->sighand->siglock);
717         old_expires = timer->it.cpu.expires;
718         if (unlikely(timer->it.cpu.firing)) {
719                 timer->it.cpu.firing = -1;
720                 ret = TIMER_RETRY;
721         } else
722                 list_del_init(&timer->it.cpu.entry);
723         spin_unlock(&p->sighand->siglock);
724
725         /*
726          * We need to sample the current value to convert the new
727          * value from to relative and absolute, and to convert the
728          * old value from absolute to relative.  To set a process
729          * timer, we need a sample to balance the thread expiry
730          * times (in arm_timer).  With an absolute time, we must
731          * check if it's already passed.  In short, we need a sample.
732          */
733         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
734                 cpu_clock_sample(timer->it_clock, p, &val);
735         } else {
736                 cpu_timer_sample_group(timer->it_clock, p, &val);
737         }
738
739         if (old) {
740                 if (old_expires.sched == 0) {
741                         old->it_value.tv_sec = 0;
742                         old->it_value.tv_nsec = 0;
743                 } else {
744                         /*
745                          * Update the timer in case it has
746                          * overrun already.  If it has,
747                          * we'll report it as having overrun
748                          * and with the next reloaded timer
749                          * already ticking, though we are
750                          * swallowing that pending
751                          * notification here to install the
752                          * new setting.
753                          */
754                         bump_cpu_timer(timer, val);
755                         if (cpu_time_before(timer->it_clock, val,
756                                             timer->it.cpu.expires)) {
757                                 old_expires = cpu_time_sub(
758                                         timer->it_clock,
759                                         timer->it.cpu.expires, val);
760                                 sample_to_timespec(timer->it_clock,
761                                                    old_expires,
762                                                    &old->it_value);
763                         } else {
764                                 old->it_value.tv_nsec = 1;
765                                 old->it_value.tv_sec = 0;
766                         }
767                 }
768         }
769
770         if (unlikely(ret)) {
771                 /*
772                  * We are colliding with the timer actually firing.
773                  * Punt after filling in the timer's old value, and
774                  * disable this firing since we are already reporting
775                  * it as an overrun (thanks to bump_cpu_timer above).
776                  */
777                 read_unlock(&tasklist_lock);
778                 goto out;
779         }
780
781         if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
782                 cpu_time_add(timer->it_clock, &new_expires, val);
783         }
784
785         /*
786          * Install the new expiry time (or zero).
787          * For a timer with no notification action, we don't actually
788          * arm the timer (we'll just fake it for timer_gettime).
789          */
790         timer->it.cpu.expires = new_expires;
791         if (new_expires.sched != 0 &&
792             cpu_time_before(timer->it_clock, val, new_expires)) {
793                 arm_timer(timer);
794         }
795
796         read_unlock(&tasklist_lock);
797
798         /*
799          * Install the new reload setting, and
800          * set up the signal and overrun bookkeeping.
801          */
802         timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
803                                                 &new->it_interval);
804
805         /*
806          * This acts as a modification timestamp for the timer,
807          * so any automatic reload attempt will punt on seeing
808          * that we have reset the timer manually.
809          */
810         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
811                 ~REQUEUE_PENDING;
812         timer->it_overrun_last = 0;
813         timer->it_overrun = -1;
814
815         if (new_expires.sched != 0 &&
816             !cpu_time_before(timer->it_clock, val, new_expires)) {
817                 /*
818                  * The designated time already passed, so we notify
819                  * immediately, even if the thread never runs to
820                  * accumulate more time on this clock.
821                  */
822                 cpu_timer_fire(timer);
823         }
824
825         ret = 0;
826  out:
827         if (old) {
828                 sample_to_timespec(timer->it_clock,
829                                    old_incr, &old->it_interval);
830         }
831         return ret;
832 }
833
834 void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
835 {
836         union cpu_time_count now;
837         struct task_struct *p = timer->it.cpu.task;
838         int clear_dead;
839
840         /*
841          * Easy part: convert the reload time.
842          */
843         sample_to_timespec(timer->it_clock,
844                            timer->it.cpu.incr, &itp->it_interval);
845
846         if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all.  */
847                 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
848                 return;
849         }
850
851         if (unlikely(p == NULL)) {
852                 /*
853                  * This task already died and the timer will never fire.
854                  * In this case, expires is actually the dead value.
855                  */
856         dead:
857                 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
858                                    &itp->it_value);
859                 return;
860         }
861
862         /*
863          * Sample the clock to take the difference with the expiry time.
864          */
865         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
866                 cpu_clock_sample(timer->it_clock, p, &now);
867                 clear_dead = p->exit_state;
868         } else {
869                 read_lock(&tasklist_lock);
870                 if (unlikely(p->signal == NULL)) {
871                         /*
872                          * The process has been reaped.
873                          * We can't even collect a sample any more.
874                          * Call the timer disarmed, nothing else to do.
875                          */
876                         put_task_struct(p);
877                         timer->it.cpu.task = NULL;
878                         timer->it.cpu.expires.sched = 0;
879                         read_unlock(&tasklist_lock);
880                         goto dead;
881                 } else {
882                         cpu_timer_sample_group(timer->it_clock, p, &now);
883                         clear_dead = (unlikely(p->exit_state) &&
884                                       thread_group_empty(p));
885                 }
886                 read_unlock(&tasklist_lock);
887         }
888
889         if (unlikely(clear_dead)) {
890                 /*
891                  * We've noticed that the thread is dead, but
892                  * not yet reaped.  Take this opportunity to
893                  * drop our task ref.
894                  */
895                 clear_dead_task(timer, now);
896                 goto dead;
897         }
898
899         if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
900                 sample_to_timespec(timer->it_clock,
901                                    cpu_time_sub(timer->it_clock,
902                                                 timer->it.cpu.expires, now),
903                                    &itp->it_value);
904         } else {
905                 /*
906                  * The timer should have expired already, but the firing
907                  * hasn't taken place yet.  Say it's just about to expire.
908                  */
909                 itp->it_value.tv_nsec = 1;
910                 itp->it_value.tv_sec = 0;
911         }
912 }
913
914 /*
915  * Check for any per-thread CPU timers that have fired and move them off
916  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
917  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
918  */
919 static void check_thread_timers(struct task_struct *tsk,
920                                 struct list_head *firing)
921 {
922         int maxfire;
923         struct list_head *timers = tsk->cpu_timers;
924         struct signal_struct *const sig = tsk->signal;
925         unsigned long soft;
926
927         maxfire = 20;
928         tsk->cputime_expires.prof_exp = cputime_zero;
929         while (!list_empty(timers)) {
930                 struct cpu_timer_list *t = list_first_entry(timers,
931                                                       struct cpu_timer_list,
932                                                       entry);
933                 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
934                         tsk->cputime_expires.prof_exp = t->expires.cpu;
935                         break;
936                 }
937                 t->firing = 1;
938                 list_move_tail(&t->entry, firing);
939         }
940
941         ++timers;
942         maxfire = 20;
943         tsk->cputime_expires.virt_exp = cputime_zero;
944         while (!list_empty(timers)) {
945                 struct cpu_timer_list *t = list_first_entry(timers,
946                                                       struct cpu_timer_list,
947                                                       entry);
948                 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
949                         tsk->cputime_expires.virt_exp = t->expires.cpu;
950                         break;
951                 }
952                 t->firing = 1;
953                 list_move_tail(&t->entry, firing);
954         }
955
956         ++timers;
957         maxfire = 20;
958         tsk->cputime_expires.sched_exp = 0;
959         while (!list_empty(timers)) {
960                 struct cpu_timer_list *t = list_first_entry(timers,
961                                                       struct cpu_timer_list,
962                                                       entry);
963                 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
964                         tsk->cputime_expires.sched_exp = t->expires.sched;
965                         break;
966                 }
967                 t->firing = 1;
968                 list_move_tail(&t->entry, firing);
969         }
970
971         /*
972          * Check for the special case thread timers.
973          */
974         soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
975         if (soft != RLIM_INFINITY) {
976                 unsigned long hard =
977                         ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
978
979                 if (hard != RLIM_INFINITY &&
980                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
981                         /*
982                          * At the hard limit, we just die.
983                          * No need to calculate anything else now.
984                          */
985                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
986                         return;
987                 }
988                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
989                         /*
990                          * At the soft limit, send a SIGXCPU every second.
991                          */
992                         if (soft < hard) {
993                                 soft += USEC_PER_SEC;
994                                 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
995                         }
996                         printk(KERN_INFO
997                                 "RT Watchdog Timeout: %s[%d]\n",
998                                 tsk->comm, task_pid_nr(tsk));
999                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1000                 }
1001         }
1002 }
1003
1004 static void stop_process_timers(struct task_struct *tsk)
1005 {
1006         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1007         unsigned long flags;
1008
1009         if (!cputimer->running)
1010                 return;
1011
1012         spin_lock_irqsave(&cputimer->lock, flags);
1013         cputimer->running = 0;
1014         spin_unlock_irqrestore(&cputimer->lock, flags);
1015 }
1016
1017 static u32 onecputick;
1018
1019 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1020                              cputime_t *expires, cputime_t cur_time, int signo)
1021 {
1022         if (cputime_eq(it->expires, cputime_zero))
1023                 return;
1024
1025         if (cputime_ge(cur_time, it->expires)) {
1026                 if (!cputime_eq(it->incr, cputime_zero)) {
1027                         it->expires = cputime_add(it->expires, it->incr);
1028                         it->error += it->incr_error;
1029                         if (it->error >= onecputick) {
1030                                 it->expires = cputime_sub(it->expires,
1031                                                           cputime_one_jiffy);
1032                                 it->error -= onecputick;
1033                         }
1034                 } else {
1035                         it->expires = cputime_zero;
1036                 }
1037
1038                 trace_itimer_expire(signo == SIGPROF ?
1039                                     ITIMER_PROF : ITIMER_VIRTUAL,
1040                                     tsk->signal->leader_pid, cur_time);
1041                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1042         }
1043
1044         if (!cputime_eq(it->expires, cputime_zero) &&
1045             (cputime_eq(*expires, cputime_zero) ||
1046              cputime_lt(it->expires, *expires))) {
1047                 *expires = it->expires;
1048         }
1049 }
1050
1051 /*
1052  * Check for any per-thread CPU timers that have fired and move them
1053  * off the tsk->*_timers list onto the firing list.  Per-thread timers
1054  * have already been taken off.
1055  */
1056 static void check_process_timers(struct task_struct *tsk,
1057                                  struct list_head *firing)
1058 {
1059         int maxfire;
1060         struct signal_struct *const sig = tsk->signal;
1061         cputime_t utime, ptime, virt_expires, prof_expires;
1062         unsigned long long sum_sched_runtime, sched_expires;
1063         struct list_head *timers = sig->cpu_timers;
1064         struct task_cputime cputime;
1065         unsigned long soft;
1066
1067         /*
1068          * Don't sample the current process CPU clocks if there are no timers.
1069          */
1070         if (list_empty(&timers[CPUCLOCK_PROF]) &&
1071             cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1072             sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1073             list_empty(&timers[CPUCLOCK_VIRT]) &&
1074             cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
1075             list_empty(&timers[CPUCLOCK_SCHED])) {
1076                 stop_process_timers(tsk);
1077                 return;
1078         }
1079
1080         /*
1081          * Collect the current process totals.
1082          */
1083         thread_group_cputimer(tsk, &cputime);
1084         utime = cputime.utime;
1085         ptime = cputime_add(utime, cputime.stime);
1086         sum_sched_runtime = cputime.sum_exec_runtime;
1087         maxfire = 20;
1088         prof_expires = cputime_zero;
1089         while (!list_empty(timers)) {
1090                 struct cpu_timer_list *tl = list_first_entry(timers,
1091                                                       struct cpu_timer_list,
1092                                                       entry);
1093                 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1094                         prof_expires = tl->expires.cpu;
1095                         break;
1096                 }
1097                 tl->firing = 1;
1098                 list_move_tail(&tl->entry, firing);
1099         }
1100
1101         ++timers;
1102         maxfire = 20;
1103         virt_expires = cputime_zero;
1104         while (!list_empty(timers)) {
1105                 struct cpu_timer_list *tl = list_first_entry(timers,
1106                                                       struct cpu_timer_list,
1107                                                       entry);
1108                 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1109                         virt_expires = tl->expires.cpu;
1110                         break;
1111                 }
1112                 tl->firing = 1;
1113                 list_move_tail(&tl->entry, firing);
1114         }
1115
1116         ++timers;
1117         maxfire = 20;
1118         sched_expires = 0;
1119         while (!list_empty(timers)) {
1120                 struct cpu_timer_list *tl = list_first_entry(timers,
1121                                                       struct cpu_timer_list,
1122                                                       entry);
1123                 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1124                         sched_expires = tl->expires.sched;
1125                         break;
1126                 }
1127                 tl->firing = 1;
1128                 list_move_tail(&tl->entry, firing);
1129         }
1130
1131         /*
1132          * Check for the special case process timers.
1133          */
1134         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1135                          SIGPROF);
1136         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1137                          SIGVTALRM);
1138         soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1139         if (soft != RLIM_INFINITY) {
1140                 unsigned long psecs = cputime_to_secs(ptime);
1141                 unsigned long hard =
1142                         ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1143                 cputime_t x;
1144                 if (psecs >= hard) {
1145                         /*
1146                          * At the hard limit, we just die.
1147                          * No need to calculate anything else now.
1148                          */
1149                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1150                         return;
1151                 }
1152                 if (psecs >= soft) {
1153                         /*
1154                          * At the soft limit, send a SIGXCPU every second.
1155                          */
1156                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1157                         if (soft < hard) {
1158                                 soft++;
1159                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1160                         }
1161                 }
1162                 x = secs_to_cputime(soft);
1163                 if (cputime_eq(prof_expires, cputime_zero) ||
1164                     cputime_lt(x, prof_expires)) {
1165                         prof_expires = x;
1166                 }
1167         }
1168
1169         if (!cputime_eq(prof_expires, cputime_zero) &&
1170             (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1171              cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1172                 sig->cputime_expires.prof_exp = prof_expires;
1173         if (!cputime_eq(virt_expires, cputime_zero) &&
1174             (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1175              cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1176                 sig->cputime_expires.virt_exp = virt_expires;
1177         if (sched_expires != 0 &&
1178             (sig->cputime_expires.sched_exp == 0 ||
1179              sig->cputime_expires.sched_exp > sched_expires))
1180                 sig->cputime_expires.sched_exp = sched_expires;
1181 }
1182
1183 /*
1184  * This is called from the signal code (via do_schedule_next_timer)
1185  * when the last timer signal was delivered and we have to reload the timer.
1186  */
1187 void posix_cpu_timer_schedule(struct k_itimer *timer)
1188 {
1189         struct task_struct *p = timer->it.cpu.task;
1190         union cpu_time_count now;
1191
1192         if (unlikely(p == NULL))
1193                 /*
1194                  * The task was cleaned up already, no future firings.
1195                  */
1196                 goto out;
1197
1198         /*
1199          * Fetch the current sample and update the timer's expiry time.
1200          */
1201         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1202                 cpu_clock_sample(timer->it_clock, p, &now);
1203                 bump_cpu_timer(timer, now);
1204                 if (unlikely(p->exit_state)) {
1205                         clear_dead_task(timer, now);
1206                         goto out;
1207                 }
1208                 read_lock(&tasklist_lock); /* arm_timer needs it.  */
1209         } else {
1210                 read_lock(&tasklist_lock);
1211                 if (unlikely(p->signal == NULL)) {
1212                         /*
1213                          * The process has been reaped.
1214                          * We can't even collect a sample any more.
1215                          */
1216                         put_task_struct(p);
1217                         timer->it.cpu.task = p = NULL;
1218                         timer->it.cpu.expires.sched = 0;
1219                         goto out_unlock;
1220                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1221                         /*
1222                          * We've noticed that the thread is dead, but
1223                          * not yet reaped.  Take this opportunity to
1224                          * drop our task ref.
1225                          */
1226                         clear_dead_task(timer, now);
1227                         goto out_unlock;
1228                 }
1229                 cpu_timer_sample_group(timer->it_clock, p, &now);
1230                 bump_cpu_timer(timer, now);
1231                 /* Leave the tasklist_lock locked for the call below.  */
1232         }
1233
1234         /*
1235          * Now re-arm for the new expiry time.
1236          */
1237         arm_timer(timer);
1238
1239 out_unlock:
1240         read_unlock(&tasklist_lock);
1241
1242 out:
1243         timer->it_overrun_last = timer->it_overrun;
1244         timer->it_overrun = -1;
1245         ++timer->it_requeue_pending;
1246 }
1247
1248 /**
1249  * task_cputime_zero - Check a task_cputime struct for all zero fields.
1250  *
1251  * @cputime:    The struct to compare.
1252  *
1253  * Checks @cputime to see if all fields are zero.  Returns true if all fields
1254  * are zero, false if any field is nonzero.
1255  */
1256 static inline int task_cputime_zero(const struct task_cputime *cputime)
1257 {
1258         if (cputime_eq(cputime->utime, cputime_zero) &&
1259             cputime_eq(cputime->stime, cputime_zero) &&
1260             cputime->sum_exec_runtime == 0)
1261                 return 1;
1262         return 0;
1263 }
1264
1265 /**
1266  * task_cputime_expired - Compare two task_cputime entities.
1267  *
1268  * @sample:     The task_cputime structure to be checked for expiration.
1269  * @expires:    Expiration times, against which @sample will be checked.
1270  *
1271  * Checks @sample against @expires to see if any field of @sample has expired.
1272  * Returns true if any field of the former is greater than the corresponding
1273  * field of the latter if the latter field is set.  Otherwise returns false.
1274  */
1275 static inline int task_cputime_expired(const struct task_cputime *sample,
1276                                         const struct task_cputime *expires)
1277 {
1278         if (!cputime_eq(expires->utime, cputime_zero) &&
1279             cputime_ge(sample->utime, expires->utime))
1280                 return 1;
1281         if (!cputime_eq(expires->stime, cputime_zero) &&
1282             cputime_ge(cputime_add(sample->utime, sample->stime),
1283                        expires->stime))
1284                 return 1;
1285         if (expires->sum_exec_runtime != 0 &&
1286             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1287                 return 1;
1288         return 0;
1289 }
1290
1291 /**
1292  * fastpath_timer_check - POSIX CPU timers fast path.
1293  *
1294  * @tsk:        The task (thread) being checked.
1295  *
1296  * Check the task and thread group timers.  If both are zero (there are no
1297  * timers set) return false.  Otherwise snapshot the task and thread group
1298  * timers and compare them with the corresponding expiration times.  Return
1299  * true if a timer has expired, else return false.
1300  */
1301 static inline int fastpath_timer_check(struct task_struct *tsk)
1302 {
1303         struct signal_struct *sig;
1304
1305         /* tsk == current, ensure it is safe to use ->signal/sighand */
1306         if (unlikely(tsk->exit_state))
1307                 return 0;
1308
1309         if (!task_cputime_zero(&tsk->cputime_expires)) {
1310                 struct task_cputime task_sample = {
1311                         .utime = tsk->utime,
1312                         .stime = tsk->stime,
1313                         .sum_exec_runtime = tsk->se.sum_exec_runtime
1314                 };
1315
1316                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1317                         return 1;
1318         }
1319
1320         sig = tsk->signal;
1321         if (!task_cputime_zero(&sig->cputime_expires)) {
1322                 struct task_cputime group_sample;
1323
1324                 thread_group_cputimer(tsk, &group_sample);
1325                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1326                         return 1;
1327         }
1328
1329         return 0;
1330 }
1331
1332 /*
1333  * This is called from the timer interrupt handler.  The irq handler has
1334  * already updated our counts.  We need to check if any timers fire now.
1335  * Interrupts are disabled.
1336  */
1337 void run_posix_cpu_timers(struct task_struct *tsk)
1338 {
1339         LIST_HEAD(firing);
1340         struct k_itimer *timer, *next;
1341
1342         BUG_ON(!irqs_disabled());
1343
1344         /*
1345          * The fast path checks that there are no expired thread or thread
1346          * group timers.  If that's so, just return.
1347          */
1348         if (!fastpath_timer_check(tsk))
1349                 return;
1350
1351         spin_lock(&tsk->sighand->siglock);
1352         /*
1353          * Here we take off tsk->signal->cpu_timers[N] and
1354          * tsk->cpu_timers[N] all the timers that are firing, and
1355          * put them on the firing list.
1356          */
1357         check_thread_timers(tsk, &firing);
1358         check_process_timers(tsk, &firing);
1359
1360         /*
1361          * We must release these locks before taking any timer's lock.
1362          * There is a potential race with timer deletion here, as the
1363          * siglock now protects our private firing list.  We have set
1364          * the firing flag in each timer, so that a deletion attempt
1365          * that gets the timer lock before we do will give it up and
1366          * spin until we've taken care of that timer below.
1367          */
1368         spin_unlock(&tsk->sighand->siglock);
1369
1370         /*
1371          * Now that all the timers on our list have the firing flag,
1372          * noone will touch their list entries but us.  We'll take
1373          * each timer's lock before clearing its firing flag, so no
1374          * timer call will interfere.
1375          */
1376         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1377                 int cpu_firing;
1378
1379                 spin_lock(&timer->it_lock);
1380                 list_del_init(&timer->it.cpu.entry);
1381                 cpu_firing = timer->it.cpu.firing;
1382                 timer->it.cpu.firing = 0;
1383                 /*
1384                  * The firing flag is -1 if we collided with a reset
1385                  * of the timer, which already reported this
1386                  * almost-firing as an overrun.  So don't generate an event.
1387                  */
1388                 if (likely(cpu_firing >= 0))
1389                         cpu_timer_fire(timer);
1390                 spin_unlock(&timer->it_lock);
1391         }
1392 }
1393
1394 /*
1395  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1396  * The tsk->sighand->siglock must be held by the caller.
1397  */
1398 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1399                            cputime_t *newval, cputime_t *oldval)
1400 {
1401         union cpu_time_count now;
1402
1403         BUG_ON(clock_idx == CPUCLOCK_SCHED);
1404         cpu_timer_sample_group(clock_idx, tsk, &now);
1405
1406         if (oldval) {
1407                 /*
1408                  * We are setting itimer. The *oldval is absolute and we update
1409                  * it to be relative, *newval argument is relative and we update
1410                  * it to be absolute.
1411                  */
1412                 if (!cputime_eq(*oldval, cputime_zero)) {
1413                         if (cputime_le(*oldval, now.cpu)) {
1414                                 /* Just about to fire. */
1415                                 *oldval = cputime_one_jiffy;
1416                         } else {
1417                                 *oldval = cputime_sub(*oldval, now.cpu);
1418                         }
1419                 }
1420
1421                 if (cputime_eq(*newval, cputime_zero))
1422                         return;
1423                 *newval = cputime_add(*newval, now.cpu);
1424         }
1425
1426         /*
1427          * Update expiration cache if we are the earliest timer, or eventually
1428          * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1429          */
1430         switch (clock_idx) {
1431         case CPUCLOCK_PROF:
1432                 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1433                         tsk->signal->cputime_expires.prof_exp = *newval;
1434                 break;
1435         case CPUCLOCK_VIRT:
1436                 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1437                         tsk->signal->cputime_expires.virt_exp = *newval;
1438                 break;
1439         }
1440 }
1441
1442 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1443                             struct timespec *rqtp, struct itimerspec *it)
1444 {
1445         struct k_itimer timer;
1446         int error;
1447
1448         /*
1449          * Set up a temporary timer and then wait for it to go off.
1450          */
1451         memset(&timer, 0, sizeof timer);
1452         spin_lock_init(&timer.it_lock);
1453         timer.it_clock = which_clock;
1454         timer.it_overrun = -1;
1455         error = posix_cpu_timer_create(&timer);
1456         timer.it_process = current;
1457         if (!error) {
1458                 static struct itimerspec zero_it;
1459
1460                 memset(it, 0, sizeof *it);
1461                 it->it_value = *rqtp;
1462
1463                 spin_lock_irq(&timer.it_lock);
1464                 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1465                 if (error) {
1466                         spin_unlock_irq(&timer.it_lock);
1467                         return error;
1468                 }
1469
1470                 while (!signal_pending(current)) {
1471                         if (timer.it.cpu.expires.sched == 0) {
1472                                 /*
1473                                  * Our timer fired and was reset.
1474                                  */
1475                                 spin_unlock_irq(&timer.it_lock);
1476                                 return 0;
1477                         }
1478
1479                         /*
1480                          * Block until cpu_timer_fire (or a signal) wakes us.
1481                          */
1482                         __set_current_state(TASK_INTERRUPTIBLE);
1483                         spin_unlock_irq(&timer.it_lock);
1484                         schedule();
1485                         spin_lock_irq(&timer.it_lock);
1486                 }
1487
1488                 /*
1489                  * We were interrupted by a signal.
1490                  */
1491                 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1492                 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1493                 spin_unlock_irq(&timer.it_lock);
1494
1495                 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1496                         /*
1497                          * It actually did fire already.
1498                          */
1499                         return 0;
1500                 }
1501
1502                 error = -ERESTART_RESTARTBLOCK;
1503         }
1504
1505         return error;
1506 }
1507
1508 int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1509                      struct timespec *rqtp, struct timespec __user *rmtp)
1510 {
1511         struct restart_block *restart_block =
1512             &current_thread_info()->restart_block;
1513         struct itimerspec it;
1514         int error;
1515
1516         /*
1517          * Diagnose required errors first.
1518          */
1519         if (CPUCLOCK_PERTHREAD(which_clock) &&
1520             (CPUCLOCK_PID(which_clock) == 0 ||
1521              CPUCLOCK_PID(which_clock) == current->pid))
1522                 return -EINVAL;
1523
1524         error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1525
1526         if (error == -ERESTART_RESTARTBLOCK) {
1527
1528                 if (flags & TIMER_ABSTIME)
1529                         return -ERESTARTNOHAND;
1530                 /*
1531                  * Report back to the user the time still remaining.
1532                  */
1533                 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1534                         return -EFAULT;
1535
1536                 restart_block->fn = posix_cpu_nsleep_restart;
1537                 restart_block->arg0 = which_clock;
1538                 restart_block->arg1 = (unsigned long) rmtp;
1539                 restart_block->arg2 = rqtp->tv_sec;
1540                 restart_block->arg3 = rqtp->tv_nsec;
1541         }
1542         return error;
1543 }
1544
1545 long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1546 {
1547         clockid_t which_clock = restart_block->arg0;
1548         struct timespec __user *rmtp;
1549         struct timespec t;
1550         struct itimerspec it;
1551         int error;
1552
1553         rmtp = (struct timespec __user *) restart_block->arg1;
1554         t.tv_sec = restart_block->arg2;
1555         t.tv_nsec = restart_block->arg3;
1556
1557         restart_block->fn = do_no_restart_syscall;
1558         error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1559
1560         if (error == -ERESTART_RESTARTBLOCK) {
1561                 /*
1562                  * Report back to the user the time still remaining.
1563                  */
1564                 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1565                         return -EFAULT;
1566
1567                 restart_block->fn = posix_cpu_nsleep_restart;
1568                 restart_block->arg0 = which_clock;
1569                 restart_block->arg1 = (unsigned long) rmtp;
1570                 restart_block->arg2 = t.tv_sec;
1571                 restart_block->arg3 = t.tv_nsec;
1572         }
1573         return error;
1574
1575 }
1576
1577
1578 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1579 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1580
1581 static int process_cpu_clock_getres(const clockid_t which_clock,
1582                                     struct timespec *tp)
1583 {
1584         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1585 }
1586 static int process_cpu_clock_get(const clockid_t which_clock,
1587                                  struct timespec *tp)
1588 {
1589         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1590 }
1591 static int process_cpu_timer_create(struct k_itimer *timer)
1592 {
1593         timer->it_clock = PROCESS_CLOCK;
1594         return posix_cpu_timer_create(timer);
1595 }
1596 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1597                               struct timespec *rqtp,
1598                               struct timespec __user *rmtp)
1599 {
1600         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1601 }
1602 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1603 {
1604         return -EINVAL;
1605 }
1606 static int thread_cpu_clock_getres(const clockid_t which_clock,
1607                                    struct timespec *tp)
1608 {
1609         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1610 }
1611 static int thread_cpu_clock_get(const clockid_t which_clock,
1612                                 struct timespec *tp)
1613 {
1614         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1615 }
1616 static int thread_cpu_timer_create(struct k_itimer *timer)
1617 {
1618         timer->it_clock = THREAD_CLOCK;
1619         return posix_cpu_timer_create(timer);
1620 }
1621 static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1622                               struct timespec *rqtp, struct timespec __user *rmtp)
1623 {
1624         return -EINVAL;
1625 }
1626 static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1627 {
1628         return -EINVAL;
1629 }
1630
1631 static __init int init_posix_cpu_timers(void)
1632 {
1633         struct k_clock process = {
1634                 .clock_getres = process_cpu_clock_getres,
1635                 .clock_get = process_cpu_clock_get,
1636                 .clock_set = do_posix_clock_nosettime,
1637                 .timer_create = process_cpu_timer_create,
1638                 .nsleep = process_cpu_nsleep,
1639                 .nsleep_restart = process_cpu_nsleep_restart,
1640         };
1641         struct k_clock thread = {
1642                 .clock_getres = thread_cpu_clock_getres,
1643                 .clock_get = thread_cpu_clock_get,
1644                 .clock_set = do_posix_clock_nosettime,
1645                 .timer_create = thread_cpu_timer_create,
1646                 .nsleep = thread_cpu_nsleep,
1647                 .nsleep_restart = thread_cpu_nsleep_restart,
1648         };
1649         struct timespec ts;
1650
1651         register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1652         register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1653
1654         cputime_to_timespec(cputime_one_jiffy, &ts);
1655         onecputick = ts.tv_nsec;
1656         WARN_ON(ts.tv_sec != 0);
1657
1658         return 0;
1659 }
1660 __initcall(init_posix_cpu_timers);